From coordinate subspaces over finite fields to ideal multipartite uniform clutters

Abstract

Take a prime power qq, an integer nβ‰₯2n\geq 2, and a coordinate subspace SβŠ†GF(q)nS\subseteq GF(q)^n over the Galois field GF(q)GF(q). One can associate with SS an nn-partite nn-uniform clutter C\mathcal{C}, where every part has size qq and there is a bijection between the vectors in SS and the members of C\mathcal{C}. In this paper, we determine when the clutter C\mathcal{C} is ideal, a property developed in connection to Packing and Covering problems in the areas of Integer Programming and Combinatorial Optimization. Interestingly, the characterization differs depending on whether qq is 2,42,4, a higher power of 22, or otherwise. Each characterization uses crucially that idealness is a minor-closed property: first the list of excluded minors is identified, and only then is the global structure determined. A key insight is that idealness of C\mathcal{C} depends solely on the underlying matroid of SS. Our theorems also extend from idealness to the stronger max-flow min-cut property. As a consequence, we prove the Replication and Ο„=2\tau=2 Conjectures for this class of clutters.Comment: 32 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions