
Cooperative caching for multimedia streaming in overlay
networks

Won J. Jeon and Klara Nahrstedt

Department of Computer Science,
University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA

ABSTRACT

Traditional data caching, such as web caching, only focuses on how to boost the hit rate of requested objects
in caches, and therefore, how to reduce the initial delay for object retrieval. However, for multimedia objects,
not only reducing the delay of object retrieval, but also provisioning reasonably stable network bandwidth to
clients, while the fetching of the cached objects goes on, is important as well. In this paper, we propose our
cooperative caching scheme for a multimedia delivery scenario, supporting a large number of peers over peer-
to-peer overlay networks. In order to facilitate multimedia streaming and downloading service from servers, our
caching scheme (1) determines the appropriate availability of cached stream segments in a cache community, (2)
determines the appropriate peer for cache replacement, and (3) performs bandwidth-aware and availability-aware
cache replacement. By doing so, it achieves (1) small delay of stream retrieval, (2) stable bandwidth provisioning
during retrieval session, and (3) load balancing of clients’ requests among peers.

Keywords: multimedia, peer-to-peer, overlay, caching, streaming, cooperative

1. INTRODUCTION

In order to address the bottleneck at the multimedia server (i.e., server distance may cause long start-up time
and server load may cause low frame rate), in general, a cache or proxy is located between the server and
the client and stores parts of multimedia streams originally located at the server. By exploiting temporal and
geographical proximity, the cache reduces the server’s overload and delay for retrieving streams from the server.
Since multimedia streams require lots of memory/disk space for caching, naturally distributed caching schemes
were introduced to address the scalability and size problems.

Recently, peer-to-peer (P2P) overlay networks have become popular and many P2P applications such as file
sharing and content distribution have been introduced. One of the advantages of P2P overlay networks is their
high feasibility of collaboration among peers without any modifications of the server side and the underlying net-
work infrastructure. Naturally, P2P caching schemes for streaming were introduced. However, these approaches
manifest (1) inefficiency of cache utilization due to inappropriate cache replacement algorithms, (2) lack of load
balancing for peers with popular streams, and (3) no consideration of dynamic membership changes (e.g., due
to high peer mobility).

In this paper, we present a novel overlay cooperative caching scheme for multimedia streaming service. Our
scheme has the following advances over existing solutions. First, it efficiently utilizes cache space contributed by
peers by maximizing cache availability of streams in the cache peer community, and therefore decreases the delay
for stream retrieval. Second, it is tolerant with respect to dynamic membership changes such as peer up/down
events by considering node availability.

The rest of the paper is organized as follows. In Section 2, we introduce the general cooperative overlay
caching and its components. Then, in Section 3, we discuss our caching algorithm. Simulation results show the
performance of our algorithm and validate the advances of our algorithm in Section 4. Section 5 describes the
related work. Finally, Section 6 concludes the paper.

Further author information: (Send correspondence to Won J. Jeon)
Won J. Jeon: E-mail: wonjeon@cs.uiuc.edu, Telephone: 1 217 333 1515
Klara Nahrstedt: E-mail: klara@cs.uiuc.edu



2. COOPERATIVE OVERLAY CACHING

The cooperative P2P community consists of peer clients that have computing power, storage space, and network
connections to shared networks, such as the Internet. Each peer joins and leaves the community with an
appropriate authentication procedure. Once accepted in the community, the peer exploits other peers’ storage
and network resources, and, at the same time, contributes its storage space and network bandwidth to the
community. This architecture (as shown in Figure 1) comprises the cooperative overlay caching space. When a
specific peer tries to retrieve a new multimedia stream such as audio and video from a server, it first looks up the
storage space of its peers in its community as shown in Figure 1.∗ If the stream is found in the community, the
client retrieves the stream from its peer(s), not from the server. After retrieving the stream, the client determines
whether it caches the stream in its own storage space or not. If the client always stores (caches) the stream, then
there might be excessive duplicates of the same stream in the community, which might cause inefficient utilization
of shared cache space in the community. If the client does not store the stream in the case of cache hit in the
community, then all requests from different peers in the community might be forwarded to the same peer which
has the requested stream. This might cause longer delays for stream retrieval and high service unavailability,
due to limited service capability affected by computing power and network bandwidth. In addition, any peer
in the community could leave without any notification and a peer might sometimes be down for maintenance.
Therefore, the following criteria should be considered for designing and maintaining cooperative overlay caching.

LAN 1

LAN 2

Internet

Server

Peer 1

Peer 2

Peer 3

Peer 4

Peer 5

Figure 1. Cooperative P2P Community

• Creation and maintenance of community: Peers in a cooperative P2P community could be either pre-
defined in a specific geographical region, such as community network by residential homes, or widely
spread in wide-area-networks, such as the Internet. In order to have a tolerable delay for stream retrieval,
any two peers in a community should be located within the distance of a tolerable delay dt. We assume
that there is an underlying P2P substrate to measure the distance of peers in terms of network delay, so
that any stream retrieval in a community does not have an excessive delay longer than dt.7

• Handling of peer up/down events: Since peers are possibly maintained by different maintenance authorities,
stable membership in a community is no longer valid. Especially in a heterogeneous computing environment,
peers could be mobile devices, which might frequently join or leave the community. The cooperative
community should handle this peer’s behavior without causing a malfunction or breakdown of the whole
system.

∗Note that the server’s distance from any of the P2P community peers is an order of magnitude higher than the peers’
distance from each other. For example, a situation of a server located in Japan and all peer nodes being located at UIUC
would satisfy our assumption.



• Search and lookup capability: When any cache entry in a peer is changed, the other peers in the community
should know this change for lookup in the future upon its stream request. There might be either centralized
or distributed ways of cache lookup schemes. In a centralized scheme, there is a specific peer that keeps a
record of cache entries of peers in a community. In a distributed scheme, a peer finds cached streams in its
peers by flooding or other scalable query/discovery methods.

• Cache allocation and replacement: When a stream request is issued by a peer in a community, the commu-
nity then determines whether this new stream should be cached or not, and if cached, where it should be
cached. If there is not a great enough number of peers having popular streams, then these peers would be
congested with other peers’ cache retrieval, therefore suddenly becoming a performance bottleneck. On the
other hand, if there is an excessive number of duplicates of popular streams in a community, it is possible
that there is not enough space for unpopular streams, so that the retrieval of such streams might struggle
with a longer delay.

• Fair utilization of shared resources: Each peer might contribute its resources, such as cache space and
serving network bandwidth, to its community. In this scenario, differently contributed resources should
be allocated fairly to the group of peers, so that the community minimizes inefficient utilization of cache
space and network bandwidth.

3. COOPERATIVE CACHING ALGORITHM

3.1. Assumptions, Models, and Definitions

Suppose a multimedia stream consists of a series of segments (e.g., a segment could be group of pictures (GOP)
in MPEG, or a frame in MJPEG video), and a segment is the base unit of cache allocation. Since the size of a
multimedia stream spans from a few seconds to a few hours, this segment-based caching has been recommended
in many previous works.4,5,6 In addition, segment-based caching is more compatible with VCR operations such
as pause, fast-forward, backward for the video-on-demand service, and is regarded more tolerant in a mobile and
ubiquitous computing environment. Here without loss of generosity, a segment of each stream is denoted as si

(i = 0, 1, ..., I) (with the same size), where I represents the total number of segments in the whole stream. In
a P2P community group, each peer is denoted as pj (j = 0, ..., J), where J is the total number of peers in the
P2P community.

If a peer pj wants to retrieve a stream segment si from the community and play it locally, then the delay dj

for the retrieval is calculated as:

dj = A(si)dj∗ + (1−A(si))dj∞ (1)

where A(si) is the availability of the segment si in the community (A(si) ∈ [0, 1]), dj∗ is the average delay from
the peer pj to any peer in the community (dj∗ ≤ dt, where di is the maximum delay between any pair of peers
in a P2P community), and dj∞ is the delay from pj to the server which originally stores the segment si. Since
dj∗ < dj∞, maximizing A(si) is to minimize dj .

The availability of the segment si, A(si) in a community is determined by the node availability, link capacity
of the peer, and the number of duplicates of the segment:

A(si) = 1−
J∏

j=1

(1− qjajXij) (2)

where qj is the probability of availability of pj (0 ≤ qj ≤ 1), aj is the admission probability of request for si at
pj (0 ≤ aj ≤ 1), and Xij is the I × J matrix with the element xij where:

xij =

{
1 if si is cached at pj ,
0 otherwise.

(3)



To simplify, if the admission probability aj is determined by the capacity of servicing network bandwidth,
then aj can be expressed as the servicing (outgoing) network bandwidth, normalized by the maximum servicing
network bandwidth:

aj =
bj

max(b1, b2, ..., bJ )
(4)

If the node availability qj with its servicing link bandwidth aj is regarded as a single parameter, Qj , then
Equation 2 is rewritten as:

A(si) = 1−
J∏

j=1

(1−QjXij) (5)

The purpose of our caching algorithm is to increase A(si) for all si in the community, therefore minimizing dj .
However, since cache space in the community is limited, it is not possible to increase A(si) for all si.

3.2. Availability-based caching Replacement Algorithm

When the entire cache space of the community is occupied, then an appropriate cache replacement scheme should
select a victim stream which is evicted in the cache space and replaced with the stream newly requested by peers.
Traditional cache replacement algorithms such as Least Recently Used (LRU), utilizing temporal locality, have
been known to be less effective for stream caching than data caching, due to its lack consideration of stream
size.19 Usually the size of streams is large, varying a few kilobytes to a few hundred megabytes. In this case,
an unpopular large stream could evict a bunch of small popular streams in the cache, which is not good for the
performance of caching. In this section, we will explain our availability-based caching replacement algorithm in
the distributed and cooperative environment. First, we look at the homogeneous environment where each peer
has the same probability of availability (e.g., Qj = Q,∀j ∈ J). Then the following theorem is derived:

Theorem 1. If the probability of availability of all peers is the same (e.g., Qj = Q,∀j ∈ J), and there is a
(cache) capacity constraint at peers, then the average availability for a stream segment (

∑I
i=1 A(si)) is constant

at the steady state (e.g., cache space is completely occupied with cached streams).

Proof. With Qj = Q(∀j ∈ J), 1
I

∑I
i=1 A(si) is:

1
I

I∑
i=1

A(si) =
1
I

I∑
i=1

(1−
J∏

j=1

(1−QXij))

= 1− 1
I

I∑
i=1

J∏
j=1

(1−QXij)

(6)

Since there is a capacity constraint in the cache space, which means
∑J

j=1 Cj <
∑I

i=1 size(si), where Cj is the
cache size of the peer pj and size(si) is the size of segment si, there is at least one Xij which is zero. In equation
6, we select two elements, Xi1j1 and Xi2j2 , which are 1 and 0, respectively, and then flip them into 0 and 1.
The resulting

∑I
i=1 A(si) is not changed by this flipping when

∑I
i=1

∑J
j=1 Xij is constant, which means that,

in steady state, any reallocation of any cached stream in the community does not affect the total availability of
streams.

From Theorem 1, the following corollary is derived.

Corollary 2. If the probabilities of availability of all peers are the same, and a caching replacement algorithm
replaces the segment si with si′ , then the availabilities of the segments except si and si′ are not changed.

From Equation 1 and Theorem 1, in order to have a minimized delay for retrieval of a segment si, increasing
the minimum A(si) for si without decreasing other A(si′) (where si′ ,∀i′ ∈ {1, 2, ..., I}, i′ �= i) too much, is a
key factor. In reality, the availability of each peer (Qj) might dynamically change over time, so we propose the
following algorithmic approach to achieve the minimum delay for the stream retrieval.



Algorithm for Cooperative Cache Replacement

Upon the request for the stream {s′1, s′2, ..., s′K},
1 for k = 1 to K
2 Replace segment(s′k);

Function Replace segment(s′i)
1 Amin :=∞, imin := 0;
2 ∆max = 0, imax = 0; jmax = 0;
3 for i = 1 to I
4 if (Amin ≥ A(si)) then
5 Amin := A(si);
6 imin := i;
7 for (i = 1 to I) and (j = 1 to J)
8 Calculate A′

j(si),∀si with possible replacement and updated Qj .
9 δinc,j = A′

j(simin
)−Aj(simin

);
10 δdec,j =

∑
i�=imin

(A′
j(si)−Aj(si));

11 ∆ij = δinc,j − δdec,j ;
12 if (∆ij > 0 ∧∆max < ∆ij) then
13 ∆max := ∆ij ;
14 imax = i;
15 jmax = j;
16 if (imax �= 0) then
17 Replace simax

located at pjmax
with s′i.

In the algorithm, specifically on line 8, ‘possible replacement’ represents all the cases when si (i �= imin) in any
peer pj , ∀j ∈ J is replaced with si′ (i′ = imin). In this case, Xij which was one, changes to zero; and Xi′j which
was zero, changes to one, after the replacement. Note that this algorithm measures exactly the availabilities
of all stream segments from all peers, but it has O(I2J) time complexity and O(J2) message exchange for Xij

among peers upon every change of cache entries, which might be expensive when there are many segments and
peers.

3.2.1. Example of Replace segment

Suppose that there are three peers p1, p2 and p3 in a P2P cache community. Each peer has a two-segment size
of cache space. p1, p2, p3 has its availability (Qj) of 1.0, 0.8, 0.6, respectively. In steady state, let us assume that
p1, p2, p3 caches the segment sets {s1, s2, s3}, {s3, s4, s5}, {s4, s6, s7}, respectively. In this configuration Conf1,
the availabilities of each segment are calculated from Equation 5:

Conf1 : A(s1) = 1.0, A(s2) = 1.0, A(s3) = 1.0, A(s4) = 0.92,
A(s5) = 0.8, A(s6) = 0.6, A(s7) = 0.6, A(s8) = 0.0

Later, let us suppose that there is a new segment request for s8 at p2. Then, p2 locally computes the change
of availabilities in the 9 possible replacement cases. Among them, the replacement of s4 at p2 with s8 is the case
when ∆ on the line 11 in the above algorithm will be ∆max.

Conf2 : A(s1) = 1.0, A(s2) = 1.0, A(s3) = 1.0, A(s4) = 0.8,
A(s5) = 0.8, A(s6) = 0.6, A(s7) = 0.6, A(s8) = 0.6

Conf1 → Conf2 : δinc = 0.6, δdec = 0.92− 0.8 = 0.12,∆ = 0.48

Therefore, s4 at p2 is replaced by s8.



3.3. Approximation of Algorithm

In reality, it is not possible for each peer to have the same probability of availability, and to keep a record of all
cache entries located at neighbor peers, and to exchange every updated information of Xij upon every change
of cache entries. Instead, it is more feasible in terms of the number of exchanging messages for each peer to
ask the number of duplications of a segment si in the community from the subset of neighbor peers. This type
of message exchange and information gathering is more compatible with popular epidemic protocols25in P2P
networks.

Suppose that, at a given time, peer pj has ñ number of close neighbor peers, and has only the information
about the number of duplications of the segment si from them. Originally, the availability of the segment si,
A(si) is given in Equation 5. Recall that the probability of availability of a peer pj , Qj is a parameter which is
measured by its neighbor peers, whereas Xij is the information that the peer pj sends to its neighbors. To plug
the information about the number of duplicates of the segment into this formula, let us sacrifice the accuracy of
the Qj at this point. We will compensate for the error caused by this approximation of Qj by selecting a victim
peer later in this section. The average of Qj , Q̄ is given as:

Q̄ =

∑J
j=1 Qj

J
(7)

Then, the availability of the segment si is derived from Equation 5:

A(si) = 1−
J∏

j=1

(1− Q̄Xij)

= 1− (1− Q̄)Ñ(Xi)

(8)

Where the approximation of the number of duplicates of the segment si in the community is given as (J̃ is
the number of subset neighbor peers which exchange messages with the peer pj):

Ñ(Xi) =
J

J̃

∑
j∈J̃

Xij (9)

Equation 8 means that, from the approximation of Qj and incomplete information of Xij , the availability of a
stream segment can be calculated. Based on Equation 8, the approximation of cooperative caching replacement
is as follows. Note that this algorithm only selects the victim segment si, not the exact peer location.



Approximation Algorithm for Selecting Victim Segments

Upon the request for the stream {s′1, s′2, ..., s′K},
1 Svictim = ∅; svictim = 0;
2 for k = 1 to K
3 svictim ← Find Victim(s′k);
4 Svictim ← Svictim ∪ svictim;

Function Find Victim(s′i)
1 Amin :=∞, imin := 0;
2 ∆max = 0, imax = 0;
2 for i = 1 to I
3 if (Amin ≥ A(si)) then
4 Amin := A(si);
5 imin := i;
6 for i = 1 to I
7 Calculate A′(si),∀si from Equation 8.
8 δinc = A′(simin

)−A(simin
);

9 δdec =
∑

i�=imin
(A′(si)−A(si));

10 ∆i = δinc − δdec;
11 if (∆i > 0 ∧∆max < ∆i) then
12 ∆max := ∆i;
13 imax = i;
14 Return s′i.

Once a victim segment svictim is selected by this approximation algorithm, there might be more than one
peer that caches the segment svictim. When there are multiple peers that cache the victim segment svictim,
there might be different policies to select a specific peer having svictim. This peer might be either one with
high availability, one with high network bandwidth, or one that is randomly selected. The peer which would
be selected here will initiate a transmission of svictim from the peer pj to itself. Therefore, in order to decrease
delay for stream retrieval, selecting a peer which has large available network bandwidth and high availability
is a key factor. The following is our proposed peer selection algorithm which will perform a cache replacement
algorithm for each svictim, for the segment selected by the previous victim segment selection algorithm.

Approximation Algorithm for Cache Replacement

For each s′i, among the candidate peers {pj} (j ∈ J ′) having each svictim,
1 B′

max = 0, jmax = 0;
2 for j = 1 to J ′

3 B′
j = QjBj ;

4 if (Bmax < B′
j) then

5 B′
max := B′

j ;
6 jmax := j;
7 Replace svictim with s′i at pjmax

.

In this algorithm, J ′ represents the number of candidate peers with svictim (J ′ ⊆ J), Bj represents the cur-
rently available network bandwidth serving neighbor peers, and B′

j represents the calibrated network bandwidth
with availability Qj .



3.4. Caching Protocols

The approximation of victim segment selection and the cache replacement in previous sections assume that there
is a P2P substrate that not only measures the distance between every peer to form a cache community, but also
measures the probability of availability Qj . This information might be the ratio of blackout time of the peer pj

over total execution time of the system, which is measured by its neighbor peers. Qj is not a specific information
different to peers, but a global information in the community. Therefore, in order to reduce the flooding of this
information, a particular peer could measure this information for only a subset of peers in the community and
could deliver it to the other peers which does not have the information, with any epidemic protocol.

Once a particular peer pj receives a request for a stream segment s′i, then pj selects the victim segment si

based on Qj from its neighbor peers. Once the victim segment is selected by pj , then it selects its neighbor peer
among candidate peers pj having svictim, based on the information of calibrated network bandwidth, B′

j . These
two algorithm are locally executed at pj based on the information of Qj and Ñ(Xi). The real transmission of s′i
is performed from pj to the one of candidate peer, pjmax

, after the playback of s′i is done at pj .

4. SIMULATION

In this section, we compare our availability-based caching replacement algorithm with the segment-based LRU
algorithm. We measure the average delay of segments of streams for our non-approximated cache replacement
algorithm, then compare it with the approximated version of the algorithm and the segment-based LRU algo-
rithm.

4.1. Simulation Methodology

To evaluate the performance of the caching schemes, we implemented them in our event-driven distributed caching
simulator, given a multimedia workload which contains the information of each peer’s access to multimedia
streams, the simulator performs one of distributed cache replacement algorithms in a predefined network topology.
In this simulation, 100 peers were generated in a P2P cache community, and each peer had 100 MB of cache
space. Delays between any pair of peers are randomly selected to be less than 50ms (e.g. dt = 50ms). When
there is a cache miss for a particular segment in the community, the delay to accessing a multimedia server to
retrieve the segment was set to be [100ms, 300ms]. The inbound and outbound network bandwidth of each peer
ware set to 5 Mbps. When there are multiple streaming sessions among peers, the available network bandwidth
is proportionally utilized for each session. If there is a peer overloaded with requests for cache retrieval from
other peers, then it is congested and causes a longer delay for cache retrieval.

We generated a multimedia workload using MediSyn, the synthesized multimedia workload generator.22 One
of the characteristics of this workload is to allow for variable session duration time, which could have a similar
effect as the stop VCR operation. This feature simulates the case when a peer stop the request for transmission of
the stream at any time during a streaming session. The default configuration parameters were used, except that
the trace duration was modified to four days. Table 1 shows a brief summary of the multimedia workload used
in this simulation. In addition, we allocated each request in the workload trace to one peer in the community
randomly.

4.2. Simulation Result

4.2.1. Effect of Segment Size:

In order to investigate the effect of the segment size of multimedia streams on the cache performance, we had
different segment sizes (50kB, 100KB, 500KB, and 1MB) and performed the simulation. In this simulation, the
availabilities of peers (Qj) were set to 1.0. After confirming each peer’s steady state (e.g., its cache space is fully
occupied), the delay for each retrieval of stream segment was recorded. Figure 2 shows the results of different
algorithms in one peer in the community. Note that the other peers in the community showed similar statistics.

ORIGIN, APPROX, and LRU represent the non-approximated algorithm, approximated algorithm, and LRU
algorithm, respectively. As the segment size gets bigger, the average delay becomes longer. This is because, as
the segment size becomes bigger, the number of cache slots in each peer decreases. In addition, our approximated



Table 1. Summary of Multimedia Workload for Simulation

Parameters Values

Duration of simulation 4 Days

Total number of requests 101464

Average access rate 0.29 (1/sec)

Total number of streams 1000

Average stream size 5.992 MB

Max. stream size 258.83 MB

Min. stream size 7 KB

Stream encoding rates 28.8,56,128,256,350 kbps

0

10

20

30

40

50

60

70

80

1 2 3 4

Segment Size (1:50KB, 2:100KB, 3:500KB: 
4:1000KB)

A
ve

ra
g

e 
D

el
ay

 (
m

s)

ORIGIN

APPROX

LRU

Figure 2. Effect of Segment Size on Cache Performance

algorithm has a very similar result to the non-approximated one, and the LRU algorithm shows the longest delays
in all segment sizes. This can be explained by the access pattern in the workload trace. The multimedia workload
that we used has a popularity distribution for each stream access (e.g., Zipf-like distribution), so that a small
portion of popular streams have dominant access frequencies over unpopular streams. In this configuration,
especially with a large cache segment size, an unpopular stream which is requested infrequently are prone to be
evicted by popular streams. However, our availability-based cache replacement algorithm shows that it tries to
keep the minimum availability of unpopular segments, which decreases the average delay for stream retrieval.

4.2.2. Effect of Peer Availability:

In order to see the effect of peer availability (Qj), different probabilities of peer availability were set up: 0.6, 0.8,
0.9, and 1.0. The segment size was set to 100 KB. Each peer performs its operation only in its available time
period, and does not have any response from its neighbors in its blackout time. The start times of this blackout
period were randomly assigned to each peer. Figure 3 shows the average delays for stream retrieval with three
different algorithms. Again, these statistics are gathered in one of peers in the community, and the rest of the
peers showed a similar performance.



0

10

20

30

40

50

60

70

80

90

1 2 3 4

Peer Availability (1:0.6, 2:0.8, 3:0.9, 4:1.0)

A
ve

ra
g

e 
D

el
ay

 (
m

s)

ORIGIN

APPROX

LRU

Figure 3. Effect of Peer Availability on Cache Performance

Figure 3 shows how our cache replacement algorithm is tolerant to the peer up/down event. Again, the
LRU algorithm shows the worst performance in this scenario, because it has a very diverse range of duplications
for each segment of streams; therefore, the segments with less availabilities (A(si)) are easily unreachable to
neighbor peers, which might cause longer delays for stream retrieval.

5. RELATED WORK

Different from traditional data caching, multimedia caching for streaming multimedia at the proxy was proposed
by different researchers.8,9,12 Segment-based caching was investigated and supported, particularly for multimedia
caching in different works.4,5,6,10,20 However, these were discussed only in the single cache scenario, therefore
lacking cooperative schemes such as replication and load balancing problems. Various interval-based caching
schemes were also introduced.14,15 However, these schemes are closer to the buffer management scheme at the
proxy, which do not have much consideration of requests for multiple streams by users.

The limitation of a single cache was addressed in several works.18,17 Distributed caching has been mostly
discussed in data caching including web caching, and have either hierarchical16 or flat structures.23 Recently
introduced P2P caching schemes24 mostly have flat structures. Different P2P caching schemes generally focuse
on search algorithms and replication techniques, but have little consideration for network distance and bottleneck
problem. Moreover, these work are primarily for web caching, but there is little work for multimedia caching in
a P2P overlay environment.1

Work by Kangasharju et al.11 and Yu et al.26 discusses the optimal duplication of data objects in P2P
communities and the minimum-cost replication problem, respectively, that might have similar configurations for
our caching scheme, however, they lack of consideration of multimedia streaming issues.

Streaming media workload has also been discussed by Chesire et al.21 and Tang et. al.22 Even though the
traces they gathered from multimedia servers help to understand the access behavior of multimedia clients, the
pattern of access/query in P2P overlay networks is not clearly investigated yet.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed our novel distributed cooperative caching algorithm for multimedia streaming, sup-
porting a large number of peers over peer-to-peer overlay networks. In order to facilitate multimedia streaming



and downloading service from servers, our caching scheme determines the appropriate availability of cached
stream segments in a cache community, determines the appropriate peers for cache replacement, and performs
bandwidth-aware and availability-aware cache replacement. In doing so, it achieves a small delay for stream
retrieval, stable bandwidth provisioning during retrieval session, and load balancing of clients’ requests among
peers.

In our future work, we will consider non-cooperative environments. In P2P overlay networks, where each
peer voluntarily joins or leaves freely, the definition of ’fairness’ is not well defined. In previous work without
consideration of each peer’s rational behavior, based on economic incentive, each peer is assumed to be altruistic
and willingly contributing its resources such as cache space and network bandwidth, to the community of peers.
However, this has been shown not to be true in current operating P2P networks for file sharing applications.2 In
host cases, more ore than half of the peers do not contribute their resources to the P2P community, which might
be contradictory to ordinary P2P configurations. Therefore, motivating peers to participate in a community
and guaranteeing the fairness based on their resource contribution is very important and is currently being
investigated.

REFERENCES
1. M. Tran and W. Tavanapong, “Overlay caching scheme for overlay networks,” in Proc. of SPIE/ACM Mul-

timedia Computing and Networking (MMCN 2003), 2003.
2. E. Adar and B. Huberman, “Free riding on GnuTella,” Technical Report, Xerox PARC, August 10, 2000,

First Monday.
3. V. Padmanabhan, H. Wang, and P. Chou, “Distributed streaming media content using cooperative network-

ing,” Microsoft Research Technical Report, MSR-TR-20002-37, 2002.
4. K. Wu, and P. Yu, and J. Wolf, “Segment-based proxy caching for multimedia streams,” in Proc. of Tenth

International World Wide Web Conference (WWW10), Hong Kong, May 1-5, 2001.
5. S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia streams,” in Proc. of IEEE INFO-

COM 1999, 1999.
6. W. Jeon and K. Nahrstedt, “Peer-to-peer multimedia caching and streaming service,” in Proc. of IEEE

International Confernce of Multimedia and Expo (ICME 2002), Laussane, Switzerland, August 2002.
7. T. Ng and H. Zhang, “Predicting Internet network distance with coordinates-based approaches,” in Proc. of

INFOCOM 2002, New York, June 2002.
8. M. Hofmann, T. Ng, K. Guo, S. Paul, and H. Zhang, “Caching technique for streaming multimedia over the

Internet,” in Bell Labs Technical Memorandum BL011345-990628-05TM, June 1999.
9. S. Acharya and B. Smith, “Middleman: A video caching proxy server,” in Proc. of International Workshop

on Network and Operating System Support for Digital Audio and Video (NOSSDAV 2000), 2000.
10. Y. Chae, K. Guo, M. Buddhikot, and S. Suri, “Silo, Rainbow, and Caching Token: Schemes for scalable,

fault tolerant streaming caching,’ in IEEE Journal on Selected Areas in Communications, 2002.
11. J. Kangasharju, K. Ross, and D. Turner, “Adaptive content management in structured P2P communities,”

Manuscript, 2002.
12. Z. Zhang, Y. Wang, D. Du, D. Su, “Video Staging: A proxy-server-based approach to end-to-end video

delivery over wide-area networks,” in IEEE/ACM Trans. on Networking, vol. 8, no. 4, August 2000.
13. E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design and implementation of a caching system for

streaming media over the Internet,” in Proc. of RTAS 2000, 2000.
14. A. Dan and D. Sitram, “Buffer management policy for an on-demand video server,” IBM Research Report

RC 19347, Yorktown Heights, NY, 1993.
15. A. Dan and D. Sitram, “A generalized interval caching policy for mixed interactive and long video workloads,”

in Proc. of SPIE/ACM Multimedia Computing and Networking (MMCN 2003), 2003.
16. C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz, “The Havest information discovery and

access system,” in Proc. of the Second World Wide Web Conference (WWW2), October 1994.
17. A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrel, “A hierarchical Internet object

cache,” in Proc. of USENIX Technical Conference, January 1996.



18. R. Malpani, J. Lorch, and D. Berger, “Making world wide web caching servers cooperate,” in Proc. of Fourth
International World Wide Web Conference (WWW4), December 1995.

19. P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in Proc. of USENIX Symposium on
Internet Technologies and Systems (USITS 1997), 1997.

20. S. Chen, B. Shen, S. Wee, and X. Zhang, “Investigating performance insights of segment-based proxy caching
of streaming media strategies,” in Proc. of SPIE/ACM Multimedia Computing and Networking (MMCN
2004), 2004.

21. M. Chesire, A. Wolman, G. Voelker, and H. Levy, “Measurement and analysis of a streaming media work-
load,” in em Proc. of the 3rd USENIX Symposium on Internet Technologies and Systems (USITS 2001),
March 2001.

22. W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “MediSyn: A synthetic streaming media service workload
generator,” in Proc. of the 13th International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV 2003), New York, NY, 2003.

23. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstructured peer-to-peer
networks,” in Proc. of the 16th ACM International Conference on Supercomputing, New York, USA, June
2002.

24. S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: A decentralized peer-to-peer web cache,” in em Proc. of
the 21st Annual ACM Symposium on Principles of Distributed Computing (PODC 2002), New York, NY,
2002.

25. I. Gupta, A. -M. Kermarrec, and A. Ganesh, “Efficient epidemic-style protocols for reliable and scalable
multicast,” in Proc. of Symposium on Reliable Distributed Systems (SRDS 2002), Osaka, Japan, 2000.

26. H. Yu and A. Vahdat, “Minimal replication cost for availability,” in Proc. of Annual ACM Symposium on
Principles of Distributed Computing (PODC 2002), New York, NY, 2002.


