1,687 research outputs found

    On the Intrinsic Locality Properties of Web Reference Streams

    Full text link
    There has been considerable work done in the study of Web reference streams: sequences of requests for Web objects. In particular, many studies have looked at the locality properties of such streams, because of the impact of locality on the design and performance of caching and prefetching systems. However, a general framework for understanding why reference streams exhibit given locality properties has not yet emerged. In this work we take a first step in this direction, based on viewing the Web as a set of reference streams that are transformed by Web components (clients, servers, and intermediaries). We propose a graph-based framework for describing this collection of streams and components. We identify three basic stream transformations that occur at nodes of the graph: aggregation, disaggregation and filtering, and we show how these transformations can be used to abstract the effects of different Web components on their associated reference streams. This view allows a structured approach to the analysis of why reference streams show given properties at different points in the Web. Applying this approach to the study of locality requires good metrics for locality. These metrics must meet three criteria: 1) they must accurately capture temporal locality; 2) they must be independent of trace artifacts such as trace length; and 3) they must not involve manual procedures or model-based assumptions. We describe two metrics meeting these criteria that each capture a different kind of temporal locality in reference streams. The popularity component of temporal locality is captured by entropy, while the correlation component is captured by interreference coefficient of variation. We argue that these metrics are more natural and more useful than previously proposed metrics for temporal locality. We use this framework to analyze a diverse set of Web reference traces. We find that this framework can shed light on how and why locality properties vary across different locations in the Web topology. For example, we find that filtering and aggregation have opposing effects on the popularity component of the temporal locality, which helps to explain why multilevel caching can be effective in the Web. Furthermore, we find that all transformations tend to diminish the correlation component of temporal locality, which has implications for the utility of different cache replacement policies at different points in the Web.National Science Foundation (ANI-9986397, ANI-0095988); CNPq-Brazi

    Basis Token Consistency: A Practical Mechanism for Strong Web Cache Consistency

    Full text link
    With web caching and cache-related services like CDNs and edge services playing an increasingly significant role in the modern internet, the problem of the weak consistency and coherence provisions in current web protocols is becoming increasingly significant and drawing the attention of the standards community [LCD01]. Toward this end, we present definitions of consistency and coherence for web-like environments, that is, distributed client-server information systems where the semantics of interactions with resource are more general than the read/write operations found in memory hierarchies and distributed file systems. We then present a brief review of proposed mechanisms which strengthen the consistency of caches in the web, focusing upon their conceptual contributions and their weaknesses in real-world practice. These insights motivate a new mechanism, which we call "Basis Token Consistency" or BTC; when implemented at the server, this mechanism allows any client (independent of the presence and conformity of any intermediaries) to maintain a self-consistent view of the server's state. This is accomplished by annotating responses with additional per-resource application information which allows client caches to recognize the obsolescence of currently cached entities and identify responses from other caches which are already stale in light of what has already been seen. The mechanism requires no deviation from the existing client-server communication model, and does not require servers to maintain any additional per-client state. We discuss how our mechanism could be integrated into a fragment-assembling Content Management System (CMS), and present a simulation-driven performance comparison between the BTC algorithm and the use of the Time-To-Live (TTL) heuristic.National Science Foundation (ANI-9986397, ANI-0095988

    Cooperative Caching for Multimedia Streaming in Overlay Networks

    Get PDF
    Traditional data caching, such as web caching, only focuses on how to boost the hit rate of requested objects in caches, and therefore, how to reduce the initial delay for object retrieval. However, for multimedia objects, not only reducing the delay of object retrieval, but also provisioning reasonably stable network bandwidth to clients, while the fetching of the cached objects goes on, is important as well. In this paper, we propose our cooperative caching scheme for a multimedia delivery scenario, supporting a large number of peers over peer-to-peer overlay networks. In order to facilitate multimedia streaming and downloading service from servers, our caching scheme (1) determines the appropriate availability of cached stream segments in a cache community, (2) determines the appropriate peer for cache replacement, and (3) performs bandwidth-aware and availability-aware cache replacement. By doing so, it achieves (1) small delay of stream retrieval, (2) stable bandwidth provisioning during retrieval session, and (3) load balancing of clients' requests among peers

    Deterministic Object Management in Large Distributed Systems

    Get PDF
    Caching is a widely used technique to improve the scalability of distributed systems. A central issue with caching is maintaining object replicas consistent with their master copies. Large distributed systems, such as the Web, typically deploy heuristic-based consistency mechanisms, which increase delay and place extra load on the servers, while not providing guarantees that cached copies served to clients are up-to-date. Server-driven invalidation has been proposed as an approach to strong cache consistency, but it requires servers to keep track of which objects are cached by which clients. We propose an alternative approach to strong cache consistency, called MONARCH, which does not require servers to maintain per-client state. Our approach builds on a few key observations. Large and popular sites, which attract the majority of the traffic, construct their pages from distinct components with various characteristics. Components may have different content types, change characteristics, and semantics. These components are merged together to produce a monolithic page, and the information about their uniqueness is lost. In our view, pages should serve as containers holding distinct objects with heterogeneous type and change characteristics while preserving the boundaries between these objects. Servers compile object characteristics and information about relationships between containers and embedded objects into explicit object management commands. Servers piggyback these commands onto existing request/response traffic so that client caches can use these commands to make object management decisions. The use of explicit content control commands is a deterministic, rather than heuristic, object management mechanism that gives content providers more control over their content. The deterministic object management with strong cache consistency offered by MONARCH allows content providers to make more of their content cacheable. Furthermore, MONARCH enables content providers to expose internal structure of their pages to clients. We evaluated MONARCH using simulations with content collected from real Web sites. The results show that MONARCH provides strong cache consistency for all objects, even for unpredictably changing ones, and incurs smaller byte and message overhead than heuristic policies. The results also show that as the request arrival rate or the number of clients increases, the amount of server state maintained by MONARCH remains the same while the amount of server state incurred by server invalidation mechanisms grows

    The Effectiveness of Cache Coherence Implemented on the Web

    Get PDF
    The popularity of the World Wide Web (Web) has generated so much network traffic that it has increased concerns as to how the Internet will scale to meet future demand. The increased population of users and the large size of files being transmitted have resulted in concerns for different types of Internet users. Server administrators want a manageable load on their servers. Network administrators need to eliminate unnecessary traffic, thereby allowing more bandwidth for useful information. End users desire faster document retrieval. Proxy caches decrease the number of messages that enter the network by satisfying requests before they reach the server. However, the use of proxies introduces a concern with how to maintain consistency among cached document versions. Existing consistency protocols used in the Web are proving to be insufficient to meet the growing needs of the World Wide Web population. For example, too many messages are due to caches guessing when their copy is inconsistent. One option is to apply the cache coherence strategies already in use for many other distributed systems, such as parallel computers. However, these methods are not satisfactory for the World Wide Web due to its larger size and range of users. This paper provides insight into the characteristics of document popularity and how often these popular documents change. The frequency of proxy accesses to documents is also studied to test the feasibility of providing coherence at the server. The main goal is to determine whether server invalidation is the most effective protocol to use on the Web today. We make recommendations based on how frequently documents change and are accessed

    Techniques of data prefetching, replication, and consistency in the Internet

    Get PDF
    Internet has become a major infrastructure for information sharing in our daily life, and indispensable to critical and large applications in industry, government, business, and education. Internet bandwidth (or the network speed to transfer data) has been dramatically increased, however, the latency time (or the delay to physically access data) has been reduced in a much slower pace. The rich bandwidth and lagging latency can be effectively coped with in Internet systems by three data management techniques: caching, replication, and prefetching. The focus of this dissertation is to address the latency problem in Internet by utilizing the rich bandwidth and large storage capacity for efficiently prefetching data to significantly improve the Web content caching performance, by proposing and implementing scalable data consistency maintenance methods to handle Internet Web address caching in distributed name systems (DNS), and to handle massive data replications in peer-to-peer systems. While the DNS service is critical in Internet, peer-to-peer data sharing is being accepted as an important activity in Internet.;We have made three contributions in developing prefetching techniques. First, we have proposed an efficient data structure for maintaining Web access information, called popularity-based Prediction by Partial Matching (PB-PPM), where data are placed and replaced guided by popularity information of Web accesses, thus only important and useful information is stored. PB-PPM greatly reduces the required storage space, and improves the prediction accuracy. Second, a major weakness in existing Web servers is that prefetching activities are scheduled independently of dynamically changing server workloads. Without a proper control and coordination between the two kinds of activities, prefetching can negatively affect the Web services and degrade the Web access performance. to address this problem, we have developed a queuing model to characterize the interactions. Guided by the model, we have designed a coordination scheme that dynamically adjusts the prefetching aggressiveness in Web Servers. This scheme not only prevents the Web servers from being overloaded, but it can also minimize the average server response time. Finally, we have proposed a scheme that effectively coordinates the sharing of access information for both proxy and Web servers. With the support of this scheme, the accuracy of prefetching decisions is significantly improved.;Regarding data consistency support for Internet caching and data replications, we have conducted three significant studies. First, we have developed a consistency support technique to maintain the data consistency among the replicas in structured P2P networks. Based on Pastry, an existing and popular P2P system, we have implemented this scheme, and show that it can effectively maintain consistency while prevent hot-spot and node-failure problems. Second, we have designed and implemented a DNS cache update protocol, called DNScup, to provide strong consistency for domain/IP mappings. Finally, we have developed a dynamic lease scheme to timely update the replicas in Internet
    corecore