239,228 research outputs found

    Guest editors’ introduction

    Get PDF
    A logic is said to be paraconsistent if it doesn’t license you to infer everything from a contradiction. To be precise, let |= be a relation of logical consequence. We call |= explosive if it validates the inference rule: {A,¬A} |= B for every A and B. Classical logic and most other standard logics, including intuitionist logic, are explosive. Instead of licensing you to infer everything from a contradiction, paraconsistent logic allows you to sensibly deal with the contradiction

    About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one

    Get PDF
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to try fabricating the paradox not by time but in some other linear ordering or the concept of space. Interestingly, the attempts to have similar contradiction by the other concepts like space and linear ordering, is failed. It is remarkable that, the paradox is considered either Epistemological or Logical traditionally, but by new considerations the new version of paradox should be considered as either Logical or Physical paradox. Hence, in order to change our Computational Model, it is natural to change the concept of time, but how? We start from some models that are different from the classical one but they are intuitively plausible. The idea of model is somewhat introduced by Brouwer and Husserl [3]. This model doesn’t refute the paradox, since the paradox and the associated contradiction would be repeated in this new model. The model is introduced in [2]. Here we give some more explanations

    Some geometrical methods for constructing contradiction measures on Atanassov's intuitionistic fuzzy sets

    Get PDF
    Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures

    Semantics of logic programs with explicit negation

    Get PDF
    After a historical introduction, the bulk of the thesis concerns the study of a declarative semantics for logic programs. The main original contributions are: ² WFSX (Well–Founded Semantics with eXplicit negation), a new semantics for logic programs with explicit negation (i.e. extended logic programs), which compares favourably in its properties with other extant semantics. ² A generic characterization schema that facilitates comparisons among a diversity of semantics of extended logic programs, including WFSX. ² An autoepistemic and a default logic corresponding to WFSX, which solve existing problems of the classical approaches to autoepistemic and default logics, and clarify the meaning of explicit negation in logic programs. ² A framework for defining a spectrum of semantics of extended logic programs based on the abduction of negative hypotheses. This framework allows for the characterization of different levels of scepticism/credulity, consensuality, and argumentation. One of the semantics of abduction coincides with WFSX. ² O–semantics, a semantics that uniquely adds more CWA hypotheses to WFSX. The techniques used for doing so are applicable as well to the well–founded semantics of normal logic programs. ² By introducing explicit negation into logic programs contradiction may appear. I present two approaches for dealing with contradiction, and show their equivalence. One of the approaches consists in avoiding contradiction, and is based on restrictions in the adoption of abductive hypotheses. The other approach consists in removing contradiction, and is based in a transformation of contradictory programs into noncontradictory ones, guided by the reasons for contradiction

    OTTER Experiments in a System of Combinatory Logic

    Full text link
    This paper describes some experiments involving the automated theorem-proving program OTTER in the system TRC of illative combinatory logic. We show how OTTER can be steered to find a contradiction in an inconsistent variant of TRC, and present some experimentally discovered identities in TRC

    On Conceiving the Inconsistent

    Get PDF
    This work has been developed within the 2013–15 ahrc project The Metaphysical Basis of Logic: The Law of Non-Contradiction as Basic Knowledge (grant ref. ah/k001698/1). A version of the paper was presented in September 2013 at the Modal Metaphysics Workshop in Bratislava. I am grateful to the audiences there and at the Aristotelian Society meeting for many helpful comments and remarks.Peer reviewedPostprin
    corecore