379 research outputs found

    A Survey of Access Control Models in Wireless Sensor Networks

    Get PDF
    Copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.Peer reviewe

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    Anomaly Detection in UASN Localization Based on Time Series Analysis and Fuzzy Logic

    Full text link
    [EN] Underwater acoustic sensor network (UASN) offers a promising solution for exploring underwater resources remotely. For getting a better understanding of sensed data, accurate localization is essential. As the UASN acoustic channel is open and the environment is hostile, the risk of malicious activities is very high, particularly in time-critical military applications. Since the location estimation with false data ends up in wrong positioning, it is necessary to identify and ignore such data to ensure data integrity. Therefore, in this paper, we propose a novel anomaly detection system for UASN localization. To minimize computational power and storage, we designed separate anomaly detection schemes for sensor nodes and anchor nodes. We propose an auto-regressive prediction-based scheme for detecting anomalies at sensor nodes. For anchor nodes, a fuzzy inference system is designed to identify the presence of anomalous behavior. The detection schemes are implemented at every node for enabling identification of multiple and duplicate anomalies at its origin. We simulated the network, modeled anomalies and analyzed the performance of detection schemes at anchor nodes and sensor nodes. The results indicate that anomaly detection systems offer an acceptable accuracy with high true positive rate and F-Score.Das, AP.; Thampi, SM.; Lloret, J. (2020). Anomaly Detection in UASN Localization Based on Time Series Analysis and Fuzzy Logic. Mobile Networks and Applications (Online). 25(1):55-67. https://doi.org/10.1007/s11036-018-1192-y556725

    A GENERIC TRUST MANAGEMENT FRAMEWORK FOR HETEROGENEOUS SENSORS IN CYBER PHYSICAL SYSTEMS

    Get PDF
    Objective: Wireless Technology†is the magic word in today's era. In which, Cyber Physical Systems (CPS) is the booming world which binds the physical world and cyber world together. The CPS is also called as Safety Critical System because of the human life involvement. In this emerging technology, lots of heterogeneous sensors are involved and each sensor will play an important role. If something goes wrong with sensor or sensor data. It will definitely affect the human life involved in it.Methods: In this paper, we proposed a generic trust management framework for heterogeneous sensors which will detect the sensor data falsification (Data Integrity), faulty sensor reading, and packet dropping nodes (Selfish Nodes) through rules and rating concept.Results: The efficiency of the proposed framework is evaluated with the help of Network Simulator 2 (NS-2.35). The maximum numbers of untrusted nodes are identified in point 0.40 than Multi-Level Trust Framework for Wireless Sensor Network (MTF-WSN) and Framework for Packet-Droppers Mitigation (FPDM). It is also evident that Trust Management Framework for Cyber Physical Systems (TRMF-CPS) identifies maximum number of untrusted nodes in the detection range of 0.35 and 0.45. Therefore, 0.35 and 0.45 are considered as maximum and minimum threshold points for effective untrusted nodes. Conclusion:The experimentation results and comparative study shows that, our trust management framework will easily detected sensors which misbehave.Â

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    Routing Security Issues in Wireless Sensor Networks: Attacks and Defenses

    Get PDF
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important new area in wireless and mobile computing research. Applications of WSNs are numerous and growing, and range from indoor deployment scenarios in the home and office to outdoor deployment scenarios in adversary's territory in a tactical battleground (Akyildiz et al., 2002). For military environment, dispersal of WSNs into an adversary's territory enables the detection and tracking of enemy soldiers and vehicles. For home/office environments, indoor sensor networks offer the ability to monitor the health of the elderly and to detect intruders via a wireless home security system. In each of these scenarios, lives and livelihoods may depend on the timeliness and correctness of the sensor data obtained from dispersed sensor nodes. As a result, such WSNs must be secured to prevent an intruder from obstructing the delivery of correct sensor data and from forging sensor data. To address the latter problem, end-to-end data integrity checksums and post-processing of senor data can be used to identify forged sensor data (Estrin et al., 1999; Hu et al., 2003a; Ye et al., 2004). The focus of this chapter is on routing security in WSNs. Most of the currently existing routing protocols for WSNs make an optimization on the limited capabilities of the nodes and the application-specific nature of the network, but do not any the security aspects of the protocols. Although these protocols have not been designed with security as a goal, it is extremely important to analyze their security properties. When the defender has the liabilities of insecure wireless communication, limited node capabilities, and possible insider threats, and the adversaries can use powerful laptops with high energy and long range communication to attack the network, designing a secure routing protocol for WSNs is obviously a non-trivial task.Comment: 32 pages, 5 figures, 4 tables 4. arXiv admin note: substantial text overlap with arXiv:1011.152

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore