
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2005

Techniques of data prefetching, replication, and consistency in Techniques of data prefetching, replication, and consistency in

the Internet the Internet

Xin Chen
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chen, Xin, "Techniques of data prefetching, replication, and consistency in the Internet" (2005).
Dissertations, Theses, and Masters Projects. Paper 1539623464.
https://dx.doi.org/doi:10.21220/s2-8xgb-z871

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-8xgb-z871
mailto:scholarworks@wm.edu

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TECHNIQUES OF DATA PREFETCHING, REPLICATION, AND

CONSISTENCY IN THE INTERNET

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Xin Chen

2005

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Xin Chen

Approved, April 2005

Xiaodong Zhang
.Dissertation Advisor

Phil Kearns

Evgenia Smirni

Haining Wang

Zhen Xiao
AT&T Research Lab

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission

To my parents and dear wife

iii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

A cknow ledgm ents x

List o f Tables xi

List o f F igures xii

A bstract xv

1 Introduction 2

1.1 Bandwidth vs. Latency .. 3

1.2 Caching, Replication and Prefetching in I n t e r n e t .. 5

1.3 Dissertation Objectives ... 7

1.4 Dissertation C ontributions.. 8

1.5 Dissertation O rg an iza tio n .. 10

2 Background o f Targeted Internet Techniques 12

2.1 Overview .. 12

2.2 State of Art of Web Prefetching... 12

2.2.1 Types of Web P refe tch in g ... 13

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.2 Conditions of Content P re fe tc h in g .. 15

2.2.3 Classifying Prefetching M e th o d s ... 17

2.2.4 Prefetching E ffe c ts ... 20

2.2.5 Other Variants of P refe tch ing ... 22

2.3 DNS Cache Consistency Maintenance .. . 24

2.3.1 DNS Dynamic U p d a te ... 24

2.3.2 DNS Performance ... 24

2.3.3 DNS Cache C onsistency ... 26

2.4 P2P Cache M anagem ent.. 28

2.4.1 Cache Management in Unstructured P2P S y s te m s 28

2.4.2 Publish/Subscibe Applications on P 2 P ... 29

2.4.3 Wide-Area File Systems on P 2 P ... 30

2.4.4 Web Applications on P 2 P .. 31

3 Significant Im provem ent o f W eb P refetch ing 32

3.1 In troduction ... 32

3.1.1 Solutions to Reduce Latencies.. 32

3.1.2 Prefetching in the Web ... 34

3.2 A Popularity-Based Prediction Model .. 35

3.2.1 O v e rv ie w .. 35

3.2.2 Simulation E nvironm ent... 36

3.2.3 Surfing Patterns .. 37

3.2.4 Three Prediction M odels... 41

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.5 Comparative P erfo rm ance.. 46

3.2.6 S u m m a ry .. 51

3.3 Adapting Web Prefetching to Dynamic Server L o a d s 51

3.3.1 O v e rv ie w .. 51

3.3.2 Prefetching Performance A nalysis.. 55

3.3.3 Capacity of A Web S e rv e r ... 57

3.3.4 Average Response T i m e .. 59

3.3.5 Adaptive Prefetching Algorithm ... 61

3.3.6 Prefetching Performance E v a lu a tio n ... 68

3.3.7 Im plem entation... . 71

3.3.8 S u m m a ry .. 78

3.4 Coordinated Data Prefetching by Utilizing Reference Information at Both

Proxy and Web Servers ... 79

3.4.1 O v e rv ie w .. 79

3.4.2 Evaluation M ethodology.. 80

3.4.3 Limits of Proxy-Based P re fe tc h in g .. 84

3.4.4 Limits of Server-Based P re fe tch in g .. 86

3.4.5 Coordinated Proxy-Server P re fe tc h in g 88

3.4.6 Performance E v a lu a tio n .. 95

3.4.7 S u m m a ry .. 98

3.5 Final Remarks ... 98

4 D N S C onsistency 100

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1 In troduction ... 100

4.2 DNS Dynamics M easu rem en t................................ 103

4.2.1 DNS Resource Record Classification .. 105

4.2.2 Domain Name Collection and G ro u p in g ... 106

4.2.3 TTLs’ D istribu tion .. 107

4.2.4 Measurement of Mapping Changes ... 110

4.3 DNS Cache Update Protocol (DNScup) .. 114

4.3.1 Design C h o ic e s .. 116

4.3.2 Lease Length Effectiveness .. 118

4.3.3 Dynamic Lease A lg o r ith m s .. 120

4.3.4 Working Procedure of D N S c u p ... 123

4.4 Performance E v a lu a tio n ... 125

4.4.1 Poisson Distribution V alida tion ... 126

4.4.2 Experimental Results ... 126

4.5 Prototype Im plem entation.. 128

4.5.1 Message F o rm a ts ... 128

4.5.2 Structure of DNScup P ro to ty p e ... 129

4.5.3 Secure D N S cup .. 130

4.5.4 Preliminary Results ... 131

4.6 S u m m a ry ... 133

5 P 2P C ache M anagem ent in Internet 135

5.1 In troduction .. 135

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.2 The Base of SCOPE P ro to c o l.. 138

5.2.1 O v e rv ie w .. 139

5.2.2 Partitioning Identifier S pace ... 139

5.2.3 Building Replica-Partition-Trees (R P T s) .. 141

5.2.4 Load B alancing .. 144

5.3 Operation A lg o r ith m s .. 145

5.3.1 Subscribe/Unsubscribe... 145

5.3.2 Update ... 149

5.4 Maintenance and Recovery .. 150

5.4.1 Node Jo in ing /L eav ing ... 150

5.4.2 Node F a i l u r e ... 152

5.5 Performance E v a lu a tio n ... 153

5.5.1 Structure S ca lab ility .. 154

5.5.2 Operation E ffec tiveness.. 155

5.5.3 Maintenance Cost ... 158

5.5.4 Fault T olerance.. 160

5.6 Design A lternatives... 161

5.7 S u m m a ry ... 162

6 C onclusion and Future W ork 163

6.1 Existing P r o b le m s .. 163

6.2 C on tribu tions .. 164

6.3 Future Work .. 166

viii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography 168

V ita 177

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Xiaodong Zhang, for
his guidance throughout my years at William and Mary. He is a valuable mentor for both
powerful visions and technical depths, and a generous friend for help and care anytime
necessary. He has provided us with a first-class research environment where I am growing
and becoming m ature as a researcher. I am extremely fortunate to have Xiaodong be my
advisor in this critical period of my career development.

I would like to thank my other committee members: Phil Kearns, Evgenia Smirni,
Haining Wang, and Zhen Xiao for their constructive feedbacks and comments. I give my
special thanks to Haining who has made a lot of efforts in my final stage of research. I am
also grateful to Professor Bill Bynum for reading many of my papers with critical comments
and corrections, and our department administrative director Vanassa Godwin for her advice
and help during my PhD study.

The High Performance Computing and Software Lab where I am working has established
its tradition and culture of excellence. It has successfully and continuously attracted a
large number of talented and hardworking young fellows. I have had many memorable
experiences by overlapping with several of them: Songqing Chen, Lei Guo, Song Jiang,
Shansi Ren, Li Xiao, Zhao Zhang, and Zhichun Zhu. I have enjoyed tremendously our
happiness, inspirations, and friendships.

Finally, I want to express my deepest appreciations to my family. My parents and sister
have provided support over all these years. Especially, I would like to thank my wife, Qi for
her persistent support and encouragement during my Ph.D. study at the College of William
and Mary.

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

1.1 Network Bandwidth vs. L atency ... 4

3.1 Input Parameters for Web Service M odels... 57

3.2 Characterizations of Different Level (Table Level Demand) 66

3.3 Relationships Among Accuracy, Hit Ratio and Threshold (Table T, A, and P) . . 67

3.4 CPU Utilization Comparison among Different Thresholds.. 69

3.5 Response Time Comparisons Among Different Thresholds.. 70

3.6 Merged Boeing Proxy Traces of 5 Days ... 80

3.7 Selected Scaled-Down Proxy T ra c e s ... 80

3.8 Selected Pseudo Server T ra c e s .. 82

3.9 Global Pseudo Server T races.. 82

4.1 Measurement Parameters.. 108

4.2 Average Message Overhead of D N S cup ... 132

6.1 Dissertation Contributions... 165

xi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

1.1 Cache Hierarchy: Computer vs. In te rn e t ... 6

3.1 Popularity patterns in Web access sessions during day 79 of the WorldCup98 data set 39

3.2 URL popularity and access-session l e n g t h .. 41

3.3 Three prediction m o d e ls ... 42

3.4 The hit ratio for three PPM models with different th re s h o ld s 47

3.5 Traffic overhead comparisons of three models .. 49

3.6 Space needed measured by nodes .. 50

3.7 The queuing network model for Web services.. 56

3.8 The procedure of computing response time of one device.. 62

3.9 Request size d is tr ib u tio n s .. 65

3.10 The CPU utilization and the service demands of level 2 requests 66

3.11 The request distributions for each level with different thresholds 68

3.12 CPU response time comparisons among different th re s h o ld s 70

3.13 The experimental en v iro n m en t... 74

3.14 The server throughput and request arrival r a t e s .. 76

3.15 Server resource utilizations .. 76

xii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.16 Server response t i m e .. 78

3.17 Effectiveness of proxy-based p re fe tc h in g .. 85

3.18 Effectiveness of server-based p re fe tc h in g .. 87

3.19 Effectiveness of prefetching without co o rd in a tio n .. 89

3.20 Coordinated and server-based prefetching performance com parisons............. 91

3.21 The coordinated proxy-server prefetching system design ... 93

3.22 Hit ratios and byte hit ratios com parisons... 95

3.23 Global Web server load co m p ariso n s... 96

3.24 Global and local network traffic comparisons .. 97

4.1 The regular domain name distribution with the number of requests in each groups 106

4.2 TTL distributions: (a) All kinds of domain names; (b) . com domain names.............. 108

4.3 The DN2IP mapping change for each class with different TTLs................................. 109

4.4 CDN and Dyn domain change frequencies with different TTLs.................................. 112

4.5 The change frequencies of .com domains with different popularity and TTLs. . . . 113

4.6 The resolving latencies for each class with different TTLs.. 114

4.7 The space and message changes for fixed length lease schemes................................... 115

4.8 Example: dynamic lease with different constrains.. 117

4.9 DNScup Procedure... 122

4.10 DNScup Cache Reference C o u n te r ... 123

4.11 DNScup Server Lease Threshold .. 124

4.12 The mean of CV of query interval in DNS traces... 124

4.13 Storage requirements of fixed lease and dynamic lease 125

xiii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.14 Query rates of fixed lease and dynamic l e a s ... 125

4.15 The Characteristic Fields of a CACHE-UPDATE Message H eader................................ 129

4.16 The Structure of DNScup P ro to type.. 129

4.17 DNScup update process.. 130

4.18 DNScup Implementation Testbed ... 131

4.19 DNS nameserver processing overhead: DNScup vs T T L ... 132

5.1 Identifier space p a r ti tio n in g .. 139

5.2 Key 5 (101) representative nodes at different levels of p a rtitio n s 141

5.3 Redundant leaf nodes elimination in R P T .. 142

5.4 Redundant intermediate nodes elimination in R P T ... 143

5.5 Node 2 (010) subscribe Key 5 (101) in a 3-bit identifier space.................................. 146

5.6 Level index changes after node 3 joins in a 3-bit space.. 146

5.7 Changes of R PT with a node jo in in g .. 151

5.8 Storage overhead and RPT h e ig h ts ... 154

5.9 Number of records kept by each n o d e .. 156

5.10 Subscribe operation path length c o m p ariso n s ... 157

5.11 Distributions of messages sent/received by each n o d e 158

5.12 Maintenance o v e rh e a d .. 159

5.13 Effectiveness of u p d a te operations w ith node failure in a 104-node netw ork . 159

xiv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

Internet has become a major infrastructure for information sharing in our daily life, and
indispensable to critical and large applications in industry, government, business, and educa
tion. Internet bandwidth (or the network speed of transferring data) has been dramatically
increased, however, the latency time (or the delay of physically accessing data) has been
reduced in a much slower pace. The rich bandwidth and lagging latency can be effectively
coped with in Internet systems by three data management techniques: caching, replication,
and prefetching. The focus of this dissertation is to address the latency problem in Internet
by utilizing the rich bandwidth and large storage capacity for efficiently prefetching data to
significantly improve the Web content caching performance, by proposing and implement
ing scalable data consistency maintenance methods to handle Internet address caching in
distributed name systems (DNS), and to handle massive data replications in peer-to-peer
systems. While the DNS service is critical in Internet, peer-to-peer data sharing is being
accepted as an im portant activity in Internet.

We have made three contributions in developing prefetching techniques. First, we
have proposed an efficient data structure for maintaining Web access information, called
popularity-based Prediction by Partial Matching (PB-PPM), where data are placed and
replaced guided by popularity information of Web accesses, thus only im portant and useful
information is stored. PB-PPM greatly reduces the required storage space, and improves the
prediction accuracy. Second, a major weakness in existing Web servers is that prefetching
activities are scheduled independently of dynamically changing server workloads. W ithout
a proper control and coordination between the two kinds of activities, prefetching can neg
atively affect the Web services and degrade the Web access performance. To address this
problem, we have developed a queuing model to characterize the interactions. Guided by
the model, we have designed a coordination scheme tha t dynamically adjusts the prefetch
ing aggressiveness in Web Servers. This scheme not only prevents the Web servers from
being overloaded, but it can also minimize the average server response time. Finally, we
have proposed a scheme tha t effectively coordinates the sharing of access information for
both proxy and Web servers. W ith the support of this scheme, the accuracy of prefetching
decisions is significantly improved.

Regarding data consistency support for Internet caching and data replications, we have
conducted three significant studies. First, we have developed a consistency support tech
nique to maintain the data consistency among the replicas in structured P2P networks.
Based on Pastry, an existing and popular P2P system, we have implemented this scheme,
and show that it can effectively maintain consistency while prevent hot-spot and node-failure
problems. Second, we have designed and implemented a DNS cache update protocol, called
DNScup, to provide strong consistency for dom ain/IP mappings. Finally, we have developed
a dynamic lease scheme to timely update the replicas in Internet.

xv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TECHNIQUES OF DATA PREFETCHING, REPLICATION, AND

CONSISTENCY IN THE INTERNET

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

Data movements between two locations in any part of computer systems are increasingly

more critical, expensive, and difficult than computing. Representative examples of the data

movement include data flow within CPU via pipeline, between CPU and caches via on-chip

and off-chip data links, between caches and DRAM via memory buses, between DRAM and

disks via I/O buses, and between a machine to another machine via Internet or wireless

connections. Two basic operations are involved for a data movement: (1) transferring data

between the two points, for which the data link bandwidth (Bytes/second) determines the

transferring speed; (2) the data access time (for physically reading and writing the data),

which is called the latency. In the last 20 years, the bandwidths for different types of data

links have been dramatically increased, however, the latency time has been reduced in a

much slower pace. It is impossible to solve this imbalance problem in computer systems,

but the rich bandwidth and lagging latency can be coped in our designs and implementation

by three techniques: caching, replication, and prediction anywhere necessary in computer

and distributed systems [96].

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The advance of Internet enabled millions of people to access online information and

entertainment. For many users, Internet has been a part of their daily life. It has been shown

that Internet usage is increased exponentially and this trend appears to be continuing. While

advanced networking and computer techniques facilitate the services for clients, the demand

on fast response time continues. Even with the rapid increase of network bandwidth, latency

remains im portant for interactive applications across the network. It is critical to keep client-

perceived latency low and predictable.

The focus of this dissertation is to address the latency problem in Internet by utiliz

ing the rich bandwidth for accurately prefetching data to significantly improve the Web

caching performance, by proposing and implementing data scalable consistency mainte

nance methods to handle large scale data replications in distributed name systems (DNS)

and in peer-to-peer systems.

1.1 Bandwidth vs. Latency

We have observed fast network bandwidth increased for a couple of years and it is expected

to increase in a even faster pace in the next decades. The table 1.1 shows the changes of

bandwidth in the last ten years.

The network latency has been reduced significantly in recent years, partially due to

the increment of network bandwidth. However, the latency reduction does not catch up

the bandwidth increase. As Table 1.1 shows, from IEEE standard 802.3 to 803.3ae, the

bandwidth is increased 1000 times from 10 Mb to 10000 Mb while the latency is reduced

by 94% from 3000 msec to 190 msec. Similar phenomena has been observed in other fields

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

in computer science, such as microprocessors, memory and disks.

T ab le 1.1: Network Bandwidth vs. Latency

LAN Ethernet Fast Ethernet Gigabit Ethernet 10 Gigabit Ethernet
IEEE Standard 802.3 802.3u 802.3ab 802.3ae

Year 1978 1995 1999 2003
Bandwidth (Mb/s) 10 100 1000 10000

Latency (msec) 3000 500 340 190

Three major techniques have been developed to cope with the lagged-latency problem.

• Caching: Caches were first attached with processors to overcome long access latency

to memory. Caching technique exploits the reference locality by setting a small fast

storage to capture most accesses. It has been proved tha t caching is a simple but

very effective way to reduce the latency. Nowadays caches are widely used all over

Internet, including all im portant applications such as DNS, Web, routing, and media

streaming.

• R eplication: Making multiple copies becomes an affordable way to reduce latency,

thanks to the increased capacity and decreased price of storage. Most ISPs (Internet

Service Providers) use multiple sites spreading across the country to improve the

latency to users. Another kind of popular service providers, CDN providers, also

relies on replication to improve the quality-of-service for their customers.

• Prediction: Prediction aggressively guesses the needs in advance and preloads the

data for future use. This technique has been deployed successfully in microproces

sor’s design and memory management. It is also proposed to be used in Internet to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

improve Web accesses. Related algorithms have been designed to direct the content

and location selections for CDN and ISP providers.

1.2 Caching, Replication and Prefetching in Internet

The caching, replication and prefetching techniques have been widely deployed in many

fields in computer science. Caches are used to temporarily store commonly used items

to provide faster response than tha t from data sources. For example, modern computer

systems take a hierarchical structure to reduce data access latency. High speed memory in

microprocessor chips, main memory, local disks and network file systems are coordinated

with each other, buffering data at each level for the next. In order to apply caching,

replication and prefetching to effectively improve data access latency, two conditions should

be satisfied: the cache is faster than the source and the data access patterns are predictable.

D ata access patterns have been observed in many computer applications, including both

space locality and temporal locality.

The three techniques above are particularly attractive for Internet due to high latencies

among different hosts. For example, World Wide Web, as one major Internet application,

heavily relies on caching for high performance from client-side to server-side. Similarly,

we still can regard the cache system as a hierarchical structure, where the browsers work

as the caches of the proxies, the proxies as the caches of the servers, and the server lo

cal memory/disks as the caches for the server back-ends. Figure 1.1 illustrates the cache

structures in both computer systems and Internet. In the last decade, caching, replication

and prefetching techniques have been widely deployed in Internet. Nowadays caches are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

im portant components in Internet infrastructure.

CPU/Register Client

Browser CacheHigh Speed Mem

Proxy CacheMain Mem

Server CacheDisk Buffer

ServerDisk

F ig u re 1.1: Cache Hierarchy: Computer vs. Internet

Different from traditional usages, the deployments of the three techniques meet new

challenges in Internet.

• First of all, Internet caching is less effective than computer caching, because of un

cacheable objects and poor data locality. For example, around 25% Web responses

are uncacheable due to dynamic URLs, uncacheable H TTP methods, and uncacheable

H TTP headers. The spatial locality in Web is poor since the number of possible links

in one Web page can be large while most clients only visit a small portion of them.

The temporal locality in Web is also poor for both browser caches and proxy caches

and only 50% Web objects will be accessed again by the same client.

• Second, the data in Internet is dynamically changed. Cache consistency should be

considered to ensure the correctness of the replicated data all over the Internet. For

example, the durations to change 50% Web objects are 11 days and 4 months for .com

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7

and .gov domains respectively [37]; 25% new links are created every week and around

80% of the Web links are replaced with new ones after one year [89].

• Third, peer-to-peer structure becomes a promising component co-existing with the

traditional client-server model. It is estimated tha t more than 50% traffic in consumer

ISPs is from P2P applications. While caching is critical to improve the performance

of P2P systems, caches in P2P should be managed in a distributed way and be able

to provide fault-tolerance.

1.3 D issertation O bjectives

The goals of this dissertation are to improve the performance and reliability of Internet by

developing methods for data prefetching, Internet cache consistency, new caching schemes

in newly-emerged P2P structures. Specifically,

1. We build an efficient popularity-aware data structure for accurate Internet prefetching.

2. We coordinate the service processes and prefetching processes in a Web server to

maximize the productivity.

3. We also coordinate the cached information in Web servers and in proxy servers to

fully utilize the available prediction hints and the idle bandwidth.

4. We develop an efficient data consistency protocol and its implementation for Domain

Name Systems (DNS), a critical caching facility in Internet infrastructure.

5. We develop a scalable data consistency protocol and its implementation for structured

P2P systems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8

Our approach is both experimental and modeling oriented. We analyze Internet traces to

determine the potential effects of Web prefetching in the Web caching systems. To evaluate

the negative effects of caching inconsistency, we conduct extensive measurement on the live

Internet. Our proposed methods have been evaluated by both trace-driven simulation and

measurement in Internet.

1.4 D issertation Contributions

This dissertation makes several major contributions in three themes, namely Web prefetch

ing, DNS cache consistency maintenance, and P2P caching management.

W eb P refetch ing Techniques

• PB-PPM: Popularity-Based Prediction By Partial Matching

We proposed to build a compact and effective tree-based structure PB-PPM by com

bining the merits of both access sequences and objects’ popularities. Compared with

traditional PPM methods, it can largely reduce the space overhead and improve the

prediction accuracy.

• Server-Side Adaptive Prefetching Aggressiveness Control

We developed a new method to adaptively adjust the prefetching activities to the

workloads on both server and networks. Based on measuring the server and net

work utilization, a Web server decides the prefetching aggressiveness and changes the

prefetching thresholds dynamically. The adjustment process is performed periodically

to minimize the client perceived latency at real time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Coordinated Web Prefetching Scheme

We designed a coordinated prefetching scheme to balance the load of Web prefetching

on Web servers and proxies. Each of them utilizes its local Web access information to

make predictions. In addition to the improvements on prediction accuracy, proxies can

reduce the computation overhead on Web servers and the communication overhead.

D N S Cache C onsistency

The consistency issue in Web has been investigated in recent years. However, as a major

component in Internet, the consistency of DNS caching is ignored improperly. The current

TTL-based scheme was designed 20 years ago. W ith the development of Internet techniques,

the usage of DNS has been changed dramatically. Through our extensive measurement

experiments, we have observed the mappings between domain names and IP addresses

change frequently. In order to make the Internet work efficiently, the inconsistency of DNS

caching is not tolerable even for a short period. We proposed DNScup (DNS Cache Update

Protocol) to provide a strong cache consistency mechanism besides the traditional TTL-

based approach.

P 2P Cache M anagem ent

Peer-to-Peer has been an inevitable model in distributed computing systems. Although

current P2P systems facilitate static file sharing, newly-developed applications demand that

P2P systems be able to manage dynamically-changing files. Maintaining consistency be

tween frequently-updated files and their replicas is a fundamental reliability requirement

for a P2P system. We presented SCOPE , a structured P2P system supporting consistency

among a large number of replicas. By building a replica-partition-tree (RPT) for each key,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

SCOPE keeps track of the locations of replicas and then propagates update notifications.

Our theoretical analyses and experimental results demonstrate tha t SCOPE can effectively

maintain replica consistency while preventing hot-spot and node-failure problems. Its effi

ciency in maintenance and failure-recovery is particularly attractive to the deployment of

large-scale P2P systems.

1.5 D issertation Organization

The remaining chapters are organized as follows. The next chapter of this thesis surveys

work from a number of related fields.

Chapter 3 examines the prefetching methods in details. We first introduce the PB-

PPM data structure for prefetching prediction. Then we present the server-side prefetching

aggressiveness control based on queuing theory. After that, we consider the coordinations

among different Web components (browser, proxy and server).

Chapter 4 investigates the data consistency issues. In this part, we first analyze the

tradeoffs between the server-side overhead and the client-perceived latency and deduce

adaptive lease algorithm. Then we focus on DNS caching system to validate the importance

of strong cache consistency and the effectiveness of adaptive lease. At last, we also discuss

the adaptive lease implementations on Bind, the most popular DNS server.

C h ap te r 5 considers th e effective cache m anagem ent in s tru c tu re d P 2 P system . B ased

on DHT, we design a Scalable Consistency maintenance scheme in structured PEer-to-

peer (SCOPE). We first describe the replica-partition-tree (RPT) structure, which is used

to manage the cache locations. Then we present SCOPE maintenance operations and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

recovery procedures. We evaluate SCOPE protocol by simulation experiments at the end

of this section.

Chapter 6 summarizes our work in Internet latency reduction techniques and discusses

their future directions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Background of Targeted Internet

Techniques

2.1 Overview

As general solutions for latency reduction, caching, replication and prefetching have been

widely deployed in Internet in different places. In this chapter, we will briefly introduce their

current developments, especially Web prefetching, DNS cache consistency maintenance, and

P2P caching management.

2.2 State of Art o f Web Prefetching

A typical Web visit will go through several basic stages: DNS resolution, TCP connection

establishment, and H TTP request and response. Prefetching can be applied in advance in

all these stages.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

2.2.1 T yp es o f W eb P refetch in g

DNS Prefetching

Before establishing a connection to a Web server, a client must translate the host portion

of the requested URL into an IP address. The browser first sends a DNS query to a local

name server. The name server will reply directly if it has the answer in its cache. Otherwise,

it communicates with other name servers to obtain the address. A name server caches an

address for TTL (Time To Live) seconds. The TTL parameter for a particular host is

determined by its system administrators, and most TTLs are 24 hours. Waiting for a

response from the local DNS server introduces a delay in satisfying the user’s request. To

avoid this delay, the Web client can initiate the name-to-address translation of the user’s

request in advance.

A study of the prefetching IP address technique is given in [41, 40]. Prefetching the

Web server’s IP address reduces user-perceived latency at the risk of imposing additional

load on the network and the DNS servers. If a large proportion of Web clients perform DNS

prefetching, this can result in a substantial increase in the number of queries handled by

DNS servers on the Internet.

T C P C onnection Prefetching

Before the Web clients send H TTP requests to the server, TC P connections should

be estab lished first. T h e T C P connection-estab lishm ent tim e includes th e ro u n d -tr ip tim e

(RTT) over the network, which is the time it takes for a small packet to travel from the

client to the server and then back to the client, retransmissions due to timeouts, and any

other processing needed to facilitate the connection. The router is in a cold state if it is in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

the path of the first IP datagram traversing to a destination. The cold router effect also

delays the first RTT of the datagrams. Each router along the way determines the IP address

of the next hop and translates the IP address to a wire-level address (MAC address). These

operations may require communications with other routers. The results of this processing

may be cached by a router for a period of time, to speed up routing of subsequent IP

datagrams to the same destination. Therefore, it is conceivable tha t the first RTT of the

datagrams corresponding to the SYN segments will be longer than subsequent ones.

Opening a TC P connection requires a three-way handshake between the client and the

server. The latency for this step of Web transfer depends on the round-trip delays between

the two hosts, as well as the queuing delay at the server and additional delays to recover

from packet loss. To hide these delays from the user, the Web client can establish a TCP

connection to the server in advance of the user’s request [43, 40].

Content Prefetching

After establishing a TCP connection, a Web client issues a H TTP request to the Web

server. The latency in receiving the HTTP response is determined by a variety of factors,

including the response generation time at the server, the size of the response message, and

the bandwidth available from the server to the client. The client can hide the delay from

the user by issuing the HTTP requests in advance and caching the responses.

Users usually browse the Web by following hyperlinks from one Web page to another.

Hyperlinks on a page often refer to pages stored in the same server. Typically, there is a

pause after each page is loaded, while the user reads the displayed material. This time can

be used by the client to prefetch files tha t are likely to be accessed soon, thereby avoiding

retrieval latency if those files are actually requested. The retrieval latency has not actually

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

been reduced; it has just been overlapped with the time the user spends in reading, thereby

decreasing the access time.

We will focus on content prefetching methods tha t have been studied widely.

2.2.2 C on d ition s o f C ontent P refetch in g

In order to make an efficient prefetching to reduce the latency, three conditions are required.

First, the documents are possibly prefetched before they are requested. Normally a predic

tion is made based on an access history. Second, the prefetched documents are fresh when

they are requested. Third, there should be a sufficient time interval for prefetching before

they are requested.

History Information for Prefetching

Usually, the criteria for deciding whether a Web page should be prefetched can be

decided by history information statistically. By calculating the interdependencies of Web

page accesses periodically based on the most recent access logs, the server/client can group

Web pages with interdependencies higher than a certain threshold for prefetching. The

following two predictions can not be made: (1) the initial request, and (2) any sequence of

requests tha t have not been observed before.

Expiration Time

Since Web data can expire before it is demanded, prefetching too far in advance is also

a problem. Prefetching can be harmful if prefetched content expires before it is demanded.

A study [56] on a trace gathered at AT&T Labs over several months in 1999 shows tha t

the most common expiration time is zero (60%) of the documents. A zero expiration time

does not seem to encourage prefetching because prefetched content will expire once it is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

demanded. However, the meaning of a zero expiration time in practice is “use only once” .

The median nonzero expiration time is more than one day, far exceeding the average

inter-reference time of 52 seconds. This implies a high-performance potential for prefetching.

The median expiration time is large and many pages have not been modified in months.

T im e for P re fe tc h in g

The thinking time between requests is used by prefetching. Prefetching results can be

imperfect if a page is demanded during the time between the prediction of its need and its

arrival. In such a case prefetching might still lower the observed latency, but generally such

partial success is counted as a prefetching failure.

When one page refers to another, the time available to the prefetching is defined as: the

time between (1) the end of the transfer of the requests, and (2) the beginning of the transfer

of the referee. Studies [56] show the median inter-reference time between two HTML pages

is 52 seconds, while the inter-reference time between a HTML page and an image page is

2.25 seconds. However, a significant fraction of images (32.3%) are requested within one

second or less of the referencing HTML page.

By calculating the difference between the estimated end-of-transmission of one request

and the start of the next request from the same user, some researchers [61] computed the

time for prefetching. Based on the studies on three proxy traces (University of California

at Berkeley, Digital Equipment Corporation, and University of Pisa), an inherent idle time

between user requests is found. About 40% of the requests are preceded by 2 to 128 seconds

of idle time, which is plenty for prefetching.

The results of the two studies are consistent, which means there is plenty time to be

used for prefetching. Furthermore, dividing the “total page size” (the size of a HTML page

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

plus all its embedded images) by the inter-reference time, [56] estimates the bandwidth

needed to prefetch one page. The median bandwidth is around 5 KBbyte/s, even within

the capacity of a dial-up modem, implying tha t several pages can be prefetched considering

bandwidth constraints.

2.2.3 C lassifying P refetch in g M ethod s

Based on the source of the access history used for predictions, we can divide prefetching

methods into three categories.

Client-Based Prefetching

The simplest way to do prefetching is based on the client’s own access history. Client-

based prefetching has gained a lot of attention because of its potential performance benefits

without changing Web servers.

As an example of client-based non-greedy prefetching, WebCompanion [75] prefetches

documents while the user views the current document. WebCompanion uses the following

two principles to make prefetching decisions: (1) If an embedded hyperlink is associated

with a document tha t can be fetched very quickly, there is no need to prefetch it. (2) If the

document takes a long time to load, prefetch this document as early as possible. The agent

employs a prefetching strategy based on estimated round-trip times for Web resources. It

prefetches only selected documents with long retrieval latencies and with a relatively low

resource usage during prefetching. WebCompanion also incorporates DNS caching.

Proxy-Based Prefetching

Another way is to make predictions based on the information collected by the proxy.

Two types of prefetching are in this category: internal prefetching and external prefetching.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

In internal prefetching, there will be no communications between Web servers and proxies.

The proxy, being exposed to the Web accessed by multiple users, can often predict

what documents a user might access next. If the documents are cached in the proxy, the

proxy can utilize the idle periods to push them to the user, or to have the browser pull

them. Since the proxy only initiates prefetches for documents in its cache, there is no extra

Internet traffic.

In [61], using traces of modem users’ Web accesses, the benefits of each technique and

their combinations are investigated. Merely increasing the browser cache size would only

reduce client latency by 4%. Combining it with a data compression technique reduces

client latency by 14.6%. Perfect prefetching and realistic prefetching combined with a

large browser cache and data compression reduce client latency by up to 28.6% and 23.4%,

respectively. The results demonstrate prefetching is effective since the modem finks to the

users often have idle periods between two requests from the same client.

In external prefetching, the proxy will prefetch the possible files to be accessed by

clients from the server. Wcol [64] is a proxy software tha t prefetches documents from Web

servers. It parses HTML files and prefetches embedded hyperlinks. Bandwidth usage can

be controlled by limiting the number of hyperlinks to be prefetched.

Server-Based Prefetching

Compared with the previous two schemes, in this scheme the information from the

server can be more accurate since the Web server has significantly more history information

relative to the proxy and the client.

Generally, the server predicts the likelihood tha t a particular Web page will be accessed

next and delivers this information to the client. The contacted client then decides whether

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

or not to prefetch the page. The rationale of this approach is as follows: the server has the

opportunity-to observe the access histories from several clients and use this information to

make predictions; the client is in the best position to decide if it should prefetch files based

on its cache status and communication costs. Several possible implementations have been

proposed [44, 56, 83, 91] to investigate the potential performance of server-based prefetching

schemes. The server-based prefetching methods can be roughly divided into two kinds shown

below, PUSH and PULL.

The basic idea of PUSH is tha t servers (and proxies) publish their most-accessed pages

since it is easy for Web servers to generate new Web pages. In the study [83], by using

trace-driven simulation with traces from 5 sites, the number of most-accessed pages was

investigated. As more pages are prefetched, the percentage of prefetched pages tha t are

eventually used rises quickly and levels off at between 3% and 23%, depending on the trace.

The method proposed in [19, 55] is tha t a server respond to a client’s request by sending, in

addition to the requested documents, a number of other documents tha t may be requested

by that client in the near future.

The operation of Top-10 prefetching [83] can be conducted in a client-proxy-server frame

work. Prefetching occurs both at the client and the proxy level. User-level clients prefetch

from proxies to match the needs of particular users. Proxies are clients to various popular

servers from which they prefetch and cache documents to be served to their own clients. In

any case, Top-10 prefetching may be transparent to the user and may cooperate with the

caching mechanisms of the browser or the proxy.

In PULL-based solution, servers provide hints for clients (or proxies), and clients decide

to prefetch the documents or not. In the work of [91], a server maintains per-client usage

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20

statistics and determines possibilities through a graph-based Markov model. When a GET

is received, the server calculates a list of its pages tha t are likely to be requested in the

near future, using some probability threshold. This list is appended to the GET response,

and the client decides whether or not to actually prefetch. Another H TTP extension allows

the client to indicate to the server tha t a certain GET is a prefetch, so tha t the server

will not recursively compute possibilities for the prefetched page. Trace-driven simulations

show tha t average access time can be reduced by approximately 40%, at the cost of much

increased traffic (70%). Another result suggests tha t prefetching is more beneficial than

increasing bandwidth. For example, when prefetching causes a 20% increase in traffic, the

latency is lower than it would be without prefetching but demands 20% extra bandwidth.

2 .2 .4 P refetch in g E ffects

Latency Reduction Bounds

Prefetching has a significant potential to reduce the latency perceived by the clients.

Some researchers explored potential improvements in the WWW tha t can be achieved by

using prefetching.

In the study of [77], total Web access is divided into internal latencies in local-area

networks and external latencies in global-area networks. Based on the studies on Digital

Equipment Corporation proxy traces, external latencies account for 88% of the total amount

of latency. Given options for caching and prefetching, four different methods were examined:

• passive proxy caching with unlimited storage;

• an active cache with local prefetching and unlimited storage;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

• server hint-based prefetching alone; and

• an active cache with server hint-based prefetching and unlimited storage.

The upper bounds for each model are set by basing the simulations on some best-

case assumptions. Each method works with full knowledge of future events. For passive

caching, a previously accessed document tha t has not been changed is still available from

the cache. For local prefetching, since a document must be seen at least once before it

can be predicted for prefetching, it is assumed tha t only the first access to a document

will not be prefetched, and tha t all subsequent accesses will be successfully prefetched. For

server hint-based prefetching, prefetching can only begin after the client’s first contact with

tha t server. In this first-contact model, upon the first contact from a client, a proxy will

simultaneously prefetch all of tha t client’s future requests from tha t server.

For the workload studied, passive caching, with an unlimited cache storage, can reduce

latency by approximately 26%. In contrast, prefetching based on local information gives

an approximately 41% reduction in latency. Adding server hints increased this bound to

approximately 57%.

Prefetching Effects on Networks

Prefetching, in general, increases the burstiness of individual sources, leading to in

creased average queue sizes in network switches. However, according to the studies in

[48], by controlling the transport rate, applications employing prefetching can significantly

improve network performance. By using a simple transport rate control mechanism, a

prefetching application can modify its behavior from a distinctly O N /O FF entity to one

whose data transfer rate changes less abruptly, while still delivering all the data in a user’s

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

22

actual requests.

Rate-controlled prefetching is based on the observation tha t when prefetching a docu

ment it is not necessary to transfer it at the maximum rate; rather, it is only necessary

to transfer it at a rate sufficient to deliver it in advance of the user’s request. Thus rate-

controlled prefetching lowers the transfer rate during prefetching to a level such tha t the

prefetch is initiated as early as possible, while the last byte of the document is delivered

just before the document is requested.

The rate-controlled prefetching scheme is able to reduce the mean queue size signifi

cantly. This scheme always improves the performance of prefetching, usually by a factor of

at least two, and usually fairly consistently over a range of prefetching hit rates.

Experimental results suggest tha t even a relatively inaccurate rate-controlled prefetching

can be effective to reduce network-induced delays, and reduce the variability of such delays.

2.2.5 O ther V ariants o f P refetch in g

Although the principles of prefetching on the Web are similar for all proposed methods,

they are different in implementations and applications.

R eal-T im e P rediction

In most proposed schemes, the predictor tree is widely used to record the history in

formation. However, in [56] only a number of most recent accesses of the current page are

used to make real-time predictions. In this scheme, clients send usage reports to servers

and the server accumulates the information about same page from all clients. When a client

request the page, a usage profile will also be returned to the client and it makes prefetching

decisions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23

Prefetching for M ultim edia on the Internet

Prefetching has been proposed to meet the QoS requirements of multimedia data on the

Web [71, 74], Unlike previous techniques, the partial prefetch scheme computes the size of

the lead segment optimally, and only a minimum but sufficient amount of data is prefetched

and buffered. The remaining segment is fetched if and only if the media is traversed. Thus,

it delivers content without any increase in perceived response delay.

Prediction o f H TTP Requests for Dynamic Content

Based on access history, it is also possible to predict the H TTP requests for dynamically

generated contents. In [109], path profiles are constructed for describing H TTP request

behaviors, which are sets of pairs, containing paths and their frequency during the test

period. Using path profiles, the requests for dynamic contents can be predicted with a high

probability. If they are pre-generated by the server using its CPU idle cycles, the processing

time of a significant subset of H TTP transactions can be reduced.

Search Engines

The ability to accurately predict user surfing patterns can lead to improvements in

Internet searching applications. For example, Google models [24] a client’s random walks

over the entire WWW link space. The distribution of the visits is obtained from this

model. This distribution is considered for ranking the results of a text-based search engine.

Following this reasoning principle, researchers believe that surfing models with a higher

predictive accuracy would yield high-quality search engines since the models provide a

more realistic view of practical usage.

Recommender System s

As an im p o rtan t com ponen t for personalization solutions, recom m ender system s [65]

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

have become popular, and are commercially used in high-profile Web sites such as www. amazon. com.

They predict items for clients based on the recommendations or the access history of other

clients. Some other tools have become available to suggest related pages to Web surfers.

The “W hat’s Related” tool button on the Netscape browser developed in [9], provides rec

ommendations based on possibly related links.

2.3 D NS Cache Consistency M aintenance

2.3.1 D N S D ynam ic U p d a te

While DNS caching does not support strong consistency, the DNS Dynamic Update mech

anism [103] maintains a strong consistency between the primary master DNS name server

of a zone and its slave DNS name servers within the same zone. The DNS Dynamic Update

mechanism [103] and its enhanced secure version [119] have been proposed and implemented

to support dynamic addition and deletion of DNS resource records within a zone, because

of the widespread use of DHCP. According to the DNS Dynamic Update protocol, once

the primary master has processed dynamic updates, its slaves will get a new copy of them

via zone transfers. People have utilized the DNS Dynamic Update protocol to achieve

end-to-end host mobility [112].

2 .3 .2 D N S P er fo rm a n ce

DNS performance at either root DNS servers [26, 52] or local DNS servers and their caching

effectiveness [72, 81, 120] have been studied in the past decade. Danzig et al. [52] measured

the DNS performance at one root server and three domain name servers. They identified

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

a number of bugs in DNS implementation, and these bugs and misconfigurations produced

the majority of DNS traffic. Brownlee et al. [26] gathered and analyzed DNS traffic at the

F root server. They found tha t several bugs identified by Danzig et al. still existed in

their measurements, and the wide deployment of negative caching would reduce the impact

caused by bugs and configuration errors. Observing a large number of abnormal DNS update

messages at the top of the DNS hierarchy, Broido et al. [25] discovered tha t most of them are

caused by default configurations in Microsoft DHCP/DNS servers. The load distribution,

availability and deployment patterns in local and authoritative DNS nameservers have been

characterized respectively in [93].

Jung et al. [72] measured the DNS performance at local DNS servers (MIT and KAIST)

and evaluated the effectiveness of DNS caching. They conducted a detailed analysis of

collected DNS traces and measured the client-perceived DNS performance. Based on trace-

driven simulations, they found tha t lowering the TTLs of type A record to a few hundred

seconds has little adverse effect on cache hit rates; and caching of NS records and protecting

a single name server from overload are crucial to the scalability of DNS. Instead of collect

ing data at a few client locations, Liston et al. [81] compared the DNS measurements at

many different sites, and investigated the degree to which they vary from site to site. They

identified the measures tha t are relatively consistent throughout the study and those that

are highly dependent on specific sites. Based on both laboratory tests and live measure

ments, Wessels et al. [120] found tha t existing DNS cache implementations employ different

approaches in query load balancing at the upper levels. They suggested longer TTLs for

popular sites to reduce global DNS query load.

Shaikh et al. [110] demonstrated tha t aggressively small TTLs (on the order of seconds)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

26

are detrimental to DNS performance, resulting in the increases of name resolution latency

(by two magnitudes), name server workload and DNS traffic. Their work further confirmed

that DNS caching plays an im portant role in determining client-perceived latency. Wills

and Shang [122] found tha t only 20% of DNS requests are not cached locally and non-cached

lookups cost more than one second to resolve. The same authors explored the technique of

actively querying DNS caches to infer the relative popularity of Internet applications [121].

Using graphs, Cranor et al. [46] identified local domain name servers and authoritative

domain name server from large DNS traces, which is useful for locating the related DNS

caches.

CoDNS [95] identified internal failures as a major source of delays in the PlanetLab

testbed, and proposed a locality and proximity-aware design to resolve the problem. They

utilized a cooperative lookup service, in which remote queries are sent out when the local

DNS nameserver experiences problems, to mask the failure-induced local delay. In their

design, they considered the importance of cache at the local DNS nameserver for providing

shared information to all local clients, and avoided a design tha t makes the cache useless.

2.3.3 D N S C ache C on sisten cy

However, none of the previous work focuses on DNS cache consistency. DNS cache inconsis

tency may induce a loss of service availability, which is much more serious than performance

degradation. By contrast, maintaining strong cache consistency in the Web has been well

studied. Liu and Cao showed [82] tha t achieving strong cache consistency with server

invalidation is a feasible approach, and its cost is comparable to tha t of a heuristic ap

proach like adaptive TTL for maintaining weak consistency. To further reduce the cost of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

27

server invalidation and its scalability, Yin et al. [124] proposed volume lease technique and

its extension for maintaining cache consistency [125]. Instead of keeping per-client state,

Mikhailov and Wills [85] proposed MONARCH to provide strong cache consistency for Web

objects, in which invalidation is driven by client requests. They evaluated MONARCH by

using snapshots of collected content.

The adaptive lease algorithm has been proposed in [57] to maintain strong cache consis

tency for Web contents. A Web server computes the lease duration on-the-fly based mainly

on either the state space overhead or the control message overhead. However, in their ana

lytical models, the space and message overhead are considered separately without gauging

the possible tradeoffs. Thus, the performance improvement of the adaptive lease algorithm

is limited. Cohen and Kaplan [42] proposed proactive caching to refresh stale cached DNS

resource records, in order to reduce the name resolution latency. However, the client-driven

pre-fetching techniques just reduce the client-perceived latency, but cannot maintain strong

cache consistency.

Cox et al. [45] considered using the Peer-to-Peer system to replace the hierarchical

structure of DNS servers. For example, for a given Web server, we can search a distributed

hash table to find its IP address, instead of resolving it by DNS. However, compared with

conventional DNS, the main drawback of this alternative approach is the significantly-

increased resolving latency, while the approach has a stronger support for fault-tolerance

and load-balance.

Based on Distributed Hash Tables (DHTs) [73], Beehive—designed for domain name

system [100]—provides 0(1) lookup latency. Different from widely used passive caching, it

uses proactive replication to significantly reduce the lookup latency. In order to facilitate

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

Web object references, Semantic Free Reference (SFR) [116], which is also based on DHTs

[73], has been proposed to resolve the object locations. SFR relies on the caches at different

infrastructure levels to improve the resolving latency. Note tha t these proposed schemes

are heavily dependent on the wide deployment of DHTs, and the proposed revolutionary

changes to the Internet directory service will take a large amount of time and effort to

become a reality.

2.4 P2P Cache M anagement

As a general solution to improve P2P system scalability and object availability, the replica

tion approach has attracted much attention. However, most proposed replication schemes

are focused on how to create replicas. Maintaining consistency among a number of replicas

is simply ignored, posing a challenge for building a consistent large-scale P2P system.

2.4.1 C ache M anagem ent in U n stru ctu red P 2 P S ystem s

Some existing file-sharing P2P systems assume tha t the shared data are static or read-only,

and updates are not addressed in the deployment. Most unstructured P2P systems, in

cluding both centralized ones, such as Napster, and decentralized ones, such as Gnutella,

do not provide a consistency guarantee among replicas. Researchers have designed algo

rithms to support consistency in a best-effort way without guaranteeing tha t every replica

is updated. In [53], a hybrid push/pull algorithm is used to propagate updates to related

nodes, where flooding is substituted by rumor spreading to reduce communication overhead.

At every step of rumor spreading, a node pushes updates to a subset of related nodes it

knows, providing uncertain consistency only. Similarly, in Gnutella, Lan et al. [79] pro

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

posed using flooding-based active push for static objects and adaptive polling-based passive

pull for dynamic objects. However, it is hard to determine the polling frequency and no

eventual consistency is provided essentially. In [104], Roussopoulos and Baker proposed

an incentive-based algorithm called CUP to cache m etadata — lookup results — and keep

them updated in a structured P2P system. However, CUP only caches the metadata, not

the object itself, along the lookup path with limited consistency support, so tha t it has no

support for maintaining consistency among the replicas of an object.

2.4 .2 P u b lish /S u b sc ib e A p p lica tion s on P 2 P

For applications demanding consistency support among replicas, different solutions have

been proposed in various P2P systems. Most proposed P2P-based publish/subscribe sys

tems record paths from subscribers to publishers, which are used to propagate the updates

from publishers. As an anonymous P2P storage and information retrieval system, FreeNet

[38] protects the privacy of both authors and readers. It uses a content-hash key to dis

tinguish a file’s new version from the old one. The update is routed to other nodes based

on key closeness. However, the update is not guaranteed to reach every replica. Based

on Pastry, Scribe [28] provides a decentralized event notification mechanism for publishing

systems. Each node can be a publisher by creating a topic and any other node can become

a subscriber through registration. The paths from subscribers to the publisher are recorded

for update notifications. However, the single point of failure problem is inevitable if any

node on the path fails.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

2 .4 .3 W id e-A rea F ile S y stem s on P 2 P

Another kind of major P2P applications are wide-area file systems, where replication is

widely used to improve performance. Some proposed systems do not explicitly support

consistency, while the others support update propagation by constructing either multicast

trees or strong-connected graphs. In [50], a decentralized replication solution is used to

achieve practical availability without considering replica consistency. PAST [106] is a P2P-

based file system for large-scale persistent storage service. In PAST, a user can specify

the number of replicas of a file through central management. Although PAST also utilizes

caching to improve client latency, it does not maintain consistency of cached contents.

Similarly, CFS [51] is a P2P read-only storage system, which avoids most cache consistency

problems by content hashes. Every client itself has to validate the freshness of a received

file, and the stale replicas are removed from caches by LRU replacement. OceanStore [78]

maintains two-tier replicas: a small durable primary tier and a large, soft-state second

tier. The primary tier is organized as a Byzantine inner ring, keeping the most up-to-date

data. The replicas in second tier are connected through multicast trees: dissemination

trees (d-tree) [35]. Periodic heartbeat messages are utilized for fault resilience, which incurs

significant communication overhead. Similar solutions are used in P2P-based real-time

multimedia streaming (e.g., Bayeux [128], SplitStream [29]). Pangaea [107] creates replicas

aggressively to improve overall performance. By organizing all replicas of a file in a strong-

connected graph, an update on one server will be propagated to the others through flooding,

thus limit its deployments for small numbers of replicas only. Another work [126] uses

automatic replica regeneration to provide higher availability with a small number of replicas,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

which is organized in a lease graph. A two-phase write protocol is applied to optimize reads

and linearize the read/w rite process.

2 .4 .4 W eb A p p lication s on P 2 P

Most P2P-based Web services rely on time-to-live (TTL) values to refresh the replicas. A

P2P-based Web caching can be designed to expand the cache size for higher cache hit ratio.

Squirrel [68] is such a system based on the Pastry routing protocol. The freshness of a

cached object is determined by the Web cache expiration policy (e.g., TTL field in response

headers). In order to facilitate Web object references, Semantic Free Reference (SFR) [117],

based on distributed hash tables, is proposed to resolve the object locations. SFR relies

on the caches at its different infrastructure levels to improve the resolving latency. Similar

to existing DNS solutions, it uses TTLs to manage the freshness, which may incur the

accessibility problem when the requested objects are moved to new locations. Beehive,

designed for domain name system [99, 101], provides 0(1) lookup latency. Different from

widely used passive caching, it uses proactive replication to significantly reduce the lookup

latency. In [62], Gedik et al. use a dynamic passive replication scheme to provide reliable

service for a P2P Internet monitoring system, where the replication list is maintained by

each CQ owner.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Significant Improvement of Web

Prefetching

3.1 Introduction

The World-Wide Web has been widely and heavily used in our daily life since it was invented

a decade ago. While advanced networking and computer techniques facilitate the services to

the clients all over the world, the demand to Internet performance improvement continues.

Fast response time is always demanded as the number of clients and type of clients and more

kinds of services are enormously increasing. This chapter will address the Web latency issue

by advancing the prefetch techniques.

3.1.1 So lu tion s to R educe L atencies

An Internet transaction involves different operations, easily causing high latencies perceived

by clients. The affecting factors include network bandwidths, network distances, dynamic

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

traffic patterns, types of services, server’s scheduling policies and server’s capacity. Many

researchers have investigated possible solutions to improve the latency even high speed net

works and powerful servers have been quickly deployed. Content Delivery and Distribution

Services [1] are proposed to build mirror sites close to the potential clients with the same

URLs typed by clients. QoS [59, 111, 21] is used to give priorities to certain clients and

to guarantee their specific demands. Different server’s scheduling policies [15] are proposed

to reduce the average response times. The network traffic influence is also investigated

[14, 49, 67]. Web caching [13, 23, 27, 77, 123] has been proposed to reduce the network

traffic, server’s load and improve the latencies. Due to the existence of an increasingly large

number of servers, the chance for a client to revisit the same content in the same server is

decreasing [16, 22], which limits the potential benefits of Web caching.

Prefetching is a technique to preload the useful information before the clients really

request it, which has been actively used in CPU design, computer memory hierarchy and

file systems. Prefetching in the Web is to retrieve the to-be-used data into a cache based on

the predictions. As a promising solution to Web access latencies, it obtains the Web data

a client is expected to need on the basis of data about that client’s past surfing activity.

Prefetching adds efficiency because it actively preloads the data for two kinds of clients. For

group clients, it preloads commonly shared data objects. For individual clients, it loads each

of their popular objects. A study shows that the performance improvement with caching

and prefetching can be twice tha t of caching alone [77]. It has been shown tha t prefetching

is more effective to reduce the latencies than increasing the network bandwidth [91]. This

dissertation focuses on the document prefetching in the Internet.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

3.1 .2 P refetch in g in th e W eb

When a client is surfing the Web, there is an idle time between two continuous pages

visited by the same client for reading and thinking. The ON-OFF pattern provides rooms

of prefetching. In order to conduct successful prefetching, it is desired to predict the next

accesses from the clients. Many studies show the accesses from different clients sharing the

similar patterns, which means accesses from a single client can be predicted from the others.

Web prefetching has been implemented and tested in a few proxy caches and browsers [5,

75, 64]. However, the concerns of high overhead and low accurate prediction rate prevent this

system technique from being widely deployed. There are still several im portant questions

to be answered in order for prefetching to be practically used in the Web:

• How can we accurately predict the future accesses?

• How can we effectively make the predictions by different information components?

• How can we minimize the negative effects of the overhead of prefetching?

• How to implement a prefetching system in Internet?

• How to experimentally evaluate a prefefetching system?

This dissertation aims at addressing these questions. Particularly, in this proposal, we

concentrate on the challenges in deployment of prefetching with following projects:

• Improve the prediction accuracy and efficiency by designing and implementing pre

diction algorithms and data structures.

• Design and implement control mechanisms to adaptively coordinate prefetching ac

tivities and dynamic workloads in the Web servers.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

• Design and implement global scheduling schemes to coordinate information usage on

both proxy caches and Web servers for effective prefetching.

3.2 A Popularity-Based Prediction M odel

3.2.1 O verview

An im portant prefetching task is to build an effective prediction model and data structure

for storing highly selective historical information. The prediction by partial match (PPM)

model [39, 70, 108], which is widely used for Web prefetching, makes prefetching decisions

by reviewing the URLs tha t clients on a particular server have accessed over some period.

The model structures these URLs in a Markov predictor tree tha t the server dynamically

maintains. (A Markov tree is an m-order context tree tha t uses m preceding symbols to

determine the probability of the next one.)

For a Web server tha t supports millions of Web pages, however, this kind of prefetching

takes too much memory, or storage space. Some variations of the PPM model attem pt to

avoid this overhead by having the servers collect access information for specified documents

in near real time [56], but they sacrifice prediction accuracy because there is less historical

information. Recently, making prediction from HTML content is also proposed [54].

We propose a variation of the PPM model tha t builds common surfing patterns and

regularities into the Markov predictor tree. The model assigns long branches to popular

URLs - ones tha t clients access frequently - and shorter branches to less popular URLs. The

server dynamically updates the tree with a maximum height for each branch type. Because

the root nodes are the most popular URLs - not all URLs, as in the standard PPM model

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36

- our model effectively uses the space allocated for storing nodes. It also performs two

optimizations: It directly links a root node to duplicated popular nodes in a surfing path

to give popular URLs more consideration, and it goes back to the completed tree to remove

less popular branches.

Because the tree in our model has varied branch lengths, it effectively negotiates the

trade-off between predictive accuracy and memory. By limiting the number of less popular

documents (short branches), the tree uses less memory, yet it preserves accuracy because it

includes the access information tha t is most likely to result in a prediction hit.

A study comparing our model’s performance with the standard PPM model and the

longest repeating sequences (LRS) PPM model [98] demonstrates tha t our model not only

is significantly more space efficient, but also provides the most accurate predictions.

3 .2 .2 S im ulation E nvironm ent

To verify our model’s memory efficiency, predictive accuracy, and general performance, we

conducted trace-driven simulations using the data set from 92 days of requests to the 1998

World Cup site. Our simulation environment consisted of traces, a simulated server in which

different PPM models make prefetching decisions, and multiple clients tha t send requests

to the server and receive requested and prefetched data from the server.

The traces, the WorldCup98 data set [8], consisted of all the requests made to the 1998

World Cup Web site between 26 April 1998, and 26 July 1998, which represents 92 days

of access. During this time, the site received 1,352,804,107 requests. A 1-second interval is

used to record access events.

The simulated server dynamically maintained and updated three PPM models - a stan

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

37

dard model, the longest repeating sequence PPM model, and our popularity-based model

- according to these traces. The server assumed tha t both proxies and browsers were con

nected to it. The predictor in the simulator assumes tha t if an address (or IP) sends more

than 1,000 requests per day, it is a proxy; otherwise it is a browser. The predictor assumes

tha t the proxy has a disk cache of 16 Gbytes and tha t a browser has a cache of 10 Mbytes.

Both of them use a standard least recently used cache replacement algorithm.

User identification provides useful information for constructing the prediction structure.

Unfortunately, obtaining the H TTP log files tha t identify users was difficult. Some logs

have unique user IDs for clients-for example, H TTP cookies-but this type of log file is

not available in the public domain. Thus, we used IP addresses, which may represent

proxy servers. We recognize that using IP addresses could introduce some inaccuracy in

our simulation, but we do not believe it affects our evaluation of the different prediction

models.

Finally, in practice, an HTML document can contain embedded image files. Thus, when

a client accessed an HTML file and then accessed an image file within the next 10 seconds,

we considered the image file to be embedded in the HTML file. We recorded these embedded

files as a part of the HTML files.

3 .2 .3 Surfing P attern s

We observed several popularity patterns during trace analysis. A URL’s popularity is the

number of times users access it in a given period. To calculate the popularities for all the

URLs in the trace file, we used relative popularity (RP) - the individual URL’s popularity

divided by the highest popularity in the trace. Thus, if URL A had the highest number of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

38

accesses, its RP would be 100 percent. If URL B had 10 percent of URL A’s accesses, its

RP would be 10 percent.

We further ranked URL popularity by four grades:

• grade 3, 10 percent < RP < = 100 percent;

• grade 2, 1 percent < RP < = 10 percent;

• grade 1, 0.1 percent < RP < = 1 percent; and

• grade 0, RP < = 0.1 percent.

We characterized each client’s surfing behavior as an access session - the sequence of

Web URLs tha t the client continuously visited. If a client was idle for more than 10 minutes,

the next request from tha t client started a new session.

Each access session is composed of the steps the client takes to complete the session,

and each step has a sequence number, starting with step 0, the first URL visited in the

session. The total number of steps determines the session length, the number of steps per

session varies, and each trace file consists of numerous access sessions.

Thus, a trace file with P sessions is a two-dimensional array RP (i,j), where index i

represents the ith session in the trace (i = 1, ..., m), and index j represents the jth step

in the session (j = 1, ...). We sorted sessions by length, which decreased as the index

increased.

Our trace analysis revealed two im portant recurring patterns, or regularities. All the

evaluation days exhibited these regularities to some degree, but for illustration, we randomly

chose results from July 13, the 79th day.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

To examine the relationship between URL popularity and access session, we first divided

each trace into four session groups, which differed in the popularity grade of their starting

URLs (grades 3, 2, 1, and 0, respectively).

The first regularity we observed is tha t most URLs in a server are not popular files, but

most clients start an access session from a popular URL. Figure 3.1 shows these popularity

patterns. The percentage of URLs of each grade is illustrated by the outer figure and the

percentage of starting URLs in all sessions for each popularity grade is shown in the inner

figure. Fewer than one percent of URLs are of grade 3 popularity (10 percent < RP < =

100 percent). In contrast, less popular URLs dominate, with grade 0 URLs represent about

95 percent of the total URLs in tha t day’s traces.

These results offer both good and bad news for building prefetching models. The good

news is tha t paying special attention to popular URLs that are only a small percentage of

total URLs can be effective. The bad news is tha t the accumulated number of accesses to

less popular URLs can be large, so focusing on only a small percentage of them in prefetching

could result in low hit rates.

1

0.6

<0
_1cc
=> 0.6
oa>O)caca>
o

0.4

P o p u la rity G r a d ea>0.
0.2

0
Popularity Grade

F ig u re 3.1: Popularity patterns in Web access sessions during day 79 of the WorldCup98 da ta set

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

40

We then plotted the changing curves using the number of access sessions as a function of

session length. Figure 3.2 shows the results for day 79’s traces. The outer figure shows the

number of sessions remaining as session length increases, and the inner figure demonstrates

the average popularity grade across session length. Around 86 percent of the access sessions

started from popular URLs, moved to less popular URLs, and exited from the least popular

ones. Only 1.3 percent of the sessions started from less popular URLs, remained in the

same type of URLs, and exited from the least popular ones.

Thus, the second regularity we observed is tha t most URL sessions start with a popular

URL, move to less popular URLs, and exit from the least popular ones. The least sessions

start from less popular URLs, remain in less popular URLs, and exit from the least popular

ones.

Our data analysis consistently shows tha t the starting URLs determined the number of

access sessions for a given length. In outer figure in Figure 2, 628,232 sessions started with

URLs of grade 3 popularity. As session length increased, the remaining sessions decreased

proportionally. For example, 13,293 of the remaining sessions had length 9. In contrast,

the remaining sessions with length 9 for sessions starting with URLs of grades 2, 1, and 0

popularity were 4,757, 1,237, and 1,740.

The inner figure in Figure 3.2 shows tha t the average popularity grade always decreased

as the session length increased. For example, the average popularity of the access sessions

starting from URLs of grades 3 and 2 popularity decreased proportionally as session length

increased. When the session length increased from 0 to 9, the average popularity grade of

the URLs decreased from 3 to 1.24 and from 2 to 1.1. For access sessions starting from

URLs of grades 1 and 0 popularity, the average popularity changed only slightly as session

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

Starting URL with GradeO
-■*••• Starting URL with Gradel

- Starthg URL with Grade2
-O - Starthg URL with Grade3

COco
'co
CO
0

C/D

'o
0X)
E
z

S e s s io n L e n g th

Session Length

Figure 3.2: URL popularity and access-session length

length increased. Thus, we can infer tha t clients starting with less popular URLs tend to

surf among URLs with the same popularity grade.

3.2 .4 T hree P red iction M odels

To evaluate our popularity-based PPM model against other PPM models, we built three

PPM models, shown in Figure 3, into the server as the basis for its prefetching decisions.

The server dynamically maintained and updated the PPM models according to traces over

the 92-day evaluation period.

Standard model

The first model is the standard PPM model, which left figure in Figure 3.3 shows

for three access sequences: A B C A 'B 'C ' , A B C , and A 'B 'C '. The standard PPM model

uses multiple Markov models to store historical URL paths. Each Markov model partially

represents a client session. The model structure is a tree, and each branch is a Markov

model with multiple URL predictors. Variable orders in each branch can make predictions.

Node 0 represents the root of the forest. When a client accesses URL A, the server

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

42

PPM LRS PB-PPM

I
{A B C A 'B 'C ’
{A B C }
{A ’B ’C ’ }

F ig u re 3.3: Three prediction models for three access sessions- ABCA'B'C', ABC, and A'B'C' -
which the server in the trace simulation used to make predictions for prefetching: (left) the standard
PPM model, (middle) the LRS PPM model, and (right) the popularity-based-PPM .

builds a new tree with root A and sets the access counter to 1. When B comes, it creates

another tree with root B. Because B follows A in the same session, the server must generate

another node for B as a child node of A. The process completes until the server has scanned

all the URLs accessed in the three sessions. Several prefetching prototypes and systems use

this standard model, which follows three main structural rules:

• It uses any URL for a root node and records every subsequent URL in the tree rooted

by the first URL.

• Every node represents an accessed URL in the server. A counter records the number

of times the URL occurs in the path from the root node. For example, the notation

“A /2” indicates tha t URL A was accessed twice.

• Every path from every root node to a leaf node represents the URL sequence for at

least one client.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43

The advantage of the standard PPM model is tha t it is not very complex and is thus easy

to build. Because the tree records every accessed URL, however, it takes up too much space

in the server. Entropy analysis and empirical studies have shown tha t as the prediction

order in each branch increases, so does the space tha t stores the PPM model’s predictors,

and prediction accuracy improves.

Some variations of the standard model attem pt to fix the tree height (put a ceiling on

the number of accessed URLs tha t can become nodes). This saves storage but the tree no

longer matches common surfing patterns. Also, prediction accuracy can be low with a short

tree, and even a small height increase can rapidly increase the storage requirement.

For our performance comparison, we used a standard PPM model with a maximum

branch height of 7. In practice, the branches in a standard PPM model should have a fixed

height, but our experiments show tha t prediction accuracy will degrade if the branches are

too short. We also fixed the height at 7 to make the tree height in the standard model equal

to that in our model to provide a more reasonable basis for comparison.

LRS model

The other representative approach to building a PPM model is the LRS PPM model,

which keeps the longest repeating subsequences and stores only long branches with fre

quently accessed URL predictors. A longest sequence is a frequently repeating sequence in

which at least one occurrence of one subsequence belongs to an independent access session.

Thus, a longest sequence covers many independent access sessions. As in the standard

model, the tree height is not fixed. A sequence of URLs that a client accesses more than

once is considered a repeated sequence. The middle figure in Figure 3.3 shows the predictor

tree structure of the LRS PPM model for the three access sequences. The server builds the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

44

tree the same way as in left figure in Figure 3.3, but it then scans each branch to identify

and eliminate non-repeating sequences, such as A’/ l , B ’/ l and C’/ l .

Relative to the standard PPM model, the LRS PPM model offers a lower storage re

quirement and higher prediction accuracy. Clients access most objects in Web servers

infrequently, so keeping only frequently accessed paths does not noticeably affect overall

performance, but it does significantly reduce the storage requirement. The high prediction

accuracy comes from the model’s use of high-order Markov models in a limited number of

branches.

The LRS PPM model also has limitations. Because the tree keeps only a small number of

frequently accessed branches, it ignores prefetching for many less frequently accessed URLs,

so overall prefetching hit rates can be low. Also, to find the longest matching sequence, the

server must have all the previous URLs of the current session, which means the server must

maintain sessions and update them. This process can be expensive.

For our performance comparison, we used the original LRS design [98]. If clients accessed

a URL sequence more than once, we considered it to be frequently repeating.

Popularity-based model

The third approach is our model, which uses only the most popular URLs as root nodes.

The right figure in Figure 3.3 shows the tree structure for the three access sequences, where

URLs A and A’ have grade 3 popularity, URLs B and B ’ have grade 2 popularity, and URLs

C and C ’ have grade 1 popularity. In this example, the maximum branch height is 4. The

server creates a root node only for the starting node and when it detects URLs with grade

3 popularity. Thus, for A it creates a root node, but for B, it creates only a child node of

A. It does the same for C. When it detects A’ , it generates another root node and a child

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

45

node of C. It also links child node A’ to root node A.

Our popularity-based model builds surfing regularities into the standard PPM model’s

Markov predictor tree using four rules:

• Rule 1. Set the maximum height initially for branches starting from the most pop

ular URLs. The heights of other branches starting from less popular URLs decrease

proportionally. Adjust the proportional differences among different branches to adapt

to access pattern changes.

• Rule 2. Set the initial maximum height by considering the available memory space

for the PPM model and access session lengths. The session length reflects the de

mand for data prefetching. If the lengths of most access sessions are short, building

long branches may not be necessary. The maximum height is a moderate number in

practice. Our experiments show tha t more than 95 percent of the access sessions have

nine or fewer URLs (or clicks). This is consistent with the results reported elsewhere 9

for a trace file of 3,247,054 Web page requests from 23,692 AOL users on 5 December

1997.

• Rule 3. In most cases, add each URL in a sequence only once to the tree. Create

a special link between the heading URL and a duplicated node of this URL only if

a URL not immediately following the heading URL has a popularity grade higher

than the heading URL’s grade or has the highest or second highest grade. If this

popular node leads to a sequence of URLs, add the sequence to tha t root or build a

new tree rooted by the node. This approach gives popular URLs more considerations

for prefetching, aiming at increasing prediction accuracy and access hit ratios.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

46

• R u le 4. Periodically build the model on the basis of log files for a previous time

interval to predict the surfing patterns in the coming time interval. The interval can

be a day, a week, or a month. Dynamically build or adjust the model as each URL

request arrives.

Our model also makes space optimizations to the completed tree. The first is based on

the relative access probability of nodes (URLs) tha t are not root nodes, which is the ratio

between the number of accesses to a URL and the number of accesses to its parent URL.

The server examines each non-root node, and if the node’s relative access probability is less

than a certain percentage (pre-determined), it removes the node and the branches to its

children nodes and all the connected nodes of younger generations. It also removes each

node representing a URL tha t clients accessed only once.

For our performance comparison, we set the maximum branch height to 7 for grade 3

URLs, to 5 for grade 2 URLs, to 3 for grade 1 URLs, and to 1 for grade 0 URLs. We had

the server cut each branch with a 5 percent or lower relative access probability.

3.2.5 C om parative Perform ance

All the PPM models use a longest matching method, which matches as many previous URLs

as possible to make a prediction. If the model does not find a prefix match, it will not make

a prediction. We set a document selection threshold of 0.1 to 0.9, which meant tha t the

server would prefetch only documents with an access possibility greater than the threshold.

We used three performance metrics:

• The h it r a tio is the number of requests tha t hit in a browser or proxy cache as related

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

47

to the total number of requests.

• The traffic increment is the ratio between the total number of transferred bytes

and the total number of bytes tha t clients find useful minus 1. The traffic increment

is 0 percent if clients find every transferred byte useful.

• The space is the required memory allocation measured by the number of nodes avail

able to build a PPM model in the Web server.

The maximum size of prefetched files affects both hit ratios and the traffic increment. A

large value lets the server prefetch more data, which helps the hit ratios, but may increase

traffic. We set the maximum prefetched file size to 20 KBytes for all three models in all

experiments. We also selected day 46 from the WorldCup98 traces, which was one of the

busiest days of the evaluation period. We used the day 45 traces as the training data to

build the tree structures for the three models.

Hit ratios
1(--- ■ • ■- q

j H Hit on Cache
I WM Hit on Prefetch |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Threshold

Figure 3.4: The hit ratio for three PPM models with different thresholds

Figure 3.4 shows the changes in the hit ratios using the day 45 traces versus the threshold

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

48

used for predicting access on day 46. Each set of three bars for each threshold represents hit

ratios for the standard PPM model (left bar in each group), the LRS PPM model (middle

bar in each group), and our popularity-based PPM model (right bar in each group). The

hit ratio is the number of requests tha t hit in a browser or proxy cache relative to the total

number of requests. The thresholds represent the probability tha t clients will access tha t

document. The threshold 0.3, for example, contains the hit ratios (vertical bars) when the

server prefetches documents with an access probability of 0.3.

As the figure shows, the hit ratios were consistently higher with our popularity-based

PPM model than with the standard PPM and LRS PPM models. This was generally true

of the entire evaluation period (not just day 45). For example, with a 0.3 threshold, the hit

ratio of our model is 81 percent - 78 percent higher than the LRS PPM or the standard

PPM model. W ith a larger threshold, however, the hit ratio of our model was the lowest

because at the higher thresholds, unpopular files (files that clients have accessed only once)

become dominant and available for prefetching. Thus, the standard PPM model achieves

almost the same hit ratio at thresholds of 0.6 to 0.9. The access probability of unpopular

files is 1.0 when clients access two unpopular files continuously.

Both the LRS PPM model and our model use space optimization to keep popular files,

which means tha t the server will never prefetch unpopular files. However, our model’s hit

ratio decreases faster than the LRS PPM model’s hit ratio because the LRS PPM model

uses all URLs as roots, whereas our model uses only popular URLs as root nodes.

Because our model deletes URLs tha t clients seldom access, it has more flexibility than

the other models. This is im portant when the server load and network conditions dynami

cally determine how aggressive prefetching can be.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

49

Traffic overhead
0.25

ESI LRS

0.2

0.15

0.1

0.05

0
Threshold

Figure 3.5: Traffic overhead comparisons of three models

Figure 3.5 compares the traffic increment for the three PPM models for predictions of

day 46 when the threshold varies from 0.1 to 0.9.

The three models have similar traffic increases when the threshold is less than 0.6.

W ith a 0.2 threshold, for example, traffic increases 10.7, 9.9, and 10.9 percent. W ith a

larger threshold, however, the traffic increase with the LRS PPM model and our model

goes down rapidly and closes to 0 with a 0.9 threshold. Overall, the standard PPM model

consumes more network bandwidth than the other models. Considering the hit ratios of

the three models, our model is the most cost-effective.

Space overhead

Figure 3.6 compares the number of URLs (nodes) tha t each model stored for predictions

about day 46 access. We used the varied number of clients in the day 45 traces to build the

prediction model for day 46 prefetching.

The number of nodes tha t the standard PPM model stores dramatically increases as

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

50

<D 4 TJ

Num ber of Clients

Figure 3.6: Space needed measured by nodes

the number of clients used for prediction increases. The nodes required for the LRS PPM

model increases proportionally and quickly with more clients, while the space requirement

for our model increases at a much slower pace. W ith 800 clients for prediction, for example,

the LRS PPM stores 71 percent more nodes than our popularity-based model. Using 1,600,

3,200, 6,400, 12,800, and 25,600 clients for predictions, the LRS PPM model stores 1.9, 4.4,

8.7, 15.7, and 26.8 times more nodes than our model.

We see two main reasons for this quick increase. First, the LRS PPM model has many

node duplications because it cuts and pastes each tree branch into multiple sub-branches

starting from different URLs. Second, as the clients increase, the number of the longest

repeating sequences also proportionally increases, but the number of occurrences of subse

quences th a t are also independen t sequences decreases. In con trast, the p o p u la rity p a tte rn s

do not change significantly as the client files increase, so our model only moderately increases

the number of nodes in the tree structure.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2 .6 Sum m ary

The popularity-based prefetching technique is an effective Web management approach be

cause Internet storage has become increasingly large and disorganized. Popularity informa

tion makes searching and prefetching highly objective and efficient. Our simulation and data

analysis revealed two im portant popularity-related surfing regularities. By building these

regularities into the PPM model, Web prefetching can have both high prediction accuracy

and a low space requirement.

3.3 A dapting Web Prefetching to Dynam ic Server Loads

3.3.1 O verview

W ith the popularity of World Wide Web, latency perceived by the clients becomes an

im portant factor of the quality of Web services. Web prefetching is proposed to improve

the Web access latency. This technique attem pts to prefetch to-be-used Web data based

on the historical information of surfing activities. Web prefetching is becoming im portant

and demanding, even though Web caching has been widely utilized for the same purpose.

The significance of Web prefetching can be summarized as follows. First, accessing proxy

caches through a local area network is much faster than accessing Web servers through

global area networks. The study in [77] divides the total Web access latencies into internal

latencies in local area networks and external latencies in global area networks. Based on

case studies, the authors show tha t the percentage of external latencies in total access

latencies is dominantly high. Thus, an effective prefetching for clients based on reference

access information can significantly reduce the external latencies. Second, the number and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

52

types of Web servers have increased and will continue to increase dramatically, providing

more services to a wider range of clients. Thus, access variations will keep increasing as

more Web servers are emerging [16]. Increasing proxy caching size is no longer the only

effective way for performance improvement, because it is mainly beneficial to the commonly

shared data objects among clients.

The potential effectiveness of Web prefetching has been widely investigated, and asso

ciated overheads have also been noticed. The possible network traffic overhead is analyzed

in [48, 118]. It has been shown tha t if prefetched objects could be transferred at low rates,

the network condition would be improved over tha t without prefetching. In order to avoid

network overhead, a partial prefetch scheme [74] and prefetching between proxies and dial

up clients [61] are presented. Recently, researchers propose to utilize the unused network

bandwidth for prefetching with marginal effects on existing traffic [76, 115], which makes

Web prefetching more practical. The space overhead of building predictor trees could also

been reduced by considering the specific access patterns [33, 34, 66, 98]. The use of a thresh

old to adjust the aggressiveness of prefetching is analyzed in [69]. In contrast to the above

cited studies, we look into the performance impact of prefetching and associated overhead

in Web servers.

Our research focus on Web servers in this section is motivated by the structure of current

Internet services tha t are heavily rely on H TTP based on TCP protocols. Before an HTTP

request is sent to the Web server, a TCP connection must be first established though a

three-way handshake mechanism. Once the TCP connection is established successfully, a

client can send a series of HTTP requests to a Web server while the server uses the same

connection to transfer the requested data to the client. The client-perceived response time

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

53

comes from three parts: (1) the time to establish the TCP connections; (2) the time for Web

servers to processing requests; and (3) the time for response transferred on the network. The

last two parts account for the major delay. We further believe the Web server processing

time is crucial to ensure the quality of Web services for the following two reasons:

• TC P connection time does not change much when the load on the server changes.

As pointed out in [90], when the server is lightly loaded, the connection time can

be ignored since the processing time is the major part. In fact, Web prefetching is

always applied only when the spared resources are available. In our experiments,

the average connection time is never larger than 10% of the average client-perceived

response time. In order to reduce the connection overhead, KeepAlive directive is

widely used in H TTP 1.0 and 1.1. In our experiments, we construct the requests with

the directive following the format of H TTP 1.0.

• Prefetch requests will not increase the transmission time of regular requests.

This is because (1) prefetch used for dynamic content does not consume additional

network resources; and (2) a new T C P /IP protocol has been proposed [115] to avoid

network resource competition between background traffic and existing traffic.

Web prefetching can effectively reduce the server response time since idle server resources

can b e u tilized for W eb prefetch ing activ ities. W eb prefetch ing techn ique has been proposed

for different kinds of Web services. For static Web objects, a prefetching scheme pro-loads

those objects to be accessed possibly in the near future [76]. For dynamically generated

Web objects, the server response time can be reduced by pre-generating Web objects based

on client access information [109]. For a search engine Web site, performance improvement

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

54

is expected by pre-loading most related searching results [80]. For a CDN provider, pushing

related objects to the proper CDN servers can achieve better performance than passively

pulling [36]. An ideal prefetching scheme should have no negative effects on existing activ

ities on the Web server while the reduction on client perceived server processing time can

be maximized.

However, with the increase in types and quantum of the Web services, the server can

easily become a bottleneck in Internet. A major concern about a wide deployment of Web

prefetching is related to the associated overhead tha t may negatively affect the performance

of the Web servers and the response time. In this study, we focus on evaluation and and

providing solutions to address a major weakness of current Web prefetching — the prefetch

ing activities are scheduled independently of the dynamic server workloads. Therefore, if

the prefetching activities are not properly controlled and coordinated with Web servers, the

Web access performance can be significantly hurt.

The effectiveness of designing and implementing such a control and coordination mech

anism in Web servers mainly rely on insightful understanding and accurately characterizing

the dynamic behaviors of Web servers. In this section, we first develop an open queuing

model to characterize detailed transactions in Web servers. Using this model, we analyze

the server resource utilization and the average response time with different request arrival

rates when prefetching is involved different kinds of Web services. Guided by this model, we

design a responsive and adaptive prefetching scheme tha t dynamically adjust the prefetch

ing aggressiveness in Web servers. Our scheme not only prevents the Web servers from being

overloaded, it can also minimize the average server response time. We have effectively im

plemented this scheme on the Apache Web server. Our measurement-based performance

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55

evaluation shows the developed model can accurately predict the utilization of Web server

resources and correspondent average response time.

3.3 .2 P refetch in g P erform ance A nalysis

BC M P Queuing Networks

If the customers of a queuing network model have different service demands, it is re

garded as a model of multiple class customers. Developed by Baskett et al. [18], BCMP

queuing networks allow different classes of customers, each with different service require

ments and service time distributions other than exponential. Open, closed, and mixed

networks are allowed. The queuing networks we developed for prefetching in Web servers

are based on an open model, which consists of K devices and C different classes of cus

tomers. The network state is denoted by a vector H = (n i,n i,...,n jb), where component

Hi is a vector tha t represent the number of customers of each class at device i, which is

Hi = (n^i, n ,^ , ..., rii,c)- An open network is one in which allow customers to enter or leave

the network while a closed network always has a constant number of customers remain in

the network.

Queuing Networks for Web Services

In our analysis, we only consider the situation where only a single Web server exists.

The results can be easily extended to multiple servers. A typical Web server is connected

to a LAN, which is connected to a router tha t connects the site to the ISP and then to

the Internet. The queuing networking model is shown in Figure 3.7. It is a open queuing

network model with a queue for each of the three components: network interface card (NIC),

CPU and disk.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56

Web server

Disk)

rCPU

NIC

Figure 3.7: The queuing network model for Web services.

A typical Web service consists of several operation steps to be finished. For example,

Apache server has the following procedure to process incoming requests:

1. Translating URI to the local filename,

2. Checking ID authorization,

3. Checking access authorization,

4. Access checking other than authorization,

5. Determining MIME type of the requested object,

6. Sending a response back to the client, and

7. Logging the request.

Different steps re ly on different devices. For exam ple, th e first five steps m ain ly use

the CPU while the sixth step normally needs NIC (network interface card), CPU and disk.

W ith the improvement of Web techniques, a Web server provides various kinds of services

to clients. Different kinds of requests are different on resource requirements from each

other. When prefetching is applied for a specific class of Web requests, some requests can

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57

be prefetched while the rest are still explicitly requested by clients. Prefetching may change

the resource requirements. Static object prefetching has a limit on the size of prefetched

pages to avoid the overhead of wrong predictions. Dynamic content prefetching utilizes

the idle CPU cycles to pre-compute the results which may be requested by clients, but the

results are not required to be transferred to clients until they are requested explicitly. Due

to the variance of surfing behaviors in the Web, it is natural to model a Web site as an open

network with multiple classes requests.

In our analysis, we use BCMP queuing network model to estimate the capacity of the

Web server and average server response time. In this section, we give the analysis in a general

situation, where the number of devices and number of request classes are not limited. The

parameters used in our analysis axe shown in Table 3.1.

Parameter Meaning
K number of devices in a Web server
C number of classes of requests

request arrival rate of class r
Di,r average service demand of class r requests at device i
Uitr utilization of device i by class r requests
Ui utilization of device i by all requests
R%,r average response time of class r requests at device i
R r class r average response time
R average response time for all requests

T ab le 3.1: Input Parameters for Web Service Models

3.3.3 C apacity o f A W eb Server

Resource Utilization W ithout Prefetching

We can calculate the utilization of each device by summing the utilization of each class

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

of requests:

C C
U i — ^ ' U i ^ r — ^ ' \ r D i r .

r—1 r = l

If a steady state solution exists, we must have

It guarantees tha t no device will receive more service requests than it can handle.

Resource Utilization W ith Prefetching

When prefetching is applied in the Web server, for a given class of requests, two kinds of

requests will be received by the server: regular requests are explicitly sent by clients when

cache misses happen and prefe tch requests are automatically delivered by the browser with

the prefetching function after it receives the prediction results from the server.

In order to accurately calculate the resource utilization, we divide the class of requests

into two parts when prefetching is applied to a specific class of requests.

• A£: r e g u la r r e q u e s t a r r iv a l r a te o f c la s s r a f te r p r e fe t c h in g is a p p lie d ,

• Afc prefetch request arrival rate of class r,

• D ri r : average service demand of regular requests of class r requests at device i, and

• D f r : average service demand of prefetch requests of class r requests at device i.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59

In consequence, additional C new classes of requests will be received by the Web server

while the correspondent C original classes of requests may have different resource require

ments from those without prefetching. In order to achieve a steady state, the following

equation should be followed:

3 .3 .4 A verage R esp on se T im e

Average Response Time W ithout Prefetching

In order to compute average server response time of all classes of requests, we need to

calculate the average server response time for each class of requests. For class r requests,

we have:

Average Response Time with Prefetching

Since the prediction is based on history information, not all prefetched files are useful.

The effectiveness depends on the accuracy of prediction and the prefetch hit ratios. Here

are additional parameters we have defined:

max.

K k

For all classes of requests, the average server processing time is:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60

• Pr: the prefetch hit ratio of class r customer, i.e. the percentage of all requests

prefetched before they are requested explicitly by clients,

• A r: the accuracy of prefetching of class r customer, i.e. the ratio between the accessed

prefetched files and all prefetched files,

• R rr : regular requests of class r response time, and

• Rr'- prefetch requests of class r response time.

The regular request rate and the prefetch request rate for class r customer can be calculated

by:

Xrr = Xr * (1

The average response time for the two kinds of requests are:

K k j- \r K k t\ p

— V ' n r _ *’r DP _ P p — V ' i ’r
R r 2_R% ,r 1 — 7 7 ’ r 2-^/ i,r 2 ^ \ — U-

i = 1 i = 1 1 i = 1 i = 1 %

Considering tha t the server response time of prefetch requests may not be perceived by

clients, we assume all prefetch requests are finished before the clients require them explicitly.

We define client — perceived average server response tim e as the ratio between the total

server response time of regular requests and the number of requests when no prefetching is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

applied. In order to minimize the client-perceived average server response time, we want to

minimize the following equation:

E r l l K X K E " i (i - f i) x A r x ^

E ,c= i a, E jL i Ar

A Web server with multiple kinds of service makes the analysis complicated. BCMP

queuing model provides a good approximation to estimate the device utilization and re

sponse time when multiple classes of requests exist. It also facilitates to account the effects

of prefetching on Web servers. By estimating the server resource utilization, we can easily

control the prefetching aggressiveness and deduce the average server response time.

3.3.5 A d a p tiv e P refetch in g A lgorith m

Based on the analysis in previous section, we design an adaptive prefetching algorithm

which adjust the aggressiveness of Web prefetching dynamically with the request arrival

rates and their service demands.

One im portant mechanism in the algorithm is to adjust the aggressiveness of Web

prefetching to reduce the server processing latency perceived by clients. The procedure

of computing average response time of one device is shown in Figure 3.8. The input param

eters are all classes of request arrival rates of both regular and prefetch requests and the

output is the average response time of the device. Two tables are needed in five different

steps.

1. T, A and P table shows the relationships among thresholds, accuracies and hit ratios

for different level requests of all classes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

2. Level Demand table shows the request distribution in different levels for all classes of

requests and correspondent service demands.

T, A, and P

Level Dem.

Level Dem.

Level Dem.

Level Dem. Level Dem.

T, A, andP T, A, andP

T, A, andP T, A, andP

F ig u re 3.8: The procedure of computing response time of one device

Step 1:

In order to estimate the server response time, we need to know the request arrival rates

and the service demands of each class of requests. When prefetching is used, we are not

able to observe the request arrival rates directly since part of requests have been prefetched.

However, from the previous analysis, for a specific class of requests using prefetching with

a given threshold, we can compute the request arrival rates without prefetching by the

following equation:

Xr = (\ ; + \ P) / (1 - P r + ^) .

Step 2:

The service demands of each class of requests can be computed by analyzing the server

logs or monitoring the server utilization in real time. Due to the observed heavy tail

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

distribution in Web traffic [17, 47], the service demand of the average sized requests is not

accurate to represent the whole requests of a specific class. By dividing the requests into

several levels by their sizes, we can improve the accuracy when we estimate the whole service

demands of the class. If we define Ar as the class r requests in different levels, and lr as the

percentage of class r requests in different level requests, we have

^ Ij'.

Step 3:

As we have pointed out, prefetch requests may have different service demands and we

need to characterize the request streams including regular and prefetch requests. In our

scheme, we also compute the prediction accuracy and hit ratio for each level of requests in

a given class. If we know the request arrival rate in each level without prefetching, we can

calculate each level request rate of prefetch and regular requests, which are represented by

and \ rr .

Step 4:

The total service demands (service utilization) of one class requests using prefetching

can be approximated by multiplying the service demand of each level of requests (defined

as Dr) with the request rate of them as follows:

Uitr = (Ar + K) * Dr.

The device utilization Ui is equal to sum utilization of all kinds of requests on device i.

Step 5:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

64

We can compute the device average response time for each class of requests.

D r Dp
n r _ J J P _ t , r

' V l - U i

Furthermore, the average response time of Web server for every class of request can be

computed by summing all response time of individual device. The server average response

time for all classes of requests can be easily calculated. By repeating the procedure above for

all possible thresholds for every class of requests, the optimal value is the one tha t achieves

the minimal server response time for all requests. The description of the whole algorithm

can be found in the Appendix.

The workload used in our experiments is from the WorldCup 98 Web site, which is

available from the Internet Traffic Archives [8]. It was one of the busiest Web sites in 1998

and represents a popular Web site trace available in the public domain. During the collection

period, there were 33 different HTTP servers at four geographic locations, although not all

of them were in use for the entire collection period. During this 92 day period (April 26th -

July 26th, 1998), 1,352,804,107 requests were received by the Web site. We have conducted

our experiments on more than 10 days’ traces and all results are consistent. We select the

46th day, one of the busiest days during this period, in our presentation. During tha t day,

a total of 252,753 clients sent 50,395,084 requests for 8,265 data objects on the servers. A

total of 187 GBytes was transferred from the servers to all clients. For detailed analysis of

the WorldCup workload see [11]. In order to simplify the presentation, in the rest of the

section, we only use a single class of requests in our experiments and evaluations.

A heavy-tailed distribution has been observed in Web traffic [17, 47]. A random variable

tha t follows a heavy-tailed distribution varies in a large range of size, many occurrences as

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

65

small mixed with a small amount of occurrences as large. In the Web environment, a large

percentage of H TTP requests are for small objects and a small percentage of requests for

objects which are several magnitude larger than the small objects.

Request Size Distribution

In current proposed prefetching schemes, the maximum size of the prefetched objects is

also set to avoid the high overhead on network if the prefetched objects are not used, which

may change the distribution of the size of requested objects. The distributions for different

prefetching thresholds are shown in Figure 3.9.

R e g u la r R e q u e s ts P re fe tc h R e q u e s ts

0.8

I 0.6

i
0 .4

0.2o
O r ig in a fR e q u e s ts ---------

T h re sh o ld 0.01 ---------
T h re sh o ld 0 . 1 0

LLDO
10K 100K 1M 10M0 10 100 1K

0.8

1 0.6

i
0 .4

Original R e q u e s t s ---------
T h re sh o ld 0 .01
T h re sh o ld 0 .1 0

u.
oO

1K 10K 100K 1M 10M0 10 100
R e q u e s te d F ile S iz e in B y te s

(a)
R e q u e s te d File S iz e in B y te s

(b)

F ig u re 3.9: (a) The regular request size distributions of no prefetching scheme, and prefetching
schemes with thresholds 0.01 and 0.10; (b) The correspondent prefetch request size distributions

The left figure gives the comparison of the size distributions of regular requests among

no prefetching scheme and the prefetching schemes with thresholds 0.01 and 0.10. The

right figure gives the comparison of the size distributions of prefetch requests in the same

experiments. The request size distribution is similar between the prefetch requests and

the original requests when prefetching is not used, while the distribution changes a lot for

regular requests because the a high percentage of small-sized objects have been prefetched.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66

In order to accurately compute the device utilization and correspondent average response

time, we need to account the changes of the request size distribution.

Classifying All Requests B y Size

As pointed out in [47, 84], average results for the whole population of requests would

have little statistical meaning due to the large variability of the size of objects. The accuracy

of service demands estimation can be improved by dividing the requests into a number of

levels by the object sizes.

In our experiments, we also define the maximal size of objects to be prefetched, which

should also be considered when categorizing the requests. For the WorldCup 98 traces, the

size ranges for different levels are shown in Table 3.2.

Level File Size Range Request Percent Average File Size CPU NIC
1 [0 KB, 5 KB) 84.6% 1.1 KB 0.4 ms 0.09 ms
2 [5 KB, 20 KB) 11.9% 10.8 KB 0.8 ms 0.89 ms
3 [20 KB, 100 KB) 3.4% 33.6 KB 1.7 ms 2.78 ms
4 [100 KB, oo) 0.83% 1149.7 KB 44.2 ms 95.3 ms

T ab le 3.2: Characterizations of Different Level (Table Level Demand)

■S 5 0

4 0

2 0 0 4 0 0 6 0 0 8 0 0

R e q u e s t Arrival R a te (r e q u e s ts /s e c o n d)

(a)

2 0 0 4 0 0 6 0 0 8 0 0

R e q u e s t Arrival R a te (r e q u e s ts /s e c o n d)

(b)

1000

F ig u re 3.10: The CPU utilization and the correspondent service demands of level 2 requests with
different rates

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67

In order to measure the service demands for every level, we measure the CPU, NIC

and disk utilization by changing request arrival rate A with different parallel connections.

The CPU and disk utilization are taken from the Linux /p ro c filesystem and the the NIC

utilization is taken using tcpdump. In our experiments, we find the disk utilization is

marginal and we do not count it in our following analysis. As an example, Figure 3.10

shows the results of the requests in level 2, which is measured by using a PHI 500 MHz

computer with 128 MByte memory and a 100 Mbps Ethernet card as the Web server. The

left figure shows the CPU utilization with different request arrival rate and the right figure

shows the correspondent service demands. The CPU utilization is increased less slowly than

the request rate, which results in lower service demands due to more parallel connections.

In our experiments, when a single connections is used to send and receive the request, the

level-2 requests has higher service demands (about 1 ms). W ith a large number of parallel

connections (larger than 10), the service demands are decreased to 0.8 m s. Considering a

busy server connected by a lot of clients, we use 0.8 m s as service demand for the requests

in level 2.

Level 1 Level 2 Level 3 Level 4 Overall
Threshold Ai(%) Pi(%) a2(%) P2(%) a3(%) P3(%) M %) Pa{%) A { %) P(%)
0.01 - 20K 32 93 21 85 / / / / 30 89
0.05 - 20K 44 82 35 71 / / / t 43 78
0.15 - 20K 54 49 49 44 / / / / 54 47
0.25 - 20K 57 24 51 25 / / / / 56 24
0.35 - 20K 62 14 57 13 / / / / 61 13
0.45 - 20K 53 5.9 49 6.7 / / / / 52 5.8
0.55 - 20K 49 2.1 47 3.0 / / / / 49 2.2

Table 3.3: Relationships Among Accuracy, Hit Ratio and Threshold (Table T, A, and P)

As we discussed in the previous section, in order to estimate the prefetch effects, we first

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

68

need to build a table to collect the accuracies and hit ratios for all possibly used thresholds.

Table 3.3 shows the results from traces of day 45, randomly selected from the 92-day period.

For those thresholds larger than 0.6, the hit ratios are less than 1% and have very limited

influence on the response time. We only focus on thresholds from 0.01 - 0.55.

3.3.6 P refetch in g Perform ance E valuation

Request Arrival R ate Estimation

0.01

^ 0 . 0 5

o
"§ 5 0 . 1 5
CD

- C
I— 0 . 2 5

o
■JE 0 . 3 5
" S

0 . 4 5

0 . 5 5

1 0 0 5 0 0 0 1 0 0 2 0 0 3 0 0

R egu lar R e q u e s t R a te P re fe tch R e q u e s t R a te

F ig u re 3.11: The request distributions for each level with different thresholds

In order to evaluate the CPU utilization when prefetching is applied, we need to know the

both regular and prefetch request arrival rates, which can be calculated by using Table 3.3.

The estimated values for a specific request arrival rate (A = 100) are shown in Figure 3.11.

It clearly shows tha t the regular request arrival rates can be effectively reduced by setting

low thresholds, while the prefetch request arrival rates is increased very fast. For example,

if the threshold is set to 0.01, the regular request rate is reduced to 10 requests/seconds

and the prefetch request rate is close to 300 requests/second. Compared with the request

arrival rate without prefetching (100 requests/second), the load on the server is increased

significantly.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69

Server Capacity

As we pointed in previous section, the server capacity is determined by the bottleneck

device, which is the CPU in our experiments. In order to estimate the CPU utilization,

we need to know the request arrival rates in all levels and the service demands of each

level request. The estimated server CPU utilization for a specific request arrival rate (100

requests/second) is shown in Table 3.4. As expected, when a low threshold is set, the

CPU utilization is increased with the increment of request arrival rates. However, the CPU

utilization is increased at a slower pace than the request rate due to a larger percentage

of small-sized requests. For example, if threshold is set to 0.01, the request arrival rate is

increased from 100 to 305, while the CPU utilization is increased from 5.4% to 15.5%.

Level/Threshold 0.01 0.05 0.15 0.25 0.35 0.45 0.55 No Prefetch
1 251.77 172.86 119.92 99.92 91.86 89.03 86.45 84.6
2 49.96 27.59 17.35 14.76 13.06 12.78 12.3 11.9
3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
4 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

Total Request 305.2 203.9 140.8 118.2 108.4 105.3 102.2 100
Demand (ms) 155.1 103.4 73.0 62.7 57.9 56.6 55.1 54.0

CPU Utilization 15.5% 10.3% 7.3% 6.3% 5.8% 5.7% 5.5% 5.4%

T ab le 3.4: CPU Utilization Comparison among Different Thresholds

Response Time

Once we have the device utilization, we can use the service demands to estimate the

average response time of each device. If we assume all prefetched files can be fully down

loaded before the clients explicitly request them, the server processing times of prefetch

requests are not perceived by clients. Since only part of requests (regular requests) are

explicitly sent out by clients, the client-perceived server response time can be reduced after

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70

prefetching is deployed. As an example, the number of regular requests and the average

client-perceived server response time are shown in Table 3.5 when the request arrival rate

is 100 requests/second. For all thresholds in this table, prefetching can always reduce the

client-perceived average response time, especially the minimal value is achieved when the

most aggressive threshold 0.01 is selected. Although the CPU average response time is

increased for each level requests when prefetching is used due to higher CPU utilization,

the number of regular requests can be significantly reduced. When the threshold is 0.01,

the request rate explicitly sent by the clients is decreased to 11.2 requests/second from 100

requests / second.

No Prefetch
A RT{ms) >

ii=0.01
RT(ms)

II

<<

=0.05
RT(ms)

T=
Ar

=0.15
RT(ms)

T=
Ar

=0.25
RT(ms)

T=
Ar

=0.35
RT(ms)

Level 1 84.6 0.42 5.9 0.47 15.2 0.45 43.15 0.43 64.3 0.43 72.76 3.73
Level 2 11.9 0.85 1.79 0.95 3.45 0.89 6.66 0.86 8.93 0.85 10.35 4.47
Level 3 3.4 1.80 3.4 2.01 3.4 1.90 3.4 1.83 3.4 1.81 3.4 5.97
Level 4 0.083 46.72 0.083 52.31 0.083 49.30 0.083 47.68 0.083 47.16 0.083 66.86
Overall 100 0.56 11.2 0.16 22.1 0.20 53.3 0.35 76.7 0.45 86.6 0.50

T ab le 3.5: Response Time Comparisons Among Different Thresholds

2.5

<0£
<D
£I-0
(0co
Q .</)0
DC No Prefetch — ■-

Threshold 0.01
Threshold 0.05 *
Threshold 0.15 B
Threshold 0.25
Threshold 0.35 —

0.5

200 400 600 800 1000 1200 1400 1600 18000
Request Arrival Rate (request/second)

F ig u re 3.12: CPU response time comparisons among different thresholds

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

The response time with variable request arrival rates are shown in Figure 3.12. It is

clear tha t low thresholds should be used when the server’s load is light while high thresholds

should be set for heavy server’s load. It is also interesting to observe tha t prefetching can

not bring any benefits if the request rate is larger than 1000 requests/second. However,

most Web servers are utilized far below the maximal capacities to accommodate the bursty

request streams. Thus, prefetching can be an effective way in most cases in practice. In

our experiments, the response time is normally below 3 m s, which limits the performance

improvement of prefetching. If we consider dynamic content with response time of hundreds

of milliseconds, prefetching can significantly reduce the response time perceived by clients.

3.3 .7 Im plem en tation

We have implemented the proposed prefetching methods on Apache 2.0.40 [2], The Web

server will make predictions for all requests. When it prepares to serve the responses, pre

diction results will be added in the header and sent back to the clients. When persistent

connections are used, a connection can receive both types of requests from the same client.

Two kinds of headers have been added in the request: R egular and P re fe tc h , which are

included in regular requests and prefetch requests, respectively. When more than one pre

vious URL is used to make predictions, the clients also include previous access information

with the header. In order to make it compatible with the currently deployed protocols, ev

ery request without the additional headers is considered as a regular request. A new header

P re d ic t io n in the server’s response header is added to convey the prediction results.

Periodically, the Web server checks if threshold is suitable for current average request

arrival rate. A counter is used to record the number of requests received in the last period.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72

When the predefined time slice is reached, a maintenance procedure is called. First, it

estimates the average request rate in the last period. Then it checks if the current threshold

is suitable and selects an optimal one for the current load level. When the request rate is

lower than a predefined value, the minimal prefetch threshold value is set safely. For the

WorldCup 98 traces, we repeat the procedure every 10 seconds.

Our analysis in previous section assumes tha t the server knows the client status on

current request (hit/miss). It requires an additional message from a client to inform the

server when a prefetch hit happens. Our experiments indicate this may significantly increase

the overhead on the server. However, if no predictions are made in this situation, the hit

ratios can be reduced by 20%. In our implementation, the Web server makes predictions for

all incoming requests. When clients receive the prediction results with prefetched objects,

they will cache them as well. When those prefetched objects are requested, the client can

use the cached prediction results to generate prefetch requests. Although it is not always

accurate when more than one previous URL is used, our experiments demonstrate the hit

ratio is only 5% lower while up to 40% messages are reduced, compared with the method

using an additional message for a hit on browser cache.

Several tools are available to simulate the clients sending requests to Web servers. In

stead of testing the capacity of the Web server, we need to replay the request streams from

different clients by the original time order. SPECweb99 [10], s-client [14] and WebStone

[114] use synthetic workload to benchmark the Web servers, while real clients’ traces should

be used to test the effects of prefetching on clients’ caches, in order to avoid the problems of

synthetic workload mentioned in [17]. Another popular tool, h ttperf [88], which can replay

a fixed set of URLs at a given rate, is not suitable for our experiment either, since the time

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

73

information is im portant to evaluate a Web server system with prefetching.

The clients are simulated by an enhanced WebStone 2.5. In our enhanced WebStone 2.5,

every client process has a URL list recording the requested URLs and the time to send the

request, which is extracted from the real Web server traces. In the current implementation of

WebStone, the maximum number of w eb c lien t process is set to 1024, due to the limitation

of the number of sockets for a process to open simultaneously. In order to make it scalable,

we assign every webclient process several real clients, represented by several URL lists. In

this way, we can simulate more than 1024 clients by using a relatively small amount of

processes on a limited number of machines.

There are several limits in using multiple processes on one computer. First, the simu

lation depends on the OS to schedule the processes, which may decrease the burstiness of

the original workload. Second, different processes may compete with each other the avail

able network bandwidth. However, these effects are marginal in our experiments for the

following reasons:

• Although the number of processes is up to 200 in one computer, the average number of

processes to be scheduled is about 20, because the average requests rate every second

is about 1/10 of the number of clients. The client-side computers never became the

bottleneck measured by CPU and network utilizations.

• In our server traces, the interval of the timestamp is one second, which makes it

meaningless to replay the workload strictly by time order.

• Our network interface is pretty fast. Because a very limited number of clients send/receive

requests/responses to/from the servers, the competition for network bandwidth has

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74

trivial effects on client-perceived latency.

w e b c lie n t w e b c lie n t w eb c lien t
w e b m a ste r w eb c lien t w e b c lie n t w eb c lien t

L A N A

Router

LAN B

Web Server

F ig u re 3.13: The experimental environment

The experimental environment is shown by Figure 3.13, where simulated clients and the

Web server are located in different 100 Mbps Ethernet LAN connected by a router. On the

client side, a number of clients, which are represented by processes (webclient) distributed on

a number of computers, send requests to the server. The webmaster is running on another

computer to manage the webclient processes and collect the results from all webclients. A

number of h ttp d processes are created in the server to process incoming requests.

In our experiments, 100 to 1000 webclients, each in charge of 15 real clients, are equally

distributed on 5 computers with Intel 2.26 GHz P4 CPU and 1 GByte memory. The Web

server uses a computer with Intel 500 MHz PHI CPU with 128 MBytes memory and a 100

Mbps Ethernet card. The Apache Web server uses the worker module to support threads

for high performance and uses default parameters in Apache h t t p d . conf to set the initial

number of server processes and maximum number of simultaneous client connections. All

machines run the Linux operating system with kernel 2.4.18.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

All webclient processes read client traces extracted from traces of day 46 from the

WorldCup 98 Web server traces. We use a 10-minute section in the trace of day 46. During

the 10 minutes, 15,304 clients visited WorldCup 98 Web site. The cache status has influential

effects on hit ratios. In order to make the results more accurate, before we start our

experiments, we use a previous hour period trace to warm up the browser caches. The

server uses 300,000 requests in the day 46 trace as the training data to build the predictor.

The effectiveness of our adaptive prefetching model is evaluated by two metrics.

• The accuracy of estimating server’s capacity. An accurate estimation is im portant to

prevent the Web server from being overloaded.

• The accuracy of estimating server’s response time. This value is essential to select the

optimal threshold to adjust the aggressiveness of Web prefetching.

In order to make the results clear, we select a normal used threshold 0.05 to present the

related results in this section.

Server Throughput

By adjusting the number of clients, a request stream with a variable request rate is

used to test the performance of different schemes. Starting from 1,500 clients, an additional

1,500 clients will be added every minute, which results in total 15,000 clients at the end of

in the 10 minute test. The request arrival rates and correspondent server throughput for

both schemes are presented in Figure 3.14.

In both schemes, the server’s throughput is always equal to the request arrival rate until

the server’s capacity is reached. For the prefetching scheme with threshold 0.05, the server

can process up to 2000 requests per second while it can only process up to 1500 requests

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

76

Request Arrival Rate X vs. Throughput X

0)

0)acc

a>
DC

3000

2500

2000

1500

1000

X Without Prefetch
X Without Prefetch

X With Prefetch
X With Prefetch

500

0
0 2000 4000 6000 8000 10000 12000 14000

Simulated Clients

F ig u re 3.14: The server throughput and request arrival rates of no prefetching scheme and a
prefetching scheme with threshold 0.05

per second in no prefetching scheme. There are two reasons: a) the average service demand

per request in the prefetching is lower tha t tha t in no prefetching scheme, b) the ratio of

small sized requests is increased when prefetching is used.

Server Capacity

N o P re fe tch in g D e v ic e s ' U tilizations (P re fe tch in g W ith T h re sh o ld = 0 .0 5)

2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 0

S e rv e r T h ro u g h p u t (r e q u e s t/s e c o n d)

(a)

100

80

60

4 0

U p u P red ic te d
jcp , ; M easured
)Nic P red ic te d
iN r M e a su re d

20

0
2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 00

S e rv e r T h ro u g h p u t (r e q u e s t/s e c o n d)

(b)

F ig u re 3.15: (a) The server resource utilizations when no prefetching is used; (b) The comparison of
resource utilization between the estimated from the model analysis and measured in our experiments
when prefetching is used with threshold 0.05

The server resource utilizations for different server throughputs are shown in Figure 3.15.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

77

The left and right figures present the results for no prefetching scheme and prefetching with

threshold 0.05, respectively. W ith the increase of the server throughput, the CPU utilization

is not increased proportionally. When the throughput is approaching the server’s capacity,

the CPU utilization is increased at a lower pace. As pointed in [47, 84], the service demands

can be higher due to the existences of the burstiness in Web request streams. When the

request arrival rate is close to the server’s capacity, the effects of burstiness on the service

demands is reduced. The predicted service utilizations for CPU and NIC are proportionally

increased, as shown in the right figure. Our measured results are within 5% from the

predicted values.

A verage R esponse T im e

The server’s response time is the sum of all device response times. In our experiments,

the CPU is the bottleneck and the NIC response time is proportional to the server through

put. In Figure 3.16, we present the average CPU response time comparisons between the

experimental results and the values predicted by our model. The left figure shows the

average CPU response time when prefetching is used. The line is the estimated value by

using the queuing model and the points are calculated from our experiment results. When

the server’s throughput is not very high (less than 1500 requests/second), our model can

accurately estimate the response time, while our predicted results become higher than ex

periment values with the increase of server throughput since the CPU utilization is lower

than predicted. The right figure shows the comparison of the average client-perceived CPU

response time between the no prefetching scheme and the prefetching scheme with thresh

old 0.05. The x-axis is the request arrival rate when prefetching is not used. The two

lines are estimated average client-perceived CPU response time for no prefetching scheme

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78

and prefetching scheme with threshold 0.05. The points are calculated value from our ex

periment results. Prefetching with fixed thresholds 0.05 can reduce the response time for

light load (e.g., less than 800 requests/second), while prefetching increases the response

time for heavy load. Our predicted results are accurate, which can be used to optimize the

prefetching aggressiveness.

A v e ra g e C P U R e s p o n s e T im e A v e ra g e C P U R e s p o n s e T im e

3

2 .5

2

1.5

1

0 .5

0
0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 0

S e rv e r th ro u g h p u t (r e q u e s ts /s e c o n d)

(a)

E.
<1)£
oCO
ca(0<1)

c r

3

2 .5

2

1.5

1

0 .5 E s tim a te d W ithout P re fe tc h
M e a su re d W ith P re fe tc h
E s tim a te d W ith P re fe tc h00 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 0

N o P re fe tc h in g R e q u e s t Arrival R a te (r e q u e s ts /s e c o n d)

(b)

Figure 3.16: (a) The comparison of server response time between the estim ated from the model
and calculated in our experiments when prefetching is used with threshold 0.05; (b) The comparison
of client-perceived server response time in the same experiments

3.3 .8 Sum m ary

In this section, we analyze the effects of Web prefetching on Web server’s average response

time. Although prefetching is well known for its potential to improve Web latency, our

study shows it can also increase the Web server response time without proper controls. We

have made the following contributions in this study:

• We have developed an open queuing network model to characterize the interactions

between prefetching and Web server workloads. The model is validated and proved

to be accurate by trace-driven simulations and Web server measurements.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

79

• Based on our analysis, we propose an adaptive prefetching scheme to prevent Web

servers from being negatively interferenced by prefetching. By monitoring the request

arrival rate, the Web servers can adjust the threshold adaptively and periodically to

maximize performance.

• We have also effectively implemented our prefetching scheme on an Apache server.

The measurement results show tha t our methods are accurate and responsive, and

demonstrates tha t if the prefetching is used properly, the response time perceived by

clients can be significantly improved.

We are currently testing our adaptive prefetching scheme embedded in the Apache server

in a real-world Internet environment, where diverse types of Web accesses are conducted,

including dynamic and multimedia contents.

3.4 Coordinated D ata Prefetching by Utilizing Reference In

formation at Both Proxy and Web Servers

3.4.1 O verview

Existing prefetching models are either server-based [19, 56, 83] or proxy-based [64, 61]. In

a server-based environment, prefetching decisions are made based on the reference access

information provided by Web servers. Although Web servers may provide accurate access

information, frequent communications between clients/proxies and servers are required,

and causing some unnecessary network traffic. In a proxy-based environment, prefetching

decisions are made based on the reference access information in proxy servers. Since proxy

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

80

servers can only predict commonly shared data files among clients, the prediction accuracy

can be significantly limited without the input of global Web servers.

In this study, we will address the following three questions: (1) How im portant is the

reference access information in Web servers to data prefetching? (2) Under what conditions

is the prefetching accuracy of proxy-based technique sufficient? (3) Can we effectively

integrate both server-based and proxy-based techniques to achieve the goal of retaining the

prefetching accuracy of the server-based model and minimizing communication between

proxy and Web servers?

3.4 .2 E valuation M eth od ology

Our study and performance evaluation are based on trace-driven simulations. The evalua

tion environment consists of Web traces, and a simulated Internet environment with clients,

proxy servers, and Web servers. We will discuss the selected Web traces and our simulation

model in this section.

requests objects clients servers successful requests total Bytes requests / minute
D ayl 22,529,006 6,356,818 66,117 147,577 19,477,134 148,249,338,973 15,645
Day2 22,135,881 6,291,157 66,661 147,054 19,160,640 150,005,649,738 15,372
Day3 23,409,805 6,288,377 65,322 145,988 20,488,491 158,082,426,460 16,256
Day4 22,187,580 6,183,673 66,358 142,338 19,316,066 152,748,081,589 15,408
Day5 21,005,234 6,123,227 59,361 141,869 18,305,089 148,026,687,533 14,586

T ab le 3.6: Merged Boeing Proxy Traces of 5 Days

proxy 1 proxy 2 proxy 3 proxy 4 proxy 5 proxy 6
Total Clients 50 200 500 1,000 5,000 10,000

Total Requests 13,566 68,985 154,527 341,619 1,859,045 3,068,912
Successful Requests 12,275 60,613 133,517 302,856 1,607,145 2,653,288
Transferred M Bytes 123 360 1,559 2,080 13,353 20,745
Number of Servers 647 1,692 3,482 7,004 24,486 34,179

Number of Files 9,484 321,343 74,958 157,717 679,876 995,879

T ab le 3.7: Selected Scaled-Down Proxy Traces

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

81

The Boeing Company has six proxy servers in its Puget Sound firewall. The first 5

proxies are in a DNS round robin configuration for load balancing. The sixth is running a

newer version of software than the others, and is used as a parent for internal proxy cache

testing, are directed to this proxy. Since we are interested in tracing accesses of each client,

we have used the first 5 traces in our experiments. Table 3.6 presents the characteristics of

the 5 merged Boeing traces for 5 days.

One challenge in our study is the lack of correlated server traces and proxy traces

accessed by clients. In practice, the available traces are either proxy-based or server-based.

Individual server traces are not suitable because we are not able to distinguish accesses

between clients and proxy servers. Therefore, we have created pseudo server traces and

scaled-down proxy traces from the obtained Boeing proxy traces, which are big enough to

build pseudo server traces close to real ones.

We have created multiple proxy trace files with different numbers of clients accessing

the proxy. We call them scaled-down proxy traces. The numbers of clients we used are

50, 200, 500, 1,000, 5,000, and 10,000. The clients are randomly selected in the proxy file

for each pseudo proxy trace. Since each proxy trace file is a portion of the original Boeing

proxy trace file, the trace file contains realistic proxy access reference information. Table

3.7 presents the characteristics of the 6 scaled-down proxy trace files collected from the day

trace files on March 4, 1999.

We have created two types of pseudo server traces: global pseudo server traces, and

individual pseudo server traces. For a given scaled-down proxy trace, its global pseudo

server trace consists of traces accessing the servers listed in tha t proxy trace by all the

clients who do not use the proxy.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

82

server 1 server 2 server 3 server 4 server 5 server 6
Total Requests 648,534 243,462 210,131 182,541 157,466 140,473

Successful Requests 647,277 233,216 208,059 181,531 133,854 139,459
Transferred M Bytes 1,815 1,204 1,112 875 542 555

Total Clients 21,769 15,193 3,086 2,149 1,810 3,582
Number of Files 5,810 4,185 3,003 3,637 5,130 1,549

Distinct Request Ratio 0.28% 0.40% 0.59% 0.86% 1.75% 0.43%
Distinct File Access Ratio (%) 30.98 22.32 41.00 43.11 45.79 39.12

Concentration ratio (%) 93.79 87.40 93.22 92.43 87.74 90.94

T ab le 3.8: Selected Pseudo Server Traces

global 1 global 2 global 3 global 4 global 5 global 6
Total Requests 7,951,627 11,270,833 13,462,240 14,865,900 18,126,906 18,902,854

Successful Requests 6,850,784 9,866,199 11,718,589 12,897,176 15,689,774 16,414,926
Transferred M Bytes 38,886 59,204 76,752 82,450 114,371 119,795

Total Clients 63,054 64,769 65,182 65,517 65,987 66,068
Number of Files 1,505,796 1,969,177 2,464,367 2,794,933 3,818,797 4,136,209

Number of Servers 647 1,692 3,482 7,004 24,486 34,179

T ab le 3.9: Global Pseudo Server Traces

In each of the five merged Boeing proxy trace files, we identified several popular servers

tha t are frequently accessed by clients to form individual pseudo server trace files. Such an

individual pseudo server trace is created by collecting all access references to the identified

server. We use three invariants to determine whether such a trace is sufficiently realistic

to represent a server trace: (1) distinct request ratio (the percentage of distinct requests in

the total number of requests), (2) distinct file access ratio (the percentage of distinct files

in the total number of distinct server files), and (3) concentration ratio of references (the

percentage of requests concentrating on 10% of popular files). In practice, a regular Web

server’s distinct request ratio, distinct file access ratio, and concentration ratio of references

are below 3%, around 30%, and around 90%, respectively [12]. We selected 6 of them for our

trace-driven simulations. Tables 3.8 and 3.9 presents the characteristics of the 6 individual

pseudo server trace files and 6 global pseudo server trace files collected from the day trace

files on March 4, 1999.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

83

The standard 2-order PPM model [39] is used to make predictions in both proxy and

servers. The last two access requests will be used to predict the next immediate requests.

The threshold is 0.25 through all experiments.

• A Local Area Network (LAN) is constructed between clients and the proxy server. It

is a high bandwidth and low latency network with a round trip time, R T T < 1 ms.

• A Wide Area Network (WAN) is constructed between the proxy server and Web

servers. It is a high bandwidth and high latency network with a round trip time

R T T fa 90ms.

The procedure of prefetching has two parts: getting prediction results and downloading

predicted documents.

Since the clients will send requests for predicted documents after it receive the prediction

results from proxy/server, one RTT is needed to approximate the time of getting predicted

results.

In order to accurately compute the downloading time of prefetched files, we need to know

the available bandwidth and server processing rate. In our simulation, we don’t explicitly

define the two values. The field elapsed tim e in the proxy trace is used to compute the

downloading time. This field records how many milliseconds between a request accepted

and send to clients by th e proxy, w hich includes th e processing tim e on th e server and

transmission time between proxy and server. Based on others’ studies, the external latency

accounts for more than 80% of all response time. When the prefetched files are cached by

the proxy, the downloading time is 1/5 of tha t between the proxy and the server.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

84

Persistent connection and pipelining requests are also used in our experiments. We

assume only one persistent connections between the proxy/client and the server. When a

request is issued for predicted documents, it is unnecessary to build another TCP connec

tions, which needs one additional RTT. When there are more than one request for predicted

documents, they can be sent to the server without waiting the previous one to be finished

due to the existence of pipelining. Using default values of Apache H TTP server version 2.0,

we set a fixed holding time of 15 seconds for each persistent connection and a maximum

number of requests of 100 per connection. It is possible that elapsed tim e in the proxy log

includes the TCP connection time if the server doesn’t support persistent connection. We

admit it can make our results less accurate.

We assume each client has a browser cache of lOMBytes, which is the default value in

currently used browser such as Netscape, and the disk cache size of the proxy is 16 GBytes.

Both of them use LRU replacement policy. The value of proxy disk cache is big enough in

our simulation because the six proxies we constructed have total traffic from 123 MBytes

to 20 GBytes during our test period (1 day). Only proxy 6, having 10,000 clients, needs

to make replacement. The value of 16 GB can give us a chance to test the performance

when replacement is applied, although it doesn’t happen very often. We only prefetch the

documents whose sizes are less or equal to 50 KBytes, in order to reduce overhead caused

by inaccurate predictions.

3 .4 .3 L im its o f P roxy-B ased P refetch ing

We first investigated the conditions for a proxy-based prefetching technique to be effective.

An ideal server-based scheme assumes tha t every access from clients to the server can be

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

85

observed by the server regardless of the existence of proxies. A relative hit ratio for a given

proxy and Web server is defined as the ratio between a hit ratio obtained by a proxy-based

prefetching and a hit ratio obtained by a ideal server-based prefetching. The relative hit

ratio presents the relative prefetching ability of a proxy-based prefetching compared with

the ideal server-based prefetching.

1

0.9

0.8

0.7

| 0.6
ec
2 0.5

0.4

0.3

0.2

0.1

0
32 126 2561 2 4 8 16 64

1

0.8

|
I|
0
1i
o

0.6

0.4

0.2 proxyl i
proxy2 —x-
proxy3
proxy4 - e -
proxy 5 —
proxy6

126
0

1 2 4 8 16
Number of Clients Requesting the Same Server

32 64 256

(a) (b)

F ig u re 3.17: (a) The relative hit ratios for accessing each of 6 servers through the proxy where the
prefetching is made in the proxy; (b) cumulative density functions (CDF) for the six proxy traces
with 50 (proxy 1), 200 (proxy 2), 500 (proxy 3), 1,000 (proxy 4), 5,000 (proxy 5), and 10,000 (proxy
6) clients

Making prefetching predictions at the proxy for the 6 individual servers, we have ob

served the changes of relative hit ratios by increasing the number of clients to access the

proxy (see the left figure in Figure 3.17). We repeated each experiment with an individual

server 20 times and presented the average results. This study indicates tha t proxy-based

prefetching ability, m easured by th e re la tive h it ra tios, increases as th e num ber of clients

served by the proxy for accessing a particular server increases. For example, as the number

of clients increases to 16 and 64, the average relative hit ratios increase to 59% and 79%,

respectively, for accessing each of the six servers from the clients.

The next im portant question we want to ask is about the shared request distributions

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

86

to different servers through the proxy in a global Internet environment. Studying the

distributions, we are able to evaluate the effectiveness and limits of proxy-based prefetching.

The distributions presented in the right figure in Figure 3.17 are measured by the cu

mulative density functions (CDF) for the six proxy traces with 50, 200, 500, 1,000, 5,000,

and 10,000 clients, respectively. The average percentage of the requests consisting of 16 or

fewer shared clients going through the proxy to Web servers is 59%.

The distribution study indicates tha t in a normal proxy server with 1,000 clients, proxy-

based prefetching can reasonably satisfy less than 40% of the requests by achieving approx

imately a 60% relative hit ratio. However, for more than 60% of the requests, proxy-based

prefetching may not be sufficiently effective. In order to improve the access hit ratios, we

should adaptively rely on server-based prefetching for those requests that do not have a

sufficient number of shared clients.

3.4 .4 L im its o f Server-B ased P refetch in g

W ith an increasing number of proxies being installed in the Internet to provide caching

storage for clients, the burden of a huge number of direct requests to Web servers can

be lightened. On the other hand, the accesses directly observed by the Web servers also

decrease, which will inevitably weaken the server-based prefetching capability, because this

prefetching mainly relies on the quality and quantity of the access information obtained in

the Web servers.

We use a relative hit ratio to quantify the prefetching capability, which is defined as

the ratio between the hit ratio obtained by a practical server-based prefetching and the hit

ratio obtained by the ideal server-based prefetching. In our experiments, we used the same

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

87

1

0.8iA

!i
o

0.6

a o.4

I
1o. 02

0
1 2 4 32 64 126 266

0.8

£
0.6

x

0.4

0.2

0
1 2 4 8 16 32 64 128 256

(a) (b)

Figure 3.18: (a) The relative hit ratios for accessing each of 6 servers through the proxy where
the prefetching is made in the server; (b) The percentage of requests observed by server through
different size proxies

6 individual Web traces. In order to build a predictor tree in a Web server, we limited

the number of clients connected to the proxies to 10% of the total clients, and changed the

number of clients served per proxy during the experiments.

The left figure in Figure 3.18 presents the changes of relative hit ratios on the 6 servers

as the number of clients served per proxy increases. Our trace-driven simulation results

show tha t the server-based prefetching capability is weakened significantly as the number of

clients served per proxy increases. For example, as the number of clients per proxy increases

from 1 to 16, and to 64, the average relative hit ratios decrease from 100% to 65%, and to

50%, respectively.

We have also measured the changes of the number of requests observed by Web servers as

the number of clients served per proxy increases. This evaluation quantitatively shows the

trade-offs between lightening the server burden and weakening the server-based prefetching

capability. The right figure in Figure 3.18 presents the ratios of number of requests to a

server between a practical server-based prefetching and the ideal server-based prefetching

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

88

on the 6 servers as the number of clients per proxy increases. The ratios also reflect a

rapidly decreasing trend of the number of accesses to the server as the number clients per

proxy increases.

By comparing the two figures in Figure 3.18, it is interesting to observe tha t the ability

of server-based prefetching measured by the relative hit ration decreases faster than the

decreasing pace of the number of requests received by the servers. For example, when the

number of clients is 16, the ability of prefetching is about 65% while the number of requests

is about 75%. Since the server could not observe all client’s requests due to proxy caching,

the successive requests from the same client received by the server may not be sequential.

However, in order to increase accuracy, prediction algorithms are usually based on several

past accesses.(in our experiments, we use two previous accesses to make prediction for next

accesses.) In this situation, the accuracy of server-based predictions is a little lower than

the ideal scheme.

3.4 .5 C oord inated P roxy-Server P refetch ing

Prefetching w ithout Coordination

A simple way to overcome the limits of proxy-based and server-based prefetching is to

let proxy and server make predictions independently. In this method, the proxy makes

predictions for the requests from clients and the server makes predictions for those requests

forwarded by the proxy. The proxy and the server do not know the existence of each

other. Because the predicted documents are selected by predetermined thresholds, not

all predictions would have results. We define a useful prediction as one giving prediction

results. An improvement on this simple prefetching is to let the server make predictions

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

89

1

0.95

0.9

0.85

o.e

0.75

0.7

0.66

0.6 0 1 2 3 4 5 6 7 8

0.95

0.9

0.85

0.8

0.75

0.7

0.85

0.6

0.55

0.5

0.45 2 5 6 7 80 1 3 4
Number of Clients P e r Proxy(log2)

(a)
Number of Clients Per Proxy(log2)

(b)

Figure 3.19: (a) The relative hit ratios for accessing each of 6 servers through the simple proxy and
server prediction scheme; (b) The relative predictions made by simple proxy and server prediction
scheme

when the proxy has no prediction results. We tested the performance of these two schemes

by using the 6 individual server traces. We define a relative hit ratio as the ratio between a

hit ratio obtained by simple proxy-server prefetching and the improved prefetching scheme.

The results are shown by the left figure in Figure 3.19. The relative hit ratio is decreased

as the number of clients per proxy increases first, but it becomes stable when the number

of clients is large enough. We observed tha t when there are more than 4 clients per proxy,

the average relative hit ratio is about 80% which means the improved prefetching scheme

outperforms simple proxy-server prefetching 25%.

We also measured the number of useful predictions made on both proxies and servers.

The right figure in Figure 3.19 shows tha t the effectiveness of prefetching is proportional to

the number of useful predictions, no m atter where the prediction is made.

Effectiveness of Coordination

Prefetching will generate overhead on servers. In an ideal server-based prefetching sys

tem, a prefetching process will start from a server connection by a client or a proxy after a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

90

hit or a miss to a requested object in the browser or the proxy. The server will then either

send the object along with a list of URLs of predicted objects related to the requested

object, if the requested object is missed in the browser or proxy, or just send the list of

URLs of objects, if the requested object is hit in the browser or proxy. After receiving the

list, the client makes a local search to provide a selected list of URLs of objects tha t are

not available in the browser or the proxy. This list will be sent to the server again. The

server will send the selected objects to the client or proxy. The server will be contacted

twice by short messages, called packets, from the client or proxy. We compare the numbers

of packets used for the server connections between the server-based prefetching and the

coordinated proxy-server prefetching. The packet reduction rate is calculated by

j-y Pserver Pcoordin
■V packe ts — ^ >

* s e r v e r

where Pserver is the number of packets generated from server-based prefetching, and PCOordin

is the number of packets generated from coordinated prefetching.

The left figure in Figure 3.20 shows packet reduction rates of the coordinated proxy-

server prefetching technique over the server-based prefetching system for each of the six

individual server traces as the number of clients increases. The reduction rate proportionally

and significantly increases as the number of clients increases.

The coordinated proxy-server prefetching technique moves some of the prefetching de

cisions to the proxy, so tha t the number of prefetching decisions made in Web servers

is reduced. As a result, computing overhead in servers for prefetching can be effectively

reduced. The overhead reduction rate is calculated by

0 Pserver Pcoordin
o ve rh ea d , — JZ >■L-'server

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

91

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 2 4 6 3216 64 126 266

0.6

0.5

0.4

0.3

. 0.2

0.1

1 20
8 16 32

Number of Clients Per Proxy
64 128 2564

(a) (b)

Figure 3.20: (a) The packet reduction rate by using coordinate prefetching compared with server-
based prefetching; (b) The overhead reduction rate by using coordinate prefetching compared with
server-based prefetching

where D server is the number of decisions made by server-based prefetching, and Pcoordin is

the number of decisions made by coordinated prefetching.

The right figure in Figure 3.20 shows the overhead reduction rates of the coordinated

proxy-server prefetching technique over the server-based prefetching system for each of the

six individual server traces as the number of clients increases. We show tha t the overhead

reduction rate increases as the number of clients increases.

Coordination Algorithm

Our objective is to adaptively utilize the reference information at both proxy and Web

servers. Study([61]) showed the information of access from clients are still very useful for

the proxy’s predictions. In our algorithm, we still include the input from the clients even

when a hit happens in the browser cache. Figure 3.21 presents the outline of the coordinated

proxy-server prefetching technique. Upon a client request of an object file, if the request

hits in the browser, the object will be accessed locally. The client will also inform the proxy

about the access to the object file, and initiate the coordinated proxy-server prefetching

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

92

process. If the request misses in the browser, the request will be forwarded to the proxy,

and the coordinated proxy-server prefetching process is initiated. Starting in the proxy, the

coordinated proxy-server prefetching process will handle the following four different cases

in the proxy:

1. if the object exists and prefetching information related to the object is available in

the proxy;

2. if the object does not exist and prefetching information related to the object is not

available in the proxy;

3. if the object exists and prefetching information related to the object is not available

in the proxy; and

4. if the object does not exist and prefetching information related to the object is

available in the proxy.

A proxy-based prefetching procedure will handle case 1, while a server-based prefetching

procedure will handle case 2. We propose the proxy-server-based prefetching procedures (I)

and (II), defined below, to handle case 3 and case 4, respectively. The 4 procedures involved

in the coordinated proxy-server prefetching process are shown in Figure 3.21.

server-based prefetching procedure:

(a) The proxy forwards the client request to the server, and asks the server to prefetch

related objects based on its PPM model.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Object Exist

' Prefet ^
.Info. AvaiL

' P re fe t .^
.Info. AvaiL

' Prefet, ^
.Info, AvaiL

Proxy-Based
Prefetching
(Without sending
Object to Client)

Informs Proxy

the Accessthe Request

Proxy-Server
Prefetching

Proxy-Server
Prefetching

Server-Based
Prefetching

(Without Sending
Object to Client)

Figure 3.21: The coordinated proxy-server prefetching system design.

(b) The server sends the requested object to the proxy along with a list of URLs of predicted

objects.

(c) The proxy stores the object, and sends it to the client along with the list of URLs of

predicted objects.

(d) After a local searching, the proxy sends a selected list of URLs of predicted objects to

the server.

(e) The server sends the selected objects to the proxy. Meanwhile, the client sends a selected

list of URLs of predicted objects to the proxy after a local searching.

(f) The proxy sends the selected objects to the client.

proxy-based prefetching procedure:

(a) The proxy sends the requested object to the client, along with a list of URLs of predicted

objects.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94

(b) After a local searching, the client sends a selected list of URLs of predicted objects to

the proxy.

(c) The proxy sends the selected objects to the client.

proxy-server-based prefetching procedure (I):

(a) The proxy sends the object to the client, and asks the server to prefetch related objects

based on its PPM model.

(b) The server sends a list of URLs of predicted objects.

(c) The proxy sends the list of URLs of predicted objects to the client.

(d) After a local searching, the proxy sends a selected list of URLs of predicted objects to

the server.

(e) The server sends the selected objects to the proxy. Meanwhile, the client sends a selected

list of URLs of predicted objects to the proxy after a local searching.

(f) The proxy sends the selected objects to the client.

proxy-server-based prefetching procedure (II):

(a) The proxy forwards the client request to the server, along with a selected list of URLs

of predicted objects based on the local prefetching information and a local search.

(b) The proxy sends the selected list of URLs of predicted objects to the client.

(c) The server sends the selected objects to the proxy. Meanwhile, the client sends a selected

list of URLs of predicted objects to the proxy after a local searching.

(d) The proxy sends the selected objects to the client.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

95

3 .4 .6 Perform ance E valuation

Comparisons o f Hit and B yte H it Ratios

browser hits
f-prefetched hits
p-prefetched hits

browser hits
>-prefetched hits
p-pretetohed hits

proxyl proxy2 proxy3 proxy4 proxy5 proxy6 proxyl proxy2 proxy3 proxy4 proxy5 proxy®

(a) (b)

F ig u re 3.22: (a) The comparisons of hit ratios among the proxy-based, server-based, non
coordinated proxy-server, coordinated proxy-server, and ideal server-based prefetching techniques;
(b) The comparisons of byte hit ratios among the five prefetching schemes

Figure 3.22 presents hit ratio comparisons among proxy-based, server-based, non-coordinated

proxy-server, coordinated proxy-server, and ideal server-based prefetching techniques using

the six proxy traces and their pseudo global server traces. There are three parts of the

contribution to hit ratios: the browser cached files, prefetched files and files being prefetch

ing in browser’s cache. The left figure in Figure 3.22 shows tha t the hit ratios contributed

from proxy-server-based prefetching are significantly higher than those from proxy-based

prefetching, and they are comparable to the hit ratios from server-based prefetching for all

the 6 proxy traces. The average hit ratio from coordinated proxy-server prefetching is 75%

higher than tha t of proxy-based prefetching, 50% higher than tha t of server-based prefetch

ing, 30% higher than tha t of non-coordinated prefetching, and 3% lower than tha t of ideal

server-based prefetching. By using the proxy to make predictions, the ratio of hits from

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

96

prefetched files in browser’s cache is higher than those without the proxy’s participation.

It is more effective to reduce latency by applying proxy’s prefetch ability properly.

The right figure in Figure 3.22 presents byte hit ratio comparisons. We show tha t the

byte hit ratios are consistent with their hit ratio performance.

Reductions o f Global Web Server Loads

Server-Based■ I Proxy-Based
Server-Based

s Non-Coordinated
1 Coordinated
M i Ideal Server-Based

Coordinated
Ideal Server-Based

proxyl proxy2 proxyS pm*y4 proxyS proxy6 proxyl proxy2 proxyS proxy4 proxy5 proxyS

(a) (b)

Figure 3.23: (a) The packet reduction rates of the five possible prefetching schemes; (b) The
comparison of predictions made on servers of the five prefetching schemes

Using the same trace-driven simulation, we have compared the numbers of packets

received by servers, and the numbers of prefetching decisions made by servers for all tech

n iq u e s ^ proxy-based scheme in the latter comparison) in Figure 3.23. The trace-driven

simulations show tha t as the number of clients served by the proxy increases, the difference

of the numbers of packets sent to servers between the two techniques increases. For exam

ple, the packet differences are 434,393 representing a 48% reduction from the server-based

prefetching and 766,985 representing a 57% reduction from the server-based prefetching for

proxy 5 and proxy 6, respectively. The comparisons of the number of prefetching decisions

made by servers follow similar patterns. We should point out th a t the reduction rates are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

97

higher than the averages in section 5.2. One of the important reasons is the pseudo traces

we built. It is possible tha t the number of clients observed by servers is not sufficiently

larger enough than tha t observed by proxies, especially when the proxy is large.

Comparisons of Global Traffic and Local Network Traffic

x 10* x 10*

Proxy-Based

s 5

1
= 4

1 1 1 I A ll
proxy4 proxyS proxySproxyl proxy2 proxySproxyl proxy2 proxy3 proxy4 proxy5 proxy6

(a) (b)

Figure 3.24: (a) The comparison of global traffic of the five possible prefetching schemes for
different number of clients; (b) The comparison of local traffic of the five prefetching schemes

Traffic is another im portant metric to measure the effectiveness of prefetching schemes.

Normally, a prefetching method with high accuracy will achieve latency reduction by in

creasing a small amount of traffic. Due to the existences of proxies, the traffic inside the

proxy and outside the proxy are different. We define the traffic outside as global traffic,

which is measured as the total transferred bytes between proxies and servers. The traffic

inside is defined as local traffic, which is measured as the total transferred bytes between

proxies and clients.

The left figure and the right figure in Figure 3.24 shows the comparison of global traffic

and local traffic for 5 prefetching schemes respectively. There is no large difference among

the schemes (within 10%). Coordinated prefetching and Non-Coordinated prefetching needs

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

98

a little more traffic than other methods. It is noticeable tha t the proxy-based scheme’s

traffic is almost equal to ideal server-based prefetching, which means the accuracy of the

predictions made by proxies is lower than those made by servers.

3.4 .7 Sum m ary

In this study, we have investigated the issues of coordinations between proxy-based prefetch

ing and server-based prefetching. We show tha t the reference access information of servers

is important to data prefetching, but should be utilized effectively. Our trace-driven sim

ulations show tha t we have effectively integrated and coordinated both server-based and

proxy-based techniques to achieve the goal of retaining the prefetching accuracy of the

server-based model and minimizing the communications between proxy and Web servers.

3.5 Final Remarks

This chapter presented several techniques to improve the deployability of Web prefetching.

1. We proposed a popularity-based prefetching model. By ranking the URLs by relative

popularity, we can divide all URLs into different grades. It improves the conven

tional PPM methods by considering surfing regularities into building predictor trees.

Our popularity-based model can achieve much higher hit ratio while the structure is

much more space-effective. This design is for general-purpose, and can widely benefit

Internet prefetching deployment and applications.

2. We designed an adaptive prefetching scheme in which the prefetching threshold is

dynamically adjusted by the request arrival rate. In this method, we divide the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

99

request rate into different ranges and estimate the response time for each level when

different thresholds are used. When request rate is in one of the predefined range, the

appropriate threshold will be selected. This adaptive prefetching scheme addresses

the concerns of prefetching overhead. W ith this scheme, prefetching is no longer an

independent activity, but a coordinated effort with other activities of servers, such as

Web services, avoiding the negative effects of prefetching.

3. We analyzed the limits of proxy-based prefetching and server-based prefetching. Fur

thermore, we proposed coordinated prefetching by utilize the information from proxy

caches and Web servers. Our coordinated prefetching can significantly reduce the

server overhead while maintaining high performance. The technique addresses the

issue on effectively and globally utilizing the access information for prefetching.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

D N S C onsistency

4.1 Introduction

The Domain Name System (DNS) is a distributed database tha t provides a directory service

to translate domain names to IP addresses for millions of Internet sites. [86], [87]. DNS

consists of a hierarchy of nameservers, with thirteen root servers at the top. For such a

hierarchical system, caching is critical to its performance and scalability. To determine the

IP address of a domain name, the DNS resolver residing at a client sends a recursive query

to its local DNS nameserver. If no valid cached mapping exists, the local DNS nameserver

will resolve the query by iteratively communicating with a root server, a Top-Level Domain

(TLD) server, and a series of authoritative DNS nameservers. All the replied DNS messages

including referrals an d answ ers are cached a t th e local DNS nam eserver, so th a t subsequent

queries for the same domain name will be answered directly from the cache. Therefore,

DNS caching significantly reduces the workload of root and TLD servers, lookup latencies

and DNS traffic over the Internet.

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

101

However, DNS only supports weak cache consistency by using the Time-To-Live (TTL)

mechanism. The TTL field of each DNS resource record indicates how long it may be cached.

The majority of TTLs of DNS records ranges from one hour to one day [72], While most of

the domain-name-to-IP-address (DN2IP) mappings are infrequently changed, the current

approach to coping with an expected mapping change is cumbersome. Among numerous

DNS related RFCs, only RFC 1034 [86] briefly describes how to handle an expected mapping

change: “If a change can be anticipated, the TTL can be reduced prior to the change to

minimize inconsistency during the change, and then increased back to its former value

following the change.” ; but the RFC does not specify how much and in what magnitude

the TTL value should be reduced. The propagation of the mapping change may take much

longer than expected. This pathology is induced by some local DNS nameservers tha t do

not follow the TTL expiration rule and violate it by a large amount of time [92]. More

importantly, there are unpredictable mapping changes due to an emergency, such as terror

attacks or natural disasters, in which the loss or failure of network resources (servers, links

and routers) is inevitable [60]. We have to direct the related Internet services to alternative

sites, since people do need service availability at tha t crucial moment. Furthermore, the

widely-deployed dynamic DNS solution, which provides prompt IP mapping for each Web

site using a temporal IP assigned by Dynamic Host Configuration Protocol (DHCP), makes

the association between a domain name and its corresponding IP address much less stable.

Therefore, without strong cache consistency among DNS nameservers, it is cumbersome

and inefficient to invalidate the out-of-date cache entries. In addition, Internet services are

likely to be lost because of cache inconsistency. During the cache inconsistency period,

the clients served with out-of-date mappings cannot reach the right Internet hosts. An

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

102

aggressively small TTL (on the order of seconds) can lower the chance of cache inconsistency,

but at the expense of significant increase of the DNS traffic, name resolution latency and the

workload of domain nameservers [110]. Moreover, the TTL-based DNS redirection service

provided by Content Distributed Networks (CDNs) only supports a coarse-grained load-

balance, and is unable to support quick reaction to network failures or flash crowds without

sacrificing the scalability and performance of DNS [92].

In this chapter, we propose a proactive DNS cache update protocol, called DNScup to

maintain strong cache consistence among DNS nameservers and improve the responsiveness

of DNS-based service redirection. The core of DNScup uses a dynamic lease technique to

keep track of the local DNS nameservers whose clients are tightly coupled with an Internet

server1. Upon a DN2IP mapping change of the corresponding Internet server, its authori

tative DNS nameserver proactively notifies those local DNS nameservers still holding valid

leases. While maintaining strong cache consistency among DNS nameservers, dynamic lease

also minimizes storage overhead and communication overhead. Based on service importance

to their clients and client query rates, it is the local DNS nameservers themselves tha t de

cide on whether or not to apply for leases (or renewal) for an Internet service. On the

other side, the authoritative DNS nameserver grants and maintains the leases for the DNS

resource records of the Internet service. The duration of a lease is dependent on the DN2IP

mapping change frequency of the specific DNS resource record.

While strong cache consistency may be optional for general Internet services, DNScup

is essential to provide the critical or popular Internet services having always-on service

1 E ither the clients frequently visit the In ternet server or the services provided by the In ternet server is
critical to the clients.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

103

availability. In addition to maintaining cache coherence among DNS nameservers, DNScup

can also be used to improve the responsiveness of DNS-based network control as suggested

in [92]. Also, we can apply the functionality of DNScup to maintain state consistency

between a DNS nameserver of a parent zone2 and the DNS nameservers of its child zones,

in order to resolve the lame delegation problem [94].

Based on the DNS dynamic update protocol [103], we build a DNScup prototype with

minimized modifications to current DNS implementations [58, 87]. Our trace-driven sim

ulation and prototype implementation demonstrate tha t DNScup achieves strong cache

consistency of DNS and significantly improves its performance and scalability. Note that

DNScup is backward compatible with the TTL mechanism, and can be incrementally de

ployed over the Internet. Those local DNS nameservers without valid leases still rely on the

TTL mechanism to maintain weak cache inconsistency.

The remainder of this chapter is organized as follows. Section 4.2 presents our DNS

dynamics measurements. Section 4.3 gives a detailed description of the proposed DNScup

mechanism. Section 4.4 evaluates the DNScup based on the trace-driven simulations. Sec

tion 4.5 presents the prototype implementation of DNScup. Finally, we conclude the chapter

in Section 4.6.

4.2 D N S Dynam ics M easurement

The purpose of our DNS dynamics measurement is to answer the question of how often a

DN2IP mapping changes. In general, a mapping change may cause two different effects. If

2Zone is a delegated authority un it th a t is a manageable domain nam e space.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

104

the original DN2IP mapping is one-to-one, then the change may lead to the loss of Internet

services. We classify this kind of change as a physical change. However, if the original

DN2IP mapping is one to many, the changes may be anticipated to balance the workload

of a web site as CDN does. We classify these changes as logical changes.

To examine the DN2IP mapping change behaviors, one possible way is to use d ig to

contact remote nameservers directly. However, we observe tha t only about half of authori

tative DNS nameservers allow direct communication with remote resolvers. Therefore, we

set up a local DNS nameserver using Bind 9.2.3 [6] to generate probing DNS queries for a

collection of Web sites (more than 15,000). We purge our local cache every time we probe a

Web site, in order to guarantee tha t each response comes from an authoritative DNS name

server instead of the local cache. All measurement experiments were conducted between

November 30, 2003 to January 3, 2004. In the rest of this section, we describe the DNS

resource record classification and the collection of domain names. Also we present a tech

nique to differentiate the domains using CDNs, in which most of mapping changes are logical

changes, from the domains where most of mapping changes are physical changes, including

those using dynamic DNS. According to the affiliated Top-Level Domain (TLD) and the

popularities, we further categorize the domains into several groups. Then, we measure the

TTLs of their DNS resource records and investigate the effect of domain popularity upon

DNS TTL behaviors. Based on the measured TTLs, we choose the appropriate sampling

resolution to detect the DN2IP mapping changes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105

4.2 .1 D N S R esou rce R ecord C lassification

The various mappings in the DNS name space are called resource records. The most widely

used resource records include SO A records (authority indication for a zone), NS records

(authoritative name server reference lists for a zone), A records (domain name to IP address

mappings), PTR records (IP address to domain name mappings), MX records (mail exchangers

for a domain name), and CNAME records (alias to canonical name mappings). A type A record

provides the standard domain name to IP address mapping, while the other type records like

NS, CNAME and MX records are used as references. In most cases, more than one authoritative

DNS nameserver and mail exchanger serve the same zone due to reliability concerns. Among

these DNS resource records, the type A record is the most popular record being queried,

accounting for about 60% DNS lookups on the Internet [72],

Any type of resource records listed above may change for various reasons. For example,

the primary master DNS nameserver within a zone may increase the serial number in SOA

records to keep the records of the zone’s slaves updated; NS and MX records need to be

updated if any authoritative DNS nameserver or mail exchanger is renamed; A and PTR

records need to be changed if the domain name is either renamed or mapped to a different

IP address; changes on CNAME records have already been utilized by CDN providers to

redirect a client request to different surrogates. Note tha t CDN providers and popular Web

sites rotate different A records with small TTLs for the same domain name to balance the

workload of Web servers.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

106

100000

10000

</)
c '5
E 1000 o D
o
Q)
■Q 100
3z

10

1
1 10 100 1000 10000 100000 1e+06

N u m b e r o f R e q u e s t s

F ig u re 4.1: The regular domain name distribution with the number of requests in each groups

4.2 .2 D om ain N am e C ollection and G rouping

Since DNS is predominantly used by Web sessions to resolve the IP addresses of Web sites,

our measurements are focused on the dynamics of the mappings between Web domain

names and their corresponding IP addresses. We collected the Web domain names from the

recent IRCache [7] proxy traces between November 6, 2003 to November 12, 2003. All Web

domain names are classified into three categories: domains using CDN techniques, domains

using dynamic DNS techniques, and the rest of collected domains. We refer them as CDN

domains, Dyn domains, and regular domains, respectively. Because most CDN domains

and Dyn domains include specific text strings to indicate the names of their providers (e.g.,

Akamai for CDN domains, DynDns. com for Dyn domains), we can distinguish those domains

from the regular ones by the specific strings. In our measurement experiments, we examined

23 major CDN providers [3] and 95 major dynamic DNS providers [4].

Due to the large number of regular domains we collected, the regular domains are further

divided into nine groups with respect to their Top-Level Domains (TLDs). They are ended

with .com, .edu , .n e t , .o rg , .m il, .gov, .b iz , .coop, and country codes, respec-

.c o m
.e d u
.net
-orgeounuy

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

107

tively. The regular domain name distribution with the number of requests in each group

is plotted in Figure 4.1. As shown in Figure 4.1, most regular domain names fall into the

following five major groups: .com, .n e t , .o rg , . edu, and country domains. Each group

consists of three sub-groups:

• popular domains (with the number of requests being larger than or equal to 100 in

our one week trace3);

• normal domains (with the number of requests being less than 100 but larger than or

equal to 10 in one week trace); and

• unpopular domains (with the number of requests being less than 10 in one trace).

We select 1000 domain names from each sub-group of the five major groups, except for the

popular one of . edu group where we only have 514 domains available. Note tha t not all

domain names in our regular domain groups follow the strict one-to-one mapping between

domain names and IP addresses. Some domain names may use CNAME to avoid the direct

use of CDN/dynamic DNS providers.

4 .2 .3 T T L s’ D istr ib u tion

Different domain names have different TTL values for caching their DNS replies. The TTL

distribution of all measured domains is shown in Figure 4.2 (a). For CDN domains, the

majority of TTLs have the values of 20 or 120 seconds. For Dyn domains, the majority of

TTLs have the values of 30, 60, or 90 seconds. For regular domains, the majority of TTLs

3 T h e lim ited c lient space and th e h id den load factor o f cach ing reduces th e num ber o f requests we have
seen.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

108

» 0.8
c

| 0 . 7
o
9 0.6o

0 . 5
E

z 0 . 4

° 0 . 3LLQO .edii ..
. n e t
-ory

C D N - -
Dyn • -

0.2

0.1

1 0 0 0 0 1 0 0 0 0 0 1 e + 0 61 10 100 1000

1
0 .9

0.8

0 . 7

0.6

0 .5

0 . 4

0 . 3

0.2

0.1

0

.....................................

/ X
f j
r

f
popular — .—

JiM- normal ~ '
u n p op u lar.....»■■■■

T T L (s e c o n d)

(a) all

1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 t e + 0 6

T T L (s e c o n d)

. com(b)

F igure 4.2: TTL distributions: (a) All kinds of domain names; (b) .com domain names.

have the values of 300, 3600, or 86400 seconds. The TTL distribution of . com domain

names with different popularities is shown in Figure 4.2 (b). The TTL distributions for

other kinds of domains with different popularities are similar to tha t of . com. We observed

that the TTL of a domain name is independent of the domain’s popularity.

Table 4.1: Measurement Parameters
Class TTL (s) Resolution (s) Duration

1 [0,60) 20 1 day
2 [60,300) 60 3 days
3 [300,3600) 300 7 days
4 [3600,86400) 3600 7 days
5 [86400, oo) 86400 1 month

The sampling resolution of detecting a DN2IP mapping change is highly dependent upon

the values of TTLs. On one hand, our sampling resolution for a specific Web domain should

be at least as small as its TTL, in order to capture every possible change tha t could cause

cache inconsistency. On the other hand, to minimize the impact of probing DNS traffic,

our sampling resolution should be set as large as possible. Based on the measured TTLs’

distribution, we set different sampling resolutions to detect DN2IP mapping changes at

different Web sites. The sampling resolutions with respect to the range of TTLs are listed

in Table 4.1.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

PD
F

of
C

ha
ng

e
Fr

eq
ue

nc
y

PD
F

of
C

ha
ng

e
Fr

eq
ue

nc
y

PD
F

of
C

ha
ng

e
F

re
qu

en
cy

109

10'*

K T 8

10

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

C h a n g e F re q u e n c y (U p d a te s /R e so lv in g Q u e rie s)

(a) Class 1

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

C h a n g e F re q u e n c y (U p d a te s /R e so lv in g Q u e rie s)

(c) Class 3

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

C h a n g e F re q u e n c y (U p d a te s /R e so lv in g Q u e rie s)

10u

10''

10**

10

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

C h a n g e F re q u e n c y (U p d a te s /R e so lv in g Q u e rie s)

(b) Class 2
10c

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

C h a n g e F re q u e n c y (U p d a te s /R e so lv in g Q u e rie s)

(d) Class 4
New IPs Added

H Rotation
I CZ) IP* Changed

(e) Class 5

0,60) (60,300) [300,3600) (3600,66400) [66400,inf)

Domains Grouped by TTLs

(f) Change Classifications

Figure 4.3: The DN2IP mapping change for each class with different TTLs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

D2B

110

4 .2 .4 M easurem en t o f M apping C hanges

Each domain name in our collection is periodically resolved to check if the mapping has been

changed. Depending on the sampling resolution, the duration of a measurement experiment

varies from 1 day to 1 month. According to the sampling resolution, the Web domain names

being probed in our measurements can be divided into five classes as shown in Table 4.1.

Since all CDN and Dyn domains’ TTL values are bounded by 300 seconds, they belong to

either class 1 or 2. The regular domains of each TLD may fall into all five possible classes,

because of the wide spectrum of their TTLs.

A DN2IP mapping change is detected when the responses of two consecutive DNS probes

for the same domain name are different from each other. We define the relative change

frequency of a domain name as the ratio between the number of mapping changes we

detected and the total number of DNS probes we sent for that domain name. The absolute

change rate is the product of relative change frequency and the reciprocal of sampling

resolution. For ease of presentation, we employ relative change frequency as the metric to

study the dynamics of DN2IP mapping changes, and simply call it change frequency in the

rest of this chapter. Note tha t the sampling resolution varies among different classes. Given

the same relative change frequency, the corresponding absolute change rates under different

classes are different.

T h e change frequencies for five different classes a re shown in F igures 4.3 (a), (b), (c), (d)

and (e), respectively. Based on the DNS probing results, we identify three causes tha t lead

to the DN2IP mapping changes: (1) a domain name is relocated to a different IP address;

(2) the available IP addresses for a domain name are increased; and (3) the IP address of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I l l

a domain name rotates around a set of IP addresses. The first cause results in physical

changes, while the second and third causes result in logical changes. The distributions of

the changes due to different causes are shown in Figure 4.3 (f) for all five classes.

Physical Changes. As shown in Figures 4.3 (c), (d) and (e), the domains in classes

3, 4, and 5 rarely change their DN2IP mappings, with about 95% domains in these classes

remaining intact. Moreover, those domains tha t have changed their DN2IP mappings have

very low change frequencies. For instance, in class 5, almost all changed domains have

their change frequencies below 10%, which means a change happens every 10 days. On

average, the change frequencies are about 3%, 0.1%, and 0.2% for the domains in classes

3, 4, and 5, respectively. This implies tha t the average life times of DN2IP mappings are

2.5 hours, 42 days, and 500 days, respectively. However, as shown in Figure 4.3 (f), nearly

40% mapping changes in class 3 and the majorities of mapping changes in classes 4 and 5

are physical changes. Any physical change could cause a cache inconsistency, leading to a

loss of service availability. Considering the large number of domain names in classes 3, 4

and 5, the probability of a physical change happening per minute is close to one. Therefore,

maintaining strong cache consistency is essential to avoid loss of connection availability.

Logical Changes. The DN2IP mappings in classes 1 and 2 change frequently. In class

1, more than 70% domains changed their IP addresses during a one-day measurement. Most

changed domains have their change frequencies around 0.1. In class 2, only about 20%

domains changed their IP addresses during a three-day measurement, but most changed

domains have relatively high frequencies (e.g., 0.8). On average, the change frequencies

of classes 1 and 2 are about 10% and 8%, much higher than the previous classes. The

average life-times of DN2IP mappings are 200 seconds and 750 seconds in classes 1 and 2,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

112

O
0.2

Figure 4.4: CDN and Dyn domain change frequencies with different TTLs.

respectively. As shown in Figure 4.3 (f), such frequent changes are mainly due to IP address

rotation (e.g., CDN’s load balancing over multiple hosts), and most of the DN2IP mapping

changes are logical ones. The more detailed change frequencies of CDN and Dyn domains

are illustrated in Figure 4.4.

As shown in Figure 4.4, CDN domains have very high change frequencies: 10% with

TTLs between 0 and 60 seconds; and close to 70% with TTLs between 60 and 300. Two

major CDN providers dominate the domains of the two ranges: Akamai with TTL 20

seconds; and Speedera with TTL 120 seconds. The domain names served by Akamai have

change frequencies around 10%, while those served by Speedera have change frequencies

close to 100%. In contrast to CDN domains, the Dyn domains have a low mapping change

frequencies: 0.4% with TTL larger than or equal to 300 seconds; and close to zero with TTL

less than 300 seconds. Compared with the change frequencies of CDN and Dyn domains,

the corresponding TTLs are set aggressively low, resulting in up to 10 and 25 times more

DNS traffic than necessary. This redundant DNS traffic would be significantly reduced if

server-initiated notification service of DNScup were used.

1 CDN Domains
I Dyn Domains |

(0,60) (60,300)

Dom ain G rouped by TTLs

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

113

0.16
Popular
Normal

I I Unpopular

0.12

I
<s

0.08

0.04

PB31 I
[86400,ini)

0
[0,60) [60,300) [300,3600) [3600,86400)

Figure 4.5: The change frequencies of .com domains with different popularity and TTLs.

W ithin each TLD domain group, we investigate the relationship between DN2IP map

ping change frequencies and domain popularities. The measurement results of . com domains

are shown in Figure 4.5. The results of other TLD domains are similar to those of . com.

In classes 1 and 2 (most changes are logical changes), we observe tha t a more poplar a

domain tends to have a higher change frequency than a less poplar domain. This is because

a popular Web site tends to use CDN or dynamic DNS techniques in order to improve its

scalability and performance. By contrast, in classes 3, 4 and 5 (most changes are physical

changes), there is no strong correlation between change frequencies and domain populari

ties. A partial reason for this is th a t the the occurrence of mapping changes in these classes

is sporadic — irregular and random — over the entire domain space.

The resolving latencies for each class are also measured in our experiments. On average,

about 8% of domains in each class take more than 1 second to be resolved, which is consistent

with the results from [72]. Note tha t the resolving latency of class 1 is shorter than the

rest of classes. This is counter-intuitive, because CDNs use two-level DNS nameservers 4

4A query from a client is first redirected to the CDN provider’s high-level nameservers. The high-level

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

114

for location-aware content distribution , which normally needs more resolving time. In our

experiments, many domains in this class share the same high-level name server, whose NS

record is cached after resolving the first DNS query. Consequently, the subsequent resolving

procedures do not need to access the high-level nameservers. This is also consistent with

one of major conclusions of Jung’s study [72],

3 0 0
3 6 0 0

36400 ■Q>
E
F
Cl)c'>
oto0

a .
0 .4o

LLOO
0.2

10 100 1000 10000 100000
R e s o lv in g T im e (m s e c)

Figure 4.6: The resolving latencies for each class with different TTLs.

4.3 D N S Cache U pdate Protocol (D N Scup)

Basically, DNScup consists of three components, including mapping change detection mod

ule, state-tracking module and update notification module. The mapping change detection

module is straightforward to implement, since only the authoritative DNS nameserver has

the privilege to change a DNS resource record. There are two ways for an authoritative

DNS nameserver to change a DNS resource record: one is through manual reconfiguration

and the other is through the DNS dynamic update command such as nsupdate.

nam eserver is responsib le for se lec tin g a low -level nam eserver based on th e c lient loca tion , th en th e low -level
nam eserver decid es th e sp ecific server to ach ieve load balancing.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

115

o
Q>(/)
co
>.

0.1

0.01

oa(0 0.001a)

0.0001 1 10 100 1000 10000

0.1
CDcocc
CD 0.0105
CO

CD 0.001

I
0.0001

1 e -0 5 10 100 1000 10000
L e a s e L en g th (s e c o n d s) L e a s e L en g th (s e c o n d s)

(a) Lease probability on server (b) Total request rate

Figure 4.7: The space and message changes for fixed length lease schemes.

The update notification module is in charge of propagating update notifications. To re

duce communication overhead and latency, we choose UDP as the primary transport carrier

for update propagation. TCP is used only when a firewall is set on the path from the au

thoritative DNS nameserver to a DNS cache. Also, we employ timers, retransmissions, and

acknowledgment mechanisms to achieve reliable communication for cache updates. When a

nameserver has sent a cache update notification message but has not yet received the cor

responding acknowledgment, it retransmits the message three times before aborting. The

timer is doubled at each expiration.

The core of DNScup is the state-tracking module, which keeps track of the recent visitors,

i.e., the other DNS nameservers who query and cache a local resource record recently. In

the rest of the section, we detail our design on this module, and then we present the whole

working procedure of DNScup.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

116

4.3.1 D esign Choices

In general, there are three different approaches to maintaining strong cache consistency:

adaptive TTL, polling-every-time and invalidation. The major challenge of using TTL

approach to maintain cache consistency lies in the difficulty of setting an appropriate time-

to-live value for a record. Adaptive TTL [30] handles the obstacle by adjusting the TTL

based on the predictions of record lifetime, which has been applied in Web caching consis

tency management [31]. Adaptive TTL may keep the staleness rate very low, but it cannot

support strong cache consistency. The polling-every-time approach is a simple strong con

sistency mechanism, which validates the freshness of the cached content at the arrival of

every request. However, its fatal drawback lies in the poor scalability as shown in [82], in

curring many more control messages, higher server workload and longer response time. The

invalidation approach relies on the server to notify the clients when an update happens,

which is efficient when objects are rarely updated. Because most DNS resource records

are changed at very low rates, server-driven invalidation is an appropriate approach to

maintaining strong cache consistency among DNS nameservers.

Lease [63] is a variant of server-driven invalidation mechanism. A lease is a contract

between a server and a client 5. During leased period, the client is promised to receive

an invalidation notification if a leased object is changed. However, if the client does not

h a v e a le a s e or t h e le a s e h a s a lr e a d y e x p ir e d , t h e se r v e r m u s t v a lid a te a c a c h e d object

upon the arrival of a request. The lease mechanism is thus a combination of polling and

invalidation approaches. A critical question in applying a lease mechanism is how to choose

5In the context of DNS, the client of an authoritative DNS nameserver is just a local DNS nameserver
or another authoritative DNS nameserver that queries the authoritative DNS nameserver

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

117

the appropriate length of a lease. A long lease increases server storage and the number of

invalidation messages, while a short lease increases the number of object requests and lease

renewal messages.

A lease contract becomes valid either (1) upon the arrival of a new client request if

the current lease expires, or (2) by the automatic renewal of an expired-to-be lease. The

resultant performance difference lies in the server storage overhead and the client-perceived

latency. Because the most DNS resource records do not change often, minimizing consis

tency maintenance cost is more im portant than reducing latency. In our study, we always

use the first approach to reducing server storage overhead.

To maintain strong cache consistency, DNScup requires the authoritative DNS name

server to keep track of the recent visitors tha t access and cache a DNS resource record. The

recent in this context implies tha t the cached record should have not expired yet in these

visitors’ caches. To make the presentation easier to understand, we refer to these recent

visitors as DNS caches in the rest of the chapter. We design a d y n am ic lease scheme to

balance DNS server storage requirements and DNS traffic between the authoritative DNS

name server and the DNS caches.

A=1/t

o
CC
0)3cro>cc 0.4

0.2

0 0.2 0.6 0.8 10 .4

0.8

0.6
0_

0.4

0.2

0 0.2 0 .4 0.6 0.8
L e a s e P ossib ility R e q u e s t R a te

(a) storage-constrained dynamic lease (b) communication-constrained dynamic lease

Figure 4.8: Example: dynamic lease with different constrains.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

118

4.3.2 Lease Length Effectiveness

Lease storage overhead on the authoritative DNS nameserver is represented by the prob

ability of the server holding a lease for each DNS cache. Its upper bound is 1, indicating

tha t the server always keeps a lease for a DNS cache. The message overhead is represented

by the query rate between the server and its DNS caches. If the lease length is much

shorter than the lifetime of a resource record, most messages will be renewal requests from

DNS caches and only very few invalidation and update messages may be observed. In the

following analyses, since our practical algorithms always set the maximal lease length be

much smaller than the resource record lifetime, the communication overhead incurred by

invalidation and update messages from the server can be ignored.

We assume tha t the request arrivals for a DNS resource record follow a Poisson distri

bution with average arrival rate of A. The rationale behind this assumption is two-fold: (1)

a DNS resolution precedes the beginning of a session communication; and (2) Floyd and

Paxson [97] have shown tha t the session-level (like FT P and Telnet) arrival rate still follows

a Poisson distribution, although the packet arrival rate is non-Poisson.

Since the time interval is exponentially distributed, the length of duration between two

contiguous leases is equal to the average interval of two contiguous requests, j . Suppose

the authoritative DNS nameserver grants a fixed-length lease, t, at the arrival of a request.

The expected probability for the server to maintain the lease, P, is thus

P = t / (t + i) . (4.1)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

119

The lease renewal message rate is

(4.2)

Figure 4.7 (a) shows the dynamics of the probability P under different query arrival rates,

while the lease length varies from 1 to 10000 seconds. Figure 4.7 (b) shows the dynamics

of the correspondent average message rate.

Theorem 1 Assum e the request arrivals for a DNS resource record follow a

Poisson distribution w ith average request rate A. The ratio between the message

rate reduction and the increase o f lease probability is a constant, which is equal

to A.

Proof: Suppose the lease length is increased from t\ to For a given request rate A, the

increase of lease probability on the server is:

The ratio between the increase of the lease probability and message rate reduction is

equal to A.

A P — t^ j (t2 + — t \ / (t± + —) — At2 — A
(Ati + l)(At2 + 1)

The reduction of message rate is:

A M — 1/(t \ + —) — 1/(^2 + -jj-) — A *
At2 — Afi

(Ati + l)(At2 + 1)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

120

4.3.3 D ynam ic Lease A lgorithm s

Assuming the overhead allowance (storage or communication) is pre-defined, we propose two

dynamic lease algorithms: one minimizes the communication overhead given a constraint

on storage budget; and the other minimizes the storage overhead, given a constraint on

communication traffic. W hether or not a lease is signed between the server and a DNS

cache is based on the DNS cache’s request rate, while the length of a lease is determined

by the DN2IP mapping change rate at the server.

Storage-constrained Dynamic Lease

We define the storage overhead allowance as the maximal number of valid leases tha t

a server can manage. Given the storage overhead allowance Pmax-, the storage-constrained

dynamic lease algorithm minimizes the message exchanges for signing and keeping the leases

at the server.

Suppose tha t a total of N DNS resource records Ri(i = 1...N), are maintained on the

authoritative DNS nameserver, each with maximal lease length Li(i = 1...N). Each record

Ri is requested by n* DNS caches Cij(j = l...n ,), with the request rate Ay. Our objective

is to determine the appropriate lease length of a resource record for each DNS cache Zy, in

order to minimize the overall communication overhead M au . The decision should be made

under the following constraints:

• for the record Ri and DNS cache C y , the lease length Zy should be within the range

of 0 and L,.

• the total storage consumption Pau should be less than the predefined storage overhead

allowance Pmax-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

121

Thus, the consistency maintenance problem can be defined as below:

N T l i

minimize M au = EE Mij
i= 1 j = i

subject to for any Ri and Cij,0 < Uj < Li
N H i

P a ll = EE P i j — P m a x
i=1 j =1

A consistency maintenance scheme tha t fulfills the above constraint is a feasible solution.

We refer this kind of optimization as the storage-based lease problem (SLP). Since SLP is

equivalent to a Knapsack problem, it is NP-complete, but its optimal solution can be found

by utilizing the greedy algorithm.

If we have multiple records with different maximal lease lengths, we need to sort the

each of which is equal to A^ based on Theorem i, and then we grant the leases to

the DNS cache with the highest request rate. If the server always grants leases with their

maximal lengths to the DNS caches selected as above until reaching the storage constraint,

we can guarantee tha t the total request rate covered by leases is maximal.

As an example, suppose tha t we have three DNS caches with different request rates

at 1, 0.6, and 0.2, respectively. The dynamics of request rates with respect to the lease

probability is shown in Figure 4.8(a). Clearly, when we increase the lease probability close

to the storage constraint, we should grant the lease to the DNS cache with the largest

request rate, in order to reduce communication overhead. Note tha t we ignore the cache

update messages in calculating the communication overhead, however, we have proved the

greedy algorithm above is still optimal if the cache update overhead is included [32].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

122

Communication-constrained Dynamic Lease

Similarly, given the communication overhead allowance, we can design an algorithm

that minimizes the storage overhead. It is also a NP-complete problem, and we employ

the greedy algorithm to find the optimal solution. Different from the storage-constrained

dynamic lease, at the beginning of the algorithm, all DNS caches of a record are granted with

the maximum-length leases. After that, we select the DNS cache with the smallest query

rate and deprive its lease. This selection and deprivation continue till the communication

allowance is satisfied. In this way, we can guarantee the remaining DNS caches have the

minimal storage requirements on the server.

Let us consider a scenario in which we have the same number of DNS caches as in the

previous example. The dynamics of the lease probability with respect to request rates is

shown in Figure 4.8(b). If the request rate allowance is 0.1, we choose the DNS cache that

has the lowest request rate of 0.2 and deprive its lease. Thus, we can achieve the maximal

storage reduction.

Lease Initiation

êspove

w R e s o S c e

Update Propagation

intent

DNS Cache Authoritative Name Server

Figure 4.9: DNScup Procedure

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

123

4.3.4 W orking Procedure o f D N Scup

Figure 4.9 illustrates the working procedure of DNScup. There are two major commu

nication processes in this procedure: lease initiation and update propagation. The lease

initiation is prompted by a DNS cache sending a query to the authoritative DNS name

server. The query includes the local request rate on the cache as well as its domain name.

The authoritative DNS name server evaluates the request rate by a certain metrics (e.g.,

storage or communication constrain) to make a decision on granting a lease to the DNS

cache or not. If a lease is granted to the DNS cache, the authoritative DNS nameserver

records the IP address of the DNS cache and the queried resource record. The decision on

granting lease is piggybacked to the DNS cache with the response of the query.

The authoritative DNS name server initiates the update propagation when one of its

resource records has been changed. Notification messages, containing the updated resource

record, are sent to the DNS caches with valid leases. All notified DNS caches need to

acknowledge the receipt of the update message. The following two auxiliary functions are

im portant to DNScup.

RC=2

Client Request

Server Response j Lease/T ir)

RC=0 RC=0

F ig u re 4.10: DNScup Cache Reference Counter

• Monitoring Request Rate at the DNS Cache: In order to measure the request rate

for a cached resource record, the DNS cache uses a reference counter (RC) to record

the number of requests during a resource record’s lease (or TTL period if no lease is

signed yet). After the cached resource record expires, the DNS cache book-keeps the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

124

ThresholdThreshold

Query Rate M onitor

Dynamic Lease

F ig u re 4.11: DNScup Server Lease Threshold

1.4

1.3

1.2

1.1

1
1 10 100 1000 10000

1.5

1.4

1.3

1.2

1.1

1 10 100 1000 10000

1.4

1.3

1.2

1.1

11 10 100 1000 10000
Cache Duration (second) Cache Duration (second) Cache Duration (second)

(a) Nameserver 1 (b) Nameserver 2 (c) Nameserver 3

F ig u re 4.12: The mean of CV of query interval in DNS traces

RC with the domain name by either writing into a specific file or keeping it at the

cache for a certain period. When the resource record is queried again, the number

of requests during previous lease (or TTL) will be retrieved and forwarded to the

authoritative DNS nameserver. Upon the arrival of the new response from the server,

the counter will be reset. Figure 4.10 illustrates the usage of reference counter.

• Granting Leases in the Authoritative DNS Nameserver. Using a dynamic lease algo

rithm, DNScup sets a threshold on cache query rate to determine whether or not the

DNS nameserver should grant a lease for a DNS cache. The dynamic lease algorithm

can be either evoked periodically to recompute the threshold or kept running to ad

just it on-the-fly. In both designs, a query rate monitor maintains the statistics of all

related cache query rates as the input for the dynamic lease algorithm. Figure 4.11

illustrates the routine of threshold adjustment.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

125

100 Fixed Lease -
Dynamic Lease ■■

4)O)
c0)g
CD
0.0}
18cc
I3CT
CD
CC 19%'

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
S to ra g e P e rc e n ta g e

(a) Nameserver I

100 Fixed Lease
D ynam ic L e a s e

a>
(0
c
©o
©0.
©
to

DC

3CT
©

CC

0 10 20 30 40 50 60 70
Storage Percentage

(b) Nameserver II

100
Fixed Lease

D ynam ic L e a s e
©o>to1z
©o©
Q.©(0
CC
to©3
IT©

CC

0 10 20 30 40 50 60 70
Storage Percentage

(c) Nameserver III

F ig u re 4.13: Storage requirements for given query rates when fixed and dynamic lease are used in
DNS traces

100

8 0
N i<---- 88%

\

Fixed Lease ■Dynamic Lease
0.001 0.01 0.1 1 10

S to ra g e P e rc e n ta g e

(a) Nameserver I

100
©o>ac
CDo
<D
Q_©<0
<0©
3CT Fixed Lease

D y n a m ic L e a s e
©

IE

0.001 0.01 0.1 1 10 100
Storage Percentage

(b) Nameserver II

100

c

©td
CC

©
3CT Fixed Lease

D y n a m ic L e a s e
©

DC

0.001 0.01 0.1 10 100
Storage Percentage

(c) Nameserver III

F ig u re 4.14: Query rates for given storage requirements when fixed and dynamic lease are used in
DNS traces

4.4 Performance Evaluation

In this section, we evaluate the effectiveness of dynamic lease of DNScup via trace-driven

simulation. Our DNS traces were collected in an academic environment, where three local

DNS nameservers provide DNS services for about two thousand client machines. The one-

week trace collection is from July 2nd, 2003 to July 9th, 2003. Based on the DNS traces,

we simulate a scenario in which a number of clients are using a local DNS nameserver.

Considering the client caching effect on query intervals, we assume tha t clients cache

each resource record for 15 minutes, since this is the default setting in Mozilla. The query

rate for each domain name is computed by analyzing the first-day traces. For all three

categories of domain names (regular, CDN and Dyn domains), the maximal lease-length is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

126

set to six days.

4.4 .1 P o isson D istr ib u tion V alidation

Similar to the Web request access patterns, the DNS queries also display bursty behaviors

with respect to time series. However, if we force each client to cache the DNS responses,

as most Web browsers did, the time interval between two continuous queries for the same

record likely follows the Poisson distribution. We use the mean of Coefficient of Variation

(CV) to study the query interval distribution in our DNS traces. Figure 4.12 shows the

dynamics of the mean of CV with respect to the cache duration at the client side. W ith the

increase of the client cache duration, as the mean of CV is closer to 1, the time intervals are

more likely following a Poisson distribution. It is also noticeable tha t the 95% confidence

interval of the mean is very small in all cases.

4.4 .2 E xp erim en ta l R esu lts

We introduce two relative system metrics to evaluate the lease algorithms: storage percent

age and request rate percentage. The storage percentage is defined as the ratio between

the number of leases granted to requesting DNS caches and the maximal number of leases

that an authoritative DNS server could grant. There are two extreme cases: (1) if the

authoritative DNS server grants lease to each request and all its RRs have valid leases all

the time, the storage percentage is 100%; and (2) if no lease is granted to any request, the

storage percentage is 0. The request rate percentage is defined as the ratio between the

requests rate issued from a DNS cache and the maximal requests rate tha t the DNS cache

could generate. If no lease is granted, the lease algorithm degrades to the polling scheme

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

127

and generates the maximal request rate. Thus, the request rate percentage becomes 100%

under this extreme scenario.

We compare the simple fixed-length lease scheme, which grants the same length lease

to every incoming query, with the proposed dynamic lease. Our simulation results clearly

demonstrate tha t the performance of dynamic lease is superior to tha t of the fixed lease

scheme. Figures 4.13 and 4.14 illustrate the simulation results of regular domains based on

the traces at three different DNS nameservers. Note tha t for CDN and Dyn domains, we

achieve similar results at all traces.

Dynamic lease is effective to reduce storage overhead. As shown in Figure 4.13 (a),

under the request rate percentage of 20%, the storage percentage of dynamic lease is 19%

while tha t of fixed lease is 47%. Dynamic lease reduces storage overhead by 60%. At the

same time, dynamic lease is also effective in reducing communication overhead. As shown in

Figure 4.14 (a), under the storage percentage of 1%, the request rate percentage of dynamic

lease is 56% while tha t of fixed lease is 88%. The reduction of communication overhead is

about 36%.

In our experiments, due to the limitation of the trace length (seven days), the maximal

length for regular domains is relatively small. Since regular domains seldom change their

DN2IP mappings, we may use a much higher lease-length to gain a better performance.

Note tha t the lease selection in our experiment is done off-line based on the trace analyses,

and the lease length remains constant. In reality, a DNS cache may monitor the rates of

cached records in the incoming queries. When it detects a significant change in query rates,

the DNS cache will notify the authoritative DNS nameserver to re-evaluate the current

leases.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

128

4.5 Prototype Im plem entation

We build our DNScup prototype on top of BIND 9.2.3. In this section, we first present the

extension on the DNS message format to support DNScup mechanism. Then, we describe

the structure of the DNScup prototype. Finally, we discuss the security issue related to

DNScup. Note tha t DNScup only keeps cached resource records with valid leases updated,

and the rest of the cached resource records still rely on the TTL mechanism to refresh

themselves.

4.5.1 M essage Form ats

In the header of DNS messages, a 1-bit field QR is used to specify whether it is a query

(0) or a response (1). A 4-bit field OPCODE is used to specify the type of the message. In

current implementation of BIND, only types 0, 1, 2, 4 and 5 are used and the rest are

reserved for future use. To support DNScup, a new opcode 6 in the query/response headers

is introduced for lease negotiation. Each DNS query includes the query rate originated from

the local clients, and the query rate is expressed in a new 16-bit field RRC (recent reference

counter) with the domain name being queried at the question section. The authoritative

DNS nameserver uses OPCODE 6 in the response header to indicate tha t the lease information

is included. If a lease is granted, its duration is specified in a new 16-bit field TLL (time of

lease-length) a t th e answ er section.

In the BIND 9.2.3 implementation, a message with OPCODE of 4 is used for the internal

master-slave notification. In order to deal with the wide-area DNS cache update propa

gation, we define a new type of message called CACHE-UPDATE. This message has the same

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

129

ID: (new)
op: CACHE-UPDATE(7)
Zone zcount: 1
Zone zname: (zone name)
Zone zclass: (zone class)
Zone ztype: T_SOA

F ig u re 4.15: The Characteristic Fields of a CACHE-UPDATE Message Header

update

delection in^dule listofyt module

•“ “ -track Inform
file

nwr 1 ACHB-l iiwi.m —1 mass 1 database ?ATf

unchanged

DNScup Structure

F ig u re 4.16: The Structure of DNScup Prototype

fields as those in the UPDATE message except for the “op” field in the message header, which

is shown in Figure 4.15.

4.5 .2 S tru ctu re o f DNScup P ro to ty p e

We have modified the prompt notification of the zone mechanism in the BIND 9.2.3 imple

mentation. According to our design, three core components of DNScup have been added

to BIND 9.2.3, including the detection module, the listening module, and the notification

module. The detection module detects a DNS record change; the listening module monitors

incoming DNS queries and updates the track file when necessary; and the notification mod

ule propagates DNS CA C H E-U PD A TE messages. The normal DNS operations remain intact.

The interactions among all components are illustrated in Figure 4.16.

For DNS resource records of the authoritative DNS nameserver, the named daemon

creates a database file to keep track of the incoming DNS queries. Each tuple in this file

consists of five fields, which are the source IP address, queried zone name, query type,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

130

query time, and lease-length. When a DNS query comes in, the named first decides if a

lease should be granted based on the query rate carried with the query. If yes, a new tuple

is added to the track file, and the corresponding response is sent back.

Once a named has updated a DNS resource record either annually or via an internal

dynamic update message, it retrieves the track file and gets all local DNS nameservers that

have queried this record whose leases have not expired yet (i.e., DNS caches). The named

then sends CACHE-UPDATE messages to these DNS caches through UDP. The notified

DNS caches will send back CACHE-UPDATE acknowledgments to the authoritative DNS

nameserver and update their cached DNS resource records. The communication process is

shown in Figure 4.17.

4 .5 .3 Secure D N S cu p

DNScup may impose more concerns on the DNS security. In our current implementation,

we transm it DNS messages in plain text for simplicity and efficiency. However, to protect

DNS caches against poisoned CACHE-UPDATE messages originated from a compromised

DNS nameserver, we need a secure communication channel for cache update. Fortunately,

Client(DNS Cache)
Local Name Server

Authoritative Name Server

1. DNS query (with request rate in local name server).
2. Granted Lease (with selected lease length).
3. DNS dynamic update message.
4. DNS cache update message.

Client

Figure 4.17: DNScup update process.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

131

DNSSEC [58] and the secure DNS Dynamic Update protocols [122] have been proposed.

Coupled with the proposed secure DNS mechanisms, DNScup can achieve a secure cache

update without much difficulty.

4 .5 .4 P relim in ary R esu lts

We examine our implementation in a testbed environment — a hierarchy of DNS name

servers in a LAN. The testbed is shown in Figure 4.18. By utilizing multiple virtual IP

addresses, we run a master authoritative DNS nameserver and its two slaves on a machine.

The root server and two DNS caches are mimicked at three different machines, respectively.

The machines used in our experiments are 1GHz Pentium Ills with 128MB RAM running

RedHat Linux 9.1, connected by a 100 Mbps Ethernet. From IRcache [7] proxy traces, we

select 50 most popular domain names (46 if excluding ’’localhost” and three individual IP

addresses). A total of 40 zones are constructed for the 46 domain names on the authorita

tive DNS nameservers, with their glues recorded on the root server. The zone file data are

collected through issuing necessary queries to the Internet.

Root Server DNS Cache

LAN

Name Servei
. (master) ^ DNS Cache 2

lame Server
islave 1)__

fame Server
Jslave 2) ^

Figure 4.18: DNScup Implementation Testbed

The average lengths of different messages in DNScup are shown in Table 4.2. Compared

with existing TTL-based mechanism, the sizes of both query and response messages are

increased due to the addition of new fields. However, they are still far below the limitation

set by RFC 1035 [87]—a DNS message carried in UDP cannot exceed 512 bytes. Both cache

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

132

update and its acknowledge messages are small, having sizes similar to those of messages in

the DNS dynamic update protocol [103].

5 0 0

4 5 0

4 0 0

? 3 5 0w3
<d 3 0 0
£
t 250o>

8 200<a
I 150
Q.

100

5 0

0
0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0

N u m b e r of Q u e r ie s

F ig u re 4.19: DNS nameserver processing overhead: DNScup vs TTL

In order to measure the processing overhead of DNS queries, we set two timers in Bind

9.2.3, one right after receiving a query and the other right before the corresponding response

is sent out. The two DNS caches repeat sending queries to the master authoritative DNS

nameserver for the 46 collected domain names. After each round, we flush out their cached

contents so tha t the authoritative DNS nameserver can continuously receive and process

the queries. Figure 4.19 shows the processing times of 5000 continuous queries with and

without DNScup support, respectively. Although DNScup needs to maintain the query rate

statistics, the difference in computational overhead between TTL and DNScup is hardly

noticeable.

Type DNScup (Bytes) TTL (Bytes) Increment
DNS query 40.8 36.8 10.9%
DNS response 217.8 203.7 6.9%
cache update 80.3 - -
cache update ack 25.0 - -

T ab le 4.2: Average Message Overhead of DNScup

m s m

T T L
D N S cu p

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.6 Summary

In this chapter, we introduced a DNS cache update protocol, called DNScup, to maintain

strong consistency in DNS caches. To investigate the dynamics of DN2IP mapping changes,

we have conducted a wide range of DNS measurements. W hat we have found is summarized

as follows:

• While the physical mapping changes per Web domain name rarely happen, the prob

ability of a physical change per minute within a class is close to one;

• Compared with the frequencies of logical mapping changes, the values of the cor

responding TTLs are much smaller, resulting in a large amount of redundant DNS

traffic;

• The TTL value of a Web domain name is independent on its popularity, but its logical

mapping change frequency is dependent on the popularity of the Web domain.

Based on our measurements, we conclude tha t maintaining strong cache consistency is

essential to prevent potential losses of service availability. Furthermore, with strong cache

consistency support, CDNs and other mechanisms can provide fine-grained load-balance,

quick responsiveness to network failure or flash crowd, and end-to-end mobility, without

degrading the scalability and performance of DNS.

To keep track of the local DNS nameservers whose clients need strong cache consistency

for always-on Internet services, DNScup uses dynamic lease to reduce the storage overhead

and communication overhead. Based on the DNS Dynamic Update protocol, we build

a DNScup prototype with minor modifications to the current DNS implementation. The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

134

components of DNScup implementation include the detecting module, the listening module,

the notification module and the lease-track file. Our trace-driven simulation and prototype

implementation demonstrate tha t DNScup achieves the strong cache consistency in DNS

and significantly improves its availability, performance and scalability.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

P 2P Cache M anagem ent in

Internet

5.1 Introduction

Structured P2P systems have been successfully designed and implemented for global storage

utility (such as PAST [106], CFS [51], OceanStore [78], and Pangaea [107]), publishing

systems (such as FreeNet [38] and Scribe [28]), and Web-related services (such as Squirrel

[68], SFR [117], and Beehive [99]). Among all these P2P-based applications, replication

and caching have been widely used to improve scalability and performance. However, little

attention has been paid to maintaining replica consistency in structured P2P systems. On

one hand, without effective replica consistency maintenance, a P2P system is limited to

providing only static or infrequently-updated object sharing. On the other hand, newly-

developed classes of P2P applications do need consistency support to deliver frequently-

updated contents, such as directory service, online auction, and remote collaboration. In

135

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

136

these applications, files are frequently changed, and maintaining consistency among replicas

is a must for correctness. Therefore, scalable consistency maintenance is essential to improve

service quality of existing P2P applications, and to meet the basic requirement of newly-

developed P2P applications.

Existing structured P2P systems rely on distributed hash tables (DHTs) to assign ob

jects to different nodes. Each node is expected to receive roughly the same number of

objects, thanks to the load balance achieved by DHTs. However, the system may become

unbalanced when objects have different popularities and numbers of replicas. In a scalable

replica updating mechanism, the location of a replica must be traceable, and no broad

casting is needed for the propagation of an update notification. Current structured P2P

systems take a straightforward approach to track replica locations [113, 102]—a single node

stores the locations of all replicas. This approach provides us with a simple solution of

maintaining data consistency. However, it only works well if the number of replicas per

object is relatively small in a reliable P2P system. Otherwise, several problems may occur

as follows.

• Hot-spot problem: due to the different objects’ popularities, the number of replicas

per object varies significantly, making the popular nodes heavily loaded while other

nodes carry much less replicas.

• Node-failure problem: if the hashed node fails, update notifications have to be propa

gated by broadcasting.

• Privacy problem: the hashed node knows all replicas’ locations, which violates the

privacy of original content holders.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

137

To address the deficiencies in existing structured P2P systems, we propose a struc

tured P2P system with replica consistency support, called Scalable Consistency mainte

nance in structured PEer-to-peer systems (SCOPE). Unlike existing structured P2P sys

tems, SCOPE distributes all replicas’ location information to a large number of nodes, thus

preventing hot-spot and node-failure problems. It also avoids recording explicitly the IP

address or node ID of a node tha t stores a replica, thus protecting the privacy of the node.

By building a replica-partition-tree (RPT) for each key, SCOPE keeps track of the location

of replicas and then propagates update notifications. We introduce three new operations in

SCOPE to maintain consistency.

• Subscribe: when a node has an object and needs to keep it up-to-date, it calls subscribe

to receive a notification of the object update.

• Unsubscribe: when a node neither needs a replica nor keeps it up-to-date, it calls

unsubscribe to stop receiving update notifications.

• Update: when a node needs to change the content of an object, it calls update to

propagate the update notification1 to all subscribed nodes.

In SCOPE, we allow multiple writers to co-exist, since the update operation on a key

can be invoked by any node keeping a replica of tha t key. In contrast, in some practical

applications, usually only one node is authorized to update a key. SCOPE can be easily

applied to single-writer applications.

Since SCOPE directly utilizes DHTs to manage object replicas, it effectively supports

consistency among a large number of peers. As a general solution, SCOPE can be deployed

1 invalidation message or the key itself.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

138

in any existing structured P2P systems, such as CAN [102], Chord [113], Pastry [105], and

Tapestry [127]. Our theoretical analyses and simulation experiments show tha t SCOPE can

achieve replica consistency in a scalable and efficient manner. In an IV-node network, each

peer is guaranteed to keep at most O(log N) partition vectors for a single key, regardless of

the key’s value and its popularity. Due to the hierarchical management, only 0 (1) nodes

are updated when a node joins or leaves, and only 0(log2 N) messages are transm itted to

recover a node failure.

The remainder of the chapter is organized as follows. Section 5.2 presents the R PT

structure in SCOPE. Section 5.3 describes the operations defined in SCOPE. Maintenance

and recovery procedures are introduced in Section 5.4. We evaluate the performance of

SCOPE using Pastry routing algorithm in Section 5.5. In Section 5.6, we briefly discuss

SCOPE design alternatives. Finally, we conclude the paper in Section 5.7.

5.2 The Base of SCOPE Protocol

The SCOPE protocol specifies: (1) how to record the locations of all replicas; (2) how to

propagate update notifications to related peers; (3) how to join or leave the system as a

peer; and (4) how to recover from a node’s failure. This section describes how to record

the replica locations by building a replica-partition-tree (RPT)—a distributed structure for

load balancing in SCOPE. The operation algorithms and maintenance procedures will be

presented in Sections 4 and 5, respectively.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

139

5.2.1 O verview

In DHTs each key is assigned to a node according to its identifier, and we call this original

key-holder the primary node of the key. To avoid the primary node becoming the hot spot,

SCOPE splits the whole identifier space into partitions and selects one representative node

in each partition to record the replica locations within that partition. Each partition may

be further divided into smaller ones, in which child nodes are selected as the representatives

to take charge of the smaller partitions. As the root of this partition-tree, the primary node

only records the key existence in the partition one level beneath, while its child represen

tative nodes record the key existence in the partitions two levels below the root; and so on

and so forth. In this way, the overhead of maintaining consistency at one node is greatly

reduced and undertaken by the representative nodes at lower levels. Since the hash function

used by DHTs distributes keys to the whole identifier space, the load of tree maintenance is

balanced among all nodes at any partition level. Note that the location information at any

level is obtainable from representative nodes at lower levels, the partition-tree also provides

a recovery mechanism to handle a node failure.

5.2.2 P artitio n in g Identifier Space

(a) (b) (c)

F ig u re 5.1: (a) A 3-bit identifier space; (b) The same identifier space with two partitions; (c) The
same identifier space with four partitions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

140

A consistent hash function (e.g. SHA-1) assigns each node and each key an m-bit

identifier, respectively. If we use a smaller identifier space, the key identifier can be easily

calculated by keeping a certain number of least significant bits. By adding different most

significant bits, the same key can be mapped to multiple smaller equally-sized identifier

spaces with different identifier ranges. A partition can be further divided into smaller ones,

and it records the existence of all keys in its sub-partitions. Figure 5.1(a) shows an identifier

space with m = 3. Suppose there is a key 5 in the space. If the original space is split into two

partitions as shown in Figure 5.1(b), one with space [0,3] and the other with space [4,7], the

key can be hashed to 1 in the first partition and 5 in the second partition, respectively. If we

further split each partition into two sub-partitions as Figure 5.1(c) illustrated, the identifiers

of the same key can be located in the smaller spaces at 1, 3, 5, and 7, respectively. Figure

5.2 shows the root of key 5 (101) in the original 3-bit identifier space and its representative

nodes in the two-level partitions. At the top level, the root node is located at 5 (101). At

the intermediate level, the two least significant bits (01) are inherited from the root, while

the different value (0 or 1) is set at the most significant bit to locate the representative nodes

R1 and R2 in the two partitions, respectively. At the bottom level, only the least significant

bit (1) is inherited from the root but two most significant bits are set to four different values

(00/01/10/11) in order to determine the locations of representative nodes R ll , R12, R21,

and R22, respectively. Note tha t the partitioning is logical and the same node can reside

in multiple levels. For example, the root node (101) is used as the representative node in

all partition levels.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

141

3-bit ID space
101

Top

/ first level partitioi
iraii i ;

Intermediate

Bottomsecond partition -I".

01(JjR12

Figure 5.2: Key 5 (101) in a 3-bit identifier space and its representative nodes at different levels
of partitions.

5.2.3 B uild in g R ep lica-P artition -T rees (R P T s)

After partitioning the identifier space as mentioned above, we build an RPT for each key by

recursively checking the existence of replicas in the partitions. The primary node of a key in

the original identifier space is the root of RPT(s). The representative node of a key in each

partition, recording the locations of replicas at the lower levels, becomes one intermediate

node of RPT(s). The leaves of RPT(s) are those representative nodes at the bottom level.

Each node of RPT(s) uses a vector to record the existence of replicas in its sub-trees, with

one bit for each child partition.

Figure 5.3(a) shows an example with the identifier space of [0,7]. The nodes 0, 4, and

7 in the space keep a replica of key 5. The R PT for key 5 is shown in Figure 5.3(b). At the

top level, a 2-bit vector is used to indicate the existence of replicas in the two sub-trees. At

the bottom level, four 2-bit vectors are used to indicate the existence of key 5 in all eight

possible positions from 0 to 7. In general, if the identifier space is 2M, the height of RPT(s)

for any key is 0 (M) . Consider tha t most DHTs use a 160-bit SHA-1 hashing function,

which may result in tens of partition levels. For example, if we split each partition into 64

(28) pieces, we will have 20 levels. Obviously, too many levels of partitions would make the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

142

R PT construction and the update propagation inefficient.

Since the number of nodes is much smaller than the identifier space, our goal is to reduce

the heights of RPTs to the logarithm of the number of nodes. In the partitioning algorithm

presented above, each partition is recursively divided into smaller ones until only one iden

tifier remains. The leaf nodes of RPTs record the existence of keys at the corresponding

identifiers. However, if a partition only contains one node, there is no need for further

partitioning to locate the node. For example, as shown in Figure 5.3(a), only node 0 exists

in the partition of [0,3]. During subscribe/unsubscribe operations, node 0 only needs to

inform the primary node of key 5, which records the first level partition [0,3] and [4,7].

When the key is modified, it can directly notify node 0 by sending an invalidation message

to the first identifier in [0,3], which is 0. By removing the redundant leaf nodes, we can

build a much shorter RPT. The R PT after the removal of redundant leaf nodes, is shown

in Figure 5.3(c).

a/ h 1\

2 -

\ 5 3 /

m
(a) (b) (c)

Figure 5.3: (a) In the identifier space of [0,7], nodes 0, 4, and 7 subscribe key 5; (b) The RPT of
key 5; (c) The RPT after removing redundant leaf nodes.

The method given above can significantly reduce the partition levels if nodes are dis

tributed sparsely. However, even if the total number of nodes is small, the number of

partition levels could still be large when most nodes are close to each other. Figure 5.4(a)

shows an example with the identifier space of [0,7], where two nodes 6 and 7 subscribe key

1 Id: 3 Id: S

Space: [4. 7]

Space: [0. 1] Space: (2. 3] Space: (4, 5] Space; (6, 7]

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

143

5. The R PT is illustrated in Figure 5.4(b). Both nodes are in the same partition until the

identifier space is decreased to 1—the bottom level of the partition. The height of this RPT

is 3, and it cannot be condensed by reducing leaf nodes. In general, if the nodes’ identifiers

happen to be consecutive and we only remove the leaf nodes as above, the height of RPT(s)

will still be O(M).

We resolve this problem by removing the redundant intermediate nodes. If all nodes

in a partition are clustered in one of its lower-level partitions, it is possible to reduce the

intermediate nodes. Figure 5.4(c) shows one optimized RPT. The intermediate node for the

partition [4,7] is removed since only one of its lower-level partition [6, 7] has nodes. Thus,

the height of the R PT is decreased from 3 to 2.

Space: [4. 7]

2 '

id: 7
Space: [6, 7)

(a)

Figure 5.4: (a) Nodes 6 and 7 subscribe key 5; (b) The RPT for key 5 after removing redundant
leaf nodes; (c) The RPT after removing both redundant leaf nodes and intermediate nodes.

T h e o re m 2 For an N-node network with partition size of 2m, the average height o f RPTs

is 0 (]ofnN), regardless of the size o f an identifier space.

P ro o f: Suppose the whole identifier space is 2M. Every partitioning generates 2m smaller

equally-sized partitions, each with size of l /2 m of the previous partition range. After U p

time partitioning, the identifier range of each partition is reduced to 2M/2 logAr = 2M / N .

The height of R PT grows to logiV, with maximal height log A at m = 1. Note tha t

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

144

the expected number of node identifiers in the range of this size is 1. Due to identifier

randomness induced by SHA-1 hash function, the average height of all RPTs is ■

5.2 .4 Load B alancing

RPT effectively balances the load across the network, disregarding the key values and their

popularities. By using RPT, we conclude that:

T h e o re m 3 In an N-node network with partition size of 2m, for a key with C subscribers,

the average number of partition vectors in its R P T is 0 (l o gN ■ C).

P roo f: In the R PT of the key, only one root is located at the top level. At the second

level, at most min (2m, C) representative nodes have one partition vector. At the x th level

of the RPT, at most min (2xm, C) representative nodes are involved. The total number of

vectors S of the R PT is:

= 1 + min (2m , C) + min (22m, C)

+ ...+m in (2 ^ m,C)
l o g Na— 1 m '

= ^ 2i m+ £ c
i=Q i= a

= (l°gm N - a) C +

i=Q i= a
2̂771 _ ^
2 m — 1 ’

for < C < 2am, 1 < a <— ’ — m

Compared with the number of subscribers C , the number of vectors is increased to (log N —

a) + (g T -lfe ' SillCe (2 ^ 1)C < (2m_?)^(a-l)m = 2 ^ I > Which iS leSS ttla11 2 (m > 1)> th e

maximal value is achieved when a = 1, and the total number of vectors in the R PT is

0(log N) times of the number of subscribers.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

145

5.3 Operation Algorithm s

5.3.1 S u b scr ib e /U n su b scr ib e

The subscribe/unsubscribe procedures are initiated by subscribers and proceed toward the

root of an RPT. The process can be implemented in an iterative or recursive way. W ith iter

ation, the subscriber itself has to inform all representative nodes one by one. W ith recursion,

each representative node is responsible for forwarding the subscriptions to the next higher

level until the root node is reached. In SCOPE, we implement the subscribe/unsubscribe

operations recursively for routing efficiency.

At the beginning, each subscriber locates its immediate upper-level partition from its

predecessor’s and successor’s identifiers. Then, the node sends subscribe/unsubscribe re

quests to the upper-level representative node. The representative node checks if it has

a vector allocated for the key. If so, it sets/unsets the corresponding bit, and the sub

scribe/unsubscribe procedure terminates there. Otherwise, it creates/deletes the vector of

the key, sets/unsets the bit, and continues forwarding subscribe/unsubscribe requests to the

representative node at the next upper-level partition. This process proceeds until it reaches

the root of the RPT. The routing algorithms of the operations depend on the type of the

specific structured P2P systems. In this section, we use Pastry as the base routing scheme

for the purpose of analysis. Note tha t similar analysis is applicable to other hypercube

routing algorithms as well.

Figure 5.5 illustrates a subscribe/unsubscribe process in a 3-bit identifier space, where

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

146

3—hil ID space
101

ro o f
tfoi)

010
01 I

F ig u re 5.5: Node 2 (010) subscribe Key 5 (101) in a 3-bit identifier space.

node 2 (010) subscribes/unsubscribes key 5 (101). At first, node 2 notifies the representative

node 3 (011) at the bottom level, then node 3 informs the representative node 1 (001) at

the intermediate level. Finally, node 1 informs the root node 5, which is the representative

node of the whole space.

In order to improve routing efficency, every node maintains level indices to indicate the

node’s partitions at different levels. As we have pointed out before, reducing intermediate

partitions makes the height of R PT different from the depth of partitioning. The level

index is used to record the change of the RPT height with the increase of partitioning. Its

maximal length is equal to M for an identifier space with size of 2M. The i th entry in a

level index is the height of the R PT at i th partition level.

nrn nm

rm
nm

nrn
(a) (b)

F ig u re 5.6: Level index changes after node 3 joins in a 3-bit space.

Figure 5.6 shows an example of the level index in a 3-bit identifier space. Before node

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

147

3 joins, nodes 1 and 4 are identified after first-time partitioning. Both of them have the

same level index {1,U,U}, where U represents an empty space. W ith the participation of

node 3, the whole space needs to be partitioned twice to identify nodes 0 and 3, and no

redundant intermediate partition exists. The R PT grows as partitioning proceeds, and the

level indices of nodes 0 and 3 become {1,2, U}. Comparatively, node 4 is identified after

the first-time partitioning and its level index is {1, U, Ll}.

W ith the Pastry routing table and leaf set, a node can reach any other node in a range of

2xm within Q(log(2MJYxm)) hops. When a node initiates a subscribe/unsubscribe operation,

it also forwards its level index to the representative nodes at upper levels. Each intermediate

representative uses the level index to derive the location of its higher level representative.

Lem m a 1 For an N -node network with partition size of 2m in a 2M identifier space, in

any range of 2xm, on average a node can find the successor of a key in 0 (lo g (2MjVxm)) hops.

P roof: We use Pastry as the base routing algorithm, and assume tha t a node’s routing

table is organized into \log2bM] levels with 2b — 1 entries each. Due to the usage of the

SHA-1 hash function, node and key identifiers are randomly distributed and the number of

nodes in a range of 2xm is 2lJ l xm on average. Suppose that node n wants to resolve a query

for the successor of k, k > n and 0 < k — n < 2xm. Node n forwards its query to the close

predecessor of k in its routing table. Suppose key k is in the i th (0 < i < = xm/b) level

jth (o < j < 2b) interval of node n. If this interval is empty, node n has found the successor

of k. Otherwise, it fingers some node / in this interval. The distance between n and / is

at least 2xm~l'b. Since / and k are both in Vs level, the distance between them is at most

2xm"~*'6, less than half of the distance from n to k.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

148

After log(2M^Xm) forwardings, the distance between the current query node n and key

k is reduced to 2xm/2 l°s^ M- xm'> = 2M/ N . Because the expected number of node identifiers

in this range is 1, the successor of key k can be reached in 0(\og(2M1f xm)) hops on average.

If n > k and 0 < n — k < 2xm, we can obtain the same result. ■

T h eo re m 4 For an N-node network with partition size o f 2m, on average the subscribe/unsubscribe

operations can be finished in -) hops.

As we have learned from the previous section, the average height of RPT(s) is 0 (-& li).

In order to finish a subscribe/unsubscribe operation, levels are traversed on av

erage. Prom Lemma 1, at each level, on average a query node can reach the successor of

a key in the same partition at level I in log N /2 lrn hops, the average routing length of a

subscribe/unsubscribe operation (hop(sub / unsub)) is:

A A
hop(sub/unsub) = log N + log — + log ^

N
+ - + loS 2^s N

= log A + (log A — m) + (log N — 2m)

+... + (log A - logjVm)
m

log2 A _ log A
2m 2

Therefore, on average a subscribe/unsubscribe operation can be finished in O (lo| m/V) hops.

While the upper bound of subscribe path length is longer than tha t of the centralized

solution, the subscribe/unsubscribe operations in SCOPE are efficient if multiple subscribers

exist. The subscribe/unsubscribe process terminates at any representative node tha t has

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

149

recorded the same key at the same level. When a node subscribes a key with C replicas,

the average length of the subscribe/unsubscribe process can be expressed as follows:

N N
hop(sub/ unsub) = log N + log K ••• + lo g ;2m *“ & 2l°S N

- (l o g N + log ^ + ... + lo g - ^)

l o g N l o g C

^ N N
2 ^ los ^ - Z ^ los ^ r
i — 0 i = 0

l o g N

J 2 \og(N/2im)

i = ^ + 1

5.3.2 U p d a te

The update procedure is launched by the root node after it receives update requests from

a replica, and proceeds toward every subscriber. The root node first checks its vector of

the key. Then, it sends notifications to the representative nodes of the partitions with

corresponding bits set. Every intermediate representative is responsible for delivering the

notifications to its lower-level representatives. When the notification reaches a leaf node, it

is forwarded to the subscribers directly.

T h eo re m 5 For an N-node network with partition size of 2m, on average, update opera

tions can be finished in 0 (l01 ^) hops.

Although the update path to a single subscriber in SCOPE is longer than tha t in the

centralized solution, the average number of update routing hops in SCOPE is smaller. This

is because in SCOPE all replicas can be notified in 0 (log2 iV) hops, but the centralized

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

150

solution needs 0(C) hops to finish. For a sufficiently large C, the latter incurs much longer

delay.

Similar to subscribe/unsubscribe operations, the update operation in SCOPE is efficient

if multiple subscribers exist. The total number of hops (hop(update)) for an update of a

key with C replicas is:

hop(update) = C log IV — (C — 2m) log N + C log

C N N
2r"(—— — 2m) log — + ... + C log l o g C .

N N +C\og ■■Xo„c~ - + ••• + C log . N
2 (^ + 0 - 21

l o g N l o g C
™ A T m A T

= c y i o g ^ - + y 2 ^ m i o g ~/ ̂ 2im ' ̂ 2irn i= !at£+1 i=o

Comparatively, the centralized solution needs 0 (C log N) hops to conduct an update oper

ation. Our analysis above is based on the base SCOPE protocol, in which we do not record

the IP addresses of descendant nodes explicitly. To further reduce the latency of update

operations, a parent node may directly record the IP addresses of its R PT children. If so,

SCOPE can reduce the average update hops to 0 (lo g N), which is much smaller than that

of the centralized solution for a sufficiently large C.

5.4 M aintenance and Recovery

5.4.1 N o d e J o in in g /L eav in g

This section describes how to maintain the RPT when a single node joins. A similar method

can be applied to the situation where a node leaves.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

151

root 7

3-bit ID space 3-bit ID space

first level partition first level partition

(b) (c)(a)

Figure 5.7: (a) Node 2 (010) joins in a 3-bit identifier space; (b) The RPT of key 5 before node 2
joins; (c) The RPT of key 5 after node 2 joins.

Besides maintaining the predecessor/successor and routing tables, a newly-joining node

in SCOPE needs to take two actions to maintain the RPT : transferring partition vectors

and updating level indices. W ith a node joining, part of RPT vectors under the charge of

the node’s successor should be transferred to the newly-joined node, similar to transferring

keys. The operation is straightforward: the newly-joined node n informs its successor n',

then node n' moves the related vectors at every level to node n.

A node joining may cause further partitioning to distinguish itself from other existing

nodes. If node n changes the structure of any RPTs, it also needs to inform the affected

nodes to update their level indices accordingly. Figure 5.7 illustrates the level index mainte

nance when node 2 joins a 3-bit identifier space. Figure 5.7(a) shows the node distribution.

Originally, only node 0 is in the partition [0,3], and its level index is {1, U, □}. Figure 5.7(b)

shows the R PT of key 5, where node 7, the primary node of key 5, can read the first bit of its

vector and know the existence of key 5’s replica at node 0. After node 2 joins, node 0 is no

longer the only node in the partition [0,3], thus further partitioning within [0, 3] becomes

necessary to differentiate node 0 from node 2. Subsequently, node 0 updates its level index

to {1, 2, U } and subscribes key 5 via node 2—the representative of the new partition. The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

152

modified R PT of key 5 is illustrated in Figure 5.7(c). Note tha t a newly-joined node triggers

at most one partitioning. The newly-generated partition consists of the newly-joined node

and at least one existing node.

L em m a 2 In an N-node network, when a node joins, on average only 0(1) nodes need to

update their level indices.

P ro o f: According to the design of RPTs, we do not need to partition at a level if only

one of its lower partitions has nodes. If the newly-joined node makes the partitioning a

necessity, only the existing nodes in tha t lower partition need to update their level indices.

Considering tha t nodes are randomly distributed among partitions, the average number of

nodes in tha t partition is 0 (1). ■

T h e o re m 6 In an N-node network with partition size of 2m, on average, any node joining

or leaving requires 0 (1) messages to update the corresponding R P Ts and level indices.

When a node joins/leaves, both RPTs and level indices can be updated with 0(1)

messages. The total number of maintenance messages is still 0(1).

5.4.2 N o d e Failure

One advantage of multi-level partitioning is fault tolerance. The records at any level parti

tion can be restored from its lower-level partitions. SCOPE has a recovery process invoked

periodically after the stabilization process. When one peer fails, the recovery process is

executed by the new node tha t takes over the failed one. The new node sends queries to its

lower-level partitions, then restores every key’s vectors based on their responses.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

153

Suppose a node fails in an JV-node network with partition size of 2m. In order to

recover the RPTs, another node taking over the failed node needs to collect all subscription

information from all 2m lower-level partitions at all lô tjV levels. On average, the total

number of messages (M essage) is:

N N
Message = 2m(log N + log — + log

N \
+ - + l0§)

= - r n ^ N 2ml0g N
2m 2

Thus, when a node fails, the recovery process only needs 0 (2 m lof iV) messages.

Comparatively, a centralized approach can recover the replica locations by broadcasting

the re-subscription requests to all nodes or by requiring all subscribed nodes to periodically

communicate with the hashed nodes. Obviously, neither of these methods is as effective as

the method tha t SCOPE uses.

5.5 Performance Evaluation

In this section, we validate the efficacy of SCOPE through simulations. In our experiments,

all nodes and keys are randomly-selected integers. They are hashed to a 160-bit identifier

space via SHA-1. The number of partitions at each level is 16. Specified as the Pastry

default parameters, the routing table of each node has 40 levels and each level consists of

15 entries; the leaf set of each node has 32 entries.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

154

10000
1 rep lica —

10 rep lica —
1 0 0 r e p l i c a

1 0 0 0 rep lica — '
1 0 0 0 0 rep lica

1000

100<DTJO
Z

"5
a>n
E
3

z

0.01 0 1 2 3 4 5

N u m b e r of R e c o rd s

(a)

9 4

1st a n d 9 9 th p e rc e n tile s

1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 e + 0 6 1 e+ 0 7

N u m b e r of N o d e s

(b)

Figure 5.8: (a) The storage distribution of different nodes; (b) The average RPT height with the
change of number of nodes.

5.5.1 S tru ctu re Scalab ility

A scalable P2P system should distribute the whole storage load to a large number of nodes

to avoid the hot-spot problem. We consider a network consisting of 104 nodes, and vary the

total number of replicas of a key at 1, 10, 102, 103 and 104. In order to record a key and

its locations, a record [keyJd, partition-level, partition-vector] is kept at each representative

node. We measure the number of nodes involved and the number of records stored on each

node to evaluate scalability. The experiments are repeated 20 times and the mean values

are plotted in Figure 5.8(a). W ith the increase of total replicas, the number of records on

a node is slowly increased. For example, when there are 104 replicas, it is rare for a node

to have more than three records.

The height of an R PT determines the latency of operations in SCOPE. By varying the

number of nodes, we measure the level of partitions for each node, which is equal to the

height of RPTs of all replicas on one node. Figure 5.8(b) plots the mean, the 1st, and 99th

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

155

percentiles of the height of RPTs with the increase of number of nodes. The RPT heights of

all keys residing in different nodes exhibit small variations, and they grow logarithmically

with the increase of the number of nodes.

Assume subscribers follow a Zipf’s distribution, and there are 104 and 105 keys in a

104-node network. The number of subscribers of i th most popular key is equal to 1/i of

total number of nodes. Figures 5.9(a) and (b) plot the storage load on each node when

the number of total keys is 104 and 105, respectively. The storage load is measured by the

number of records kept on one node. Compared with the centralized solution, SCOPE can

effectively distribute the storage load to all nodes, thus avoiding the hot-spot problem. In

these two experiments, the maximal records on a single node are reduced from 10004 and

10078 in the centralized solution to 105 (1/95) and 387 (1/26) in SCOPE, respectively.

Next we consider a query distribution obtained from Web proxy logs [7]. We randomly

selected 104 and 105 hostnames, and the distribution of the number of subscribers is equal

to tha t of requests collected during one week period (Nov. 02 - Nov. 08, 2003). Figures

5.9(c) and (d) plot the storage load on each node when the number of total keys is 104

and 105, respectively. Again, the maximal number of records on a single node are reduced

to 418 and 1937 in SCOPE, which are 24 and 10 times less than 10098 and 19548 in the

centralized solution, respectively.

5.5.2 O peration E ffectiveness

In this section, we evaluate the effectiveness of new operations in SCOPE. We focus on

subscribe operations only, since the other two kinds of operations (unsubscribe/update) are

similar to subscribe operations. Figure 5.10(a) plots the dynamics of the subscribe path

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

156

Zipf’s - 1 0 K eys, 10 N o d e s Zipf’s - 1 0 K eys, 10 N o d e s
10000

10

S C O P E *
Central

*■

I.............

m ax = 1 0 5 n a x = 1 0 0 0 4

1.......

1 10 100 1000 10000 100000
N u m b e r of R e c o rd s

(a)

1000

10

■ < ■ ■ i '

A
S C O P E *
Cen rai

m ax = 3 8 7 m a x = 1 0 0 7 8

\ \

-

100 1000 10000 100000
N u m b e r of R e c o rd s

(b)

P r o x y - 10 K eys, 10 N o d e s P ro x y - 10b K eys, 10 4 N o d e s
1000

| 100

10

S C O P E *
Central *

x x

m ax = 4 1 8 m ax = 1 0 0 9 8

x Ki.zem*

—

1000

® 100 *8
z

10 100 1000 10000 100000 1
N u m b e r of R e c o rd s

(c)

S C O P E
Central

m a x = 1 9 3 7 m ax = 1 9 5 4 8

.v 'K. »

10 100 1000 10000 100000
N u m b e r of R e c o rd s

(d)

F ig u re 5.9: W ith the Zipf’s distribution, the number of records kept by each node in: (a) 104-key,
104-node network; (b) 105-key, 104-node network; with the distribution obtained from proxy logs,
the number of records kept by each node in: (c) 104-key, 104-node network; (d) 105-key, 104-node
network.

length with the increase of total number of nodes. SCOPE has longer paths to finish a

subscribe operation than the centralized solution, because multiple representative nodes

should be contacted before the primary nodes are reached. In practice, when numerous

subscribers exist, the subscribe operation may term inate at a representative node, leading

to a reduced path. Figure 5.10(b) illustrates the effects of multiple subscribers on the path

length. If the number of subscribers is larger than 200 in a 104-node network, the path

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

157

length is shorter than the centralized solution.

10

8

6

4

2

0
1 10 100 1000 1 0 0 0 0 1 0 0 0 0 0 1 e+ 0 6

8
S C O P E
Central

c3
CO
Q.
o 4
<0 H£33if)
CB<0
<D 2

0
1 10 100 1000 10000

N u m b er of N o d e s

(a)
N u m b e r of S u b s c r ib e r s

(b)

Figure 5.10: (a) The subscribe operation path length in SCOPE compared with the centralized
solution; (b) The changes of subscribe operation path length with the variance of number of sub
scribers.

Assume subscribers follow a Zipf’s distribution. Figures 5.11(a) and (b) plot the dis

tribution of the messages sent/received by each node in a 104-node network with 104 and

105 keys, respectively. Although the maximal path length in SCOPE is longer than tha t of

the centralized solution, the messages from the subscribe operations are much more evenly

distributed among all nodes, instead of clogging at a few nodes. As the simulation results

shown, when the number of keys is 104, the maximal number of messages on a single node is

412 in SCOPE, only about 1/25 of 10445 in the centralized solution. When the number of

keys is 105, the maximal number of messages on a single node increases to 1410 in SCOPE,

but still only about one seventh of 10406 in the centralized solution.

When the subscriber distribution is obtained from proxy logs [7], Figures 5.11(c) and

(d) illustrate the distribution of the messages sent/received by each node in a 104-node

network with 104 and 105 keys, respectively. The maximal number of messages on a single

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

158

node in SCOPE is only one sixth (1906 vs. 11218) and one fourth (7925 vs. 33068) of the

centralized solution in these two cases, respectively.

Zipf’s • 10 K eys, 1 0 N o d e s Zipf’s - 1 0 K eys, 10 N o d e s

1000

100
m ax = 4 1 2 m a x = 10445

10 100 1000 10000 100000
N u m b e r o f M e s s a g e s

(a)

1000
S C O P E
C en tra l

100
m ax = 1 4 1 0 m ax = 1 0 4 0 6

<s>n
3

1 10 100 1000 10000 100000
N u m b e r of

(b)

100
S C O P E
C en tra l

m ax = 1 9 0 6 m a x = t 121 8

100 1000
N u m b e r of

(c)

E3
z

S C O P E
C en tra l

m a x = 7 9 2 5 m ax = 3 3 0 6 8

1000 10000
N u m b er of N

(d)

Figure 5.11: With the Zipf’s distribution, the distribution of messages sent/received by each node
in: (a) 104-key, 104-node network; (b) 105-key, 104-node network; with the distribution obtained
from proxy logs, the distribution of messages sent/received by each node in: (c) 104-key, 104-node
network; (d) 105-key, 104-node network.

5.5.3 M ain ten an ce C ost

The maintenance cost includes node joining and leaving, and node failure recovery. Besides

the maintenance routines in Pastry, node joining/leaving needs additional operations to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

159

1 s t a n d 9 9 th p e rc e n ti le s S C O P E —
C en tra l -

■oco0 0) w
1 1*10̂6}
0)

(Oo>o>(0totoo
<D
§<D

©

0.001 0.01 0.1
P e r c e n ta g e of F a iled N o d e s (P e r S e c o n d)

1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 e+ 0 6 1 e+ 0 7

T otal N u m b er of N o d e s

(a)

F ig u re 5.12: (a) The number of nodes to update their level indices at a node joining; (b) The
number of maintenance messages in a network with certain node failure rate.

maintain an RPT. We focus on the additional overhead induced by SCOPE. The first part

of maintenance, transferring RPT, can be completed through a regular operation in Pastry.

The second part of maintenance, further partitioning, needs additional operations. Figure

5.12(a) illustrates the number of affected nodes when a new node joins. On average, a

newly-joined node only invokes 0.5 node to update its level index, disregarding the size of

a P2P system.

10 replica
100 reDlsca

1 0 0 0 rep lica

t+t’Jw

*»**•»* W j&hm, »
Proxy-SCOPE
Z ip f's -S C O P E
P roxy-C en tra l
Zip fs-C entra l

0.02> 0 .0 4 0 .0 6 (

F a iled N o d e s (F ra ctio n of T otal)

0 .0 8 0.10 0 .0 2 0 .0 4 0 .0 6 0 .0 8 0.1

F a iled N o d e s (F ractio n of T otal)

(a)

F ig u re 5.13: (a) The number of messages for an update in a 104-node network; (b) The total mes
sages for updates in a 104-key, 104-node network for both Zipf’s and proxy log-based distributions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

160

One im portant feature in SCOPE is its efficient recovery mechanism when a node failure

is detected. As in Pastry, in order to detect node failures, the neighboring nodes periodically

exchange keep-alive messages. In our experiments, we only count the additional messages

in the network to recover from node failures. In SCOPE, the new representative nodes

communicate with the lower-level representatives to recover RPTs in case of a node failure.

On the contrary, the centralized solution has to broadcast the recovery information to all

nodes. Figure 5.12(b) shows the message rate in a 104-node network with given node failure

rates. Compared with the centralized solution, SCOPE only consumes about one fifth of

messages to recover under different failure rates.

5.5 .4 Fault Tolerance

When a node fails, in order to propagate the update, a centralized scheme relies on broad

casting to reach the destination nodes. In contrast, SCOPE only needs to send the update

notifications to representative nodes at the lower levels. We simulate a network with 104

nodes and 104 keys. Figure 5.13(a) plots the total number of messages of an update opera

tion with the increase of failed nodes. Note tha t the update is made on an object with 10,

100, or 1000 replicas, respectively. In all cases, the number of messages for the update is

proportionally increased with the fraction of failed nodes. Assume subscribers follow either

Zipf’s or proxy log-based distribution, Figure 5.13(b) plots the total number of messages if

all keys are updated once. The number of messages in SCOPE is about 5%-10% of the mes

sage overhead in the centralized scheme for both Zipf’s and proxy log-based distributions.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

161

5.6 Design Alternatives

Selected Representative Nodes

Frequent node joins and leaves, which is not uncommon in practice [20], could significantly

degrade the performance of SCOPE. However, we can mitigate this performance degrada

tion by pre-selecting representative nodes in RPTs. Not all nodes are eligible for being

representative nodes; only those trusted and stable ones are selected as representatives for

each partition. Since transient nodes join at the bottom level, the higher-level partitions

are relatively stable and the cost of maintaining RPTs is minimized.

Direct Notification

In the base SCOPE protocol, the update process needs to traverse multiple partitions even

if only one replica remains in the P2P system. If privacy is not a concern, SCOPE can

be easily extended to record subscribers’ IP addresses to shorten the latency of update

notifications. If a node/partition is the first one to subscribe a key in the upper-level

partition, this partition records its IP address in addition to the partition vector. When

the upper level receives an update notification, it directly forwards the message to the node

with the corresponding IP address without traversing the partition tree.

Dynamic Partitioning

The partition number at each level is predefined and fixed in the base SCOPE. A large num

ber of partitions may reduce the total number of levels, thus lower subscribe/unsubscribe/update

latency, but at the expense of high space overhead caused by a large number of partition

vectors. On the other hand, a small number of partitions may increase the number of levels

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

162

with low space overhead. Considering the tradeoff between routing latency and storage

overhead, our partitioning scheme could be dynamic, in which the number of partitions is

adaptively changed with respect to the popularity of a key. In this scheme, the root of the

RPT for a key decides the appropriate number of partitions for tha t key. Since subscribers

of the key do not know the number of partitions, subscribe/unsubscribe operations always

start from the root R PT vectors.

5.7 Summary

The challenges to building a consistent P2P system are twofold: large scale and high failure

rates. In this chapter, we proposed a scalable, consistent structured P2P system, called

SCOPE. Based on structured DHTs, SCOPE builds a replica-partition-tree for each key to

distribute its replica location information among peers. In an TV-node network, each peer

is guaranteed to keep at most O(logiV) partition vectors for a single key, regardless of the

key’s value and its popularity. Three new primitives, subscribe/unsubscribe/update, are

introduced specifically to maintain the replica consistency. Due to hierarchical management,

these operations can be committed efficiently with minimal maintenance cost. Only 0(1)

nodes are updated when a node joins or leaves, and only 0(log2 N) messages are transm itted

to recover a node failure. Our theoretical analyses and simulation experiments have shown

that SCOPE scales well with the number of nodes, maintains consistency effectively, and

recovers from node failures efficiently.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusion and Future Work

The objective of this dissertation is to address the limits of existing Internet latency reduc

tion techniques, including Web prefetching, DNS cache consistency and P2P cache manage

ment. This dissertation introduces a set of new efficient solutions to significantly improve

the efficiency and performance.

6.1 Existing Problem s

As general solutions to reduce latency, caching, replication and prefetching have been de

ployed in Internet to improve the client perceived response time. This dissertation is moti

vated by the following limitations found in current Internet:

• Web prefetching decisions are often made through pre-defining probability thresh

olds. It can limit the generated overheads on both Web servers and networks by

selecting the prefetched objects with access probabilities larger than the thresholds.

The thresholds also determine the tradeoffs between the improved client perceived

latency. The effectiveness of this static scheme depends on the assumption tha t more

163

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

164

aggressive prefetching makes lower latency with higher overhead consumption, which

is not ture in practice. When either server or network is over loaded, prefetching may

increase the latency due to the processing delay.

• As a major component in Internet, DNS only has a simple TTL-based scheme to

refresh the DNS cache content. Initially designed around 20 years ago, it worked

efficiently in the past when the mappings between the domain names and IPs were

rarely changed. However, in most recent years, the mappings became dynamic because

of the deployments of new techniques such as CDN and dynamic IPs. The original

TTL-based solution cannot effectively maintain the cache consistency. Thus the loss

of connections is inevitable for the domains with dynamic mappings.

• P2P systems use replication to improve the system scalability and dependability. Al

though P2P systems are designed to scale to millions of nodes, existing cache man

agement schemes are limited either in scalability or in reliability. Since P2P networks

are mostly used by sharing static objects, existing schemes are acceptable even with

the potential problems. But the lack of effective cache management prevents P2P

networks from serving the applications for dynamic objects.

6.2 Contributions

The major theme of the dissertation is reducing Internet latency by utilizing rich bandwidth

and large storage capacity. The contributions of the dissertation are concisely summarized

in table 6.1.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

165

Table 6.1: Dissertation Contributions

Base Techniques Where in Internet Identified Problems Objectives/accomplishment
Caching DNS weak consistency strong consistency
Prefetching Web low efficiency algorithmic and system im

provement
Replication P2P expensive consistency

maintenance
scalable consistency mainte
nance

1. D N Scup: a new D N S cache consistency m aintenance schem e based on ac

tive update propagation. To keep tracks of local DNS nameservers whose clients

need strong cache consistency for always-on Internet services, DNScup uses dynamic

lease algorithm to balance the storage overhead and the communication overhead.

Based on the DNS Dynamic Update Protocol, we design and build a DNS Cache

Update Protocol (DNScup) prototype with minor modifications to the current DNS

implementation. Our trace-driven simulation and prototype implementation demon

strate tha t DNScup achieves the strong cache consistency in DNS and significantly

improves its availability, performance and scalability.

2. A m easurem ent-based coordinated W eb prefetching fram ework for sup

porting predictable response tim e. This framework allows both Web servers

and proxies provide Web prefetching supports in a coordinated and dynamic way.

Each of them utilizes the its local Web access information to make predictions. Web

servers will make predictions only when the proxies cannot provide prediction re

sults for incoming requests from clients. Thus, proxies can reduce the computation

overhead on Web servers and the communication overhead on Internet while the pre

diction accuracy is improved. Based on measuring server and network utilization,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

both Web server and proxies also decide the prefetching aggressiveness by adjusting

the prefetching thresholds dynamically. The adjustment process is performed period

ically to minimize the client perceived latency at real time.

3. SCOPE: a scalable DHT-based P 2P cache management scheme. Based on

existing Distributed Hash Tables (DHTs), SCOPE builds a replica-partition-tree for

each key to distribute its replica location information among peers. Replica partition

tree (RPT) of every key is constructed by aggregating the information with good

scalability. In an iV-nodc network, each peer is guaranteed to keep at most O (log TV)

partition vectors for a single key, regardless of the key’s value and its popularity. Three

new primitives, subscribe/unsubscribe/update, are introduced specifically to maintain

the replica consistency. Due to hierarchical management, these operations can be

committed efficiently with minimal maintenance cost. Only 0(1) nodes are updated

when a node joins or leaves, and only 0(log2 N) messages are transm itted to recover

a node failure. Our theoretical analyses and simulation experiments have shown that

SCOPE scales well with the number of nodes, maintains consistency effectively, and

recovers from node failures efficiently.

6.3 Future Work

There are three general areas of future work suggested by our research. First, we have

evaluated the measurement-based coordinated Web prefetching framework on a LAN. A

logical extension would be to construct a cluster of servers and perform the experiments

on the real Internet. One issue tha t requires further research would be the adjustment

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

167

accuracy when multiple kinds of services are deployed on servers simultaneously.

Second, we validated DNScup by building a simple DNS system on limited number of

nodes. Although DNScup is scalable in nature, its performance and reliability should be

examed in large scale systems for real deployment in Internet. Since DNScup changes the

communication procedures among name servers, the existing security mechanism should

be changed accordingly to guarantee the authority of the propagation from remote name

servers.

Finally, SCOPE provides a general way to manage replications in P2P cache while many

applications have specific requirements. Specifically, when multiple writers exist, more strict

rules should be enforced to make all peer readers have the same responses. Another related

issue worthing further investigation is to construct adaptive P2P systems based on their

scales for lower maintenance overhead and higher reliability.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] Akamai technologies, inc. http://www .akam ail.com /.

[2] Apache h ttp server project, h ttp ://h ttpd .apache.o rg /.

[3] Content delivery and distribution networks, http://www.web-caching.com/cdns.html.

[4] Dynamic DNS provider list, http://ww w.technopagan.org/dynam ic/.

[5] eacceleration corporation, http://www.webcelerator.com /.

[6] Internet systems consortium, http://ww w.isc.org.

[7] Ircache home, http://w w w .ircache.net/.

[8] Lawrence berkeley national laboratory, h ttp ://ita .ee.lb l.gov/.

[9] Netscape, inc. http://w w w .netscape.com /.

[10] Standard performance evaluation co. http://ww w .specbench.org/.

[11] M. A r l i t t a n d T. J in . Workload characterization of the 1998 world cup web site.
IEEE Network, 14(3):30-37, M ay/June 2000.

[12] M. F. A r l i t t a n d C. L. W i l l i a m s o n . Internet web servers: workload charac
terization and performance implications. IE E E /A C M Transactions on Networking,
5(5):631645, October 1997.

[13] G. B a n g a , F. D o u g l i s , a n d M. R a b i n o v i c h . Optimistic deltas for www latency
reduction. In Proceedings of the USENIX Technical Conference, 1997.

[14] G. BANGA a n d P. D r u s c h e l . Measuring the capacity of a web server under realistic
loads. World Wide Web Journal, 2(1-2):69-83, 1999.

[15] N. B a n s a l a n d M. H a r c h o l - B a l t e r . Analysis of srpt scheduling: Investigating
unfairness. In Proceedings of AC M Sigmetrics, 2001.

[16] P . B a r f o r d , A. B e s t a v r o s , A. B r a d l e y , a n d M . C r o v e l l a . Changes in web
client access patterns. World Wide Web Journal, 2(1):15—28, January 1999.

[17] P . B a r f o r d a n d M. C r o v e l l a . Generating representative web workloads for net
work and server performance evaluation. In Proceedings of Performance ’98/SIG-
M E T R IC S’98, Madison, Wisconsin USA, July 1998.

168

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.akamail.com/
http://httpd.apache.org/
http://www.web-caching.com/cdns.html
http://www.technopagan.org/dynamic/
http://www.webcelerator.com/
http://www.isc.org
http://www.ircache.net/
http://ita.ee.lbl.gov/
http://www.netscape.com/
http://www.specbench.org/

169

[18] F. B a s k e t t , K. C h a n d y , R. M u n t z , a n d F. P a l a c i o s . Open, closed, and mixed
networks of queues with different classes of customers. Journal o f the ACM, 22(2),
Apr. 1975.

[19] A. B e s t r a v o s . Using speculation to reduce server load and service time on the
www. In Proceedings o f the f th AC M International Conference on Information and
Knowledge Management, Baltimore, Maryland, 1995.

[20] R. B h a g w a n , S. S a v a g e , a n d G. V o e l k e . Understanding availability. In Proceed
ings of IP T P S ’03, Berkeley, CA, USA, Feb. 2003.

[21] S . B l a k e , D. B l a c k , M. C a r l s o n , E. D a v is , Z. W a n g , a n d
W. W e i s s . An architecture for differentiated services, http://info.internet.isi.edu/in-
notes/rfc/files/rfc2475.txt, December 1998.

[22] T . B r a y . Measuring the web. In Proceedings o f the Fifth International World Wide
Web Conference, Paris, France, 1996.

[23] L . B r e s l a u , P . C a o , L . F a n , G. P h i l l i p s , a n d S . S h e n k e r . Web caching and
zipf-like distributions: Evidence and implications. In Proceedings of IEEE INFOCOM,
New York, NY, March 1999.

[24] S. B r in AND L. P a g e . The anatomy of a large-scale hypertextual web search en
gine. In Proceedings o f the 7th International World Wide Web Conference, Brisbane,
Australia, 1998.

[25] A. B r o i d o , E. N e m e t h , a n d K. C l a f f y . Spectroscopy of DNS update traffic. In
Proceedings o f AC M SIG M ETRIC S’2003, San Diego, CA, June 2003.

[26] N. B r o w n l e e , K. C l a f f y , a n d E. N e m e t h . DNS Root/gTLD performance mea
surements. In Proceedings of USENIX L IS A ’2001, San Antonio, TX, December 2001.

[27] R. C a c e r e s , F. D o u g l i s , A. F e l d m a n n , G. G l a s s , a n d M. R a b i n o v ic h . Web
proxy caching: the devil is in the details. In Proceedings of the Workshop on Internet
Server Performance, Madison, Wisconsin, June 1998.

[28] M. C a s t r o , P . D r u s c h e l , A. K e r m a r r e c , a n d A. R o w s t r o n . Scribe: A large-
scale and decentralized application-level multicast infrastructure. In IEEE Journal
on Selected Areas in Communications, volume 20, Oct. 2002.

[29] M. C a s t r o , P. D r u s c h e l , A-M. K e r m a r r e c , A. N a n d i , A. R o w s t r o n , a n d
A. SlNGH. Splitstream: High-bandwidth multicast in a cooperative environment. In
Proceedings of the 19th AC M SO SP’03, Lake Bolton, NY, USA, Oct. 2003.

[30] V. C a t e . Alex - a global file system. In Proceedings of USENIX File System Work
shop ’92, Ann Arbor, MI, May 1992.

[31] A. C h a n k d u n t h o d , P. D a n z ig , C. N e e r d a e l s , M. S c h w a r t z , a n d K. W o r
r e l l . A hierarchical internet object cache. In Proceedings of USENIX Annual Tech
nical Conference’96, San Diego, CA, January 1996.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://info.internet.isi.edu/in-

170

[32] X. c h e n , H.N. W a n g , S.S. R e n , a n d X. Z h a n g . Strong cache consistency support
for domain name system. In Technical Report TR-04-12, College of William and Mary,
August 2004.

[33] X. C h e n a n d X. Z h a n g . Popularity-based ppm: An effective web prefetching tech
nique for high accuracy and low storage. In Proceedings of the 2002 International
Conference on Parallel Processing, Vancouver, Canada, August 2002.

[34] X. C h e n a n d X. Z h a n g . A popularity-based prediction model for web prefetching.
IEEE Computer, March 2003.

[35] Y. C h e n , R.H . K a t z , a n d J.D . K u b i a t o w i c . Scan: A dynamic, scalable, and
efficient content distribution network. In Proceedings o f the First International Con
ference on Pervasive Computing, Zurich, Switzerland, Aug. 2002.

[36] Y. C h e n , L. Q iu , W . C h e n , L. N g u y e n , a n d R. H. K a t z . Clustering web content
for efficient replication. In Proceeding of the 10th IEEE International Conference on
Network Protocols, Paris, Prance, Nov. 2002.

[37] J . C h o a n d H. G a r c i a - M o l i n a . The evolution of the web and implications for an
incremental crawler. In Proceedings of 26th International Conference on Very Large
Databases, Cairo, Egypt, Sep. 2000.

[38] I. C l a r k e , O. S a n d b e r g , B. W i l e y , a n d T .W . H o n g . Freenet: A distributed
anonymous information storage and retrieval system. In Designing Privacy Enhancing
Technologies: International Workshop on Design Issues in Anonymity and Unobserv
ability, 2001.

[39] J. G. C l e a r y a n d I. H. W i t t e n . D ata compression using adaptive coding and
partial string matching. IEEE Transactions on Communications, 32(4):396-402, 1984.

[40] E . C o h e n AND H. KAPLAN. Prefetching the means for document transfer: A new
approach for reducing web latency. In Proceedings of IE E E INFOCOM, Tel Aviv,
Israel, 2000.

[41] E . C o h e n AND H. KAPLAN. Proactive caching of dns records: Addressing a perfor
mance bottleneck. In Proceedings of The 2001 Symposium on Applications and the
Internet, San Diego, LA, January 2001.

[42] E. COHEN AND H. K a p l a n . Proactive caching of DNS records: Addressing a per
formance bottleneck. In Proceedings of IEEE Symposium on Applications and the
In tem e t’2001, San Diego, CA, January 2001.

[43] E . C o h e n , H . K a p l a n , AND U . Z w ic k . Connection caching. In Proceedings of the
31st Annual AC M Symposium on Theory of Computing, 1999.

[44] E. C o h e n , B. K r i s h n a m u r t h y , a n d J. R e x f o r d . Improving end-to-end perfor
mance of the web using server volumes and proxy filters. In Proceedings of the ACM
SIGCOMM, 1998.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

171

[45] R. C ox, A. M u t h i t a c h a r o e n , a n d R. M o r r i s . Serving DNS using a peer-to-peer
lookup service. In Proceedings o f IP T P S ’2002, Cambridge, MA, March 2002.

[46] C . C r a n o r , E . G a n s n e r , B . K r i s h n a m u r t h y , a n d O . S p a t s c h e c k . Characteriz
ing large DNS traces using graphs. In Proceedings of AC M IM W ’2001, San Francisco,
CA, November 2001.

[47] M . C r o v e l l a a n d P. B a r f o r d . Self-similarity in world wide web traffic: evidence
and possible causes. In Proceddings of the 1996 ACM SIG M ETRIC S International
Conference on Measurement and Modeling of Computer systems, may 1996.

[48] M . C r o v e l l a a n d P. B a r f o r d . The network effects of prefetching. In Proceedings
of IEEE INFOCOM, San Francisco, CA, April 1998.

[49] M . E. C r o v e l l a a n d A. B e s t a v r o s . Self-similarity in world wide web traffic:
Evidence and possible causes. IE E E /A C M Transactions on Networking, 5(6):835-
846, December 1997.

[50] F. M . C u e n c a - A c u n a , R. P. M a r t i n , a n d T.D . N g u y e n . Autonomous repli
cation for high availability in unstructured p2p systems. In Proceedings of IEEE
SR D S’03, Florence, Italy, Oct. 2003.

[51] F. D a b e k , M .F. K a a s h o e k , D. K a r g e r , R. M o r r i s , a n d I. S t o i c a . Wide-
area cooperative storage with cfs. In Proceedings of the 18th AC M SO SP ’01, Banff,
Alberta, Canada, Oct. 2001.

[52] P . D a n z i g , K. O b r a c z k a , a n d A. K u m a r . An analysis of wide-area name server
traffic: A study of the internet domain name system. In Proceedings of AC M SIG-
COMM’92, Baltimore, MD, August 1992.

[53] A. D a t t a , M. H a u s w i r t h , a n d K. A b e r e r . Updates in highly unreliable, repli
cated peer-to-peer systems. In Proceedings of IEEE ICD CS’03, Providence, RI, USA,
May 2003.

[54] B. D. D a v i s o n . Predicting web actions from html content. In Proceedings o f the The
Thirteenth AC M Conference on Hypertext and Hypermedia, College Park, MD, June
2002 .

[55] B . D . D a v i s o n a n d V i n c e n z o L i b e r a t o r e . Pushing politely: Improving web
responsiveness one packet at a time. Performance Evaluation Review, 28(2):43-49,
September 2000.

[56] D. D u c h a m p . Prefetching hyperlinks. In Proceedings of the 2nd USENIX Symposium
on Internet Technologies and Systems, October 1999.

[57] V. D u v v u r i , P. S h e n o y , a n d R. T e w a r i . Adaptive leases: A strong consistency
mechanism for the world wide web. IEEE Transactions on Knowledge and Data
Engineering, 15(5), September/October 2003.

[58] D. E a s t l a k e . Domain name system security extensions. In RFC 2535, March 1999.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

172

[59] R. B r a d e n E d ., L. Z h a n g , S. B e r s o n , S. H e r z o g , a n d S. J a m in .
Resource reservation protocol (rsvp) - version 1 function specification.
http://info.internet.isi.edu/in-notes/rfc/files/rfc2205.txt, September 1997.

[60] J o n E i s e n b e r g a n d C r a i g P a r t r i d g e . The internet under crisis conditions: Learn
ing from September 11. AC M Computer Communication Review, 33(2), April 2003.

[61] L. F a n , P. C a o , W . L in , a n d Q. J a c o b s o n . Web prefetching between low-
bandwidth clients and proxies: potential and performance. In Proceedings of ACM
SIG M ETRICS Conference on Measurement and Modeling of Computer Systems, May
1999.

[62] B. G e d ik a n d L. Liu. Reliable peer-to-peer information monitoring through repli
cation. In Proceedings of IEEE SR D S’03, Florence, Italy, Oct. 2003.

[63] C. G. G r a y a n d D. R. C h e r i t o n . Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency. In Proceedings of AC M SO SP ’89, Litchfield Park,
AZ, December 1989.

[64] WOOL G r o u p . W w w collector: the prefetching proxy server for www.
http://shika.aist-nara.ac.jp/products/w col/, 1997.

[65] J.L . H e r l o c k e r a n d J.A . K o n s t a n . Content-independent task-focused recom
mendation. IEEE Internet Computing, pages 40-47, November/December 2001.

[66] B. A. H u b e r m a n , P. L. T. P i r o l l i , J. E . P i t k o w , a n d R. M. L u k o s e . Strong
regularities in world wide web surfing. Science, 280:95-97, April 1998.

[67] A. K . I y e n g a r , E . A. M a c N a i r , M . S . S q u i l l a n t e , a n d L . Z h a n g . A general
methodology for characterizing access patterns and analyzing web server performance.
In Proceedings of the International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, Montreal, Canada, July 1998.

[68] S. I y e r , A. R o w s t r o n , a n d P. D r u s c h e l . Squirrel: A decentralized peer-to-peer
web cache. In Proceedings o f AC M PO D C’02, Monterey, California, USA, July 2002.

[69] Z. J i a n g a n d L. K l e i n r o c k . An adaptive network prefetch scheme. IEEE Journal
on Selected Areas of Communication, 17(4):358-368, 1998.

[70] D. J o s e p h a n d D. G r u n w a l d . Prefetching using markov predictors. IEEE Trans
actions on Computers, 48(2), Februray 1999.

[71] J . J u n g , D . L e e , a n d K . C h o n . Proactive web caching with cumulative prefetch
ing for large multimedia data. In Proceeding of 9th International World Wide Web
Conference, 2000.

[72] J. J u n g , E. S i t , H. B a l a k r i s h n a n , a n d R. M o r r i s . DNS performance and
the effectiveness of caching. In Proceedings of ACM IM W ’2002, San Francisco, CA,
October 2002.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://info.internet.isi.edu/in-notes/rfc/files/rfc2205.txt
http://shika.aist-nara.ac.jp/products/wcol/

173

[73] D. K a r g e r , E. L e h m a n , F. L e i g h t o n , M. L e v in e , D. L e w in , a n d R. P a n -
IGRAHY. Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In Proceedings of AC M ST O C ’97, El Paso,
TX, USA, May 1997.

[74] J . I. K h a n a n d Q. T a o . Partial prefetch for faster surfing in composite hypermedia.
In USENIX Symposium on Internet Technology and Systems, San Francisco, CA,
March 2001.

[75] R. P . K le m m . Webcompanion: A friendly client-side web prefetching agent. IEEE
Transactions on Knowledge and Data Engineering, 11(4):577594, July/A ugust 1999.

[76] R. K o k k u , P. Y a l a g a n d u l a , A. V e n k a t a r a m a n i , a n d M. D a h l i n . A non
interfering deployable web prefetching system. In USENIX Symposium on Internet
Technology and Systems, Seattle, WA, March 2003.

[77] T . M. K r o e g e r , D. D. E. L o n g , a n d J. C. M o g u l . Exploiting the bounds of
web latency reduction from caching and prefetching. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems, Monterey, CA, April 1997.

[78] J . K u b i a t o w i c z , D. B i n d e l , Y. C h e n , S. C z e r w in s k i , P. E a t o n , a n d

D. G e e l s . Oceanstore: An architecture for global-scale persistent storage. In Pro
ceedings of AC M ASPLOS-IX, Cambridge, MA, USA, Nov. 2000.

[79] J. L a n , X. Liu, P . S h e n o y , a n d K. R a m a m r i t h a m . Consistency maintenance in
peer-to-peer file sharing networks. In Proceedings of IEEE W IA P P ’03, San Jose, CA,
USA, June 2003.

[80] R. L e m p e l a n d S. M o r a n . Optimizing result prefetching in web search engines with
segmented indices. In Proceedings of VLDB 2002, Hong Kong, China, Aug. 2002.

[81] R. L i s t o n , S. S r in iv a s a n , a n d E. Z e g u r a . Diversity in DNS performance mea
sures. In Proceedings AC M IM W ’2002, Marseille, France, November 2002.

[82] C. Liu a n d P. CAO. Maintaining strong cache consistency in the World-Wide Web.
IE E E Transactions on Computers, 47(4):455-457, April 1998.

[83] E . P . MARKATOS a n d C . E . C h r o n a k i . A top-10 approach to prefetching on the
web. Technical Report, No. 173, August 1996.

[84] D. A. MENASC AND V. A. F. A lm e id a . Capacity planning for web services: metrics,
models, and methods. Prentice Hall, NJ, 2002.

[85] M. M i k h a i l o v a n d C. W i l l s . Evaluating a new approach to strong web cache con
sistency with snapshots of collected content. In Proceedings of W W W ’2003, Budapest,
Hungary, May 2003.

[86] P . M o c k a p e t r i s . Domain names-concepts and facilities. In RFC1034, November
1987.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

174

[87] P. M o c k a p e t r i s . Domain names-implementation and specification. In RFC 1035,
November 1987.

[88] D. M o s b e r g e r a n d T. J in . httperf - a tool for measuring web server performance.
Performance Evaluation Review, 26(3):31-37, Dec. 1998.

[89] A. N t o u l a s , J . C h o , a n d C. O l s t o n . W hat’s new on the web? the evolution
of the web from a search engine perspective. In Proceedings o f the World Wide Web
Conference, New York, NY, USA, May 2004.

[90] D. O l s h e f s k i , J . N ie h , a n d D. A g r a w a l . Inferring client response time at the
web server. In Proceedings of SIG M ETRICS , 2002.

[91] V. N. P a d m a n a b h a n a n d J . C. M o g u l . Using predictive prefetching to improve
world wide web latency. Computer Communication Review, 1996.

[92] J. P a n g , A. A k e l l a , A. S h a ik h , B. K r i s h n a m u r t h y , a n d S. S e s h a n . On the
responsiveness of DNS-based network control. In Proceedings of AC M IM C ’2004,
Taormina, Sicily, Italy, October 2004.

[93] J . P a n g , J . H e n d r i c k s , A. A k e l l a , R. D e P r i s c o , B. M a g g s , a n d S. S e s h a n .
Availability, usage and deployment characterisitics of the domain name system. In
Proceedings o f A CM IM C ’2004> Taormina, Sicily, Italy, October 2004.

[94] V. P a p p a s , Z. X u , S. Lu, A. T e r z e s , D. M a s s e y , a n d L. Z h a n g . Impact of
configuration errors on DNS robustness. In Proceedings o f AC M SIGCOM M ’2004,
Portland, OR, August 2004.

[95] K. P a r k , V. S. P a i , L. P e t e r s o n , a n d Z. W a n g . CoDNS: Improving DNS perfor
mance and reliability via cooperative lookups. In Proceedings of USENIX OSDI’2004,
San Francisco, CA, December 2004.

[96] D. A. P a t t e r s o n . Latency lags bandwidth. Communications o f the ACM , 47:71-75,
Oct. 2004.

[97] V. P a x s o n a n d S. FLOYD. Wide-area traffic: The failure of poisson modeling.
IE E E /A C M Transactions on Networking, 3(3):226-244, June 1995.

[98] J. PlTKOW AND P . PlROLLI. Mining longest repeating subsequences to predict world
wide web surfing. In Proceedings of the 1999 USENIX Technical Conference, April
1999.

[99] V. RAMASUBRAMANIAN AND E.G . S i r e r . Beehive: Exploiting power law query
distributions for o (l) lookup performance in peer to peer overlays. In Proceedings of
USENIX N SD I’04, San Francisco, CA, USA, Mar. 2004.

[100] V . RAMASUBRAMANIAN AND E .G . S i r e r . The design and implementation of a next
generation name service for the internet. In Proceedings of AC M SIGCOM M ’2004,
Portland, Oregon, USA, August 2004.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

175

[101] V. R a m a s u b r a m a n ia n a n d E.G . S i r e r . The design and implementation of a next
generation name service for the internet. In Proceedings of ACM SIGCOM M ’Of,
Portland, OR, USA, Aug. 2004.

[102] S. R a t n a s a m y , P. F r a n c i s , M. H a n d l e y , R. K a r p , a n d S. S h e n k e r . A scalable
content-addressable network. In Proceedings o f AC M SIGCOM M ’Ol, San Diego, CA,
USA, Aug. 2001.

[103] Y. R e k h t e r , S. T h o m s o n , J. B o u n d , a n d P . V ix ie . Dynamic updates in the
domain name system. In RFC2136, April 1997.

[104] M. R o u s s o p o u l o s a n d M. B a k e r . Cup: Controlled update propagation in peer-
to-peer networks. In Proceedings of 2003 USENIX Annual Technical Conference, San
Antonio, Texas, USA, June 2003.

[105] A. R o w s t r o n a n d P. D r u s c h e l . Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of IF IP /A C M Middle-
ware’01, Heidelberg, Germany, Nov. 2001.

[106] A. R o w s t r o n a n d P. D r u s c h e l . Storage management and caching in past, a
large-scale persistent peer-to-peer storage utility. In Proceedings of AC M SO SP ’01,
Banff, Alberta, Canada, Oct. 2001.

[107] Y. S a i t o , C. K a r a m a n o l i s , M. K a r l s s o n , a n d M. M a h a l in g a m . Taming
aggressive replication in the pangaea wide-area file system. In Proceedings o f USENIX
OSDI’02, Boston, Massachusetts, USA, Dec. 2002.

[108] R. S a r u k k a i . Link prediction and path analysis using markov chains. In Proceedings
of the 9th International World Wide Web Conference, Amsterdam, Netherlands, May
2000 .

[109] S. S c h e c h t e r , M. K r is h n a n , a n d M. D. S m it h . Using path profiles to predict
h ttp requests. In Proceedings of the 7th International World Wide Web Conference,
Brisbane, Australia, 1998.

[110] A. S h a ik h , R. T e w a r i , a n d M. A g r a w a l . On the effectiveness of DNS-based
server selection. In Proceedings of IEEE INFOCOM ’2001, Anchorage, AK, April
2001 .

[111] S. SHENKER a n d J. W r o c l a w s k i . General characterization parame
ters for integrated service network elem ents. h ttp ://in fo .in ternet.isi.edu /in -
notes/ref/files/rfc2215.txt, September 1997.

[112] A. C. S n o e r e n AND H. B a l a k r i s h n a n . An end-to-end approach to host mobility.
In Proceedings o f AC M M OBICOM ’2000, Boston, MA, August 2000.

[113] I. S t o i c a , R. M o r r i s , D. L i b e n - N o w e l l , D .R. K a r g e r , M .F . K a a s h o e k ,
F . D a b e k , a n d H . B a l a k r i s h n a n . Chord: A scalable peer-to-peer lookup protocol
for internet applications. In Proceedings o f AC M SIGCOM M ’Ol, San Diego, CA,
USA, Aug. 2001.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://info.internet.isi.edu/in-

176

[114] G. T r e n t a n d M. S a k e . Webstone: the first generation in h ttp server benchmark
ing. In Silicon Graphics White Paper, Febuary 1995.

[115] A. V e n k a t a r a m a n i , R. K o k k u , a n d M. D a h l i n . System support for background
replication. In Proceedings of Fifth Operating Systems Design and Implementation
conference, Boston, MA, December 2002.

[116] M. W a l f i s h , H. B a l a k r i s h n a n , a n d S. S h e n k e r . Untangling the web from dns.
In Proceedings of USENIX N SD I’2004, San Francisco, CA, USA, March 2004.

[117] M. W a l f i s h , H . B a l a k r i s h n a n , a n d S . S h e n k e r . Untangling the web from dns.
In Proceedings o f USENIX NSDP04, San Francisco, CA, USA, Mar. 2004.

[118] Z. W a n g a n d J. C r o w c r o f t . Prefetching in world-wide web. In Proceedings of
IEEE Globecom, London, UK, December 1996.

[119] B. W e l l i n g t o n . Secure domain name system dynamic update. In RFC3007, Novem
ber 2000.

[120] D. W e s s e l s , M. F o m e n k o v , N. B r o w n l e e , a n d K. C l a f f y . Measurement and
laboratory simulations of the upper DNS hierarchy. In Proceedings of P A M ’2004,
Antibes Juan-les-Pins, France, April 2004.

[121] C. W ILLS, M. M i k h a il o v , a n d H . S h a n g . Inferring relative popularity of internet
applications by actively querying DNS caches. In Proceedings of AC M IM C ’03, Miami,
F L , October 2003.

[122] C. W i l l s a n d H. S h a n g . The contribution of DNS lookup costs to web object
retrieval. In Technical Report TR-00-12, Worcester Polytechnic Institute, July 2002.

[123] L. X ia o a n d X. Z h a n g . Exploiting neglected data locality in browsers (poster). In
Proceedings of 10th International World Wide Web Conference, 2001.

[124] J . Y in , L . A l v i s i , M. D a h l i n , a n d C. L in . Using leases to support server-driven
consistency in large-scale systems. In Proceedings of IE E E IC D C S’98, Amsterdam,
Netherlands, May 1998.

[125] J . Y in , M. D a h l i n , L . A l v i s i , C. L in , a n d A . I y e n g a r . Engineering server driven
consistency for large scale dynamic web services. In Proceedings of W W W ’2001, Hong
Kong, China, May 2001 .

[126] H . Y u a n d A. V a h d a t . Consistent and automatic service regeneration. In Proceed
ings of USENIX NSDP04, San Francisco, CA, USA, Mar. 2004.

[127] B.Y. Z h a o , L. H u a n g , J. S t r i b l i n g , S.C. R h e a , A.D. J o s e p h , a n d J. K u b ia -
TO W IC Z . Tapestry: A resilient global-scale overlay for service deployment. In IEEE
Journal on Selected Areas in Communications, volume 22, Jan. 2004.

[128] S.Q. Z h u a n g , B.Y. Z h a o , A.D. J o s e p h , R.H. K a t z , a n d J. K u b i a t o w i c z .
Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination.
In Proceedings of AC M NO SSD AV’Ol, Port Jefferson, NY, USA, June 2001.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

177

VITA

Xin Chen

Xin Chen received the BS and MS degrees in computer science from Xi’an Jiaotong

University and University of Science and Technology of China, in 1996 and 1999, respec

tively. He is a PhD candidate of computer science at the College of William and Mary. His

research interests are distributed systems, networking and Internet computing.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Techniques of data prefetching, replication, and consistency in the Internet
	Recommended Citation

	tmp.1539734415.pdf.l1OYp

