19,353 research outputs found

    Query translation using concepts similarity based on Quran ontology for cross-language information retrieval.

    Get PDF
    In Cross-Language Information Retrieval (CLIR) process, the translation effects have a direct impact on the accuracy of follow-up retrieval results. In dictionary-based approach, we are dealing with the words that have more than one meaning which can decrease the retrieval performance if the query translation return an incorrect translations. These issues need to be overcome using efficient technique. In this study we proposed a Cross-Language Information Retrieval (CLIR) method based on domain ontology using Quran concepts for disambiguating translation of the query and to improve the dictionary-based query translation. For experimentation, we use Quran ontology written in English and Malay languages as a bilingual parallelcorpora and Quran concepts as a resource for cross-language query translation along with dictionary-based translation. For evaluation, we measure the performance of three IR systems. IR1 is natural language query IR, IR2 is natural language query CLIR based on dictionary (as a Baseline) and IR3 is the retrieval of this research proposed method using Mean Average Precision (MAP) and average precision at 11 points of recall. The experimental result shows that our proposed method brings significant improvement in retrieval accuracy for English document collections, but deficient for Malay document collections. The proposed CLIR method can obtain query expansion effect and improve retrieval performance in certain language

    Searching Ontologies Based on Content: Experiments in the Biomedical Domain

    No full text
    As more ontologies become publicly available, finding the "right" ontologies becomes much harder. In this paper, we address the problem of ontology search: finding a collection of ontologies from an ontology repository that are relevant to the user's query. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Ontologies that are most relevant to such query often do not have the query term in the names of their concepts (e.g., the Foundational Model of Anatomy ontology does not have the term "anatomy" in any of its concepts' names). Thus, we present a new ontology-search technique that helps users in these types of searches. When looking for ontologies on a particular topic (e.g., anatomy), we retrieve from the Web a collection of terms that represent the given domain (e.g., terms such as body, brain, skin, etc. for anatomy). We then use these terms to expand the user query. We evaluate our algorithm on queries for topics in the biomedical domain against a repository of biomedical ontologies. We use the results obtained from experts in the biomedical-ontology domain as the gold standard. Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names (like Swoogle). We show 43% improvement for the case where not only class and property names but also property values are taken into account

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Searching biomedical ontologies based on content

    Get PDF
    As more ontologies become publicly available, finding the 'right' ontologies becomes much harder. In this paper, we introduce a new ontology search technique which is based on corpus analysis. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names

    A document management methodology based on similarity contents

    Get PDF
    The advent of the WWW and distributed information systems have made it possible to share documents between different users and organisations. However, this has created many problems related to the security, accessibility, right and most importantly the consistency of documents. It is important that the people involved in the documents management process have access to the most up-to-date version of documents, retrieve the correct documents and should be able to update the documents repository in such a way that his or her document are known to others. In this paper we propose a method for organising, storing and retrieving documents based on similarity contents. The method uses techniques based on information retrieval, document indexation and term extraction and indexing. This methodology is developed for the E-Cognos project which aims at developing tools for the management and sharing of documents in the construction domain

    Semantic keyword search for expert witness discovery

    No full text
    In the last few years, there has been an increase in the amount of information stored in semantically enriched knowledge bases, represented in RDF format. These improve the accuracy of search results when the queries are semantically formal. However framing such queries is inappropriate for inexperience users because they require specialist knowledge of ontology and syntax. In this paper, we explore an approach that automates the process of converting a conventional keyword search into a semantically formal query in order to find an expert on a semantically enriched knowledge base. A case study on expert witness discovery for the resolution of a legal dispute is chosen as the domain of interest and a system named SKengine is implemented to illustrate the approach. As well as providing an easy user interface, our experiment shows that SKengine can retrieve expert witness information with higher precision and higher recall, compared with the other system, with the same interface, implemented by a vector model approach
    corecore