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Opposite elements in clutters

Ahmad Abdi Ricardo Fukasawa Laura Sanità

March 20, 2018

Abstract

Let E be a finite set of elements, and let L be a clutter over ground set E. We say distinct elements e, f

are opposite if every member and every minimal cover of L contains at most one of e, f . In this paper, we

investigate opposite elements and reveal a rich theory lying underneath such a seemingly simple restriction.

The clutter C obtained from L after identifying some opposite elements is called an identification of L, and

inversely, L is called a split of C.

We will show that splitting preserves three clutter properties, namely, idealness, the max-flow min-cut

property, as well as the packing property. We will also display several natural examples where a clutter does

not have these properties but a split of them does. We will develop tools for recognizing when splitting is

not a useful operation, and as well, we will characterize when identification preserves the three mentioned

properties. Along the way, we will make connections to spanning arborescences, Steiner trees, comparability

graphs, degenerate projective planes, binary clutters, matroids, as well as results of Menger and of Ford and

Fulkerson, the Replication Conjecture and a conjecture on ideal, minimally non-packing clutters.
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1 Introduction

Finding a minimum weight spanning tree in an edge-weighted graph is a well-studied classical problem in the

field of combinatorial optimization. While there are several approaches to solving the problem, the one that

is most appealing to us is the following treatment by Edmonds in 1967. Let G = (V,E) be a graph with

non-negative weights w ∈ RE
+. The integer program

min w⊤x

s.t.
∑(

xe : e ∈ C
)
≥ 1 for each cut C

xe ∈ {0, 1} for each edge e

models our problem. Here a cut is a minimal subset of the form

δ(U) :=
{
{u, v} ∈ E : u ∈ U, v ∈ V − U

}

where U is a non-empty, proper subset of V . Since integer programs in general are computationally difficult to

solve, we resort to the following linear programming (LP) relaxation:

min w⊤x

s.t.
∑(

xe : e ∈ C
)
≥ 1 for each cut C

x ≥ 0.

Unfortunately, this relaxation is quite weak in the sense that its optimal value can be smaller than the minimum

weight of a spanning tree. For instance, if G is a triangle (i.e. a circuit on three edges) and each edge has weight

one, then the minimum weight of a spanning tree is clearly 2, while the optimal value of the LP above is at most

3
2 as x =

(
1
2

1
2

1
2

)
is feasible. One option to resolve this issue is to come up with a better LP relaxation, as is

done in Nash-Williams [24] and Tutte [31], but we are reluctant to do so as the relaxation above is quite simple.

A second option is a trick Edmonds employed in 1967 [11]. Let D = (V,A) be the directed graph obtained

from G after replacing each edge {u, v} with two opposite arcs (u, v) and (v, u), each of the same weight as

{u, v}. Let r be an arbitrary vertex of D. A spanning r-arborescence is a minimal subset of A that contains for

each v ∈ V a directed vr-path. The key observation now is that there is a weight-preserving bijection between

the spanning trees in G and the spanning r-arborescences in D. Hence instead of looking for a minimum weight

spanning tree in G, we can equivalently look for a minimum weight spanning r-arborescence in D, which can

be modelled as the integer program

min −→w⊤x

s.t.
∑(

xa : a ∈ L
)
≥ 1 for each r-cut L

xa ∈ {0, 1} for each arc a.

Here an r-cut is a minimal subset of the form

δ+(U) :=
{
(u, v) ∈ A : u ∈ U, v ∈ V − U

}

where U is a non-empty subset of V − {r}. This time around however, the natural LP relaxation

min −→w⊤x

s.t.
∑(

xa : a ∈ L
)
≥ 1 for each r-cut L

x ≥ 0.
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is strong in the sense that it always has an integral optimal solution [11]!1

To give an overview of what just happened, we need to define clutters. Let E be a finite set of elements,

called a ground set, and let L be a family of subsets of E, called members. We say L is a clutter over ground set

E(L) := E if no member is contained in, or is equal to, another member [12]. For instance, the family of cuts

(resp. spanning trees) of a graph G = (V,E) forms a clutter over E, and the family of r-cuts (resp. spanning

r-arborescences) of a directed graph D = (V,A) forms a clutter over A.

Our goal is to study and extend Edmonds’ trick to the more general framework of clutters. Essentially what

he does is bijectively map a weak clutter to a strong one, by means of replacing an element with two opposite

elements. There are however two mysteries:

• What does it mean for two elements to be opposite in a clutter?

• What does it mean to replace an element with two elements in a clutter?

We therefore have our road paved for us, and we proceed in this order. In §2 we generalize the notion of opposite

arcs, and in §3 we generalize the notion of bidirecting edges to clutters. In §4 we show that bidirecting in general

preserves certain polyhedral attributes of the underlying clutter, and in §5 we study when bidirecting fails to be

useful. In §6 we study the inverse operation of bidirecting and discover a beautiful theory lying underneath, and

finally in §7, we conclude with open problems.

1.1 A glimpse of our results

Edmonds used his bidirecting trick to move from the clutter of spanning trees to the clutter of spanning arbores-

cences. We find an analogue for vertex covers: we will show how to “bidirect” the clutter of vertex covers of any

comparability graph to obtain the clutter of vertex covers of a bipartite graph. Essentially what this means is that

comparability graphs are a distortion of bipartite graphs. Another application is about the relationship between

st-path clutters and directed st-path clutters. There are two classical results in the field about these two clutters:

Menger’s theorem [23] stating that

the minimum number of edges of an st-cut is equal to the maximum number of pairwise edge-

disjoint st-paths,

as well as Ford and Fulkerson’s result [14] stating that

the minimum number of arcs of an st-cut is equal to the maximum number of pairwise arc-disjoint

directed st-paths.

The machinery we develop implies the equivalence of these two results (that is to say, the machinery can be used

in an abstract setting to prove either statements assuming the other one is true). We are also able to show that

1To be fair, Edmonds’ linear program is different from the one stated here, but as pointed out by Fulkerson [15] (see his second paragraph

of §4.4), Edmonds’ proof can be modified to prove what is claimed here.
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the fractional versions of these two results are equivalent. We make quite a natural connection to Conforti and

Cornuéjols’ so-called Replication Conjecture [7], and along the way, we prove a deep result that we believe to

be in a sense the little sister of this conjecture. A connection to a conjecture by Cornuéjols, Guenin and Margot

on ideal, minimally non-packing clutters [10] is also made.

1.2 Terminology

Let L be a clutter over ground set E. With clutter L we associate a 0, 1 matrix M(L) whose columns are indexed

by E and whose rows are the incidence vectors of the members of L. (Note M(L) is defined up to permutations

of the rows.) Two clutters L1,L2 are isomorphic, denoted as L1
∼= L2, if relabeling the ground set of one clutter

yields the other one. A cover is a subset of E that intersects every member of L. The blocker of L, denoted

b(L), is another clutter over the same ground set whose members are the minimal covers of L. It is known that

b(b(L)) = L [12, 17]. For instance, in a graph the blocker of the clutter of spanning trees is the clutter of cuts,

and in a directed graph the blocker of the clutter of spanning r-arborescences is the clutter of r-cuts [15].

One can define two minor operations on L. The contraction L/e of an element e ∈ E is the clutter over

ground set E − {e} consisting of minimal sets in {L − {e} : L ∈ L}. The deletion L \ e of an element e ∈ E

is the clutter over ground set E − {e} with members {L : L ∈ L, e /∈ L}. Observe that b(L \ e) = b(L)/e and

b(L/e) = b(L) \ e [29]. A clutter L′ obtained from L after contracting elements I and deleting elements J is

called a minor of L (and L′ does not depend on the order of the operations, i.e. minors operations commute).

We denote L′ by L/I \ J . Clutter L′ is a proper minor of L if I ∪ J 6= ∅.

Take non-negative integral weights w ∈ ZE
+. Denote by τ(L, w) the minimum weight of a cover, i.e.

τ(L, w) :=

min w⊤x

s.t. x(L) ≥ 1 L ∈ L

x ∈ {0, 1}E ,

and denote by τ⋆(L, w) the following lower bound:

τ⋆(L, w) :=

min w⊤x

s.t. x(L) ≥ 1 L ∈ L

x ≥ 0.

Here x(L) denotes
∑

(xg : g ∈ L). Notice that covers of L are precisely the incidence vectors of solutions to

the integer program. For this reason, we refer to solutions of the linear program as fractional covers. Denote by

Q(L) polyhedron of all fractional covers of L. We say L is ideal if Q(L) is an integral polyhedron, i.e. if each

face contains an integral point. Since Q(L) is contained in the non-negative orthant, it is a point polyhedron, so

it is integral if and only if every extreme point of it is integral. Equivalently, L is ideal if for all weights w ∈ ZE
+,

τ(L, w) = τ⋆(L, w) [8]. If L is ideal, then so are b(L) [15, 20] and every minor of L [30].
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2 Opposite elements

Consider a directed graph with two distinguished opposite arcs. Then these two arcs are never used together in

a spanning r-arborescence or in an r-cut. This is the key feature we will take advantage of.

Definition. Let L be a clutter over ground set E. We say distinct elements e, f ∈ E are opposite if no member

or minimal cover contains both of them, i.e. if for each L ∈ L ∪ b(L) we have {e, f} 6⊆ L.

2.1 A charaterization of opposite elements

Our definition of opposite elements in a clutter requires knowledge of the blocker. However, quite often it is the

case that no good description of the blocker is known. Examples of such clutters include the clutter of edges

of a graph (over vertices), maximal cliques of a graph (over vertices), Hamilton cycles of a graph (over edges),

maximal common independent sets of two matroids, and many others. It is therefore quite natural to ask whether

there is a characterization of opposite elements given no knowledge of the blocker, and the answer is yes!

Theorem 2.1. Let L be a clutter and take distinct elements e, f . Then e, f are opposite if, and only if,

(⋄) for all Le, Lf ∈ L with e ∈ Le and f ∈ Lf , there is a member contained in (Le∪Lf )−{e, f}.

Proof. Suppose first that e, f are opposite. Choose Le, Lf ∈ L with e ∈ Le, f ∈ Lf . Suppose for a contradic-

tion that there is no member of L contained in (Le∪Lf )−{e, f}. Then K ′ := E(L)− (Le∪Lf −{e, f}) must

be a cover. Let K be a minimal cover contained in K ′; so K ∈ b(L). In particular, K∩Le 6= ∅ and K∩Lf 6= ∅.

Since no member contains both e, f , it follows that K ′ ∩ Le = {e} and K ′ ∩ Lf = {f}, which in turn implies

that {e, f} ⊆ K, a contradiction as no minimal cover contains both e, f .

Conversely suppose (⋄) holds. Note (⋄) implies (for equal Le and Lf ) that no member of L uses both e, f .

To prove e, f are opposite, it remains to show that no minimal cover contains both e, f . Suppose otherwise. Let

K be a minimal cover containing both e, f . Since K − {e} and K − {f} are not covers, there exist Le, Lf ∈ L

such that K ∩ Le = {e} and K ∩ Lf = {f}. Thus K ∩ (Le ∪ Lf − {e, f}) = ∅, implying in particular that

Le ∪ Lf − {e, f} contains no member of L, a contradiction.

It is worth pointing out that (⋄) is reminiscent of Lehman’s weak circuit elimination axiom for matroids [19].2

A consequence of this characterization is the following cute inequality:

Corollary 2.2. Let L be a clutter with opposite elements e, f . Then for every extreme point x̄ of Q(L),

x̄e + x̄f ≤ 1.

Proof. If x̄e = 0 or x̄f = 0 then the result is clear. Otherwise x̄e > 0 and x̄f > 0. As x̄ is an extreme point,

there exist Le, Lf ∈ L such that e ∈ Le, f ∈ Lf and x̄(Le) = 1 = x̄(Lf ). By Theorem 2.1 there exists L ∈ L

2A clutter of circuits of a matroid is one where for each element e and distinct members L1, L2 containing e, there is a member contained

in L1 ∪ L2 − {e}.
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such that L ⊆ (Le ∪ Lf )− {e, f}. As x̄ ∈ Q(L), we get

1 + x̄e + x̄f ≤ x̄(L) + x̄e + x̄f ≤ x̄(Le) + x̄(Lf ) = 2

and the result follows.

2.2 Examples: directed Steiner trees, vertex covers and simple clutters

Directed Steiner trees and directed Steiner cuts: Let D = (V,A) be a directed graph, R ⊆ V a non-

empty set of terminals, and r ∈ R the root. A directed Steiner tree is a minimal subset of A that contains for

each terminal v a directed vr-path. A directed Steiner cut is a minimal subset of A of the form δ+(U), where

U ⊆ V −{r} and U ∩R 6= ∅. It is well-known that the clutter of directed Steiner trees and the clutter of directed

Steiner cuts are blockers of one another [6]. It is now quite easy to see that opposite arcs are also opposite in

these two blocking clutters.

Observe that by restricting R = V , one obtains the clutters of spanning r-arborescences and r-cuts, men-

tioned in the introduction, and by restricting R = {s, t} and r = t, one obtains the clutters of directed st-paths

and directed st-cuts.

Edges and vertex covers: Let G = (V,E) be a graph without loops and parallel edges, and let L be the

clutter of edges of G, over ground set V . (Edges are viewed as subsets of vertices.) A vertex cover is a subset

of vertices intersecting every edge. By definition, the blocker of L is the clutter of minimal vertex covers. To

identify opposite pairs for L, we appeal to Theorem 2.1. Distinct vertices u, v are opposite if (i) they are not

neighbours, and (ii) for each neighbour u′ of u and each neighbour v′ of v, u′ and v′ are neighbours. (See

Figure 1.)

u v...
...

Figure 1: An illustration of opposite vertices u, v in the clutter of edges of a graph.
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Simple and special clutters: Let L be a clutter and take distinct elements e, f . We say L is {e, f}-simple if

there is a partition of E(L)− {e, f} into parts A,B such that

{e} ∪A, {f} ∪B ∈ L

and there is no other member of L that uses either of e, f , and

{e} ∪B, {f} ∪A ∈ b(L)

and there is no other member of b(L) that uses either of e, f . (Note A,B 6= ∅.) Observe that e, f are opposite

in any {e, f}-simple clutter. Moreover by definition, if L is {e, f}-simple, then so is b(L). The smallest simple

clutter is

P4 :=
{
{1, 2}, {2, 3}, {3, 4}

}

whose blocker is

b(P4) =
{
{1, 3}, {3, 2}, {2, 4}

}
.

Observe that P4 is {e, f}-simple with e = 1, f = 4, A = {2} and B = {3}.

As we will see in Proposition 2.4, simple clutters are the most basic clutters with (non-trivial) opposite

elements. Next take an integer n ≥ 2. A clutter S over ground set {e, f, 1, 2, . . . , n} is (e, f)-special if its

incidence matrix is

M
(
S
)
=




1 1

1 1 1 · · · 1 1

1 1

1 1
...

. . .

1 1

1 1




.

Formally,

S =
{
{e, 1}, {f, 2, 3, . . . , n}, {1, 2}, {1, 3}, . . . , {1, n}

}
.

Observe that

b
(
S
)
=

{
{f, 1}, {e, 2, 3, . . . , n}, {1, 2}, {1, 3}, . . . , {1, n}

}

and its incidence matrix is

M
(
b
(
S
))

=




1 1

1 1 1 · · · 1 1

1 1

1 1
...

. . .

1 1

1 1




.

Note that b(S) is (f, e)-special. Observe further that e, f are opposite elements and S is {e, f}-simple. We will

see in the next subsection that special clutters are a significant subclass of simple clutters.

8



2.3 Structural properties

The following remark is immediate by our definition of opposite elements and minors.

Remark 2.3. Let L be a clutter with opposite elements e, f . Take disjoint I, J ⊆ E(L)− {e, f}. Then e, f are

opposite in L/I \ J .

Proposition 2.4. Let L be a clutter with opposite elements e, f , where

(⋆) each of e, f is used in at least one member of the clutter.

Choose a minor L′ of L that is minimal subject to (⋆). Then L′ is {e, f}-simple.

Proof. An element is used by a member of a clutter if and only if it is used by a member of the blocker. Thus

b(L′) is a minor of b(L) that is also minimal subject to

(⋆⋆) each of e, f is used in at least one member of b(L′).

Note that by Remark 2.3, elements e, f are opposite in L′. Choose arbitrary Le, Lf ∈ L′ where e ∈ Le and

f ∈ Lf . Let I := Le ∩Lf and U := Le ∪Lf . Note (I ∪U)∩{e, f} = ∅ for U = E(L′)−U . Observe that the

clutter L′/I \U also satisfies (⋆), as it contains members Le − I and Lf − I . Thus the minimality of L′ implies

that I = U = ∅, so

Le ∩ Lf = ∅ and Le ∪ Lf = E(L′).

Since the equalities hold for any arbitrary Le and Lf , it follows that Le (resp. Lf ) is the unique member of

L containing element e (resp. f ). Similarly, as (⋆⋆) holds, there is a unique member Ke (resp. Kf ) of b(L′)

containing e (resp. f ) and

Ke ∩Kf = ∅ and Ke ∪Kf = E(b(L′)) = E(L′).

Moreover, since Ke is a minimal cover, there must be a member of L intersecting Ke at precisely {e}; this

member has to inevitably be the unique Le. Hence, together with a similar argument for Kf and Lf , we get

Le ∩Ke = {e} and Lf ∩Kf = {f}.

It now easily follows that L′ is {e, f}-simple, where A = Ke − {e} and B = Kf − {f}.

We are now ready to state the main result of this subsection.

Theorem 2.5. Let L be a clutter with opposite elements e, f . Then the following are equivalent:

(i) L has an (e, f)-special minor,

(ii) there exist Le ∈ L and Kf ∈ b(L) such that e ∈ Le, f ∈ Kf and |Le ∩Kf | = 1.

9



Proof. Suppose first that (i) holds. Choose disjoint I, J ⊆ E(L) − {e, f} such that L′ := L/I \ J is (e, f)-

special. Choose the unique member L′
e (resp. K ′

f ) of L′ (resp. b(L′)) containing e (resp. f ). Note |L′
e∩K

′
f | = 1.

Now choose Le ∈ L and Kf ∈ b(L) such that L′
e ⊆ Le ⊆ L′

e ∪ I and K ′
f ⊆ Kf ⊆ K ′

f ∪ J . Since I ∩ J = ∅,

it follows that |Le ∩Kf | = |L′
e ∩K ′

f | = 1. As e ∈ Le and f ∈ Kf , (ii) holds.

Suppose now that (ii) holds. Choose g ∈ E(L) − {e, f} such that Le ∩Kf = {g}. Let I := Le − {e, g},

J := Kf − {f, g} and L′ := L/I \ J .

Claim 1. {e, g} is the unique member of L′ using e, and {f, g} is the unique member of b(L′) using f .

Proof of Claim. Observe that {e, g} ∈ L′ and {f, g} ∈ b(L′), as {e, g} ∪ I = Le and {f, g} ∪ J = Kf . Let

L′
e be any member of L′ using e. Then L′

e ∩ {f, g} 6= ∅ and as f /∈ L′
e by Remark 2.3, it follows that g ∈ L′

e

implying that L′
e ⊇ {e, g} so L′

e = {e, g}. Hence, {e, g} is the unique member of L′ using e, and similarly,

{f, g} is the unique member of b(L′) using f . ♦

Choose a minor L′′ of L′ that is minimal subject to

each of e, f is used in at least one member of L′′.

Proposition 2.4 implies that L′′ is {e, f}-simple. In fact,

Claim 2. L′′ is (e, f)-special.

Proof of Claim. It follows from Claim 1 that {e, g} ∈ L′′ and {f, g} ∈ b(L′′). Let b1, . . . , bn−1 be the elements

of E(L′′) − {e, f, g}. If n = 2 then L′′ ∼= P4 and the result easily follows. Otherwise n ≥ 3. To prove the

claim, we need to show that

L′′ =
{
{e, g}, {f, b1, . . . , bn−1}, {g, b1}, {g, b2}, . . . , {g, bn−1}

}
.

Let B := {b1, . . . , bn−1}. As L′′ is {e, f}-simple, it follows that {f} ∪ B is the unique member of L′′ using f

and {e} ∪ B = {e, b1, . . . , bn−1} is the unique member of b(L′′) using e. Since {e, b1, . . . , bn−1} is a minimal

cover, for each i ∈ [n − 1] 3, there exists Li ∈ L′′ such that Li ∩ {e, b1, . . . , bn−1} = {bi}. Since n ≥ 3, it

follows that Li 6= {f, b1, . . . , bn−1}, so f /∈ Li implying inevitably that Li = {g, bi}. Thus,

L′′ ⊇
{
{e, g}, {f, b1, . . . , bn−1}, {g, b1}, {g, b2}, . . . , {g, bn−1}

}
.

Let L be any member of L′′. By uniqueness, if e ∈ L then L = {e, g} and if f ∈ L then L = {f, b1, . . . , bn−1}.

Since L 6⊆ {b1, . . . , bn−1}, it follows that g ∈ L. As L 6= {g}, we must have that for some i ∈ [n − 1],

L ⊇ {g, bi} and so L = {g, bi}. Thus equality holds above, proving the claim. ♦

By Claim 2, L′ has an (e, f)-special minor, and since L′ itself is a minor of L, (i) follows.

We will see an extension of this result for multiple opposite pairs in §6.2.

3For an integer m ≥ 1, [m] := {1, . . . ,m}.
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3 Generating opposite elements

Here we will see two procedures for generating opposite elements. To be precise, we show how starting with any

clutter, one can obtain another clutter with opposite elements. We will then give the main motive for generating

opposite elements, followed by several examples where this operation is particularly helpful, demonstrating our

stance. We will wrap up this section after making connections to the extension complexity and the integrality

gap of polyhedra.

3.1 Split and identify

Let L be a clutter with opposite elements e, f . The single identification of L at e and f is the family

C =
{
L : f /∈ L ∈ L

}
∪
{(

L− {f}
)
∪ {e} : f ∈ L ∈ L

}
.

(Any family isomorphic to C is also considered a single identification of L at e, f .) Inversely, we call L a single

split of C at e. When each of e, f is used in a member of L, we say L is a proper single split of C. (Remark 3.3

and Proposition 3.4 provide two stand-alone definitions of single splits.) For instance, the single identification

of P4 =
{
{1, 2}, {2, 3}, {3, 4}

}
at opposite elements 1, 4 is the clutter ∆3 :=

{
{1, 2}, {2, 3}, {3, 1}

}
, and

inversely, P4 is a (proper) single split of ∆3 at element 1.

Remark 3.1. Take two clutters A,B where every member of A contains one in B and vice versa. Then A = B.

The following proposition proves preliminary results on single identifications.

Proposition 3.2. Let L be a clutter with opposite elements e, f , and let C be its single identification at e, f . Then

(i) C is a clutter over ground set E(L)− {f}, and

(ii) b(C) is the single identification of b(L) at e, f .

Proof. (i) Suppose otherwise. Then there must exist Le, Lf ∈ L such that e ∈ Le, f ∈ Lf and either

Le − {e} ⊆ Lf − {f} or Lf − {f} ⊆ Le − {e}. By Theorem 2.1, (Le ∪ Lf ) − {e, f} contains another

member of L, but (Le ∪ Lf )− {e, f} is either Le − {e} or Lf − {f}, a contradiction.

(ii) Let B be the single identification of b(L) at e, f :

B =
{
K : f /∈ K ∈ b(L)

}
∪
{(

K − {f}
)
∪ {e} : f ∈ K ∈ b(L)

}
.

To prove B = b(C), we employ Remark 3.1. As every member of b(L) is a cover for L, it follows that

every member of B is a cover for C, so every member of B contains one in b(C). Conversely, let B ∈ b(C).

If e /∈ B, then B is also a cover of L, so B contains a member of b(L) and therefore of B. Otherwise

e ∈ B, and B ∪ {f} is a cover of L, so B ∪ {f} contains a member K of b(L), implying that B contains

a member of B – this member is either K or (K −{f})∪ {e}. Either way, every member of b(C) contains

one in B. By Remark 3.1, B = b(C), finishing the proof.
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More generally, an identification of clutter L is a clutter C (thanks to Proposition 3.2) obtained from L after

applying a series of single identifications. Inversely, clutter L is a split of clutter C. By the preceding proposition,

b(L) is a split of b(C), and there is a one-to-one correspondence between the members of L and those of C. Notice

that a clutter may have many single splits at an element. It is therefore interesting to see how single splits at an

element are created; we propose two approaches.

The first approach is an immediate corollary of Theorem 2.1. For a clutter C and an element e, denote by

port(C, e) the family of members of C that contain element e.

Remark 3.3. Let C be a clutter and take an element e. Then the following hold:

(i) Let L be a single split of C at e. Then for C1 ∈ port(C, e) ∩ port(L, e) and C2 ∈ port(C, e) − port(L, e),

(C1 ∪ C2)− {e} contains another member of C.

(ii) Let porte, portf be a partition of port(C, e) such that for each C1 ∈ porte and C2 ∈ portf , (C1∪C2)−{e}

contains another member of C. Then there is a single split L of C at e such that porte = port(L, e).

Therefore, to split C at element e, we should find a partition porte, portf of port(C, e) so that (ii) is satisfied.

The second approach is also interesting. Take a clutter C and an element e. The e-graph is the bipartite graph

on vertices port(C, e) ∪ port(b(C), e), where C ∈ port(C, e) and B ∈ port(b(C), e) are adjacent if C ∩B = {e}.

Proposition 3.4. Let C be a clutter and take an element e. Then the following hold:

(i) Let L be a single split of C at e. Then there is no edge of the e-graph of C with exactly one end in

port(L, e) ∪ port(b(L), e).

(ii) Take non-empty subsets U ⊆ port(C, e) and V ⊆ port(b(C), e) such that there is no edge of the e-graph

with exactly one end in U ∪ V . Then there is a single split L of C at e such that U = port(L, e) and

V = port(b(L), e).

Proof. (i) This follows immediately from the fact that whenever C∩B = {e}, for some C ∈ C and B ∈ b(C),

then either

C ∈ port(L, e) and B ∈ port(b(L), e)

or

(C − {e}) ∪ {f} ∈ port(L, f) and (B − {e}) ∪ {f} ∈ port(b(L), f),

as C ∩ (B − {e} ∪ {f}) = ∅ and (C − {e} ∪ {f}) ∩B = ∅.

(ii) Let

L :=
{
C : e /∈ C ∈ C

}
∪
{
C : C ∈ port(C, e) ∩ U

}
∪
{
(C − {e}) ∪ {f} : C ∈ port(C, e)− U

}
,

where f is a new element. Note that by definition, port(L, e) = U .
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We claim that e and f are opposite in L. By Theorem 2.1 it suffices to show, for all C1 ∈ U and C2 ∈

port(C, e)−U , that (C1 ∪C2)− {e} contains another member of C. Suppose not. Then elements of C not

in (C1 ∪C2)− {e} form a cover for C, so there exists B ∈ b(C) such that B ∩C1 = {e} = B ∩C2, so B

is a common neighbour of C1 and C2 in the e-graph, contradicting our choice of U ∪ V . Hence, since C is

clearly the identification of L at e and f , L is a single split of C at e.

It remains to show that port(b(L), e) = V . To show ⊆, take K ∈ port(b(L), e). Note that K ∈

port(b(C), e). Since K intersects some member of port(L, e) = U at just {e}, it follows that there is an

edge in the e-graph between K and some vertex of U , which due to our assumption implies that K ∈ V .

Conversely, to show ⊇, take B ∈ V ⊆ port(b(C), e). Then either B or (B − {e}) ∪ {f} is in b(L).

However, since B intersects each member in U at just {e}, it follows that (B − {e}) ∪ {f} is not a cover,

so B ∈ port(b(L), e), as required. Hence, port(b(L), e) = V , finishing the proof.

Thus, every disconnection in the e-graph of C gives rise to a proper single split of C at e.

3.2 Splits and covering parameters: why you should split!

Here we shed light on why one would want to split clutters. Let C be a clutter with weights w ∈ Z
E(C)
+ . Recall

that τ(C, w), the solution of a very general integer program, is the minimum weight of a cover while τ⋆(C, w),

its linear programming relaxation, is the minimum weight of a fractional cover. τ(C, w) is a desirable quantity

to compute, either exactly or approximately, and that is why the easier-to-find lower bound τ⋆(C, w) has been

the subject of extensive study [9, 27, 32].

The following proposition illustrates how splitting interacts with these parameters.

Proposition 3.5. Let C be a clutter with weights w ∈ Z
E(C)
+ , and take an element e. Let L be a single split of C

at e, and extend w to E(L) by setting wf := we. Then

τ(C, w) = τ(L, w)

and

τ⋆(L, w) ≥ τ⋆(C, w).

Proof. To prove τ(C, w) = τ(L, w), let B⋆ and K⋆ be minimum weight covers for C and L, respectively. By

Proposition 3.2 (ii), b(C) is the identification of b(L) at e, f , so there is a one-to-one correspondence between

the members of b(C) and those of b(L). In particular, let B be the corresponding member of K⋆ in b(C), and let

K be the corresponding member of B⋆ in b(L). Then as wf = we,

τ(C, w) = w(B⋆) = w(K) ≥ τ(L, w) = w(K⋆) = w(B) ≥ w(B⋆) = τ(C, w),

so equality holds throughout and τ(C, w) = τ(L, w).
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To prove τ⋆(L, w) ≥ τ⋆(C, w), let x̄ ∈ R
E(L)
+ be a minimum weight fractional cover for L. Define x ∈

R
E(C)
+ as follows: for each g ∈ E(C) − {e}, xg := x̄g and xe := max{x̄e, x̄f}. Observe that for each L ∈ L

and its corresponding member C of C, we have

x(C) ≥ x̄(L) ≥ 1,

so x is a fractional cover for C, implying that

τ⋆(L, w) =
∑

(wgx̄g : g ∈ E(L)) ≥
∑

(wgxg : g ∈ E(C)) ≥ τ⋆(C, w),

as required.

Thus,

Corollary 3.6. Let C be a clutter with weights w ∈ Z
E(C)
+ , and let L be a split of C. Then one can extend w to

E(L) so that

τ(C, w) = τ(L, w)

and

τ⋆(L, w) ≥ τ⋆(C, w).

As a consequence, if our objective is approximating τ(C, w), then τ⋆(L, w) is a better lower bound than

τ⋆(C, w). In fact, if the split L of C from the corollary happens to be ideal, then we are guaranteed to have that

τ(C, w) = τ⋆(L, w), thereby reducing the problem of finding τ(C, w) to solving a linear program. In the next

subsection, we will see several examples of ideal splits.

3.3 Examples: deltas, Steiner trees and comparability graphs

Deltas (degenerate projective planes) and split deltas: Take an integer n ≥ 3. A delta of dimension n is, up

to isomorphism, the clutter ∆n over ground set {1, 2, . . . , n} whose incidence matrix is

M
(
∆n

)
=




1 1

1 1
...

. . .

1 1

1 1

1 1 · · · 1 1




.

Formally,

∆n =
{
{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}

}
.

Observe that b(∆n) = ∆n, and that ∆n is a non-ideal clutter as

(
n− 2

n− 1
,

1

n− 1
,

1

n− 1
, . . . ,

1

n− 1

)⊤
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is a fractional extreme point of Q(∆n). In the literature, a delta of dimension n is referred to as a degenerate

projective plane of order n− 1, but we will not be using this terminology (as deltas are not the only degenerate

projective planes). Deltas play a crucial role in Lehman’s seminal study of non-ideal clutters – we will see more

on this in §5.1. Deltas and their splits will also be crucial to our work.

Let k ∈ [n− 2]. A split delta of order n and level k is, up to isomorphism, the following clutter over ground

set {1, 2, . . . , n− k} ∪ {e1, . . . , ek, f1, . . . , fk}:

∆k
n :=

{
{1, 2}, {1, 3}, . . . , {1, n− k}, {1, e1}, . . . , {1, ek}, {2, . . . , n− k, f1, . . . , fk}

}
,

whose incidence matrix is

M
(
∆k

n

)
=




1 1

1 1
...

. . .

1 1

1 1
...

. . .

1 1

1 1 · · · 1 1 · · · 1




.

The blocker of this clutter is

b
(
∆k

n

)
=

{
{1, 2}, {1, 3}, . . . , {1, n− k}, {1, f1}, . . . , {1, fk}, {2, . . . , n− k, e1, . . . , ek}

}
,

with incidence matrix

M
(
b
(
∆k

n

))
=




1 1

1 1
...

. . .

1 1

1 1
...

. . .

1 1

1 1 · · · 1 1 · · · 1




,

which is also a split delta of the same order and level. Notice that for i ∈ [k], elements ei and fi are opposite in

∆k
n.

Remark 3.7. Take integers n ≥ 3 and k ∈ [n− 2]. Let ∆0
n := ∆n. Then

(i) ∆k
n is the unique proper single split of ∆k−1

n ,

(ii) ∆n−2
n has no proper split,

(iii) if n ≥ 4, we have ∆k
n \ e1/f1 ∼= ∆k−1

n−1,
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{1, 2}

{1, 2}

{1, 3}

{1, 3}

{1, 4}

{1, 4}

port(∆4, 1)

port(b(∆4), 1)

Figure 2: An illustration of the 1-graph of ∆4.

(iv) if n ≥ 4 and k ∈ [n− 3], ∆k
n has a ∆n−k minor.

Proof. (i) Observe that ∆k−1
n is the identification of ∆k

n over at e1 and f1, so ∆k
n is a proper single split of

∆k−1
n . In fact, for i ∈ {2, 3, . . . , n − k + 1}, any proper single split of ∆k−1

n at element i is the split delta ∆k
n.

To prove uniqueness, it is therefore sufficient to show for n ≥ 4 that ∆k−1
n has no single split at element 1. This

follows from Proposition 3.4 after observing that the 1-graph of ∆k−1
n is connected – see Figure 2 for the case

n = 4 and k = 1. An alternative reasoning is that C ∪ C ′ − {1} does not contain another member of ∆k−1
n , for

any C,C ′ ∈ port
(
∆k−1

n , 1
)
. We leave parts (ii) and (iii) to the reader. Notice that (iv) is an immediate corollary

of (iii).

Thus, by part (i), a split delta of order n and level k is the kth single split of ∆n, with ∆n−2
n being the ultimate

split of it by part (ii). Let us analyze the idealness of deltas and their splits. As we mentioned already, for each

n ≥ 3, the delta ∆n is non-ideal, but it can be readily checked that its split ∆n−2
n is ideal. Hence, parts (i) and

(ii) together with (iv) imply that,

Remark 3.8. For n ≥ 3, ∆n−2
n is the unique ideal split of ∆n.

Another useful remark is the relationship between special clutters and deltas:

Remark 3.9. Special clutters are precisely the proper single splits of deltas.

Steiner trees: We have already defined directed Steiner trees as well as directed Steiner cuts. (Undirected)

Steiner trees are defined in a similar fashion: let G = (V,E) be a graph and let R ⊆ V be a set of terminals.

A Steiner tree is a minimal connected subset of E spanning the terminals, and a Steiner cut is a minimal edge

subset of the form

δ(U) :=
{
{u, v} ∈ E : u ∈ U, v ∈ V − U

}

for some U ⊆ V such that U ∩ R 6= ∅ and (V − U) ∩ R 6= ∅. It is well-known that the clutter of Steiner trees

and the clutter of Steiner cuts are blockers of one another [6]. Observe that when R = V , Steiner trees (resp.
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Steiner cuts) are the same as spanning trees (resp. cuts), and when R = {s, t}, Steiner trees (resp. Steiner cuts)

are the same as st-paths (resp. st-cuts).

The clutter of Steiner trees of a graph has a nice split that is easy to describe, namely the clutter of directed

Steiner trees of the “bidirection” of the graph with an arbitrary root. To be formal,

Remark 3.10. Let G = (V,E) be a graph with terminals R ⊆ V . Let

A =
{
(u, v), (v, u) : {u, v} ∈ E

}
,

let D = (V,A) and choose a root r ∈ R. Then the clutter L of directed Steiner trees (resp. cuts) of D is a split

of the clutter C of Steiner trees (resp. cuts) of G.

Proof. As mentioned earlier, opposite arcs in D are also opposite in L. Consider the clutter C′ obtained after

identifying all opposite pairs (u, v), (v, u), for {u, v} ∈ E. We claim that C′ ∼= C. In other words, what we

claim is that

there is a unique way to orient the edges of a Steiner tree in G so as to obtain a directed Steiner tree

of D.

This is clearly true. Hence, C is an identification of L, and by Proposition 3.2, b(C) is an identification of b(L),

finishing the proof.

Let us discuss idealness of such clutters. The clutter C of Steiner trees of a graph is quite often non-ideal.

For instance, if G = (V,E) is a triangle and R = V then C ∼= ∆3, which is non-ideal. As a result, the clutter

C is non-ideal as soon as the graph G has a minor isomorphic to a triangle with three terminals (the converse is

proved to be true in Theorem 5.8). It is a pity that such a weak restriction makes C non-ideal. But what about

splits of these clutters? The preceding remark points out a nice split L of C, where L is a clutter of directed

Steiner trees. This is good news, as the split L is guaranteed to be ideal when R = {s, t} or R = V or when G

is a series-parallel graph [14, 11, 16, 25, 26].

Vertex covers of comparability graphs: Let V be a finite set and define a (strict) partial order < on the

elements of V satisfying the following:

for each u ∈ V , u < u is not the case,

for u, v ∈ V , if u < v then v < u is not the case,

for u, v, w ∈ V , if u < v and v < w then u < w.

The pair (V,<) is called a partially ordered set. A comparability graph is a graph whose vertices are V and

whose edges are
{
{u, v} : u, v ∈ V, u < v

}
,
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where (V,<) is a partially ordered set. An easy fact we will use below about comparability graphs is that

triangle-free comparability graphs are bipartite, that is, if a comparability graph does not have three vertices

u, v, w such that u < v < w, then it must be bipartite.

Theorem 3.11. Let G = (V,E) be a comparability graph, and let C be the clutter of its minimal vertex covers.

Then C has a split that is the clutter of minimal vertex covers of a bipartite graph. Moreover, this split is obtained

after applying at most |V | many single splits.

Proof. We will appeal to Proposition 3.2 and instead prove that b(C) = E has a split that is the clutter of edges

of a bipartite graph. If G is triangle-free, then it is already bipartite, so we are done. Otherwise we construct

another comparability graph with fewer triangles whose clutter of edges is a split of E, and we recurse until we

reach a triangle-free comparability graph.

Suppose vertices u, v, w induce a triangle in G, so we may assume u < v < w. Let G′ be obtained from G

after splitting vertex v into two vertices v1, v2 and splitting the neighbourhood of v as follows: vertices smaller

than v, including u, are now neighbours of v1 and vertices larger than v, including w, are now neighbours of v2.

Formally, G′ = (V ′, E′) where

V ′ :=
(
V − {v}

)
∪ {v1, v2}

and

E′ :=
{
{x, y} : x < y, v /∈ {x, y}

}
∪
{
{x, v1} : x < v

}
∪
{
{v2, y} : v < y

}
.

It is clear that the new graph G′ has fewer triangles than before, as every triangle of G′ is present in G and the

triangle of G on vertices u, v, w no longer exists in G′.

To see why G′ is still a comparability graph, we will modify the old partial order < defined on V to a new

partial order <′ defined on V ′, so that G′ is the comparability graph of <′. Take x, y ∈ V ′. Then x <′ y if

(i) x, y ∈ V ′ − {v1, v2} and x < y, or

(ii) x ∈ V ′ − {v1, v2}, y = v1 and x < v, or

(iii) x = v2, y ∈ V ′ − {v1, v2} and v < y.

One can easily verify that <′ is a partial order, and also that G′ is the comparability graph of this partial order.

We next claim that v1, v2 are opposite in the clutter E′. Let {x, v1} and {v2, y} be edges in E′. Then by

definition, x < v and v < y, so x < y and

(
{x, v1} ∪ {v2, y}

)
− {v1, v2} = {x, y} ∈ E′.

Since this is true for all such x, y, Theorem 2.1 implies that v1, v2 are opposite in E′. It is also clear that E is

the identification of E′ at v1, v2, so the new comparability graph G′ is precisely what we were looking for.

Finally, notice that in our procedure, a vertex of G is never split more than once, implying that our algorithm

terminates after applying at most |V | many single splits.
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Once again, let us discuss idealness of these clutters. It is well-known that the clutter C of minimal vertex

covers of a graph is ideal if, and only if, the graph is bipartite [13, 18]. Hence, for comparability graphs, C

is most often non-ideal. However, as the preceding proposition shows, C has a very nice split – the clutter of

minimal vertex covers of a bipartite graph, which is always ideal.

3.4 Ideal splits and extension complexity

Splits can sometimes be used to upper-bound the so-called extension complexity of certain polyhedra. Let us

elaborate. Let P be an arbitrary polyhedron in Rd. An extension of P is a full-dimensional polyhedron Q in Rm

for which there is an affine function φ : Rm → Rd such that

φ(Q) = P.

The extension complexity of P , denoted xc(P ), is the minimum number of facets of an extension of it. Finding

this parameter, or bounding it from above or below, is very desirable. The following proposition shows how

ideal splits can help bound this parameter from above.

Let C be a clutter over ground set E. For a subset F of E, let χF ∈ {0, 1}E denote the characteristic vector

of F . Denote by conv(C) the convex hull of

{
χC ∈ {0, 1}E(C) : C ∈ C

}

and denote by conv+(C) its dominant, that is,

conv+(C) =
{
x+ r : x ∈ conv(C), r ≥ 0

}
.

Proposition 3.12. Let C be a clutter and let L be a split of it. Then the following hold:

(1) conv+(L) is an extension of conv+(C),

(2) if L is ideal, then

xc
(
conv+(C)

)
≤ |b(C)|+ |E(L)|

and

xc
(
conv+

(
b(C)

))
≤ |C|+ |E(L)|.

Proof. (1) As composition of affine maps is also affine, it suffices to prove this part for single splits. To this

end, assume that L is a single split of C at an element e ∈ E(C). For each x ∈ RE(L), define φ(x) ∈ RE(C)

as follows: let φ(x)e = xe + xf and for each g ∈ E(C)−{e}, let φ(x)g = xg . Clearly φ : RE(L) → RE(C)

is an affine map. Observe that φ maps (the characteristic vector of) each member of L to its corresponding

member in C. This, together with the affinity of φ, implies that

φ
(
conv(L)

)
= conv(C),
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implying in turn that

φ
(
conv+(L)

)
= conv+(C),

finishing the proof of (1).

(2) Consider the polyhedron

Q(L) =
{
x ∈ RE(L) : x(L) ≥ 1, ∀L ∈ L;xg ≥ 0, ∀g ∈ E(L)

}
,

which is integral as L is assumed ideal. Thus, the extreme points of Q(L) are precisely the members of

b(L), implying that Q(L) = conv+(b(L)). So by (1), Q(L) is an extension of conv+
(
b(C)

)
and

xc
(
conv+

(
b(C)

))
≤ |L|+ |E(L)| = |C|+ |E(L)|.

Since L is ideal, it follows that b(L) is also ideal. But b(L) is a split of b(C), so what we just proved implies

xc
(
conv+(C)

)
≤ |b(C)|+ |E(L)|.

(Note that a crude bound on |E(L)| is |E(C)| times the maximum frequency of an element in C.) Let us now

apply this proposition to minimal vertex covers of comparability graphs:

Corollary 3.13. Let G = (V,E) be a comparability graph and let C be its clutter of minimal vertex covers.

Then conv+(C) has an extension of dimension at most 2|V | and extension complexity at most |E|+ 2|V |.

Proof. Let L be the split of C from Theorem 3.11, for which |E(L)| ≤ |E(C)| + |V | = 2|V |. Notice that L is

an ideal clutter, so from Proposition 3.12 (2) it follows

xc
(
conv+(C)

)
≤ |E|+ |E(L)| ≤ |E|+ 2|V |,

as desired.

It was known to Yannakakis [33] that in the world of comparability graphs, the convex hull of stable sets

has extension complexity O
(
|V |2

)
. As stable sets are complements of vertex covers, this work implies that for

comparability graphs, the convex hull of (all) vertex covers has extension complexity O
(
|V |2

)
.

3.5 Ideal splits and integrality gap

Splits can also be used sometimes to upper-bound an integrality gap parameter. Let C be a clutter over ground

set E, and take a real number k ≥ 1. We say C has integrality gap at most k if for each w ∈ Z
E(C)
+ , we have

k ≥
τ(C, w)

τ⋆(C, w)
.

Proposition 3.14. Let L be an ideal clutter and let C be an identification of it. If each element of C has at most

k elements of L identifying with it, then the integrality gap of C is at most k.
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Proof. Take weights w ∈ Z
E(C)
+ and let x⋆ be a minimum weight fractional cover for C. Extend x⋆ to a fractional

cover of L as follows: for each element f of L that identifies with an element e of C, let x⋆
f := x⋆

e . Also, extend

w to E(L) as follows: for each element f of L that identifies with an element e of C, let wf := we. As each

element of C has at most k elements of L identifies with it, we have

k τ⋆(C, w) = k
∑(

wgx
⋆
g : g ∈ E(C)

)
≥

∑(
wgx

⋆
g : g ∈ E(L)

)

≥ τ⋆(L, w) as x⋆ ∈ Q(L)

= τ(L, w) as L is ideal

= τ(C, w) by Proposition 3.5.

Since this is true for any w ∈ Z
E(C)
+ , the result follows.

In other words, if a clutter has an ideal split where each element is split at most k − 1 times, then its integrality

gap is at most k. For instance, let C be the clutter of spanning trees of a graph. As we have seen, Edmonds found

an ideal split of C where each element is split at most once. Therefore, we get the well-known fact that C has

integrality gap at most 2 [32].

4 Splitting preserves many properties!

In the previous section, we saw several examples of non-ideal clutters with ideal splits. One may wonder whether

there are ideal clutters with non-ideal splits. In this section, we answer this question negatively by showing that

splitting preserves many nice properties, including idealness. In §6.1 we will see a neat application of the results

here.

4.1 Idealness

Recall that a clutter L is ideal if every extreme point of

Q(L) =
{
x ∈ R

E(L)
+ : x(L) ≥ 1, ∀L ∈ L

}

is integral.

Theorem 4.1. If a clutter is ideal, then so is any split of it.

Proof. It suffices to prove this for single splits. Let C be an ideal clutter and let L be a proper single split of it

at some element e ∈ E(C). We may assume that every element in E(C) is used in a member of C, which in turn

implies that every element in E(L) is used in a member of L. Suppose for a contradiction that L is non-ideal,

and let x⋆ ∈ R
E(L)
+ be a non-integral extreme point of Q(L). After relabeling e and f , if necessary, we may

assume that x⋆
e ≥ x⋆

f . Define y ∈ R
E(C)
+ as follows: ye := max{x⋆

e, x
⋆
f} = x⋆

e and for each g ∈ E(C) − {e},
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yg := x⋆
g . For each C ∈ C and its corresponding member L in L,

y(C) =

{
x⋆(L) if f /∈ L

x⋆(L)− x⋆
f + x⋆

e if f ∈ L,

and since x⋆(L) ≥ 1, we get y(C) ≥ 1. As a result, y ∈ Q(C) and since Q(C) is integral, there exist members

B1, . . . , Bn of b(C) so that y is at least as large as a convex combination of χB1
, . . . , χBn

:

y ≥
n∑

i=1

λiχBi

for some λ ∈ Rn
+ such that

∑n

i=1 λi = 1. For each i ∈ [n], let Ki be the corresponding member of Bi in b(L),

and let

x :=

n∑

i=1

λiχKi
∈ Q(L).

Since x⋆ is a non-integral extreme point, the equation above implies that x⋆ does not dominate x. However, for

each g ∈ E(L)− {e, f}, x⋆
g = yg ≥ xg and

x⋆
e = ye ≥ xe + xf .

Hence, xf > x⋆
f and in particular, x⋆

e > 0. Therefore, since x⋆ is an extreme point of Q(L), there exists Le ∈ L

with e ∈ Le such that x∗(Le) = 1. But then, since f /∈ Le and x ∈ Q(L), it follows that

1 = x⋆(Le) ≥ x(Le) ≥ 1,

so equality holds throughout. In particular, x⋆
e = xe, implying that xf = 0, a contradiction with xf > x⋆

f .

Let us point out that Corollary 3.6 does not imply this result.

4.2 The max-flow min-cut property

Let us go a step further and analyze a stronger property. Let C be a clutter over ground set E with weights

w ∈ ZE
+. Recall the covering parameter τ(C, w) computing the minimum weight of a cover, with lower bound

τ⋆(C, w) computing the minimum weight of a fractional cover. Paired with the covering parameter τ(C, w) is

the packing parameter:

ν(C, w) :=

max
∑

(yC : C ∈ C)

s.t.
∑

(yC : C ∈ C, g ∈ C) ≤ wg g ∈ E

y ∈ ZC
+,

with the following upper bound:

ν⋆(C, w) :=

max
∑

(yC : C ∈ C)

s.t.
∑

(yC : C ∈ C, g ∈ C) ≤ wg g ∈ E

y ≥ 0.

22



Solutions of this linear program are referred to as fractional packings (with respect to w). Notice that this linear

program is the dual of the fractional covers linear program. Thus, it follows from linear programming duality

that

τ(C, w) ≥ τ⋆(C, w) = ν⋆(C, w) ≥ ν(C, w).

Recall also that a clutter C is ideal if, and only if, for all w ∈ Z
E(C)
+ , τ(C, w) = τ⋆(C, w). A clutter C has the

max-flow min-cut (MFMC) property if for all weights w ∈ ZE
+, τ(C, w) = ν(C, w). Observe that a clutter with

the MFMC property is also ideal.

Proposition 4.2. Let C be a clutter with weights w ∈ Z
E(C)
+ , and take an element e. Let L be a single split of C

at e, and extend w to E(L) by setting wf := we. Then

ν(L, w) ≥ ν(C, w).

Proof. Let y⋆ ∈ ZC
+ be a maximum integral packing for C, and define y ∈ ZL

+ as follows: for each L ∈ L and

its corresponding member C in C, let yL := y⋆C . Then

we ≥
∑

(y⋆C : C ∈ C, e ∈ C) ≥
∑

(yL : L ∈ L, e ∈ L)

wf = we ≥
∑

(y⋆C : C ∈ C, e ∈ C) ≥
∑

(yL : L ∈ L, f ∈ L) ,

and for each g ∈ E(L)− {e, f},

wg ≥
∑

(y⋆C : C ∈ C, g ∈ C) =
∑

(yL : L ∈ L, g ∈ L) ,

implying that y is an integral packing for L. Moreover, note that

ν(L, w) ≥
∑

(yL : L ∈ L) =
∑

(y⋆C : C ∈ C) = ν(C, w),

as claimed.

Theorem 4.3. If a clutter has the max-flow min-cut property, then so does any split of it.

Proof. Once again, it suffices to prove this for single splits. To this end, take a clutter C with the MFMC property

and let L be a single split of it at some element e ∈ E(C). Take weights w ∈ Z
E(L)
+ . We will prove by using

induction on |we − wf | that τ(L, w) = ν(L, w). If we = wf then

ν(L, w) ≤ τ(L, w) = τ(C, w) by Proposition 3.5

= ν(C, w) since C has the MFMC property

≤ ν(L, w) by Proposition 4.2,

so τ(L, w) = ν(L, w). For the induction step, we may therefore assume that we > wf . If element e does not

appear in a minimum weight cover of L, and w′ is obtained from w after reducing we by 1, then τ(L, w) =

τ(L, w′) and the induction hypothesis implies that

τ(L, w) = τ(L, w′) = ν(L, w′) ≤ ν(L, w) ≤ τ(L, w),
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so τ(L, w) = ν(L, w). Otherwise, element e appears in a minimum weight cover, say Ke, of L. In this case,

since we > wf and f /∈ Ke, we get that

τ(L, w) = τ(C, w)

and Ke is also a minimum weight cover of C. (Note wf is dropped on the right-hand-side of the equation.) Take

a maximum integral packing y⋆ ∈ ZC
+ of C. Since C has the MFMC property, we have

∑
(y⋆C : C ∈ C) = τ(C, w) := τ.

Suppose y⋆ picks members C1, . . . , Cτ of C (many of the Ci’s may be the same). For each i ∈ [τ ], let Li be the

member corresponding to Ci in L. Note that for each g ∈ E(L) − {f}, the number of Li’s using element g is

at most the number of Ci’s using element g, which is bounded above by wg . Moreover, since Ke has the same

weight as the packing C1, . . . , Cτ , it follows that for each i ∈ [τ ], |Ke ∩Ci| = 1. So if for some i ∈ [τ ], e ∈ Ci,

then e must also belong to Li as Ke is also a cover for L. Thus, f /∈ L1 ∪ · · · ∪ Lτ , which in turn implies that

L1, . . . , Lτ is a packing of L (with respect to w). Since τ(L, w) = τ , it follows that

τ(L, w) = ν(L, w).

This completes the induction step, proving that τ(L, w) = ν(L, w) for all w ∈ Z
E(L)
+ . Thus L has the MFMC

property, finishing the proof.

4.3 The packing property and the little sister of the Replication Conjecture

There is a notoriously difficult conjecture on the max-flow min-cut property that motivated us to analyze another

property. For a clutter C, let τ(C) := τ(C,1) and ν(C) := ν(C,1). We say that C packs if τ(C) = ν(C).

In words, a clutter packs if the minimum size of a cover is equal to the maximum size of a packing (i.e. the

maximum number of pairwise disjoint members). Notice that Propositions 3.5 and 4.2 imply that,

Corollary 4.4. If a clutter packs, then so does any split of it.

A clutter C has the packing property if every minor of it (including C itself) packs. Equivalently, a clutter

C has the packing property if for all weights w ∈ {0, 1,∞}E(C), τ(C, w) = ν(C, w) [9]. Clearly, clutters with

the max-flow min-cut property have the packing property. The so-called Replication Conjecture of Conforti and

Cornuéjols [7] predicts the converse is also true, that is,

(?) clutters with the packing property have the max-flow min-cut property (?)

Thus, if this conjecture were true, Theorem 4.3 would imply that if a clutter has the packing property, then so

does every split of it. Here we prove this result without appealing to the conjecture. 4

Remark 4.5. For each n ≥ 3, the delta ∆n of dimension n does not pack.

4Our to-be-proved result is in a sense the little sister of the Replication Conjecture, as their conjecture equivalently predicts that if a

clutter has the packing property, then so does every replication of it – see §6.5 for a definition of replication.
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Proof. This follows from the fact that τ(∆n) = 2 > 1 = ν(∆n).

Lemma 4.6. Take a clutter C with the packing property and let L be a single split of it at some element e ∈ E(C).

Then

(1) L \ f packs,

(2) for all L ∈ L and K ∈ b(L) such that e ∈ L, f ∈ K or f ∈ L, e ∈ K, we have |L ∩K| ≥ 2,

(3) if a minimum cover of L does not contain e, then L/e \ f packs,

(4) in fact, L/e \ f always packs, and

(5) L/e packs.

Proof. Observe by Corollary 4.4 that L packs, and by Proposition 3.5 that τ(L) = τ(C).

(1) Observe that τ(L)− 1 ≤ τ(L\ f) ≤ τ(L). If τ(L)− 1 = τ(L\ f), then any maximum packing in L yields

a packing in L \ f of size τ(L \ f), implying that L \ f packs. Otherwise, we have that τ(L \ f) = τ(L).

So no minimum cover of L uses f .

If there is no minimum cover of L using e either, then τ(L \ {e, f}) = τ(L) and since L \ {e, f} = C \ e

packs, it follows that L \ f packs.

Otherwise, there is a minimum cover Ke of L using e. Note that Ke is also a minimum cover of C. Let

C1, . . . , Cτ be a packing of C, where τ = τ(C) = τ(L) = τ(L \ f). Let L1, . . . , Lτ be their corresponding

members in L. If for some j ∈ [τ ], f ∈ Lj , then e ∈ Cj so Ke ∩ Cj = {e}, implying that Ke ∩ Lj = ∅,

which cannot be. Hence, f /∈ L1 ∪ · · · ∪ Lτ , so L1, . . . , Lτ yields a packing in L \ f , so L \ f packs.

(2) Suppose for a contradiction that |L ∩ K| = 1. By symmetry, we may assume that e ∈ L, f ∈ K. Then

by Theorem 2.5, L has an (e, f)-special minor. However by Remark 3.9, this clutter corresponds to a delta

minor in C, which by Remark 4.5 does not pack, a contradiction as C has the packing property.

(3) Suppose there is a minimum cover of L avoiding element e. Then τ(L/e) = τ(L). If there is a minimum

cover of L using f , then τ(L/e \ f) = τ(L)− 1, so a packing for L also yields a packing for L/e \ f . We

may therefore assume that no minimum cover of L uses f , so τ := τ(L/e \ f) = τ(L).

If no minimum cover of L uses e either, then τ = τ(L \ {e, f}), so a packing for C \ e = L \ {e, f} yields

one for L/e \ f . Otherwise, there is a minimum cover Ke of L that uses e. Let L1, . . . , Lτ be a packing for

L. Note for each i, |Li ∩Ke| = 1. So from (2) it follows that f /∈ L1 ∪ . . . ∪ Lτ , so L1, . . . , Lτ also yields

a packing for L/e \ f .

(4) We will need the following claim.

Claim. Suppose Le and Lf are disjoint members of L where e ∈ Le and f ∈ Lf . Then there exist disjoint

L,L′ ∈ L contained in (Le ∪ Lf )− {e, f}.
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Proof of Claim. By (2) every minimal cover using e (resp. f ) intersects Lf (resp. Le) at least twice. As a

result, given that F =
(
E(L)− (Le ∪ Lf )

)
∪ {e, f}, we have τ(L \ F ) ≥ 2. Since L \ F = C \ F packs,

the result follows. ♦

Let L1, . . . , Lk, . . . , Lk+ℓ, . . . , Lk+ℓ+r be a packing for L/{e, f} where

k + ℓ+ r = τ(L/{e, f}) ≥ τ(L/e) ≥ τ(L)

{e} ∪ Lj ∈ L j = 1, . . . , k

{f} ∪ Lj ∈ L j = k + 1, . . . , k + ℓ

Lj ∈ L j = k + ℓ+ 1, . . . , k + ℓ+ r.

By (3) we may assume there is a minimum cover Ke of L that contains e. Then e ∈ Ke and by (2), Ke

intersects each of Lk+1, . . . , Lk+ℓ at least twice. As a result, τ(L) = |Ke| ≥ 1+2ℓ+r which, together with

k + ℓ+ r ≥ τ(L), implies that k > ℓ. By the claim above, for each j ∈ [ℓ], we can find disjoint L1
j , L

2
j ∈ L

such that L1
j ∪ L2

j ⊆ Lj ∪ Lk+j . Observe now that

L1
j , L

2
j j = 1, . . . , ℓ

Lj j = ℓ+ 1, . . . , k

Lj k + ℓ+ 1, . . . , k + ℓ+ r

is a packing of size k + ℓ+ r in L/e \ f . However, τ(L/e \ f) ≤ τ(L/{e, f}) = k + ℓ+ r, implying that

L/e \ f packs.

(5) Suppose for a contradiction that L/e does not pack. If there is a minimum cover of L that does not use e,

then τ(L/e) = τ(L) so the packing in L gives a packing in L/e, which is not the case. Hence, every

minimum cover of L uses e, so τ(L/e) ≥ τ(L) + 1.

If τ(L/e \ f) = τ(L/e), then the packing in L/e \ f yields one in L/e, which again cannot be the case.

Hence, we have r := τ(L/e \ f) = τ(L/e)− 1. Together with the inequality above, we have r ≥ τ(L).

Let L1, . . . , Lr be a packing and let K be a cover of size r, in L/e \ f . Note K ∪ {f} is a minimum cover

of L/e, and in particular, K ∪ {f} ∈ b(L). Since every minimum cover of L uses e and has size at most r,

there exists j ∈ [r] such that Lj ∪ {e} ∈ L. But then

∣∣(Lj ∪ {e}
)
∩
(
K ∪ {f}

)∣∣ = |Lj ∩K| = 1,

contradicting (2).

We are now ready to state and prove the main result of this subsection.

Theorem 4.7. If a clutter has the packing property, then so does every split of it.
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Proof. As usual, we need only prove this for single splits. So let C be a clutter with the packing property and let

L be a single split of it at some element e ∈ E(C). We need to show that every minor of L packs. Take a minor

L′ := L/I \J of L. If {e, f} ⊆ I or {e, f} ⊆ J , then L′ is also a minor of C, so it packs. If {e, f}∩(I∪J) = ∅,

then L′ is a single split of a minor of C, so by Corollary 4.4, L′ packs. Otherwise, up to relabeling e and f , one

of the following holds:

(i) e ∈ I and f ∈ J : by applying Lemma 4.6 (4) to C/(I − {e}) \ (J − {f}) and L/(I − {e}) \ (J − {f}),

we get that L′ packs,

(ii) e /∈ I ∪ J and f ∈ J : by applying Lemma 4.6 (1) to C/I \ (J −{f}) and L/I \ (J −{f}), we get that L′

packs,

(iii) e ∈ I and f /∈ I ∪ J : by applying Lemma 4.6 (5) to C/(I − {e}) \ J and L/(I − {e}) \ J , we get that L′

packs.

Thus, every minor of L packs, so L has the packing property.

5 When does splitting fail?

We have been analyzing three useful properties one would like to have a clutter satisfy at least one of: idealness,

the packing and MFMC properties. We showed in the previous section that splitting preserves these properties,

and we saw in §3.3 many examples that did not have one of these properties, but a split of them did. In a nutshell,

we demonstrated that splitting can be used as a tool to modify clutters for the better. However, as the reader may

expect, there are instances where splitting just does not help. In this section, we make an attempt to identify

these bad instances. To be precise, if P denotes one of the three properties of interest, we address the following

question:

Suppose a clutter does not satisfy property P . When can we guarantee that every split of the clutter

also does not satisfy P ?

Property P is closed under taking minors, so it makes sense to look at clutters that minor-minimally do not

satisfy the property: clutters that do not satisfy P but every proper minor of them does. As a first step to answer

the question above, we characterize which of these clutters do not have a split that satisfies P , where P is either

idealness or the packing property. (Using the forthcoming Remark 6.13, we can deduce similar results for the

case when P has the MFMC property. However, these results do not add much value to the paper, so we drop

them.)

5.1 The minimally non-ideal clutters with an ideal split

A clutter is minimally non-ideal (mni) if it is non-ideal but every proper minor of it is ideal. Note that the blocker

of each mni clutter is also mni. For instance, each delta is mni. We saw in Remark 3.8 an ideal split of each

delta. In this subsection, we prove that,
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Theorem 5.1. The only minimally non-ideal clutters with an ideal split are deltas.

To prove Theorem 5.1, we appeal to Lehman’s result on the structure of mni clutters that are different from

deltas. Let us lay the groundwork to state his result. A square 0, 1 matrix is r-regular if each row and each

column has exactly r ones. The core of a clutter C, denoted C, is the clutter over the same ground set whose

members are those of C with minimum cardinality.

Theorem 5.2 (Lehman [21] and Bridges and Ryser [5] – see Seymour [28]).

Suppose C is a minimally non-ideal clutter that is not a delta, and let B := b(C). Then

(1) M(C) and M(B) are square and non-singular matrices,

(2) for some integers r ≥ 2 and s ≥ 2: M(C) is r-regular and M(B) is s-regular,

(3) for n := |E(C)|, rs ≥ n+ 1,

(4) there is a labeling C1, . . . , Cn of the members of C and a labeling B1, . . . , Bn of the members of B such that

for all i, j ∈ [n],

|Ci ∩Bj |




= rs− n+ 1 if i = j

= 1 if i 6= j,

(5) for all elements g, h ∈ E(C):

∣∣{i ∈ [n] : g ∈ Ci, h ∈ Bi

}∣∣



= rs− n+ 1 if g = h

= 1 if g 6= h.

Note (1) and (2) imply that
(
1
r
, 1
r
, . . . , 1

r

)⊤
is a fractional extreme point of Q(C). Observe also that (5) implies

that min{r, s} ≥ rs− n+ 1.

As was shown in Lütolf and Margot [22], there are exactly two mni clutters that are different from deltas and

have at most 5 elements. These two clutters are

C5 =
{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}

}

and its blocker

B5 =
{
{1, 2, 4}, {2, 3, 5}, {3, 4, 1}, {4, 5, 2}, {5, 1, 3}

}
.

Observe that C5 = C5, B5 = B5, r = 2 and s = 3.

Remark 5.3. Clutters C5,B5 have no proper split.

Proof. By Proposition 3.2, it suffices to show that C5 has no single split at element 1. This follows from Propo-

sition 3.4 after observing that the 1-graph of C5, as portrayed below,
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{1, 2} {1, 5}

{1, 2, 4} {1, 3, 4} {1, 3, 5}

port(C5, 1)

port(B5, 1)

is connected.

The following is the key ingredient needed to prove Theorem 5.1.

Proposition 5.4. Let C be a minimally non-ideal clutter that is not a delta, and let L be a single split of it at

some element e ∈ E(C). Then for some g ∈ {e, f}, L \ g is a minimally non-ideal clutter that is not a delta.5

Proof. We may assume that L is a proper split of C. Let n, r, s be the parameters from (2) and (3) and let

C1, . . . , Cn, B1, . . . , Bn be the labeling from (4) of Theorem 5.2. Let d := rs− n ≥ 1. By (1) and (5), we may

assume that

e ∈ C1 ∩ · · · ∩ Cr and e /∈ Cr+1 ∪ · · · ∪ Cn

e ∈ B1 ∩ · · · ∩Bd+1 and e /∈ Bd+2 ∪ · · · ∪Br.

Note that either C1 ∈ L or C1 ∪ {f} − {e} ∈ L. After relabeling e and f , if necessary, we may assume that

C1 ∈ L.

Claim 1. For each i ∈ [n], Ci ∈ L and Bi ∈ b(L).

Proof of Claim. We will first show that for each i ∈ [n], Ci ∈ L. As C1 ∈ L and e /∈ Cr+1∪· · ·∪Cn, it suffices

to show that C2, . . . , Cr ∈ L. By Proposition 3.4 it suffices to show that,

(⋆) C1, C2, . . . , Cr are in the same component of the e-graph of C.

Notice that C1, . . . , Cr and B1, . . . , Bd+1 are vertices of the e-graph. By Theorem 5.2 (4) we have

B1 ∩ Ci = {e} ∀i ∈ [r]− {1}

B2 ∩ Cj = {e} ∀j ∈ [r]− {2},

which in turn implies that vertices {B1} ∪ {Ci : i ∈ [r] − {1}} are in the same component, and vertices

{B2}∪{Cj : j ∈ [r]−{2}} are in the same component. If r ≥ 3 then C3 is common to these vertex sets, so (⋆)

holds. We may therefore assume that r = 2. Therefore, since C is not ∆3, we must have that s ≥ 3, so there exists

B ∈ {B1, . . . , Bn}−{B1, B2} such that e ∈ B. Once again, (4) implies that B∩C1 = B∩C2 = {e}, implying

that B,C1, C2 are in the same component, proving (⋆). It remains to show for each i ∈ [n] that Bi ∈ b(L). Well,

5It is worth pointing out that deltas are the only mni clutters we found with a proper split. Also, we could not find any mni clutter with

opposite elements.
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since B2 ∩ C1 = {e}, B2 and C1 are in the same component of the e-graph, so by Proposition 3.4, B2 ∈ b(L).

Since b(L) is also mni, a similar argument as for (⋆) implies that the members in
{
Bi : e ∈ Bi, i ∈ [n]

}
belong

to the same component of the e-graph of C. As B2 ∈ b(L), we get that for each i ∈ [n], Bi ∈ b(L). ♦

Define x⋆ ∈ R
E(L)
+ as follows: x⋆

f = 0 and for each g ∈ E(L)− {f}, x⋆
g = 1

r
.

Claim 2. x⋆ is an extreme point of Q(L).

Proof of Claim. We first show that x⋆ ∈ Q(L). By definition, x⋆ ≥ 0. Let L ∈ L. If L contains at least r + 1

elements, then clearly x⋆(L) ≥ 1. Otherwise, L has r elements, so its corresponding member C in C has r ones.

This implies that C ∈ {C1, . . . , Cn}, so by Claim 1, C = L. In particular, e ∈ L and f /∈ L, implying that

x⋆(L) ≥ 1. As this is true for each L ∈ L, x⋆ ∈ Q(L). Since x⋆(C1) = · · · = x⋆(Cn) = 1 and x⋆
f = 0,

Theorem 5.2 (1) implies that x⋆ is an extreme point of Q(L), as required. ♦

In particular, L is non-ideal. In fact,

Claim 3. L \ f is mni and L \ f = {C1, . . . , Cn}.

Proof of Claim. Since x⋆
f = 0, L \ f is non-ideal. To prove that it is mni, we need to show for each g ∈

E(L) − {f} that both L \ f \ g, L \ f/g are ideal. Suppose first that g 6= e. Since C is mni, C \ g and C/g are

ideal, so by Theorem 4.1 their splits L \ g,L/g are ideal. In particular, the minors L \ g \ f , L/g \ f are ideal,

as needed. Suppose now that g = e. Notice that L \ f \ e = C \ e, so L \ f \ e is ideal. It remains to show

that L \ f/e is ideal. Suppose not. Then L \ f/e must be mni. If this minor is a delta, then M(L \ f/e) has

n− 2 rows with r − 1 = 2 ones in them. Each one of these rows must correspond to one of C1, . . . , Cr in L, so

3 = r ≥ n − 2, implying that n = 5. Since r = 3 it follows that C ∼= B5, but by Remark 5.3 B5 has no proper

split. Hence, L \ f/e is not a delta. Then by Theorem 5.2 (1), M(L \ f/e) has precisely n− 1 rows with r − 1

many ones in them. Once again, all these rows must correspond to C1, . . . , Cr in L, so r ≥ n− 1. We leave it as

an exercise for the reader to verify that this implies n = 3, which in turn is a contradiction. Hence, L \ f is mni.

Since each member of L \ f has at least r members and the members C1, . . . , Cn have precisely r members, it

follows that L \ f = {C1, . . . , Cn}. ♦

Now since n ≥ 5, the preceding claim implies that L \ f is an mni clutter that is not a delta, finishing the

proof.

We are now ready to prove Theorem 5.1, stating that the only mni clutters with an ideal split are deltas.

Proof of Theorem 5.1. We know by Remark 3.8 that each delta has an ideal split. For the converse, let C be an

mni clutter that is not a delta and let L be a split of it. By a repeated application of Proposition 5.4 it follows that

L has as minor an mni clutter that is not a delta. In particular L is non-ideal, finishing the proof.
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5.2 Corollaries: binary clutters, odd holes, Steiner trees and matroids

Since an ideal split of a clutter C yields an ideal split for every minor of C, Theorem 5.1 implies that,

Corollary 5.5. If a clutter has a minimally non-ideal minor that is not a delta, then it has no ideal split.

This corollary can be used as a weapon to recognize clutters that do not allow for an ideal split – we will see two

nice examples. However, it can also be used to find examples where an ideal split may exist – we will see two

examples for this as well.

A clutter C is binary if for all C ∈ C and B ∈ b(C), |C ∩ B| is odd. It can be readily checked that if

a clutter is binary, then so is each minor of it [29]. A delta ∆n is not binary as for {1, 2} ∈ ∆n = b(∆n),

|{1, 2} ∩ {1, 2}| = 2. Hence, binary clutters do not have a delta minor, so by Corollary 5.5,

Corollary 5.6. A non-ideal binary clutter has no ideal split.

For another consequence, consider the clutter of minimal vertex covers of a graph G = (V,E). We saw in

§3.3 an ideal split of this clutter when G was a comparability graph. But what about other graphs? We say G

has an odd hole if it has a circuit of odd length at least five as an induced subgraph. In this case, if n ≥ 5 is the

length of the odd circuit, the clutter E of edges of G has the clutter

C2
n :=

{
{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}

}

as a (deletion) minor, so the clutter b(E) of minimal vertex covers of G has the clutter b(C2
n) as a minor. Well,

C2
n and its blocker b(C2

n) are mni clutters that are different from deltas [20]. Thus by Corollary 5.5,

Corollary 5.7. If a graph has an odd hole, then its clutter of minimal vertex covers has no ideal split.

Note that comparability graphs are exempt from this corollary, as they are perfect and therefore have no odd

hole [4].

We also saw in §3.3 that under various conditions on the input, a clutter of Steiner trees has an ideal split. It

would therefore be interesting to see what Corollary 5.5 says for these clutters in general. (The following proof

employs similar techniques as in [3].)

Theorem 5.8. Let T be a clutter of Steiner trees. Then every minimally non-ideal minor of T , if any, is ∆3.

Proof. The class of Steiner tree clutters is closed under taking minors. We may therefore assume that T itself is

mni. Suppose T is the clutter of Steiner trees of graph G = (V,E) with terminals R ⊆ V . Let C be the clutter

of Steiner cuts of G, and note that C is the blocker of T . If C is a delta let C := C and T := T , and otherwise

let C, T be the cores of C, T , respectively. (We are aware of the abuse of notation here.) Note that either way,

M(C) and M(T ) are non-singular by Theorem 5.2 (1).

Let n := |E(C)| = |E| and suppose C = {C1, . . . , Cn}. Fix an r ∈ R and for each i ∈ [n], let Uj be a

minimal subset of V − {r} such that Uj ∩R 6= ∅ and δ(Uj) = Cj .

Claim 1. For distinct i, j ∈ [n], either Ui ∩ Uj = ∅, Ui ( Uj or Uj ( Ui.
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Proof of Claim. Suppose otherwise. If Ui ∩Uj ∩R 6= ∅ let U := Ui ∩Uj and W := Ui ∪Uj , and otherwise let

U := Ui−Uj and W := Uj −Ui. Suppose that C is not a delta. (We leave the other case to the reader.) Assume

that C is c-regular. By submodularity, we have δ(U)∩δ(W ) ⊆ δ(Ui)∩δ(Uj) and δ(U)∪δ(W ) ⊆ δ(Ui)∪δ(Uj).

In particular,

2c = |δ(Ui)|+ |δ(Uj)| ≥ |δ(U)|+ |δ(W )| ≥ 2c,

so equality holds throughout and δ(U) ∩ δ(W ) = δ(Ui) ∩ δ(Uj) and δ(U) ∪ δ(W ) = δ(Ui) ∪ δ(Uj). Hence,

δ(U), δ(W ) belong to C and their corresponding rows in M(C) have the same sum as the rows corresponding

to δ(Ui), δ(Uj). Non-singularity of this matrix implies that {δ(U), δ(W )} = {δ(Ui), δ(Uj)}, contradicting our

minimal choice for one of Ui, Uj . ♦

Claim 2. Fix i ∈ [n]. Then for each u ∈ Ui ∩R and w ∈ Ui, there is a uw-path in G[Ui].

Proof of Claim. Let U ′
i be the set of all vertices of Ui reachable from u inside G[Ui]. Then δ(U ′

i) contains a

Steiner cut and is contained in Ci = δ(Ui). The minimality of Ui and Ci implies that Ui = U ′
i , proving the

claim. ♦

Assume that T = {T1, . . . , Tn}.

Claim 3. G \ r is connected.

Proof of Claim. Suppose otherwise, and let G1 = (V1, E1) and G2 = (V2, E2) be two induced subgraphs of G

where V1 ∩V2 = {r} and E1, E2 partition E. Since E1, E2 6= ∅ and each edge of E1 ∪E2 appears in a member

of T , it follows that (V1−{r})∩R, (V2−{r})∩R 6= ∅. Thus, every Steiner tree contains an edge from E1 and

an edge from E2. This immediately implies that T is not a delta, as such a partition does not exist for deltas. For

each i ∈ [n] let Xi := Ti ∩E1 and Yi := Ti ∩E2. Assume T is t-regular. Then for each i ∈ [t], |Xi|+ |Yi| = t,

and since for each j ∈ [t], Xi ∪ Yj is also a Steiner tree, it follows that |Xi| + |Yj | ≥ t. This in turn implies

that |X1| = · · · = |Xn| and |Y1| = · · · = |Yn|, and so for all i, j ∈ [n], Xi ∪ Yj ∈ T . This contradicts the

non-singularity of M(T ). ♦

Let e, f be distinct edges incident to r, and let u′, w′ be their other ends, respectively. By Theorem 5.2 (2),

there are i, j ∈ [n] such that e ∈ Ci 6∋ f and f ∈ Cj 6∋ e. Then Claim 1 implies that Ui ∩ Uj = ∅. Now take

u ∈ Ui ∩ R and w ∈ Uj ∩ R. By Claim 2 there is a uu′-path Pu in G[Ui] and there is ww′-path Pw in G[Uj ].

Also, Claim 3 yields a uw-path Puw in G \ r. Now delete all edges outside Pu ∪ Pw ∪ Puw ∪ {e, f}, contract

paths Pu, Pw and contract Puw to a single edge between u,w. The resulting minor is a triangle on terminals

u,w, r, so T has a ∆3 minor. The minimality of T implies that it is ∆3, as required.

Therefore, Corollary 5.5 does not say anything about clutters of Steiner trees. So when does a clutter of Steiner

trees have an ideal split? We leave this as an open-ended question.

As mentioned earlier, Edmonds proved that the clutter of spanning r-arborescences of a directed graph is

always ideal. In particular, the clutter of spanning trees of a graph has an ideal split. Well, can we generalize this

statement to matroids? To be more specific,
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is there an ideal split for the clutter of bases of a matroid?

If C is the clutter of bases of a matroid, then b(C) is the clutter of circuits of the dual matroid. So the question

above may be rephrased as follows: is there an ideal split for the clutter of circuits of a matroid?

Theorem 5.9. Let C be the clutter of circuits of a matroid. Then every minimally non-ideal minor of C, if any,

is ∆3.

Before proving this result, let us point out that if a minimally non-ideal clutter, other than deltas, has a

member of size two, then its core is an odd hole [9]:

C2
n = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}} n = 5, 7, 9, . . .

Proof. Since the class of matroid circuit clutters is closed under taking minors, we may assume that C itself is

mni. Suppose C is the clutter of circuits of matroid M , and let B be the clutter of bases of the dual matroid M⋆.

Notice that B is the blocker of C. Since the members of B have the same size, it follows that if B is a delta, then it

is ∆3. It therefore suffices to show that B is a delta. Suppose otherwise. We will apply Theorem 5.2. Let n, r, s

be the parameters from (2) and (3) and let C1, . . . , Cn, B1, . . . , Bn be the labeling from (4) of Theorem 5.2. Let

q := rs − n + 1 ∈ {2, . . . ,min{r, s}}. Since bases of a matroid have the same cardinality, it follows that B is

equal to its core.

We claim that s = 2. Suppose otherwise. Take e ∈ E and rearrange B1, . . . , Bn and C1, . . . , Cn so that

e ∈ Bj ∩ Cj for all 1 ≤ j ≤ q, and B1 − {e}, . . . , Bq − {e}, C1 − {e}, . . . , Cq − {e} are pairwise disjoint

except for the pairs Bj − {e}, Cj − {e}, 1 ≤ j ≤ q. Since s ≥ 3 there exists f ∈ B1 − {e} such that

C1 ∩ B1 − {e, f} 6= ∅. Consider B2. By the basis exchange property for matroids, there exists g ∈ B2 − {e}

such that B1 − {f} ∪ {g} = Bj , for some 2 ≤ j ≤ n. But then |C1 ∩Bj | ≥ 2, a contradiction as j 6= 1. Hence

s = 2. This implies that B is an odd hole. However, odd holes do not satisfy the basis exchange property of

matroids, a contradiction.

So Corollary 5.5 does not rule out any such clutter from possessing an ideal split.

5.3 The minimally non-packing clutters that have a split with the packing property

Here we will play the same game with the packing property, but first let us discuss a relevant application of

Theorem 5.2. Let C be an mni clutter that is not a delta, let r be the minimum size of a member, let s be

the minimum size of a cover, and let n := |E(C)|. By definition τ(C,1) = s. Also by definition, x⋆ :=
(
1
r
, 1
r
, . . . , 1

r

)⊤
is a point in Q(C). Thus by Theorem 5.2 (3),

ν(C,1) ≤ ν⋆(C,1) = τ⋆(C,1) ≤
∑

g∈E(C)

x⋆
g =

n

r
≤

rs− 1

r
< s = τ(C,1).

In particular, C does not pack. Since deltas do not pack either,

Corollary 5.10 ([21]). A clutter with the packing property is ideal.
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We say a clutter is minimally non-packing (mnp) if it does not pack but every proper minor of it does. For

instance, each delta is mnp. We saw in Remark 3.7 (ii) that for each n ≥ 3, the delta ∆n splits to ∆n−2
n , which

can easily be checked to have the packing property. In fact,

Theorem 5.11. Deltas are the only minimally non-packing clutters that have a split with the packing property.

By Corollary 5.10, an mnp clutter is either ideal or mni. Quite naturally then, we prove Theorem 5.11 in two

stages. Let us deal with the first stage, and the second stage will follow as a corollary of Theorem 5.1 and

Corollary 5.10.

Proposition 5.12 (Cornuéjols et al. [10]).

Let C be an ideal, minimally non-packing clutter. Then for each g ∈ E(C) the following hold:

(1) g appears in a minimum cover,

(2) there is a member of C containing g that intersects every minimum cover exactly once, and

(3) there is a minimum cover that does not contain g.

Proof. (1) By definition C \ g packs, so since C does not pack, it must be the case that τ(C \ g) < τ(C). In other

words, element g appears in a minimum cover Bg of C.

(2) Since C is ideal, it follows that x̄ := χBg
is in fact a minimum fractional cover, with respect to weights 1.

Let ȳ ∈ RC
+ be a maximum fractional packing, with respect to the same weights. By the complementary

slackness conditions, since x̄g = 1 > 0 it must be that

∑(
ȳC : C ∈ C, g ∈ C

)
= 1.

In particular, there exists Cg ∈ C such that g ∈ Cg and ȳCg
> 0. We claim that Cg is the desired member.

Let B be an arbitrary minimum cover. We need to show that |B ∩ Cg| = 1. Then x := χB is a minimum

fractional cover, with weights 1. Since ȳCg
> 0, the complementary slackness conditions once again imply

that x(Cg) = 1, i.e. |B ∩ Cg| = 1, as needed.

(3) Take an element h ∈ Cg − {g}. By (1) there is a minimum cover Bh containing h. Then h ∈ Bh ∩ Cg and

since Cg intersects Bh exactly once, it follows that g /∈ Bh.

Proposition 5.13. Let C be an ideal, minimally non-packing clutter and let L be a single split of it at some

element e ∈ E(C). Then

(i) for all L ∈ L and K ∈ b(L) such that e ∈ L, f ∈ K or f ∈ L, e ∈ K, we have |L ∩K| ≥ 2,

(ii) one of L \ e,L \ f is ideal and minimally non-packing.

Proof. (i) Suppose otherwise. Then by Theorem 2.5, L has an {e, f}-special minor, which corresponds to a

delta minor in C. However, C is ideal while its delta minor is not, a contradiction.
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(ii) By Proposition 5.12 (2), there is a member Ce ∈ C containing e that intersects every minimum cover

exactly once. After relabeling e and f , if necessary, we may assume that the member corresponding to Ce

in L uses e; call this member Le.

We claim that f never appears in a minimum cover of L. Suppose for a contradiction that Kf is a minimum

cover of L that uses f , and let B be its corresponding member in b(C). Since |Le ∩ Kf | ≥ 1, it follows

that |Ce ∩B| ≥ 2. However, B is also a minimum cover of C, contradicting our choice of Ce.

Since f does not appear in a minimum cover, it follows that τ(L \ f) = τ(L) = τ(C). Thus, if L \ f

were to pack then so would C, which is not the case. So L \ f does not pack. (This is sufficient to prove

Theorem 5.11, but we will go further.) We claim that L \ f is in fact ideal and mnp. Since C is ideal,

Theorem 4.1 implies that L is ideal, so L \ f is also ideal. To prove L \ f is mnp, we need to prove that

for each g ∈ E(L) − {f}, clutters L \ f \ g and L \ f/g pack. If g 6= e then since C \ g, C/g have the

packing property, Theorem 4.7 implies that L \ f \ g and L \ f/g pack. Moreover, L \ f \ e = C \ e packs

by definition. Thus, it remains to show that L \ f/e packs.

Note that

τ(L \ f/e) ≥ τ(L \ f) = τ(L).

By Proposition 5.12 (3), there is a minimum cover of C avoiding e, so there is a minimum cover of L

avoiding e, which implies that equality holds above, so

τ(L \ f/e) = τ(L) = τ(C).

So we need to find a packing of τ(C) members in L \ f/e. The rest of the proof is similar to that of

Proposition 4.6 (4).

Claim. Suppose Le and Lf are disjoint members of L where e ∈ Le and f ∈ Lf . Then there exist disjoint

L,L′ ∈ L contained in (Le ∪ Lf )− {e, f}.

Proof of Claim. By (i) every minimal cover using e (resp. f ) intersects Lf (resp. Le) at least twice. As a

result, given that F =
(
E(L)− (Le ∪ Lf )

)
∪ {e, f}, we have τ(L \ F ) ≥ 2. Since L \ F = C \ F packs,

the result follows. ♦

Let L1, . . . , Lk, . . . , Lk+ℓ, . . . , Lk+ℓ+r be a packing for L/{e, f} where

k + ℓ+ r = τ(L/{e, f}) ≥ τ(L/e) = τ(L)

{e} ∪ Lj ∈ L j = 1, . . . , k

{f} ∪ Lj ∈ L j = k + 1, . . . , k + ℓ

Lj ∈ L j = k + ℓ+ 1, . . . , k + ℓ+ r.

Let Ke be a minimum cover of L using element e. Then by (i), Ke intersects each of Lk+1, . . . , Lk+ℓ at

least twice. As a result, τ(L) = |Ke| ≥ 1+2ℓ+r which, together with k+ℓ+r ≥ τ(L), implies that k > ℓ.
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By the claim above, for each j ∈ [ℓ], we can find disjoint L1
j , L

2
j ∈ L such that L1

j ∪ L2
j ⊆ Lj ∪ Lk+j .

Observe now that

L1
j , L

2
j j = 1, . . . , ℓ

Lj j = ℓ+ 1, . . . , k

Lj k + ℓ+ 1, . . . , k + ℓ+ r

is a packing of size k + ℓ+ r ≥ τ(L) = τ(C) in L \ f/e, as required.

We are now ready to prove Theorem 5.11, stating that deltas are the only mnp clutters that have a split with

the packing property.

Proof of Theorem 5.11. We know by Remark 6.9 that deltas do have a split with the packing property. Now let

C be an mnp clutter that is not a delta. If C is ideal, then by a repeated application of Proposition 5.13 (ii), any

split of C has as minor an ideal mnp clutter, which implies that no split of C has the packing property. Otherwise,

when C is mni, then Theorem 5.1 implies that any split of C is non-ideal, and using Corollary 5.10, this implies

that no split of C has the packing property, as required.

5.4 Corollaries and a connection to ideal, minimally non-packing clutters

Since a packing split of a clutter C yields a packing split for every minor of C, Theorem 5.11 implies that,

Corollary 5.14. If a clutter has a minimally non-packing minor that is not a delta, then it has no split with the

packing property.

This result, together with Corollary 5.10, imply the following interesting result, that will be useful later:

Corollary 5.15. Let L be a clutter with the packing property and let C be an identification of it. Then C has the

packing property if and only if it is ideal.

Proof. If C has the packing property, then by Corollary 5.10 it is also ideal. Conversely, if C does not have the

packing property, then it has an mnp minor which by Corollary 5.14 is a delta, which implies in particular that C

is non-ideal, finishing the proof.

Before moving on, we should point out that the corollaries in §5.2 have analogues for the case of the packing

property – since the statements are as one would expect and the proofs are exactly the same, we refrain from

mentioning these corollaries. Let us instead discuss an intriguing connection. We first need the following result:

Proposition 5.16. Let C be an ideal, minimally non-packing clutter. If C has a proper split or a pair of opposite

elements, then τ(C) ≥ 3.
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Proof. Suppose first that C has a proper single split L at some element e ∈ E(C). By Proposition 5.12 (1)

element e is in a minimum cover of C, so after possibly relabeling e and f , we may assume that e is in a

minimum cover Ke of L. Let Lf be a member of L that uses f ; this member exists as L is a proper split. Then

by Proposition 5.13 (i),

τ(C) = τ(L) = |Ke| ≥ 1 + |Ke ∩ Lf | ≥ 3,

as claimed.

Suppose next that C has opposite elements e, f . Assume for a contradiction τ(C) = 2. By Proposition 5.12

(1), there is a minimum cover Be such that e ∈ Be. Let g be the other element of Be, and note that g 6= f . Let

Lf be a member of L such that f ∈ Lf . Then Be ∩ Lf 6= ∅ and since e /∈ Be ∩ Lf , we have g ∈ Lf . Thus,

every member of L that uses f also uses g. Hence, since L does not pack, it follows that L/f does not pack, a

contradiction.

It is conjectured by Cornuéjols, Guenin and Margot [10] that

(?) for every ideal, minimally non-packing clutter C, we have τ(C) = 2 (?)

Together with Proposition 5.16, this seems to imply that

(?) no ideal, minimally non-packing clutter has a proper split or a pair of opposite elements (?)

We were not able to prove (or disprove) any of these statements. The strongest property on such clutters that we

have been able to show is Proposition 5.13 (ii).

6 Identifications: another glimpse of heaven

Here we characterize when identifications of ideal clutters, clutters with the packing property, and clutters with

the MFMC property are respectively non-ideal, do not have the packing property, and do not have the MFMC

property. We start and end this section with applications to st-path and directed st-path clutters and glean some

insights.

6.1 From st-paths to directed st-paths

Let G = (V,E) be a graph with distinguished vertices s, t. Consider the clutter C of st-paths of G, taken over

ground set E. Observe that Theorem 4.1 implies that if C is ideal, then so is any split of it. Well, we do know

that C is ideal. Also, we know by Remark 3.10 that the clutter of directed st-paths of the bidirection of G is

a split of C, so this new clutter is ideal too. Hence, from a universal point of view, the idealness of st-path

clutters implies the idealness of bidirected st-path clutters. Moreover, any directed st-path clutter is a (deletion)

minor of an appropriate bidirected st-path clutter. So since idealness is a minor-closed property, the idealness of

st-path clutters implies the idealness of directed st-path clutters. Furthermore, we also know that clutter C has

the packing and MFMC properties. These properties are also minor-closed, so by Theorems 4.7 and 4.3 we get

that,
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Corollary 6.1. The idealness (resp. packing property, max-flow min-cut property) of st-path clutters implies the

idealness (resp. packing property, max-flow min-cut property) of directed st-path clutters.

Let us emphasize that the idealness, the packing and MFMC properties of such clutters (st-paths and directed

st-paths) are well-known results [23, 14], and that this corollary is not an attempt to reprove these tools. What

the corollary does state is the implication of one result from the other, using our results.

A natural question arises: does the idealness (resp. packing property, MFMC property) of directed st-path

clutters imply the idealness of st-path clutters? In short, we are asking whether the converse of Corollary 6.1

holds. This question motivates us to study when identification does not preserve these properties.

6.2 Double deltas and their splits

Here we provide a preliminary for the forthcoming subsections. The result we prove is a natural extension of

Theorem 2.5 for multiple opposite pairs.

Take integers m ≥ 1 and n ≥ 1. A double delta of order (m,n) is, up to isomorphism, the clutter ∆m,n

over ground set {e1, . . . , em, g, g1, . . . , gn} whose members are

{e1, . . . , em, g}

{ei, g1, . . . , gn} i ∈ [m]

{g, gj} j ∈ [n],

and its incidence matrix is

M
(
∆m,n

)
=




1 1 · · · 1 1

1 1 1 · · · 1

1 1 1 · · · 1
. . .

...
...

. . .
...

1 1 1 · · · 1

1 1

1 1
...

. . .

1 1




.

Observe that b(∆m,n) = ∆m,n. Moreover, ∆m,1
∼= ∆m+2 and ∆1,n

∼= ∆n+2. Also, if m ≥ 2 and n ≥ 2, then

∆m,n \ {e1, . . . , em−1}/em ∼= ∆n+1. Thus,

Remark 6.2. A double delta has a delta minor.

A split double delta with opposite pairs (e1, f1), . . . , (em, fm) is, up to isomorphism, the clutter Sm,n over

ground set {e1, . . . , em, f1, . . . , fm, g, g1, . . . , gn} whose members are

{e1, . . . , em, g}

{fi, g1, . . . , gn} i ∈ [m]

{g, gj} j ∈ [n].
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Its blocker has members

{f1, . . . , fm, g}

{ei, g1, . . . , gn} i ∈ [m]

{g, gj} j ∈ [n],

which itself is a split double delta with opposite pairs (f1, e1), . . . , (fm, em). It is now clear that for each i ∈ [n],

ei and fi are opposite for Sm,n.

Remark 6.3. The following hold:

(1) Sm,n is a split of ∆m,n,

(2) Sm,1
∼= ∆m

m+2,

(3) ∆m
m+2 has the max-flow min-cut property,

(4) Sm,n has a split with the max-flow min-cut property (hence the split is ideal and has the packing property).

Proof. (1) The clutter obtained from Sm,n after identifying opposite pairs (ei, fi), i ∈ [m] is ∆m,n, so the result

follows. We leave (2) and (3) to the reader. (4) If n = 1, then the result follows from (2) and (3). Otherwise,

n ≥ 2. In this case, consider the clutter over ground set

{e1, . . . , em, f1, . . . , fm, g, g1, . . . , gn, h2, . . . , hn}

whose members are

{e1, . . . , em, g}

{fi, g1, . . . , gn} i ∈ [m]

{g, g1}

{g, hj} j ∈ {2, . . . , n}.

For each j ∈ {2, . . . , n} and i ∈ [m], {g, g1} is contained in {fi, g1, . . . , gn} ∪ {g, hj} − {gj , hj}, so by

Theorem 2.1 we get that gj and hj are opposite. It is now clear that this clutter is a split of Sm,n. It is left to the

reader to check that this clutter has the MFMC property.

We need the following ingredient:

Remark 6.4. Let C, C′ be two clutters. If C ⊆ C′ and b(C) ⊆ b(C′) then C = C′.

Note that (e, f)-special clutters are precisely split double deltas with a single opposite pair (e, f). Thus, the

following may be viewed as an extension of Theorem 2.5. We say two pairs are disjoint if no component of the

first pair is equal to a component of the second pair.
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Theorem 6.5. Let L be a clutter with pairwise disjoint opposite pairs (e1, f1), . . . , (em, fm), for which there

are L ∈ L and K ∈ b(L) such that {e1, . . . , em} ⊂ L, {f1, . . . , fm} ⊂ K and |L ∩ K| = 1. Then for some

non-empty J ⊆ [m], the identification of L at opposite pairs (ei, fi), i ∈ [m] − J has as minor a split double

delta with opposite pairs (ej , fj), j ∈ J .

Proof. We say C is a projective minor of L if for some non-empty J ⊆ [m]:

(i) C is a minor of the identification of L at (ei, fi), i ∈ [m]− J , and

(ii) there are C ∈ C and B ∈ b(C) such that {ej : j ∈ J} ⊂ C, {fj : j ∈ J} ⊂ B and |C ∩B| = 1.

Notice that L is a projective minor of itself. After possibly replacing L with a projective minor, we may assume

that L is the only projective minor of itself. Observe also that b(L) is the only projective minor of b(L). Suppose

L ∩K = {g}. We will prove that L is a split double delta with opposite pairs (e1, f1), . . . , (em, fm), finishing

the proof.

If m = 1 then by Theorem 2.5, L is a split double delta with opposite pair (e1, f1), as desired. We may

therefore assume that m ≥ 2.

Claim 1. Fix i ∈ [m]. If L′ ∈ L satisfies L′ ∩K = {fi}, then

L′ ∩ {e1, . . . , em} = ∅.

Similarly, if K ′ ∈ b(L) satisfies L ∩K ′ = {ei}, then

K ′ ∩ {f1, . . . , fm} = ∅.

Proof of Claim. We may assume that i = 1. We prove the first part, and the second part follows by symmetry.

Since e1, f1 are opposite and f1 ∈ L′, it follows that e1 /∈ L′. Let J := {j ∈ [m] : ej ∈ L′} ⊆ [m] − {1}.

Suppose for a contradiction that J 6= ∅. Let C be the identification of L at (ei, fi), i ∈ [m] − J , let C be the

member corresponding to L′ in C, and let B be the member corresponding to K in b(C). Since L′∩K = {f1} we

get that |C ∩B| = 1, so both (i) and (ii) are satisfied. Thus, C is a proper projective minor of L, a contradiction

to our choice of L. ♦

Claim 2. L = {e1, . . . , em, g} and K = {f1, . . . , fm, g}.

Proof of Claim. The clutter obtained after contracting L−{e1, . . . , em, g} and deleting K −{f1, . . . , fm, g} is

a projective minor of L, so the claim follows as L is the unique projective minor. ♦

Label E(L)− (L ∪K) so that for some n ≥ 0, E(L)− (L ∪K) = {g1, . . . , gn}.

Claim 3. For each i ∈ [m], {fi, g1, . . . , gn} ∈ L and similarly, {ei, g1, . . . , gn} ∈ b(L).

40



Proof of Claim. We may assume that i = 1. We prove the first part, and the second part follows by symmetry.

Choose L′
1 ∈ L such that L′

1 ∩ K = {f1}. By Claim 1, L′
1 ⊆ {f1, g1, . . . , gm}; denote by Ed the difference.

We claim that Ed = ∅, thereby finishing the proof. Suppose otherwise. Let L′ := L \ Ed and let K ′ be a

member of b(L′) contained in K. Since K ′ ∩ L 6= ∅ and K ′ ∩ L′
1 6= ∅, it follows that {g, f1} ⊆ K ′. Let

J := {j ∈ [m] : fj ∈ K ′} ∋ 1. Let C be the identification of L at (ei, fi), i ∈ [m] − J , let C be the member

corresponding to L in C, and let B be the member corresponding to K ′ in b(C). Since L ∩ K = {g} we have

that C ∩B = {g}, so both (i) and (ii) are satisfied. Thus, C is a projective minor of L, which is different from L

as Ed 6= ∅, a contradiction. ♦

Since every member and cover intersect, it follows that n ≥ 1.

Claim 4. For each i ∈ [n], {g, gi} ∈ L and similarly, {g, gi} ∈ b(L).

Proof of Claim. We may assume that i = 1. Once again, we only prove the first statement and the second one

will follow by symmetry. Choose L′
1 ∈ L such that L′

1∩{e1, g1, . . . , gn} = {g1}. We will see that L′
1 = {g, g1}.

We first claim that L′
1 ∩ {f1, . . . , fm} = ∅. Suppose for a contradiction that for some i ∈ [m], fi ∈ L′

1. Let

C be the identification of L at (ej , fj), j ∈ [m] − {i}, let C be the member corresponding to L′
1 in C, and let

B := {ei, g1, . . . , gn} ∈ b(C). Then C ∩ B = {g1}, so both (i) and (ii) are satisfied for J := {i}. Thus, C is a

projective minor of L, which is different from L as m ≥ 2, a contradiction.

Since L′
1 ∩ K 6= ∅ it follows that g ∈ L′

1. To show that L′
1 = {g, g1}, it therefore remains to show that

L′
1 ∩ {e1, . . . , em} = ∅. Let J := {j ∈ [m] : ej ∈ L′

1} and suppose for a contradiction that J 6= ∅. Note that

1 /∈ J . Let C be the identification of L at (ej , fj), j ∈ [m] − J , let C be the member corresponding to L′
1 in C,

and let B be the member corresponding to K in b(C). Then C ∩B = {g}, so both (i) and (ii) are satisfied. Thus,

C is a proper projective minor of L, a contradiction. ♦

It therefore follows from Remark 6.4 and Claims 2, 3 and 4 that L is a split double delta, finishing the

proof.

We get the following very useful corollary:

Corollary 6.6. Let L be a clutter and let C be an identification of it. Suppose for some opposite elements e, f

of L that are identified in C, there exist Le ∈ L and Kf ∈ b(L) such that e ∈ Le, f ∈ Kf and |Le ∩Kf | = 1.

Then C has a delta minor.

Proof. Observe that each element g of C corresponds to a subset Eg of elements of L, and that
(
Eg : g ∈ E(C)

)

is a partition of E(L). Note that e, f belong to the same part. Note further that each member of L (resp. b(L))

picks at most one element from each part. Let P be the set of all pairs (e′, f ′) such that

(i) e′, f ′ ∈ E(L′) are distinct and belong to the same part, and

(ii) e′ ∈ Le and f ′ ∈ Kf .
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Note that (e, f) ∈ P and any two pairs in P are disjoint. Thus for some m ≥ 1, P = {(e1, f1), . . . , (em, fm)}.

Let L′ be an identification of L that satisfies the following:

for each i ∈ [m], ei and fi are opposite in L′, and the identification of L′ at opposite pairs

(e1, f1), . . . , (em, fm) is C.

Let L′ be the member corresponding to Le in L′, and let K ′ be the member corresponding to Kf in b(L′). Then

{e1, . . . , em} ⊂ L′, {f1, . . . , fm} ⊂ K ′ and |L′ ∩K ′| = |L ∩K| = 1. Thus, it follows from Theorem 6.5 that

C has a double delta minor. So by Remark 6.2, C has a delta minor, as required.

6.3 When identification does not preserve: idealness

We start with the following:

Proposition 6.7. Let L be an ideal clutter with opposite elements e, f and let C be its identification at the two

elements. Then the following are equivalent:

(i) C is non-ideal,

(ii) there exist Le ∈ L and Kf ∈ b(L) such that e ∈ Le, f ∈ Kf and |Le ∩Kf | = 1,

(iii) C has a ∆3 minor.

Proof. Suppose first that (ii) holds. Then by Theorem 2.5, L has an (e, f)-special minor. By Remark 3.9, this

clutter corresponds to a ∆n minor in C, for some n ≥ 3. Since C has an ideal single split, it follows that ∆n has

an ideal single split, so by Remark 3.8 we get that n = 3, and (iii) holds.

Suppose next that (iii) holds. Then since ∆3 is non-ideal, it follows that C is also non-ideal, so (i) holds.

Suppose finally that (i) holds. We may assume that each element of C is used in a member, so Q(C) is a

full-dimensional and pointed polyhedron. Let y⋆ ∈ R
E(C)
+ be a fractional extreme point of Q(C), and consider

the constraints that are tight at y⋆; collect their coefficient vectors into a family T . Then each vector a of T could

be one of two types: (1) a = χC for some C ∈ C such that y⋆(C) = 1, or (2) a = χ{g} for some g ∈ E(C) such

that y⋆g = 0. Let m := |E(C)|. Then T spans a linear space of dimension m, i.e. rank(T ) = m.

Define x ∈ R
E(L)
+ as follows: for each g ∈ E(L) − {f}, xg := y⋆g and xf := xe. Then x ∈ Q(L) and

consider the constraints that are tight at x; collect their coefficient vectors into a family T ′. Then a vector a is in

T ′ if and only if one of the following holds: (1) for some C ∈ C and its corresponding member L in L such that

χC ∈ T , a = χL, (2) for some g ∈ E(C) such that χ{g} ∈ T , a = χ{g}, or (3) if χ{e} ∈ T then a = χ{f}.

Notice that m + 1 ≥ rank(T ′) ≥ m, and since Q(L) is an integral polyhedron while x is fractional, we have

that rank(T ′) = m.

Claim. The following hold:

(1) for each g ∈ E(L), xg appears in a tight constraint of Q(L), and
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(2) xe = xf > 0.

Proof of Claim. (1) This is clearly true for each g ∈ E(L)− {e, f}. Suppose for a contradiction that for some

g ∈ {e, f}, xg does not appear in a tight constraint. After relabeling e and f , if necessary, we may assume

g = f . Decrease component xf of x until a new constraint of Q(L) becomes tight; call this new point x⋆.

Note that the rank of the tight constraints at x⋆ is that of x plus 1, so the rank is m+ 1 and as a result, x⋆ is

an extreme point of Q(L). However, since at least two components of y⋆ are fractional, it follows that x⋆ is

also fractional, a contradiction as Q(L) is an integral polyhedron.

(2) For if not, rank(T ′) = m+ 1, which is not the case.

♦

In particular, there exists Le ∈ L such that e ∈ Le and χLe
∈ T ′. Since rank(T ′) = m, point x lies on an

edge of Q(L), and by part (1) of the claim, this edge is not an extreme ray. Thus, this edge contains two extreme

points χK and χK′ , for some K,K ′ ∈ b(L). Moreover, for some λ ∈ (0, 1), we have

x = λχK + (1− λ)χK′ .

Since xe = xf > 0, it follows that λ = 1
2 and after relabeling K and K ′, if necessary, f ∈ K and e ∈ K ′. (In

particular, y⋆ is half-integral and y⋆e = 1
2 .) However, note that the constraints corresponding to T ′ are also tight

for K,K ′, so in particular,

|Le ∩K| = 1,

implying (ii) holds.

We are now ready for the main result of this subsection.

Theorem 6.8. Let L be an ideal clutter and let C be an identification of it. Then the following are equivalent:

(i) C is non-ideal,

(ii) for some opposite elements e, f of L that are identified in C, there exist Le ∈ L and Kf ∈ b(L) such that

e ∈ Le, f ∈ Kf and |Le ∩Kf | = 1,

(iii) C has a delta minor.

Proof. Corollary 6.6 implies (ii) ⇒ (iii), and since deltas are non-ideal, (iii) ⇒ (i). Suppose now that (i) holds.

Let L = L0,L1, . . . ,Lk−1,Lk = C be a sequence of clutters where for each i ∈ [k], Li is a single identification

of Li−1. Let j ∈ [k] be the smallest index such that Lj is non-ideal. Assume that opposite elements e, f of

Lj−1 are identified to obtain Lj . Then by Proposition 6.7, there exist L′
e ∈ Lj−1 and K ′

f ∈ b(Lj−1) such that

e ∈ L′
e, f ∈ K ′

f and |L′
e ∩K ′

f | = 1. Let Le (resp. Kf ) be the corresponding member of L′
e (resp. K ′

f ) in L.

Then

1 ≤ |Le ∩Kf | ≤ |L′
e ∩K ′

f | = 1,

so |Le ∩Kf | = 1, so (ii) holds.
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There is another way to prove the equivalence of (i) and (iii), by using Lehman’s heavy machinery instead of

Corollary 6.6. It is clear (iii) ⇒ (i). To show (i) ⇒ (iii), assume C is non-ideal, so it has mni minors. Since C has

an ideal split, it follows from Corollary 5.5 that each mni minor of it is a delta, proving (iii) in particular.

6.4 When identification does not preserve: the packing property

We start with the following two ingredients:

Remark 6.9. For n ≥ 3, ∆n−2
n is the unique split of ∆n with the packing property.

Proof. This follows immediately from Remark 3.7 (iv) and Remark 4.5.

Proposition 6.10. Take a clutter L with the packing property with opposite elements e, f and let C be its identi-

fication at the two elements. Then the following are equivalent:

(i) C does not have the packing property,

(ii) there exist Le ∈ L and Kf ∈ b(L) such that e ∈ Le, f ∈ Kf and |Le ∩Kf | = 1,

(iii) C has a ∆3 minor.

Proof. Suppose first that (ii) holds. Then by Theorem 2.5, L has an (e, f)-special minor. By Remark 3.9, this

clutter corresponds to a ∆n minor in C. Since C has a single split with the packing property, so does ∆n and by

Remark 6.9, we get that n = 3, so (iii) holds.

Suppose next that (iii) holds. Since ∆3 does not pack, it follows that C does not have the packing property,

so (i) holds.

Suppose finally that (i) holds. Take disjoint subsets I, J ⊆ E(C) such that C′ := C \ I/J is mnp. Since L

has the packing property, C′ is not a minor of L, so e /∈ I ∪ J . Consider the minor L′ := L \ I/J of L, which

is a single split of C′. Let k := τ(L′) = τ(C′) and let L′
1, . . . , L

′
k be pairwise disjoint members of L′. Since C′

does not pack, we may assume that e ∈ L′
1 and f ∈ L′

2. Moreover, since pairwise disjoint members in L′ \e and

L′ \ f correspond to pairwise disjoint members in C′, it follows that each of e, f appears in a minimum cover of

L′. Let K ′
f be a minimum cover of L′ that contains element f . Then |K ′

f ∩ L′
1| = 1. Now let Le be a member

of L containing L′
1 and contained in L′

1 ∪ J , and let Kf be a minimal cover of L containing K ′
f and contained

in K ′
f ∪ I . Then

|Le ∩Kf | = |L′
1 ∩K ′

f | = 1,

so (ii) holds.

We are now ready for the main result of this subsection.

Theorem 6.11. Take a clutter L with the packing property and let C be an identification of it. Then the following

are equivalent:

(i) C does not have the packing property,
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(ii) for some opposite elements e, f of L that are identified in C, there exist Le ∈ L and Kf ∈ b(L) such that

e ∈ Le, f ∈ Kf and |Le ∩Kf | = 1,

(iii) C has a delta minor.

The following are also equivalent:

(i’) C has the packing property,

(ii’) for each pair e, f of opposite elements of L that are identified in C: for all Le, Lf ∈ L such that e ∈

Le, f ∈ Lf , there exist L,L′ ∈ L such that L ∪ L′ ⊆ (Le ∪ Lf )− {e, f} and L ∩ L′ ⊆ Le ∩ Lf .

Proof. We first prove the equivalence of (i)-(iii).

Corollary 6.6 implies (ii) ⇒ (iii), and as deltas do not have the packing property, (iii) ⇒ (i). Suppose now

that (i) holds. Let L = L0,L1, . . . ,Lk−1,Lk = C be a sequence of clutters where for each i ∈ [k], Li is a

single identification of Li−1. Let j ∈ [k] be the smallest index such that Lj does not have the packing property.

Assume that opposite elements e, f of Lj−1 are identified to obtain Lj . Then by Proposition 6.10, there exist

L′
e ∈ Lj−1 and K ′

f ∈ b(Lj−1) such that e ∈ L′
e, f ∈ K ′

f and |L′
e ∩ K ′

f | = 1. Let Le (resp. Kf ) be the

corresponding member of L′
e (resp. K ′

f ) in L. Then

1 ≤ |Le ∩Kf | ≤ |L′
e ∩K ′

f | = 1,

so |Le ∩Kf | = 1, so (ii) holds.

It remains to prove the equivalence of (i’) and (ii’). To this end, we need only prove the equivalence of (ii’)

and the negation of (ii).

Suppose first that (ii’) holds. Assume for a contradiction that (ii) also holds for some Le,Kf . Choose

Lf ∈ L such that f ∈ Lf and Lf ∩ Kf = {f}. Since (ii’) holds, there exist L,L′ ∈ L such that L ∪ L′ ⊆

(Le ∪Lf )−{e, f} and L∩L′ ⊆ Le ∩Lf . But then, as |Kf ∩Le| = 1 and Kf ∩Lf = {f}, either Kf ∩L = ∅

or Kf ∩ L′ = ∅, a contradiction.

Suppose next that (ii’) does not hold for some e, f, Le, Lf . Let J := Le ∩Lf , I := {e, f} ∪ (E(L)− (Le ∪

Lf )) and L′ := L\I/J . Then ν(L′) = 1 and as L′ packs, it follows that τ(L′) = 1. Thus there exists a minimal

cover K of L that intersects (Le ∪Lf )−{e, f} exactly once. After possibly relabeling e and f , we may assume

that K intersects Le − {e}. Since K ∩ Lf 6= ∅, it follows that f ∈ K. Thus, since |Le ∩K| = 1, (i) holds for

Le and Kf := K.

Let us say a few words about this result. Similar to the ideal case, one can prove the equivalence of (i) and

(iii) by using the deep Corollary 5.14 instead of Corollary 6.6. The careful reader may notice that conditions (ii)

and (iii) in Theorem 6.11 are exactly the same as those in Theorem 6.8 – this is not a coincidence, the reason for

it is Corollary 5.15. (Using polyhedral projection, one can obtain fractional analogues of conditions (i’) and (ii’)

for Theorem 6.8; see [1].)
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6.5 When identification does not preserve: the max-flow min-cut property

Let C be a clutter over ground set E. Take an element g ∈ E and let g̃ be a new copy of g. The replication of g

is the clutter over ground set E ∪ {g̃} with members

C ∪
{
C ∪ {g̃} − {g} : C ∈ C, g ∈ C

}
.

Take an integer n ≥ −1. To replicate an element n times is to delete the element if n = −1, and to recursively

apply replication at the element n times if n ≥ 0.

Remark 6.12. Let C be a clutter with weights w ∈ Z
E(C)
+ . Let C̃ be the clutter obtained from C after replicating

each element g ∈ E(C), wg − 1 times. Then

τ(C, w) = τ(C̃) and ν(C, w) = ν(C̃).

Moreover, if C has the max-flow min-cut property, then so does C̃.

A replication of C is a clutter obtained from C after repeated applications of element replication. The follow-

ing remark shows that splitting is in a sense closed under replication:

Remark 6.13. Suppose L is a split of C. If C̃ is a replication of C, then there is a replication L̃ of L such that L̃

is a split of C̃.

Proof. It suffices to prove this for single splits and single element replications. To this end, assume that L is a

single split of C at element e ∈ E(C), and that C̃ is the replication of some element g ∈ E(C). If g 6= e, then

the replication L̃ of L at g is a single split of C̃, as desired. Otherwise, g = e. In this case, let L̃ be the clutter

obtained from L after replicating e and f . Then C̃ is the identification of L̃ at e, f and at ẽ, f̃ , so L̃ is a (double)

split of C̃, as desired.

We are now ready for the main result of this subsection.

Theorem 6.14. Let L be a clutter with the max-flow min-cut property and let C be an identification of it. Then

the following are equivalent:

(i) C does not have the max-flow min-cut property,

(ii) for some opposite elements e, f of L that are identified in C, there exist Le ∈ L and Kf ∈ b(L) such that

e ∈ Le, f ∈ Kf and |Le ∩Kf | = 1,

(iii) C has a delta minor.

Proof. Since L also has the packing property, Theorem 6.11 implies (ii) ⇒ (iii) ⇒ (i). Suppose now that (i)

holds. Then for some w ∈ Z
E(C)
+ , τ(C, w) > ν(C, w). Let C̃ be the clutter obtained from C after replicating

each element g ∈ E(C), wg − 1 times. Then by Remark 6.12, τ(C̃) > ν(C̃), in particular, C̃ does not have the

packing property. By Remark 6.13, there is a replication L̃ of L that is a split of C̃. By Remark 6.12, L̃ has the
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packing property. Hence by Theorem 6.11, for some opposite elements e, f of L̃ that are identified in C̃, there

exist Le ∈ L̃ and K̃f ∈ b(L̃) such that e ∈ Le, f ∈ K̃f and |Le∩ K̃f | = 1. Then e, f are also opposite elements

of L that are identified in C. After relabeling elements of L, if necessary, we may assume that Le ∈ L. Let

Kf be the member corresponding to K̃f in b(L). Then we have that f ∈ Kf and that |Le ∩ Kf | = 1, so (ii)

holds.

6.6 From directed st-paths to st-paths

In §6.1 we saw that the idealness (resp. packing property, MFMC property) of st-path clutters implies that of

directed st-path clutters. Here we show the converse by analyzing the conditions of Theorems 6.8, 6.11 and 6.14

for directed st-path clutters.

Let D = (V,A) be a (bi)directed graph with distinguished vertices s, t. Let e = (v, u) and f = (u, v) be

opposite arcs in D. Consider a directed st-path Le containing e and an st-cut Kf containing f . Choose U ⊂ V

such that s ∈ U 6∋ t and δ+(U) = Kf . Then u ∈ U and v ∈ V − U . (See Figure 3.) Since e ∈ Le, one can

s tu v

Figure 3: An illustration of |Le ∩Kf | ≥ 2.

decompose Le − {e} into a directed sv-path L1
e and a disjoint directed ut-path L2

e. Then L1
e ∩ δ+(U) 6= ∅ and

L2
e ∩ δ+(U) 6= ∅, implying that

(⋆) |Le ∩Kf | ≥ |L1
e ∩Kf |+ |L2

e ∩Kf | ≥ 1 + 1 = 2.

Now take a directed st-path Lf containing f . Then Lf − {f} is the disjoint union of a directed su-path L1
f and

a directed vt-path L2
f . (See Figure 4.) Let L be a directed st-path contained in L1

e ∪ L2
f and let L′ be a directed

st-path contained in L1
f ∪ L2

e. Then

(⋆⋆) L ∪ L′ ⊆ (Le ∪ Lf )− {e, f} and L ∩ L′ ⊆ Le ∩ Lf .

Note that (⋆) implies that condition (ii) of Theorems 6.8, 6.11 and 6.14 does not hold, and that (⋆⋆) im-

plies that condition (ii’) of Theorem 6.11 does hold for directed st-path clutters. As a result, the converse of

Corollary 6.1 does hold:

Corollary 6.15. The idealness (resp. packing property, max-flow min-cut property) of directed st-path clutters

implies the idealness (resp. packing property, max-flow min-cut property) of st-path clutters.
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L1
e

L1
f L2

f

L2
e

Figure 4: An illustration of Le and Lf .

There is another way to see (the ideal case of) this corollary. Since an st-path and an st-cut intersect in an odd

number of edges, it follows that a clutter of st-paths is binary. This corollary therefore could have been deduced

from Corollary 5.6 (which itself uses Lehman’s heavy machinery in the background).

7 Conclusion

We conclude by listing all the open problems proposed in the paper, followed by a discussion on more open

problems.

(7.1) Is there a minimally non-ideal (resp. minimally non-packing) clutter that has opposite elements?

(7.2) Is there a minimally non-ideal (resp. minimally non-packing) clutter different from a delta with a proper

split?

(7.3) When does a clutter of Steiner trees have an ideal split?

(7.4) When does a clutter of matroid circuits have an ideal split?

7.1 On characterizing when a split is ideal

In §6 we characterized when a given identification of an ideal clutter is non-ideal. A natural counterpart is to

(7.5) characterize when a given split L of a non-ideal clutter C is ideal.

We found this problem much more difficult to answer than the previous one. One possible reason is that this

problem contains the following as a special case: characterize when the clutter of directed Steiner trees of a

bidirected graph is ideal. In [3] it is argued why answering this question for directed graphs (as opposed to

bidirected graphs) is likely a difficult task, the reason being that such a clutter can contain any arbitrary clutter

as a minor. Nonetheless, we can still provide some necessary conditions for L to be ideal. As we established in

Corollary 5.5, a necessary condition is for every mni minor of C to be a delta. Another necessary condition is
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provided by Theorem 6.8 (ii). Moreover, as was shown in §3.5, if each element of C corresponds to at most k

elements of L, then another necessary condition is that Q(C) should have integrality gap at most k.

Perhaps an easier task is to:

(7.6) characterize when a single split L of a non-ideal clutter C is ideal.

Since ∆3 is the only delta with an ideal single split, every mni minor of C must be a ∆3 for L to be ideal.

Moreover, as was shown in the proof of Proposition 6.7, another necessary condition is for all extreme points of

Q(C) to be half-integral.

7.2 Minor-closed properties preserved under splitting

We showed in §4 that idealness, the packing and MFMC properties are preserved under splitting. What about

other minor-closed properties? Let P be a minor-closed property defined on clutters. We say P is preserved

under splitting if for any clutter C that satisfies P , every split of C also satisfies P . Well, the natural question is:

(7.7) is there a characterization of minor-closed properties preserved under splitting?

A systematic approach to answer this question is as follows. The family of forbidden minors for P , denoted by

FP , is the family of minimal clutters that do not satisfy P . Note that a clutter satisfies property P if, and only if,

it has no minor in FP .

Proposition 7.1. A minor-closed property P is preserved under splitting if, and only if, for every clutter L with

opposite elements e, f the following holds:

(⋆) if one of L,L \ e,L/f,L \ e/f is in FP , then the identification of L at e, f has a minor in FP .

Proof. Suppose P is preserved under splitting, and assume that one of L,L \ e,L/f,L \ e/f is in FP . In

particular, L does not satisfy P , so neither does its identification C at e, f . This means that C has a minor in FP ,

proving (⋆).

Let us prove the converse. Suppose for a contradiction that (⋆) holds, but property P is not preserved under

splitting. So there is a clutter C and a single split L of it at some element e ∈ E(C), where C satisfies P

but L does not. Since L does not satisfy P , it has a minor in FP . We may assume that this minor is one

of L,L \ e,L/f,L \ e/f (if an element g other than e, f is deleted or contracted, then replace both C,L by

C \ g,L \ g or C/g,L/g). But then by (⋆), C must have a minor in FP , a contradiction.

Minor-closed properties closed under identification are well-understood. We say a family F of clutters is

split-closed if for each C ∈ F , every split of C has a minor in F . For instance, as we showed in §5, the following

families are split-closed:

(i) the family of minimally non-ideal clutters different from deltas,

(ii) the family of ideal, minimally non-packing clutters.
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The following follows immediately from definition:

Remark 7.2. Let F be a split-closed family. If clutter L has no minor in F , neither does any identification of L.

Note as a corollary of this remark that, a minor-closed property P is closed under identification if, and only if,

FP is split-closed.

It follows from Remark 3.7 that

(iii)
{
P4

}
∪
{
∆n : n ≥ 3

}

is another split-closed family. Coincidentally, Seymour [29] proved that this is the family of forbidden minors

for the class of binary clutters. Using this fact and Remark 7.2, it is shown in [2] that binary clutters do not have

opposite elements. (In fact, they provide a geometric take on opposite elements.)
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[10] Cornuéjols, G., Guenin, B., Margot, F.: The packing property. Math. Program. Ser. A 89, 113–126 (2000)

[11] Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Standards 71B(4), 233–240 (1967)

[12] Edmonds, J. and Fulkerson, D.R.: Bottleneck extrema. J. Combin. Theory Ser. B 8, 299–306 (1970)
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