A GENERIC TRUST MANAGEMENT FRAMEWORK FOR HETEROGENEOUS SENSORS IN CYBER PHYSICAL SYSTEMS

Abstract

Objective: Wireless Technology†is the magic word in today's era. In which, Cyber Physical Systems (CPS) is the booming world which binds the physical world and cyber world together. The CPS is also called as Safety Critical System because of the human life involvement. In this emerging technology, lots of heterogeneous sensors are involved and each sensor will play an important role. If something goes wrong with sensor or sensor data. It will definitely affect the human life involved in it.Methods: In this paper, we proposed a generic trust management framework for heterogeneous sensors which will detect the sensor data falsification (Data Integrity), faulty sensor reading, and packet dropping nodes (Selfish Nodes) through rules and rating concept.Results: The efficiency of the proposed framework is evaluated with the help of Network Simulator 2 (NS-2.35). The maximum numbers of untrusted nodes are identified in point 0.40 than Multi-Level Trust Framework for Wireless Sensor Network (MTF-WSN) and Framework for Packet-Droppers Mitigation (FPDM). It is also evident that Trust Management Framework for Cyber Physical Systems (TRMF-CPS) identifies maximum number of untrusted nodes in the detection range of 0.35 and 0.45. Therefore, 0.35 and 0.45 are considered as maximum and minimum threshold points for effective untrusted nodes. Conclusion:The experimentation results and comparative study shows that, our trust management framework will easily detected sensors which misbehave.Â

    Similar works