
José Júlio Alves Alferes

Semantics of Logic Programs with
Explicit Negation

Dissertação apresentada para a obtenção do
Grau de Doutor em Engenharia Informática,
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Abstract

After a historical introduction, the bulk of the thesis concerns the study of a declarative seman-
tics for logic programs.

The main original contributions are:

• WFSX (Well–Founded Semantics with eXplicit negation), a new semantics for logic pro-
grams with explicit negation (i.e. extended logic programs), which compares favourably
in its properties with other extant semantics.

• A generic characterization schema that facilitates comparisons among a diversity of se-
mantics of extended logic programs, including WFSX.

• An autoepistemic and a default logic corresponding to WFSX, which solve existing prob-
lems of the classical approaches to autoepistemic and default logics, and clarify the mean-
ing of explicit negation in logic programs.

• A framework for defining a spectrum of semantics of extended logic programs based on
the abduction of negative hypotheses. This framework allows for the characterization
of different levels of scepticism/credulity, consensuality, and argumentation. One of the
semantics of abduction coincides with WFSX.

• O–semantics, a semantics that uniquely adds more CWA hypotheses to WFSX. The tech-
niques used for doing so are applicable as well to the well–founded semantics of normal
logic programs.

• By introducing explicit negation into logic programs contradiction may appear. I present
two approaches for dealing with contradiction, and show their equivalence. One of the
approaches consists in avoiding contradiction, and is based on restrictions in the adoption
of abductive hypotheses. The other approach consists in removing contradiction, and is
based in a transformation of contradictory programs into noncontradictory ones, guided
by the reasons for contradiction.
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Sumário

Depois de uma breve introdução histórica, o grosso da tese consiste no estudo de semânticas
declarativas de programas em lógica.

As principais contribuições originais são:

• A WFSX (semântica bem–fundada com negação expĺıcita), uma nova semântica para
programas em lógica com negação expĺıcita (i.e. programas em lógica extendidos), que é
melhor que outras semântica existentes, nas suas propriedades.

• Um esquema genérico de caracterização que facilita comparações entre uma diversidade
de semânticas, incluindo a WFSX.

• Uma lógica auto–epistémica e uma lógica de regras por omissão correspondentes à WFSX,
que por um lado resolvem problemas das abordagens clássicas a lógicas auto–epistémicas
e a lógicas de regras por omissão, e por outro clarificam o significado da negação expĺıcita
em programas em lógica.

• Um enquadramento de semânticas para programas em lógica extendidos com base na
abdução de hipóteses negativas. Este enquadramento permite a caracterização de difer-
entes graus de cepticismo/credulidade, consensualidade e argumentação. Uma das
semânticas de abdução coincide com a WFSX.

• A “semântica O”, uma semântica que acrescenta à WFSX hipóteses não contraditáveis.
As técnicas usadas para a definição desta semântica são também aplicáveis à semântica
bem–fundada de programas normais.

• Com a introdução da negação expĺıcita põe–se a questão do tratamento da contradição.
Introduzem–se duas abordagens, que se mostram equivalentes, para lidar com a con-
tradição. Uma consiste em evitá–la e a outra em removê–la, e são tratadas respectivamente
através de restrições na adopção de hipóteses abdutivas, e da transformação de programas
contraditórios em programas não contraditórios, guiada pelas razões da contradição.
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Sommaire

Après une brève introduction historique, le gros de la thèse consiste en une étude de sémantiques
déclaratives de la programmation logique.

Les principales contribution originales sont:

• La WFSX (sémantique bien fondée avec de la négation explicite), une nouvelle sémantique
pour les programmes logiques avec la négation explicite (c.a.d. programmes logiques
étendus), laquelle est meilleure que d’autres sémantiques existantes, en virtu de ses pro-
prietés.

• Un schéma caractérisant générique qui permet la comparison entre une variété de
sémantiques, y compris la WFSX.

• Une logique auto–épistémique et une logique de régles à défaut correspondantes à la
WFSX, qui d’un coté résoudent quelques problèmes des abordages classiques aux logiques
épistémiques et des logiques de régles à défaut, et qui d’autre part clarifient la signification
de la négation explicite en programmation logique.

• Un cadre pour de sémantiques de la programmation logique étendue, fondé sur l’abduction
d’hypothèses négatives. Ce cadre va permettre la caractérisation de plusieurs degrés des
cepticisme/crédulité, de consensualité et d’argumentation. Une de ces sémantiques de
l’abduction coincide avec la WFSX.

• L’O–sémantique, une sémantique qui ajoute à la WFSX des hypothéses non–
contraditables. Les techniques emploiyées pour la définition de cette sémantique sont
aussitôt valables pour la sémantique bien fondée de programmes normaux.

• Avec l’introduction de la négation explicite il se pose la question du traitement de la con-
tradiction. On introduit deux approches, qui se révelent tout à fait équivalens, pour bien
faire face à la contradiction. L’une l’entre elles consiste à l’éviter et l’autre à la dèfaire. Ils
sont ateints, respéctivement, soit par des restrictions sur l’adoption des hypothéses abduc-
tives, soit par une transformation de programmes contradictoires en d’autres programmes
non contradictoires, qui est guidée par les causes mêmes de la contradiction.
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Preface

This work is divided into two quite distinct parts: the first makes a brief historical overview of
the field of logic programming semantics; the second presents the original contributions of the
thesis in this field. For the sake of completeness I present, in appendix A, a Prolog top–down
interpreter for the semantics WFSX; additional definitions needed for some proofs are presented
in appendix B; finally, appendix C, cointains the proofs of theorems that, for the sake of conti-
nuity, were not inserted along in the text.

The aim of the first part is to sensitize the reader to the issue of logic programming semantics,
provide background and notation, and make clear the state of the art in the area at the inception
of the work reported in this thesis.

In chapter 1, I begin by defining the language of normal logic programs. Then I briefly de-
scribe several approaches to the semantics of normal programs, and their treatment of negation
as failure. Special attention is given to the stable models and well–founded semantics, for which
I present the formal definitions.

In chapter 2, I start by providing some motivation for extended logic programs, i.e. normal
logic programs extended with explicit negation, and define their language. Next, I present sev-
eral extant semantics for such programs.

The structure of the second part, containing the original contributions, is as follows:
I begin, in chapter 3, with the motivation for a new semantics of extended logic programs.

There, I point out why I’m not completely satisfied with other present–day semantics, and
proffer some intuitively appealing properties a semantics should comply with.

In chapter 4, I expound WFSX, a semantics for extended logic programs that subsumes the
well founded semantics of normal programs. I begin by providing definitions of interpretation
and model, for programs extended with explicit negation. Next I introduce the notion of stability
in models, and use it to define the WFSX. Finally, some of its properties are examined, with
special incidence on those concerning its existence.

The first part of chapter 5 is devoted to contrasting and characterizing a variety of semantics
for extended logic programs, including WFSX, in what concerns their use of and their meaning
ascribed to a second kind of negation, and how the latter is related to both classical negation and
the default negation (or negation as failure). For this purpose I define a parametrizeable schema
to characterize and encompass a diversity of proposed semantics for extended logic programs. In
the second part of that chapter, and based on the similarities between the parametrizable schema
and the definitions of autoepistemic logics, I proceed to examine the relationship between the
latter and extended logic programs. By doing so, an epistemic meaning of the second kind of
negation is extracted. The relationship results clarify the use of logic programs for representing
knowledge and belief.

Chapter 6 presents a semantics for default theories, and shows its rapport with WFSX.
First I point out some issues faced by semantics for default theories, and identify some basic
principles a default theory semantics should enjoy. Second, I present a default semantics that
resolves the issues whilst respecting the principles (which other semantics don’t). Afterwards
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I prove the close correspondence between default theories under such a semantics and WFSX.
Based on this correspondence result, I supply an alternative definition of WFSX not relying on
3–valued logic but instead on 2–valued logic alone.

Subsequently, in chapter 7, I characterize a spectrum of more or less sceptical and credulous
semantics for extended logic programs, and determine the position of WFSX in this respect. I
do so by means of a coherent, flexible, unifying, and intuition appealing framework for the study
of explicit negation in logic programs, based on the notion of admissible scenaria. The main idea
of the framework is to consider default literals as abducibles, i.e. they can be hypothesized.
In the same chapter I also bring out the intimate relationship between this approach and
argumentation systems.

With the introduction of explicit negation into logic programs contradiction may arise. In
chapter 8, I put forth two approaches for dealing with contradiction: one persists in avoiding
it, based on a generalization of the framework of chapter 7, whereby additional restrictions on
the adoption of abductive hypotheses are imposed; the other approach consists in removing
contradiction, and relies on a transformation of contradictory programs into noncontradictory
ones, guided by the reasons for contradiction. Moreover I show that the contradiction avoidance
semantics of a program P is equivalent to the WFSX of the program resulting from P by
transforming it according to the contradiction removal methods.

As deployed in chapter 4, WFSX is based on a generalization of the well–founded semantics
for normal logic programs. However it can be argued, and this is carried out in chapter 9,
that sometimes the well–founded semantics is overly careful in deciding about the falsity of
some atoms, leaving them undefined, and that a suitable form of closed world assumption can
be employed to safely and undisputably assume false some additional atoms, otherwise absent
from the well–founded model of a program. This provides a new semantics for normal programs
– the O–semantics. I then proceed to generalize the O–semantics to extended logic programming
and, finally, I compare it to WFSX.

Lastly, in chapter 10, I produce additional properties of WFSX, including complexity, and
make further comparisons with other semantics on the basis of those properties (which are es-
sentially structural in nature).

The best way to read this thesis is by reading the chapters in the sequence they appear in.
However, if the reader is not interested in the whole work, or is more keen on some issues rather
than others, alternative reading paths are possible; they are shown in figure 0.1.

1 2 3 4

5

7

6

9

10

8

Figure 0.1: Reading paths, and three possible entry points.

If you are familiarized with the issue of extended logic programs semantics you can skip the
first part, i.e. chapters 1 and 2.

If you are familiarized with the issue of normal logic programs semantics, but not with

2



explicit negation, you can skip chapter 1 and start with chapter 2.
Otherwise, you should start by reading the first part.

The table below indicates, for different possible interests, the corresponding reading paths
of figure 0.1:

Definition of WFSX 3 – 4
Extended logic programs and autoepistemic logics 3 – 4 – 5
Extended logic programs and default logic 3 – 4 – 6
Extended logic programs abduction, and argumentation systems 3 – 4 – 7
Extended logic programs and belief revision 3 – 4 – 7 – 8
Semantics assuming more negative hypotheses 3 – 4 – 9
WFSX, its structural properties, and complexity 3 – 4 – 10

Quite a few of the results presented in this thesis rely much on joint European projects’
work, mostly with my thesis supervisor Lúıs Moniz Pereira, but also with my colleague Joaquim
Nunes Apaŕıcio, and Phan Minh Dung from the Asian Institute of Technology. At the beginning
of each chapter I mention the joint work, with bearing on its subject matter, that we published
in the three years of preparation of this thesis.
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Part I

Semantics of Logic Programs:
A Brief Historical Overview
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7

Computational Logic arose from the work, begun by logicians in the 1950’s, on the automa-
tion of logical deduction, and was fostered in the 1970’s by Colmerauer et al. [Colmerauer
et al., 1973] and Kowalski [Kowalski, 1974, Kowalski, 1979] as Logic Programming. It intro-
duced to computer science the important concept of declarative – as opposed to procedural –
programming. Ideally, a programmer should only be concerned with the declarative meaning
of his program, while the procedural aspects of program’s execution are handled automatically.
The Prolog language [Colmerauer et al., 1973] became the privileged vehicle approximating
this ideal. The first Prolog compiler [Warren et al., 1977] showed that it could be a practical
language and disseminated it worldwide.

The developments of formal foundations of logic programming began in the late 1970’s
especially with the works [Emden and Kowalski, 1976, Clark, 1978, Reiter, 1978]. Further
progress in this direction was achieved in the early 1980’s, leading to the appearance of the first
book on the foundations of logic programming [Lloyd, 1984]. The selection of logic programming
as the underlying paradigm for the Japanese Fifth Generation Computer Systems Project led
to the rapid proliferation of various logic programming languages.

Due to logic programming’s declarative nature, it quickly became a candidate for knowledge
representation. Its adequateness became more apparent after the relationships established in the
mid 1980’s between logic programs and deductive databases [Reiter, 1984, Gallaire et al., 1984,
Lloyd and Topor, 1985, Lloyd and Topor, 1986, Minker, 1988].

The use of both logic programming and deductive databases for knowledge representation is
based on the so called “logical approach to knowledge representation”. This approach rests on the
idea of providing machines with a logical specification of the knowledge that they possess, thus
making it independent of any particular implementation, context–free, and easy to manipulate
and reason about.

Consequently, a precise meaning (or semantics) must be associated with any logic program in
order to provide its declarative specification. The performance of any computational mechanism
is then evaluated by comparing its behaviour to the specification provided by the declarative
semantics. Finding a suitable declarative semantics for logic programs has been acknowledged
as one of the most important and difficult research areas of logic programming.

In this part we make a quick historical overview of the results in the last 15 years in the
area of logic program’s declarative semantics. This overview is divided into two chapters. In
the first we review some of the most important semantics of normal logic programs. In the
second we motivate the need of extending logic programming with a second kind of negation,
and overview recent semantics for such extended programs.
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Chapter 1

Normal logic programs

Several recent overviews of normal logic programming semantics can be found in the liter-
ature (e.g. [Shepherdson, 1988, Shepherdson, 1990, Przymusinska and Przymusinski, 1990,
Monteiro, 1992, Apt and Bol, 1993]). Here, for the sake of this text’s self–sufficiency and to
introduce some motivation, we distill a brief overview of the subject. In some parts we follow
closely the overview of [Przymusinska and Przymusinski, 1990].

The structure of the chapter is as follows: first we present the language of normal logic
programs and give some definitions needed in the sequel. Then we briefly review the first
approaches to the semantics of normal programs and point out their problems. Finally, we
expound in greater detail two more recent proposals, namely stable models and well–founded
semantics.

1.1 Language

By an alphabet A of a language L we mean a (finite or countably infinite) disjoint set of
constants, predicate symbols, and function symbols. In addition, any alphabet is assumed to
contain a countably infinite set of distinguished variable symbols. A term over A is defined
recursively as either a variable, a constant or an expression of the form f(t1, . . . , tn), where f
is a function symbol of A, and the tis are terms. An atom over A is an expression of the form
p(t1, . . . , tn), where p is a predicate symbol of A, and the tis are terms. A literal is either an
atom A or its negation not A. We dub default literals those of the form not A.

A term (resp. atom, literal) is called ground if it does not contain variables. The set of all
ground terms (resp. atoms) of A is called the Herbrand universe (resp. base) of A. For short
we use H to denote the Herbrand base of A.

A normal logic program is a finite set of rules of the form:

H ← L1, . . . , Ln (n ≥ 0)

where H is an atom and each of the Lis is a literal. In conformity with the standard convention
we write rules of the form H ← also simply as H.

A normal logic program P is called definite if none of its rules contains default literals.
We assume that the alphabet A used to write a program P consists precisely of all the

constants, and predicate and function symbols that explicitly appear in P. By Herbrand universe
(resp. base) of P we mean the Herbrand universe (resp. base) of A.

By grounded version of a normal logic program P we mean the (possibly infinite) set of
ground rules obtained from P by substituting in all possible ways each of the variables in P by
elements of its Herbrand universe.

9
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In this work we restrict ourselves to Herbrand interpretations and models1. Thus, without
loss of generality (cf. [Przymusinska and Przymusinski, 1990]), we coalesce a normal logic
program P with its grounded version.

1.1.1 Interpretations and models

Next we define 2 and 3–valued Herbrand interpretations and models of normal logic programs.
Since non–Herbrand interpretations are beyond the scope of this work, in the sequel we some-
times drop the qualification Herbrand.

Definition 1.1.1 (2–valued interpretation) A 2–valued interpretation I of a normal logic
program P is any subset of the Herbrand base H of P.

Clearly, any 2–valued interpretation I can be equivalently viewed as a set

T ∪ not F 2

where T = I and is the set of atoms which are true in I, and F = H − T is the set of atoms
which are false in I. These interpretations are called 2–valued because in them each atom is
either true or false, i.e. H = T ∪ F.

As argued in [Przymusinska and Przymusinski, 1990], interpretations of a given program P
can be thought of as “possible worlds” representing possible states of our knowledge about the
meaning of P. Since that knowledge is likely to be incomplete, we need the ability to describe
interpretations in which some atoms are neither true nor false but rather undefined, i.e. we
need 3–valued interpretations:

Definition 1.1.2 (3–valued interpretation) By a 3–valued interpretation I of a program P
we mean a set

T ∪ not F

where T and F are disjoint subsets of the Herbrand base H of P .
The set T (the T-part of I) contains all ground atoms true in I, the set F (the F-part of

I) contains all ground atoms false in I, and the truth value of the remaining atoms is unknown
(or undefined).

It is clear that 2–valued interpretations are a special case of 3–valued ones, for which H =
T ∪ F is additionally imposed.

Proposition 1.1.1 Any interpretation I = T ∪ not F can equivalently be viewed as a function
I : H → V where V =

{
0, 1

2 , 1
}
, defined by:

I(A) =





0 if not A ∈ I
1 if A ∈ I
1
2 otherwise

Of course, for 2–valued interpretations there is no atom A such that I(A) = 1
2 .

Models are defined as usual, and based on a truth valuation function:

Definition 1.1.3 (Truth valuation) If I is an interpretation, the truth valuation Î corre-
sponding to I is a function Î : C → V where C is the set of all formulae of the language,
recursively defined as follows:

1For the subject of semantics based on non–Herbrand models, and solutions to the problems resulting from
always keeping Herbrand models see e.g. [Kunen, 1987, Przymusinski, 1989b, Gelder et al., 1991].

2Where not {a1, . . . , an} stands for {not a1, . . . , not an}.
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• if A is a ground atom then Î(A) = I(A).

• if S is a formula then Î(not S) = 1− Î(S).

• if S and V are formulae then

– Î((S, V )) = min(Î(S), Î(V )).

– Î(V ← S) = 1 if Î(S) ≤ Î(V ), and 0 otherwise.

Definition 1.1.4 (3–valued model) A 3–valued interpretation I is called a 3–valued model
of a program P iff for every ground instance of a program rule H ← B we have Î(H ← B) = 1.

The special case of 2–valued models has the following straightforward definition:

Definition 1.1.5 (2–valued model) A 2–valued interpretation I is called a 2–valued model
of a program P iff for every ground instance of a program rule H ← B we have Î(H ← B) = 1.

Some orderings among interpretations and models will be useful:

Definition 1.1.6 (Classical ordering) If I and J are two interpretations then we say that
I ≤ J if I(A) ≤ J(A) for any ground atom A. If I is a collection of interpretations, then an
interpretation I ∈ I is called minimal in I if there is no interpretation J ∈ I such that J ≤ I
and I 6= J . An interpretation I is called least in I if I ≤ J for any other interpretation J ∈ I.
A model M of a program P is called minimal (resp. least) if it is minimal (resp. least) among
all models of P .

Definition 1.1.7 (Fitting ordering) If I and J are two interpretations then we say that
I ≤F J [Fitting, 1985] iff I ⊆ J . If I is a collection of interpretations, then an interpretation
I ∈ I is called F-minimal in I if there is no interpretation J ∈ I such that J ≤F I and I 6= J .
An interpretation I is called F-least in I if I ≤F J for any interpretation J ∈ I. A model M
of a program P is called F-minimal (resp. F-least) if it is F-minimal (resp. F-least) among all
models of P .

Note that the classical ordering is related with the amount of true atoms, whereas the Fitting
ordering is related with the amount of information, i.e. nonundefinedness.

1.2 Semantics

As argued above, a precise meaning or semantics must be associated with any logic program,
in order to provide a declarative specification of it. Declarative semantics provides a mathe-
matically precise definition of the meaning of a program, which is independent of its procedural
executions, and is easy to manipulate and reason about.

In contrast, procedural semantics is usually defined as a procedural mechanism that is ca-
pable of providing answers to queries. The correctness of such a mechanism is evaluated by
comparing its behaviour to the specification provided by the declarative semantics. Without
the latter, the user needs an intimate knowledge of the procedural aspects in order to write
correct programs.

The first attempt to provide a declarative semantics to logic programs is due to [Emden
and Kowalski, 1976], and the main motivation behind their approach is based on the idea that
one should minimize positive information as much as possible, limiting it to facts explicitely
implied by a program, making everything else false. In other words, their semantics is based
on a natural form of “closed world assumption” [Reiter, 1978].



12 CHAPTER 1. NORMAL LOGIC PROGRAMS

Example 1.1 Consider program P :

able mathematician(X) ← physicist(X)
physicist(einstein)
president(soares)

This program has several (2–valued) models, the largest of which is the model where both
Einstein and Soares are at the same time presidents, physicists and able mathematicians. This
model does not correctly describe the intended meaning of P, since there is nothing in P to imply
that Soares is a physicist or that Einstein is a president. In fact, the lack of such information
should instead indicate that we can assume the contrary.

This knowledge is captured by the least (2–valued) model of P :

{physicist(einstein), able mathematician(einstein), president(soares)}
The existence of a unique least model for every definite program (proven in [Emden and

Kowalski, 1976]), led to the definition of the so called “least model semantics” for definite
programs. According to that semantics an atom A is true in a program P iff it belongs to the
least model of P ; otherwise A is false.

It turns out that this semantics does not apply to programs with default negation. For
example, the program P = {p ← not q} has two minimal models, namely {p} and {q}. Thus
no least model exists.

In order to define a declarative semantics for normal logic programs with negation as failure3,
[Clark, 1978] introduced the so–called “Clark’s predicate completion”. Informally, the basic idea
of completion is that in common discourse we often tend to use “if” statements when we really
mean “iff” ones. For instance, we may use the following program P to describe the natural
numbers:

natural number(0)
natural number(succ(X)) ← natural number(X)

This program is too weak. It does not imply that nothing but 0, 1, . . . is a natural number. In
fact what we have in mind regarding program P is:

natural number(X) ⇔ (X = 0 ∨ (∃Y | X = succ(Y ) ∧ natural number(Y )))

Based on this idea Clark defined the completion of a program P , the semantics of P being
determined by the 2–valued models of its completion.

However Clark’s completion semantics has some serious drawbacks. One of the most impor-
tant is that the completion of consistent programs may be inconsistent, thus failing to assign
to those programs a meaning. For example the completion of the program {p ← not p} is
{p ⇔ not p}, which is inconsistent.

In [Fitting, 1985], the author showed that the inconsistency problem for Clark’s completion
can be elegantly eliminated by considering 3–valued models instead of 2–valued ones. This led
to the definition of the so–called “Fitting semantics” for normal logic programs. In [Kunen,
1987], Kunen showed that that semantics is not recursively enumerable, and proposed a modi-
fication.

Unfortunately, the “Fitting’s semantics” inherits several problems of Clark’s completion, and
in many cases leads to a semantics that appears to be too weak. This issue has been extensively
discussed in the literature (see e.g. [Shepherdson, 1988, Przymusinski, 1989b, Gelder et al.,
1991]). Forthwith we illustrate some of these problems with the help of examples:

3In this work we adopt the designation of “negation by default”. Recently, this designation has been used in
the literature instead of the more operational “negation as failure”.
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Example 1.2 4 Consider program P :

edge(a, b)
edge(c, d)
edge(d, c)

reachable(a)
reachable(X) ← reachable(Y ), edge(X,Y )

that describes which vertices are reachable from a given vertice a in a graph.
Fitting semantics cannot conclude that vertices c and d are not reachable from a. Here the

difficulty is caused by the existence of the symmetric rules edge(c, d), and edge(d, c).

Example 1.3 Consider P :

bird(tweety)
fly(X) ← bird(X), not abnormal(X)

abnormal(X) ← irregular(X)
irregular(X) ← abnormal(X)

where the last two rules just state that “irregular” and “abnormal” are synonymous.
Based on the fact that nothing leads us to the conclusion that tweety is abnormal, we would

expect the program to derive not abnormal(tweety), and consequently that it flies. But Clark’s
completion of P is:

bird(X) ⇔ X = tweety
fly(X) ⇔ bird(X), not abnormal(X)

abnormal(X) ⇔ irregular(X)

from which it does not follow that tweety isn’t abnormal.
It is worth noting that without the last two rules both Clark’s and Fitting’s semantics yield

the expected result.

One possible explanation for such a behaviour is that the last two rules lead to a loop. This
explanation is procedural in nature. But it was the idea of replacing procedural programming
by declarative programming that brought about the concepts of logic programming in first place
and so, as argued in [Przymusinska and Przymusinski, 1990], it seems that such a procedural
explanation should be rejected.

The problems mentioned above are caused by the difficulty in representing transitive clo-
sure using completion. In [Kunen, 1988] it is formally showed that both Clark’s and Fitting’s
semantics are not sufficiently expressive to represent transitive clousure.

In order to solve these problems some model–theoretic approaches to declarative semantics
have been defined. In the beginning, such approaches did not attempt to give a meaning
to every normal logic program. On the contrary, they were based on syntactic restrictions
over programs, and only program complying with such restrictions were given a semantics.
Examples of syntactically restricted program classes are stratified [Apt et al., 1988], locally
stratified [Przymusinski, 1988] and acyclic [Apt and Bezem, 1991], and examples of semantics
for restricted programs are the perfect model semantics [Apt et al., 1988, Przymusinski, 1988,
Gelder, 1989], and the weakly perfect model semantics [Przymusinska and Przymusinski, 1988].
Here we will not review any of these approaches. For their overview, the reader is referred to
e.g. [Przymusinska and Przymusinski, 1990].

4This example first appeared in [Gelder et al., 1991].
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1.2.1 Stable model semantics

In [Gelfond and Lifschitz, 1988], the authors introduce the so–called “stable model semantics”.
This model–theoretic declarative semantics for normal programs generalizes the previously re-
ferred semantics for restricted classes of programs, in the sense that for such classes the results
are the same and, moreover, for some non–restricted programs a meaning is still assigned.

The basic ideas behind the stable model semantics came for the field of nonmonotonic
reasoning formalism. There, literals of the form not A are viewed as default literals that may
or may not be assumed or, alternatively, as epistemic literals ∼L A expressing that A is not
believed.

Informally, when one assumes true some set of (hypothetical) default literals, and false all
the others, some consequences follow according to the semantics of definite programs [Emden
and Kowalski, 1976]. If the consequences completely corroborate the hypotheses made, then
they form a stable model. Formally:

Definition 1.2.1 (Gelfond–Lifschitz operator) Let P be a normal logic program and I a
2–valued interpretation. The GL–transformation of P modulo I is the program P

I obtained from
P by performing the following operations:

• remove from P all rules which contain a default literal not A such that A ∈ I;

• remove from the remaining rules all default literals.

Since P
I is a definite program, it has a unique least model J. We define Γ(I) = J.

It turns out that fixed points of the Gelfond–Lifschitz operator Γ for a program P are always
models of P. This result led to the definition of stable model semantics:

Definition 1.2.2 (Stable model semantics) A 2–valued interpretation I of a logic program
P is a stable model of P iff Γ(I) = I.

An atom A of P is true under the stable model semantics iff A belong to all stable models
of P.

One of the main advantages of stable model semantics is its close relationship with known
nonmonotonic reasoning formalisms:

As proven in [Bidoit and Froidevaux, 1988], the stable models of a program P are equivalent
to Reiter’s default extensions [Reiter, 1980] of the default theory obtained from P by identifying
each program rule:

H ← B1, . . . , Bn, not C1, . . . , not Cm

with the default rule:
B1, . . . , Bn : ∼ C1, . . . ,∼ Cm

H

where ∼ denotes classical negation.
Moreover, from the results of [Gelfond, 1987], it follows directly that stable models are

equivalent to Moore’s autoepistemic expansions [Moore, 1985] of the theory obtained by replac-
ing in P every default literal not A by ∼LA and then reinterpreting the rule connective ← as
material implication.

In spite of the strong relationship between logic programming and nonmonotonic reasoning,
in the past these research areas were developing largely independently of one another, and the
exact nature of their relationship was not closely investigated or understood.

The situation has changed significantly with the introduction of stable models, and the
establishment of formal relationships between these and other nonmonotonic formalisms. In
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fact, in recent years increasing and productive effort has been devoted to the study of the
relationships between logic programming and several nonmonotonic reasoning formalisms. As a
result, international workshops have been organized, in whose proceedings [Nerode et al., 1991,
Pereira and Nerode, 1993] many works and references to the theme can be found.

Such relationships turn out to be mutual beneficial. On the one hand, nonmonotonic for-
malisms provide elegant semantics for logic programming, specially in what regards the meaning
of default negation (or negation as failure), and help one understand how logic programs can be
used to formalize several types of reasoning in Artificial Intelligence. On the other hand, those
formalisms benefit from the existing procedures of logic programming, and some new issues
of the former are raised and solved by the latter. Moreover, relations among nonmonotonic
formalisms themselves have been facilitated and established via logic programming.

1.2.2 Well–founded semantics

Despite its advantages, and of being defined for more programs than any of its predecessors,
stable model semantics still has some important drawbacks:

• First, some programs have no stable models. One such program is P = {a ← not a}.

• Even for programs with stable models, their semantics do not always lead to the expected
intended results. For example consider program P :

a ← not b
b ← not a
c ← not a
c ← not c

whose only stable model is {c, b}. Thus b and c are consequences of the stable model
semantics of P. However, if one adds c to P as a lemma, the semantics of P changes, and
b no longer follows. This issue is related with the property of cumulativity, and is studied
in chapter 10.

• Moreover, it is easy to see that above it is impossible to derive b from P using any
derivation procedure based on top–down (SL–like) rewriting techniques. This is because
such a procedure, beginning with the goal ← b would reach only the first two rules of P,
from which b cannot be derived. This issue is related with the property of relevance, and
is also studied in chapter 10.

• The computation of stable models is NP–complete [Marek and Truszczynski, 1991] even
within simple classes of programs, such as propositional logic programs. This is an im-
portant drawback, specially if one is interest in a program for efficiently implementing
knowledge representation and reasoning.

• Last but not least, by always insisting on 2–valued interpretations, stable model semantics
often lack expressivity. This issue will be further explored in section 5.2.

The well–founded semantics was introduced in [Gelder et al., 1991], and overcomes all of
the above problems. This semantics is also closely related to some of the major nonmonotonic
formalisms (cf. sections 5.2.1, 6.1.2, and 7.2).

Many different equivalent definitions of the well–founded semantics exist (e.g. [Przymusin-
ski, 1989a, Przymusinski, 1989c, Bry, 1989, Przymusinska and Przymusinski, 1990, Dung, 1991,
Przymusinski, 1991a, Baral and Subrahmanian, 1991, Monteiro, 1992]). Here we use the defi-
nition introduced in [Przymusinska and Przymusinski, 1990] because, in our view, it is the one
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more technically related with the definition of stable models above5. Indeed, it consists of a
natural generalization for 3–valued interpretations of the stable model semantics. In its defini-
tion the authors begin by introducing 3–valued (or partial) stable models, and then show that
the F–least of those models coincides with the well–founded model as first defined in [Gelder et
al., 1991].

In order to formalize the notion of partial stable models, Przymusinska and Przymusinski
first expand the language of programs with the additional propositional constant u with the
property of being undefined in every interpretation. Thus they assume that every interpretation
I satisfies:

Î(u) = Î(not u) =
1
2

A non–negative program is a program whose premises are either atoms or u. In [Przymusin-
ska and Przymusinski, 1990], it is proven that every non–negative program has a 3–valued least
model. This led to the following generalization of the Gelfond–Lifschitz Γ–operator:

Definition 1.2.3 (Γ∗–operator) Let P be a normal logic program, and let I be a 3–valued
interpretation. The extended GL–transformation of P modulo I is the program P

I obtained
from P by performing the operations:

• remove from P all rules which contain a default literal not A such that I(A) = 1;

• replace in the remaining rules of P those default literals not A such that I(A) = 1
2 by u;

• remove from the remaning rules all default literals.

Since the resulting program is non–negative, it has a unique 3–valued least model J. We define
Γ∗(I) = J.

Definition 1.2.4 (Well–founded semantics) A 3–valued interpretation I of a logic program
P is a partial stable model of P iff Γ∗(I) = I.

The well–founded semantics of P is determined by the unique F–least partial stable model of
P, and can be obtained by the (bottom–up) iteration of Γ∗ starting from the empty interpretation.

5For a more practical introduction to the well–founded semantics the reader is referred to [Pereira et al.,
1991c].



Chapter 2

Extended logic programs

Recently several authors have stressed and shown the importance of including a second kind
of negation ¬ in logic programs, for use in deductive databases, knowledge representation, and
non–monotonic reasoning [Gelfond and Lifschitz, 1990, Gelfond and Lifschitz, 1992, Inoue, 1991,
Kowalski, 1990, Kowalski and Sadri, 1990, Pearce and Wagner, 1990, Pereira et al., 1991d,
Pereira et al., 1991g, Pereira et al., 1992f, Pereira et al., 1993d, Wagner, 1991a].

In this chapter we begin by reviewing the main motivations for introducing a second kind
of negation in logic programs. Then we define an extension of the language of programs to two
negations, and briefly overview the main proposed semantics for these programs.

In normal logic programs the negative information is implicit, i.e. it is not possible to
explicitly state falsity, and propositions are assumed false if there is no reason to believe they
are true. This is what is wanted in some cases. For instance, in the classical example of
a database that explicitly states flight connections, one wants to implicitly assume that the
absence of a connection in the database means that no such connection exists.

However this is a serious limitation in other cases. As argued in [Pearce and Wagner, 1990,
Wagner, 1991a], explicit negative information plays an important rôle in natural discourse and
commonsense reasoning. The representation of some problems in logic programming would be
more natural if logic programs had some way of explicitly representing falsity. Consider for
example the statement:

“Penguins do not fly”

One way of representing this statement within logic programming could be:

no fly(X) ← penguin(X)

or equivalently:
fly′(X) ← penguin(X)

as suggested in [Gelfond and Lifschitz, 1989].
But these representations do not capture the connection between the predicate no fly(X)

and the predication of flying. This becomes clearer if, additionally, we want to represent the
statement:

“Birds fly”

Clearly this statement can be represented by

fly(X) ← bird(X)

But then, no connection whatsoever exists between the predicates no fly(X) and fly(X).
Intuitively one would like to have such an obvious connection established.

17
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The importance of these connections grows if we think of negative information for represent-
ing exceptions to rules [Kowalski, 1990]. The first statement above can be seen as an exception
to the general rule that normally birds fly. In this case we really want to establish the connection
between flying and not flying.

Exceptions expressed by sentences with negative conclusions are also common in legislation
[Kowalski, 1989, Kowalski, 1991]. For example, consider the provisions for depriving British
citizens of their citizenship:

40 - (1) Subject to the provisions of this section, the Secretary of State may
by order deprive any British citizen to whom this subsection applies of his British
citizenship if [. . .]

(5) The Secretary of State shall not deprive a person of British citizenship under
this section if [. . .]

Clearly, 40.1 has the logical form “P if Q” whereas 40.5 has the form “¬ P if R”. Moreover,
it is also clear that 40.5 is an exception to the rule of 40.1.

Above we argued for the need of having explicit negation in the head of rules. But there are
also reasons that compels us to believe explicit negation is needed also in their bodies. Consider
the statement1:

“ A school bus may cross railway tracks under the condition that there is no approaching train”

It would be wrong to express this statement by the rule:

cross ← not train

The problem is that this rule allows the bus to cross the tracks when there is no information
about either the presence or the absence of a train. The situation is different if explicit negation
is used:

cross ← ¬train

Then the bus is only allowed to cross the tracks if the bus driver is sure that there is no
approaching train. The difference between not p and ¬p in a logic program is essential whenever
we cannot assume that available positive information about p is complete, i.e. we cannot assume
that the absence of information about p clearly denotes its falsity.

Moreover, the introduction of explicit negation in combination with the existing default
negation allows for greater expressivity, and so for representing statements like:

“ If the driver is not sure that a train is not approaching then he should wait”

in a natural way:
wait ← not ¬train

Examples of such combinations also appear in legislation. For example consider the following
article from “The British Nationality Act 1981” [HMSO, 1981]:

(2) A new–born infant who, after commencement, is found abandoned in the
United Kingdom shall acquire british citizenship by section 1.2 if it is not shown
that it is not the case that the person is born [. . .]

1This example is due to John McCarthy, and was published for the first time in [Gelfond and Lifschitz, 1990].
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Clearly, conditions of the form “it is not shown that it is not the case that P” can be expressed
naturally by not ¬P.

Another motivation for introducing explicit negation in logic programs relates to the symme-
try between positive and negative information. This is of special importance when the negative
information is easier to represent than the positive one. One can first represent it negatively,
and then say that the positive information corresponds to its complement.

In order to make this clearer, take the following example [Gelfond and Lifschitz, 1990]:

Example 2.1 Consider a graph description based on the predicate arc(X, Y ), which expresses
that in the graph there is an arc from vertice X to vertice Y. Now suppose that we want to
determine which vertices are terminals. Clearly, this is a case where the complement information
is easier to represent, i.e. it is much easier to determine which vertices are not terminal. By
using explicit negation in combination with negation by default, one can then easily say that
terminal vertices are those which are not nonterminal:

¬terminal(X) ← arc(X, Y )
terminal(X) ← not ¬terminal(X)

Finally, another important motivation for extending logic programming with explicit nega-
tion is to generalize the relationships between logic programs and nonmonotonic reasoning
formalisms.

As mentioned in section 1.2, such relationships, drawn for the most recent semantics of
normal logic programs, have proven of extreme importance for both sides, giving them mutual
benefits and clarifications. However, normal logic programs just map into narrow classes of the
more general nonmonotonic formalisms. For example, simple default rules such as:

∼ a : ∼ b

c

a : b

c

a : b

∼ c

cannot be represented by a normal logic program. Note that not even normal nor seminormal
defaults rules can be represent using normal logic programs. This is so because these programs
cannot represent rules with negative conclusions, and normal rules with positive conclusions
have also positive justifications, which is impossible in normal programs.

Since, as shown below, extended logic programs also bear a close relationship with nonmono-
tonic reasoning formalisms, they improve on those of normal programs as extended programs
map into broader classes of theories in nonmonotonic formalisms, and so more general relations
between several of those formalisms can now be made via logic programs.

One example of such an improvement is that the introduction of explicit negation into
logic programs makes it possible to represent normal and seminormal defaults within logic
programming. On the one side, this provides methods for computing consequences of normal
default theories. On the other, it allows for the appropriation in logic programming of work
done using such theories for representing knowledge.

2.1 Language

As for normal logic programs, an atom over an alphabet A is an expression of the form
p(t1, . . . , tn), where p is a predicate symbol, and the tis are terms. In order to extend our
language with a second kind of negation, we additionally define an objective literal over A as
being an atom A or its explicit negation ¬A. We also use the symbol ¬ to denote complementary
literals in the sense of explicit negation. Thus ¬¬A = A. Here, a literal is either an objective
literal L or its default negation not L. We dub default literals those of the form not L.
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By the extended Herbrand base of A, we mean the set of all ground objective literals of
A. Whenever unambigous we refer to the extended Herbrand base of an alphabet, simply as
Herbrand base, and denote it by H.

An extended logic program is a finite set of rules of the form:

H ← L1, . . . , Ln (n ≥ 0)

where H is an objective literal and each of the Lis is a literal. As for normal programs, if n = 0
we omit the arrow symbol.

By the extended Herbrand baseH of P we mean the extended Herbrand base of the alphabet
consisting of all the constants, predicate and function symbols that explicitly appear in P.

Interpretation is defined as for normal programs, but using the extended Herbrand base
instead.

Whenever unambigous, we refer to extended logic programs simply as logic programs or
programs. As in normal programs, a set of rules stands for all its ground instances.

In the sequel we refer to some special forms of programs:

Definition 2.1.1 (Canonical program) An extended logic program P is a canonical program
iff for every rule in P

H ← Body

if L ∈ Body then not ¬L ∈ Body, where L is any objective literal.

Definition 2.1.2 (Semantics kernel) An extended logic program P is a semantics kernel iff
every rule in P is of the form:

H ← not L1, . . . , not Ln (n ≥ 0)

2.2 Semantics

The first semantics defined for extended logic programs was the so–called “answer–sets seman-
tics” [Gelfond and Lifschitz, 1990]. There the authors defined for the first time the language of
logic programs with two kinds of negation – default negation not and what they called classical
negation ¬.

The answer–sets semantics is a generalization of the stable model semantics for the language
of extended programs. Roughly, an answer–set of an extended program P is a stable model
of the normal program obtained from P by replacing objective literals of the form ¬L by new
atoms, say ¬ L.

Definition 2.2.1 (The Γ–operator) Let P be an extended logic program and I a 2–valued
interpretation. The GL–transformation of P modulo I is the program P

I obtained from P by:

• first denoting every objective literal in H of the form ¬A by a new atom, say ¬ A;

• replacing in both P and I, these objective literals by their new denotation;

• then performing the following operations:

– removing from P all rules which contain a default literal not A such that A ∈ I;

– removing from the remaning rules all default literals.

Since P
I is a definite program it has a unique least model J.
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If J contains a pair of complementary atoms, say A and ¬ A, then Γ(I) = H.

Otherwise, let J ′ be the interpretation obtained from J by replacing the newly introduced
atoms ¬ A by ¬A. We define Γ(I) = J ′.

Definition 2.2.2 (Answer–set semantics) A 2–valued interpretation I of an extended logic
program P is an answer–set model of P iff Γ(I) = I.

An objective literal L of P is true under the answer–set semantics iff L belongs to all
answer–sets of P ; L is false iff ¬L is true; otherwise L is unknown.

In [Gelfond and Lifschitz, 1990], the authors showed that the answer–sets of an extended
program P are equivalent to Reiter’s default extensions of the default theory obtained from P
by identifying each program rule:

H ← B1, . . . , Bn,¬C1, . . . ,¬Cm, not D1, . . . , not Dk, not ¬E1, . . . , not ¬Ej

with the default rule:

B1, . . . , Bn,∼ C1, . . . ,∼ Cm : ∼ D1, . . . ,∼ Dk, E1, . . . , Ej

H ′

where H ′ = H if H is an atom, or H ′ =∼ L if H = ¬L.

Another semantics generalizing stable models for the class of extended programs is the e–
answer–set semantics of [Kowalski and Sadri, 1990]. There, the authors claim that explicitly
negated atoms in extended programs play the rôle of exceptions. Thus they impose a preference
of negative over positive objective literals.

The e–answer–set semantics is obtainable from the answer–set semantics after a suitable
program transformation. For the sake of simplicity, here we do not give the formal definition of
e–answer–sets, but instead show its behaviour in an example:

Example 2.2 Consider program P :

fly(X) ← bird(X)
¬fly(X) ← penguin(X)
bird(X) ← penguin(X)

penguin(tweety)

This program allows for both the conclusions fly(tweety) and ¬fly(tweety). Thus its only
answer–set is H.

In e–answer–set semantics, since conclusions of the form ¬L are preferred over those of the
form L, ¬fly(tweety) overrides the conclusion fly(tweety), and thus

{penguin(tweety), bird(tweety),¬fly(tweety)}

is an e–answer–set of P.

The rationale for this overriding is that the second rule is an exception to the first one.

In [Przymusinski, 1990a], the author argues that the technique used in answer–sets for gen-
eralizing stable models is quite general. Based on that he defines a semantics which generalizes
the well–founded semantics for the class of extended programs2, as follows:

2In the sequel we refer to this semantics as “well–founded semantics with pseudo negation”. The justification
for this name can be found in section 5.1.4.
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Definition 2.2.3 (Well–founded semantics with pseudo negation) A 3–valued inter-
pretation I is a partial stable model of an extended logic program P iff I ′ is a partial stable
model of the normal program P ′, where I ′ and P ′ are obtained respectively from I and P, by
replacing every objective literal of the form ¬A by a new atom, say ¬ A.

The well–founded semantics with pseudo negation of P is determined by the unique F–least
partial stable model of P.

Based on the notions of vivid logic [Levesque, 1986] and strong negation [Nelson, 1949],
[Wagner, 1991a] presents an alternative definition of the answer–set semantics. There, the
author claims that the ¬–negation of extended logic programs is not classical negation but
rather Nelson’s strong negation.

In fact, consider the following program P :

b ← a
b ← ¬a

If real classical negation were used then b would be a consequence of P , because for classical
negation a∨¬a is a tautology. However, in neither of the above mentioned semantics b follows
from P.

In order to introduce real classical negation into logic programs, in [Przymusinski, 1991b]
the author defines the “stationary semantics with classical negation”. This semantics is a gen-
eralization of the well–founded semantics, and is capable of deriving b in P. For brevity we do
not present here its formal definition. However, the definition can be found in section 5.1, where
we compare it with our WFSX.

Unlike normal logic programs, none of the semantics of extended programs is defined for
every program, i.e. some programs are contradictory. While for some programs this seems
reasonable (e.g. a program containing contradictory facts, say P = {a ←, ¬a ←}), for others
this can be too strong:

Example 2.3 Let P :
¬p ← not q

p

In all the above semantics this program is not assigned a meaning. Roughly, this is because
q has no rules, and thus not q must be true. So, by the first rule, ¬p must also be true, and
since there is a fact p in P, a contradiction appears.

However, if we see default literals as hypotheses that may or may not be assumed (viz. in
[Dung, 1991]), this contradiction seems strange since it relies on the assumption of not q.

Motivated by this [Dung and Ruamviboonsuk, 1991] presented a semantics generalizing
“well–founded semantics with pseudo negation” which, in order to assign a meaning to more
programs, do not assume hypotheses (default literals) that lead to a contradiction3. For in-
stance, the semantics of P above does not assume not q, and is {p}.

Other researchers have defined paraconsistent semantics for contradictory programs e.g.
[Sakama, 1992, Wagner, 1993]. This is not our nor Dung’s concern. On the contrary, we wish
to remove contradiction whenever it rests on withdrawable assumptions.

3At the same conference, we presented a paper [Pereira et al., 1991a] exploring similar ideas. The details of
that independent work are not presented in this overview but are expounded at length in chapter 8.
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A New Semantics for Extended
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Chapter 3

Why a new semantics for extended
programs?

The overview above showed several semantics exist for extended logic programs. In our view
none correctly captures the meaning of extended programs. This is why we think a new seman-
tics for extended programs is required. Let’s look at their shortcomings:

The answer–set semantics [Gelfond and Lifschitz, 1990], being based on the stable model
semantics of normal program [Gelfond and Lifschitz, 1988], suffers at least from the same
structural and computational problems of the latter. We briefly recall some of those problems
(as pointed out in section 1.2.2):

• Some noncontradictory programs have no answer–sets, e.g. P = {a ← not a}.
• Even for programs with answer–sets, their semantics does not always render the expected

intended results. In particular (cf. the example of page 15), the addition of lemmas
changes the semantics of the program (this is related with the property of cumulativity
studied in chapter 10)

• Derivation procedures for answer–sets cannot be based on top–down (SL–like) rewriting
techniques (this is related with the property of relevance also studied in chapter 10). For
example consider the program:

a ← not b
b ← not a
c ← not a
¬c

whose only answer–set is {¬c, a}.
Though a is a consequence of this program, a does not follow from the rules “below”1 a,
which in this case are the first two.

Indeed, the program containing only the first two rules has two answer–sets: {a} and {b}.
Thus neither a nor b are true in this program.

• The computation of answer–sets is NP–complete, even within simple classes of programs
such as propositional logic programs. Moreover, for non–propositional programs, in gen-
eral it is impossible to compute answer–sets by finite approximations (as shown in section
7.5).

• By always insisting on 2–valued interpretations, answer–set semantics often lacks express-
ibility. This issue is further explored in section 5.2.

1For the formalization of what we mean by“below” see section 10.1.2.
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The e–answer–sets semantics of [Kowalski and Sadri, 1990] also inherits the same problems
of stable models. Moreover, we think that explicitly negated atoms do not always represent
exceptions. For example consider the statements:

• Animals do not fly.

• Birds fly.

• Birds are animals.

• Ozzy is a bird.

Here the second statement (with a positive conclusion) is an exception to the first (with a
negative conclusion). Of course, in this case we can represent these statements using a predicate
no fly(X), thereby making the first rule have a positive conclusion and the second a negative
one. However this technique cannot be used if, additionally, we want to represent:

• Penguins do not fly.

• Penguins are birds.

• Tweety is a penguin.

If one represents all the statements using predicate fly(X) :

¬fly(X) ← animal(X)
fly(X) ← bird(X)
¬fly(X) ← penguin(X)

animal(X) ← bird(X)
bird(X) ← penguin(X)

bird(ozzy)
penguin(tweety)

then the only e–answer–set contains ¬fly(ozzy) because it is an animal, which is not intuitively
correct since ozzy is a bird and so it should fly.

If one represents the statements using predicate no fly(X), then the only e–answer–set
contains ¬no fly(tweety) because it is a bird, which again is not intuitively correct since tweety
is a penguin and so it should not fly.

In our view, a declarative semantics for extended programs should not impose any prefer-
ence between positive and explicit negative information. Their treatment should be symmetric.
It is up to the programmer to, for each specific case, write his program in such a way that
the desired preferences are made. In section 6.8.1 we show an example of how to write a pro-
gram imposing preferences of exceptions over rules. The systematization of a representation
method for rules and exceptions using extended logic programs is, however, beyond the scope
of this work. For that the reader is referred to [Pereira et al., 1991g, Pereira et al., 1993b,
Apaŕıcio, 1993].

The semantics of [Przymusinski, 1990a] based on the well–founded semantics does not suffer
from the problems of answer–sets. Moreover it does not impose any preference of negative
atoms over positive ones.

Unfortunately, because [Przymusinski, 1990a] uses the same technique for adding explicit
negation to well–founded semantics as answer–sets for stable models semantics, important prop-
erties which relate both negations, obeyed by answer–sets, are lost:
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Example 3.1 Consider program P :

a ← not b
b ← not a

¬a

If ¬a were simply to be considered as a new atom symbol, say, ¬ a, and well–founded
semantics were used to define the meaning of P (as suggested in [Przymusinski, 1990a]), the
result would be

{¬a, not ¬b}
so that ¬a is true and a is undefined. This clearly severs the connection between both negations.

In our view, ¬a is an explicit declaration of the falsity of a. Thus, it can always be assumed
that a is false by default, i.e. not a should also be true.

Example 3.2 Consider a program containing the rules:

tryBus ← not driversSrike
¬driversStrike

advising to plan a trip by bus if it can be assumed the bus drivers are not on strike, and
stating bus drivers are not on strike. No matter what the rest of the program is (assuming it
is noncontradictory on the whole), it is clear that it should be assumed the bus drivers are not
on strike, and of course the trip should be planned by bus.

Intuitively, ¬driversStrike implies not driversSrike.

In order to relate both negations in extended logic programs, we introduce the “coherence
principle”:

“Let L be an objective literal of an extended logic program P.
If ¬L belongs to the semantics of P then not L must also belong to the semantics

of P.”

and argue that every semantics should comply with this principle2.
Answer–set semantics complies with coherence. Simply note that, for noncontradictory pro-

grams, if ¬L is in an answer–set then L is not in that answer–set and so, answer–sets being two
valued, not L is true.

The semantics presented in [Dung and Ruamviboonsuk, 1991], being a generalization of the
semantics of [Przymusinski, 1990a], does not also comply with coherence.

The issue, dealtwith by [Dung and Ruamviboonsuk, 1991], of assigning meaning to more
programs by unassuming default literals leading to contradiction is, in our view, an important
one. However, we think this should be done on the basis of a coherent semantics, and that its
result should also comply with coherence. In chapter 8, we show how to deal with contradictory
programs, when the contradiction is brought about by default literals. There we present a more
sceptical semantics (in the spirit of [Dung and Ruamviboonsuk, 1991]) that avoids contradiction
and complies with coherence. Then we show this same semantics can be obtained by using in-
stead a contradiction removal process that transforms programs considered contradictory. The
advantages of using the latter instead of the former approach are presented in section 8.4.

Finally, also the “well–founded semantics with classical negation” of [Przymusinski, 1991b]
does not capture the intuitive meaning of extended programs. This happens because of its very
first motivation, i.e. the introduction of real classical negation.

2More arguments in favour of the coherence principle can be found spread along this work.
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Consider again the program:
b ← a
b ← ¬a

whose well–founded semantics with classical negation entails b.
We recall that the intended meaning of ¬L is that L is explicitly false or, in other words,

L is known to be false. With this reading of explicit negation, the rules of the program state
that if a is known to be true then b is known to be true, and if a is known to be false then b is
known to be true. Given that the knowledge about literals is not always complete, i.e. it might
happen that a is neither known to be false nor true, the formula a ∨ ¬a is not a tautology. So
the law of excluded middle does not apply, and b does not follow from these statements.

Our stance is that if the law of excluded middle is desired of some atom A then so much
should be explicitly stated by adding the disjunctive rule A ∨ ¬A. This expresses that the
knowledge about A is complete, i.e. A is known to be either true or false. We have yet to
enlarge our language for rules to accomodate such expressiveness.

In section 5.2.2–“Why ¬ should not be classical negation”, we further explore this view of
explicit negation, by comparing extended programs with logics of knowledge and belief. There,
we argue that explicit negation ¬L should have the reading “L is known to be false”, and justify
that classical negation in extended program corresponds to “it is false that L is known to be
true” or “L is not known to be true” or, conflating knowledge with truth, as classical logic does,
“L is not true”; whereas not L reads “L is not believed”.

Another property not obeyed by classical negation in logic program is supportedness.
Roughly, a semantics complies with supportedness if, for every program P, an objective literal
L is true only if there is an identifiable rule for L whose body is true3. Clearly, this property
closely relates to the use of logic as a programming language. One does not expect an objective
literal to be true unless some identifiable rule with true body concludes it; in other words, every
true objective literal must be solely supported on other definitely true objective literals or on
the truth of default literals. Such is the nature of epistemic truth or knowledge. Ontological
truth is concerned with truth in the world, not with the epistemically justifiable knowledge an
agent may hold. Thus, in the ontological stance L∨ ∼ L is true regardless of whether any of
the cases is supported.

3For a formal definition of this property see section 5.1.3.



Chapter 4

WFSX – A well founded semantics
for extended logic programs

In this chapter we present a new semantics for normal logic programs (i.e. with negation by
default) extended with explicit negation, that subsumes the well founded semantics [Gelder et
al., 1991] of normal programs.

Parts of this chapter appear in [Pereira and Alferes, 1992] and in [Pereira et al., 1992d].

4.1 Interpretations and models

We begin by providing definitions of interpretation and model for programs extended with
explicit negation.

Definition 4.1.1 (Interpretation) An interpretation I of a language Lang is any set

T ∪ not F 1

where T and F are disjoint subsets of objective literals over the Herbrand base, and:

if ¬L ∈ T then L ∈ F (Coherence Principle)2.

The set T contains all ground objective literals true in I, the set F contains all ground objective
literals false in I. The truth value of the remaining objective literals is undefined.

Notice how the two types of negation become linked via coherence: for any objective L, if
¬L ∈ I then not L ∈ I. Other semantics introducing a second negation in WFS do not relate
the two negation in this way (cf. chapter 5 on comparisons).

This definition of interpretation not only guarantees that every interpretation complies with
coherence but also with noncontradiction.

Proposition 4.1.1 (Noncontradiction condition) If I = T ∪ not F is an interpretation of
a program P then there is no pair of objective literals A, ¬A of P such that A ∈ T and ¬A ∈ T .

Proof: (by contradiction) Consider that I = T ∪ not F is such that A ∈ T and ¬A ∈ T . By the
coherence condition A ∈ F and ¬A ∈ F . So I is not an interpretation because T and F are not
disjoint. ♦

1Where not {a1, . . . , an} stands for {not a1, . . . , not an}.
2For any literal L, if L is explicitly false L must be false. Note that the complementary condition “if L ∈ T

then ¬L ∈ F” is implicit.
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Example 4.1 {a,¬a,¬b} is not an interpretation because a and ¬a belong to it (contradiction)
and also because not b does not belong to it although ¬b does (incoherence).

An interpretation I can be read intuitively in the following way:

• An atom A is true (resp. explicitly false) in I iff A ∈ I (resp. ¬A ∈ I).

• A positive (resp. negative) objective literal A (resp. ¬A) is false in I iff not A ∈ I (resp.
not ¬A ∈ I).

• An atom A is undefined in I otherwise.

As in [Przymusinska and Przymusinski, 1990], an interpretation can be equivalently viewed
as a function I : H → V where H is the set of all objective literals in the language and V ={
0, 1

2 , 1
}
.

Proposition 4.1.2 Any interpretation I = T ∪ not F can be equivalently viewed as a function
I : H → V where V =

{
0, 1

2 , 1
}
, defined by:

I(A) = 0 if not A ∈ I;
I(A) = 1 if A ∈ I;
(A) = 1

2 otherwise.

Based on this function we can define a truth valuation of formulae.

Definition 4.1.2 (Truth valuation) If I is an interpretation, the truth valuation Î corre-
sponding to I is a function Î : C → V where C is the set of all formulae of the language,
recursively defined as follows:

• if L is an objective literal then Î(L) = I(L).

• if S = not L is a default literal then Î(not L) = 1− I(L).

• if S and V are formulae then Î((S, V )) = min(Î(S), Î(V )).

• if L is an objective literal and S is a formula then:

Î(L ← S) =

{
1 if Î(S) ≤ Î(L) or Î(¬L) = 1 and Î(S) 6= 1
0 otherwise

The only additional condition with respect to WFS (cf. definition 1.1.3 above), Î(¬L) = 1
and Î(S) 6= 1, does not affect the valuation of formulae without ¬. Its purpose is to allow
a conclusion c to be independently false when the premises are undefined for some rule, on
condition that ¬c holds. This allows, in particular, explicit negation ¬ to override with false
the undefinedness of conclusions of rules with undefined bodies.

Definition 4.1.3 (Model) An interpretation I is called a model of a program P iff for every
ground instance of a program rule H ← B we have Î(H ← B) = 1.

Example 4.2 The models of the program:

¬b b ← a c ← not ¬c
a ← not a, not c ¬c ← not c

are:
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M1 = {¬b, not b}
M2 = {¬b, not b, c, not ¬c}
M3 = {¬b, not b, c, not ¬c, not a}
M4 = {¬b, not b, not c,¬c}
M5 = {¬b, not b,¬a, not a}
M6 = {¬b, not b,¬a, not a, c, not ¬c}
M7 = {¬b, not b, not ¬a}
M8 = {¬b, not b, c, not ¬c, not ¬a}
M9 = {¬b, not b, c, not ¬c, not a, not ¬a}

M10 = {¬b, not b, not c,¬c, not ¬a}

Only M3, M6, and M9 are models in the usual sense (i.e. classical models in the sense of
definition 1.1.4).

• M1, M2, M4, M7, M8, and M10 are not classical models, because in all of them the body
of the rule b ← a is undefined and the head is false, i.e. the truth value of the head is
smaller than that of the body.

• M5 is not a classical model since in it the truth value of the head (false) of rule a ←
not a, not c is smaller than that of the head (undefined).

4.2 The definition of WFSX

Next we introduce the notion of stability in models, and using it we define the WFSX semantics.
As in [Przymusinska and Przymusinski, 1990], in order to define the semantics, we expand

the language by adding to it the proposition u such that every interpretation I satisfies I(u) = 1
2 .

By a non–negative program we also mean a program whose premises are either objective literals
or u.

We extend with an additional operation the P modulo I transformation of [Przymusinska
and Przymusinski, 1990], itself an extension of the Gelfond-Lifschitz modulo transformation
[Gelfond and Lifschitz, 1988].

Definition 4.2.1 (P
I transformation) Let P be an extended logic program and let I be an

interpretation. P
I , P modulo I, is the program obtained from P by performing in the sequence

the following four operations:

• Remove from P all rules containing a default literal L = not A such that A ∈ I.

• Remove from P all rules containing an objective literal L such that ¬L ∈ I.

• Remove from all remaining rules of P their default literals L = not A such that not A ∈ I.

• Replace all the remaining default literals by proposition u.

Note that the new operation, the second one, is not applicable to non–extended programs,
and is only needed by some extended programs. It is required by the coherence principle, as
illustrated below in this section.

The resulting program P
I is by definition non–negative.

Definition 4.2.2 (Least operator) We define least(P ), where P is a non–negative program,
as the set of literals T ∪ not F obtained as follows:
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• Let P ′ be the non–negative program obtained by replacing in P every negative objective
literal ¬L by a new atomic symbol, say ′¬ L′.

• Let T ′ ∪ not F ′ be the least 3–valued model of P ′ (cf. definition 1.1.6).

• T ∪ not F is obtained from T ′ ∪ not F ′ by reversing the replacements above.

The least 3–valued model of a non–negative program can be defined as the least fixpoint
of the following generalization of the Van Emden–Kowalski least model operator Ψ for definite
logic programs:

Definition 4.2.3 (Ψ∗ operator) Suppose that P is a non–negative program, I is an interpre-
tation of P and A and the Ai are all ground atoms. Then Ψ∗(I) is a set of atoms defined as
follows:

• Ψ∗(I)(A) = 1 iff there is a rule A ← A1, . . . , An in P such that I(Ai) = 1 for all i ≤ n.

• Ψ∗(I)(A) = 0 iff for every rule A ← A1, . . . , An there is an i ≤ n such that I(Ai) = 0.

• Ψ∗(I)(A) = 1/2, otherwise.

Theorem 4.2.1 (3–valued least model) The 3–valued least model of a non–negative pro-
gram is:

Ψ∗ ↑ω(not H)

The generalization of the Van Emden–Kowalski theorem set forth in [Przymusinska and
Przymusinski, 1990] is also valid for extended logic of programs.

Theorem 4.2.2 least(P ) uniquely exists for every non–negative program P.

Proof: Since P ′ is a non–negative program without explicit negation its least 3–valued model
M exists and is unique (by theorem 6.24 of [Przymusinska and Przymusinski, 1990] page 357).
The theorem follows since least(P ) is univocally obtained from M . ♦

Note that least(P ) isn’t always an interpretation in the sense of definition 4.1.1. Conditions
about noncontradiction and coherence may be violated.

Example 4.3 Consider the non–negative program P :

a ← ¬a ← ¬b
¬b ← b ← u

where least(P ) = {a,¬a,¬b}. This set is not an interpretation (cf. example 4.1). Noncontra-
diction and coherence are violated.

Example 4.4 Consider the program P :

a ← not b
b ← not b

¬a

and the interpretation I = {¬a, not a}.

P

I
=

a ← u
b ← u

¬a

So, least
(

P
I

)
= {¬a}.

Although noncontradictory this set of literals violates coherence.
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To impose coherence, when contradiction is not present, we define a partial operator that
transforms any noncontradictory set of literals into an interpretation.

Definition 4.2.4 (The Coh operator) Let QI = QT ∪ not QF be a set of literals such that
QT does not contain any pair of objective literals A, ¬A. Coh(QI) is the interpretation
T ∪ not F such that

T = QT and F = QF ∪ {¬L | L ∈ T}.
The Coh operator is not defined for contradictory sets of literals.

The result of Coh applied to least
(

P
I

)
is always an interpretation. The noncontradiction

and coherence conditions are guaranteed by definition. T and F are disjoint because QT and QF
are disjoint and none of the objective literals added to F are in T since T is noncontradictory.

Now we generalize the Γ∗ operator of [Przymusinska and Przymusinski, 1990].

Definition 4.2.5 (The Φ operator) Let P be a logic program, I an interpretation, and J =
least

(
P
I

)
.

If Coh(J) exists then ΦP (I) = Coh(J). Otherwise ΦP (I) is not defined.

Definition 4.2.6 (WFSX, PSM and WFM) An interpretation I of an extended logic pro-
gram P is called an Partial Stable Model (PSM) of P iff

ΦP (I) = I.

The F-least Partial Stable Model is called the Well Founded Model(WFM).
The WFSX semantics of P is determined by the set of all PSMs of P .

It is easy to see that some programs may have no WFSX semantics.

Example 4.5 The program P = {a ←, ¬a ←} has no semantics.

Definition 4.2.7 (Contradictory program) An extended logic program P is contradictory
iff it has no semantics, i.e. there exists no interpretation I such that ΦP (I) = I.

Theorem 4.3.5 below expresses an alternative, more illustrative definition of contradictory
program. The issue of handling contradictory programs is further discussed in chapter 8.

Example 4.6 Consider again the program of example 3.1.

a ← not b
b ← not a

¬a

Now {¬a, not ¬b} is no longer a PSM as in [Przymusinski, 1990a] (where ¬a and ¬b are
simply considered new atoms), because it is not an interpretation, and thus Φ does not apply
to it.

Its only PSM, and consequently its WFM, is:

I = {¬a, b, not a, not ¬b}.

P

I
=

b ←
¬a ←

Indeed, its least model is I, Coh(I) = I, and ΦP (I) = I.
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Remark 4.2.1 According to [Przymusinski, 1990a], the above program has two PSMs:

{¬a, not ¬b} and {¬a, b, not a, not ¬b}

only the second being coherent. It is not enough though to throw out those of his models not
complying with coherence. Although that’s true for this example, example 4.7 shows that’s not
the general case.

Example 4.7 Consider program P :

c ← not b a ← not a
b ← not a ¬b ←

Applying the semantics to P we have the model:

PSM = {¬b, c, not b, not ¬c, not ¬a}.

Indeed:
P

PSM
=

c ← a ← u
b ← u ¬b ←

its least model is {c,¬b, not ¬c, not ¬a}, and consequently

ΦP (PSM) = PSM3.

By simply considering ¬b as a new atom (as suggested in [Przymusinski, 1990a]) this non–
extended program would have a single PSM, {¬b}, which is not a coherent interpretation.

It is also interesting to notice in this example that PSM is not a model in the classical sense
because for the second rule of P the value of the head (PSM(b) = 0) is smaller than the value
of the body (PSM(not a) = 1

2).
The intuitive idea is that the truth of ¬b (or the independent falsity of b) overrides any rule

for b with undefined body, so that not b becomes true (and b false), rather than undefined. This
is important to allow if we consider the existence of the fact ¬b in the program instrumental in
specifying the falsity of b in it. In chapter 5 section 5.2 this issue is further discussed.

Even though PSMs are not models in the classical sense, they are models as defined above
in this chapter (definition 4.1.3).

Theorem 4.2.3 (PSMs are models) Every PSM of a program P is a model of P.

Proof:(by contradiction) Let I be a PSM and not a model of P. By definition of model:

Î(L ← B) 6= 1

only if
Î(L) < Î(B) and Î(B) = 1, or Î(L) < Î(B) and Î(¬L) 6= 1.

If the first disjunct holds, then since Î(B) = 1 and I is a PSM, L ∈ I (i.e. Î(L) = 1), so the
disjunct cannot hold.

If the second disjunct holds, then

either Î(B) = 1 or Î(B) =
1
2
.

3Note how the truth of ¬b compels the truth of not b via the Coh operator.
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The first case is impossible, as just shown. If Î(B) = 1
2 then:

least

(
P

I

)
(L) =

1
2

and since Î(¬L) 6= 1 :

Coh

(
least

(
P

I

))
(L) =

1
2
.

As I is a PSM, Î(L) = 1
2 = Î(B), so the disjunct cannot hold. ♦

Example 4.8 Consider example 4.2. The only PSMs of that program correspond exactly to
models M7, M9 and M10.

We now come back to the question of the need for the extra operation introduced in the
modulo transformation.

Example 4.9 Consider program P :

c ← a a ← b
¬a ← b ← not b

Its only PSM is I = {¬a, not a, not c, not ¬b, not ¬c}. In fact,

P

I
=

a ← b
¬a ← b ← u

least

(
P

I

)
= {¬a, not c, not ¬b, not ¬c}

and consequently Φ(I) = I.
If the new operation for the modulo transformation were absent, P

I would contain the rule
c ← a, and c would be undefined rather than false. This would go against the coherence
principle, since ¬a entails not a, and as the only rule for c has a in the body, it should also
entail not c. The rôle of the new operation is to ensure the propagation of false as a consequence
of any not L implied by a ¬L through coherence.

Consider now a similar program P ′, in the canonical (cf. definition 2.1.1) form:

c ← a, not ¬a a ← b, not ¬b
¬a ← b ← not b

Its only PSM is again I = {¬a, not a, not c, not ¬b, not ¬c}.
P ′

I
=

a ← b
¬a ← b ← u

Because of the canonical form the new operation of the modulo transformation is irrelevant.
Even without it the rule c ← a, not ¬a is removed by applying the first operation, given that
¬a ∈ I and that not ¬a is part of its body.

In general, for programs in the canonical form the second operation of the modulo operator
is no longer required.

Theorem 4.2.4 (Compact version of P
I ) Let P be an canonical extended logic program, and

I an interpretation. Then P
I can be equivalently defined as the program obtained from P by

performing in sequence the three operations:
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• Remove from P all rules containing a default literal L = not A such that A ∈ I.

• Remove from all remaining rules of P their default literals L = not A such that not A ∈ I.

• Replace all the remaining default literals by proposition u.

Proof: Trivial, given the definitions of canonical program, of interpretation, and of P
I . ♦

4.3 Existence of the semantics

In the above definition of the semantics (definition 4.2.6) we define the WFM as the F–least
PSM. This is possible because:

Theorem 4.3.1 (Existence of the semantics) For noncontradictory programs there always
exists a unique F–least PSM. Moreover a literal L belongs to every PSM of a noncontradictory
program P iff L belong to the F–least PSM of P.

Proof: The proof follows directly from theorem 4.3.2 below. ♦

Theorem 4.3.2 (Monotonicity of Φ) Let P be a noncontradictory program. Then the oper-
ator ΦP is monotonic wrt set inclusion, i.e. A ⊆ B ⇒ ΦP (A) ⊆ ΦP (B) for any interpretations
A and B.

Proof: Since ΦP (I) = Coh
(
least

(
P
I

))
we prove this theorem by proving two lemmas, concern-

ing respectively the monotonicity of Coh and that of least
(

P
I

)
.

Lemma 4.3.3 Consider a program P and let I = TI ∪ not FI and J = TJ ∪ not FJ be two
interpretations of P such that I ⊆ J . Coh(I) ⊆ Coh(J) holds.

Proof: Coh(I) ⊆ Coh(J) is equivalent, by definition of Coh, to

TI ∪ not (FI ∪ {¬L | L ∈ TI}) ⊆ TJ ∪ not (FJ ∪ {¬L | L ∈ TJ})
since TI ⊆ TJ by hypothesis, the above is true if:

FI ∪ {¬L | L ∈ TI} ⊆ FJ ∪ {¬L | L ∈ TI} ∪ {¬L | L ∈ TJ − TI}
which is equivalent to

FI ⊆ FJ ∪ {¬L | L ∈ TJ − TI}
which holds because, by hypothesis, FI ⊆ FJ . ♦

Lemma 4.3.4 Consider a program P and let I = TI ∪ not FI and J = TJ ∪ not FJ be two
interpretations of P such that I ⊆ J .

least
(

P
I

)
⊆ least

(
P
J

)
holds.

Proof: In [Przymusinska and Przymusinski, 1990] this is proven considering the modulo trans-
formation without the second rule. Since this rule does not introduce new undefined literals, it
does not affect the monotonicity of the operator. ♦

Now it is easy to complete the proof of the theorem. By lemma 4.3.4:

A ⊆ B ⇒ least

(
P

A

)
⊆ least

(
P

B

)
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and by lemma 4.3.3:

least

(
P

A

)
⊆ least

(
P

B

)
⇒ Coh

(
least

(
P

A

))
⊆ Coh

(
least

(
P

B

))

for a noncontradictory program P . ♦

Definition 4.3.1 (Iterative construction of the WFM) In order to obtain a constructive
bottom–up definition of the WFM of a given noncontradictory program P , we define the following
transfinite sequence {Iα} of interpretations of P :

I0 = {}
Iα+1 = ΦP (Iα)

Iδ =
⋃ {Iα | α < δ} for a limit ordinal δ

By theorem 4.3.2, and according to the Knaster–Tarski theorem [Tarski, 1955], there must
exist a smallest ordinal λ such that Iλ is a fixpoint of ΦP , and WFM = Iλ.

Top–down procedures computing this semantics can be easily obtained by adapting existing
procedures for WFS of programs without explicit negation, such as [Pereira et al., 1991e, Pereira
et al., 1992e], as follows: replace every literal of the form ¬A by a new literal, say A′; include
two new rules “not A rewrites to A′” and “not A′ rewrites to A”. If A and A′ are both derivable
then the program is contradictory.

The constructive bottom–up definition requires one to know a priori if the given program
is contradictory. This requirement is not needed if we consider the following theorem.

Theorem 4.3.5 A program P is contradictory iff in the sequence of Iα there exists a λ such
that ΦP (Iλ) is not defined, i.e. least

(
P
Iλ

)
has a pair of objective literals A, ¬A.

Proof: The theorem is equivalent to: P is noncontradictory iff in the sequence of Iα there exists
no λ such that ΦP (Iλ) is not defined.

If P is noncontradictory then ΦP is monotonic, and so no such λ exists. If there is no such
λ then there exists an I and a smallest α such that I = Φ↑αP ({}), and I is a fixpoint of ΦP .
Thus, a fixpoint of ΦP exists, and so P is noncontradictory. ♦

In order to (bottom–up) compute the WFM of a program P start by building the above
sequence. If at some step ΦP is not applicable then end the iteration and conclude that P is
contradictory. Otherwise, iterate until the least fixpoint of ΦP , which is the WFM of P .

Example 4.10 Consider program P :

a ← not a
¬a ←

Let us build the sequence:

I0 = {}
I1 = Coh

(
least

(
P
{}

))
= Coh(least({a ← u, ¬a ←}))

= Coh({¬a}) = {¬a, not a}
I2 = Coh

(
least

(
P

{¬a,not a}
))

= Coh(least({a ←, ¬a ←}))
= Coh({a,¬a})

which is not defined. So P is contradictory.
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Example 4.11 Consider program P of example 4.6. The sequence is:

I0 = {}
I1 = Coh

(
least

(
P
{}

))
= Coh(least({a ← u, b ← u, ¬a ←}))

= Coh({¬a, not ¬b}) = {¬a, not a, not ¬b}
I2 = Coh

(
least

(
P

{¬a,not a,not ¬b}
))

= Coh(least({a ← u, b ←, ¬a ←}))
= Coh({b,¬a, not ¬b}) = {b,¬a, not a, not ¬b} = I3

and thus the WFM of P is {b,¬a, not a, not ¬b}.

It is worth noting that this semantics is a generalization of the well–founded semantics to
programs with explicit negation.

Theorem 4.3.6 (Generalization of the well–founded semantics) For programs without
explicit negation WFSX coincides with well–founded semantics.

Proof: As noted before, the modulo transformation coincides with the one defined for station-
ary semantics for the case of non–extended programs. Furthermore, the additional conditions
imposed on interpretations are void for those programs and, finally, the Coh operator reduces
to identity. ♦



Chapter 5

WFSX, LP semantics with two
negations, and autoepistemic logics

In recent years increasing and productive effort has been devoted to the study of the rela-
tionships between logic programming and several nonmonotonic reasoning formalisms1. Such
relationships are mutual beneficial. On the one hand, nonmonotonic formalisms provide elegant
semantics for logic programming, specially in what regards the meaning of default negation (or
negation as failure), and help one understand how logic programs are used to formalize several
types of problems in Artificial Intelligence. On the other hand, those formalisms benefit from
the existing procedures of logic programming, and some new issues of the former are raised and
solved by the latter. Moreover, relations among nonmonotonic formalisms have been facilitated
and established via logic programming.

For normal logic programs, their relationship with default theories [Reiter, 1980] was first
proposed in [Bidoit and Froidevaux, 1987]. In [Eshghi and Kowalski, 1989] default negation of
normal programs was first formalized as abduction, and in [Dung, 1991] the idea was further
explored in order to capture stable models [Gelfond and Lifschitz, 1988] and the well–founded
semantics [Gelder et al., 1991] of normal programs.

The idea of viewing logic programs as autoepistemic theories first appeared in [Gelfond,
1987] where the author proposed to view every negated literal not L of logic programs as
∼LL,2 i.e. not L has the epistemic reading: “there is no reason to believe in L”. In [Bonatti,
1992], different transformations between default negation literals and belief literals are studied,
in order to show how different logic programming semantics can be obtained from autoepistemic
logics.

However, except for our previous work, incorporated here, no such general comparisons exist
for extended logic programming. The establishment of relationships between nonmonotonic
formalisms and extended logic programs improve on those for normal programs since extended
programs map into broader classes of theories in nonmonotonic formalisms, and so more general
relations between several of those formalisms can now be made via logic programs. Moreover,
the relationships also provide a clearer meaning of the ¬–negation and its relation to default
negation in extended logic programming.

In this and the next chapters we explore the relationship between extended logic programs
and several nonmonotonic formalisms: autoepistemic logic, default theory, abduction, and be-
lief revision.

1As a result, international workshops have been organized, in whose proceedings [Nerode et al., 1991, Pereira
and Nerode, 1993] many additional references can be found.

2In the sequel we refer to this transformation, between default negation literals and belief literals, as the
Gelfond transformation.

39
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The first part of this chapter is devoted to contrasting and characterizing a variety of
semantics for extended logic programs, including WFSX, in what concerns their use and meaning
of ¬-negation, and its relation to both classical negation and the default negation, not , of normal
programs.

For this purpose we define a parametrizeable schema to encompass and characterize a di-
versity of proposed semantics for extended logic programs, where the parameters are two: one
the axioms AX¬ defining ¬-negation; another the minimality conditions notcond, defining not -
negation.

By adjusting these parameters in the schema we can then specify several semantics in-
volving two kinds of negation [Gelfond and Lifschitz, 1990, Pereira and Alferes, 1992, Przy-
musinski, 1990a, Przymusinski, 1991b, Wagner, 1991a], including WFSX. Other semantics,
dealing with contradiction removal [Pereira et al., 1992b, Dung and Ruamviboonsuk, 1991,
Pereira et al., 1991a, Sakama, 1992], are not directly addressed by the schema, though the issue
is touched upon in section 5.2.4. The issue of contradiction in extended logic programming is
studied in length in chapter 8.

In the second part of this chapter, and based on the similarities between the parametrizable
schema and the definitions of autoepistemic logics, we proceed to examine the relationship
between them and extended logic programs.

In the above mentioned comparative study, concerning the use and meaning of ¬–negation
in different semantics, no epistemic meaning is assigned to each of the uses of ¬. By relating
extended logic programs to autoepistemic logics such a meaning is extracted for some cases.
In particular, we show that ¬L in WFSX can be read as “L is known to be false”. Other
semantics give different readings to ¬, e.g. in the stationary semantics with classical negation
of [Przymusinski, 1991b] ¬L has the epistemic reading: “L is not known to be true”.

These results also clarify the use of logic programs for representing knowledge and belief.

5.1 Generic semantics for programs with two kinds of negation

The structure of this section is as follows: we begin with preliminary definitions and subsection
5.1.2 presents the parametrizeable schema; next we present properties important for the study
of extended logic program semantics, and show for various AX¬ whether or not the resulting
semantics complies with such properties; afterwards, in subsection 5.1.4, we reconstruct the
plurality of semantics for extended logic programs in the schema by specifying, for each, their set
AX¬ and their condition notcond; finally we briefly address the issue of introducing disjunction
in extended logic programs.

Parts of this section appear in [Alferes and Pereira, 1992].

5.1.1 Preliminaries

In the sequel, we translate every extended logic program P into a set of general clauses ¬ P,
which we dub clausal logic program. A set of general clauses is, as usual, a set of clauses:

L1 ∨ . . . ∨ Ln

where each Li is either an atom A or its classical negation ∼A. Here, by classical negation we
mean the negation of classical logic. Just as it was important to distinguish between classical
negation and negation by default in order to develop the relationship between normal logic
programming and nonmonotonic reasoning, here it is equally important to distinguish between
explicit negation ¬ and real classical negation ∼ , specially because our concern is to better
characterize the former.
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The models and interpretations of clausal logic programs are simply the classical models
and interpretations of sets of general clauses.

Propositions of the form not A (the translation in the clausal logic program ¬ P for not A
in P ) are called default ones, all other propositions being objective ones.

5.1.2 Stationary and stable semantics for programs with two kinds of nega-
tion

Within this section we present the above mentioned parametrizeable schema. We begin by
defining two generic semantics for normal logic programs extended with an extra kind of nega-
tion: one extending the stationary semantics [Przymusinski, 1990b, Przymusinski, 1991b] for
normal programs (itself equivalent to well founded semantics [Gelder et al., 1991]); another
extending the stable model semantics [Gelfond and Lifschitz, 1988]. We dub each of these se-
mantics generic because they assume little about the extra kind of negation introduced. The
meaning of the negation by default is however completely determined in each of the two generic
semantics (both stationary and stable models) that we present.

Subsequently we generalize the schema in order to parametrize it w.r.t. negation by default
as well.

Stationary semantics for programs with two kinds of negation

Here we redefine the stationary semantics of [Przymusinski, 1991b] in order to parametrize it
with a generic second type of negation, in addition to negation by default. We start by defining
stationary expansion of normal programs as in [Przymusinski, 1991b].

Definition 5.1.1 (Minimal models) A minimal model of a theory (or set of general clauses)
T is a model M of T with the property that there is no smaller model N of T which coincides
with M on default propositions.

If a formula F is true in all minimal models of T then we write:

T |=
CIRC

F

and say that F is minimally entailed by T.

This amounts to McCarthy’s Parallel Circumscription [McCarthy, 1980]:

CIRC(T ;O;D)

of theory T in which objective propositions O are minimized and default propositions D are
fixed.

Definition 5.1.2 (Stationary expansion of normal programs) A stationary expansion
of a normal program P is any consistent theory P ∗ which satisfies the fixed point condition:

P ∗ = ¬ P ∪
{
not A | P ∗ |=

CIRC
∼A

}
∪

{
∼not A | P ∗ |=

CIRC
A

}

where A is any arbitrary atom, ¬ P is the program obtained from P by replacing every literal
of the form not L by not L.

Note that ¬ P and P ∗ are always sets of Horn clauses.
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Example 5.1 Consider program P :

a ← not a
b ← not a, c
d ← not b

whose clausal program is ¬ P :
a∨ ∼not a

b∨ ∼not a∨ ∼c
d∨ ∼not b

The only expansion of P is

P ∗ = ¬ P ∪ {not b, not c,∼not d}
In fact the minimal models of P ∗ are (for clarity throughout the examples we exhibit all

literals, both positive and negative):

{ not a, not b, not c, ∼not d, a, ∼b, ∼c, d }
{ ∼not a, not b, not c, ∼not d, ∼a, ∼b, ∼c, d }

As P ∗ entails ∼b, ∼c, and d, it must contain {not b, not c,∼not d} and no more default literals.

As proven in [Przymusinski, 1991b], the least stationary expansion of a normal program
gives its well–founded semantics (via a definition of meaning similar to definition 5.1.4), and
now we wish to extend WFS with explicit negation to obtain, among others, WFSX.

In order to extend this definition to logic programs with a generic second kind of negation
¬, we additionally transform any such negated literals into new atoms too:

Definition 5.1.3 (Clausal program ¬ P of P) The clausal program ¬ P of an extended
logic program P is the clausal set of Horn clauses obtained by first denoting every literal in
H of the form:

¬A by a new atom ¬ A
not A by a new atom not A

not ¬A by a new atom not ¬ A

then replacing in P such literals by their new denotation and, finally, reinterpreting the rule
connective ← as material implication, expressed by ⇒.

Example 5.2 Let P = {a ← ¬b}. The clausal program ¬ P is:

¬ P = {¬ b ⇒ a}
or equivalently:

¬ P = {a∨ ∼¬ b}.
The models of an extended program are determined by the models of its clausal program

expansions via an inverse transformation:

Definition 5.1.4 (Meaning of a clausal program P ∗) The meaning of a clausal program
expansion P ∗ is the union of the sets of all atoms:

A such that P ∗ |= A
¬A such that P ∗ |= ¬ A

not A such that P ∗ |= not A
not ¬A such that P ∗ |= not ¬ A

where P ∗ |= L means that literal L belongs to all (classical) models of (the set of general clauses)
P ∗.

Note that negative literals do not translate over.
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In order to specify the second kind of negation one introduces in ¬ P the axioms AX¬
defining it. For example, if we want the second negation to be classical negation we must add
to ¬ P the set of clauses

{¬ A ⇔∼A | A ∈ H}
where ⇔ denotes material equivalence, and is used as shorthand for both clauses ¬ A ⇒∼A
and ∼A ⇒ ¬ A. In this case, the semantics of P is the same whether or not the first part of
the transformation to ¬ P takes place.

We want this generic semantics to be an extension of stationary semantics. So we must
guarantee that the semantics of a program without any occurence of ¬-negation is the same as
for stationary semantics, whatever kind of ¬-negation axioms are used and defined in the generic
schema. To that end, we must first minimize by circumscription the atoms in the language of
P, and only afterwards do we minimize the bar–ed atoms.

Definition 5.1.5 (M≤̄N) Let M and N be two models of a program ¬ P and Mpos (resp.
Npos) be the subset of M (resp. N) obtained by deleting from it all literals of the form ¬ L.

We say that M≤̄N iff:

Mpos ⊆ Npos ∨ (Mpos = Npos ∧M ⊆ N).

This definition is similar to the classical one plus a condition to the effect that, say, model
M1 = {¬ a} is smaller than model M2 = {a}.

Minimal models are now defined as in 5.1.1 but with this new ≤̄ relation. The equivalence
between minimality and circumscription is made through the ordered predicate circumscription
CIRC(T ;O;D) of the theory T, in which objective propositions O are minimized, but mini-
mizing first propositions not of the form ¬ A, and only afterwards the latter, and where default
propositions D are fixed parameters.

The definition of stationary expansion of an extended programs is then a generalization of
definition 5.1.2, parametrized by the set of axioms AX¬ defining ¬ A, plus this new notion of
ordered minimality.

Definition 5.1.6 (Stationary AX¬ expansions) A stationary expansion of an AX¬ ex-
tended program P is any consistent theory P ∗ which satisfies the following fixed point condition:

P ∗ = ¬ P ∪AX¬ ∪
{
not L | P ∗ |=

CIRC
∼L

}
∪

{
∼not L | P ∗ |=

CIRC
L

}

where L is any arbitrary objective proposition, and AX¬ is the set of axioms for ¬-negation in
P.

A stationary expansion P ∗ of a program P is obtained by adding to the corresponding clausal
program ¬ P the axioms defining ¬–negation, and the negations by default not L of those and
only those literals L which are false in all minimal models of P ∗. The meaning of negation by
default is that, in any stationary expansion P ∗, not L holds if and only if P ∗ minimally entails
∼L. Note that the definition of AX¬ can influence, by reducing the number of models, whether
∼L is in all minimal models of P ∗.

It is known (cf. [Lifschitz, 1985, Etherington et al., 1985, Gelfond et al., 1989]) that for any
positive proposition A of any theory T, the above definition of |=

CIRC
implies:

T |=
CIRC

A ≡ T |= A

Thus, and directly from definition 5.1.6:

Proposition 5.1.1 A consistent theory P ∗ is a stationary expansion of an AX¬ extended pro-
gram P iff:
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• P ∗ is obtained by augmenting ¬ P∪AX¬ with some default propositions not A and ∼not A
where A is an objective proposition;

• P ∗ satisfies the conditions:

P ∗ |= not A ≡ P ∗ |=
CIRC

∼A and
P ∗ |= ∼not A ≡ P ∗ |= A

for any objective proposition A.

Example 5.3 Consider program P :

p ← a
p ← ¬a
q ← not p

where ¬ in P is classical negation, i.e.

AX¬ = {¬ a ⇔∼a, ¬ p ⇔∼p, ¬ q ⇔∼q}.

The clausal program of P is:
p ∨ ∼a
p ∨ ∼¬ a
q ∨ ∼not p

The only stationary expansion of P is:

P ∗
1 = ¬ P ∪AX¬ ∪ {∼not p, not ¬ p, not q,∼not ¬ q, not a,∼not ¬ a}

In fact, the only minimal model of P ∗
1 is:

{∼not p, not ¬ p, not q,∼not ¬ q, not a,∼not ¬ a,
p,∼¬ p,∼q,¬ q,∼a,¬ a }

and the conditions of proposition 5.1.1 hold.
Note how the ≤̄ relation prefers this model to other models that would be minimal if the

usual ≤ were to be enforced. For example, the classically minimal model:

{∼not p, not ¬ p, not q,∼not ¬ q, not a,∼not ¬ a,
p,∼¬ p, q,∼¬ q,∼a,¬ a }

is not minimal when the ≤̄ relation is considered.

If ¬ in P is defined by :

AX¬ = {¬ a ⇒∼a, ¬ p ⇒∼p, ¬ q ⇒∼q}

i.e. ¬ in P is a strong negation in the sense that it implies classical negation in ¬ P, then the
only stationary expansion of P is:

P ∗
2 = ¬ P ∪AX¬ ∪ {not p, not ¬ p,∼not q, not ¬ q, not a, not ¬ a}

In fact, the only minimal model of P ∗
2 is:

{not p, not ¬ p,∼not q, not ¬ q, not a, not ¬ a,∼p,∼¬ p, q,∼¬ q,∼a,∼¬ a}

and the conditions of proposition 5.1.1 hold.
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We now define the semantics of a program based on its stationary expansions relative to
some AX¬.

Definition 5.1.7 (Stationary AX¬ semantics) A stationary AX¬ model of a program P is
the meaning of P ∗, where P ∗ is a stationary AX¬ expansion of P .

The stationary AX¬ semantics of an extended program P is the set of all stationary AX¬
models of P.

If S = {Mk | k ∈ K} is the semantics of P, then the intended meaning of P is:

M =
⋂

k∈K

Mk.

Example 5.4 The meaning of the program of example 5.3 is:

{p,¬q,¬a, not q, not a, not ¬p}
if we use classical negation, and:

{q, not p, not ¬p, not ¬q, not a, not ¬a}
if we use strong negation.

Example 5.5 Consider P :
a ← not b
¬a

where ¬ is a weak form of negation determined by:

AX¬ = {∼A ⇒ ¬ A | A ∈ H}.
The only stationary expansion of P is:

P ∗ = ¬ P ∪AX¬ ∪ {∼not a,∼not ¬ a, not b,∼not ¬ b}
determining thus the meaning of P as

M = {a,¬a, not b,¬b}.
The fact that both a and ¬a belong to M is not a problem since the weak form of negation

allows that. Note that ∼A ⇒ ¬ A is equivalent to A ∨ ¬ A, and allows models with both A
and ¬ A. Literal ¬b also appears in M forced by the weak negation.

Now we state in what sense this semantics is a generalization of stationary semantics:

Proposition 5.1.2 (Generalization of stationary semantics) Let P be a (non–extended)
normal logic program, and let AX¬ be such that no clause of the form

A1 ∨ . . . ∨An where {A1, . . . , An} ⊆ H
is a logical consequence of it.

M is a stationary AX¬ model of P iff M (modulo the ¬-literals) is a stationary model of P.

The reader can check that all sets of axioms AX¬ used in the sequel satisfy the restriction
imposed in the proposition. This restriction on the form of AX¬ is meant to avoid unusual defi-
nitions of ¬-negation where positive literals are just a consequence of the axioms independently
from the program. For instance:

Example 5.6 Let P = {a ← b}, and

AX¬ = {a∨ ∼¬ b,¬ b}.
P has a stationary AX¬ model

{a, not ¬a, not b,¬b}
which is not a stationary model of P. Note however that a is in the model because it is a logical
consequence of AX¬ irrespective of the program.
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The parametrizeable schema

Stable Models Semantics [Gelfond and Lifschitz, 1988] has a one-to-one correspondence with
stable expansions [Moore, 1985], and the latter can be obtained simply by replacing |=

CIRC
by

|=
CWA

in the definition of stationary expansion of normal programs, where CWA denotes Reiter’s
closed world assumption [Reiter, 1978], as shown in [Przymusinski, 1991b].

As with the stationary semantics of extended programs, a generic definition of stable seman-
tics for extended programs can also be obtained, with P ∗ |=

CWA
∼L as the condition for adding

negation by default.
So, in general a new parameter in the schema is desirable in order to specify how default

negation is to be added to an expansion.

Definition 5.1.8 (〈AX¬, notcond〉 expansion) A 〈AX¬, notcond〉 expansion of an extended
program P is any consistent theory P ∗ which satisfies the following fixed point condition:

P ∗ = ¬ P ∪AX¬ ∪ {not L | notcond(L)} ∪ {∼not L | P ∗ |= L}

where L is any arbitrary objective proposition.

The definition of a generic semantics is similar to that of stationary semantics.

Definition 5.1.9 (〈AX¬, notcond〉 semantics) A 〈AX¬, notcond〉 model of a program P is
the meaning of P ∗, where P ∗ is a 〈AX¬, notcond〉 expansion of P .

The semantics of a program P is the set of all 〈AX¬, notcond〉 models of P. The intended
meaning of P is the intersection of all models of P.

We define Stable AX¬ Semantics as the generic semantics where:

notcond(L) = P ∗ |=
CWA

∼L.

With this definition, propositions 5.1.1 and 5.1.2 are also valid for stable models.

5.1.3 Properties required of ¬
In this section we present some of the properties of extended logic programs and show for some
AX¬ whether or not the resulting semantics comply with such properties. Here we examine the
cases of:

• classical negation i.e. AX¬ = { ¬ A⇔∼A | A ∈ H}
• strong negation i.e. AX¬ = { ¬ A⇒∼A | A ∈ H}
• weak negation i.e. AX¬ = { ∼A⇒¬ A| A ∈ H}
• pseudo negation i.e. AX¬ = {}.

for both the stationary and stable semantics generic schemes. In section 5.1.4 we redefine
WFSX, introducing explicit negation, by imposing:

AX¬ = {} and notcond(L) = P ∗ |=
CIRC

∼L ∨ P ∗ |= ¬ L

Alternatively, we can define WFSX via stationary AX¬ semantics with:

• explicit negation i.e. AX¬ = {¬ A⇒not A| A ∈ H}

We concentrate next only on properties concerning the ¬-negation. For a comparative study
of semantics also concerning negation by default see section 10.2.
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Property 5.1.1 (Intrinsic consistency) A semantics is intrinsically consistent iff, for any
program P , if M is a stationary (resp. stable) model of P then for no atom A ∈ H :

{A,¬A} ⊆ M.

In other words, a semantics is intrinsically consistent if there is no need for testing for
consistency within the final (stationary or stable) models of a program.

Example 5.7 Let P be:
a ← not b
¬a ← not b

where ¬ is weak negation.
The only stationary expansion of P is:

P ∗ = ¬ P ∪ {∼A ⇒ ¬ A | A ∈ H} ∪ {not b, not ¬ b}.

The only minimal model of P ∗ is:

{a,∼not a,¬ a,∼not ¬ a,∼b,∼¬ b, not b, not ¬ b}

and is consistent.
However the meaning of P ∗ :

{a,¬a, not b, not ¬ b}

is inconsistent.

As shown with the previous example, semantics with weak negation might not be intrinsically
consistent. The same happens with semantics with pseudo negation.

Semantics with classical or strong negation are intrinsically consistent because, by the very
definition of AX¬, for every atom A ∈ H,

∼A∨ ∼¬ A ∈ P ∗,

for every expansion P ∗ of any program P, and thus no model of P ∗ has A and ¬ A. So the
meaning of P ∗ can never contain both A and ¬A.

Property 5.1.2 (Coherence) A semantics is coherent iff, for any program P and objective
literal L, whenever M is a stationary (resp. stable) model of P :

• if ¬L ∈ M then not L ∈ M3.

As argued above, this property plays an important rôle if we consider the second kind of
negation instrumental for specifying the falsity of literals. In that case coherence can be read
as:

if A is declared false then it must be assumed false by default.

It turns out that, for both stationary and stable semantics, coherence is equivalent to con-
sistency:

Theorem 5.1.1 A stationary (or stable) semantics is coherent iff it is consistent.

3If L = ¬A, this reads as ¬¬A = A ∈ M then not ¬A ∈ M.
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Proof: In appendix. ♦

Property 5.1.3 (Supportedness) A semantics is necessarily supportive iff, for any program
P , whenever M is a stationary (resp. stable) model of P then, for every objective literal L, if
L ∈ M there exists in P at least one identifiable rule of the form:

L ← B1, . . . , Bn, not C1, . . . , not Cm

such that:
{B1, . . . , Bn, not C1, . . . , not Cm} ⊆ M.

Since for any program P :

¬ P ∪
{
not L | P ∗ |=

CIRC
∼L

}

is a Horn clause program, a stationary (or a stable) semantics such that AX¬ does not contain
any clause with positive propositions is necessarily supportive. Thus, semantics with pseudo or
strong negation are necessarily supportive.

Semantics that introduce in AX¬ such clauses might not be necessarily supportive. For
example, if ¬ is classical negation necessary supportedness does not hold:

Example 5.8 Consider program P :

a ← b
¬a

The only stationary {¬ A ⇔∼A} model is:

M = {not a,¬a, not b,¬b}.

As ¬b ∈ M, and there is no rule for ¬b, the semantics is not necessarily supportive.

This property closely relates to the use of logic as a programming language. One does not
expect objective literals to be true unless rules stating their truth condition are introduced; in
other words, except for default propositions, no implicit information should be expected. We
argue that if one wants the result of the previous program one should write:

¬b ← ¬a
¬a

or, if disjunction is introduced:
a ← b
¬a

b ∨ ¬b

5.1.4 Fixing the set AX¬ and the condition notcond(L)

In this section we reconstruct some semantics for extended programs simply by specifying the
set AX¬ and the condition notcond(L) w.r.t. the generic semantics defined above. We contribute
this way for a better understanding of what type of second negation each of those semantics
uses, what are the main differences among them, and how they compare to WFSX.

We begin by reconstructing answer-sets semantics [Gelfond and Lifschitz, 1990] for programs
with consistent answer-sets (equivalent to the semantics of [Wagner, 1991a]).
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Theorem 5.1.2 (Answer–sets semantics) An interpretation M is an answer–set of a pro-
gram P iff M is a stable

AX¬ = {¬ A ⇒∼A | A ∈ H}
model of P (modulo the syntactic representation of models4).

Proof: Since:

• stable models correspond to stable expansions for normal logic programs, and

• answer sets are the consistent stable models of the normal program obtained by considering
every objective literal of the form ¬L as a new atom ¬ L, i.e. consistent stable {} models
of P,

for proving this theorem it is enough to prove that:

1. All stable {¬ A ⇒∼A | A ∈ H} expansions are consistent

2. Consistent stable {} models are equivalent to stable {¬ A ⇒∼A | A ∈ H} models.

The first point is clear given that, as shown in section 5.1.3, stable semantics with strong
negation are always consistent.

If P ∗ is a consistent stable {} expansion, then for every objective proposition ¬ A :

P ∗ |= ¬ A
by consistency⇒ P ∗ 6|= A

by CWA⇔ P ∗ |=
CWA

∼A

Thus, formulae of the form:
¬ A ⇒∼A

are theorems in all consistent stable {} models.
So, by adding them to expansions the results remain unchanged, i.e. point 2 holds. ♦
This theorem leads to the conclusion that answer-sets semantics extends stable models

semantics with strong negation. Thus, from the results of section 5.1.3, we conclude that
answer-sets semantics is consistent, coherent and supportive.

Note that if instead of strong negation one uses pseudo negation and a test for consistency in
the final models, the result would be the same. However, we think that the formalization as in
theorem 5.1.2 is more accurate because the consistency there is intrinsic and dealt within the fix-
point condition, with no need for meta–level constraints, and the properties exhibited are those
of strong negation and not of pseudo negation. For example, coherence and intrinsic consistency
(properties of strong negation but not of pseudo negation) are obeyed by answer-sets semantics.

One semantics extending well founded semantics with ¬-negation is presented in [Przy-
musinski, 1990a], and reviewed in section 2.2 above. It claims that the method used in [Gelfond
and Lifschitz, 1990] can be applied to semantics other than stable models, and so that method
is used to define the proposed semantics. It happens that the meaning of ¬ is not the same as
for answer-sets, in the sense that different AX¬s are used:

Theorem 5.1.3 (WFS plus ¬ as in [Przymusinski, 1990a]) An interpretation M is an
extended stable model of a program P iff M is a consistent stationary AX¬ = {} model of
P.

4Recall that in the definition of answer–sets, default literals are not included in models. By “modulo the
syntactic representation of models” we mean removing all default literals in models according to this definition.
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Proof: Trivial, given that for normal logic programs WFS corresponds to stationary models,
and WFS plus ¬ as in [Przymusinski, 1990a] is just the WFS of the normal program obtained
by considering literals of the form ¬L simply as new atoms ¬ L. ♦

Note the need for testing consistency in stationary models of the semantics so that L and ¬L
are related in the end. As seen in section 5.1.3, this semantics does not comply with coherence,
which imposes a permanent relationship between L and ¬L in the computation of models.

Next we reconstruct the stationary semantics with classical negation presented in [Przy-
musinski, 1991b]. This semantics is originally defined similarly to the generic definition above,
but where AX¬ is absent and literals of the form ¬A and not ¬A are just transformed to ∼A
and ∼not A, respectively. From this similarity the reconstruction follows easily:

Theorem 5.1.4 (Stationary semantics with classical negation) An interpretation M is
a stationary model (in the sense of [Przymusinski, 1991b]) of a program P iff M is a stationary

AX¬ = {¬ A ⇔∼A | A ∈ H}
model of P.

Proof: In appendix. ♦
From the results of section 5.1.3 we conclude that this semantics does not comply with

supportedness. Nevertheless, this semantics is the only one reconstructed here that introduces
real classical negation into normal logic programs. We argue that, comparing it with semantics
with strong negation, this is not a big advantage since, once disjunction is added to logic
programs with strong negation, a programmer can state in the language that the negation is
classical rather than strong. This can be done simply by adding rules of the form A ∨ ¬A for
every atom. Moreover, the programmer has the opportunity of stating which negation, strong
or classical, is desired for each of the atoms in the language, by choosing whether to add or not,
for each atom, such a disjunctive rule.

WFSX and strong negation

Since WFSX exhibits all the above mentioned properties of strong negation (cf. section 10.1)
and is defined as an extension of WFS, it seems that it should be closely related to stationary
semantics with strong negation. In fact:

Theorem 5.1.5 (WFSX and strong negation) If an interpretation M is a stationary

AX¬ = {¬ A ⇒∼A | A ∈ H}
model of a program P then M is a WFSX partial stable model of P.

Proof: Trivial, given the proof of theorem 5.1.6 below. ♦
Thus WFSX gives semantics to more programs and, whenever both semantics give a meaning

to a program, the WF model of WFSX is a (possibly proper) subset of that of stationary
semantics with strong negation. The differences between WFSX and stationary semantics with
strong negation are best shown with the help of an example.

Example 5.9 Consider program P :

a ← not a
b ← a
¬b
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which has no strong stationary models. According to WFSX its well founded model (and only
partial stable model) is:

M = {¬b, not b, not ¬a}.
Note that M is not even a model in the (usual) sense of [Przymusinska and Przymusinski, 1990],
because for the second rule the truth value of the head (false) is smaller than the truth value
of the body (undefined).

Recall that in WFSX ¬–negation overrides undefinedness (of b in this case). The truth of
¬L is an explicit declaration that L is false.

Any semantics complying with proposition 5.1.1 cannot have M as a model of the program:
not b is in an expansion iff ∼b is in all minimal models of that expansion, but if this is the
case then (by the second rule clause) ∼a should also be in all minimal models, which would
necessarily entail not a in the expansion.

In order to reconstruct WFSX in the generic schema, a new condition for adding default
negation is required, forcing a default literal not L to assuredly belong to an expansion also in
the case where the explicit negation ¬ L is in all models.

Theorem 5.1.6 (WFSX semantics) An interpretation M is a partial stable model of a pro-
gram P iff M is a stationary

AX¬ = {¬ A ⇒ not A | A ∈ H}

model of P.

Alternatively, M is a partial stable model of P iff M is the meaning of a P ∗ such that:

P ∗ = ¬ P ∪
{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}
∪ {∼not L | P ∗ |= L}

Proof: In appendix ♦

Example 5.10 The program P of example 5.9 has a single expansion:

P ∗ = ¬ P ∪ {not b,∼not ¬ b, not ¬ a}.

In fact its minimal models are:

{ not a, not ¬ a, not b, ∼not ¬ b, a, ∼¬ a, b, ¬ b}
{∼not a, not ¬ a, not b, ∼not ¬ b, ∼a, ∼¬ a, ∼b, ¬ b}

In all these models we have:

• ∼¬ a so we must introduce not ¬ a;

• ¬ b so we must introduce ∼not ¬ b and, by the second disjunct, not b. Note that there
is no need for adding not b in the first alternative of theorem 5.1.6 since it follows as a
consequence, given the axioms in AX¬.

The semantics of P is the meaning of P ∗, i.e.

{¬b, not b, not ¬a}.

giving its WFSX single partial model.
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5.1.5 Logic programs with ¬-negation and disjunction

Based on the similarities between the generic definition of stationary semantics for extended
programs and that of stationary semantics for normal logic programs, it is easy to extend
the former for extended disjunctive logic programs based on the extension of the latter for
disjunctive normal programs [Przymusinski, 1991b], where the rule syntax is enlarged to include
disjunctive conclusions.

First we have to extend the definition of ¬ P for the case of disjunctive programs. This
extension is obtained simply by adjoining to definition 5.1.3:

“[. . .] reinterpreting the connective ∨ in logic programs as classical disjunction”.

With this new context we define:

Definition 5.1.10 A stationary AX¬ expansion of an extended disjunctive program P is any
consistent theory P ∗ which satisfies the following fixed point condition (where the distributive
axiom not (A ∧B) ≡ not A ∨ not B is assumed):

P ∗ = ¬ P ∪AX¬ ∪
{
not F | P ∗ |=

CIRC
¬F

}

where F is an arbitrary conjunction of positive (resp. negative) objective literals.

Given this definition the semantics follows similarly to section 5.1.2.

Example 5.11 Consider program P :

p ← not a
p ← not ¬b

a ∨ ¬b

and let AX¬ be the axioms for strong negation. The only stationary AX¬ expansion of P is:

P ∗ = ¬ P ∪AX¬ ∪ {not ¬ a, not b,∼not p, not ¬ p, not a ∨ not ¬ b,∼not a∨ ∼not ¬ b}.
Thus the only stationary AX¬ model is {p, not ¬p, not ¬a, not b}.

Henceforth, the way is open for the study of the interaction between ¬ and disjunction
in semantics of extended programs, and comparisons among those semantics via disjunction.
One such result concerning the latter is the comparison between the use of classical or strong
negation mentioned above in page 50.

Example 5.12 In example 5.8 it is shown that the program P :

a ← b
¬a

considering ¬ as classical negation, has the single stationary model:

M = {not a,¬a, not b,¬b}.
This fails to comply with the property of supportedness. There we argue that if one wants

the result of M then the program should be written as P2 :

a ← b
¬a

b ∨ ¬b

It is easy to see that, with the above definition of stationary expansion of extended disjunc-
tive programs, the only stationary model of P2, when ¬ is strong negation, is M.
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It is known [Przymusinski, 1991b] that a definition such as 5.1.10 makes program disjunc-
tions exclusive. This is seen in example 5.11. In order to treat disjunctions as inclusive rather
than exclusive, in non–extended disjunctive programs, it suffices to replace |=

CIRC
by |=

WECWA

in the definition of expansions [Przymusinski, 1991b], where WECWA stands for Weak Ex-
tended Closed World Assumption [Ross and Topor, 1988] or Weak Generalized Closed World
Assumption [Rajasekar et al., 1989].

Further developments on the introduction of disjunction in extended logic programs, includ-
ing that of inclusive disjunction, are beyond the scope of this work.

5.2 Autoepistemic logics for WFSX

In the previous section we identified distinct acceptations of ¬–negation in different semantics
for extended logic programs. Some properties of each of those ¬–negations were presented.
However no epistemic meaning was given to such ¬–negations.

The main goals of this section are to define an autoepistemic logic capable of expressing
extended logic programs, and to study the epistemic meaning of ¬–negation in such programs.

The structure of this section is as follows: we begin by reviewing Moore’s autoepistemic
logic, introduced in [Moore, 1985], and the autoepistemic logic of closed beliefs introduced in
[Przymusinski, 1991a]. In section 5.2.2 we examine the epistemic meaning of a second negation
in both logic programs and autoepistemic theories, in terms of logics of knowledge and belief.
Then we define autoepistemic logics with explicit negation, and finally we relate them to the
WFSX semantics of extended logic programs.

Parts of this section appear in [Alferes and Pereira, 1993b].

5.2.1 Moore’s and Przymusinski’s autoepistemic logics

A propositional autoepistemic language is any propositional language Lang with the property
that for any proposition A in Lang, hereafter called objective, its alphabet also contains the
corresponding belief proposition LA, i.e. the proposition whose name is a string beginning with
the symbol L followed by A. The intended meaning of LA is “A is believed”.

An autoepistemic theory is any theory T over an autoepistemic language5. The following
definition of stable autoepistemic expansion can be easily shown equivalent to Moore’s:

Definition 5.2.1 (Stable autoepistemic expansion) A consistent theory T ∗ is a stable au-
toepistemic expansion of the autoepistemic theory T iff:

• T ∗ = T ∪ B, where B is a (possibly empty) set of belief literals, i.e. literals of the form
LA or ∼LA, where A is an objective proposition, and

• T ∗ satisfies the following conditions:

T ∗ |= LA ≡ T ∗ |= A
T ∗ |= ∼LA ≡ T ∗ 6|= A

This definition expresses positive and negative introspection of a rational agent: an agent
believes in some proposition A iff A belongs to all models of its knowledge; and has no reason
to believe in A (∼LA) iff A doesn’t belong to all models of its knowledge.

Remark 5.2.1 In the original definition of Moore, the belief operator L can be applied to any
formula, and thus the definition of expansion is modified accordingly. In [Przymusinski, 1991a]
it is shown the restriction to propositions in the above definition doesn’t influence generality.

5Like in the previous section, we use the symbol ∼ to denote classical negation in theories.
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Moreover, as our interest is focused on autoepistemic logic for logic programming, such general
formulae do not occur in theories (cf. Gelfond’s transformation, informally mentioned in the
introduction to this chapter and formalized in definition 5.2.6 below).

Example 5.13 Consider the following autoepistemic theory T , modeling the so called birds
fly situation:

bird(X)∧ ∼L abnormal(X) ⇒ fly(X)
bird(a)
bird(b)

ab(b)

Its only stable expansion is (with obvious abbreviations):

T ∪ {L b(a),L b(b),L ab(b),L f(a),∼L ab(a),∼L f(b)}

stating that an agent with knowledge T believes that a and b are birds, b is an abnormal bird
and a flies, and has no reason to believe that a is abnormal, and that b flies.

Of course, some autoepistemic theories might have several stable expansions:

Example 5.14 The theory T :
a ∨ L b
b ∨ L a

has two expansions, namely:
T ∪ {L a,∼L b}
T ∪ {L b,∼L a}

Each of these can be envisaged as a belief state, i.e. an agent with knowledge T has two possible
states of belief: either he believes in a and in that case has no reason to believe in b, or vice–
versa. A sceptical agent with these belief states should have no reason to believe nor disbelieve
neither a nor b.

In [Przymusinski, 1991a] Przymusinski argues, and we concur, that Moore’s autoepistemic
logic has some important drawbacks:

• First, quite reasonable theories have no stable expansions [Morris, 1988, Przymusinski,
1989c]. For example the theory:

broken car
can fix it ∨ L can fix it

has no stable expansion, because no consistent addition of beliefs to the theory entail believing
can fix it, and disbelieving that it can be fixed leads to an inconsistency6, the agent should rest
agnostic about that, neither believing nor disbelieving it can be fixed. However, one expects a
reasoner with this knowledge at least to believe that the car is broken.

• Another important drawback is that, even for theories with stable expansions, Moore’s
autoepistemic logic does not always lead to the expected intended semantics. For instance
consider the example7:

6Note that by adding ∼L can fix it to the theory, can fix it follows as a consequence, and thus L can fix it
must be added (inconsistency).

7This example first appeared in [Bonatti, 1993], in the form of a logic program.
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Example 5.15 A robot is programmed to carry some money from bank 1 to bank 2. There
are two possible routes, denoted a and b; the robot chooses one of them, provided that it has
no reason to believe there is trouble along the route. If it can choose any route then it should
prefer route a. After choosing a route, the robot signals “ I’m leaving” and tries to reach bank
2. This task can be naturally formalized by the autoepistemic theory:

L trouble(a)∧ ∼L trouble(b) ⇒ choose(b)
L trouble(b)∧ ∼L trouble(a) ⇒ choose(a)

∼L trouble(a)∧ ∼L trouble(b) ⇒ choose(a)
choose(a) ⇒ signal
choose(b) ⇒ signal

Given this knowledge, its unique stable expansion captures the intended meaning, i.e. the
robot has no reason to believe that there is trouble in any of the routes, and thus chooses route
a and signals.

Supposed now one adds to the theory the knowledge that there is some trouble in one of
the routes, but it is not known which, expressed by:

trouble(a) ∨ trouble(b)

The resulting theory has two stable expansions, both of which contain L signal, and where
one contains Lchoose(a) and the other contains Lchoose(b). According to the stable expansions
a sceptical reasoner would believe neither in choose(a) nor in choose(b), i.e. the robot wouldn’t
choose any of the routes, which is reasonable. However such a reasoner would believe in signal,
i.e. the robot says “ I’m leaving”, which clearly doesn’t express the intended meaning.

• Stable expansions cannot be effectively computed even within simple classes of theories,
such as propositional logic programs [Kautz and Selman, 1989]. This is an important drawback,
specially if one is interest in a theory for implementing knowledge representation and reasoning.

• Last but not least, by always insisting on completely deciding all of an agent’s beliefs,
stable expansions often lack expressibility. This issue will be further explored in this section.

In order to overcome these drawbacks Przymusinski introduced in [Przymusinski, 1991a]
the general notion of autoepistemic logics of closed beliefs, and presented the circumscriptive
autoepistemic logics as an important special case.

The notion of autoepistemic logics of closed beliefs arises naturally as a generalization of
Moore’s autoepistemic logics. First Przymusinski points out that in the definition of stable
expansion, T ∗ 6|= A can be replaced by T ∗ |=

CWA
∼A, and proceeds to argue that stable expan-

sions are a special case of expansions based on the general notions of positive and negative
introspection.

Definition 5.2.2 (Autoepistemic expansion) A consistent theory T ∗ is an autoepistemic
expansion of a theory T iff

• T ∗ = T ∪ B, where B is a (possibly empty) set of belief literals, i.e. literals of the form
LA or ∼LA, where A is an objective proposition, and

• T ∗ satisfies the following conditions:

T ∗ |= LA ≡ T ∗ |=op A
T ∗ |= ∼LA ≡ T ∗ |=cl ∼A

where |=op is a general entailment operator of open beliefs (or positive introspection) and |=cl

is a general entailment operator of closed beliefs (or negative introspection).
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Depending on the chosen positive and negative introspection entailment operators different
autoepistemic logics are obtained.

Based on this general definition, Przymusinski defines Circumscriptive Expansions simply
by choosing |= as the positive and |=

CIRC

8 as the negative introspection operators. He also shows
that with this definition of expansion, all of the above pointed out drawbacks are overcome,
and that, through Gelfond’s transformation between normal logic programs and autoepistemic
theories (whereby not L is construed as ∼L L), the least expansion is equivalent to the well–
founded semantics of [Gelder et al., 1991].

5.2.2 Why ¬ should not be classical negation

In [Lifschitz, 1991c, Lifschitz, 1991b] Lifschitz describes the nonmonotonic logic MBNF, based
on the notion of minimal knowledge9 and the ideas of justification and negation as failure (or
default negation).

Formulae of the propositional MBNF are built from propositional symbols and standard
connectives, plus two modal operators: B and not . Intuitively, for any proposition l, B l
expresses that l is minimally known, and not l that l cannot be assumed or, alternatively, that
there is no reason to believe in l.

This language has great expressivity, allowing for formulae combining truth in the world
with truth in the knowledge of an agent. For example:

a ∨ B a

states that a is true in the real world or a is known as true by the agent.
For this language Lifschitz defines a model theory and a consequence relation. Moreover he

relates a special class of this logic with logic programming, and argues that each normal logic
program rule:

H ← A1, . . . , An, not B1, . . . not Bm

where H, Ai and Bj are atoms, should be translated into (where ⇒ is material implication):

BA1, . . . ,BAn, not B1, . . . not Bm ⇒ BH

In this translation he is assuming, and we concur, that a logic program only speaks of propo-
sitions known by the agent and his beliefs or disbeliefs (it will be seen that not ≡ ∼L ), and
not of truth in the world. Thus the above rule is reads:

“If A1 is known to be true by the agent, and . . ., and An is known to be true by the agent, and
the agent has no reason to believe in B1, and . . . , and the agent has no reason to believe in Bm,
then H is known to be true by the agent.”

Because B affects all atoms without exception, it is simply dropped in logic programs.

We argue that this reading is also applicable to extended logic programs. For instance the
program:

p ← a
p ← ¬a

should be read in MBNF as:

8Here |=
CIRC

is as in the previous section (cf. page 43), but where the fixed propositions are of the form LA

instead of not A.
9Minimal knowledge (or maximal ignorance) was formalized earlier by several authors, including [Konolige,

1982, Shoham, 1986, Lin, 1988, Lin and Shoham, 1990].
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“If a is known to be true by the agent, then p is known to be true by the agent. If ∼a is known
to be true by the agent (i.e. a is known to be false) then p is known to be true by the agent.”
and represent in MBNF by:

B a ⇒ B p
B ∼a ⇒ B p

Clearly Ba∨B ∼a is not a tautology, since it is not always the case that the agent knows that
a is true or knows that a is false10. Situations occur where the agent, based on his knowledge,
cannot conclude neither B a nor B ∼a. Thus B p should not be a consequence of the program.

Note how, with this epistemic reading, the clausal contrapositives of logic program’s rules
are not implicit. For example the rule p ← ¬a does not implicitly add its contrapositive a ← ¬p.
This happens because the first rule is translated into B ∼a ⇒ B p, stating that “p is known
to be true if a is known to be false”. The latter’s contrapositive, implicit in the use of material
implication, is ∼B p ⇒∼B ∼a, and states that “ a is not known to be false if p is not known to
be true”, which is clearly not equivalent to the logic program’s rule contrapositive (nor to any
other possible rule). The program rule’s contrapositive translates to B ∼p ⇒ B a, stating that
“a is known to be true if p is known to be false”.

The issue of not using rule contrapositives in logic programs is further explored in chapter
6 where, by relating logic programs with default theories, rules of the former are viewed as
inference rules like in the latter.

An alternative translation to MBNF, but deriving B p, would be:

B a ⇒ B p
∼B a ⇒ B p

stating that:

“If a is known to be true by the agent, then p is known to be true by the agent. If a is not
known to be true by the agent then p is known to be true by the agent.”

With this representation, as B a∨ ∼B a is clearly a tautology, B p is a consequence of the
program. However note how this representation fails to concur with the principle that a logic
program only speaks of propositions known true or false by an agent, by speaking overtly of
what an agent doesn’t know.

Moreover the first translation is more general because it can achieve the effect of the second
by stating that for proposition a the agent is omniscient (i.e. knows its truth or falsity), by
adding to the theory a clause of the form:

B a ∨ B ∼a

If one agrees with the first translation, all propositions are implicitly preceded by the knowl-
edge operator B . For simplicity it has been omitted. Nevertheless one must take care with the
translation of B ∼A into logic programs. If one translates it into ∼A then one runs into the
problem of the second translation because BA∨B ∼A is translated into the tautology A∨ ∼A.
In order not to turn it into a tautology we’re justified to introduce a new negation symbol ¬
(explicit negation).

The simplification into logic programs is then obtained by replacing each proposition of the
form:

• BA, where A is an atom, simply by A;

• B ∼A by ¬A.

10Note the difference from B (a∨ ∼a), stating that the agent knows that a is true or false.
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By ¬A we designate the explicit negation of A, standing for knowing that A is false, i.e. ¬ ≡ B ∼.

The arguments above also apply to the translation from autoepistemic logic to logic pro-
grams, and from autoepistemic logics with B to autoepistemic logics without B .

This leads to an extension of the definition of autoepistemic theory of section 5.2.1 above:

Definition 5.2.3 (Autoepistemic theory) A propositional autoepistemic language is any
propositional language Lang with the property that for any objective proposition A in Lang its
alphabet also contains the corresponding proposition ¬A, and belief propositions LA and L¬A.
Propositions ¬A (resp. L A and L ¬A) are to be understood as ones whose name is a string
beginning with the symbol ¬ (resp. L and L¬) followed by A. The intended meaning of ¬A is
that “A is known to be false”, and that of LA is “A is believed”.

An autoepistemic theory is any theory T over an autoepistemic language.

The definition and study of expansions in these theories is made in the next section.

With these ideas in mind the epistemic coherence principle follows intuitively: It is clear
that B ∼A (i.e. ¬A) should entail ∼LA, i.e. if a rational agent knows that A is false then this
knowledge is enough to conclude that he does not believe A is true.

This principle provides for the possibility of expressing in a theory that some proposition
A should not be believed by the agent, simply by introducing the factual knowledge ¬A. Note
that with the autoepistemic theories described above, and with the restriction that a theory
should speak only of propositions known by the agent, this is impossible. One can state that
some proposition A is believed by adding to the theory the factual knowledge A. Indeed since

T ∗ |= LA ≡ T ∗ |= A

and T ∗ is obtained from T only by adding belief propositions, it follows that if A ∈ T then A
is in all models of T ∗ and LA is clearly true.

The addition of ∼A does not comply with the said principle. We’ve seen it is a simplification
of ∼BA, and states that A is not known true by the agent, not that he doesn’t believe A. Facts
of the form ∼LA do not provide the intended result because for a theory to be an expansion
the equivalence

T ∗ |=∼LA ≡ T ∗ |=
CIRC

∼A

must hold, and ∼LA does not provide a way of imposing ∼A on all minimal models.
A fact ¬A, stating that A is known to be false, accords with the principle that a theory

should only speak of propositions known by the agent and, via coherence, provides a natural
instrument for imposing the “disbelief” of a proposition.

5.2.3 Autoepistemic logic with explicit negation

Here we define expansions and the semantics of autoepistemic theories with explicit negation
(i.e. theories as per definition 5.2.3 above).

The language of these theories has the advantage, over the previous autoepistemic languages,
that it is possible to express in them knowledge about falsity, or negative information. In the
others only absence of positive information about the knowledge of an agent is expressible. We
mark the difference between these two notions with the help of an example:

Stating that:

(1) I know that Susan is not married to Peter

is clearly not the same as stating that:
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(2) I do not know that Susan is married to Peter.

While autoepistemic theories with explicit negation can express (1) and (2)11, other au-
toepistemic languages can express (2) but cannot express (1).

We argue that not being able to express (1) is a serious limitation. Not being able to
express (2), as in logic programming, results naturally if one agrees that a program speaks
only of what it knows; never about what it doesn’t know. Presently, in logic programs only
positive knowledge is grounded. The ability to express both (1) and (2) also allows the absence
of positive or negative information to be conveyed: ∼B p∧ ∼B ∼p, i.e. in the language of
autoepistemic theories with explicit negation:

∼p∧ ∼¬p

The notion of expansion is a generalization, for the new language of theories, of circum-
scriptive autoepistemic logic.

Recall that an autoepistemic theory represents the knowledge of a reasoning agent where:

• A stands for: the truth of A is known by the agent;
• ¬A stands for: the falsity of A is known by the agent;
• L A stands for: A is believed by the agent;
• L¬A stands for: ¬A is believed by the agent;
• ∼L A stands for: A is not believed by the agent;
• ∼L¬A stands for: ¬A is not believed by the agent.

Under CWA, A is not believed if there is no reason to believe A. But A may be not believed
as an hypothesis which may or may not be held, even if there is no reason to believe A.

In order to define expansion in accordance with the autoepistemic logic of closed beliefs we
have to define the positive and negative entailment operators, i.e. what are the introspection
mechanisms that allow the agent to derive his beliefs, and to derive his disbeliefs.

For positive introspection, we say an agent believes in a proposition A if and only if A
belongs to all models of the theory. In other words A is believed by the agent iff A is known to
be true by him.

For negative introspection, we say an agent disbelieves a proposition A iff ∼A belongs to all
minimal models of the theory, or ¬A belongs to all models of the theory. In other words, A is
disbelieved iff ∼A is minimally entailed by the theory or is known to be false.

Accordingly:

Definition 5.2.4 (Autoepistemic expansions) A consistent theory T ∗ is an autoepistemic
expansion of a theory T iff

• T ∗ = T ∪ B, where B is a (possibly empty) set of belief literals, i.e. literals of the form
LA, L¬A, ∼LA, or ∼L¬A, where A is an objective proposition, and

• T ∗ satisfies the following conditions:

T ∗ |= L A ≡ T ∗ |= A
T ∗ |= L¬A ≡ T ∗ |= ¬A
T ∗ |= ∼L A ≡ T ∗ |=

CIRC
∼ A or T ∗ |= ¬A

T ∗ |= ∼L¬A ≡ T ∗ |=
CIRC

∼¬A or T ∗ |= A

where |=
CIRC

is as defined in 5.1.5 but where fixed propositions are of the form LL instead.

11Note that in our definition of theories it is still possible to have classically negated literals ∼L which stand,
as seen above, for ∼BL.
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Example 5.16 Consider the following autoepistemic theory T , which is a modification of the
birds fly situation of example 5.13:

∼L¬fly(X) ∧ bird(X) ⇒ fly(X)
bird(a)
bird(b)
¬fly(b)

where the last clause expresses that b is known not to fly.
Its only expansion is (with obvious abbreviations):

T ∪ {L b(a),L b(b),L f(a),L¬f(b),∼L¬b(a),∼L¬b(b),∼L¬f(a),∼L f(b)}

stating that an agent with knowledge T believes that a and b are birds, b doesn’t fly, a flies,
and disbelieves that a and b are not birds, that a doesn’t fly, and that b flies.

Example 5.17 12 Consider an agent with the following knowledge:

• Peter is a bachelor;

• A man is known not to be married if he is known to be a bachelor;

• Susan is known to be married to Peter, if we do not believe she’s married to Tom.

• Susan is known to be married to Tom, if we do not believe she’s married to Peter.

• It is known that no one is married to oneself.

rendered by the autoepistemic theory T (with obvious abbreviations):

b(p)
b(X) ⇒ ¬m(X, Y )

∼Lm(t, s) ⇒ m(p, s)
∼Lm(p, s) ⇒ m(t, s)
¬m(X, X)

The only expansion of T contains, among others, the belief propositions:

{L b(p),L¬m(p, s),∼Lm(p, s),Lm(t, s)}

Note how explicit negation imposes, via the new disjunct of negative introspection, that the
knowledge that Peter is not married to Susan imposes the disbelieve he is married to her, thus
allowing for the conclusion that Tom is married to Susan.

In both the above examples all of an agent’s beliefs are completely decided, in the sense
that for any proposition A the agent either believes or disbelieves A. Of course, since these
expansions result from a generalization of circumscriptive expansions, this is not in general the
case.

Example 5.18 Consider the statements:

• It is known or believed that one can fix the car.

• If it is not believed that one can fix the car then it is known that an expert is called for.

• It is known that an expert is not called for.
12This example first appeared in [Wagner, 1993], in the form of a logic program.
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rendered by the autoepistemic theory T :

can fix car ∨ L can fix car
∼L can fix car ⇒ call expert
¬call expert

The only expansion of T is:

T ∪ {L¬call expert,∼L call expert}
stating that an agent believes that an expert is not called and that he disbelieves an expert is
called.

Note that about can fix car the agent remains undefined, neither believing nor disbelieving
it. This is due to, on the one hand, that believing it is impossible since it is not a consequence of
all models, and so it cannot be derived by positive introspection; on the other hand disbelieving
it leads to an inconsistency.

The result of this expansion correctly describes the intuitive meaning of the above piece of
knowledge: can fix car is not believed nor disbelieved. Since the agent knows that an expert is
not called for this certainly plays a more important rôle than the undefinedness of can fix car,
and the latter does not interfere with not believing that an expert is called. The knowledge that
an expert is not called for is instrumental for disbelieving that it is called for. Mark here the
similarities with the new condition on the definition of models in logic programs, where explicit
negation overrides any undefined conclusion following from undefinedness in the body of rules.

By always insisting on completely deciding all of an agent’s beliefs stable expansions do not
give a meaning to T. Circumscriptive autoepistemic logics too cannot express this knowledge
and give the expected result. In fact, even if one replaces ¬ by ∼ in the last clause, and
applies circumscriptive autoepistemic logic, no circumscriptive expansion exists. Technically
this happens because, by the last clause, ∼ call expert belongs to all models; thus, by the
second clause, Lcan fix car also belongs to all models; in any expansion this belief proposition
can be true only if can fix car belongs to all models, which is not the case.

Intuitively, this happens because on the one hand ∼call expert is interpreted as “the agent
doesn’t know that an expert is called for”, and thus he must believe that he can fix the car.
One the other hand he cannot believe he can fix the car because that is not a result of positive
introspection.

Like Moore’s autoepistemic theories, autoepistemic theories with explicit negation might
have several expansions:

Example 5.19 Consider the theory T, describing the so–called Nixon diamond situation:

republican(nixon)
quaker(nixon)

republican(X),∼L pacifist(X) ⇒ ¬pacifist(X)
quaker(X),∼L¬pacifist(X) ⇒ pacifist(X)

T has three expansions, namely:

T ∪ {L r(n),L q(n),L p(n), ∼L¬r(n),∼L¬q(n),∼L¬p(n)}
T ∪ {L r(n),L q(n),L¬p(n),∼L¬r(n),∼L¬q(n),∼L p(n)}
T ∪ {L r(n),L q(n), ∼L¬r(n),∼L¬q(n)}

The first states that it is believed that Nixon is a pacisfist; the second that it is believed that
Nixon is not a pacifist; and the third remains undefined in what concerns Nixon being or not a
pacisfist.

When confronted with several expansions (i.e. several possible states of beliefs) a sceptical
reasoner should only conclude what is common to all. Here that coincides with the third
expansion.
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In point of fact, the intersection of all expansions is itself an expansion:

Theorem 5.2.1 (Least expansion) The intersection of all expansions of an autoepistemic
theory with explicit negation is itself an expansion.

Proof: Follows directly from the relation with WFSX and the properties of the latter. ♦
Up to now we’ve defined expansions but did not use them to formally assign a meaning to

a theory13. Now we define the meaning of an autoepistemic theory with explicit negation in a
quite straightforward way.

The meaning of an expansion is the set of belief (and disbelief) propositions in it. In other
words, each expansion corresponds to a belief state, and its meaning is the set of beliefs and
disbeliefs of the agent in that state. The meaning of an autoepistemic theory is the set of all
meanings of all expansions.

As noted above, when several expansions exist a sceptical reasoner should only conclude
what is common to all. In order to easily model such a reasoner we also define a sceptical
meaning of theories.

Definition 5.2.5 (Meaning of an autoepistemic theory) Let T be an autoepistemic the-
ory with expansions T ∪Bk

14 such that k ∈ K.

The meaning of T is determined by:

{Bk | k ∈ K}

The sceptical meaning of T is determined by:

⋂

k∈K

Bk

Directly from theorem 5.2.1 it follows that:

Theorem 5.2.2 (Sceptical meaning of a theory) Let T be an autoepistemic theory with
explicit negation, whose least expansion is:

T ∪B

The sceptical meaning of T can be equivalently defined as B.

Example 5.20 The meaning of the Nixon Diamond program of example 5.19 is:

{
{L r(n),L q(n),L p(n),∼L¬r(n),∼L¬q(n),∼L¬p(n)}
{L r(n),L q(n),L¬p(n),∼L¬r(n),∼L¬q(n),∼L p(n)}

{L r(n),L q(n),∼L¬r(n),∼L¬q(n)}
}

and its sceptical meaning is:

{L r(n),L q(n),∼L¬r(n),∼L¬q(n)}
13However, in the examples, we informally presented the meaning of theories based on their expansions.
14Note that each Bk is a set of belief propositions.
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5.2.4 Autoepistemic belief revision

Not all theories have a meaning:

Example 5.21 The theory T :
a
¬a

has no meaning. This is reasonable since T is clearly contradictory.

Example 5.22 Consider yet another modification of the birds fly situation of example 5.13:

∼L abnormal(X), bird(X) ⇒ fly(X)
bird(a)
bird(b)
¬fly(b)

This autoepistemic theory has no expansion, and thus no meaning because, on the one hand,
knowing that b doesn’t fly entails, by positive introspection, that it is believed not to fly and,
by negative introspection, that it is disbelieved it does fly; on the other hand, as there are no
clauses for abnormal(b), by negative introspection one concludes there is no support for the
belief that b is abnormal and thus, since it is known to be a bird it is believed it flies.

However, it can be argued that the contradiction between believing b flies and having no
reason to believe it does should not appear at all since it is based on the result of a negative
introspection, namely of ∼L abnormal(b). If a more sceptical definition of the negative intro-
spection operator were used instead, not allowing for ∼L abnormal(b) to be concluded, then
the contradiction would no longer appear. The rationale for not concluding ∼L abnormal(b)
would be:

“ if the result of an introspection leads to an inconsistency then revise your introspection”.

One possibility to define such a sceptical semantics would be to weaken the conditions of
expansion in what regards negative introspection. As a first approximation one could replace
the last two conditions of definition 5.2.4 by:

T ∗ |= ∼L A ⇒ T ∗ |=
CIRC

∼ A or T ∗ |= ¬A

T ∗ |= ∼L¬A ⇒ T ∗ |=
CIRC

∼¬A or T ∗ |= A

i.e. an agent can only disbelieve some proposition A if A is minimally entailed by the theory
or A is known to be false. Nevertheless, even if these conditions hold it is not mandatory for
the agent to disbelieve A.

Of course this definition is too weak: with it all programs have one expansion without any
disbelieved propositions. The idea is to allow ∼LA propositions not to be derived just in case
they are a cause of contradiction. A condition must be introduced in order to obtain the “only
if” part of the above implications:

T ∗ |= ∼L A ⇔ (T ∗ |=
CIRC

∼ A or T ∗ |= ¬A) and Cond

T ∗ |= ∼L¬A ⇔ (T ∗ |=
CIRC

∼¬A or T ∗ |= A) and Cond

By the equivalence between this autoepistemic logic and WFSX, presented below, the study
of such conditions is tantamount to the issue of contradiction avoidance in logic programs with
WFSX. This issue is studied in length in chapter 8 for logic programs, and is thus not further
explored in this section for the corresponding autoepistemic theories.
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Another possibility for the definition of such a more sceptical semantics is to add an extra
mechanism of introspection on top of the existing ones. This mechanism of introspection would
“remove” some of the disbeliefs (derived from the existing introspection mechanisms) in order
to guarantee noncontradiction.

Again, by the equivalence between this autoepistemic logic and WFSX, the study of ex-
tra introspection mechanisms is tantamount to contradiction removal in logic programming as
studied in chapter 8.

5.2.5 Relation to WFSX

In this section we relate autoepistemic theories with explicit negation to WFSX.
The relationship between autoepistemic logics and extended logic programs established here

brings new mutual benefits to both. For one thing, autoepistemic logics clarify the semantics of
extended logic programs providing for a better understanding of the ¬–negation. It also clarifies
the use of extended logic programs for representing knowledge and belief.

For another, autoepistemic logics benefit from the existing procedures of extended logic
programs. Moreover, the relations between autoepistemic logics and other nonmonotonic for-
malisms (e.g. defaults, abduction, belief revision) can now be made via logic programs for a
broader class because, as we show in the next chapters, extended logic programs relate to all
such formalisms.

We now proceed to formalize the relationship between the autoepistemic logic defined above
(definition 5.2.4) and WFSX.

Definition 5.2.6 (Autoepistemic theories and logic programs) The autoepistemic the-
ory T corresponding to the extended logic program P is obtained from P by replacing every
default literal not L in P by ∼LL, and then replacing the rule connective of logic programs by
material implication.

Example 5.23 The theory T corresponding to the logic program P :

a ← not a,¬b
¬b ← not ¬a, c
c

is:
∼L a,¬b ⇒ a
∼L¬a, c ⇒ ¬b

c

From the definition of autoepistemic expansions (definition 5.2.4) and theorem 5.1.6 it fol-
lows easily that:

Theorem 5.2.3 Let T be the autoepistemic theory corresponding to the extended logic program
P. Then

T ∗ = T ∪ {LA1, . . .LAn,∼LB1, . . . ,∼LBm}

is an expansion of T, where all the Ai and Bj are objective propositions, iff

M = {A1, . . . , An, not B1, . . . , not Bm}

is a partial stable model of P according to WFSX.
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Example 5.24 The only expansions of T of example 5.23 is:

T ∪ {L c,L¬b,∼L¬a,∼L b,∼L¬c}

stating that c is believed to be true, b is believed to be false, and a is disbelieved.
The only partial stable model of P is:

{c,¬b, not ¬a, not b, not ¬c}

Note how the meaning of T relates straightforwardly to the model of P.

Another immediate result (given theorem 5.1.4) is that Przymusinski’s stationary expansions
of extended logic programs [Przymusinski, 1991b] correspond to the autoepistemic expansions
of the theory obtained by first replacing in the program every objective literal ¬L by ∼L and
then applying the transformation of definition 5.2.6. Thus, as argued in section 5.2.2, in WFSX
¬A should be read “A is known to be false”, whereas in stationary expansions it should be read
“A is not known to be true”.

As suggested by theorem 5.1.2, answer–sets semantics [Gelfond and Lifschitz, 1990] can be
obtained by replacing, in definition 5.2.4, CIRC by CWA.

By virtue of theorem 5.2.3, all the arguments found in favour of the definition of autoepis-
temic expansions apply equally vis–à–vis WFSX and the other logic programming approaches
that include a second kind of negation.
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Chapter 6

WFSX as default logic

A relationship between logic programs and default theories was first proposed in [Bidoit and
Froidevaux, 1987] and [Bidoit and Froidevaux, 1988]. The idea is to translate every program
rule, into a default one and then compare the extensions of the default theory with the seman-
tics of the corresponding program.

The main motivations for such a relationship are, on the one hand, the use of logic program-
ming as a framework for nonmonotonic reasoning and, on the other hand, the computation of
default logic extensions by means of logic programming implementations algorithms. Moreover,
by having the relationship established for some semantics of logic programs, it is important to
keep with such a relationship with mutual clarifications.

In [Bidoit and Froidevaux, 1988] stable model semantics [Gelfond and Lifschitz, 1988] was
shown equivalent to a special case of default theories in the sense of Reiter [Reiter, 1980]. This
result was generalized in [Gelfond and Lifschitz, 1990] to programs with explicit negation and
answer-set semantics, where they make explicit negation correspond to classical negation used
in default theories.

Well Founded Semantics for Default Theories [Baral and Subrahmanian, 1990] extends Re-
iter’s semantics of default theories, resolving some issues of the latter, namely that some theories
have no extension and also that some theories have no least extension. Based on the way such
issues were resolved in [Baral and Subrahmanian, 1991], the well founded semantics for pro-
grams without explicit negation was shown by them equivalent to a special case of the extension
classes of default theories in the sense of [Baral and Subrahmanian, 1990]. It turns out that in
attempting to directly extend this result to extended logic programs with explicit negation one
gets some unintuitive results and no semantics of such logic programs relates to known default
theories.

To overcome that, here we first identify principles a default theory semantics should en-
joy to that effect, and introduce a default theory semantics that extends that of [Baral and
Subrahmanian, 1991] to the larger class of logic programs, but complying with those principles.

Such a relationship to a larger program class improves the cross–fertilization between logic
programs and default theories, since we generalize previous results concerning their relationship
[Baral and Subrahmanian, 1990, Baral and Subrahmanian, 1991, Bidoit and Froidevaux, 1987,
Bidoit and Froidevaux, 1988, Gelfond and Lifschitz, 1990, Przymusinska and Przymusinski,
1991, Przymusinska and Przymusinski, 1993]. Moreover, there is an increasing use of logic
programming with explicit negation as a nonmonotonic reasoning tool [Gelfond and Lifschitz,
1990, Pereira et al., 1991d, Pereira et al., 1991f, Pereira et al., 1991g, Pereira et al., 1993d,
Pereira et al., 1993e, Wagner, 1991a], which can thus be a vehicle for implementing default
theories as well. The relationship also further clarifies the meaning of logic programs combining
both explicit negation and negation by default. In particular, it shows in what way explicit
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negation corresponds to classical negation in our default theory, and elucidates the use of rules
in extended logic programs. Like defaults, rules are unidirectional, so their contrapositives are
not implicit: the rule connective ← is not material implication but has rather the flavour of an
inference rule.

Implementationwise, since WFSX is definable by a monotonic fixpoint operator, it has
desirable computational properties, including top–down and bottom–up procedures. As the
default semantics is sound with respect to Reiter’s default semantics, whenever an extension
exists, we thus provide sound methods for computing the intersection of all extensions for an
important subset of Reiter’s default theories.

The semantics for default theories presented here is restricted to the language where pre-
requisites and justifications are finite sets of ground literals, the conclusion is a literal, and
all formulas not in default rules are literals as well. Note that when relating defaults to logic
programming in the usual way, the language of theories corresponding to programs is already
thus restricted. Furthermore, in section 6.6 we show that default theories with this language
restriction are nevertheless as powerful as logic programs with explicit negation. Nevertheless,
this semantics can be extended to the class of all default theories using methods similar to those
presented here. Indeed, D. Pearce extends the default semantics presented here to the class of
all default theories, using constructive logic [Pearce, 1992a].

In this chapter we present a semantics for default theories, and show its relationship with
WFSX. Based on this relationship, we give an alternative definition of WFSX which does not
rely on 3–valued logic but on 2–valued logic alone. Finally we present some example of logic
programs for representing default (or defeasible) rules.

This definition of WFSX is also an important consequence of the established relationship. It
allows for viewing WFSX as a partial 2–valued semantics, where undefined literal are those that
can neither be proven true nor false, i.e. those that their truth in a 2–valued logic is “unknown”.

Parts of this chapter have been published in [Pereira et al., 1992c].

6.1 The language of defaults

First we review the language of propositional defaults, and some known default logics.

Definition 6.1.1 (Default rule) A propositional default d is a triple

d = 〈p(d), j(d), c(d)〉

where p(d) and c(d) are propositional formulas and j(d) is a finite subset of propositional for-
mulas. p(d) (resp. j(d), resp. c(d)) is called the prerequisite (resp. justification, resp. conse-
quence) of default d. The default d is also denoted by

p(d) : j(d)
c(d)

Definition 6.1.2 (Default theory) A default theory ∆ is a pair (D, W ) where W is a set of
propositional formulas and D is a set of default rules.

As remarked above the definition of the semantics of default theories is herein defined only
for a restricted language, though powerful enough to map extended logic programs. Accordingly
we define:

Definition 6.1.3 (Restricted default theory) A restricted default rule is a default rule

p(d) : j(d)
c(d)



6.1. THE LANGUAGE OF DEFAULTS 69

where p(d), j(d), and c(d) are literals.
A restricted default theory ∆ is a pair (D, W ) where W is a set of literals and D is a set of

restricted default rules.

Next we review, for the case of propositional defaults, some known default theory seman-
tics. We start by reviewing Reiter’s classical default logic [Reiter, 1980]. Then we review (partly
following [Baral and Subrahmanian, 1991]) the well-founded [Baral and Subrahmanian, 1991]
and stationary [Przymusinska and Przymusinski, 1993] default logics, which correspond respec-
tively to the well founded [Gelder et al., 1991] and stationary semantics [Przymusinski, 1990a]
of (nonextended) logic programs.

6.1.1 Reiter’s default semantics

To every default theory ∆ Reiter associates the operator Γ∆, acting on sets of objective literals
called contexts:

Definition 6.1.4 (The Γ∆ operator) Let ∆ = (D, W ), be a propositional default theory and
let E be any set of objective literals, called a context. Γ∆(E) is the smallest context which:

1. contains W ;

2. is closed under all derivation rules of the form p(d)
c(d) , where p(d) : j(d)

c(d) ∈ D and ¬f 6∈ E, for
every f ∈ j(d).

Intuitively, Γ∆(E) represents all objective literals derivable from W plus E, closed under all
default rules whose justifications are consistent with E.

Definition 6.1.5 (Reiter’s default extensions) A context E is an extension of a default
theory ∆ iff:

E = Γ∆(E)

The cautious default semantics of ∆ is the context consisting of all objective literals which belong
to all extensions of ∆.

As argued in [Przymusinska and Przymusinski, 1993], default extensions can be viewed as
rational sets of conclusions deducible from ∆.

One problem of Reiter’s default logic is that it may have multiple extensions and in that
case the cautious default semantics is not an extension. If one views extensions as the only
rational sets of conclusion then, surprisingly, the (cautious) semantics is not itself one such set.

Example 6.1 Consider the default theory ∆ :
( {

c : ¬a

b
,
c : ¬b

a

}
, {c}

)

which has two extensions:
E1 = {a,¬b, c}
E2 = {b,¬a, c}

The cautious default semantics is {c}, itself not an extension, and thus, according to Reiter’s
semantics, is not a rational set of conclusions.

Another problem is that, in cases where a definite meaning is expected, no extensions exist
(and thus no meaning is given).

Example 6.2 The default theory:
( {

: ¬q

q

}
, {p}

)

has no extensions. However p is a fact, and we would expect it to be true.
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6.1.2 Well–founded and stationary default semantics for normal logic pro-
grams

Here we review two approaches which relate normal logic programs with default theories, and
resolve the above mentioned issues of Reiter’s default logic.

Baral and Subrahmanian [Baral and Subrahmanian, 1991] introduced the well founded se-
mantics for (propositional) default theories giving a meaning to default theories with multiple
extensions. Furthermore, the semantics is defined for all theories, identifying a single extension
for each.

Let ∆ = (D, W ) be a default theory, and let Γ∆(E) be as above. Since Γ∆(E) is antimono-
tonic Γ2

∆(E) is monotonic [Baral and Subrahmanian, 1991], and thus has a least fixpoint1.

Definition 6.1.6 (Well founded semantics)

• A formula F is true in a default theory ∆ with respect to the well–founded semantics iff
F ∈ lfp(Γ2).

• F is false in ∆ w.r.t. the well founded semantics iff F 6∈ gfp(Γ2).

• Otherwise F is said to be unknown (or undefined).

This semantics is defined for all theories and is equivalent to the Well Founded Model
semantics [Gelder et al., 1991] of normal logic programs.

More recently [Przymusinska and Przymusinski, 1993], Przymusinska and Przymusinski
generalized this work by introducing the notion of stationary default extensions2.

Definition 6.1.7 (Stationary extension) Given a default theory ∆, E is a stationary de-
fault extension iff:

• E = Γ2
∆(E)

• E ⊆ Γ∆(E)

Definition 6.1.8 (Stationary default semantics) Let E be a stationary extension of a de-
fault theory ∆.

• A formula L is true in E iff L ∈ E.

• A formula L is false in E iff L 6∈ Γ∆(E).

• Otherwise L is said to be undetermined (or undefined).

This semantics has been shown equivalent to stationary semantics of normal logic programs.

Remark 6.1.1 Note that every default theory has at least one stationary default extension. The
least stationary default extension always exists, and corresponds to the well founded semantics
for default theories above. Moreover, the least stationary default extension can be computed by
iterating the monotonic operator Γ2

∆.

Example 6.3 Consider the default theory of example 6.2. We have Γ∆({p}) = {p, q} and
Γ2

∆({p}) = {p}. p is true in the theory ∆.

1Least wrt set inclusion in contexts.
2In [Przymusinska and Przymusinski, 1993] the work of [Baral and Subrahmanian, 1991] is also generalized

to deal with nonpropositional default theories.
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6.2 Some principles required of default theories

Next we argue about some principles a default theory semantics should enjoy, and relate it to
logic programs extended with explicit negation, where the said principles are also considered
desirable.

Property 6.2.1 (Uniqueness of minimal extension) We say that a default theory has the
uniqueness of minimal extension property if when it has an extension it has a minimal one.

It is well known that Reiter’s default theories do not comply with this principle, which plays
an important rôle, specially if we consider the so called cautious version of a default semantics
[McDermott, 1982]:

Example 6.4 Consider the default theory
{

republican(X) : ¬pacifist(X)
¬pacifist(X)

,
quaker(X) : pacifist(X)

pacifist(X)

}

{republican(nixon), quaker(nixon)}
where Reiter’s semantics identifies two extensions:

E1 = { pacifist(nixon), republican(nixon), quaker(nixon) }
E2 = { ¬pacifist(nixon), republican(nixon), quaker(nixon) }

Thus the cautious Reiter’s semantics is

{republican(nixon), quaker(nixon)}
As noted in [Przymusinska and Przymusinski, 1993], if we view an extension as a rational

set of conclusions, it is strange that the cautious semantics itself does not constitute one such
set.

By obeying the uniqueness of minimal extension property, a default semantics avoids this
problem. Moreover, this property also eases finding iterative algorithms to compute the cautious
version of a default semantics.

Definition 6.2.1 (Union of theories) The union of two default theories

∆1 = (D1,W1) and ∆2 = (D2,W2)

with languages L(∆1) and L(∆2) is the theory:

∆ = ∆1 ∪∆2 = (D1 ∪D2,W1 ∪W2)

with language L(∆) = L(∆1) ∪ L(∆2).

Example 6.5 Consider the two default theories:

∆1 =
( {

: ¬a
¬a , : a

a

}
, {})

∆2 =
( {

: b
b

}
, {}

)

Classical default theory, well–founded semantics, and stationary semantics all identify {b}
as the single extension of ∆2.

Since the languages of the two theories are disjoint, one would expect their union to include
b in all its extensions. However, both the well founded semantics as well as the least stationary
semantics give the value undefined to b in the union theory; therefore they are not modular.
There is an objectionable interaction among the default rules of both theories when put together.
In this case, classical default theory is modular but has two extensions: {¬a, b} and {a, b}, failing
to give a unique minimal extension to the union.
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Property 6.2.2 (Modularity) Let ∆1, ∆2 be two default theories with consistent extensions
such that L(∆1) ∩ L(∆2) = {} and let ∆ = ∆1 ∪ ∆2, with extensions Ei

∆1
Ej

∆2
and Ek

∆. A
semantics for default theories is modular iff:

∀A(∀iA ∈ Ei
∆1
⇒ ∀kA ∈ Ek

∆)
∀A(∀jA ∈ Ej

∆2
⇒ ∀kA ∈ Ek

∆)

Informally, a default theory semantics is modular if any theory resulting from the union of
two consistent theories with disjoint language contains the consequences of each of the theories
alone.

Proposition 6.2.1 Reiter’s default logic is modular.

Proof: Since a modular theory must be consistent by definition, the disjoint alphabets of two
theories can never interact. ♦

Consider now the following examples:

Example 6.6 The default theory
( {

d1 =
: ¬b

a
, d2 =

: ¬a

b

}
, {}

)
.

has two classical extensions, {a} and {b}. Stationary default semantics has one more extension,
namely {}.

Example 6.7 Let (D, W ) be:
( {

d1 =
: ¬b

a
, d2 =

: ¬a

b

}
, {¬a}

)
.

The only classical extension is {¬a, b}. In the least stationary extension, E = Γ2
∆(E) =

{¬a}, j(d2) ∈ E but c(d2) 6∈ E.

Definition 6.2.2 (Applicability of defaults)Given an extension E :

• a default d is applicable in E iff p(d) ⊆ E and ¬j(d) ∩ E = {}

• an applicable default d is applied in E iff c(d) ∈ E

In classical default semantics every applicable default is applied. This prevents the unique-
ness of a minimal extension. In example 6.6, because one default is always applied, one can
never have a single minimal extension. In [Baral and Subrahmanian, 1991, Przymusinska and
Przymusinski, 1991, Przymusinska and Przymusinski, 1993], in order to guarantee a unique
minimal extension, it becomes possible to apply or not an applicable default. However, this
abandons the notion of maximality of application of defaults of classical default theory. But,
in example 6.7, we argue that at least rule d2 should be applied.

We want to retain the principle of uniqueness of minimal extension coupled with a notion
of maximality of application of defaults we call enforcedness.

Property 6.2.3 (Enforcedness) Given a theory ∆ with extension E, a default d is enforce-
able in E iff p(d) ∈ E and j(d) ⊆ E. An extension is enforced if all enforceable defaults in D
are applied.
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We argue that, whenever E is an extension, if a default is enforceable then it must be
applied. Note that an enforceable default is always applicable.

Another way of viewing enforcedness is that if d is an enforceable default, and E is an
extension, then the default rule d must be understood as an inference rule p(d), j(d) → c(d)
and so c(d) ∈ E must hold.

The well founded semantics and stationary semantics both sanction minimal extensions
where enforceable defaults are not applied, viz. example 6.7. However, in this example they
still allow an enforced extension {b,¬a}. This is not the case in general:

Example 6.8 Let (D, W ) =
( {

: ¬b
c , : ¬a

b , : ¬a
a

}
, {¬b}

)
. The only stationary extension is

{¬b}, which is not enforced.

Based on this notion of enforcedness (first presented in [Pereira et al., 1992c]), in [Przy-
musinska and Przymusinski, 1993], Przymusinska and Przymusinki defined saturated default
theories:

Definition 6.2.3 (Saturated default theory) A default theory ∆ = (D,W ) is saturated iff
for every default rule

p(d) : j(d)
c(d)

∈ D

if p(d) ∈ W and j(d) ⊆ W, then c(d) ∈ W.

For this class of default theories they prove that both stationary and well founded default
semantics comply with enforcedness. However considering only saturated default theories is a
severe restriction since it requires a kind of closure in the theory W.

6.3 Ω-default theory

Next we introduce a default theory semantics which is modular and enforced for every (re-
stricted) default theory. Moreover, when it is defined it has a unique minimal extension.

In the sequel, whenever unambigous, we refer to restricted default rules and theories, simply
as default rules and theories.

In order to relate default theories to extended logic programs, we must provide a modular
semantics for default theories, except if they are contradictory, as in the example below:

Example 6.9 In the default theory:
( {

:
¬a

,
:
a

}
, {}

)

its two default rules with empty prerequesites and justifications should always be applied, which
clearly enforces a contradiction. Note that this would also be the case if the default theory were
to be written as ({}, {a,¬a}).

Consider now example 6.5, that alerted us about nonmodularity in stationary default se-
mantics, where D =

{
: ¬a
¬a , : a

a , : b
b

}
, and {} is the least stationary extension.

This result is obtained because Γ∆({}), by having a and ¬a forces, via the deductive closure,
¬b (and all the other literals) to belong to it. This implies the non–applicability of the third
default in the second iteration. For that not to happen one should inhibit ¬b from belonging
to Γ∆({}), which can be done by preventing, in the deductive closure in Γ, the explosion of
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conclusions in presence of inconsistency3. This is one reason why [Baral and Subrahmanian,
1991]’s use of Γ2

∆ does not extend to programs with explicit negation.
In our restricted language this is not problematic, because as formulae are just literals,

the inhibition of that principle can simply be made by renaming negative literals4, without
side–effects.

Definition 6.3.1 (Γ′∆(E)) Let ∆ = (D, W ) be a propositional default theory and E a context.
Let E′ be the smallest set of atoms which:

1. contains W ′;

2. is closed under all derivation rules of the form p(d)′
c(d)′ , such that p(d) : j(d)

c(d) ∈ D and ¬f 6∈ E,

for every f ∈ j(d)′, and f 6∈ E for every ¬ f ∈ j(d)′.

where W ′ (resp. p(d)′, j(d)′, and c(d)′) is obtained from W (resp. p(d), j(d), and c(d)) by
replacing in it every negative literal ¬A by a new atom ¬ A.

Γ′∆(E) is obtained from E′ by replacing every atom of the form ¬ A by ¬A.

Reconsider now example 6.7, that showed that stationary default extensions are not always
enforced. The non–enforced extension is (the least extension) E = Γ2(E) = {¬a}, where
Γ(E) = {¬a, a, b}. The semantics obtained is that ¬a is true and a is undefined.

To avoid this counterintuitive result we want to ensure that, for an extension E :

∀d ∈ D ¬c(d) ∈ E ⇒ c(d) 6∈ Γ(E),

i.e. if ¬c(d) is true then c(d) is false5.
It is easily recognized that this condition is satisfied by seminormal default theories: if ¬c(d)

belongs to an extension then any seminormal rule with conclusion c(d) cannot be applied. This
principle is exploited in the default semantics.

Definition 6.3.2 (Seminormal version of a default theory) Given a default theory ∆,
its seminormal version6 ∆s is obtained by replacing each default rule d = p(d) : j(d)

c(d) in ∆ by the
default rule

ds =
p(d) : j(d), c(d)

c(d)
.

Definition 6.3.3 (Ω∆ operator) For a theory ∆ we define:

Ω∆(E) = Γ′∆(Γ′∆s(E)).

Definition 6.3.4 (Ω–extension) Let ∆ be a default theory. E is an extension iff:

• E = Ω∆(E)
3By the explosion of conclusions we mean the principle “Ex Contradictione Sequitur Quot Libet” (From a

contradiction everything follows), which is a property of the deductive closure in classical logic. Wagner [Wagner,
1991b] argues against this principle.

4In general, this can be achieved by introducing a paraconsistent deductive closure operator. An example
of such an operator and its use in default logic can be found in [Pearce, 1992b]. In [Pearce, 1992a], D. Pearce
applies this operator to the default logic semantics defined here, and extends it to general default theories.

5Note the similarity with the coherence principle.
6In Reiter’s formalization a default is seminormal if it is of the form

p(d) : j(d) ∧ c(d)

c(d)
.

Since we are only considering ground versions of the defaults the definitions are equivalent.



6.3. Ω-DEFAULT THEORY 75

• E ⊆ Γ′∆s(E)

Based on Ω–extensions we define the semantics of a default theory.

Definition 6.3.5 (Ω–default semantics) Let ∆ be a default theory, E an extension of ∆,
and L a literal.

• L is true w.r.t. extension E iff L ∈ E

• L is false w.r.t. extension E iff L 6∈ Γ′∆s(E)

• Otherwise L is undefined

The Ω–default semantics of ∆ is determined by the set of all Ω–extensions of ∆.
The cautious Ω–default semantics of ∆ is determined by the least Ω–extensions of ∆7.

Like in [Przymusinska and Przymusinski, 1993], we also require that each extension E be a
subset of Γ′∆s(E)8. By not doing so (i.e. considering as extensions all the fixpoints of Ω), the
semantics would allow for an objective literal to be both true and false in some extensions.

Example 6.10 For the default theory

∆ =
( {

: ¬a

a
,

: ¬b

b
,
a : ¬a

c
,
b : ¬b

c

}
, {}

)

there are four fixpoints of Ω∆ :

E1 = {} Γ′∆s(E1) = {a, b, c}
E2 = {a, c} Γ′∆s(E2) = {b, c}
E3 = {b, c} Γ′∆s(E3) = {a, c}
E4 = {a, b, c} Γ′∆s(E4) = {}

Only E1 is an extension, and thus it determines the Ω–default semantics of ∆..
Note how, for instance, a ∈ E2 and a 6∈ Γ′∆s(E2). Thus, if E2 were to be considered as an

extension a would be both true and false in E2.
Moreover, intuitively no extension should contain c, since for each rule with conclusion c,

the prerequisites are incompatible with the justification. In E2 c is true because a being true
satisfies the prerequisites, and a being false satisfies the justifications.

This definition of extension guarantees that no pair of contradictory literals belongs to E.

Proposition 6.3.1 If E is a Ω–extension of a default theory ∆ then:

6 ∃L | {L,¬L} ⊆ E.

Proof: Assume the contrary, i.e. ∃L | {L,¬L} ⊆ E and E is an extension. By seminormality,
L 6∈ Γ′∆s(E) and ¬L 6∈ Γ′∆s(E). Thus E 6⊆ Γ′∆s(E), and so is not an extension. ♦

Example 6.11 Consider the default theory

∆ =
( {

: ¬c

c
,

: ¬b

a
,

: ¬a

b
,

:
¬a

}
, {}

)
.

Its only extension is {¬a, b}.
In fact:

Γ′∆s({¬a, b}) = {c, b,¬a} and
Γ′∆({c, b,¬a}) = {¬a, b}

Thus ¬a and b are true, c is undefined, and a and ¬b are false.
7The existence of a least extension is guaranteed by theorem 6.3.4 below.
8In [Przymusinska and Przymusinski, 1993] the requirement is wrt Γ∆(E) instead of wrt Γ′∆s(E).
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It is easy to see that some theories may have no Ω–extension.

Example 6.12 The theory ∆ =
( {

:
a , :

¬a

}
, {}) has no Ω–extension.

Definition 6.3.6 (Contradictory theory) A default theory ∆ is contradictory iff it has no
Ω–extension.

In order to guarantee the existence of a least extension we prove:

Theorem 6.3.1 (Ω is monotonic) If ∆ is a noncontradictory theory then Ω∆ is monotonic.

Proof: We begin by stating two lemmas:

Lemma 6.3.2 Let ∆ = (D,W ) be a noncontradictory default theory, and

∆′ =
(

D ∪
{

:
L
| L ∈ W

}
, {}

)
.

E is an Ω–extension of ∆ iff is an Ω–extension of ∆′.

Proof: It is easy to see that every Ω–extension of ∆ and of ∆′ contains W. Thus for each Ω–
extension of one of the theories the set of rules in D applied is the same as in the other theory.
♦

Lemma 6.3.3 If ∆ is a noncontradictory default theory then Γ′∆ is antimonotonic.

Proof: Without loss of generality (cf. lemma 6.3.2 above) we consider

∆ = (D, {}).

First we define two transformations over sets of objective literals, and one over default
theories.

• A− is a set of atoms obtained from a set of objective literals A by replacing every negative
literal ¬L by the new atom ¬ L.

• A+ is a set of objective literals obtained from a set of atom A by replacing every atom of
the form ¬ L by the objective literal ¬L.

• ∆−− is the default theory obtained from ∆ = (D,W ) by replacing in D every occurence
of a negative literal ¬A by the new atom ¬ A.

Clearly, the first two transformations are monotonic, i.e.:

A ⊆ B ⇒ A+ ⊆ B+

A ⊆ B ⇒ A− ⊆ B−

Directly from the definition of Γ′∆, and given that we are assuming W = {}, and ∆ is
noncontradictory:

Γ′∆(A) = (Γ∆−−(A−))+ (∗)
Now we prove that:

A ⊆ B ⇒ Γ′∆(B) ⊆ Γ′∆(A)

By monotonicity of A− :
A ⊆ B ⇒ A− ⊆ B−
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Given that Γ is antimonotonic for any default theory:

A− ⊆ B− ⇒ Γ∆−−(B−) ⊆ Γ∆−−(A−)

By monotonicity of A+ :

Γ∆−−(B−) ⊆ Γ∆−−(A−) ⇒ (Γ∆−−(B−))+ ⊆ (Γ∆−−(A−))+

By the result of (∗) :

(Γ∆−−(B−))+ ⊆ (Γ∆−−(A−))+ ⇒ Γ′∆(B) ⊆ Γ′∆(A)

i.e. Γ′∆ is antimonotonic. ♦
Since Ω∆ is the composition of two antimonotonic operators, it is monotonic. ♦

Definition 6.3.7 (Iterative construction) To obtain a constructive definition for the least
(in the set inclusion order sense) Ω-extension of a theory we define the following transfinite
sequence {Eα}:

E0 = {}
Eα+1 = Ω(Eα)

Eδ =
⋃ {Eα | α < δ} for limit ordinal δ

By theorem 6.3.1, and the Knaster–Tarski theorem [Tarski, 1955], there must exist a smallest
ordinal λ for the sequence above, such that Eλ is the smallest fixpoint of Ω. If Eλ is a Ω–extension
then it is the smallest one. Otherwise, by the proposition below, there are no Ω–extensions for
the theory.

Proposition 6.3.2 If the least fixpoint E of Ω∆ is not a Ω–extension of ∆ then ∆ has no
Ω–extensions.

Proof: We prove that if there exists an extension E∗ of Ω∆, then the least fixpoint of Ω∆ is an
extension.

Assume that such an E∗ exists. Given that, by hypothesis, E is the least fixpoint of Ω∆,
E ⊆ E∗.

On the assumption that E∗ is an extension, ∆ is noncontradictory and, by lemma 6.3.3,
Γ′∆s is antimonotonic. Thus:

E ⊆ E∗ ⇒ Γ′∆s(E∗) ⊆ Γ′∆s(E)

Since, by hypothesis, E∗ is an extension, E∗ ⊆ Γ′∆s(E∗). Thus:

E∗ ⊆ Γ′∆s(E∗) ⊆ Γ′∆s(E)

Again using the fact that E ⊆ E∗ :

E ⊆ E∗ ⊆ Γ′∆s(E∗) ⊆ Γ′∆s(E)

Thus E ⊆ Γ′∆s(E), and so E is an extension of Ω∆. ♦

Example 6.13 Consider the default theory ∆ of example 6.11. In order to obtain the least
(and only) extension of ∆ we build the sequence:

E0 = {}
E1 = Γ′∆(Γ′∆s({})) = Γ′∆({c, a, b,¬a}) = {¬a}
E2 = Γ′∆(Γ′∆s({¬a})) = Γ′∆({c, b,¬a}) = {¬a, b}
E3 = Γ′∆(Γ′∆s({¬a, b})) = Γ′∆({c, b,¬a}) = {¬a, b} = E2

Because E2 ⊆ Γ′∆s(E2), it is the least Ω–extension of ∆.
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Example 6.14 Let ∆ =
( {

:
a , :

¬a

}
, {}) . Let us build the sequence:

E0 = {}
E1 = Γ′∆(Γ′∆s({})) = Γ′∆({a,¬a}) = {a,¬a}
E2 = Γ′∆(Γ′∆s({a,¬a})) = Γ′∆({}) = {a,¬a} = E1

Since E1 6⊆ Γ′∆s(E1), ∆ has no Ω–extensions.

We will now prove that this new default semantics satisfies all the principles required above
(section 6.2).

Theorem 6.3.4 (Uniqueness of minimal extension) If ∆ has an extension then there is
one least extension E.

Proof: Trivial, given that Ω∆ is monotonic for noncontradictory program. ♦

Theorem 6.3.5 (Enforcedness) If E is a Ω–extension then E is enforced.

Proof: Without loss of generality (cf. lemma 6.3.2 above) we consider

∆ = (D, {}).
We want to prove that for any default rule d :

p(d) ∈ E and j(d) ⊆ E ⇒ c(d) ∈ E

If j(d) ⊆ E then, by seminormality, no rule with a conclusion ¬f, such that f ∈ j(d), is
applicable in Γ′∆s(E). So, given that we are assuming W = {} for theory ∆ :

for all literals f in j(d), ¬f 6∈ Γ′∆s(E).

Thus the default d is applicable in Γ′∆Γ′∆s(E), i.e., by definition of Γ, Γ′∆Γ′∆s(E) must be
closed under the derivation rule p(d)

c(d) .
Given that E is an Ω–extension:

p(d) ∈ E ⇒ p(d) ∈ Γ′∆Γ′∆s(E)

and because Γ′∆Γ′∆s(E) must be closed under that derivation rule:

c(d) ∈ Γ′∆Γ′∆s(E)

Again because E is an extension, if c(d) ∈ Γ′∆Γ′∆s(E) then c(d) ∈ E. ♦

Corollary 6.3.1 If E is an Ω–extension of ∆ then for any d = :
c(d) ∈ ∆, c(d) ∈ E.

Proof: Follows directly from enforcedness for true prerequisites and justifications. ♦

Theorem 6.3.6 (Modularity) Let L∆1 and L∆2 be the languages of two default theories. If
L∆1 ∩ L∆2 = {} then, for any corresponding extensions E1 and E2, there always exists an
extension E of ∆ = ∆1 ∪∆2 such that E = E1 ∪ E2.

Proof: Since the languages are disjoint, the rules of ∆1 and ∆2 do not interact on that count.
Additionally, since there is no explosion of conclusions in the presence of inconsistency, one can
never obtain the whole set of literals as a result of a contradictory Γ′∆s , and hence they do not
interact on that count either. ♦
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6.4 Comparison with Reiter’s semantics

Comparing this semantics for defaults theories with Reiter’s, we prove that for restricted default
theories (cf. definition 6.1.3) the former is a generalization of the latter, in the sense that
whenever Reiter’s semantics (Γ–extension) gives a meaning to a theory (i.e. the theory has at
least one Γ–extension), Ω semantics provides one too.

Moreover, whenever both semantics give meaning to a theory Ω semantics is sound w.r.t. the
intersection of all Γ–extensions. Thus we provide a monotonic fixpoint operator for computing a
subset of the intersection of all Γ–extensions. For that purpose we begin by stating and proving:

Theorem 6.4.1 Consider a theory ∆ such that Ω–semantics is defined. Then every Γ–
extension is a Ω–extension.

Proof: First two lemmas:

Lemma 6.4.2 If E is consistent and E = Γ∆(E) then E = Γ′∆s(E).

Proof: By definition of Γ∆,

E = Γ∆(E) =⇒ (∀d∈D p(d) ∈ E ∧ ¬j(d) ∩ E = {} ⇒ c(d) ∈ E).

Thus, since E is consistent:

∀d∈D p(d) ∈ E ∧ ¬j(d) ∩ E = {} ∧ ¬c(d) ∩ E = {} ⇒ c(d) ∈ E

and so, by definition of Γ′∆s , it follows easily that E = Γ′∆s(E). ♦

Lemma 6.4.3 If E is consistent and E = Γ∆(E) then E = Γ′∆(E).

Proof: Similar to the one of lemma 6.4.2. ♦
Now we prove that for an E such that

E = Γ∆(E)

E = Ω∆(E) holds.
By definition,

Ω∆(E) = Γ′∆(Γ′∆s(E)).

By lemma 6.4.2,
Ω∆(E) = Γ′∆(E).

And by lemma 6.4.3,
Γ′∆(E) = E.

For E to be a Ω–extension one more condition must hold:

E ⊆ Γ′∆s(E).

It is easy to recognize given the hypothesis

E = Γ∆(E).

♦
The next two results follow directly from the above theorem.
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Theorem 6.4.4 (Generalization of Reiter’s semantics) If a theory ∆ has at least one Γ–
extension, it has at least one Ω–extension.

Theorem 6.4.5 (Soundness wrt to Reiter’s semantics) If a theory ∆ has a Γ–extension,
whenever L belongs to the least Ω–extension it also belongs to the intersection of all Γ–
extensions.

It is interesting to note that any other combination of the Γ–like operators that are used
to define Ω (i.e. the operators: Γ′∆sΓ′∆, Γ′2∆s , and Γ′2∆) also give semantics that are sound wrt
Reiter’s, but which are not as close to the latter as the semantics defined by Ω. By “not as
close” we mean that its least fixpoints are subsets of the intersection of all Reiter’s extensions,
that are smaller (wrt set inclusion) than the least fixpoint of Ω. Thus we say that Ω is the best
approximation of Reiter’s default semantics, when compared to the others.

Proposition 6.4.1 Let ∆ be a noncontradictory default theory. Then:

1. lfp(Γ′∆sΓ′∆) ⊆ lfp(Γ′2∆s)

2. lfp(Γ′∆sΓ′∆) ⊆ lfp(Γ′2∆)

3. lfp(Γ′2∆s) ⊆ lfp(Ω)

4. lfp(Γ′2∆) ⊆ lfp(Ω)

Proof: In appendix. ♦

6.5 Comparison with stationary default semantics

We now draw some brief comparisons with stationary extensions [Przymusinska and Przymusin-
ski, 1993]. It is not the case that every stationary extension is a Ω–extension since, as noted
above, non–modular or non–enforced stationary extensions are not Ω–extensions. As shown in
the example below, it is also not the case that every Ω–extension is a stationary extension.

Example 6.15 Let ∆ be:
( {

: ¬b

c
,

: ¬a

b
,

: ¬a

a
,

:
¬b

}
, {}

)

The only Ω–extension of ∆ is {c,¬b}. This is not a stationary extension.

As stated above, for saturated default theories stationary semantics complies with enforced-
ness. However, even for this class of theories, the two semantics might not coincide. This is
because in general stationary default extensions are not modular.

Example 6.16 The default theory of example 6.5 is saturated and has a non–modular station-
ary extension.

However, in a large class of cases these semantics coincide. In particular:

Proposition 6.5.1 If for every default d = p(d) : j(d)
c(d) c(d) is a positive literal then Ω coincides

with Γ2
∆.

Proof: For such theories Γ′∆s = Γ′∆ = Γ∆. Thus Γ′∆Γ′∆s = Γ2
∆. ♦
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6.6 Relation between the semantics of default theories
and logic programs with explicit negation

Here we state the equivalence of Ω–extensions and partial stable models of extended logic
programs as defined in chapter 4. For the sake of brevity proofs are in appendix C.

Definition 6.6.1 (Program corresponding to a default theory) Let ∆ = (D, {}) be a
default theory. We say an extended logic program P corresponds to ∆ iff:

• For every default of the form:

{a1, . . . , an} : {b1, . . . , bm}
c

∈ ∆

there exists a rule
c ← a1, . . . , an, not ¬b1, . . . , not ¬bm ∈ P

where ¬bj denotes the ¬–complement of bj.

• No rules other than these belong to P .

Definition 6.6.2 (Interpretation corresponding to a context) An interpretation I of a
program P corresponds to a default context E of the corresponding default theory T iff for every
objective literal L of P (and literal L of T ):

• I(L) = 1 iff L ∈ E and L ∈ Γ′∆s(E).

• I(L) = 1
2 iff L 6∈ E and L ∈ Γ′∆s(E).

• I(L) = 0 iff L 6∈ E and L 6∈ Γ′∆s(E).

The main theorem relating both semantics is now presented:

Theorem 6.6.1 (Correspondence) Let ∆ = (D, {}) be a default theory corresponding to
program P . E is a Ω-extension of ∆ iff the interpretation I corresponding to E is a partial
stable model of P .

According to this theorem we can say that explicit negation is nothing but classical negation
in (restricted) default theories, and vice–versa. As Ω default semantics is a generalization of Γ
default semantics (cf. theorems 6.4.4 and 6.4.5), and since answer-sets semantics corresponds to
Γ default semantics [Gelfond and Lifschitz, 1990], it turns out that answer-sets semantics (and
hence the semantics defined in [Wagner, 1991a]) is a special case of WFSX. Other properties of
Ω-extensions can also be translated into properties of models of extended logic programs, e.g.
modularity, uniqueness of minimal extension, etc.

On the other hand, with this theorem one can rely on the top–down procedures of logic
programming to compute default extensions. In particular, in accordance with theorem 6.4.5,
the top–down procedures for WFSX can be used as sound top–down procedures for Reiter’s
default logic.

Example 6.17 Consider program P :

c ← not c
a ← not b
b ← not a

¬a ←
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The corresponding default theory is

∆ =
( {

: ¬c

c
,

: ¬b

a
,

: ¬a

b
,

:
¬a

}
, {}

)
.

As calculated in example 6.11, the only Ω–extension of ∆ is E = {¬a, b} and Γ′∆s(E) =
{¬a, b, c}. The PSM corresponding to this extension is

M = {¬a, not a, b, not ¬b, not ¬c}9.

It is easy to verify that M is the only PSM of P.

6.7 A definition of WFSX based on Γ

In [Gelfond and Lifschitz, 1990], it is proven that, with the above correspondences between
programs and default theories, and between interpretations and default contexts, Reiter’s Γ
operator for defaults is equivalent to the Gelfond–Lifschitz (GL) Γ operator for extended logic
programs (cf. definition 2.2.1). Thus, the above relationship between WFSX and Ω extensions
directly suggests an alternative definition of WFSX.

Based on this relationship, and on the fact that the GL Γ operator is not based on 2–valued
logic, in this section we present an alternative definition of WFSX not relying in a 3–valued
logic, but rather on a partial 2–valued logic.

We begin by defining in logic programs the notion corresponding to seminormality in default
theories.

Definition 6.7.1 (Seminormal version of a program) The seminormal version of a pro-
gram P is the program Ps obtained from P by adding to the (possibly empty) Body of each
rule:

L ← Body

the default literal not ¬L, where ¬L is the complement of L wrt explicit negation.

For short, when P is understood from context, we use Γ(S) to denote ΓP (S), and Γs(S) to
denote ΓPs(S).

Theorem 6.7.1 (Partial stable models) Let P be an extended logic program.

M = T ∪ not F

is a partial stable model of P iff:
(1) T = ΓΓsT
(2) T ⊆ ΓsT

Moreover F = {L | L 6∈ ΓsT}, and members of ΓsT not in T are undefined in M.
In the sequel we refer to T as the generator of M.

Proof: Follows directly from theorem 6.6.1. ♦
Note that in these alternative definitions each PSM is completely determined by the objective

literals true in it.

Theorem 6.7.2 (Well–founded model) Let P be a noncontradictory program.
M = T ∪ not F is the well–founded model of P iff T is the least fixpoint of ΓΓs and generates

M.

9Note that c is undefined in M .
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Thus the WFM can be obtained by iterating ΓΓs from the empty set. If a fixpoint S is
reached, then it contains objective literals true in the WFM. False literals in it are the ones
compatible with ΓsS, i.e. those literals not in ΓsS. It is also possible to define an iterative
construction of false literals in the WFM, and determine instead true literal from false ones.

The next proposition helps us build one such iterative construction.

Proposition 6.7.1 Let P be a noncontradictory program. Then:

Γs(lfp(ΓΓs)) = gfp(ΓsΓ)

Proof: First we prove that Γs(lfp(ΓΓs)) is a fixpoint of ΓsΓ. By definition:

lfp(ΓΓs) = ΓΓs(lfp(ΓΓs))

Thus:
Γs(lfp(ΓΓs)) = Γs(ΓΓs(lfp(ΓΓs)))

By associativity of function compositions:

Γs(lfp(ΓΓs)) = ΓsΓ(Γs(lfp(ΓΓs)))

i.e. Γs(lfp(ΓΓs)) is a fixpoint of ΓsΓ.

Now let S be a fixpoint of ΓsΓ. We have to prove that:

S ⊆ Γs(lfp(ΓΓs))

To that proof, we begin by showing that lfp(ΓΓs) ⊆ ΓS

Given that ΓΓs is monotonic, there exists a smallest ordinal λ such that:

lfp(ΓΓs) = ΓΓ↑λs {}

We now prove by transfinite induction that for any ordinal α

ΓΓ↑αs {} ⊆ ΓS

• For limit ordinals: If α = 010 then trivially:

{} ⊆ ΓS

For limit ordinal δ, suppose that for all α < δ

ΓΓ↑αs {} ⊆ ΓS

Then clearly ⋃ {
ΓΓ↑αs {} | α < δ

}
⊆ ΓS

i.e.
ΓΓ↑δs {} ⊆ ΓS

10For the sake of clarity, here and in all proofs by transfinite induction in this report, we show the special case
of limit ordinal 0.
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• Induction step: Assume that for some ordinal i

ΓΓ↑is {} ⊆ ΓS

Then, given that ΓΓs is monotonic:

ΓΓs(ΓΓ↑is ){} ⊆ ΓΓs(ΓS)

By associativity of function compositions, this inequality is equivalent to:

ΓΓ↑i+1
s {} ⊆ Γ(ΓsΓS)

Given that by hypothesis S is a fixpoint of ΓsΓ :

ΓΓ↑i+1
s {} ⊆ ΓS

At this point we’ve proven that lfp(ΓΓs) ⊆ ΓS. From this result, and given that Γs is
antimonotonic, it follows that:

ΓsΓS ⊆ Γs(lfp(ΓΓs))

Again because by hypothesis S is a fixpoint of ΓsΓ :

S ⊆ Γs(lfp(ΓΓs))

♦
We now define two (monotonic) operators: one which given a set of true objective literals,

determines additional true objective literals; another which given a set of false objective literals
determines additional false objective literals.

Definition 6.7.2 For a program P define:

T (S) = ΓΓs(S)
F(S) = H− ΓsΓ(H− S)

where H denotes the Herbrand base of P.

Theorem 6.7.3 For any noncontradictory program, both T and F are monotonic.

Proof: The proof of monotonicity of T is trivial given that of Ω for defaults (theorem 6.3.1), and
that a program is noncontradictory iff the corresponding default theory is also noncontradictory.
This last results follows directly from theorem 6.6.1.

Similarly to the proof of theorem 6.3.1, one can prove that ΓsΓ is also monotonic. So:

A ⊆ B ⇒ H−B ⊆ H−A ⇒
⇒ ΓsΓ(H−B) ⊆ ΓsΓ(H−A) ⇒
⇒ H− ΓsΓ(H−A) ⊆ H− ΓsΓ(H−B) ⇒
⇒ F(A) ⊆ F(B)

i.e. F is monotonic. ♦

Theorem 6.7.4 Let P be a noncontradictory program. Then:

WFM(P ) = lfp(T ) ∪ not lfp(F)

Proof: We begin with the lemma:
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Lemma 6.7.5 For any noncontradictory program:

lfp(F) = H− gfp(ΓsΓ)

Proof: We begin by proving by transfinite induction that:

F↑α{} = H− (ΓsΓ)↓αH
• For limit ordinals: Since F↑0{} = {}, and H − (ΓsΓ)↓0H = H − H, the condition holds

for α = 0.

For a limit ordinal δ, suppose that for all α < δ :

F↑α{} = H− (ΓsΓ)↓αH
Then, clearly: ⋃ {

F↑α{} | α < δ
}

= H−
⋂ {

(ΓsΓ)↓αH | α < δ
}

i.e.
F↑δ{} = H− (ΓsΓ)↓δH

• Induction step: Assume that for some ordinal i

F↑i{} = H− (ΓsΓ)↓iH
Then:

F↑i+1{} = F(F↑i{}) = F(H− (ΓsΓ)↓iH)

Applying the definition of F :

F↑i+1{} = H− ΓsΓ(H− (H− (ΓsΓ)↓iH))

Given that for any two sets A and B, B − (B −A) = B ∩A :

F↑i+1{} = H− ΓsΓ(H ∩ (ΓsΓ)↓iH)

Since the result of ΓsΓ is a subset of the Herbrand base, i.e. for any S, H ⊇ ΓsΓS :

F↑i+1{} = H− ΓsΓ((ΓsΓ)↓iH) = H− (ΓsΓ)↓i+1H

Given this result, the proof follows directly from the iterative construction of least and
gretaest fixpoints of monotonic operators. ♦

According to this lemma and proposition 6.7.1:

lfp(F) = H− Γs(lfp(ΓΓs))

From theorem 6.7.2:

WFM(P ) = lfp(T ) ∪ not (H− Γs(lfp(ΓΓs)))

♦

Example 6.18 Consider the program P :

c ← b, not c
a ← not b
b ← not a

¬a

Next we show two alternative ways of computing the WFM.
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1. Start from an empty set of true objective literals, and iterate consecutively, in order to
get more objective literals true, until a fixpoint is reached:

T0 = {}
T1 = ΓΓs{} = Γ{c, a, b,¬a} = {¬a}
T2 = ΓΓs{¬a} = Γ{c, b,¬a} = {b,¬a}
T3 = ΓΓs{b,¬a} = Γ{c, b,¬a} = {b,¬a}

Then:
WFM = T3 ∪ not (H− ΓsT3)

= {b,¬a} ∪ not (H− {c, b,¬a})
= {b,¬a} ∪ {not a, not ¬b, not ¬c}

2. Start from an empty set of false objective literals and iterate consecutively, in order to
get more objective literals false, until a fixpoint is reached:

F0 = {}
F1 = H− ΓsΓ(H− {}) = H− Γs{¬a}

= H− {c, b,¬a} = {a,¬b,¬c}
F2 = H− ΓsΓ{c, b,¬a} = H− Γs{b,¬a}

= H− {c, b,¬a} = {a,¬b,¬c}

Then:
WFM = Γ(H− F2) ∪ not F2

= Γ{c, b,¬a} ∪ {not a, not ¬b, not ¬c}
= {b,¬a} ∪ {not a, not ¬b, not ¬c}

6.8 Logic programming for default reasoning

The purpose of this section is to show some examples of how extended logic programming,
given its close relationship with defaults, can be used to formalize problems of default (or
defeasible) reasoning. It is not our purpose here to give a formal methodology of how to write
defeasible rule in extended programs. For that the reader is referred to [Pereira et al., 1991g,
Pereira et al., 1992f, Pereira et al., 1993b, Apaŕıcio, 1993]

6.8.1 Hierarchical taxonomies

Here we illustrate how to represent taxonomies with extended logic programs. In this rep-
resentation we wish to express general absolute (i.e. non–defeasible) rules, defeasible rules,
exceptions to defeasible rules, as well as exceptions to exceptions, explicitly making preferences
among defeasible rules. We also show how to express preference for one defeasible rule over an-
other whenever they conflict. In taxonomic hierarchies we wish to express that in the presence
of contradictory defeasible rules we prefer the one with most specific11 information (e.g. for a
penguin, which is a bird, we want to conclude that it doesn’t fly).

The statements about the domain are:

(1) Mammals are animals. (6) Normally animals don’t fly.
(2) Bats are mammals. (7) Normally bats fly.
(3) Birds are animals. (8) Normally birds fly.
(4) Penguins are birds. (9) Normally penguins don’t fly.
(5) Dead animals are animals. (10) Normally dead animals don’t fly.

11In [Nute, 1986], the author suggests using this notion of more specific information to resolve conflicts between
contradictory defeasible rules.
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and the following elements:

(11) Pluto is a mammal. (12) Tweety is a bird.
(13) Joe is a penguin. (14) Dracula is a bat.
(15) Dracula is a dead animal.

depicted as in fig. 6.1, and the preferences:

(16) Dead bats do not fly though bats do.
(17) Dead birds do not fly though birds do.
(18) Dracula is an exception to the above preferences.

Absolute rules Defeasible rules Negated rules

bat

pluto

(12)

(4)

(3)

(11)

(1)

(2)

(6)

(8)

(9)

(7)

(13)

penguin

joe

bird

tweety

flies

animal

mammal

(10)(5)

dead
animal

(14)

(15)

dracula

Figure 6.1: A hierarchical taxonomy
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The above hierarchy can be represented by the program:

animal(X) ← mammal(X) (1)
mammal(X) ← bat(X) (2)

animal(X) ← bird(X) (3)
bird(X) ← penguin(X) (4)

animal(X) ← dead animal(X) (5)
¬flies(X) ← animal(X), not ab1(X) (6)

flies(X) ← bat(X), not ab2(X) (7)
flies(X) ← bird(X), not ab3(X) (8)
¬flies(X) ← penguin(X), not ab4(X) (9)
¬flies(X) ← dead animal(X), not ab5(X) (10)

mammal(pluto) (11)
bird(tweety) (12)
penguin(joe) (13)
bat(dracula) (14)

dead animal(dracula) (15)

with the implicit hierarchical preference rules (not shown in fig. 6.1):

ab1(X) ← bat(X), not ab2(X)
ab1(X) ← bird(X), not ab3(X)
ab3(X) ← penguin(X), not ab4(X)

and the explicit problem statement preferences:

ab2(X) ← dead animal(X), bat(X), not ab5(X) (16)
ab3(X) ← dead animal(X), bird(X), not ab5(X) (17)
ab5(dracula) (18)

As expected, this program has exactly one partial stable model (coinciding with its well
founded model), no choice being possible and everything being defined in the hierarchy. The
model is given by the table in figure 6.2 where

√
means that the predicate (in the row entry)

is true about the element (in the column entry), e.g. penguin(joe) holds in the model.
Thus pluto doesn’t fly, and isn’t an exception to any of the rules; tweety flies because it’s

a bird and an exception to the “animals don’t fly” rule; joe doesn’t fly because it’s a penguin
and an exception to the “birds fly” rule.

Although dracula is a dead animal, which by default don’t fly (cf. rule (10)) it is also
considered an exception to this very same rule. Furthermore rule (16) saying that “dead bats
normally do not fly” is also exceptioned by dracula and thus the “bats fly” rule applies and
dracula flies.

Note that preferences rules must be present in order to prevent contradiction to arise, thus
preference rules play the rôle of removing contradictions arising in the initial specification of
the problem.

6.8.2 Possible worlds

In hierarchies, as seen, everything is defined, leaving no choices available. This is not the case for
general defeasible reasoning problems. In this section we show an example (the so called “Nixon
diamond”) of how to represent defeasible reasoning problems in WFSX and interpret the results.

Consider the statments:

• Normally quakers are pacifists.
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individ. joe dracula pluto tweety
predicat.
dead animal not , not ¬ √

, not ¬ not , not ¬ not , not ¬
bat not , not ¬ √

, not ¬ not , not ¬ not , not ¬
penguin

√
, not ¬ not , not ¬ not , not ¬ not , not ¬

mammal not , not ¬ √
, not ¬ √

, not ¬ not , not ¬
bird

√
, not ¬ not , not ¬ not , not ¬ √

, not ¬
animal

√
, not ¬ √

, not ¬ √
, not ¬ √

, not ¬
ab4 not , not ¬ not , not ¬ not , not ¬ not , not ¬
ab2 not , not ¬ not , not ¬ not , not ¬ not , not ¬
ab3

√
, not ¬ not , not ¬ not , not ¬ not , not ¬

ab1 not , not ¬ √
, not ¬ not , not ¬ √

, not ¬
ab5 not , not ¬ √

, not ¬ not , not ¬ not , not ¬
flies ¬ , not

√
, not ¬ ¬ , not

√
, not ¬

Figure 6.2: The well founded model of the hierarchy

• Normally republicans are hawks.

• Pacifists are non hawks.

• Hawks are non pacifists.

• Nixon is a quaker and a republican.

• There are other quakers.

• There are other republicans.

rendered by the program:

Normally quakers are pacifists
pacifist(X) ← quaker(X), quaker pacifist(X),

not ¬pacifist(X).
quaker pacifist(X) ← not ¬quaker pacifist(X).

Normally republicans are hawks
hawk(X) ← republican(X), republican hawk(X),

not ¬hawk(X).
republican hawk(X) ← not ¬republican hawk(X).

¬hawk(X) ← pacifist(X). Pacifists are non hawks
¬pacifist(X) ← hawk(X). Hawks are non pacifists

quaker(nixon). Nixon is quaker.
republican(nixon). Nixon is republican.

quaker(other quaker). There are other quakers.
republican(other republican). There are other republicans

where other quaker and other republican can be envisaged as Skolem constants.
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Here there is no preference defined between the rules nor between their conclusions. So for
nixon we want to be able to hypothesize him to be a pacifist or a hawk. Let us have a closer
look at the partial stable models of this program. The WFM is12:

{qua(n), rep(n), qp(n), rh(n),
qua(o q), qp(o q), rh(o q), pac(o q),¬hawk(o q), not ¬pac(o q), not hawk(o q),
rep(o r), qp(o r), rh(o r), hawk(o r),¬pac(o r), not ¬hawk(o q), not pac(o q)}

For nixon, as expected, it is unknown whether he is a pacifist or a hawk. Nevertheless we
have quaker pacifist(nixon) and republican hawk(nixon), so that both rules applied. This is
not a strange result since, as for defaults, rules are maximally applicable, and nixon does not
consist an exception to the rules through to their conclusions. Of course, for other quakers and
other republicans everything is defined.

Since we have unknown literals not present in the WF Model we might have other partial
stable models. In this case the other PSMs are13:

PSM1 = WFM ∪ {pac(n),¬hawk(n)}
PSM2 = WFM ∪ {¬pac(n), hawk(n)}

These remaining PSMs can be seen as possible extended world views in which some consis-
tent choices of belief have been made. PSM1 represents a world view where nixon is a pacifist
and a non hawk, and PSM2 represents a world view where nixon is a hawk and a non pacifist.

12Where qua stands for quaker, rep for republican, pac for pacifist, qp for quaker pacifist, rh for
republican hawk, n for nixon, o q for other quaker and o r for other republican.

13As these two models are 2-valued we don’t show the additional not literals, which are implicit.



Chapter 7

WFSX as hypotheses abduction

Approaches to nonmonotonic reasoning semantics clash on two major intuitions: scepticism
and credulity [Touretzky et al., 1987]. In normal logic programming the credulous approach
includes semantics such as stable models [Gelfond and Lifschitz, 1988] and preferred extensions
[Dung, 1991], while the well–founded semantics [Gelder et al., 1991] is the sole representative
of scepticism [Dung, 1991].

In extended logic programming, while generalizations of stable models semantics are clearly
credulous in their approach, no semantics whatsoever has attempted to seriously explore the
sceptical approach. A closer look at some of the works generalizing well-founded semantics
[Dung and Ruamviboonsuk, 1991, Przymusinski, 1990a, Przymusinski, 1991b, Sakama, 1992]
shows these generalizations to be rather technical in nature, where the different techniques
introduced to formally characterize the well–founded semantics of normal logic programs are
slightly modified in some way to become applicable to the more general case.

In this chapter we characterize a spectrum of more or less sceptical and credulous semantics
for extended logic programs, and determine the position of WFSX in this respect.

We do so by means of a coherent, flexible, unifying, and intuition appealing framework for
the study of explicit negation in logic programs, based on the notion of admissible scenaria.
This framework extends the approach originally proposed in [Dung, 1991] for normal logic pro-
grams.

The basic idea of the framework is to consider default literals as abducibles, i.e. they must
be hypothesized. This idea was first proposed in [Eshghi and Kowalski, 1989], and in [Dung,
1991] it was further explored in order to capture stable models [Gelfond and Lifschitz, 1988]
and the well–founded semantics [Gelder et al., 1991] of normal programs. There, an hypothesis
is acceptable iff there is no evidence to the contrary: roughly no set of hypotheses derives its
complement1. Semantics are then defined by adding to a program sets of acceptable hypotheses,
according to additional specific choice criteria. Depending on the chosen criteria, more sceptical
or credulous semantics are obtained.

In trying to extend these notions to extended logic programs, a new kind of hypotheses
appears – mandatory hypotheses.

Example 7.1 Consider a program containing the rules:

tryBus ← not driversSrike
¬driversStrike

1In [Bondarenko et al., 1993] the authors develop an assumption–based argumentation framework for logic
programming where a variety of alternative of evidence to the contrary notions are studied. In our approach the
notion of evidence to the contrary is kept fixed.

91



92 CHAPTER 7. WFSX AS HYPOTHESES ABDUCTION

advising to plan a trip by bus if it can be assumed the bus drivers are not on strike, and
stating bus drivers are not on strike. No matter what the rest of the program is (assuming it
is consistent on the whole), it is clear that a rational agent assumes the bus drivers are not on
strike, and of course he plans his trip by bus.

In this case it is mandatory to assume the hypothesis not driversSrike.

Intuitively, an hypothesis not L is mandatory if ¬L is a consequence of the program, i.e. if
objective literal L is explicitly stated false then the hypothesis that assumes it false must per
force be accepted. This amounts to the coherence principle.

In other words, in extended programs default literals can be view as hypotheses, where an
objective literal L inhibits the hypothesis not L (as in normal programs), and ¬L makes the
assumption of hypothesis not L imperative.

Moreover, viewing default literals as hypotheses that may or may not be accepted, helps
us provide semantics for contradictory programs where contradiction is brought about by such
hypotheses2. Indeed, if default literals are just hypotheses, and if some of them cause contra-
diction, then it seems natural not to accept these in order to assing a meaning to a program.
Even though there may be no specific evidence to the contrary of an hypothesis, if its adoption
leads to a global contradiction then its acceptance is questionable. This is an instance of the
“reductio ad absurdum” principle.

In this section to begin we define, in a simple way, an ideal sceptical semantics and its well–
founded (or grounded) part, in fact an entirely declarative semantics able to handle programs
like:

a ← not p b ← not r
¬a ← not q

and assigning it the semantics {b, not r}.
WFSX cannot deal with such programs because, as neither p nor q have rules, it assumes

both not p and not q without regard to the ensuing contradiction, except as an after–the–fact
filter. In our ideal sceptical semantics this program is not contradictory at all.

However, the issue of dealing with such contradictory programs within WFSX, and assign-
ing to them a semantics is explored in detail in chapter 8, where we use the framework of this
chapter, plus the additional notion of optative hypothesis, as its basis.

One advantage of viewing logic programs as abduction is its close relationship with argu-
mentation system and dialogue games. In [Dung et al., 1992, Kakas et al., 1993], the authors
have pointed out the similarities between the ideas of acceptability of hypotheses and evidence
to the contrary, and the notions of arguments and attacks of argumentation systems. Based
on that they sustain that [Dung, 1991] is in fact an argumentational approach to normal logic
programs. In the same way, our approach can be viewed as an argumentational approach to
extended logic programs.

The problem of understanding the process of argumentation (or dialogue games) has been
addressed by many researchers in different fields [Toulmin, 1958, Birnbaum et al., 1980, McGuire
et al., 1981, Hintikka, 1983, Cohen, 1987, Pollock, 1992]. The understanding of the structure
and acceptability of arguments is essential for a computer system to be able to engage in ex-
changes of arguments with other systems.

The ability of viewing extended logic programs as argumentation systems opens the way
for its use in formalizing communication among reasoning computing agents in a distributed

2Note that these are the cases presented above, where WFSX provides no meaning and we argue that it might
be natural to provide one.
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framework [Nejdl et al., 1993].

A dialogue game is an exchange of arguments between two players where each alternately
presents arguments attacking the arguments of the opponent. The player who fails to present
counterarguments looses the game. As shown in [Dung, 1992a, Dung, 1993a, Dung, 1993b] a
game theoretical semantics for logic programming can be defined by interpreting programs as
schemas for forming arguments, where a literal can be concluded if it is supported by acceptable
arguments constructed according to the rules of the program:

Example 7.2 Consider program P :

¬fly(X) ← animal(X), not ab a(X) animal(tweety)
ab a(X) ← bird(X), not ab b(X) bird(tweety)
ab b(X) ← penguin(X) penguin(tweety)

P can be viewed as the rules for constructing the arguments:

1. Tweety does not fly since it is an animal and animals normally do not fly.

2. Tweety is an abnormal animal since it is a bird and normally birds are abnormal animals
with respect to flying.

3. Tweety is an abnormal bird since it is a penguin and penguins are abnormal birds with
respect to flying.

A dialogue game to determine whether or not tweety flies proceeds as follows:

• Player 1 presents argument 1 supporting the conclusion that tweety cannot fly. His argu-
ment is based on the assumption that animals normally do not fly.

• In the next move player 2 presents argument 2 which “attacks” argument 1 by defeating the
assumption made by the latter. His argument is based on the assumption that normally
birds are abnormal animals.

• Then player 1 presents argument 3 “counterattacking” the argument of player 2.

• As player 2 cannot find any argument counterattacking the argument of player 1, he looses
the game and gives up his claims.

In the framework we present in this chapter, hypotheses can be viewed as arguments, that
may or may not be accepted, in the same way arguments may or may not be winning ones. An
argument is acceptable if every attack against it can be counterattacked by it. As we point out
below, this is tantamount to the acceptance of hypotheses, where an hypothesis is acceptable
in the context of other hypotheses if every set of hypotheses that constitutes evidence to its
contrary is in turn defeated by the context where it is accepted. To make this clearer we explain,
for the program of example 7.2, why not ab a(tweety) is acceptable:

The hypotheses not ab a(tweety) is acceptable because the only evidence to the contrary,
i.e. to ab a(tweety), is the hypothesis not ab b(tweety), and this evidence is defeated by
not ab a(tweety) : in the context where this assumption is made true in the programab b(tweety)
follows as a consequence.

A detailed study of logic programming as dialogue games and argumentation systems is
not in the scope of this work. However, the intuitions behind the relationship between the
concepts introduced here and those of dialogue games and argumentation systems can be found
throughout this chapter.

Parts of this chapter appear in [Alferes et al., 1993].
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7.1 Admissible scenaria for extended logic programs

In this section we generalize the notions of scenario and evidence for normal logic programs
given in [Dung, 1991], to those extended with explicit negation. They are reminiscent of the
notions of scenario and extensions of [Poole, 1988].

In [Dung, 1991, Brogi et al., 1992, Dung et al., 1992] a normal logic program is viewed as an
abductive framework where literals of the form not L (NAF–hypotheses) are considered as new
atoms, say not L, and are abducibles, i.e. they must be hypothesized. The set of all ground
NAF–hypotheses is not H, where H denotes the Herbrand base of the program, as usual, and
not prefixed to a set denotes the set obtained by prefixing not to each of its elements3. Here
we generalize these notions to extended logic programs.

In order to introduce explicit negation we first consider negated objective literals of the form
¬A as new symbols (as in [Gelfond and Lifschitz, 1988]). The Herbrand base is now extended
to the set of all such objective literals. Of course, this is not enough to correctly treat explicit
negation. Relations among ¬A, A, and not A, must be established, as per the definitions below.

Definition 7.1.1 (Scenario) A scenario of an extended logic program P is the Horn theory
P ∪H, where H ⊆ not H.

For scenaria we define a derivability operator in a straightforward way, given that every
scenario is a Horn theory:

Definition 7.1.2 (` operator) Let P be an extended logic program and H a set of NAF–
hypotheses.

P ′ is the Horn theory obtained from P by replacing:

• every objective literal of the form ¬L by the atom ¬ L

• every default literal of the form not L by the atom not L

• every default literal of the form not ¬L by the atom not ¬ L

where ¬ L, not L, and not ¬ L are new atoms not appearing in P.
A set H ′ is obtained from H using the same replacement rules.

By definition P ′ ∪H ′ is a Horn theory, and so it has a least model M.
We define ` in the following way (where A is any atom of P ):

P ∪H ` A iff A ∈ M
P ∪H ` ¬A iff ¬ A ∈ M
P ∪H ` not A iff not A ∈ M
P ∪H ` not ¬A iff not ¬ A ∈ M

In argumentation systems a scenario can be viewed as a possible set of arguments. In partic-
ular the arguments corresponding to a scenario P ∪H are those engendered by the hypotheses
in H.

When introducing explicit negation into logic programs one has to reconsider the notion of
NAF–hypotheses, or simply hypotheses. As the designation “explicit negation” suggests, when
a scenario P ∪ H entails ¬A it is explicitly stating that A is false in that scenario. Thus the
hypothesis not A is enforced in the scenario, and cannot optionally be held independently. This
is the “coherence principle”, which relates both negations.

3In [Brogi et al., 1992] the authors dub these programs open positive ones. Positive because all negated literals
are transformed into new atoms, and open because the program can be completed with additional information,
i.e. default literals can be added (or hypothesized) in order to give the program a meaning.
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Definition 7.1.3 (Mandatory hypotheses wrt P ∪H) The set of mandatory hypotheses
(or mandatories) wrt a scenario P ∪H is:

Mand(H) = {not L | P ∪H ∪ {not K ← ¬K | K ∈ H} ` not L}

where L or K is any objective literal, and ¬K denotes the complement of K wrt explicit nega-
tion. The extra rules enforce coherence.

Alternatively, the set of mandatory hypotheses wrt P ∪H is the smallest set Mand(H) such
that:

Mand(H) = {not L | P ∪H ∪Mand(H) ` ¬L}.

Example 7.3 Consider program P :

q ← not r
¬r ← not p
¬p

Then:
Mand({}) = {not p, not r, not ¬q}.

Indeed, the Horn theory:

q ← not r not ¬ q ← q not ¬ p ← p
¬ r ← not p not q ← ¬ q not p ← ¬ p
¬ p not ¬ r ← r

not r ← ¬ r

derives {not p, not r, not ¬ q} and no more hypotheses.

Example 7.4 Consider the program P :

b(p)
¬m(X, Y ) ← b(X)

m(p, s) ← not m(t, s)
m(t, s) ← not m(p, s)

¬m(X,X)

obtained from the autoepistemic theory of example 5.17.
The mandatory hypotheses wrt P ∪ {} are:

• from the last rule, all ground instances of literals of the form not m(X, X);

• from the first rule, not ¬b(p);

• from the first and second rules P ` ¬m(p, Y ), and thus ground instances of literals of the
form not m(p, Y ) are mandatories;

• from the above points and the third rule it follows that P and its mandatories derive
m(t, s), and so not ¬m(t, s) is also mandatory.

Mandatory hypotheses correspond in argumentation systems to arguments that cannot be
directly attacked because they are sustained by conclusions. For instance, the fact ¬fly(tweety)
in a program states that Tweety does not fly. Since no argument can attack this fact, the ar-
gument not fly(tweety) is unattackable.
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Example 7.5 Consider a program containing the rules:

newsAboutStrike ← driversStrike
¬driversStrike

stating that newspapers publish news about the strike if the drivers are on strike, and that the
bus drivers are definitely not on strike.

For a rational reasoner the second rule should not provide a pretext for newspapers to
publish news about a strike by possibly assuming it, since indeed the first rule (or some other)
may actually state or conclude the contrary of that assumption.

Note how this is accomplished be using always programs in the canonical form (definition
2.1.1), where any true rule head has the effect of falsifying the body of all rules containing its
complement literal wrt explicit negation.

Recall that, within a program in the canonical form, any objective literal L in the body of
a rule is to be considered shorthand for the conjunction L, not ¬L. This allows for technical
simplicity in capturing the relation between ¬L and not L (cf. justification in the compact
version of the modulo operator in chapter 4). Thus, without loss of generality (cf. corollary
10.1.1), and for the sake of technical simplicity, whenever refering to a program in this section
we always mean its canonical form. In all examples we expressly use the canonical program.

Definition 7.1.4 (Consistent scenario) A scenario P ∪H is consistent iff for all objective
literals L such that:

P ∪H ∪Mand(H) ` L

then
not L 6∈ H ∪Mand(H)

Note that, by the definition of mandatory hypotheses, for every consistent scenario:

if P ∪H ∪Mand(H) ` L then P ∪H ∪Mand(H) 6` ¬L.

Unlike the case of non–extended logic programs, an extended logic program may in general
have no consistent scenaria:

Example 7.6 Program

P =

{
¬p

p ← not p

}

has no consistent scenario.
Note that P ∪ {} is not consistent since Mand({}) = {not p} and P ∪ {not p} ` p.

A notion of program consistency is needed. Intuitively, a program is consistent iff it has
some consistent scenario. Because for a given H, if P ∪H is consistent then P ∪{}∪Mand({})
is also consistent, we define:

Definition 7.1.5 (Consistent program) An extended logic program P is consistent iff

P ∪Mand({})

is a consistent scenario.
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Inconsistent programs are those that derive a contradiction even without assuming any
hypotheses (except, of course, for those for which it is mandatory to do so, i.e. the mandatories).
The rôle of the semantics here being to determine sets of hypotheses that can be added to a
program without making it inconsistent, and since no set whatsoever is in these conditions for
an inconsistent program, no semantics is given it.

By adding to the body of each rule a private default literal not L′, where L′ is a new atom
not appearing elsewhere in the program, every program becomes consistent. This operation,
similar to the naming device of [Poole, 1988], renders every rule hypothetical because its con-
dition is contingent on the prior acceptance of its private “naming” default literal. Ultimately,
inconsistency can thus be always avoided. Semantics that assign meaning to inconsistent pro-
grams by considering consistent subsets of its rules can be “simulated” in ours via the naming
device.

Thus, from now on, unless otherwise stated, we restrict programs to consistent ones only.

Not every consistent scenario specifies a consensual semantics for a program [Poole, 1988],
in the same way that not every set of arguments is a winning set in dialog games. For example
[Dung, 1991] the program P :

p ← not q

has a consistent scenario P ∪ {not p} which fails to give the intuitive meaning of P. It is not
consensual to assume not p since there is the possibility of p being true (if not q is assumed),
and ¬p is not explicitly stated (if this were the case then not q could not be assumed).

Intuitively, what we wish to express is that a hypothesis can be assumed only if there can be
no evidence to the contrary.

Clearly a hypothesis not L is only directly contradicted by the objective literal L. Evidence
for an objective literal L in a program P is a set of hypotheses which, if assumed in P together
with its mandatories, would entail L.

Definition 7.1.6 (Evidence for an objective literal L) A subset E of not H is evidence
for an objective literal L in a program P iff:

E ⊇ Mand(E) and P ∪ E ` L4

If P is understood and E is evidence for L we write E ; L.

Note here the similarities between evidence to the contrary of an hypothesis and attack to
an argument.

As in [Dung, 1991] a hypothesis is acceptable wrt a scenario iff there is no evidence to the
contrary, i.e. iff all evidence to the contrary is itself defeated by the scenario:

Definition 7.1.7 (Acceptable hypothesis) A hypothesis not L is acceptable wrt the sce-
nario P ∪H iff:

∀E : E ; L ⇒ ∃not A ∈ E | P ∪H ∪Mand(H) ` A,

i.e. each evidence for L is defeated by P ∪H.

The set of all acceptable hypotheses wrt P ∪H is denoted by Acc(H).

4The consistency of P ∪ E is not required; e.g. P ∪ {not A} ` A is allowed.
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This is tantamount to the acceptability of arguments in dialogue games. In the latter an
argument is acceptable if it can counterattack (i.e. defeat) every attack made on it (i.e. every
evidence to the contrary).

Example 7.7 Consider program P :

a ← not b, not c
b ← not d
¬c

In the scenario P ∪ {not c, not d, not a} :

• not c is mandatory because P ` ¬c;

• not d (resp. not ¬a, not ¬b) is acceptable because there is no evidence for d (resp. ¬a,
¬b);

• not a is acceptable because any evidence for a must contain

{not b, not c}

and so is defeated by the scenario since

P ∪ {not c, not d, not a} ∪Mand({not c, not d, not a}) ` b

For example, not b is neither mandatory nor acceptable because, respectively:

P ∪ {not c, not d, not a} ∪Mand({not c, not d, not a}) 6` ¬b

and {not d} is an evidence for b not defeated by the scenario, i.e.:

P ∪ {not d} ∪Mand({not d}) ` b

and
P ∪ {not c, not d, not a} ∪Mand({not c, not d, not a}) 6` d

In a consensual semantics we are interested only in admitting consistent scenaria whose
hypotheses are either acceptable or mandatory. As the designation “mandatory hypotheses”
suggests, any scenario to be considered must include all its mandatory hypotheses:

Definition 7.1.8 (Admissible scenario) A scenario P ∪H is admissible iff it is consistent
and:

Mand(H) ⊆ H ⊆ Mand(H) ∪Acc(H)

We must guarantee that by considering only admissible scenaria one does not fail to give
semantics to consistent programs, i.e.:

Proposition 7.1.1 Any consistent program P has at least an admissible scenario.

Proof: By hypothesis P is consistent and so the scenario P ∪Mand({}) is also consistent.
By definition Mand(H) is closed under mandatories, i.e.

Mand(H) = Mand(Mand(H))

So P ∪H, where H = Mand({}), is an admissible scenario:

Mand(Mand({})) = Mand({}) ⊆ Mand(Mand({})) ∪Acc(Mand({}))
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♦
The notion of admissible scenario discards all hypotheses which are unacceptable, whatever

the semantics of extended logic programs to be defined.
One semantics can be defined as the class of all admissible scenaria, where the meaning of

a program is determined, as usual, by the intersection of all such scenaria.
However, since P ∪Mand({}) is always the least admissible scenario (cf. proof of proposi-

tion 7.1.1), this semantics does not include any non–mandatory hypothesis. Consequently this
semantics is equivalent to replacing every not L by the corresponding objective literal ¬L.

Example 7.8 Let P :
¬p
a ← not b

Its admissible scenaria are:

P ∪ {not p}
P ∪ {not p, not ¬a}
P ∪ {not p, not ¬b}
P ∪ {not p, not b, not ¬a}
P ∪ {not p, not ¬a, not ¬b}
P ∪ {not p, not b, not ¬a, not ¬b}

the least admissible scenario being the first.
Thus the literals entailed by the semantics of admissible scenaria are {¬p, not p}. Note not b

and a are not entailed by this extremely sceptical semantics.

The semantics of admissible scenaria is the most sceptical one for extended logic programs:
it contains no hypotheses except for mandatory ones5. In order to define more credulous
semantics, we define classes of scenaria based on proper subsets of the class of admissible
scenaria, as governed by specific choice criteria. Constraining the set of admissible scenaria
reduces undefinedness but may restrict the class of programs having a semantics.

In the next sections we define a spectrum of semantics which, by restricting the set of
admissible scenaria, are more credulous, but give meaning to narrower classes of programs.
WFSX turns out to be one of the semantics in that spectrum.

7.2 A sceptical semantics for extended programs

Several proposals, already mentioned above, have been made to generalize well–founded seman-
tics6 to logic programs with explicit negation, in order to obtain a sceptical semantics for
extended logic programs. But a closer look at these works shows these generalizations to be of
a rather technical nature, where different techniques introduced to characterize the well–founded
semantics of normal logic programs (those without explicit negation) are in someway modified
to become applicable to the more general case. So it would not be surprising if tomorrow some
new “sceptical” semantics for programs with explicit negation were to be presented. So which
of them is really “sceptical”? And what is the essential difference between them? How many
“sceptical” semantics are we going to have? After all, what makes a semantics “sceptical”?
Certainly not just because it is in some way “technically” similar to one or other presentation
of the well–founded semantics of Van Gelder et al. [Gelder et al., 1991]7.

5This semantics is equivalent to one which only accepts hypotheses if it is explicitly negated in the program
that there is evidence to the contrary. Hence it contains only the mandatory literals.

6By its nature the representative of scepticism in normal logic programs.
7Dung [Dung, 1992b] has shown that stable model semantics can also be viewed as well–founded semantics,

since it can be defined a similar way.
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It is natural and important to ask the question of what is an ideally sceptical semantics for
explicit negation, i.e. one which would be part of the semantics of every rational reasoner.

Suppose that P ∪ H is this “ideal” sceptical semantics. In the previous section, we have
introduced and argued that an admissible scenario represents a scenario which is admissible for
a rational reasoner. Let one such admissible scenario be P ∪K. It is clear that P ∪K ∪H is
again admissible since H must be part of this agent’s semantics. This leads to an immediate
definition of the “ideal” or “idealized” sceptical semantics.

Definition 7.2.1 (Ideal sceptical semantics) A set of hypotheses H is called the ideal scep-
tical semantics, ISS, if it is the greatest set satisfying the condition:

For each admissible scenario P ∪K, P ∪K ∪H is again admissible.

It is clear that if P is consistent then such a set exists, a consequence of the fact that the
union of sets satisfying the above condition satisfies it too.

Example 7.9 Consider program P :

a ← not p
¬a ← not q

c ← not r

The admissible scenaria are (apart from literals not ¬p, not ¬q, and not ¬r, which are
irrelevant to this example and are omitted):

P ∪ {}
P ∪ {not ¬c} P ∪ {not r, not ¬c}
P ∪ {not ¬c, not p, not ¬a} P ∪ {not r, not ¬c, not p, not ¬a}
P ∪ {not ¬c, not q, not a} P ∪ {not r, not ¬c, not q, not a}

It is not difficult to see that the greatest admissible scenario whose union with any other
is again admissible is {not r, not ¬c}, i.e. ISS = {not r, not ¬c}. So we are able to conclude c
despite the inconsistency potentially caused by the other rules.

Note that according to WFSX this program is contradictory.

The most sceptical well–founded semantics, or WFS0, is next construable as the grounded
part of the ideal sceptical semantics. Indeed, in the case of normal programs, the ideal sceptical
semantics is determined as the greatest lower bound of all preferred extensions [Dung, 1991],
well–founded semantics being the grounded part of this ideal sceptical semantics. This corrob-
orates the intuitions of other related fields, where a distinction is made between restricted and
ideal scepticism [Stein, 1989]8.

In this context, in order to define the well–founded sceptical semantics for programs with
explicit negation, all we need is introduce the grounded part of ideal scepticism:

Definition 7.2.2 (WFS0) Let P be an extended logic program whose ideal sceptical semantics
is P ∪H. First define a transfinite sequence {Kα} of sets of hypotheses of P :

K0 = {}
Kα+1 = Kα ∪ (H ∩MA(Kα))

where
MA(Kα) = Mand(Kα) ∪Acc(Kα).

The well–founded (sceptical) semantics of P , denoted WFS0, is defined as:

P ∪
⋃
α

Kα

8One other example of such restricted scepticism in logic programming is the “well–founded semantics wrt
Opt” presented in chapter 8, which is even more sceptical then the aforementioned WFS0.
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Hypotheses belonging to WFS0 belong perforce to ISS, because that is imposed at each step
of the above iterative process by MA(Kα), and are also grounded in the sense that they are
obtained by this bottom–up process starting from {}.

Example 7.10 Consider program P :

a ← not a
a ← not b
b ← not a

Apart from literals not ¬a, and not ¬b which are irrelevant to this example, admissible scenaria
are:

P ∪ {} P ∪ {not b}9

Thus ISS = {not b}.

In order to calculate the WFS0 let us build the sequence:

• By definition K0 = {}.

• Since the program is normal there are no mandatories wrt P ∪ {}.

– not b is not acceptable because {not a} is evidence for b not defeated by P ∪ {}, i.e.
P ∪ {} 6` a;

– Similarly, not a is also not acceptable.

Thus MA(K0) = Mand({}) ∪Acc({}) = {}, and

K1 = {} ∪ ({not b} ∩ {}) = {} = K0

So WFS0 = P ∪ {} because not b is not grounded.

Theorem 7.2.1 WFS0 is defined uniquely for every consistent program.

Proof: Trivial since, as stated above, ISS is defined for every consistent programs and WFS0 is
obtained uniquely from ISS. ♦

The next theorem states this definition of well–foundedness is a generalization of the one
for non–extended (i.e. normal) programs.

Theorem 7.2.2 (Relation to the WFS of normal programs) If P is a normal program
then the WFS0 and the the well–founded semantics of [Gelder et al., 1991] coincide.

Proof: Clearly, if a program P has no explicit negation for every scenario P ∪H

Mand(H) = {}

Thus the definitions of evidence to the contrary, acceptability, and admissible scenario are
equivalent to those for normal programs presented in [Dung, 1991]. So the ideal sceptical
semantics corresponds to the intersection of preferred extensions and, as proven in [Dung,
1991], its grounded part coincides with the well–founded semantics of [Gelder et al., 1991]. ♦

9Note that scenario P ∪ {not a} is inconsistent.
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7.3 The semantics of complete scenaria

In this section we present a semantics less sceptical than WFS0 but failing to give semantics
to all consistent programs. We call it “complete scenaria semantics” (CSS for short). Then we
exhibit and prove some properties of CSS, in particular that it coincides with WFSX.

For normal programs every acceptable hypothesis can be accepted. In extended programs
an acceptable hypotheses may fail to be accepted, in case a contradiction is verified.

Example 7.11 Consider the consistent program P :

¬a
a ← not b

The hypothesis not b is acceptable wrt every scenario of P. However, by accepting not b the
program becomes inconsistent. Thus not b can never be accepted. In a semantics like WFS0
such hypotheses are not accepted.

ISS and WFS0 model a reasoner who assumes the program correct and so, whenever con-
fronted with an acceptable hypothesis leading to an inconsistency he cannot accept such a
hypothesis; he prefers to assume the program correct rather than assume that an acceptable
hypothesis must be accepted (cf. example 7.9 where both not p and not q are acceptable, but
not accepted). We can also view this reasoner as one who has a more global notion of accept-
ability. For him, as usual, an hypothesis can only be acceptable if there is no evidence to the
contrary, but if by accepting it (along with others) a contradiction arises, then that counts as
evidence to the contrary.

It is easy to imagine a less sceptical reasoner who, confronted with an inconsistent scenario,
prefers considering the program wrong rather than admitting that an acceptable hypothesis be
not accepted. Such a reasoner is more confident in his acceptability criterium: an acceptable
hypothesis is accepted once and for all; if an inconsistency arises then there is certainly a prob-
lem with the program, not with the acceptance of each acceptable hypothesis. This position is
justified by the stance that acceptance be grounded on the absence of specific contrary evidence
rather than on the absence of global non–specific evidence to the contrary. We come back to
this issue in chapter 8, where we compare the more sceptical semantics with a revision process
acting over the less sceptical one.

In order to define a semantics modeling the latter type of reasoner we begin by defining
a subclass of the admissible scenaria, which directly imposes that acceptable hypotheses are
indeed accepted.

Definition 7.3.1 (Complete scenario) A scenario P ∪H is complete iff is consistent, and

H = Mand(H) ∪Acc(H)

i.e. P ∪H is complete iff is consistent, and for each not L :

(i) not L ∈ H ⇒ not L ∈ Acc(H) ∨ not L ∈ Mand(H)
(ii) not L ∈ Mand(H) ⇒ not L ∈ H
(iii) not L ∈ Acc(H) ⇒ not L ∈ H

where (i) and (ii) jointly express admissibility.
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Example 7.12 The only complete scenario of program P :

¬b
b ← not c
c ← not c
a ← b, not ¬b

is P ∪ {not a, not ¬a, not b, not ¬c}. In fact:

• the mandatory hypotheses of that scenario are {not b};
• not ¬a is acceptable because there is no evidence for ¬a;

• not ¬c is acceptable because there is no evidence for ¬c;

• not a is acceptable because not ¬b belongs to every evidence for a, and ¬b is entailed by
the scenario;

• not c is not acceptable because {not c} is evidence for c.

Since every acceptable or mandatory hypothesis is in the scenario, and every hypothesis in
the scenario is either acceptable or mandatory, the scenario is complete.

Mark that if not ¬b were not part of the second rule, as required by definition 2.1.1 of
canonical program, then not a would not be acceptable.

As expected, and in contradistinction to WFS0, complete scenaria may in general not exist,
even when the program is consistent.

Example 7.13 Program P :
¬a ← not b

a ← not c

has several admissible scenaria:

P ∪ {} P ∪ {not b} P ∪ {not c}
P ∪ {not a, not b} P ∪ {not ¬a, not c}

None is complete. For example P ∪ {not ¬a, not c} is not complete because not b is acceptable
wrt that scenario.

Definition 7.3.2 (Contradictory program) A program is contradictory iff it has no com-
plete scenaria.

Definition 7.3.3 (Complete scenaria semantics) Let P be a noncontradictory program.
The complete scenaria semantics of P is the set of all complete scenaria of P.
As usual, the meaning of P is determined by the intersection of all such scenaria.

The inexistence of semantics for some consistent programs might be seen as showing the
inadequacy of CSS in certain cases, specially if compared to WFS0. As we will see in chapter
8, this is not the case since less sceptical semantics can be captured using CSS10 and a revision
process. The rationale of this view is:
“If an inconsistency arises then there is certainly a problem with the program, not with the
acceptance of each acceptable hypothesis. If the problem is with the program then its revision is
in order.”

By using CSS one can rely on structural properties that, unlikely those of WFS0, make it
amenable for devising bottom–up and top–down procedures, and also allow for more favourable
computational complexity results (cf. chapter 10).

10In chapter 8 we use WFSX instead of CSS. However, as we prove afore, these semantics coincides.
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7.4 Properties of complete scenaria

In this section we study some properties of this semantics, present a fixpoint operator for it,
and show its relationship with WFSX.

Theorem 7.4.1 Let CSP 6= {} be the set of all complete scenaria of noncontradictory program
P. Then:

1. CSP is a downward–complete semilattice, i.e. each nonempty subset of CSP has a greatest
lower bound.

2. There exists a least complete scenario.

3. In general, CSP is not a complete partial order11, i.e. maximal elements might not exist.

For the sake of simplicity the proof of this theorem is in appendix. However we would like
to present here an example showing that in general maximal complete scenario might not exist
(viz. point 3 above):

Example 7.14 Consider the program:

a ← not b
¬a ← not b

b ← not p(X)
p(X) ← not q(X)
q(X) ← not p(X)

with Herbrand base H = {0, 1, 2, 3, . . .}.
For this program every set of the form

Si = {not q(k) | k ≤ i}

is a complete scenario, but there exists no complete scenario containing
⋃

i

Si.

Given that a least scenario always exists, we define:

Definition 7.4.1 (Well–founded complete scenario) Let P be noncontradictory. The
well–founded complete scenario WF (P ), is the least complete scenario of P.

For this semantics we define an operator over scenaria such that every fixpoint of it is a
complete scenario.

Definition 7.4.2 (VP operator) Given a program P and a set of hypotheses H we define:

VP (H) = H ∪Mand(H) ∪Acc(H)

just in case P ∪ VP (H) is a consistent scenario; otherwise VP (H) is not defined.

The correctness of this operator is shown by the following (trivial) lemma.

Lemma 7.4.2 P ∪H is a complete scenario iff H = VP (H).
11However, for normal programs CSP is a complete partial order.
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Another important result regarding the properties of the VP operator is:

Lemma 7.4.3 VP is monotonic, by construction of its parts.

From this lemma, and point 2 of theorem 7.4.1, it follows that:

Theorem 7.4.4 If P is noncontradictory then the least fixpoint of VP is the WF (P ).

Theorem 7.4.5 (Iterative construction of the WF complete scenario) In order to ob-
tain a constructive bottom–up iterative definition of the WF scenario of a noncontradictory
program P , we define the following transfinite sequence {Hα} of sets of hypotheses of P :

H0 = {}
Hα+1 = VP (Hα)

Hδ =
⋃ {Hα | α < δ} for a limit ordinal δ

By lemma 7.4.3 and the Knaster–Tarski theorem [Tarski, 1955], there exists a smallest
ordinal λ such that Hλ is a fixpoint of VP . The WF complete scenario is P ∪Hλ.

This constructive definition obliges one to know a priori whether a program is contradictory.
This prerequisite is not needed if we employ the following theorem.

Theorem 7.4.6 A program P is contradictory iff in the sequence of the Hα there exists a λ
such that P ∪ VP (Hλ) is an inconsistent scenario.

Thus, in order to compute the WF (P ) start building the above sequence. If, at some step
i, Hi introduces a pair of complementary objective literals then end the iteration and P is
contradictory. Otherwise iterate until the least fixpoint of VP , which is the WF (P ).

Note the similarities between this process and the one described in section 6.7 for WFSX,
where the iteration also provides the default literals not F (here caled hypotheses) true in
the model, other literals T being determined by the former (there T = Γ(H − F ), and here
T = {L | P ∪ not F ` L}).

7.4.1 Complete scenaria and WFSX

Next we present the relationship between the complete scenaria semantics CSS for extended logic
programs and WFSX, showing they are the same. The significance of this result is underscored
in the introduction to this chapter. Proofs of lemmas can be found in appendix C.

Lemma 7.4.7 (PSMs correspond to complete scenaria) Let

S = T ∪ not F

be a PSM of a program P, where T and F are disjoint sets of objective literals. Then:

P ∪ not F

is a complete scenario.

Lemma 7.4.8 (Complete scenaria correspond to PSMs) If

P ∪H

is a complete scenario then:
{L | P ∪H ` L} ∪H

is a PSM of P.

Theorem 7.4.9 (Equivalence) The complete scenaria semantics CSS is equivalent to WFSX.
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7.5 More credulous semantics

Along the same lines of complete scenaria semantics, we can continue restricting the set of
admissible scenaria, thus defining more credulous semantics.

The most immediate semantics more credulous than CSS (or WFSX) is the one obtained
by considering only maximal (wrt ⊆) complete scenaria. We call this semantics “preferred
extensions” following the tradition for normal programs [Dung, 1991].

Definition 7.5.1 (Preferred extensions semantics) The preferred extensions semantics of
an extended program P is the set of its maximal complete scenaria.

Example 7.14 shows that maximal elements might not exist for a collection of complete sce-
naria, hence preferred extensions are defined for less programs than WFSX. Another straight-
forward result is that this semantics is in general more credulous than WFSX.

Example 7.15 Consider the program:

a ← not p, not ¬p
p ← not ¬p
¬p ← not p

Complete scenaria are (where the last two are preferred):

P ∪ {not ¬a}
P ∪ {not ¬a, not p, not a}
P ∪ {not ¬a, not ¬p, not a}

Thus not a is a consequence of the preferred extensions semantics but not of complete
scenaria semantics.

A reasoner can even be more credulous by considering only preferred extensions that are
two valued (or total), i.e. extensions such that whenever L is not a consequence of them not L
is assumed in them.

Definition 7.5.2 (Total scenario) A scenario P ∪H is total iff for every objective literal L :

P ∪H ` L ≡ not L 6∈ H

Definition 7.5.3 (Total scenaria semantics) The total scenaria semantics of an extended
program P is the set of its total complete scenaria.

Given the results of [Dung, 1991], where stable models are total complete scenaria in normal
logic programs, it follows easily:

Theorem 7.5.1 (Answer–sets) The total scenaria semantics coincides with the answer–sets
semantics of [Gelfond and Lifschitz, 1990].

Clearly answer–sets semantics is defined for less programs than the previous semantics,
since such total scenaria may in general not exist. The typical program for which answer–sets
semantics is not defined but WFSX is defined is P = {a ← not a}, where assuming not a leads
to an inconsistency between a and not a, and not a cannot be left unassumed because a is not
a consequence. This program has only one complete scenario, {not ¬a}, and it is not total.

Explicit negation introduces other cases of inexistence of answer–sets appear.
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Example 7.16 Let P be:
p ← not ¬p
¬p ← not p

b ← not ¬p
a ← not p
¬a
¬b

The only complete scenario is P ∪ {not a, not b}, which is not total. Thus no answer–sets
exist.

Here the inexistence of answer–sets is due to inconsistency between an objective literal and
its explicit negation:

• assuming not p leads to an inconsistency between a and ¬a;

• the assumption not p can be dropped only if p is a consequence. In order to make p
a consequence not ¬p must be assumed, and then an inconsistency between b and ¬b
appears.

Example 7.14 shows additional issues regarding the existence of answer–sets. In particular
that example shows that the computation of an answer–set cannot in general be made by finite
approximations.

7.5.1 Comparisons among the semantics

From the definition 7.2.2 of WFS0 and the iterative construction of the WF complete scenario
of CSS (theorem 7.4.5) it follows almost directly that:

Theorem 7.5.2 (WFS0 is more sceptical than WFSX) For any noncontradictory pro-
gram P

WFS0(P ) ⊆ WFSX(P ).

Example 7.17 Consider program P :

p ← not q
¬p ← a
¬p ← b
a ← not b
b ← not a

whose WFSX is {not q} (apart from irrelevant literals such as not ¬a).
Since P ∪ {not q, not ¬p}, P ∪ {not a, not p}, and P ∪ {not a, not p} are all admissible

scenaria (though not them all), and neither not a nor not b can be added to the first scenario,
and also not q cannot be added neither to the second nor to the third scenario above, then
ISS = {}. Thus WFS0 = {}.

Interesting questions are: When do all these semantics coincide? Can we state sufficient
conditions guaranteeing such an equivalence?

In order to answer the second question we introduce the notion of semantically normal
(s–normal for short) programs; i.e. those whose admissible scenaria can all be completed.

Definition 7.5.4 (S–normal program) An extended program is s–normal iff for each admis-
sible scenario P ∪H :

P ∪H ∪Acc(H)

is consistent.
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Lemma 7.5.3 Let P be a s–normal program, P ∪H be an admissible scenario, and let not A,
not B be acceptable wrt P ∪H. Then:

1. P ∪H ∪ {not A} is admissible and

2. not B is acceptable wrt P ∪H ∪ {not A}.

Proof: Trivial, given the definition of s–normal program. ♦
From this lemma it follows immediately that the set of all admissible scenarios (wrt set

inclusion) forms a complete partial order for s–normal programs. Hence each admissible scenario
can be extended into a complete scenario. Thus, for s–normal programs, ISS is contained in a
complete scenario.

Moreover, it is easy to see that for each admissible scenario P ∪H, P ∪H ∪CSS(P ) is again
admissible. Therefore:

Theorem 7.5.4 Let P be a s–normal program. Then:

• The set of complete scenaria of P forms a complete semilattice.

• ISS coincides with the intersection of preferred extensions.

• WFS0(P ) = CSS(P ) ⊆ ISS(P ).

To define larger classes of programs also guaranteeing these comparability results is beyond
the scope of this work. Of special interest, and subject of future investigation by the author, is
to determine syntatic conditions over programs (e.g. a generalization of the notion of stratified
normal programs [Apt et al., 1988]) guaranteeing the equivalence between answer-sets and
WFSX, in the vein of the work in [Dung, 1992b] regarding well founded and stable models
semantics of normal programs.

However, for normal logic programs, since acceptable hypotheses can never lead to an in-
consistency, both WFS0 and WFSX coincide.

Theorem 7.5.5 (Relation to the WFS of normal programs) If P is a normal (non–
extended) program then WFSX, WFS0 and the well–founded semantics of [Gelder et al., 1991]
coincide.

Example 7.10 shows this equivalence cannot be extended to ISS. There, WFSX coincides
with WFS0 and with WFS and is {}. ISS is {not b}.



Chapter 8

Dealing with contradiction

As we’ve seen before, WFSX is not defined for every program, i.e. some programs are con-
tradictory and are given no meaning1. While for some programs this seems reasonable (e.g.
example 4.5 in page 33), for others this can be too strong.

Example 8.1 Consider the statements:

• Birds, not shown to be abnormal, fly.

• Tweety is a bird and does not fly.

• Socrates is a man.

naturally expressed by the program:

fly(X) ← bird(X), not abnormal(X).

bird(tweety)
¬fly(tweety).

man(socrates).

WFSX assigns no semantics to this program. However, intuitively, we should at least be
able to say that Socrates is a man and tweety is a bird. It would also be reasonable to
conclude that tweety doesn’t fly, because the rule stating that it doesn’t fly, since it is a fact,
makes a stronger statement than the one concluding it flies. The latter relies on accepting
an assumption of non–abnormality, enforced by the closed world assumption treatment of the
negation as failure, and involving the abnormality predicate. Indeed, whenever an assumption
supports a contradiction it seems logical to be able to take the assumption back in order to
prevent it – “Reductio ad absurdum”, or “reasoning by contradiction”.

In chapter 7 we present semantics more sceptical than WFSX, that avoid contradiction in
many cases where the latter gives no meaning to a program. For example ISS assigns to the
above program the meaning (with the obvious abbreviations for constants):

{man(s),¬fly(t), bird(t), not fly(t)}

which exactly corresponds to the intuition above.

1Other researchers have defined paraconsistent semantics for even contradictory programs e.g. [Costa, 1974,
Blair and Subrahmanian, 1987, Kifer and Lozinskii, 1989, Sakama, 1992, Wagner, 1993]. This is not our concern.
On the contrary, we wish to remove contradiction whenever it rests on withdrawable assumptions.

109
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Furthermore, there is motivation to consider even more sceptical semantics, where some of
the acceptable assumptions or hypotheses might not in fact be accepted.

For instance, the acceptance of a hypothesis may be conditional upon the equal acceptance
of another. This is typical of hypothesizing faults in a device, whenever causally deeper faults
are to be preferred over hypothesized faults that are simply a consequence of the former: the
latter cannot be hypothesized without the first. Moreover, problem specific and user defined
preference criteria affecting acceptance of hypotheses may also come to bear. Another case in
point is logic program debugging, where one wants to hypothesize about the primitive cause
of a bug, and not about the bugginess of some clause, if there is the possibility that that
clause relies in fact on a still buggy predicate [Pereira et al., 1993d, Pereira et al., 1993e,
Pereira et al., 1993c]. In general, the clauses of a logic program may be seen as providing a
causal directionality of inference, similar to physical causality directionality, so that a distinction
can sometimes be drawn about the primacy of one hypothesis over another, cf. [Konolige, 1992,
Brewka and Konolige, 1993].

Example 8.2 Consider this program, describing bycicle behaviour:

¬wobbly wheel ← not flat tyre, not broken spokes
flat tyre ← leaky valve
flat tyre ← punctured tube
¬no light ← not faulty dynamo

plus the factual observation:
wobbly wheel

The ISS assigns to it the meaning:

{wobbly wheel, not faulty dynamo,¬no light, not no light,
not leaky valve, not punctured tube}

neither accepting the hypothesis not flat tyre nor not broken spokes because acceptence of
any of them, if the other were accepted too, would lead to a contradiction. Being sceptical ISS
accepts neither. However, one would like the semantics in this case to delve deeper into the
bycicle model and, again being sceptical, accept neither not leaky valve nor not punctured tube
as well.

In order to respond to such epistemological requirements as above, we begin by introducing
into the complete scenario semantics the more flexible notion of optative acceptance of hypothe-
ses. Optative hypotheses are those that might or might not be accepted if acceptable at all.
On the other hand, non–optative hypotheses must be accepted if acceptable.

First we make no restriction on what the optatives are, and consider that they are given by
the user along with the program. Then we proceed to consider the issue of infering optative
hypotheses from the program, given some specific criteria. In particular we show how to infer
optatives when the criteria is to consider as such those hypotheses that do not depend on any
other2.

As claimed before, these very sceptical semantics model rational reasoners who assume the
program absolutelly correct and so, whenever confronted with an acceptable hypothesis leading
to an inconsistency cannot accept such a hypothesis; i.e. they prefer to assume the program
correct rather than assume that an acceptable hypothesis must perforce be accepted.

WFSX models less sceptical reasoners who, confronted with an inconsistent scenario, prefer
considering the program wrong rather than admitting that an acceptable hypothesis be not

2Considered above as the preferred criterium for the case of fault finding, and debugging.
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accepted. Such a reasoner is more confident in his acceptability criterium: an acceptable
hypothesis is accepted once and for all; if an inconsistency arises then there is certainly a
problem with the program, not with the individual acceptance of each acceptable hypothesis.
If the problem is with the program its revision is in order.

This view position can be justified if we think of a program as something dynamic, i.e.
evolving in time. In this position each program results from the assimilation of knowledge
into a previous one. If an inconsistency arises from the knowledge assimilation then a revision
process should be considered so as to restore consistency.

In [Kowalski, 1990], Kowalski presents a detailed exposition of the intended behaviour of
this knowledge assimilation processes in various cases. There he claims the notion of integrity
constraints is needed in logic programming both for knowledge processing, representation, and
assimilation. The problem of inconsistency arises from nonsatisfaction of the integrity con-
straints. If some new knowledge can be shown incompatible with the existing theory and
integrity constrains, a revision process is needed to restore satisfaction of those constraints.

In extended logic programming we can view the requirement of noncontradiction as integrity
constraint satisfaction, where constraints are of the form ← L,¬L. But then there is no reason
why we should not allow a more general form of integrity contraints. In this chapter we extend
logic programs with integrity constraints in the form of denials.

Example 8.3 Suppose we have some program describing political affiliation and don’t want
to say that non democrats are republicans and vice–versa. Thus ¬republican(X) should not
correspond to democrat(X) and ¬democrat(X) should not correspond to republican(X). How-
ever, no one must be known both as a republican and a democrat. This knowledge can be easily
represented by the integrity constraint:

← democrat(X), republican(X)

Let’s go back now to example 8.1. We can also view that program as the result of knowledge
assimilation into a previous knowledge base expressed by a program. For example the program
can be thought of as the adding to the previous knowledge the fact that tweety does not fly.
According to WFSX the resulting program is inconsistent. One way of restoring consistency to
the program would be to add a rule stating that ab(tweety) cannot be false, viz. it would lead
directly to a contradiction:

ab(tweety) ← not ab(tweety)

The resulting program is now noncontradictory and its WFSX is:

{man(s),¬fly(t), bird(t), not fly(t)}

which corresponds to the intuition.

In this chapter we begin by presenting a sceptical semantics for extended logic programs
plus integrity contraints in the form of denials, based on the notion of optative hypotheses,
which avoids contradiction. We also define a program revision method for removing contradic-
tion from contradictory programs under WFSX. Then, we show the equivalence between the
(contradiction avoidance) semantics and the WFSX of the revised program obtained by the
contradiction removal method. Finally, we show examples of application to diagnosis and to
the debugging of pure Prolog programs.

Parts of this chapter appear in [Alferes and Pereira, 1993a], [Pereira and Alferes, 1993a] and
in [Pereira and Alferes, 1993b].
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8.1 Logic programming with denials

As argued by Reiter in [Reiter, 1990], the basic idea of integrity constraints is that only some
program (or database) states are considered acceptable, and those constraints are meant to
enforce these acceptable states.

Integrity constraints can be of two types:

Static The enforcement of these constraints depends only on the current state of the program,
independently of any prior state. The democrat/republican constraint above is one such
example.

Dynamic These depend on two or more program states. In [Reiter, 1990], Reiter gives as
example the knowledge that employee salaries can never decrease.

It is not a purpose of this work to deal with the evolution of a program in time. Thus
dynamic integrity contraints are not addressed. Since we only want to deal with the problem of
inconsistency, it is enough that the only static integrity constraints considered be in the form
of denials. For a study of different forms of static constraints and their satisfaction see [Reiter,
1990].

Next we formally define the language of extended logic programs plus denials, and the notion
of integrity contraint satisfaction adopted in this chapter.

A program with integrity rules (or constraints) is a set of rules as defined in section 2.1,
plus a set of denials, or integrity rules, of the form:

⊥ ← A1, . . . , An, not B1, . . . , not Bm

where A1, . . . , An, B1, . . . , Bm are objective literals, and n + m > 0. The symbol ⊥ stands for
falsity.

A program P with a semantics SEM satisfies the integrity constrains iff:

P 6|=SEM ⊥

8.2 Contradiction avoidance

In this section we present a semantics more sceptical than ISS, based on the notion of scenaria
described in section 7. Thus the attending notions of program transformation (in order to
obtain only Horn programs),of consequence given a scenario, etc., all apply here.

To deal with denials we extend the notion of consistent scenario.

Definition 8.2.1 (Consistent scenario wrt ICs) A scenario P ∪H of a program with in-
tegrity constraints IC is consistent iff:

• for all objective literals L such that:

P ∪H ∪Mand(H) ` L,

neither
not L ∈ H ∪Mand(H) nor P ∪H ∪Mand(H) ` ¬L,

and

• P ∪H ∪Mand(H) ∪ IC 6` ⊥3.

3ICs are treated like any other rule for deriving ⊥, hence the designation of “integrity rule”.
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If one implicitly adds to a program P constraints of the forms:

⊥ ← L, not L

for every objective literal L of P, then the first condition above is obviously subsumed by the
second one, and thus can be withdrawn.

Proposition 8.2.1 A scenario P ∪H of a program with integrity constrains IC is consistent
iff:

P ∪H ∪Mand(H) ∪NIC 6` ⊥
where:

NIC = IC ∪ {⊥ ← L, not L; ⊥ ← L,¬L | L ∈ lang(P )}

Like for extended logic programs before, an extended logic program with denials may have
no consistent scenaria.

Example 8.4 Program P :

¬democrat(husband(mary)) ←
republican(mary) ←

democrat(X) ← ¬democrat(husband(X))

⊥ ← democrat(X), republican(X)

has no consistent scenario.

Definition 8.2.2 (Consistent program with ICs) An extended logic program P with in-
tegrity constraints IC is consistent iff it has some consistent scenario.

N.B. From now on, unless otherwise stated, we restrict programs to consistent ones only.

In WFSX every acceptable hypothesis must be accepted. Consequently some programs
might have no meaning. In ISS some acceptable hypotheses are not accepted in order to
avoid inconsistency. However, as shown in example 8.2, ISS allows no the control over which
acceptable hypotheses are not accepted. Conceivably, any acceptable hypothesis may or may
not actually be accepted, in some discretionary way.

It is clear from example 8.2 that we wish to express that only the hypotheses

not broken spokes, not leaky valve, not faulty dynamo and not punctured tube

may be optative, i.e. to be possibly accepted or not, if at all acceptable. The acceptance of
hypotheses like not flat tyre is to be determined by the acceptance of other hypotheses, and
so we wish them accepted once acceptable.

Thus we should distinguish between optative hypotheses (or optatives) and non–optative
ones. That distinction made, we can conceive of scenaria that might not be complete wrt
optatives, but are still complete wrt non–optatives, i.e. scenaria which contain all acceptable
hypotheses except for possibly optative ones.

Definition 8.2.3 (Optative hypotheses) The set of optative hypotheses Opt is any subset
of not H.

In general, when not accepting some optative hypothesis not L, i.e. when not assuming
the falsity of L, then some otherwise acceptable hypotheses become unacceptable. The sense
desired is that program models where the optative is true are not ruled out.
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Example 8.5 Let P :
p ← not a
a ← b

⊥ ← p

where not b is the only optative, i.e. Opt = {not b}.
In our notion of optative, if not b is not accepted then not a is unacceptable, i.e. if optative

b is not assumed false, the possibility of being true must be considered and so a cannot be
assumed false; P ∪ {b} ` a counts as evidence against not a.

Definition 8.2.4 (Acceptable hypothesis wrt Opt) A hypothesis not L is acceptable wrt
scenario P ∪H and set of optatives Opt iff

not L is acceptable4 both wrt P ∪H and P ∪H ∪ F

where F is the set of facts
not ((Opt ∩Acc(H))−H)

i.e. F is the set of complements of acceptable Opts wrt H which are not in H (that is which
were not accepted).

AccOpt(H) denotes the set of acceptable hypotheses wrt P ∪H and Opt.

Example 8.6 In example 8.5 AccOpt({not p}) = {}.
not b is not acceptable because, even though acceptable wrt P ∪{not p}, it is not acceptable

wrt P ∪ {not p} ∪ {b}5. The same happens with not a.

With this new more general notion of acceptability, we can define scenaria that are partially
complete, in the sense that they are complete wrt non–optatives, but might not be complete
wrt optatives (condition (iii) below).

Definition 8.2.5 (Complete scenario wrt Opt) A scenario P ∪ H is a complete scenario
wrt a set of optatives Opt iff it is consistent, and for each not L :

(i) not L ∈ H ⇒ not L ∈ AccOpt(H) ∨ not L ∈ Mand(H)
(ii) not L ∈ Mand(H) ⇒ not L ∈ H
(iii) not L ∈ AccOpt(H) and not L 6∈ Opt ⇒ not L ∈ H

Remark 8.2.1 By making Opt = {} the previous definitions of acceptability wrt Opt and of
complete scenaria wrt Opt correspond exactly to those of acceptability and complete scenaria in
section 7.

By making Opt = not H the definitions of acceptability wrt Opt and of complete scenaria
wrt Opt correspond exactly to those of acceptability and admissible scenaria in section 7.

Note that in complete scenario S = P ∪H wrt Opt a hypothesis in Opt which is acceptable
wrt P∪H but leads to an inconsistent scenario, will not be accepted in S to preserve consistency.
This amounts to contradiction avoidance.

Example 8.7 Recall the wobbly wheel example 8.2. If Opt were {} there would be no complete
scenaria. If (with the obvious abbreviations):

Opt = {not bs, not lv, not pt, not fd}
4Acceptable cf. definition 7.1.7.
5Note that here not ((Opt ∩Acc(H))−H) = not ({not b} − {not p}) = {b}.
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complete scenaria wrt Opt are :

{not ¬ww} {not ¬ww, not fd, not bs}
{not ¬ww, not fd} {not ¬ww, not lv, not pt, not ft}
{not ¬ww, not bs} {not ¬ww, not fd, not lv}
{not ¬ww, not lv} {not ¬ww, not lv, not pt, not ft, not fd}
{not ¬ww, not pt} . . .

Intuitively, it is clear that some of these scenaria are over–sceptical, in the sense that they
fail to accept more optatives than need be to avoid contradiction. For example in the first
scenario in order to avoid contradiction none of the optatives where accepted. This occurs
because no condition of maximal acceptance of optatives has been enforced.

In order to impose this condition we begin by identifying, for each complete scenario wrt
Opt, those optatives that though acceptable were not accepted.

Definition 8.2.6 (Avoidance set) Let P ∪H be a complete scenario wrt Opt. The avoidance
set of P ∪H is (the subset of Opt):

(Opt ∩Acc(H))−H

Example 8.8 The avoidance set of the first scenario in example 8.7 is:

{not lv, not pt, not fd}
and of the second one is:

{not lv, not pt}
In keeping with the vocation of scepticism of WFSX, we are specially interested in those

scenaria which, for some given avoidance set, are minimal.

Definition 8.2.7 (Base scenario wrt Opt) A complete scenario P ∪ H wrt Opt, is a base
scenario if there exists no scenario P ∪H ′ with the same avoidance, set such that H ′ ⊂ H.

Example 8.9 Consider the program P :

a ← not b
b ← not a
c ← not d

⊥ ← c

with Opt = {not d}.
Complete scenaria wrt Opt are:

{} {a, not b} {b, not a}
For all the avoidance set is {not d}. The corresponding base scenario wrt Opt is the first.

Proposition 8.2.2 The set of all base scenaria wrt Opt under set inclusion forms a lower
semi–lattice.

Proof: Let P ∪H1 and P ∪H2 be two base scenaria with avoidance sets S1 and S2 respectively.
We prove that there is a single maximal scenario P ∪H such that H ⊆ H1 and H ⊆ H2.

Such a scenario must have an avoidance set S ⊇ S1 ∪ S2. From the definition of complete
scenario wrt Opt there exists one scenario such that its avoidance set S = S1 ∪ S2. It is clear
from lemma 8.4.1 below, that there is a least scenario with S as avoidance set. ♦

Consider now those scenaria comprising as many optatives as possible, i.e. have minimal
avoidance sets:
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Definition 8.2.8 (Quasi–complete scenario wrt Opt) A base scenario P∪H wrt Opt, with
avoidance set S, is quasi–complete if there is no base scenario P ∪H ′ wrt Opt with avoidance
set S′, such that S′ ⊂ S.

Example 8.10 In example 8.7 the quasi–complete scenaria wrt Opt are:

{not ¬ww, not fd, not bs, not lv}
{not ¬ww, not fd, not bs, not pt}

{not ¬ww, not fd, not lv, not pt, not ft}
These correspond to minimal faults compatible with the wobbly wheel observation, i.e. the

ways of avoiding contradiction (inevitable if Opt were {}) by minimally not accepting acceptable
optatives. In the first not pt was not accepted, in the second not lv, and in the third not bs.

As the consequences of all these quasi–complete scenaria are pairwise incompatible6 the
well-founded model, being sceptical, is their meet in the semi–lattice of proposition 8.2.2, so
that its avoidance set is the union of their avoidance sets.

Definition 8.2.9 (Well–founded semantics wrt Opt) The well–founded model of an ex-
tended logic program P with ICs is the meet of all quasi–complete scenaria wrt Opt in the
semi–lattice of all base scenaria.

For short we use WFSOpt to denote the well–founded model wrt Opt.

Example 8.11 In example 8.7 WFSOpt is:

P ∪ {not ¬ww, not fd}
Thus one can conclude:

{ww,¬nl, not ¬ww, not fd}
i.e. no other hypothesis can be assumed for certain; everything is sceptically assumed faulty
except for fd. This differs from the result of ISS, shown in example 8.2.

Example 8.12 Consider the statements:

• Let’s go hiking if it is not known to rain.

• Let’s go swimming if it is not known to rain.

• Let’s go swimming if the water is not known to be cold.

• We cannot go both swimming and hiking.

They render the set of rules P :

hiking ← not rain
swimming ← not rain
swimming ← not cold water

⊥ ← hiking, swimming

and let Opt = {not rain, not cold water}.
Complete scenaria wrt Opt are:

P ∪ {} P ∪ {not cold water}
where the latter is the well founded wrt Opt. It entails that swimming is true. Note that
not rain is not assumed because it is optative to do so, and by assuming it contradiction would
be unavoidable.

6In the sense that neither contains any other.
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To obtain less sceptical complete scenaria wrt Opt, and in the spirit of the above described
partial stable models, we introduce:

Definition 8.2.10 (Partial scenario wrt Opt) Let P be an extended logic program with ICs,
and let the well–founded semantics of P wrt Opt be P ∪H.

P ∪K is a partial scenario of P wrt Opt iff it is a base scenario wrt Opt and H ⊆ K.

Example 8.13 The partial scenaria of P wrt Opt in example 8.7 are the union of P with each
of:

{not ¬ww, not fd} {not ¬ww, not fd, not bs, not lv}
{not ¬ww, not fd, not bs} {not ¬ww, not fd, not bs, not pt}
{not ¬ww, not fd, not lv} {not ¬ww, not fd, not lv, not pt, not ft}
{not ¬ww, not fd, not pt}

The first is the WFSOpt (cf. example 8.11), which corresponds to the most sceptical view
whereby all possibly relevant faults are assumed. The other partial scenaria represent, in
contrast, all other alternative hypothetical presences and absences of faults still compatible
with the wobbly wheel observation.

If a program is noncontradictory (i.e. its WFSX exists) then no matter which are the
optatives, the well-founded semantics wrt Opt is always equal to the least complete scenario
(and so, ipso facto, equivalent to the WFSX).

Theorem 8.2.1 (Relation to WFSX) If WFSX is defined for a program P with empty set
of ICs then, for whatever Opt, WFSOpt is the least complete scenario of P.

Proof: If WFSX is defined for P then there exists at least one complete scenario of P. Thus
there exists at least one complete scenario wrt Opt, P ∪H, such that its avoidance set is empty.
So the only quasi–complete scenario, and WFSOpt, is the base scenario with empty avoidance
set.

By definition, the set of complete scenaria wrt Opt with empty avoidance set coincides
with the set of complete scenaria, and thus the least complete scenario coincides with the base
scenario wrt Opt. ♦

Since, cf. theorem 4.3.6, for programs without explicit negation WFSX is equivalent to the
well–founded semantics of [Gelder et al., 1991] (WFS):

Theorem 8.2.2 Let P be a (non–extended) normal program. Then, for whatever Opt, the
well–founded semantics wrt Opt is equivalent to its WFS.

8.2.1 Primacy in optative reasoning

Up to now no restriction whatsoever was enforced regarding the optatives of programs. It is
possible for optatives to be identified by the user along with the program, or for the user to rely
on criteria for specifying the optatives, and expect the system to infer them from the program.

Next we identify a special class of optatives, governed by an important criterium [Konolige,
1992, Brewka and Konolige, 1993]:

Exactly the hypotheses not depending on any other are optative.

Example 8.14 Let P :
a ← not b
b ← not c
c ← not d

Clearly not a depends on not b, not b on not c and not c on not d. not d alone does not
depend on any other hypothesis, thus according to this criterium, it should be the only optative.
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In diagnosis this criterium means hypothesizing as abnormal first the causally deeper faults.
It is known that in taxonomies with exceptions, this is not the desired preference criterium.

To give priority to the most specific default information only a hypothesis on which no other
depends should be optatives. This way the relinquishing of default hypotheses to avoid contra-
diction begins with less specific ones.

The subject of defining preference criteria to automatically determine optative hypotheses
is complex. It is closely related to that of preference among defaults [Geerts and Vermeir, 1993].

The study of how to infer optatives for criteria different from the one above, is left as an
open problem.

Clearly, every hypothesis which is not acceptable in P ∪ {} depends on the acceptance of
some other hypothesis. In other words, if a hypothesis not L is acceptable in a scenario P ∪H,
but is not acceptable in P ∪ {}, this means that in order to make not L acceptable some other
hypotheses S ⊆ H have to be accepted first. Thus not L depends on the hypotheses of S, and
the latter are more primal than not L. As a first approximation, let me define the set of prime
optative hypotheses as Acc({}).

Example 8.15 In program P of example 8.14 Acc({}) = {not d}. So the only prime optative
hypothesis is not d. Hypothesis not b is not prime optative because it is only acceptable once
not d is accepted, otherwise not c constitutes evidence to the contrary.

In general, not all hypotheses in Acc({}) though are independant of one another. Hence we
must refine our first approximation to prime optatives.

Example 8.16 Consider P :
a ← b
b ← c
p ← not a

⊥ ← p

Acc({}) = {not a, not b, not c}

and the WFS wrt Acc({}) is P ∪ {not b, not c}.
However, it is clear from the program that only not c should be prime optative, since the

acceptance of not b depends on the absence of conclusion c in P, but not vice–versa, and likewise
regarding the acceptance of not a.

Any definition of a semantics based on the notions of scenaria and evidence alone cannot
distinguish the optative primacy of not c, because it is insensitive to the groundedness of literals,
viz. there being no rules for c, and thus its non–dependance on other hypotheses.

An assymmetry must be introduced, based on a separate new notion, to capture the causal
directionality of inference implicit in logic program rules, as mentioned in the introduction to
this chapter:

Definition 8.2.11 (Sensitive hypotheses) A hypothesis not A ∈ Acc({}) is sensitive to a
separate set of hypotheses not S in program P iff

not A 6∈ Acc(P ∪ S)

Note that S is a set of facts.
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Definition 8.2.12 (Prime optatives) A hypothesis not A ∈ Acc({}) is prime optative iff for
all not S ⊆ Acc({}) :

if not A is sensitive to not S then some element of not S is sensitive to not A.

The set of all prime optatives is denoted by POpt.

As shorthand, we refer to the well–founded semantics wrt the set of prime optatives as the
prime optative semantics, or POS.

Example 8.17 In example 8.16 the only prime optative hypothesis is not c. For example, not a
is not prime optative since not a is sensitive to not b and not b is not sensitive to not a.

Example 8.18 In the wobbly wheel example:

POpt = {not bs, not pt, not lv, not fd}

For this example Acc({}) = POpt ∪ {not ft}.
However not ft is not prime optative since it is sensitive to both not lv and not pt.

Example 8.19 Consider program P :

p ← not a a ← b c ← not d
¬p ← b ← a, not c

where:
Acc({}) = {not a, not b, not d}

All of these are prime optatives:

• not d is prime optative because it is insensitive to other hypotheses;

• not b is prime optative because it is only sensitive to not a, and not a is sensitive to not b;

• similarly for not a.

By insisting on only allowing prime optatives to be possibly accepted, even if acceptable,
one may fail to give meaning to some consistent programs, as there are less options for avoiding
inconsistency.

Example 8.20 Consider program P :

c ← not b
b ← not a

¬a
⊥ ← not c

In this case POpt = Acc({}) = {not a}, and no complete scenario wrt POpt exists. Thus
neither ISS wrt POpt nor POS are defined.

Note that by making Opt = {not c}, P ∪ {not a} is now complete wrt Opt. In fact this
scenario correspont to the WFM{not c}, expressing that contradiction is avoided by not assuming
the optative hypothesis not c. It still allows the conclusions {¬a, not a, b}.
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8.3 Contradiction removal

It has argued in the introduction to this chapter that, to deal with the isuue of contradiction
brought about by closed world assumptions, rather then defining more sceptical semantics one
can rely instead on a less sceptical semantics and accompany it with a revision process that
restores consistency, whenever violation of integrity contraints occurs.

In this section we define a revision process, that restores consistency for programs contra-
dictory with respect to WFSX. This process relies on the allowing to take back assumptions
about the truth of negative literals.

The set negative literals on which a revision can be made, i.e. the assumption of their
truthfulness can be removed, is the set of revisable literals, and can be any subset of not H.

In [Pereira et al., 1991a] a revision semantics was defined where only base closed world
assumption are revisables. There revisables are default literals whose complement has no rules.
In [Pereira et al., 1992b] the notion of base closed world assumption was improved, in order to
deal with the case of loops without interposing not s7. The notion of revisables presented there
is similar to the notion of prime optatives above.

As we show in section 8.4 the issue of which are the revisables (in contradiction removal) is
tantamount to that of which are the optatives (in contradiction avoidance). Thus the discussion
on primacy of optatives is applicable to the issue of what literals are to be revisables.

So no restriction is made here on which default literals should be considered revisables.
Revisable literal are supposed provided by the user along with the program8.

For instance, in example 8.2 the revisable literals might be:

{not fd, not lv, not pt, not bs}

By not introducing not fd in this set, we are declaring that, in order remove some contradiction,
we will not consider directly revising its truth value. However, this does not mean that by
revising some other literal the truth value of not fd will not changed.

We take back revisable assumptions, i.e. assumptions on revisable literals, in a minimal way,
and in all alternative ways of removing contradiction. Moreover, we identify a single unique
revision that defines a sceptical revision process which includes all alternative contradiction
removing revisions, so as not to prefer one over the other. This is akin in spirit to the approach
of PSMs in [Przymusinska and Przymusinski, 1990, Przymusinski, 1990a], where the WFM is
the intersection of all the PSMs.

The notions of minimality and contradiction removal employed are useful for dealing with
Belief Revision through WFSX. Consider the noncontradictory program P :

p ← not q
¬p ← r, not t

and the additional information: r. Our proposed revision for P ∪ {r} provides the minimal
model {r}, and two extended additional ones, namely:

{r, p, not ¬p, not q} and {r,¬p, not p, not t}.

These two models can be seen as alternative minimal changes to the WFM of P in order to
incorporate the new information: one making t undefined rather than false by CWA, and the

7If not a is considered a base closed world assumption in a program without rules for a, then there is no
reason for not a not being one such assumption in a program where the only rule for a is a ← a.

8The declaration of revisable literals by the user is akin to that of abducible literals. Although some frameworks
identify what are the abducible for some particular problems ([Eshghi and Kowalski, 1989] where abducibles are of
the form a∗), theories of abduction, for the sake of generality, make no restriction on which literals are abducibles,
and assume them provided by the user.
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other making q undefined instead. Model {r} is obtained by making both t and q undefined. It is
the one with sufficient and necessary changes compatible with the new information, whenever no
preference is enforced about which relevant revisable literals to unassume, in fact by unassuming
them all. Revisions can be defined as those programs, obtained from the original one in a
unique way, whose WFSX are each of the noncontradictory models above. In this example
these programs are:

P ∪ {r} ∪ {t ← not t}
P ∪ {r} ∪ {q ← not q}
P ∪ {r} ∪ {t ← not t; q ← not q}

Notice how a rule of the form L ← not L changes the assumption not L from true to undefined.
The structure of this section is as follows: first we present a paraconsistent extension of

WFSX. Then we define the intended revisions declaratively. Afterwards we define some useful
sets for establishing the causes of and the removal of contradictions within WFSX, and prove
that the result of their use concurs with the intended revisions defined. Finally some hints for
the implementation are given.

8.3.1 Paraconsistent WFSX

In order to revise possible contradictions we need first to identify those contradictory sets
implied by a program under a paraconsistent WFSX. The main idea here is to compute all
consequences of the program, even those leading to contradictions, as well as those arising
from contradictions. The following example provides an intuitive preview of what we intend to
capture:

Example 8.21 Consider program P :

a ← not b (i) d ← not a (iii)
¬a ← not c (ii) e ← not ¬a (iv)

1. not b and not c hold since there are no rules for either b or c

2. ¬a and a hold from 1 and rules (i) and (ii)

3. not a and not ¬a hold from 2 and the coherence principle

4. d and e hold from 3 and rules (iii) and (iv)

5. not d and not e hold from 2 and rules (iii) and (iv), as they are the only rules for d and e

6. not ¬d and not ¬e hold from 4 and the coherence principle.

The whole set of literal consequences is then:

{not b, not c,¬a, a, not a, not ¬a, d, e, not d, not e, not ¬d, not ¬e}.

Without loss of generality (cf. corollary 10.1.1), and for the sake of simplicity, we consider
that programs are always in their canonical form (cf. definition 2.1.1).

For the purpose of defining a paraconsistent extension of WFSX, we begin by defining what
an interpretation is in the paraconsistent case.

Definition 8.3.1 (p–interpretation) A p–interpretation I is any set T ∪ not F , such that if
¬L ∈ T then L ∈ F (coherence).

The modification of the Coh operator is also straightforward:



122 CHAPTER 8. DEALING WITH CONTRADICTION

Definition 8.3.2 (The Cohp operator) Let QI = QT ∪ not QF be a set of literals. We
define Cohp(QI) as the p–interpretation T ∪ not F such that

T = QT and F = QF ∪ {¬L | L ∈ T}.

Note that in both definitions the enforcement of disjointness on sets T and F has been
withdrawn.

Now we generalize the modulo transformation (definition 4.2.1 in page 31) to the paraconsis-
tent case. If we assume, without loss of generality, that programs are always in their canonical
form, according to theorem 4.2.4 the generalization can be made in the compact version of the
transformation, thereby simplifying the exposition.

In the compact definition of the P
I transformation one can apply the first two operations

in any order, because the conditions of their application are disjoint for any interpretation. A
potencial conflict would rest on applying both the first and the second operation, but that can
never happen because if some A ∈ I then not A 6∈ I, and vice–versa.

This is not the case for p–interpretations pI, where for some objective literal A both A and
not A might belong to pI. Thus if one applies the transformation to p–interpretations, different
results are obtained depending on the order of the application of the first two operations.

Example 8.22 Consider program P of example 8.21, and let us compute:

P

{a,¬a, not ¬a, not a, not b, not c} .

If one applies the operations in the order they are presented:

• Rules (iii) and (iv) of P are removed since both a and ¬a belong to the p–interpretation.

• not b and not c are removed from the bodies of rules since not b and not c belong to the
p–interpretation.

and the resulting program is:
a ←
¬a ←

But if one applies the second operation first:

• not b, not c, not a, and not ¬a are removed from the bodies of rules since not b, not c,
not a, and not ¬a belong to the p–interpretation.

• Since no literals remain in the body of rules no other operation is applicable.

The resulting program in this case is:

a ← d ←
¬a ← e ←

In order make the transformation independent of the order of application of the operations
we define the corresponding transformation for the paraconsistent case as being nondeterministic
in the order of application of those rules.

Definition 8.3.3 (P
I p transformation) Let P be a canonical extended logic program and let

I be a p–interpretation. By a P
I p program we mean any program obtained from P by first

non–deterministically applying the operations until they are no longer applicable:

• Remove all rules containing a default literal L = not A such that A ∈ I.
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• Remove from rules their default literals L = not A such that not A ∈ I.

and by next replacing all remaining default literals by proposition u.

In order to get all consequences of the program, even those leading to contradictions, as
well as those arising from contradictions, we consider the consequences off all possible such P

I p
programs.

Definition 8.3.4 (The Φp operator) Let P be a canonical extended logic program, I a p–
interpretation, and let Pk such that k ∈ K be all the possible results of P

I p. Then:

Φp
P (I) =

⋃

k∈K

Cohp(least(Pk))

Theorem 8.3.1 (Monotonicity of Φp) The Φp operator is monotonic under set inclusion of
p–interpretations.

Proof: We have to prove that for any two p–interpretation A and B such that A ⊆ B, then
Φp(A) ⊆ Φp(B).

Let PAk
, k ∈ K, and PBj , j ∈ J, be the programs obtained from, respectively, P

Ap and P
B p.

Since A ⊆ B then for every PAk
there exists a PBj such that for every rule

H ← Body ∈ PBj

there exists a rule
H ← Body ∪Body′ ∈ PAk

.

This is necessarily the case because B, having more literals than A, can always remove more
rules and default literals in the bodies than A. Thus:

∀PAk
∃PBj | least(PAk

) ⊆ least(PBj )

Now we prove that Cohp is also monotonic, i.e for any two p–interpretations

I = TI ∪ not FI and J = TJ ∪ not FJ

such that
TI ⊆ TJ and FI ⊆ FJ ,

Cohp(I) ⊆ Cohp(J) holds.

Cohp(I) ⊆ Cohp(J) is equivalent, by definition of Cohp, to

TI ∪ not (FI ∪ {¬L | L ∈ TI}) ⊆ TJ ∪ not (FJ ∪ {¬L | L ∈ TJ})
since TI ⊆ TJ by hypothesis, the above is true if:

FI ∪ {¬L | L ∈ TI} ⊆ FJ ∪ {¬L | L ∈ TI} ∪ {¬L | L ∈ TJ − TI}
which is equivalent to

FI ⊆ FJ ∪ {¬L | L ∈ TJ − TI}
which holds because, by hypothesis, FI ⊆ FJ .

With this result, and the other one above:

∀PAk
∃PBj | Cohp(least(PAk

)) ⊆ Cohp(least(PBj ))
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and consequently: ⋃

k∈K

Cohp(least(PAk
)) ⊆

⋃

j∈J

Cohp(least(PBj ))

♦
Given that Φp is monotonic, then for every program it always has a least fixpoint, and this

fixpoint can be obtained by iterating Φp starting from the empty set:

Definition 8.3.5 (Paraconsistent WFSX) The paraconsistent WFSX of an (canonical) ex-
tended logic program P, denoted by WFSXp(P ), is the least fixpoint of Φp applied to P.

If some literal L belongs to the paraconsistent WFSX of P we write:

P |=p L

Proposition 8.3.1 (Existence of WFSX p) WFSXp(P ) is defined for every program with
ICs.

Proof: Since no restriction whatsoever has been made on the application of Φp, and given
the proof of monotonicity of this operator, a least fixpoint of it exists for every program. ♦

Example 8.23 Let us compute the paraconsistent WFSX of the program in example 8.21. P
is already in canonical form.

We start with the empty set. The only program obtained from P
{}p is P0,1 :

a ← u d ← u
¬a ← u e ← u

and I1 = Cohp(least(P0,1)) = {not b, not c}
By P

I1
p we only get one program, P1,1 :

a ← d ← u
¬a ← e ← u

and I2 = Cohp(least(P1,1)) = {a, not ¬a,¬a, not a, not b, not c}
The result of P

I2
p are the four programs:

P2,1 : a ← P2,2 : a ← P2,3 : a ← P2,4 : a ←
¬a ← ¬a ← ¬a ← ¬a ←

d ← d ← e ←
e ←

For example, P2,1 was obtained by applying the second operation to both rules (iii) and (iv),
which is possible because both not a and not ¬a belong to I2. P2,4 was obtained by applying
the first operation to both rules (iii) and (iv), which is possible because both a and ¬a belong
to I2.

It is easy to see that I3 = Φp(I2) =

{not b, not c,¬a, a, not a, not ¬a, d, e, not d, not e, not ¬d, not ¬e}

By applying P
I3

p one gets exactly the same program as in P
I2

p and thus Φp(I3) = I3. So, I3

is the least fixpoint of Φp and, consequently, the paraconsistent WFSX of P.

Now we can give a definition of a contradictory program with ICs:
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Definition 8.3.6 (Contradictory program with ICs) A program P with language Lang
where A is an atom, and a set of integrity constraints IC is contradictory iff

P ∪ ICs ∪ {⊥ ← A,¬A | A ∈ Lang} |=p ⊥

In this section we always refer to the paraconsistent WFSX as an extension of WFSX for
noncontradictory programs. This is so because:

Proposition 8.3.2 For a noncontradictory program P the paraconsistent WFSX coincides with
WFSX.

Proof: Since interpretations are p–interpretations, and for any noncontradictory set S of literals
Coh(S) = Cohp(S), and for any interpretation I P

I p is deterministic and equal to P
I , the result

follows trivially. ♦

8.3.2 Declarative revisions

Before tackling the question of which assumptions to revise to abolish contradiction, we begin
by showing how to impose in a program a revision that takes back some revisable assumption,
identifying rules of a special form, which have the effect of prohibiting the falsity of an objective
literal in models of a program. Such rules can prevent an objective literal being false, hence
their name:

Definition 8.3.7 (Inhibition rule) The inhibition rule for a default literal not L is:

L ← not L

By IR(S) where S is a set of default literals, we mean:

IR(S) = {L ← not L | not L ∈ S}

These rules state that if not A is true then A is also true, and so a contradiction arises.
Intuitively this is quite similar to the effect of integrity constraints of form ⊥ ← not A. Tech-
nically the difference is that the removal of such a contradiction in the case of inhibition rules
is dealt by WFSXitself, where in the case of those integrity constraints isn’t.

Proposition 8.3.3 Let P be any program such that for objective literal L, P 6|=p ¬L. Then:

P ∪ {L ← not L} 6|=p not L

Moreover, if there are no other rules for L, the truth value of L is undefined in WFSXp(P ).

Proof: Let P ′ = P ∪ {L ← not L}. We prove by transfinite induction that:

not L 6∈ Iα, where Iα = Φp↑α({})

• For limit ordinals: Since Φp↑0({}) = {}, not L 6∈ I0.
For limit ordinal δ, suppose that for all α < δ

not L 6∈ Φp↑α({})

Then, clearly:
not L 6∈

⋃ {
Φp↑α({}) | α < δ

}

i.e. not L 6∈ Φp↑δ({}).
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• Induction step Assume that not L 6∈ Ii, for some ordinal i. Then:

– if L 6∈ Ii then every transformed program P ′
Ii

p has the rule L ← u. Thus for every
transformed program

not L 6∈ least

(
P ′

Ii
p

)

and given that by hypothesis P 6|=p ¬L

not L 6∈ Cohp
(

least

(
P ′

Ii
p

))
.

Thus not L 6∈ Ii+1.

– if ÃL ∈ Ii then by monotonicity of Φp every transformed program has a rule L ←, and
thus not L 6∈ Ii+1.

Since WFSX p(P ′) = Φp↑λ({}) for some smallest ordinal λ, then not L 6∈ WFSX p(P ′). ♦
These rules allows, by adding them to a program, to force default literals in the paracon-

sistent WFSX to become undefined. Note that changing the truth value of revisable literals
from true to undefined is less committing than changing it to false. In order to obtain revisions
where the truth value of revisable literals is changed from true to false, one has to iterate the
process we’re about to define. The formal definition of such revisions can be found in [Pereira
et al., 1993d].

To declaratively define the intended program revisions void of contradiction we start by
first considering the resulting WFSXs of all possible ways of revising a program P with inhibi-
tion rules, by taking back revisable assumptions, even if some revisions are still contradictory
programs.

However, it might happen that several different revisions in fact correspond to the same, in
the sense that they lead to the same consequences.

Example 8.24 Consider program P :

⊥ ← not a

a ← b
b ← a
a ← c

with revisables Rev = {not a, not b, not c}.
Note that adding a ← not a, b ← not b, or both, leads to the same consequences. Intuitively

they are the same revision, since undefining a leads to the undefinedness of b and vice–versa.
Considering all three as distinct can be misleading because it appear that the program has three
differente revisions.

Revisables not a and not b are indissociable, and it is indifferent to introduce inhibition
rules for one, the other, or both. Moreover, only one of these hypotheses should be considered
as a revision. In the sequel, we coalesce the three revisions into a single standard one, that adds
both inhibition rules.

Definition 8.3.8 (Indissociable literals) Let P be an extended logic program with revisables
Rev. The set Ind(S) ⊇ S of indissociable literals of a set S of default literals is the largest subset
of Rev such that:

• Ind(S) ⊆ WFSXp(P ) and
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• WFSXp(P ∪ IR(S)) ∩ Ind(S) = {}
i.e. Ind(S) is the set of all revisables that change their truth value from true to undefined, once
inhibition rules are added for every default literals of S to change their truth value.

It is easy to see that such a largest set always exists (since Ind is monotonic), and that Ind
is a closure operator. Moreover:

Proposition 8.3.4 Let M = WFSXp(P ∪ IR(S)) for some subset of S of Rev. Then:

WFSXp(P ∪ IR(Ind(S))) = M

Proof: Let P ′ = P ∪ IR(S), and let not L be an arbitrary literal such that not L ∈ Ind(S) and
not L 6∈ S.

Directly from the second point of the definition of indissociables, it follows that not L is
undefined in P ′. Moreover, it is clear that the addition into any program P, of an inhibition
rule for some literal undefined in WFSX p(P ) does not change the well–founded model. Thus:

WFSX p(P ′) = WFSX p(P ′ ∪ IR({not L}))
♦

Example 8.25 In example 8.24:

Ind({not a}) = Ind({not b}) = {not a, not b}
and

Ind({not c}) = {not a, not b, not c}
Definition 8.3.9 (Submodels of a program) A submodel of a (contradictory) program P
with ICs, and revisable literals Rev, is any pair 〈M,R〉 where R is a subset of Rev closed under
indissociable literals, i.e:

∀S ⊆ R, Ind(S) ⊆ R

and:
M = WFSXp(P ∪ {L ← not L | not L ∈ R})9.

In a submodel 〈M,R〉 we dub R the submodel revision, and M are the consequences of the
submodel revision. A submodel is contradictory iff M is contradictory (i.e. either contains ⊥
or is not an interpretation)10.

The existence of WFSX p(P ) for any program P (cf. proposition 8.3.1) grants that M exists
for every subset of Rev. Moreover, since Ind is a closure operator:

Proposition 8.3.5 (Submodels lattice) The set of all submodels 〈M, R〉 of any program P
with revisable literals Rev forms a complete lattice under set inclusion on the submodel revisions.

The submodels lattice of example 8.24 is presented in figure 8.1.

Example 8.26 Consider program P :

p ← not q
¬p ← not r
a ← not b

with revisable literals Rev = {not q, not r, not b}. Its submodels lattice is depicted in figure
8.2, where shadowed submodels are contradictory ones. For simplicity, contradictory models
are not presented in full in the figure.

9For a study of submodels based on the PSMs instead of on the well–founded model see [Pereira et al., 1991b].
10Note the one–to–one correspondence between submodels and program revisions.
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{}
{not a, not b, not c}

{not c}
{not a, not b}

{⊥, not a, not b, not c}
{}

Figure 8.1: Submodels lattice of example 8.24.

⊥
{not b}

⊥
{}

{p, not ¬p, not q}
{not r, not b}

{a, not b}
{ not q, not r}

{¬p, not p, not r, a, not b}
{not q}

{p, not ¬p, not q, a, not b}
{not r}

{¬p, not p, not r}
{not q, not b}

{}
{not q, not r, not b}

Figure 8.2: Submodels lattice of example 8.26
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As we are interested in revising contradiction in a minimal way, we care about those submod-
els that are noncontradictory and among these, about those that are minimal in the submodels
lattice.

Definition 8.3.10 (Minimal noncontradictory submodel) A submodel 〈M,R〉 is a min-
imal noncontradictory submodel (MNS for short) of a program P iff it is noncontradictory and
there exists no other noncontradictory submodel 〈M ′, R′〉, such that R′ ⊂ R.

By definition, each MNS of a program P reflects a revision of P, P ∪ RevRules11 that
guarantees noncontradiction, and such that for any set of rules RevRules′ ⊆ RevRules closed
under indissociables, P ∪ RevRules′ is contradictory. In other words, each MNS reflects a
revision of the program that restores consistency, and which adds a minimal set, closed under
indissociables, of inhibition rules for revisables.

Example 8.27 Consider program P :

p(X) ← p(s(X))
a ← not p(s(X))
¬a

where s(X) denotes the successor of X, and let Rev = {not p(i) | i > 0}.
The only sets of inhibition rules that remove the contradiction are IR(Sk), such that:

Sk = {not p(i) | i > k}.

None of them is minimal.
However the closure under indissociable of each of them is:

S = {not p(i) | i > 0}

Thus the only noncontradictory submodel is 〈M, S〉, where

M = {¬a, not a, not p(0)}

and so it is also the only MNS.
Note that the revision models of each of the revisions above is indeed M (cf. proposition

8.3.4).

It is also clear that literals in the submodel revision indeed change their truth value once
the inhibition rules are added:

Proposition 8.3.6 If 〈M, R〉 is a MNS of program P then:

R ⊆ WFSXp(P )

Proof: Assume the contrary, i.e. 〈M, R〉 is a MNS of P and R 6⊆ WFSX p(P ). Then:

∃not L ∈ R | not L 6∈ WFSX p(P )

Thus, the addition of inhibition rule L ← not L has no effect in WFSX p(P ). Consequently,
R− {not L} is a noncontradictory submodel of P, and so 〈M,R〉 is not minimal. ♦

11Where RevRules is the set of inhibition rules for some submodel revision.
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Definition 8.3.11 (Minimally revised program) Let P be a program with revisable literals
Rev, and 〈M, R〉 some MNS of P. A minimally revised program MRP of P is:

P ∪ IR(R)

i.e. P plus one inhibition rule for each element of R.

It is clear that:

Proposition 8.3.7 If P is noncontradictory its single MNS is

〈WFSX(P ), {}〉,
and P itself is its only minimally revised program

Example 8.28 The minimally revised programs of the program in example 8.26 are:

MRP1 = {p ← not q;¬p ← not r; a ← not b; q ← not q} and
MRP2 = {p ← not q;¬p ← not r; a ← not b; r ← not r}.

Each of these two programs is a transformation of the original one that minimally removes
contradiction by taking back the assumption of truth of some revisables via their inhibition
rules12. In this example, one can remove the contradiction in p either by going back on the
closed world assumption of falsity of q (or truth of not q) or on the falsity of r. The program
that has the first effect is MRP1, the one with the second effect being MRP2. Having no reason
to render q alone, or r alone undefined, it is natural that a sceptical revision should accomplish
the effect of undefining them both.

Definition 8.3.12 (Sceptical revision) The sceptical submodel of a program P is the join
〈MJ , RJ〉 of all MNSs of P. The sceptical revised program of P is the program obtained from P
by adding to it an inhibition rule for each element of RJ .

It is important to guarantee that the sceptical revision indeed removes contradiction from
a program. This is so because:

Proposition 8.3.8 Let 〈M1, R1〉 and 〈M2, R2〉 be any two noncontradictory submodels. Then
submodel 〈M,R1 ∪R2〉 is also noncontradictory.

Proof: Since it is clear that R1 ∪ R2 is closed under indissociable, we only have to prove
that ⊥ 6∈ M. Since ⊥ 6∈ M1 and ⊥ 6∈ M2 it is enough to prove that M ⊆ M1 ∩M2.

By definition:

M = WFSX p(P ∪ {L ← not L | not L ∈ R1 ∪R2}).
As the extra rules only make literals undefined, and undefinedness only results in undefinedness,
adding them all leads at most to the same set of literals being true or false, compared to adding
them separately for only R1 or R2. ♦

Example 8.29 Consider contradictory program P :

p ← not q ¬p ← not a
q ← not r ¬a ← not b
r ← not s

with revisables Rev = {not q, not a, not b}. Figure 8.4 shows its submodels lattice, where MNSs
are shadowed and the sceptical submodels is in bold.

12Non–minimally revised programs can be defined similarly, by considering all noncontradictory submodels
instead of minimal ones only. We won’t consider them in the sequel however, though they are useful for other
purposes: viz. counterfactual reasoning, as defined in [Pereira et al., 1991d].
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⊥
{not b}

⊥
{}

{p, not ¬p, not q}
{not r, not b}

{¬p, not p, not r, a, not b}
{not q}

{p, not ¬p, not q, a, not b}
{not r}

{¬p, not p, not r}
{not q, not b}

{}
{not q, not r, not b}

{a, not b}
{not q, not r}

Figure 8.3: The MNSs of the program from example 8.26 are shadowed. Its sceptical submodel,
the join of the MNSs, is in bold. Note that inhibiting b is irrelevant for revising P, and how
taking the join of the MNSs captures what’s required.

⊥
{not a}

⊥
{}

⊥
{not b}

{r, not s, ¬p,  ¬a, not a, not b}
{not q}

{r, not s, ¬p,  ¬a, not a}
{not b, not q}

⊥
{not a, not q}

{r, not s, p, not q}
{not a, not b}

{r, not s}
{not a, not b, not q}

Figure 8.4: Sceptical submodels and MNSs of example 8.29.
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Example 8.30 Consider the so-called Nixon diamond:

⊥ ← pacifist(X), hawk(X)
pacifist(X) ← quaker(X), not ab quaker(X)

hawk(X) ← republican(X), not ab republican(X)
quaker(nixon)

republican(nixon)

This contradictory program P has two MRPs:

• one by adding to P ab quaker ← not ab quaker

• another by adding to P ab republican ← not ab republican

Both these programs have noncontradictory WFSXs:

{hawk(nixon), quaker(nixon), republican(nixon),
not ab republican(nixon)}

{pacifist(nixon), quaker(nixon), republican(nixon),
not ab quaker(nixon)}

The sceptical submodel of the program results from adding to it both inhibition rules. Its
WFSX is {quaker(nixon), republican(nixon)}.

The importance of having a single sceptical revision can be observed here, since there is no
reason for prefering between Nixon being a pacifist or a hawk. Nevertheless, the other revisions
also give relevant information13.

It is clear that with these intended revisions some programs have no revision. This happens
when contradiction has a basis on non–revisable literals.

Example 8.31 Consider program P :

a ← not b b ← not c
¬a c

with revisables Rev = {not c}.
The only submodels of P are:

〈WFSX p(P ), {}〉 and 〈WFSX p(P ∪ {c ← not c}), {not c}〉.
As both these submodels are contradictory P has no MNS, and thus no revisions. Note that if
not b were revisable,the program would have a revision P ∪ {b ← not b}. If not b were absent
from the first rule, P would have no revision no matter what revisables.

Definition 8.3.13 (Unrevisable program) A contradictory program P with revisables Rev
is unrevisable iff it has no noncontradictory submodel.

However it is possible to guarantee that consistent programs have revisions.

Proposition 8.3.9 Let P be a consistent program with ICs and revisable literals Rev = not H.
Then, if P is contradictory it is revisable.

Proof: By definition of consistent program (definition 8.2.2), if no negative literal is assumed,
the program is noncontradictory. Thus, at least the submodel obtained by adding to P an
inhibition rule for every objective literal L in H such that P 6|=p ¬L, is noncontradictory. ♦

13Their WFSXs correspond to the two usual default extensions.
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8.3.3 Contradiction support and removal

Submodels characterize which are the possible revisions, and the minimality criterium. Of
course, a procedure for finding the minimal and the sceptical submodels can hardly be based
on their declarative definition: one have to generate all the possible revisions to select these
intended ones. In this section we define a revision procedure, and show that it concurs with the
declaratively intended revisions.

The procedure relies on the notions of contradiction support, and of contradiction removal
sets. Informally, contradiction supports are sets of revisable literals present in the WFSX p which
are sufficient to support ⊥ (i.e. contradiction)14. From their truth the truth of ⊥ inevitably
follows.

Contradiction removal sets are built from the contradiction supports. They are minimal sets
of literals chosen from the supports such that any support of ⊥ contains at least one literal in
the removal set. Consequently, if all literals in some contradiction removal set were to become
undefined in value then no support of ⊥ would subsist. Thus removal sets are the hitting sets
of the supports.

Example 8.32 Consider the program of example 8.26. Its only contradiction support is
{not q, not r}, and its contradiction removal sets are {not q} and {not r}.

Suppose we had q undefined as a result of rules for q. In that case ⊥ would also be undefined,
the program becoming noncontradictory. The same would happen if r alone were undefined.
No other set, not containing one of these two alternatives, has this property.

Definition 8.3.14 (Support of a literal) The supports15 of a literal L belonging to WFSXp

of a program P with revisables Rev (each represented as SS(L)) are obtained as follows:

1. If L is an objective literal:

(a) If there is a fact for L then a support of L is SS(L) = {}.
(b) For each rule:

L ← B1, . . . , Bn n ≥ 1

in P such that {B1, . . . , Bn} ⊆ WFSXp(P ), there exists a support of L

SS(L) =
⋃

i

SSj(i)(Bi)

for each combination of one j(i) for each i.

2. If L = not A (where A is an objective literal):

(a) If L ∈ Rev then a support of L is SS(L) = {L}.
(b) If L 6∈ Rev and there are no rules for A then a support of L is SS(L) = {}.
(c) If L 6∈ Rev and there are rules for A, choose from each rule defined for A, a literal

such that its default complement belongs to WFSXp(P ). For each such choice there
exists several SS(L); each contains one support of each default complement of the
choosen literals.

14This notion can be seen as a special case of the notion of Suspect Sets introduced in declarative debugging
in [Pereira and Calejo, 1988].

15An alternative definition of supports relies on a notion of derivation for a literal in the WFSX p, and doesn’t
require the previous availability of the WF Model. This is, however, beyond the scope of this work. For derivation
procedures for WFSX p the reader is referred to [Apaŕıcio, 1993].
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(d) If ¬A ∈ WFSXp(P ) then there are, additionally, supports

SS(L) = SSk(¬A)

for each k.

Example 8.33 Consider program P of example 8.29, whose paraconsistent well–founded con-
sequences are:

WFSX p(P ) = {not s, r, not q, p, not ¬p, not b,¬a, not a,¬p, not p}
The supports of p are computed as follows:

• From the only rule for p conclude that the supports of p are the supports of not q.

• Since not q is a revisable then one of its supports is {not q}.
• As ¬q 6∈ WFSX p(P ), there are no other supports of q.

Thus the only support of p is {not q}.
The supports of ¬p are:

• From the only rule for ¬p conclude that the supports of ¬p are the supports of not a.

• Since not a is a revisable then one of its support is {not a}.
• Since ¬a ∈ WFSX p(P ), then supports of ¬a are also supports of not a.

• From the only rule for ¬a conclude that the supports of ¬a are the supports of not b.

• Identically to not q above, the only support of not b is {not b}.
Thus ¬p has two supports, namely {not a} and {not b}.

Example 8.34 The supports of a in example 8.27 are:

SS1(a) = {not p(1)}
...

SSi(a) = {not p(i)}
...

Proposition 8.3.10 (Existence of support) A literal L belongs to the WFSXp of a program
P iff it has at least one support SS(L).

Proof: The proof follows directly from the results in [Apaŕıcio, 1993] regarding derivation
procedures for WFSX p. ♦

Definition 8.3.15 (Contradiction support) A contradiction support of a program P is a
support of ⊥ in the program obtained from P by adding to it constraints of the form ⊥ ← L,¬L
for every objective literal L in the language of P.

N.B. From now on, unless otherwise stated, when we refer to a program we mean the
program obtained by adding to it all such constraints.

Example 8.35 The contradiction supports of program P from example 8.29 are the union of
pairs of supports of p and ¬p.

Thus, according to the supports calculated in example 8.33, P has two contradiction sup-
ports, namely {not q, not a} and {not q, not b}.
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Contradiction supports are sets of revisables true in the WFSX p of the program and involved
in some support of contradiction (i.e. ⊥)16.

Having defined the sets of revisables that together support some literal, it is easy to produce
sets of revisables such that, if all become undefined, the truth of that literal would necessarily
become ungrounded. To coupe with indissociability, these sets are closed under indissociable
literals.

Definition 8.3.16 (Removal set) A pre–removal set of a literal L belonging to the WFSXp

of a program P is a set of literals formed by the union of some nonempty subset from each
SS(L).

A removal set (RS) of L is the closure under indissociable literals of a pre–removal set of
L.

If the empty set is a SS(L), then the only RS(L) is, by definition, the empty set. Note that
a literal not belonging to WFSXp(P ) has no RSs defined for it.

In view of considering minimal changes to the WF Model, we next define those RSs which
are minimal in the sense that there is no other RS contained in them.

Definition 8.3.17 (Minimal removal set) In a program P , RSm(L) is minimal removal set
iff there exists no RSi(L) in P such that

RSm(L) ⊃ RSi(L).

We represent a minimal RS of L in P as MRSP (L).

Definition 8.3.18 (Contradiction removal set) A contradiction removal set (CRS) of pro-
gram P is a minimal removal set of the (reserved) literal ⊥, i.e. a CRS of P is a MRSP (⊥).

Example 8.36 Consider program P of example 8.24. The only support of ⊥ is SS(⊥) =
{not a}. Thus the only pre–removal set of ⊥ is also {not a}. Since

Ind({not a}) = {not b},

the only contradiction removal set is {not a, not b}.

Example 8.37 The removal sets of ⊥ in the program of example 8.29 are:

RS1 = {not q} RS2 = {not q, not a}
RS3 = {not q, not b} RS4 = {not a, not b}

Thus RS1 and RS4 are contradiction removal sets. Note that these correspond exactly to the
revisions of minimal noncontradictory submodels of figure 8.4.

Example 8.38 The only CRS of example 8.27 is:

CRS = {not p(i) | i > 0}

It is important to guarantee that contradiction removal sets do indeed remove contradiction.

Lemma 8.3.2 Let P be a contradictory program with contradiction removal set CRS. Then:

P ∪ IR(CRS)

is noncontradictory.
16Note that there is a close relationship between the SSs of ⊥ and the sets of nogoods of Truth Maintenance

Systems.
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Proof: By construction of removal set of ⊥,

P ′ = P ∪ {L ← not L | not L ∈ CRS}

has no support of ⊥. Thus, by proposition 8.3.10, ⊥ 6∈ WFSX p(P ′). ♦
Now we prove that this process concurs with the intended revisions above. This is achieved

by proving three theorems:

Theorem 8.3.3 (Soundness of CRSs) Let R be a nonempty CRS of a contradictory pro-
gram P. Then 〈M, R〉 is a MNS of P, where:

M = WFSX(P ∪ IR(R))

Proof: Since by definition R is closed under indissociables, it is clear that 〈M,R〉 is a submodel
of P . By lemma 8.3.2, it is also a noncontradictory submodel of P.

Now, we prove, by contradiction, that there exists no noncontradictory submodel of P
smaller than 〈M,R〉.

Let 〈M ′, R′〉 be a noncontradictory submodel, such that R′ ⊂ R. If R′ is not closed under
indissociables, then 〈M ′, R′〉 is not a submodel of P . Otherwise, by construction of minimal
removal sets ⊥ has at least one support in the program obtained from P by introducing inhibi-
tion rules for elements of R′. Thus, by proposition 8.3.10, 〈M ′, R′〉 is a contradictory submodel.
♦

Theorem 8.3.4 (Completeness of CRSs) Let 〈M, R〉 be a MNS, with R 6= {}, of a contra-
dictory program P. Then R is a CRS of P.

Proof: By proposition 8.3.6 R ⊆ WFSX p(P ). So, by proposition 8.3.10, every literal of R has
at least one support in P.

We begin by proving, by contradiction, that:

∀not L ∈ R, ∃SS(⊥) | not L ∈ Ind(SS(⊥))

Assume the contrary. Then there exists a not L ∈ R not belonging to the indissociables of
any support of ⊥. Thus, by definition of support, the supports of ⊥ do not change if L ← not L
is added to P. Consequently:

〈WFSX (P ∪ IR(R− {not L})), R− {not L}〉

is a noncontradictory submodel of P, and so 〈M, R〉 is not minimal.

The rest of the proof follows by construction of removal sets, and its closure under indisso-
ciables. ♦

Theorem 8.3.5 (Unrevisable programs) If {} is a CRS of a program P then P is unrevis-
able.

Proof: By definition, {} can only be a CRS if it is a support of ⊥. Note that in the calculus of
{} as a support of ⊥, no rules for any of the revisables were taken into account. Thus if one
adds inhibition rules for any combination of the revisables, {} remains as a support of ⊥ in any
of the resulting programs. By proposition 8.3.10, ⊥ belongs to the well–founded model of each
of those programs, and so every submodel of P is contradictory. ♦
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Theorem 8.3.6 (Sceptical revised program) Let P be a contradictory program with CRSs,
Rk such that k ∈ K. The sceptical revised program of P is:

P ∪


L ← not L | not L ∈

⋃

k∈K

Ri





Proof: The proof follows directly from theorems 8.3.3 and 8.3.4. ♦
Thus in order to compute the minimal and sceptical submodels:

• One starts by computing all supports of ⊥. Although the definition of support requires
one to know a priori the paraconsistent WFSX, an alternative definition exists such that
this is not required. This definition is based on a top–down derivation procedure, which
is beyond the scope of this work. Computing all supports of ⊥ is like computing all the
derivations for ⊥ in WFSX p.

• If {} is a support of ⊥ then the program is unrevisable.

• If there are no supports of ⊥ then the program is noncontradictory.

• Otherwise, after having all supports of ⊥, the rest follows by operations on these sets, and
computing indissociables. For such operations on sets one can rely on efficient methods
known from the literature. For example the method of [Reiter, 1987] for finding minimal
diagnosis can be herein applied for finding CRSs given the supports. Example 8.39 shows
that the issue of indissociables is simplified when the approch of CRS is considered.

• Finally, a minimal revised program is obtained by adding to P one inhibition rule for each
element of a CRS, and the sceptical revision is obtained as the union of all such minimal
revised programs.

Example 8.39 Consider program P :

⊥ ← not a
a ← b

with Rev = {not a, not b}.
The submodels of P are:

〈{not a, not b,⊥}, {} 〉
〈 {not b} , {not a} 〉
〈 {} , {not a, not b}〉

and thus its only MNS (and the sceptical submodel) is the second one.
Note that there exists no submodel with revision {not b} because Ind({not b}) = {not a}.

If such a revision would be considered then the sceptical submodel would be the last one.
The only support of ⊥ is {not a}, and coincides with the only CRS. Note how the issue

of indissociables becomes simplified, since eventhough for submodel it is necessary to compute
indissociables in order to find correctly the sceptical submodel, this is not the case for CRSs.

Example 8.40 Recall the “birds fly” example from the introduction where

Rev = {not abnormal(X)}.

The only support of ⊥ is:
{not abnormal(tweety)}
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and so, it coincides with the only CRS.
Thus the only MRP, and sceptical revised program, is the original program augmented with

abnormal(tweety) ← not abnormal(tweety), whose WFSX is:

{bird(tweety),¬fly(tweety), not fly(tweety), man(socrates)}

as expected.

Example 8.41 Consider the hiking/swimming program (example 8.12):

hiking ← not rain
swimming ← not rain
swimming ← not cold water

⊥ ← hiking, swimming

and let Rev = {not rain, not cold water}.
The supports of ⊥ are {not rain} and {not rain, not cold water}. Thus its removal sets

are:

{not rain} ∪ {not rain} = {not rain} and
{not rain} ∪ {not rain, not cold water} = {not rain, not cold water}.

The only CRS is {not rain}, so the only MRP of P , and its sceptical revised program is:

⊥ ← hiking, swimming rain ← not rain
hiking ← not rain swimming ← not rain

swimming ← not cold water

whose WFSX is:
{not cold water, swimming}

This results coincides with the WFSOpt calculated in example 8.12.

Example 8.42 Recall the program P of example 8.31:

a ← not b b ← not c
¬a c

with revisables Rev = {not c}, whose paraconsistent WFSX p is:

{c,¬a, not a, not b, a, not ¬a}

The supports of ⊥ result from the union of supports of a and supports of ¬a. As the only
rule for ¬a is a fact, its only support is {}. Supports of a are the supports of not b, and supports
of not b are the supports of c. Again, as the only rule for c is a fact, its only support is {}.

Thus the only support of ⊥ is {}, and so P is unrevisable.

8.4 Equivalence between avoidance and removal

In this section we discuss the equivalence between the approaches of contradiction avoidance
and contradiction removal described in this chapter.

The need for semantics more sceptical than WFSX can be seen as showing the inadequacy
of the latter for certain problems. The equivalence results show that this is not case since, by
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providing a revision process, WFSX can deal with the same problems as the more sceptical
semantics WFSXOpt, and gives the same results.

The advantages of using WFSX plus the revision process reside mainly on its simplicity
compared to the others, and its properties (studied in section 10.1) that make it amenable for
top–down and bottom–up computation procedures. Moreover, the top–down procedures for
WFSX can be obtained by simple modifications of procedures for WFS [Przymusinski, 1989a,
Warren, 1989, Pereira et al., 1991e, Chen and Warren, 1992].

The revision procedure can be implemented as a preprocessor of programs, and the mainte-
nace of noncontradiction might benefit from existing procedures for Truth Maintenance Systems.

In order to prove the main equivalence theorems, we begin by proving two important lemmas.
These lemmas state that avoiding a hypothesis in contradiction avoidance is equivalent to adding
an inhibition rule for that hypothesis in contradiction removal.

Lemma 8.4.1 If P ∪H is a complete scenario wrt Opt of a program P with avoidance set S
then P ′ ∪H is a complete scenario of P ′ = P ∪ IR(S).

Proof: Since the inhibition rules are only added for literals in the avoidance set (thus for literals
that do not belong to H) it is clear that P ′ ∪H is consistent, and every mandatory is in H. It
remains to be proven that:

1. if not L is acceptable then not L ∈ H

2. if not L ∈ H and is not mandatory then it is acceptable

For every hypotheses in S this is ensured because they do not belong to H, and none of
them is acceptable once the inhibition rules are added17.

For hypotheses not in S :

1. If not L 6∈ S is acceptable in P ′∪H then it is also acceptable in P ∪H, because the latter,
having less rules, provides less evidence to the contrary. It’s left to prove that:

if not L ∈ Acc(P ∪H) then not L ∈ AccOpt(P ∪H).

Assume the contrary, i.e.

not L ∈ Acc(P ∪H) and not L 6∈ AccOpt(P ∪H).

By definiton 8.2.4, this is the case where not L is acceptable wrt P ∪H∪not S. In this case
not L 6∈ Acc(P ′ ∪ H) because, by having the inhibiton rules, some not L′ ∈ S provides
evidence for L. Thus an hypotheses is contradicted.

2. If not L 6∈ S is not mandatory and is in H then it must belong to AccOpt(P ∪ H), and
thus, by definition of acceptable hypothesis wrt Opt, it also belongs to Acc(P ∪H). So it
can only not belong to Acc(P ′ ∪H) if some of the inhibition rules provide evidence to L,
which can never happen because not L ∈ AccOpt(P ∪H).

♦

Lemma 8.4.2 If P ′ ∪H is a complete scenario of P ′ = P ∪ IR(R), and R ⊆ Opt, then P ∪H
is complete wrt Opt.

Proof: Similar to the proof of lemma 8.4.1. ♦
17Note that for any program with the L ← not L rule, not L constitutes evidence for L, and thus not L can

never be acceptable.
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Theorem 8.4.3 (Quasi–complete scenaria and MNSs) P ∪ H is a quasi–complete sce-
nario wrt Opt of a program P with an avoidance set S iff 〈M,S〉 is a MNS of P with revisables
Opt, where:

M = WFSX(P ∪ IR(S))

Proof:

⇒ By lemma 8.4.1, if P ∪H is a quasi–complete scenario wrt Opt of P with an avoidance set
S then it is a complete scenario of

P ′ = P ∪ {L ← not L | not L ∈ S}.
Moreover, given that P ∪H is a base scenario, by definition of quasi–complete, it is the
least complete scenario wrt Opt with avoidance set S, and thus the WFSX of P ′. By
definition of quasi–complete no smaller combination of Opt exists, i.e. no smaller set of
inhibition rules closed under indissociables removes the contradiction. So 〈M, S〉 is a MNS
of P with revisables Opt.

⇐ Since 〈M,S〉 is a MNS of P, M is the least complete scenario of P ∪ IR(S). Thus, by
lemma 8.4.2, P ∪H is complete wrt Opt. Moreover, since S is by definition closed under
indissociables, P ∪H is the least complete scenario wrt Opt with avoidance set S. Thus
it is a base scenario. By definition of MNS, no smaller combination of Opt removes the
contradiction, and there are no base scenaria with a smaller subset of Opt, i.e P ∪H is
quasi–complete.

♦
This theorem states that assuming hypotheses maximally and avoiding the contradiction,

corresponds to minimally introducing inhibition rules, and then computing the WFSX.

Theorem 8.4.4 (Sceptical revision and WFSOpt) P ∪ H is the WFSOpt of a program P
with an avoidance set S iff 〈M, S〉 is the sceptical submodel of P with revisables Opt.

Proof: The proof follows directly from theorem 8.4.3 and the fact that the sceptical submodels
is the join of MNSs, and WFSOpt is the meet of quasi–complete scenaria. ♦

From these theorem it follows that the rôle of optatives in contradiction avoidance is the
same as the rôle of revisables in contradiction removal. Thus the discussion about special
criteria to automatically infer optatives from a program, applies directly in the issue of finding
special criteria to infer revisables from the program.

8.5 Applications

Finally we show examples of application of contradiction removal to diagnosis, to the debugging
of pure Prolog programs, and to reasoning about actions. For further details on the subject the
reader is refered to [Pereira et al., 1991g, Pereira et al., 1993d, Pereira et al., 1993e, Pereira et
al., 1993c, Pereira et al., 1993b].

8.5.1 Diagnosis

Consider the circuit of figure 8.5 comprised of three OR gates:
The circuit is represented by the extended logic program:

% Correct behaviour of OR gates:
gate(or,G, 0, 0, 0) ← not ab(G)
gate(or,G, 0, 1, 1) ← not ab(G)

gate(or,G, 1, 0, 1) ← not ab(G)
gate(or,G, 1, 1, 1) ← not ab(G)
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Figure 8.5: OR gates circuit.

% connections among nodes:
value(d,D) ← value(a, A), value(b, B), gate(or, g1, A, B, D)
value(e,E) ← value(d, D), value(c, C), gate(or, g2, D, C, E)
value(f, F ) ← value(d, D), value(g, G), gate(or, g3, D, G, F )

% No node can simultaneously have the values 1 and 0:
¬value(X, 0) ← value(X, 1)
¬value(X, 1) ← value(X, 0)

To this program we add facts F reporting observations made. Suppose we observe the
inputs:

{value(a, 1), value(b, 0), value(c, 0), value(g, 0)}.

P ∪ F is noncontradictory, thus no revision is in order, and its semantics is the WFSX. In
particular:

{not ab(g1), not ab(g2), not ab(g3), value(d, 1), value(f, 1), value(e, 1)} ⊆ WFSX(P )

stating the behaviour of every gate is normal, the values of the nodes are as expected, and all
belong to the consequences of WFSX.

Suppose an additional factual observation O1 is made:

value(e, 0).

Then the program P ∪ F ∪ O1 is contradictory, and so WFSX doesn’t assign meaning to
it. However revisions exist, where minimal revised programs (PR1 and PR2) correspond to
minimal diagnoses:

{not ab(g2), not ab(g3), value(e, 0)} ⊆ WFSX(PR1)
{not ab(g1), not ab(g3), value(d, 1), value(f, 1), value(e, 0)} ⊆ WFSX(PR2)

where not ab(g1) 6∈ WFSX(PR1) and not ab(g2) 6∈ WFSX(PR2).
Finally suppose that yet an additional observation O2 in node d is made, and, its result is:

value(d, 0).

Then the only minimal revised program PR3 corresponds to the only possible diagnosis:

{not ab(g2), not ab(g3), value(d, 0), value(f, 0), value(e, 0)} ⊆ WFSX(PR3)
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8.5.2 Debugging of pure Prolog

In pure Prolog programs, besides looping there are only two other kinds of error [Lloyd, 1987]:
wrong solutions or finitely missing solutions. First we apply contradiction removal to perform
debugging of wrong solutions of pure Prolog programs, assuming that a Prolog program stands
for its ground version. For an elaboration of these techniques the reader is refered to [Pereira
et al., 1993c].

Consider the buggy Prolog program P :

a(1)
a(X) ← b(X), c(Y, Y )
b(2)
b(3)

c(1, X)
c(2, 2)

As you can check, goal a(2) succeeds with the above program. Suppose now that a(2) should
not be a conclusion of P, so that a(2) is a wrong solution. What are the minimal causes of this
bug?

There are three. First, the obvious one, the second rule for a has a bug; the second is b(2)
should not hold in P ; and finally, that neither c(1, X) nor c(2, 2) should hold in P .

This type of error (and its causes) is easily detected using contradiction removal by means
of a simple transformation applied to the original program: add

not incorrecti(X1, X2, . . . , Xn)

to the body of each i-th rule of P , where n is its arity and X1, X2, . . . , Xn its head arguments.
Applying this to P we obtain P1:

a(1) ← not incorrect1(1)
a(X) ← b(X), c(Y, Y ), not incorrect2(X)
b(2) ← not incorrect3(2)
b(3) ← not incorrect4(2)

c(1, X) ← not incorrect5(1, X)
c(2, 2) ← not incorrect6(2, 2)

Now if we have wrong solution:

p(X1, X2, . . . , Xn)

in P just add to the extended program P1 the fact

¬p(X1, X2, . . . , Xn),

and to find the possible causes of the wrong solution use as revisables all the not incorrecti
hypotheses.

For instance, if a(2) is a wrong solution of program P , by adding ¬a(2) to P1 we obtain three
minimal revisions of P1 : one undefining not incorrect1(2); another undefining not incorrect3(2);
and another undefining both not incorrect5(1, 1) and not incorrect5(2, 2).

Suppose now a program should not finitely fail on some goal but does so. This is the missing
solution problem. Say, for instance, a(4) should succeed in P above. Which are the minimal
sets of rules that added to P make a(4) succeed? There are two minimal solutions: either add
rule a(4) or rule b(4).

The solution to this type of bug is trickier than the one before, but it suffices to introduce
for each predicate p with arity n the following rule:
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• p(X1, X2, . . . , Xn) ← uncovered(p(X1, X2, . . . , Xn))

Then all that’s necessary is to add the constraint:

⊥ ← not q(X1, X2, . . . , Xn)

to state that if predicate q has a missing solution q(X1, X2, . . . , Xn) then a potential contradic-
tion arises, and obtain the minimal revisions of the transformed program, where revisables are
not uncovered(A), for all atoms A.

The transformed program P2 obtained is P plus the rules:

a(X) ← uncovered(a(X))
b(X) ← uncovered(b(X))

c(X,Y ) ← uncovered(c(X, Y ))

To find the possible causes of the missing solution to a(4) we add the constraint:

⊥ ← not a(4)

and find, as expected, two minimal revisions: one not containing not missing(a(4)) an d
another not containing not missing(b(4)). This means that by adding a(4) or b(4) to P the
missing solution is no longer missed.

8.5.3 Reasoning about actions

Here we study one classical problem of reasoning about actions using the situation calculus, and
show how the major drawbacks of other representations can be easily solved by using WFSX
with the contradiction removal procedures introduced.

Situation calculus has three kinds of entities: fluents, actions and situations. We use the
predicate h(F, S) to say that fluent F holds in situation S, and a term r(A,S) represents the
new situation obtained as the result of performing action A in situation S. It’s also necessary
to add a frame axiom which expresses the “common sense law of inertia” [McCarthy, 1986]
stated in [Lifschitz, 1991a] as:

“In the absence of information to the contrary, properties of objects can be assumed to remain
unchanged after an action is performed”

which can be formalized as [h(F, r(A,S)) ⇔ h(F, S)] ⇐ not ab(A, F, S) and will be represented
by the four rules:

h(F, r(A,S)) ← h(F, S), not ab(A,F, S)
¬h(F, r(A,S)) ← ¬h(F, S), not ab(A,F, S)

h(F, S) ← h(F, r(A,S)), not ab(A,F, S)
¬h(F, S) ← ¬h(F, r(A, S)), not ab(A,F, S)

As [Gelfond and Lifschitz, 1992] explains, the first two rules are used to apply the law of
inertia in reasoning from past to future and the other two from future to past.

If the negation of the abnormality predicate is interpreted as classical negation, as in Mc-
Carthy’s original formulation, it becomes necessary to have the following two extra rules added
to the program:

ab(A,F, S) ← ¬h(F, S), h(F, r(A,S))
ab(A,F, S) ← h(F, S),¬h(F, r(A,S))

But as we shall see, our approach automatically infers the situations that are exceptions to
the frame axiom. This is the essence of the frame problem: Having incomplete knowledge about



144 CHAPTER 8. DEALING WITH CONTRADICTION

the world, what properties of objects (fluents) are changed as a result of action A in situation
S ?

We discuss a (new) version of the stolen car problem [Kautz, 1986] showing how it is handled
using contradiction removal with intuitive results. For sake of simplicity, we do not present
other instances of this problem (c.f. [Shanahan, 1992]) that are also correctly handled and
easily represented in extended logic programs with contradiction removal.

The formulation of the stolen car problem (SCP) is:

You leave your car parked, return after a while, and your car is gone.
How can you explain that ?

This problem is easily represented in situation calculus. In the initial situation, s0, the car
is parked. After a finite number of wait actions, for instance 4, the car has disappeared. Now
suppose that after two wait actions the car was still seen parked by someone. This problem
statement is represented by the logic program:

h(cp, s0)
h(cp, r(w, r(w, s0)))
¬h(cp, r(w, r(w, r(w, r(w, s0)))))

plus the above four frame axiom rules.
First we must determine what are the supports of contradiction. There are only two:

SS1 = {not ab(w, cp, s2), not ab(w, cp, s3)}
SS2 = {not ab(w, cp, s0), not ab(w, cp, s1), not ab(w, cp, s2), not ab(w, cp, s3)}

with si = r(w, si−1), i ≥ 1. Thus there are two CRSs:

CRS1 = {not ab(w, cp, s2)}
CRS2 = {not ab(w, cp, s3)}

corresponding to the intuitive result that something abnormal happened during either the third
or fourth wait action.



Chapter 9

Adding CWAs to well–founded
models

The semantics described in the previous sections, is based on a generalization of the well–
founded semantics (WFS) [Gelder et al., 1991] for extended logic programs. However it can be
argued [Kakas and Mancarella, 1991b, Pereira et al., 1992a, Pereira et al., 1993a] that sometimes
WFS is excessively careful in deciding about the falsity of some atoms, leaving them undefined,
and that a suitable form of CWA can be used to safely and undisputably assume false some of
the atoms absent in the well–founded model of a program (i.e. undefined ones).

In this chapter we come back to the issue of normal program semantics and, based on a
suitable form of CWA, define for such programs how additional negative assumptions are to be
added to the WFS of a program. This proffers a novel semantics for normal programs – the
O–semantics.

After having defined the O–semantics, we proceed to generalize it to extended logic pro-
grams and, finally, compare the resulting semantics with WFSX.

Consider the following example adapted from [Kakas and Mancarella, 1991a], itself a variant
of the “game” example of [Gelfond and Lifschitz, 1988]:

Example 9.1 The program:

win(X) ← move(X,Y ), not win(Y )
raisedBet(X) ← win(X)

move(a, a) ←
move(b, c) ←

expresses that:

• “X is a winning position if there is a move from X to Y and Y is not a winning position”;

• “in a winning position bets are raised”;

• “we can make a move from position a to position a, and from position b to c”.

c is not a winning position since it is impossible to move from c. b is a winning position
because it is possible to move from b to c and c is not a winning position. a is a draw position.

Neither win(a) nor not win(a) should hold. This is correctly handled by WFS, which assigns
the truth–value undefined to win(a).

The semantics of this program should also capture the intended meaning that bets are not
raised in a position of draw. This is not captured by WFS which leaves raisedBet(a) undefined.

145



146 CHAPTER 9. ADDING CWAS TO WELL–FOUNDED MODELS

More abstractly, let P :
c ← a
a ← not a

where WFM(P ) = {}. We argue that the intended meaning of the program may be {not c},
since a may not be true in any partial stable model of P via the second rule because that would
require the truth of not a, and so the first rule cannot possibly contradict the assigned meaning.
Another way to understand this is that one may safely assume not c using a form of CWA on
c, since not a may not be consistently assumed and so there is no support for c.

However, when relying on the absence of present evidence about some atom A, we do not
always want to assume that not A holds, since there may exist consistent assumptions allowing
to conclude A. Roughly, we want to define the notion of concluding for the truth of a negative
literal not A just in case there is no hard nor hypothetical evidence to the contrary, i.e. no
consistent set of negative assumptions such that not A is untenable.

Consider program P :
c ← a
a ← not b
b ← not a

If we interpret the meaning of this program as its WFM (which is empty), and as we do not
have a, a näıve CWA could be tempted to derive not c based on the assumption not a. There is
however an alternative negative assumption not b that, if made, defeats the assumption not a,
i.e. the assumption not a may not be sustained since it can be defeated by the assumption
not b. We will define later more precisely the notions of sustainability, defeating, and tenability.

Both the above programs have empty well–founded models. We argue that WFS is over-
careful in these cases, and something more can safely be added to the meaning of program, thus
reducing its undefinedness, as long as we are willing to adopt a suitable form of CWA.

We contend that a set CWA(P ) of negative literals (assumptions) added to a program model
MOD(P ) by CWA must obey the four principles:

1. MOD(P )∪CWA(P ) 6|= L for any not L ∈ CWA(P ). This states that the program model
added with the set of assumptions identified by the CWA rule must be consistent.

2. There is no other set of assumptions A such that MOD(P ) ∪ A |= L for some not L ∈
CWA(P ). I.e. CWA(P ) is sustainable.

3. CWA(P ) must be unique.

4. CWA(P ) must, additionally, be maximal.

9.1 Beyond the WFS of normal programs

In this section we identify the meaning of a normal logic program P as a suitable partial clo-
sure of the well–founded model of the program in the sense that it contains the well–founded
model (and thus always exists). The extension we propose reduces undefinedness in the in-
tended meaning of a program P , by an adequate form of CWA based on notions of consistency,
sustainability and tenability with regard to alternative negative assumptions. Sustainability
of a consistent set of negative assumptions insists that there be no other consistent set that
defeats it (i.e. there is no hypothetical evidence whose consequences contradict the sustained
assumptions). Tenability requires that a maximal sustainable set of assumptions be not contra-
dicted by the consequences of adding to it another competing (nondefeating and nondefeated)
maximal sustainable set.
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This section is organized as follows: first we introduce adequate definitions for capturing the
concepts behind the semantics, accompanied by examples illustrating them. Then models are
defined and organized into a lattice, and the class of sustainable A-Models is identified. Next we
define the O-Semantics of a normal program P on the basis of the class of maximal sustainable
tenable A-Models. A unique model is finally singled out as the O–model of P. Afterwards we
present some properties of the class of A–models, and terminate by relating to other semantics.

Parts of this section appear in [Pereira et al., 1992a] and in [Pereira et al., 1993a].

9.1.1 Adding negative assumptions to a program

Here we show how to consistently add more negative assumptions to the well–founded model of
a normal program P. Informally, it is consistent to add a negative assumption to WFS(P ) if the
assumption atom is not among WFS(P ) after adding the assumption to P. We also define when
a set of negative assumptions is defeated by another, and show how the models of a program,
when different sets of negative assumptions added to it, are organized into a lattice.

The addition of assumption to a program is performed differently from the manner of chap-
ter 7. There, although default literals are also treated as assumptions to be added to a program,
the addition process starts from scratch. In contrast, here we begin by adding more default
literals to the well–founded model of a program, so that we can simplify the process by taking
the well–founded semantics and its default literals as given.

So we begin by defining what it means in this context to add new assumptions to the well–
founded model of a program. This is achieved by simply substituting true for the assumptions
to be added, and false for their atoms, in all body rules of the program.

Definition 9.1.1 (P + A) The program P + A obtained by adding to a normal program P a
set of negative assumptions A ⊆ not H is the result of:

• Deleting from P all rules

H ← B1, . . . , Bn, not C1, . . . , not Cm

such that some not Bi ∈ A

• Deleting from the remaining rules all literals not L ∈ A

Definition 9.1.2 (Assumption model) An Assumption Model of a program P, or A–model
for short, is a pair 〈A; M〉 where A ⊆ not H and

M = WFM(P + A)

The meaning of an A–model 〈A; WFM(P + A)〉 is:

A ∪WFM(P + A)

i.e. the result of adding assumptions A to the well–founded model of P.

Among these models we define the partial order ≤a in the following way:

〈A1;M1〉 ≤a 〈A2; M2〉 iff A1 ⊆ A2

On the basis of set union and set intersection among the sets A of negative assumptions, the
set of all A–models becomes organized as a complete lattice.

Having defined assumption models we next consider their consistency. According to the
CWA principles above, an assumption not A cannot be added to a program P if by doing so A
is itself a consequence of P, or if some other assumption is contradicted.
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Definition 9.1.3 (Consistent A–model) An A–model 〈A; M〉 is consistent iff A ∪M is an
interpretation, i.e. there exists no assumption not L ∈ A such that L ∈ M.

Example 9.2 Let P :
c ← not b
b ← not a
a ← not a

whose WFM is empty.
P + {not a} is:

c ← not b
b ←
a ←

whose WFS is {a, b, not c}. Thus:

〈{not a}; {a, b, not c}〉

is an A–model. This A–model is inconsistent because a ∈ WFM(P + {not a}). The same
happens with all A–models containing the assumption not a. The A–model:

〈{not b, not c}; {c}〉

is also inconsistent.
Thus the only consistent A–models are

〈 {} ; {} 〉
〈 {not b} ; {c} 〉
〈 {not c} ; {} 〉

In this example we see that 〈{not a}; {a, b, not c}〉 is inconsistent and the same happens for
all A–models containing the assumption not a. Indeed, and in general:

Lemma 9.1.1 If an A–model AM is inconsistent then any A–model AM ′ such that AM ≤a

AM ′ is inconsistent.

Proof: In appendix. ♦
According to the CWA principles above, an assumption not A cannot be sustained if there

is some set of consistent assumptions that concludes A. We’ve already expressed the notion of
consistency being used. To capture the notion of sustainability we now formally define how an
A–model can defeat another, and define sustainable A–models as the non–defeated consistent
ones.

Definition 9.1.4 (Defeating) A consistent A–model 〈A; M〉 is defeated by the consistent A–
models 〈A′; M ′〉 iff

∃not a ∈ A|a ∈ M ′.

Definition 9.1.5 (Sustainable A–models) An A–model 〈A; M〉 is sustainable iff it is con-
sistent and not defeated by any consistent A–model, i.e. 〈not S; M〉 is sustainable iff:

S ∩
⋃

consistent 〈Ai;Mi〉
Mi = {}
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Example 9.3 The only sustainable models in example 9.2 are:

〈 {} ; {} 〉
〈 {not b} ; {c} 〉

Note that the consistent A–model 〈{not c}; {}〉 is defeated by 〈{not b}; {c}〉, i.e. the as-
sumption not c is unsustainable since there is a set of consistent assumptions (namely {not b})
that leads to the conclusion c.

The assumptions part of maximal sustainable A–models of a program P are maximal sets
of consistent Closed World Assumptions that can be safely added to the well–founded model of
P without risking inconsistency by the making of other assumptions.

Lemma 9.1.2 If an A–model AM is defeated by another A–model D, then all A–models AM ′

such that AM ≤a AM ′ are defeated by D.

Proof: If AM = 〈A;M〉 is defeated by D = 〈AD;MD〉, then there exists d ∈ MD such that
not d ∈ A. Since all AM ′s are of the form AM ′ = 〈A′; M ′〉 where A′ = A ∪B then not d ∈ A′,
i.e. D defeats AM ′. ♦

Lemma 9.1.3 The A–model 〈{};WFM(P )〉 is always sustainable.

Proof: By definition of sustainable. ♦

Theorem 9.1.4 The set of all sustainable A–models of a program is nonempty. On the basis
of set union and set intersection among their A sets, the A–models ordered by ≤a form a lower
semilattice.

Proof: Follows directly from the above lemmas. ♦
A program may have several maximal sustainable A–models.

Example 9.4 Let P be:
c ← not c, not b
b ← a
a ← not a

Its sustainable A–models are:
〈 {} ; {} 〉
〈 {not b} ; {} 〉
〈 {not c} ; {} 〉

The last two are maximal sustainable A–models. We cannot add both not b and not c to the
program to obtain a sustainable A–model since

〈{not b, not c}; {c}〉

is inconsistent.
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9.1.2 The O–semantics

This subsection is concerned with the problem of singling out, among all sustainable A–models
of a program P , one that uniquely determines the meaning of P when the CWA is enforced. This
is accomplished by means of a selection criterium that takes a lower semilattice of sustainable
A–models and obtains a subsemilattice of it, by deleting A–models that in a well–defined sense
are less preferable, i.e. the untenable ones.

Sustainability of a consistent set of negative assumptions insists that there be no other con-
sistent set that defeats it (i.e. there be no hypothetical evidence whose consequences contradict
the sustained assumptions). Tenability requires that a maximal sustainable set of assumptions
be not contradicted by the consequences of adding to it another competing (nondefeating and
nondefeated) maximal sustainable set.

The selection process is repeated and ends up with a complete lattice of sustainable A–
models which for every program P is by definition its O–semantics. The meaning of P is then
specified by the greatest A–model of the semantics, its O–Model.

To illustrate the problem of preference among maximal A–models recall example 9.4 above.
Because we wish to maximize the number of negative assumptions we consider the maximal
A–models, which in that case are:

〈 {not b} ; {} 〉
〈 {not c} ; {} 〉

The join of these maximal A–models:

〈{not b, not c}; {c}〉

is per force inconsistent, in this case wrt c. This signifies that when assuming not c there is an
additional set of assumptions entailing c, making this A–model untenable. But the same does
not apply to not b. So we can say that not b is more primal than not c, in the sense that when
added with not c it causes an inconsistency in c but does not affect itself so. In the program
that is indeed intuitively the case, i.e. not c depends on not b but not vice–versa, and so not b
is more primal1.

Thus the preferred A–model is
〈{not b}, {}〉

and the A–model 〈{not c}; {}〉 is said untenable.
The rationale for the preference is grounded in that the inconsistency of the join arises wrt

c but not wrt b.

Definition 9.1.6 (Candidate structure) A Candidate Structure CS of a program P is any
subsemilattice of the lower semilattice of all sustainable A–models of P .

Definition 9.1.7 (Untenable A–models) Let {〈Ak; Mk〉 | k ∈ K} for k ∈ K, be the set of
all maximal A–models in Candidate Structure CS, and let

J = 〈AJ ;MJ〉

be the join of all such A–models, in the complete lattice of all A–models.
An A–model 〈Ai; Mi〉 is untenable wrt CS iff it is maximal in CS and there exists not a ∈ Ai

such that a ∈ MJ .

1Note the complementarity between this notion of primacy and the one of primacy of hypotheses described
in section 8.2.1. There, not A is more primal than not B if by adding not A, not B follows as a consequence.
Here, not A is more primal than not B if, by adding both not A and not B, B follows as a consequence while A
doesn’t.
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Proposition 9.1.1 There exists no untenable A–model wrt a Candidate Structure with a single
maximal element.

Proof: Since the join coincides with the unique maximal A–model, which is sustainable by
definition of CS, then it cannot be untenable. ♦

The candidate structure left after removing all untenable A–models of a CS may itself
have several untenable elements, some of which might not be untenable A–models in the initial
CS. If the removal of untenable A–models is performed repeatedly on the retained Candidate
Structure, a structure with no untenable models is eventually obtained, albeit the bottom
element of the candidate structure.

Definition 9.1.8 (Retained CS) The Retained Candidate Structure R(CS) of a Candidate
Structure CS is defined recursively in the following way (where J is the join of elements of CS
in the complete lattice of all A–models):

• J ∪ CS if there are no untenable A–models in CS.

• Otherwise, let Unt be the set of all untenable A–models wrt CS. Then R(CS) = R(CS−
Unt)

Definition 9.1.9 (The O–semantics and the O–model) The O–semantics of a program
P is defined by the Retained Candidate Structure of the semilattice of all sustainable A–models
of P .

Let 〈A; M〉 be its maximal element. The intended meaning of P is A ∪M , the O–Model of
P .

Remark 9.1.1 At this point, we are in a position to make an important remark. Our goal is
to maximally reduce undefinedness of the well–founded model by adding to it negative assump-
tions. Now, the peeling process of subtracting only maximal untenable A–models from candidate
structures ends up with a retained candidate structure with a maximal element. So we must
guarantee this element is always greater or equal than the result we would obtain if we didn’t
require untenable A–models to be maximal in definition 9.1.7.

This is indeed guaranteed, for the join of the maximal elements of each candidate structure
is always greater than any join of non–maximal elements of that structure, and because the
maximal element of the retained lattice is by definition one such join of maximal elements.

Example 9.9 shows that if untenable A–models were not defined as maximal then a smaller
O–Model would be obtained.

Theorem 9.1.5 The O–semantics of a program P is always defined by a complete lattice of
sustainable A–models.

Proof: Since every candidate structure is a semilattice of sustainable A–models, it is enough to
prove that the join J = 〈AJ ; MJ〉 of the retained candidate structure CS of the semilattice of
all sustainable A–models of P is a sustainable A–model.

If we assume that J is inconsistent then at least one maximal A–model in CS is untenable.
Accordingly, since in the final retained CS there are, by definition, no untenable A–models, J
is consistent.

J cannot be defeated by any other consistent A–model D because, in such a case, at least
one other element of CS would also be defeated by D, which is impossible by definition of
candidate structure. ♦

Corollary 9.1.1 The O–semantics of a program has no untenable A–model wrt itself.
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Proof: Follows directly from the theorem and proposition 9.1.1. ♦

Corollary 9.1.2 (Existence of the O–semantics) The Retained Candidate Structure of the
semilattice of all sustainable A–models is nonempty.

Proof: Follows directly from the theorem. ♦

9.1.3 Examples

In this subsection we display some examples and their O–semantics. Remark that indeed the
O–Models obtained express the safe CWAs compatible with the WFMs (which are all {}). In
subsection 9.1.5, “Relation to other work” additional examples can be found which bring out
the distinctness of O–semantics wrt other semantics.

Example 9.5 Let P be:
d ← c
c ← not c, not b
b ← a
a ← not a

The semilattice of all sustainable A–models CS is depicted in figure 9.1, where shadowed
A–models are the tenable ones.

<{~b,~d},{}>

<{~d},{}><{~b},{}>

<{},{}>

<{~c},{~d}>

<{~c,~d},{~d}>

Figure 9.1: Semilattice of all sustainable A–models of example 9.5.

The join of its maximal A–models is:

〈{not b, not c, not d}; {c, not d}〉

Consequently, the maximal A–model on the right is untenable since it contains not c in the
assumptions, and c is a consequence of the join.

So R(CS) = R(CS′) where CS′ is is the candidate structure of figure 9.2.

<{~b,~d},{}>

<{~d},{}><{~b},{}>

<{},{}>

<{~c},{~d}>

Figure 9.2: Retained candidate structure CS′ of example 9.5.
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<{~b,~d},{}>

<{~d},{}><{~b},{}>

<{},{}>

Figure 9.3: O–semantics CS′′ of example 9.5.

The join of all maximal elements in CS′ is the same as before and the only untenable A–
model is again the maximal one having not c in its assumptions. Thus R(CS) = R(CS′′) where
CS′′ is depicted in figure 9.3.

So the O–Model is {not b, not d}.
Note that if P is divided into P1 :

d ← c
c ← not c, not b

and P2 :
b ← a
a ← not a

the O–models of P1 and P2 both agree on the only common literal not b. So not b rightly belongs
to the O–model of P .

Example 9.6 Consider P :
q ← not p
p ← a
a ← not b
b ← not c
c ← not a

Its only consistent A–models are:

〈 {} ; {} 〉
〈 {not p} ; {q} 〉
〈 {not q} ; {} 〉

As this last one is defeated by the second, the only sustainable ones are the first two. Since
only one is maximal, these two A–models determine the O–semantics, and the meaning of P is
{not p, q}, its O–Model.

Note that if the three last rules, forming an “undefined loop”, are replaced by another
“undefined loop” a ← not a, the O–model is the same. This is as it should, since the first two
rules conclude nothing about a.

Example 9.7 Let P :
p ← a, b
a ← not b
b ← not a

The A–models with not b in their assumptions defeat A–models with not a in their assump-
tions and vice-versa. Thus the O–semantics is determined by the A–models:

〈 {} ; {} 〉
〈 {not p} ; {} 〉
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and the meaning of P is {not p}, its O–Model.

Example 9.8 Consider the program P :

c ← not c, not b
b ← not c, not b
b ← a
a ← not a

Its sustainable A–models are:
〈 {} ; {} 〉
〈 {not b} ; {} 〉
〈 {not c} ; {} 〉

The join of the two maximal ones is

〈{not b, not c}; {b, c}〉
and so both are untenable. Thus the retained candidate structure has the single element 〈{}; {}〉
and the meaning of P is {}.
Example 9.9 Consider the program P :

c ← not a, not c
c ← not b, not c
a ← not b, not c
a ← d
b ← d
c ← d
d ← not d

The semilattice of all sustainable A–models CS is presented in figure 9.4.

<{~a,~b},{}>

<{~b},{}><{~a},{}>

<{},{}>

<{~c},{}>

Figure 9.4: Semilattice of all sustainable A–models of example 9.9.

The join of its maximal A–models is

〈{not a, not b, not c}; {a, c}〉
Consequently, all maximal A–models are untenable. So R(CS) = R(CS′) where CS′ is the
structure in figure 9.5.

Since the join of all elements is

〈{not a, not b}; {}〉
there are no untenables in CS′. The O–semantics is as shown in figure 9.6, and the O–Model is
{not a, not b}.

If untenable A–models were not defined as maximal ones (cf. remark 9.1.1) then

〈{not a}; {}〉
would also be untenable wrt to the semilattice of all sustainable A–models CS. Then the R(CS)
would be as in figure 9.7, and the O–Model would be smaller: {not b}.
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<{~b},{}><{~a},{}>

<{},{}>

Figure 9.5: Retained candidate structure CS′ of example 9.9.

<{~a,~b},{}>

<{~b},{}><{~a},{}>

<{},{}>

Figure 9.6: O–semantics of example 9.9.

9.1.4 Properties of sustainable A–models

This subsection explores properties of sustainable A–models that provide a better understand-
ing of them, and also give hints for their construction without having to previously calculate
all A–models.

We begin with properties that show how our models can be viewed as an extension to well–
founded semantics. As mentioned in [Monteiro, 1992], negation in WFS is based on the notion
of support, i.e. a literal not L only belongs to a partial stable model (PSM) if all the rules for
L (if any) have false bodies in the PSM. In contradistinction, we are interested in negations
as consistent hypotheses that cannot be defeated. To that end we weaken the necessary (but
not sufficient) conditions for a negative literal to belong to a model as explained below. We
still want to keep the necessary and sufficient conditions of support for positive literals. More
precisely, knowing that PSMs must obey, among others, the following conditions cf. [Monteiro,
1992]:

• If there exists a rule p ← Body in the program such that Body is true in model M then
p is also true in M (sufficiency of support for positive literals).

• If an atom p ∈ M then there exists a rule p ← Body in the program such that Body is
true in M (necessity of support for positive literals).

• If all rule bodies for p are false in M then not p ∈ M (sufficiency of support for negative
literals).

• If not p ∈ M then all rules for p have false bodies in M (necessity of support for negative
literals).

The meaning of our consistent A–models need not obey the fourth condition. Foregoing it
condones making additional negative assumptions. In our models an atom might be false even
if it has a rule whose body is undefined. Thus, only false atoms with an undefined rule body
are candidates for having their negation added to the WFM(P ).

Proposition 9.1.2 Let 〈A; M〉 be any consistent A–model of a program P . The interpretation
A ∪M obeys the first three conditions above.
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<{~b},{}>

<{},{}>

Figure 9.7: R(CS) if untenable A–models were not defined as maximal ones.

Proof: Here we prove the satisfaction of the first condition. The remaining proofs are along the
same lines.

If:

∃p ← b1, . . . , bn, not c1, . . . , not cm ∈ P | {b1, . . . , bn, not c1, . . . , not cm} ⊆ A ∪M

then
bi ∈ M (1 ≤ i ≤ n) and not cj ∈ M or not cj ∈ A (1 ≤ j ≤ m).

Let
p ← b1, . . . , bn, not cl, . . . , not ck (l ≥ 1, k ≤ m)

be the rule obtained from an existing one by removing all not cj ∈ A, which is, by definition, a
rule of P + A. Thus there exists a rule

p ← Body

in P + A such that
Body ⊆ WFM(P + A) = M.

Given that the WFM of any program must obey the first condition above, p ∈ WFM(P + A).
♦

Next we state properties useful for more directly finding the sustainable A–models.

Proposition 9.1.3 There exists no consistent A–model 〈A;M〉 of P with {not a} ⊆ A such
that a ∈ WFM(P ).

Proof: We begin by proving the proposition for {not a} = A.

Since a ∈ WFM(P ), then by propositions B.0.1 and B.0.2 there is a SSP (a) = S (according
to the definition B.0.1 of support set for normal programs) such that a 6∈ S and not a 6∈ S, and
consequently:

Rules(S) ⊆ P + {not a}.
Then, by proposition B.0.3, a ∈ WFM(P + {not a}), and thus

〈{not a}; WFM(P + {not a})〉

is inconsistent.
It follows, from lemma 9.1.1, that all A–models 〈A; M〉 such that {not a} ⊆ A are inconsis-

tent. ♦
Hence, A–models not obeying the above restriction are not worth considering as sustainable.

Proposition 9.1.4 If a negative literal not L ∈ WFM(P ) then there is no consistent A–model
〈A; M〉 of P such that L ∈ M.



9.1. BEYOND THE WFS OF NORMAL PROGRAMS 157

Proof: We prove that if L ∈ M for a given A–model 〈A; M〉 of P then 〈A; M〉 is inconsistent.
If L ∈ M there must exist in P a rule

L ← B1, . . . , Bn, not C1, . . . , not Cm

such that:
{B1, . . . , Bn, not C1, . . . , not Cm} ⊆ M ∪A

and {B1, . . . , Bn, not C1, . . . , not Cm} is false in WFM(P )2, i.e. there must exist a rule with
head L in P with at least one body literal true in M ∪A and false in WFM(P ).

If that literal is some not Cj , by proposition 9.1.3 〈A;M〉 is inconsistent (its corresponding
atom is true in WFM(P ) and false in M ∪A).

If it is some Bi this theorem applies recursively, ending up in a rule with empty body, an
atom with no rules or a loop without an interposing not l. The truth value of literals in these
conditions can never be changed: since the P + A operation only involves deleting rules with
literals at the body and literals from the body of rules, the truth value of atoms without rules
is always false no matter which A is being considered, and the truth value of atoms with a fact
is always false. Literals in a loop without interposing not l are false in P, and remain false if
rules of the loop are deleted. ♦

Theorem 9.1.6 If not L ∈ WFM(P ) then for every consistent A–model 〈A; M〉 of P, not L ∈
M .

Proof: Given proposition 9.1.4, it suffices to prove that L is not undefined in any consistent
A–model of P . The proof is along the lines of that of the proposition above. ♦

Consequently, all negative literals in the WFM(P ) belong to every sustainable A–model.

Lemma 9.1.7 Let WFM(P ) = T ∪ not F . For any subset S of not F

WFM(P ) = WFM(P + S).

Proof: This lemma is easily shown using the definition of P +A and the properties of the WFM.
♦

Theorem 9.1.8 Let WFM(P ) = T ∪ not F, 〈A;WFM(P + A)〉 a consistent A–model, and
let A′ = A ∩ not F. Then:

WFM(P + A) = WFM(P + (A−A′)).

Proof: Let P ′ = P + (A−A′) and WFM(P ) = T ∪ not F.

By theorem 9.1.6 not F ⊆ WFM(P ′). So, by lemma 9.1.7:

WFM(P ′) = WFM(P ′ + not F ) = WFM([P + (A− (A ∩ not F ))] + not F ).

By definition of P + A, it follows that

(P + A1) + A2 = P + (A1 ∪A2).

Thus WFM(P ′) is:

WFM(P + [(A− (A ∩ not F )) ∪ not F ]) = WFM(P + A)
2{B1, . . . , Bn, not C1, . . . , not Cm} is false in a model M = T ∪ not F iff {B1, . . . , Bn} ∩ F 6= {} or

{C1, . . . , Cm} ∩ T 6= {}
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♦
N.B. This theorem shows that sets of assumptions including negative literals of WFM(P )

are not worth considering since there exist smaller sets having exactly the same consequences
A ∪ M and, by proposition 9.1.4, the larger sets are not defeatable by reason of negative
literals from the WFM(P ). Hence, in the remainder of the chapter, we consider only A–models
whose assumptions are not in the WFM, inasmuch all WFM(P ) assumptions will be part of
WFM(P + A) for any A.

Another important hint for calculating the sustainable A–models is given by lemma 9.1.1.
According to it one should start by calculating A–models with smaller assumption sets, so that
when an inconsistent A–model is found, by the lemma 9.1.1, sets of assumptions containing it
are unworthy of consideration.

Example 9.10 Let P :
p ← not a, not b
a ← c, d
c ← not c
d

The least A–model is:
〈{}; {d, not b}〉

where {d, not b} = WFM(P ). Thus sets of assumptions containing not d or not b are not worth
considering.

Take now, for example, the consistent A–model

〈{not a}; {d, not b, p}〉

which we retain since it is consistent.
Consider 〈{not c}; {c, a, not p}〉; as this A–model is inconsistent we do not retain it nor

consider any other A–models with assumption sets containing not c.
Now we are left with just two more A–models worth considering:

• 〈{not p}; {d, not b}〉, which is defeated by 〈{not a}; {d, not b, p}〉.

• 〈{not p, not a}; {d, not b, p}〉, which is inconsistent.

Thus the only two sustainable A–models are:

〈 {} ; {d, not b} 〉
〈 {not a} ; {d, not b, p} 〉

In this case, the latter is the single maximal sustainable A–model, and thus uniquely determines
the intended meaning of P to be:

A ∪WFS(P + A) = {not a, d, not b, p}.

9.1.5 Relation to other work

Consider the following program P :

p ← q, not r, not s
q ← r, not p
r ← p, not q
s ← not p, not q, not r
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In [Przymusinska and Przymusinski, 1990] the authors argue that the intended semantics
of this program should be the interpretation:

{s, not p, not q, not r}

due to the mutual circularity of p, q, r.

This model is precisely the meaning assigned to the program by the O–semantics, its O–
Model. Note that WFS identifies the empty model as the meaning of the program. This is also
the model provided by stable model semantics [Gelfond and Lifschitz, 1988]. The weakly perfect
model semantics for this program is undefined as noticed in [Przymusinska and Przymusinski,
1990].

The extended well-founded semantics (EWFS) [Dix, 1991] is also an extension to the WFS
based on the notion of generalized closed world assumption (GCWA) [Minker, 1987]. Roughly,
EWFM moves closer than the WFM (in the sense of being less undefined) to being the in-
tersection of all minimal Herbrand models of P. With a different notation from that of [Dix,
1991]:

EWFM(P ) =def WFM(P ) ∪ T (WFM(P )) ∪ not F (WFM(P ))

where:
T (I) =def True(MIN MOD(I, P )),

F (I) =def False(MIN MOD(I, P ))

I is a three–valued interpretation, and MIN MOD(I, P ) is the collection of all minimal
two–valued Herbrand models of P consistent with I. For a set S of interpretations, True(S)
(resp. False(S)) denotes the set of all atoms which are true (resp. false) in all interpretations
of S.

For the program P = {a ← not a} we have:

WFM(P ) = {},MIN MOD({}, P ) = {{a}} EWFM(P ) = {a}

The O–Model of P is empty.

The main differences between ours and their approach are that:

• Like WFS and unlike EWFM, we insist on the supportedness of positive literals, i.e.:

An atom A ∈ MP iff ∃ A ← Body | Body ⊆ MP

• Unlike WFS and unlike EWFM, we relax, by allowing undefined bodies with false heads
under certain conditions, the requirement of supportedness of negative literals, i.e. we
relax:

not A ∈ MP iff ∀ A ← Body | Body is false in MP

Example 9.11 Let P be:
c ← not b
b ← not a
a ← not a

The O–Model of P is {c, not b}. Note that c has a rule whose body is true in the O–Model and
it is not the case that all rules for b are false in it.

The EWFM is {a, c, not b}. The atom a is true in the EWFM and has no rule with a body
true in it. All rules for b have a false body in the EWFM.
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Another example where O–semantics differs from EWFM is the game example of the intro-
duction. In this example EWFM gives the (strange) result that a is a winning position, and
thus bets are raised.

A similar approach based on the notion of stable negative hypotheses (built upon the notion
of consistency) is introduced in [Kakas and Mancarella, 1991b], identifying a stable theory
associated with a program P as the semantics for P , and always contains the well–founded
model.

One example showing that their approach is still conservative is:

p ← not q
q ← not r
r ← not p
s ← p

Stable theories identify the empty set as the meaning of the program; however its O–Model is
{not s}, since it is consistent, maximal, sustainable and tenable.

Kakas and Mancarella (personal communication) now also obtain this model, as a result of
the investigation mentioned in the conclusions of [Kakas and Mancarella, 1991b]. In this recent
work, the “acceptability semantics”, instead of our notion of “sustainable” they present:

A is KM–coherent3 if all sets of assumptions B that defeat A are defeated by A.

i.e., if one insists on the set of assumptions A, no consistent evidence to the contrary can be
found. No preferred unique model is identified in their approach, the semantics being defined
as the set of consequences common to all KM–coherent sets of assumptions.

However, even with this definition their approach is still conservative (as noted in [Bon-
darenko et al., 1993]). For example consider the program:

a ← not b
b ← not a, not b

Its consistent A–models are:
〈 {} ; {} 〉
〈 {not a} ; {} 〉
〈 {not b} ; {a, not b} 〉

Given that the second A–model is defeated by the third one, the O–model is {a, not b}, i.e.
not b is added.

Using the acceptability semantics approach, both {not a} and {not b} are KM–coherent,
and so the semantics is {}.

More recently, in [Bondarenko et al., 1993], a flexible framework for defining logic program-
ming semantics is presented, based on an argumentation framework similar to the one in [Dung,
1991] but where a different notion of evidence to the contrary, and of how a scenario defeats
contrary evidence, are used.

Within this framework the authors can define the well–founded, stable models, preferred
extensions, and acceptability semantics. Then, motivated by the very same example present
here that shows the acceptability semantics is too conservative, they define what they call an
“improved semantics”.

3The authors just call it coherent. Here we use KM–coherent to avoid confusion with our coherence principle,
which is completely unrelated.
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This “improved semantics”, however differently defined, is technically equivalent to the
preferred extensions semantics of [Dung, 1991] (which for normal programs is equivalent to
definition 7.5.1), but where now inconsistent evidence to the contrary is not allowed.

However, the “improved semantics” exhibits some strange behaviours:

Example 9.12 Consider a program with the single rule:

a ← not a, not b

whose WFS and O–model is {not b}. Note that this is indeed the expected result: since b has
no rules, not b must belong to the semantics independently from the truth value of a. Thus for
the standpoint of not a this program should be equivalent to the one containing the single rule
a ← not a, and so not a cannot be safely added.

However according to the “improved semantics” {not a} is a preferred extension of this pro-
gram, since P ∪{not a} is consistent and the only evidence for a, {not a, not b}, is inconsistent.

9.2 O–semantics for extended programs

Having defined how to add more CWA assumptions to the well–founded model of a normal
program, we come back to the issue of semantics of extended program. In this section we
generalize O–semantics to extended logic programs.

To that end, we retain the desired principles for adding CWA assumptions in normal pro-
grams, i.e the set of added assumptions must be consistent, sustainable, unique and maximal.
Here our aim is to add assumptions to the WFSX of extended programs, in the same spirit as
we did above for the WFS of normal programs. Since for some programs WFSX is not defined,
for them O–semantics is not defined either. However we want O–semantics to give a meaning
to at least the same programs as WFSX does.

In order to achieve such a generalization we follow the definition of the O–semantics for
normal programs, and modify it appropriately in order to make it applicable to extended pro-
grams. In the presentation we also point out whether each of the properties verified in normal
programs subsists in extended ones. For those that do not subsist we present alternative (weak)
properties that are still verified. This way we obtain some properties of O–semantics for ex-
tended programs.

The P + A program transformation for adding assumptions to a program (definition 9.1.1)
remains the same for extended programs. In fact all we have to do is to substitute true for
the assumption, and false for their objective literals, in the body of rules. Because making an
assumption not L does not directly interfere with objective literals, nothing more needs to be
done in this stage4.

The generalization of A–models is the straightforward one, i.e. instead of adding the extra
assumptions to the WFS of a program, one adds them to its WFSX. Care must be taken
bacause, unlike the case of WFS for normal programs, now not every program has a semantics.

Definition 9.2.1 (Assumption model) An assumption model of an extended program P, or
A–model for short, is a pair 〈A; M〉 where A ⊆ not H, P + A is a noncontradictory program,
and

M = WFSX(P + A)

4Note that adding an objective literal L directly interferes with default literals via coherence (not ¬L is a
direct consequence of adding L). The converse does not hold.
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The meaning of an A–model 〈A;WFSX(P + A)〉 is:

A ∪WFSX(P + A)

i.e. the result of adding assumptions A to the WFSX of P.

Unlike the case of normal programs here, because of contradiction, A–models might not
exist for some sets of assumptions. Thus, in general A–models with the partial order ≤a do not
become organized into a complete lattice.

Example 9.13 Consider program P :

¬a ← not b b ← not d d ← not d
a ← not c c ← not d

The A–models of P are:

M1 = 〈 {} ; {not ¬b, not ¬c, not ¬d} 〉
M2 = 〈 {not b} ; {¬a, not a, not ¬b, not ¬c, not ¬d} 〉
M3 = 〈 {not c} ; {a, not ¬a, not ¬b, not ¬c, not ¬d} 〉
M4 = 〈 {not a} ; {not ¬b, not ¬c, not ¬d} 〉
M5 = 〈 {not ¬a} ; {not ¬b, not ¬c, not ¬d} 〉
M6 = 〈 {not a, not ¬a} ; {not ¬b, not ¬c, not ¬d} 〉
M7 = 〈 {not a, not b} ; {¬a, not a, not ¬b, not ¬c, not ¬d} 〉
M8 = 〈 {not ¬a, not b} ; {¬a, not a, not ¬b, not ¬c, not ¬d} 〉
M9 = 〈 {not a, not ¬a, not b} ; {¬a, not a, not ¬b, not ¬c, not ¬d} 〉
M10 = 〈 {not a, not c} ; {a, not ¬a, not ¬b, not ¬c, not ¬d} 〉
M11 = 〈 {not ¬a, not c} ; {a, not ¬a, not ¬b, not ¬c, not ¬d} 〉
M12 = 〈 {not a, not ¬a, not c} ; {a, not ¬a, not ¬b, not ¬c, not ¬d} 〉

and those resulting from the union of each of the ones above with the subsets of

{not ¬b, not ¬c, not ¬d}.

Note that there are A–models with assumptions {not b} and with assumptions {not c}, but
there is no A–model with assumptions {not b, not c}. This occurs because

P + {not b, not c}

is:
¬a b ← not d d ← not d

a c ← not d

which is clearly a contradictory program.

It is not the case that all programs have A–models. For example the program P = {a; ¬a}
has no A–models. However it is clear that noncontradictory programs have at least one A–model
(albeit 〈{};WFSX (P )〉).

The notion of consistent A–models (definition 9.1.3) subsists for extended programs, i.e.
〈A; M〉 is consistent iff there exists no assumption not L ∈ A such that L ∈ M. Note that there
is no need to consider inconsistencies between objective literals. Those are taken care of by not
considering A–models 〈A;M〉 where P + A is contradictory.

Example 9.14 In the program of example 9.13 the A–models M8, M9, M10 and M12 are
inconsistent. All others are consistent.



9.2. O–SEMANTICS FOR EXTENDED PROGRAMS 163

Even though the structural properties of A–models of normal programs do not subsist
for extended ones, it is interesting to note that for noncontradictory programs the structural
properties of consistent A–models are retained by extended programs. Moreover a program has
consistent A–models iff it is noncontradictory.

Lemma 9.2.1 Let 〈A;WFSX(P + A)〉 be a consistent A–model of the extended logic program
P. Then for every literal L :

L ∈ WFSX(P ) ⇒ L ∈ WFSX(P + A)

Proof: In appendix. ♦

Theorem 9.2.2 An extended logic program P has at least one consistent A–model iff P is
noncontradictory.

Proof: (⇐) If the program is noncontradictory then clearly 〈{};WFSX (P )〉 is a consistent A–
model of P.

(⇒) Let 〈A;WFSX (P + A)〉 be a consistent A–model of P. Then there is no pair {L,¬L}
such that:

{L,¬L} ⊆ WFSX (P + A)

So, by lemma 9.2.1, the same happens to P + {}, and thus P is noncontradictory. ♦

Theorem 9.2.3 The set of all consistent A–models of an extended logic program P with the
partial order ≤a is organized into a lower semilattice.

Proof: In appendix. ♦
According to the CWA principles an assumption not L cannot be sustained if there is

some consistent set of assumptions that defeats L. Note that, as for normal programs, also
in extended programs the only way of defeating the assumption not L is by proving L. The
objective complement of L, i.e. ¬L, only influences not L in order to prove it, not to defeat it.
We do not even have to guarantee that mandatory default literals are indeed added since this
is dealt with by WFSX5. So the definitions of defeating and sustainable A–models of normal
programs (definitions 9.1.4 and 9.1.5, respectively) remain unchanged for extended programs.

It is easy to prove that lemma 9.1.2 subsists for extended programs. It is also clear from
the definitions, that the A–model

〈{};WFSX (P )〉
is sustainable for every noncontradictory program P.

Given the structure of consistent A–models of extended programs and the proofs for normal
programs, it follows almost directly that for extended programs the sustainable A–models are
also organized into a lower semilattice.

Thus for extended programs, after taking care of inconsistent and unsustainable A–models,
we are in a similar situation as with normal ones. Here, too, several maximal sustainable A–
models might exist. The examples shown before (e.g. example 9.4) to illustrate this for normal
programs can be used here for extended ones, since normal programs are a special case of
extended ones. The program of example 9.13 is another case where several maximal sustainable
A–models exist:

5Note that the meaning of an A–model 〈A;WFSX (P + A)〉 is A ∪WFSX (P + A). Thus, given that WFSX
imposes the mandatories (via coherence), these are guaranteed in the meaning of the A–model.
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Example 9.15 In the program of example 9.13 all A–models with assumptions not a and
not ¬a are defeated, respectively by M3 and M2. Thus sustainable A–models are:

M1 = 〈 {} ; {not ¬b, not ¬c, not ¬d} 〉
M2 = 〈 {not b} ; {¬a, not a, not ¬b, not ¬c, not ¬d} 〉
M3 = 〈 {not c} ; {a, not ¬a, not ¬b, not ¬c, not ¬d} 〉

and the ones resulting from the union of each of the ones above with the subsets of

{not ¬b, not ¬c, not ¬d}.

Maximal sustainable A–models are, though:

〈 {not b, not ¬b, not ¬c, not ¬d} ; {¬a, not a, not ¬b, not ¬c, not ¬d} 〉
〈 {not c, not ¬b, not ¬c, not ¬d} ; {a, not ¬a, not ¬b, not ¬c, not ¬d} 〉

In section 9.1.2, after having the lower semilattice of all sustainable A–models of a program
P, we proceed to determine among those the ones that constitute the O–semantics and the
O–model of P. This process was motivated by the principles that the CWA must be unique and
maximal.

In order to achieve that, we devised a recursive peeling procedure on candidate structures
that at each stage delete from the structure some non–preferred A-Models, the preference
criterium being guided by the notion of tenability. Recall that tenability required that a maximal
sustainable set of assumptions be not contradicted by the consequences of adding to it another
competing maximal sustainable set.

For extended programs a set of assumptions can be contradicted by adding to it another
competing one, if the resulting program either defeats the original set of assumptions (as for
normal programs), or is contradictory. This last additional condition for untenability can be
seen in the program of example 9.13:

Example 9.16 The maximal sustainable A–models shown in example 9.15 are both untenable
because by adding the assumptions of them both to P the resulting program is contradictory.
In fact:

P + {not b, not c, not ¬b, not ¬c, not ¬d} =

¬a
a
b ← not d
c ← not d
d ← not d

The rationale for saying that both the maximal sustainable A–models are untenable is
grounded in that there is no reason to prefer one over the other, and they cannot be both
assumed jointly. Thus in the end none of them is tenable.

Note the similarities between this and the method in chapter 8 for finding a unique revision
of a contradictory program.

Accordingly, and retaining the definition 9.1.6 of candidate structure:

Definition 9.2.2 (Untenable A–models) Let {〈Ak; Mk〉 | k ∈ K} for k ∈ K, be the set of
all maximal A–models in Candidate Structure CS, and let:

PJ = P +
⋃

k∈K

Aj

An A–model 〈Ai; Mi〉 is untenable wrt CS iff it is maximal in CS and either:
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• PJ is contradictory, or

• there exists not a ∈ Ai such that a ∈ WFSX(PJ).

In order to define the retained candidate structure we first prove a lemma:

Lemma 9.2.4 Let {〈Ak; Mk〉 | k ∈ K} for k ∈ K, be the set of all maximal A–models in Can-
didate Structure CS.

If none of those A–models is untenable then

〈
⋃

k∈K

Ak;WFSX(P +
⋃

k∈K

Ak)〉

is a sustainable A–model.

Proof: In appendix. ♦
The above lemma guarantees that when no untenable A–model exists in a candidate struc-

ture, its join can be safely added to it. Thus the definition of retained candidate structure for
extended programs is similar to that for normal ones:

Definition 9.2.3 (Retained CS) Let CS be a candidate structure, and let A be the union of
all assumptions in all A–models of CS.

The Retained Candidate Structure R(CS) of CS is defined recursively in the following way:

• 〈A;WFSX(P + A)〉 ∪ CS if there are no untenable A–models in CS.

• Otherwise, let Unt be the set of all untenable A–models wrt CS. Then

R(CS) = R(CS − Unt)

Definition 9.2.4 (The O–semantics of extended programs) The O–semantics of an ex-
tended logic program P is the retained candidate structure of the semilattice of all sustainable
A–models of P .

Let 〈A;M〉 be its maximal element. The O–model of P is A ∪M.

Example 9.17 The O–model of the program in example 9.13 is equal to its WFSX, i.e.

{not ¬b, not ¬c, not ¬d}

Now we prove some results that show that our goals for this section were indeed accom-
plished. One such goal was that the O–semantics of extended programs be a generalization of
that for normal ones, i.e. if a program has no explicit negation then it is indifferent to use one
definition or another:

Theorem 9.2.5 (Generalization of the O–semantics) Let P be a normal logic program.
The “O–semantics” of P coincides with the “O–semantics of extended programs” of P.

Proof: Given that for normal programs WFS and WFSX coincide (cf. theorem 4.3.6), and
that no normal program can be contradictory, it is easy to check that each of the definition
modified in order to obtain the “O–semantics of extended programs” coincide with the original
ones for normal programs. ♦

Another goal is that the O–semantics be defined for the same programs as WFSX:

Theorem 9.2.6 (Existence of the O–semantics) An extended logic program P is noncon-
tradictory iff it has O–semantics.
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Proof: By theorem 9.2.2 P is noncontradictory iff it has at least one consistent A–model. It is
clear that P has at least one consistent A–model iff it has at least one sustainable A–model,
albeit 〈{},WFSX (P )〉 which, by definition, is always consistent and sustainable.

From lemma 9.2.4 and the definition of retained candidate structure it follows directly that
P has sustainable A–models iff P has O–semantics. ♦

Finally, another goal was that O–semantics extend WFSX by adding to it some more as-
sumptions:

Theorem 9.2.7 (Extension of WFSX) Let P be a noncontradictory extended logic program,
whose well–founded model according to WFSX is M, and whose O–model is O.

Then M ⊆ O.

Proof: By lemma 9.2.1, for every consistent A–model 〈A,WFSX (P + A)〉 :

WFSX (P ) ⊆ WFSX (P + A) (∗)

Since the O–model is by definition the meaning of one A–model, let 〈AO;WFSX (P + AO)〉 be
that A–model.

Then, and using the result of (∗) :

M = WFSX (P ) ⊆ WFSX (P + AO) ⊆ AO ∪WFSX (P + AO) = O

♦

9.2.1 O–semantics or WFSX ?

At this point, and after having defined the O–semantics for extended programs, important
questions have to be answered:

• What semantics should be used as the base semantics for extended logic programs?

• Why was WFSX chosen as the preferred semantics in this work?

First, it is not clear that it is always the case that more credulous semantics (i.e. assuming
more hypotheses) are preferable to more sceptical ones. Intuitively, this is the case in the
“game” example. But consider the following modification of the robot situation described in
example 5.15:

Example 9.18 A robot is programmed to carry some money from bank 1 to bank 2. There
are two possible routes, denoted a and b; the robot chooses one of them, provided that it has
no reason to believe there is trouble along that route. If there is trouble on both routes then
the robot signals “call repairs” (signal 1). If there is no reason to call repairs, the robot signals
“no need of repairs” (signal 2). This task can be naturally formalized by the program (where
the part of choosing one or the other route is omitted, since it can be found in example 5.15):

signal(1) ← trouble(a), trouble(b)
signal(2) ← not signal(1)

Now suppose that, additionally, the robot knows that if there is no reason to believe there
is trouble in one of the routes, then there is trouble in the other. This can be expressed by the
rules:

trouble(a) ← not trouble(b)
trouble(b) ← not trouble(a)
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The well–founded model of the program constituted by these four rules is empty, while its
O–model is:

{not signal(1), signal(2)}
Thus, according to the O–semantiocs the robot should signal “no need of repairs”.

However, its knowledge about the troubles in the routes is compatible with having trouble
in both of them6, and so it can be arguable that the robot should be more sceptical, and be
agnostic about signalling or not “no need of repairs”.

The problem of this example is strongly related with the property of rationality7. Rationality
is a cautious form of nonmonotonicity, and intuitively a semantics is rational if adding an atom
A to a program P does not contradict the consequences of P alone, provided that not A is not
a consequence of it.

More formally, a semantics Sem is rational iff for every program P and every pair of atoms
A and B :

if not A 6∈ Sem(P ) and B ∈ Sem(P ) then B ∈ Sem(P ∪ {A})
In [Dix, 1992b] the author points out that O–semantics is not rational by showing a coun-

terexample.

Example 9.19 Consider program P :

c ← not b
b ← a
a ← not a

The O–model of P contains c and does not contain not a, but the O–model of P ∪{a} does not
contain c.

Another property studied by Dix in [Dix, 1992b], and verified by WFS is “relevance”.
Intuitively a semantics is relevant iff the truth value of a literal is independent from the rules
above it in the dependancy graph of the program (for a formal definition of relevance see section
10.1.2).

This property plays an important rôle if one wants to define procedures to decide if some
literal belongs to the semantics. In particular, semantics that do not verify this property, cannot
have top–down procedures for them, since in those semantics in order to decide the truth value
of some literal L it might be necessary to examine rules that are not below L.

As proven by theorem 10.1.7 WFSX obeys relevance. This makes it amenable to the def-
inition of top–down procedures. On the contrary, O–semantics for extended program is not
relevant.

Example 9.20 Recall the program of example 9.13, whose O–model (calculated in example
9.17) is:

{not ¬b, not ¬c, not ¬d}
Since b is undefined in this program, one would expect that the same value would be assigned

to it in the program just containing the rules with head b and the ones below those. This is
in fact what would guarantee that a purely top–down method for deciding the truth value of b
would be correct.

6Note that its knowledge just excludes the case of having both routes without problems.
7Rationality was introduced in [Kraus et al., 1990] for nonmonotonic formalisms, and applied to normal and

disjunctive logic programming, respectively in [Dix, 1991] and in [Dix, 1992a]. The generalization of this property
for extended program can be found in section 10.1.1 below.
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However, the program just containing the above mentioned rules is:

b ← not d
d ← not d

its O–model is {not b}, and thus the truth value of b is not the same.

This shows that computationally WFSX is preferable to O–semantics, i.e. it is easier to
compute. Moreover the complexity of computing the WFSX of a datalog program is polyno-
mial (as shown by theorems 10.1.9 and 10.1.10), and we conjecture that this is not the case for
O–semantics, since it relies on first determining a class of models, and only after that choosing
among those a preferred one.

Another issue that made us opt for WFSX is that it is sound wrt O–semantics (cf. theorem
9.2.7). Thus, even for the cases where O–semantics is the desired one, we can use the methods
of WFSX to compute the consequences, and have the guarantee that the literals found are also
consequences of the O–semantics. Note that the converse is not true, i.e. if the O–semantics is
used for cases where WFSX is desired wrong answers are given.

Moreover O–semantics can be thought of as an addon to WFSX, inasmuch its very defini-
tion is in terms of such an addon. This way we can say that WFSX is the basic semantics,
and its procedures are the basic ones. If in some cases O–semantics is desired, its computation
can be performed relying on the procedures of WFSX. Note that this was also the spirit in
contradiction removal, where instead of opting for some more sceptical semantics we have relied
on WFSX and its procedures, and provide it with some addon mechanisms in order to produce
the other more sceptical semantics.

Last, but not least, there is the historical nexus in the preparation of this work. From the
start, the main goal was to extend logic programming with a second kind of negation, and to
study especially the issues of the newly introduced negation, its benefits to nonmonnotonic rea-
soning formalisms, and its appropriateness for artificial intelligence problems. The choice of an
already existing and widely accepted or understood semantics as a basis for the generalization,
provided from the start for the easier acceptance of our work and ideas on explicit negations in
the international scientific comunity.

The definition of a semantics assuming more negative hypotheses appeared after, and as an
addon to the previously defined semantics. Its adoption from the start, because of its added
complexity and new concepts, could jeopardize our primary goal.



Chapter 10

Further Properties and
Comparisons

Throughout the previous chapters, several properties of WFSX were studied, and many com-
parisons with other semantics were made. Special importance was given to epistemic properties,
and to comparisons based on epistemic arguments.

In this chapter we present some additional properties of WFSX, and make further com-
parisons with other semantics based on these properties, which are essentially structural in
nature.

10.1 Properties of WFSX

Although most of the properties of WFSX presented up to now are of an epistemic nature, some
structural properties too were already presented:

In section 4.3, it is shown that a least partial stable model – the well–founded model – always
exists for noncontradictory programs (cf. theorem 4.3.1), and that that model can be obtained
by an iterative bottom–up construction (cf. theorem 4.3.2 and definition 4.3.1). Moreover, we
produced an iterative process for finding if a program is contradictory (cf. theorem 4.3.5). Also
in that section, we prove that for normal programs the results of WFSX are equivalent to the
results of the well–founded semantics of [Gelder et al., 1991] (cf. theorem 4.3.6).

In section 5.1.3 some other properties of extended logic programs are brought out, namely:
intrinsic consistency, coherence and supportedness. The proof that WFSX complies with the
first two is trivial. The proof of the third is to be found below in section 10.1.2.

In section 6.3 some properties of Ω–default theories are exhibited and proven. Given the
correspondence result of theorem 6.6.1, all these properties are verified by WFSX as well. In
particular, WFSX complies with the property of modularity.

In section 6.7 an alternative definition of WFSX is given, and additional properties concern-
ing it are supplied. Among these are several different iterative constructions for the well–founded
model.

Via the equivalence result of theorem 7.4.9, all the properties presented in section 7.4 for
complete scenaria semantics are also properties of WFSX. In particular, one such property points
out that partial stable models under set inclusion are organized into a downward–complete semi-
lattice (cf. point 1 of theorem 7.4.1), its least element being the well–founded model (cf. point
2 of the same theorem).

In order to make more formal comparisons between the various semantics for normal pro-
grams, in [Dix, 1991] the author submits some abstract properties a semantics should comply
with. He begins by studying the application to normal logic program semantics of some struc-

169



170 CHAPTER 10. FURTHER PROPERTIES AND COMPARISONS

tural properties defined for nonmonotonic reasoning formalisms in [Kraus et al., 1990], and
points out the importance, in normal programs, of properties such as cumulativity and ratio-
nality, that provide for a cautious form of nonmonotonicity.

More recently, in [Dix, 1992b], this author generalizes his previous work and presents an
assortment of properties he claims must be obeyed by every reasonable semantics of normal
programs. The motivation is to provide combinations of properties that guarantee a complete
and unique characterization of a semantics via such properties. In this section we generalize
some of the properties presented in [Dix, 1991, Dix, 1992b] for extended logic programs, and
study whether WFSX complies with them.

Here too, we study the complexity of WFSX, and prove results needed for the proofs of
previous theorems in this work.

The structure of this section is as follows: in section 10.1.1 we study structural properties
related to the form of nonmonotonicity used by the semantics; then, in section 10.1.2, we study
properties related to the form and transformations of programs; finally, in section 10.1.3 we
prove some complexity results for WFSX.

10.1.1 Cumulativity and rationality

It is well known that semantics for logic programs with negation by default are nonmonotonic.
However, some weak forms of monotonicity can still be verified by such semantics. Here we
point out the importance of two such weak forms of monotonicity – cumulativity and rationality
– for extended logic programs semantics, and examine whether WFSX complies with them.

Monotonicity imposes that for every program P and every pair of objective literals A and
B of P

B ∈ Sem(P ) ⇒ B ∈ Sem(P ∪ {A})
In semantics of logic programs this property is not verified, and not even desired, for every

such pair of objective literals. However, for some pairs, this property can be verified by some
semantics, and in fact it can be very computationally useful.

One such case is when A is itself a consequence of P under the semantics Sem. The impo-
sition of such a restriced form of monotonicity expresses that the addition of consequences of
the semantics does not interfere with other consequences or, in other words, the consequences
of a program, or lemmas, can safely be added to it. This weak form of monotonicity is usually
called cumulativity.

Before defining cumulativity for extended logic programming we make a preliminary remark:

Remark 10.1.1 The study of this kind of properties of logic programs is made in the sceptical
version of a semantics (cf. [Dix, 1991]), i.e. L ∈ Sem(P ) is understood as: L belongs to all
models determined by the semantics Sem when applied to the program P. Here this study is
simplified since, by theorem 4.3.1, a literal belongs to all models of the semantics WFSX iff it
belongs to the well–founded model. Thus, in the sequel we use L ∈ WFSX(P ) to denote that L
belongs to the well–founded model of P or, equivalently, to all partial stable models of P.

The generalization of cumulativity for extended logic programs is quite straightforward: it
is just a rephrasing of cumulativity for normal programs as it appears in [Dix, 1991], with the
additional proviso that the program be noncontradictory:

Definition 10.1.1 (Cumulativity) A semantics Sem is cumulative iff for every noncontra-
dictory program P and any two objective literals A and B of P :

if A ∈ Sem(P ) and B ∈ Sem(P ) then B ∈ Sem(P ∪ {A})1
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This properties states that whenever an objective literal A has been derived from P, A can
be used as a lemma and does not affect the set of objective literals derivable from P alone. If this
condition is not valid, intermmediate lemmas are of no use. This indicates that noncumulative
semantics may be computationally very expensive. As shown below, WFSX is a cumulative
semantics, and so memoizing techniques can be used in its computation:

Theorem 10.1.1 The WFSX semantics for extended logic programs is cumulative.

Proof: We will prove that the complete scenaria semantics (definition 7.3.3) is cumulative.
Given the equivalence between this semantics and WFSX (cf. theorem 7.4.9) this proves cumu-
lativity for the latter.

Let P ∪H be the least complete scenario of the noncontradictory program P. To prove this
theorem, it is enough to show that if P ∪H ` A and P ∪H ` B then:

• P ∪H ∪ {A} ` B;

• P ∪H ∪ {A} is the least complete scenario of P ∪ {A}.

The proof of the first point is trivial since in the scenaria framework a scenario is a set of
Horn clauses, and thus its consequences comply with monotonicity.

The proof of the second point is made in two steps. First we prove that P ∪ H ∪ {A} is
a complete scenario of P ∪ {A}. Then we prove that there is no smaller complete scenario of
P ∪ {A}.

1. First we have to guarantee that P ∪H∪{A} is noncontradictory, i.e. it does not derive an
objective literal L and its complement ¬L. Since P ∪H ` A, and P ∪H is a set of Horn
clauses, it follows clearly that the consequences of P ∪H are the same of those of P ∪H ∪
{A}. Given that P ∪H is by hypothesis a complete scenario, it is also noncontradictory,
and so the same happens with P ∪H ∪ {A}.
Furthermore, we have to show that every hypothesis in H is either mandatory or accept-
able, and that all mandatory and acceptable hypotheses are in H.

Recall that both the definitions of mandatory and acceptable are solely based on the
consequences of the scenario.

Again given that P ∪H ` A and P ∪H is a set of Horn clauses, the consequences of P ∪H
are the same of those P ∪H ∪ {A}. Thus mandatory and acceptable hypotheses are the
same for both P ∪H and P ∪H ∪ {A}, and given that the former is a complete scenario,
the latter is also one.

2. The proof that it is the least scenario follows easily using the same arguments as in 1.

♦
1This property is usually dubed “cautious monotonicity”(CM). In rigour, cumulativity stands for CM plus

Cut, where this last property is defined by:

if A ∈ Sem(P ) and B ∈ Sem(P ∪ {A}) then B ∈ Sem(P )

Since all known semantics for both normal and extended programs trivially comply with Cut, it is equivalent to
say that a semantics is cumulative, or that it complies with CM. Here, for the sake of generality, we use the term
cumulativity.
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In [Dix, 1991], the author presents another property – rationality – also related to cautious
forms of nonmonotonicity. For normal logic programs this property is stronger than cumu-
lativity, in the sense that every rational semantics is cumulative, but not vice–versa 2. The
straightforward generalization of this property for extended programs, following the same lines
of that of cumulativity, is:

Definition 10.1.2 (Strong rationality) A semantics Sem is strongly rational iff for every
noncontradictory program P and any two objective literals A and B of P :

if not A 6∈ Sem(P ) and B ∈ Sem(P ) then B ∈ Sem(P ∪ {A})
The example below shows that WFSX is not strongly rational:

Example 10.1 Consider program P :

¬b
b ← a
a ← not a

For this program not a 6∈ WFSX (P ) and ¬b ∈ WFSX (P ). However the program P ∪ {a} is
contradictory, and so ¬b 6∈ WFSX (P ∪ {a}).

At this point we would like to recall the rationale behind rationality. While cumulativity
expresses that the addition of some consequences of the semantics do not interfere with the
other consequences, rationality expresses that the addition of literals that are compatible with
the program does not interfere with its consequences.

For normal logic programs an atom A is compatible with a program P iff its negation not A
is not in the semantics of P . Note that the same does not happen for extended programs. For
instance, in the program of example 10.1 not a is not a consequence of the semantics, but a is
not compatible with the program.

In extended programs, and in order to guarantee that some objective literal L is compatible
with a program P , we have not only to verify that not L is not a consequence of P , but also that
the program obtained by adding L to P is noncontradictory. This suggests a weaker version
of the rationality for extended programs that, in our view, is closer to the original rationale of
rationality for normal programs:

Definition 10.1.3 (Cautious rationality) A semantics Sem is cautiously rational iff for ev-
ery noncontradictory program P and any two objective literals A and B of P, if not A 6∈ Sem(P ),
and P ∪ {A} is a noncontradictory program, and B ∈ Sem(P ), then:

B ∈ Sem(P ∪ {A})
Theorem 10.1.2 The WFSX semantics for extended logic programs is cautiously rational.

Proof: As in the proof of theorem 10.1.1, here we also prove the property for WFSX via its
equivalence to complete scenaria semantics.

For simplicity, and without loss of generality (cf. corollary 10.1.2), we assume that programs
are in the semantic kernel form, i.e. no objective literal appears in the body of rules.

Let P be a noncontradictory program in that form, let P ∪H be its least complete scenario,
and let A and B be two objective literals of P such that:

(i) not A 6∈ H
(ii) P ∪ {A} is noncontradictory
(iii) P ∪H ` B

We begin by proving that:
2For example the O–semantics of normal logic programs is not rational (cf. example 9.19) but is cumulative

(cf. [Dix, 1992c]).
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1. if not L is mandatory in P ∪H, it is also mandatory in P ∪H ∪ {A}.

Given that P ∪H is a complete scenario, it contains all its mandatories. Thus not L is
mandatory iff P ∪H ` ¬L. Given that scenaria are sets of Horn clauses, P ∪H∪{A} ` ¬L,
and so, by definition of mandatory, not L is mandatory in P ∪H ∪ {A}.

2. if not L is acceptable in P ∪H it is also acceptable in P ∪H ∪ {A}.

By definition of acceptable hypothesis, not L is acceptable in P ∪H iff

∀E,P ∪ E ` L ⇒ ∃not L′ ∈ E | P ∪H ` L′

Again given that a scenario is a set of Horn clauses, its consequences are monotonic, and
so the above formula entails that:

∀E, P ∪ E ` L ⇒ ∃not L′ ∈ E | P ∪H ∪ {A} ` L′

By condition (i) it follows that not A is not acceptable in P ∪H. Thus we can assume in
the formula above that L is different from A. Given that by hypotheses the program is in
the semantic kernel form, for every objective literal L different from A :

P ∪ E ` L ⇔ P ∪ E ∪ {A} ` L

So, if not L is acceptable in P ∪H then:

∀E, P ∪ E ∪ {A} ` L ⇒ ∃not L′ ∈ E | P ∪H ∪ {A} ` L′

i.e., by definition of acceptable, not L is acceptable in P ∪H ∪ {A}.

By condition (iii), and given that consequences of a scenario are monotonic, it follows that

P ∪H ∪ {A} ` B

Since, by points 1 and 2 above, mandatory and acceptable hypotheses subsist in P∪H∪{A},
and consistency is guaranteed by condition (ii), it follows that the least complete scenario of
P ∪ {A} is of the form:

P ∪H ′ ∪ {A}
where H ′ ⊇ H.

Thus P ∪H ′ ∪ {A} ` B, i.e. B ∈ WFSX (P ∪ {A}). ♦

10.1.2 Partial evaluation and relevance

Here we study properties related to the form of programs, and with the preservation of the
semantics when some transformations are applied to programs.

One such important property is the so called principle of partial evaluation [Dix, 1992b].
This principles states that the semantics of every program should be preserved under unfolding
of objective literals. The example below shows that WFSX is not preserved under the usual
unfolding techniques3 for normal programs:

3In this work we do not give a formal definition of unfolding for normal programs, and assume that this is
known to the reader.
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Example 10.2 Recall program P of example 4.9:

c ← a a ← b
¬a ← b ← not b

whose WFSX is:
{¬a, not a, not c, not ¬b, not ¬c}

By unfolding the objective literal a in the rule for c we obtain the program P ′ :

c ← b a ← b
¬a ← b ← not b

whose WFSX is:
{¬a, not a, not ¬b, not ¬c}

Note that the truth value of c is not preserved.

This happens because the unfolding of a did not take into account the fact that ¬a is
a consequence of the program. In order to define an unfolding technique for extended logic
programs care must be taken in such cases. One has to guarantee that the unfolding of some
atom A does not interfere with the fact that ¬A belongs to the consequences of the program.

We shall see that one way of guaranteeing this is by adjoining to objective literal L the
default literal not ¬L, before using the usual techique for unfolding L. Note that program P ′′ :

c ← not ¬a, b a ← b
¬a ← b ← not b

has indeed the same WFSX of program P.

In order to define the unfolding technique for extended programs we first prove the theorem:

Theorem 10.1.3 Let P be any extended logic program, and let P ′ be the a program obtained
from P by adding to the body of some rule:

H ← B1, . . . , Bn, not C1, . . . , not Cm

the default literal not ¬Bi, where 1 ≤ i ≤ n and ¬Bi denotes the objective complement of Bi.

Then:

• M is a PSM of P iff M is a PSM of P ′.

• P is contradictory iff P ′ is contradictory.

Proof: In appendix. ♦
From this theorem there follows an important corollary, already used above in this work

(e.g. in the definition of scenaria):

Corollary 10.1.1 For every program P and its canonical program P ′

WFSX(P ) = WFSX(P ′)

Proof: Follows directly from the theorem and the definition 2.1.1 of canonical program. ♦
Let us define now the principle of partial evaluation for extended programs:
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Definition 10.1.4 (Principle of partial evaluation) Let P be an extended logic program,
and let:

L ← BodyL1
...

L ← BodyLn

be all rules of P with head L. Assume further that BodyL1, . . . , BodyLn do not contain L.

We denote by unfold(P, L) the program obtained from P by replacing each rule H ←
L,BodyH (i.e. each rule with L in the body) by:

H ← not ¬L,BodyL1, BodyH
...

H ← not ¬L,BodyLn, BodyH

The principle of partial evaluation states that the semantics of P is equal to the semantics
of unfold(P, L).

Theorem 10.1.4 WFSX complies with the principle of partial evaluation.

Proof: Let P ′ = unfold(P,L).
Recall that, according to theorem 6.7.1, T ∪ not F is a PSM of a program P iff

T = ΓP ΓPsT
T ⊆ ΓPsT
F = {L | L 6∈ ΓPsT}

and that ΓP S is the least Herbrand model of the positive program P
S

gl obtained by deleting
from P all rules with a literal not A in the body such that A ∈ S, and then deleting all default
literals from the body of the remaining rules.

We begin by proving that for any set of objective literals S :

ΓPsS = ΓP ′sS (∗)

If ¬L 6∈ S then the default literals not ¬L introduced by the partial evaluation are deleted
in P ′

S

gl
, and so this program is obtainable from P

S

gl via unfolding of L. Given that unfolding
preserves the least Herbrand model of a positive program, ΓPsS = ΓP ′sS.

If ¬L ∈ S then the only possible difference between the P
S

gl and P ′
S

gl
is that rules with

not ¬L in the body are deleted in the latter but not in the former. Given that the program is
seminormal, by definition all rules with head L are deleted in both positive programs.

The rules that remain in P
S

gl and are deleted in P ′
S

gl
, have in the former the objective literal

L in their bodies. Thus, since no rules for L exist in P
S

gl
, the remaining rules are useless to

determine the least Herbrand model of that program, and so ΓPsS = ΓP ′sS.

Now, let us assume that T ∪ not F is a PSM of P. Then T = ΓP ΓPsT. By (*):

T = ΓP ΓP ′sT

If ¬L 6∈ ΓP ′sT then the default literals not ¬L introduced by the partial evaluation are

deleted in P ′
ΓP ′sT

gl
, and so this program is obtainable from P

ΓPsT

gl via unfolding of L. Thus, for

the same reasons as before, ΓP ΓP ′sT = ΓP ′ΓP ′sT.
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If ¬L ∈ ΓP ′sT then L 6∈ T, since otherwise L would be true in the PSM and ¬L undefined,
which is impossible because every PSM complies with coherence. So the rules that are deleted
in P ′

ΓP ′sT

gl
but not in P

ΓPsT

gl are useless to determine the least Herbrand model (for the same

reasons as before) and thus ΓP ΓP ′sT = ΓP ′ΓP ′sT.
So:

T = ΓP ′ΓP ′sT

Directly from (∗) it follows that:

T ⊆ ΓP ′sT
F =

{
L | L 6∈ ΓP ′sT

}

Thus T ∪ not F is a PSM of P ′.
The proof that if T ∪ not F is a PSM of P ′ then it is also a PSM of P, is quite similar to

the one above and is omitted for brevity. ♦
Another property presented in [Dix, 1992b] is equivalence. It is especially important in this

work because, together with the partial evaluation principle, it allows us to prove a result that
has been widely used to simplify the proofs of theorems throughout this work.

Definition 10.1.5 (Equivalence) Let P ′ be the extended logic program obtained from P by
deleting every rule:

L ← L,Body

i.e. every rule whose head is contained in the body.
Equivalence states that the semantics of P ′ is equal to the semantics of P.

Theorem 10.1.5 WFSX complies with equivalence.

Proof: Given the equivalence between this semantics and WFSX (cf. theorem 7.4.9), we prove
that the complete scenaria semantics (definition 7.3.3) complies with equivalence.

By definition, scenaria are sets of Horn clauses, and rules of the form L ← L, Body result in
tautologies in the scenaria framework. Thus for any program P, any set of hypotheses H and
any objective literal A :

P ∪ {L ← L,Body} ∪H ` A ⇔ P ∪H ` A (∗)

So, by their respective definitions, it follows directly that for every hypothesis not A :

• not A ∈ Mand(P ∪H) iff not A ∈ Mand(P ∪ {L ← L,Body} ∪H).

• not A ∈ Acc(P ∪H) iff not A ∈ Acc(P ∪ {L ← L,Body} ∪H).

By definition of complete scenario:

P ∪H is a complete scenario of P ⇔ H = Mand(P ∪H) ∪Acc(P ∪H)

By the results above, H = Mand(P ∪H) ∪Acc(P ∪H) iff

H = Mand(P ∪ {L ← L,Body} ∪H) ∪Acc(P ∪ {L ← L,Body} ∪H)

Again, by definition of complete scenario:

H = Mand(P ∪ {L ← L,Body} ∪H) ∪Acc(P ∪ {L ← L,Body} ∪H)
⇔

P ∪ {L ← L,Body} ∪H is a complete scenario of P ∪ {L ← L, Body}
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Thus the complete scenaria of P are the same as the complete scenaria of

P ∪ {L ← L,Body}.

By (∗) it follows also that the consequences of those scenaria are the same in both programs.
♦

Given the results of theorems 10.1.4 and 10.1.5, we next define a bottom–up process that
transforms every extended program into another with no objective literals in the body of rules,
and with the same WFSX.

Intuitively, in order to obtain such a transformed program, we begin by recording all rules
with no objective literals in the body (hereafter called rules in the desired form). Then we
unfold all literals such that all of its rules are in the desired form. By performing this partial
evaluation more rules become of that form. The process is iterated until a fixpoint is reached.

In order to formally define this process we begin with some preliminary definitions:

Definition 10.1.6 Let P be an extended logic program. We define:

• sk lits(P ) is the set of objective literals L such that there is no rule in P with head L and
with objective literals in the body.

• sk rules(P ) is the set of all rules in P such that their heads belong to sk lits(P ).

Definition 10.1.7 (Semantic kernel transformation) Let P and P ′ be two extended logic
programs with the same Herbrand base, such that P ′ does not contain any objective literal in
the body of its rules.

Additionally, let heads(P ′) be the set of all objective literals in the head of some rule of P ′,
and let Pr be the program obtained from P by first deleting from it every rule whose head is in
heads(P ′), and then making the union of the result with P ′.

We define:
SKP (P ′) = P ′ ∪ sk rules(unfold(Pr, heads(P ′)))

The semantic kernel transformation SKP of program P is the least fixpoint of the sequence:

P0 = sk rules(P )
Pα+1 = SKP (Pα)

Theorem 10.1.6 The semantic kernel transformation SKP of an extended program P uniquely
exists, and is in the semantic kernel form, i.e. it is a set of rules with no objective literal in
their bodies.

Moreover the WFSX of SKP is equal to the WFSX of P.

Proof: The existence, uniqueness, and semantic kernel form of SKP are guaranteed by its
construction.

The WFSX equivalence with the program P follows easily from the fact that the transfor-
mation is solely based on partial evaluations, and that the rules that are never added are clearly
those that for some partial evaluation their head is contained in the body. Thus theorems 10.1.4
and 10.1.5 guarantee such an equivalence. ♦

From this theorem it follows directly that:

Corollary 10.1.2 For every program P there exists one program P ′ with no objective literals
in the body of its rules, such that the WFSX of P is equal to the WFSX of P ′.



178 CHAPTER 10. FURTHER PROPERTIES AND COMPARISONS

Example 10.3 Consider program P :

a ← ¬b, not c p ← q
¬b ← d, not e q ← p, not c
¬b ← not p
d ← f
f

and let us calculate SKP .

• sk rules(P ) = {f}, and so P0 = {f}. Note that ¬b ← not p does not belong to P0. This
is because there is another rule with head ¬b and with an objective literal in its body.

• By unfolding f in P (cf. definition 10.1.4) we obtain:

a ← ¬b, not c p ← q
¬b ← d, not e q ← p, not c
¬b ← not p
d ← not ¬f
f

and thus P1 = {d ← not ¬f ; f}.
• By unfolding both d and f in the program, using their rules in P1 we obtain:

a ← ¬b, not c p ← q
¬b ← not ¬d, not ¬f, not e q ← p, not c
¬b ← not p
d ← not ¬f
f

So P2 = P1 ∪ {¬b ← not ¬d, not ¬f ; ¬b ← not p}.
• By also unfolding ¬b we get:

a ← not b, not ¬d, not ¬f, not e, not c p ← q
a ← not b, not p, not c
¬b ← not ¬d, not ¬f, not e q ← p, not c
¬b ← not p
d ← not ¬f
f

and thus:

P3 = P2 ∪
{

a ← not b, not ¬d, not ¬f, not e, not c
a ← not b, not p, not c

}

• It is easy to see that P4 = P3.

Thus SKP is the program:

a ← not b, not ¬d, not ¬f, not e, not c
a ← not b, not p, not c
¬b ← not ¬d, not ¬f, not e
¬b ← not p
d ← not ¬f
f

Note that in fact WFSX (P ) = WFSX (SKP ).
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Relevance is another property of semantics, related with transformations over programs,
and also studied in [Dix, 1992b] for comparing semantics of normal logic program. Intuitively,
a semantics complies with relevance iff the truth value of any literal in it is determined by
the rules on which that literal depends. In order to formalize this notion we first define the
dependency relation:

Definition 10.1.8 (Dependency relation) An objective literal A depends on a literal L in
an extended logic program P iff L = A or there is a rule in P with head A and L′ in its body
and L′ depends on L.

A default literal not A depends on a literal L in P iff L = not A, L = ¬A or there is a rule
in P with head A and not L′ in the body and not L′ depends on L. Here, by ¬A (resp. not L′)
we mean the objective (resp. default) complement of A (resp. L′).

By dep on(A, P ) we mean the set of all literals L such that A depends on L.

Example 10.4 Consider program P :

(1) a ← b, not c c ← d, not e (3)
(2) ¬c ← not g e ← f (4)

The reader can check that, for example:

dep on(a, P ) = {a, b, not c,¬c, not g,¬g, not d,¬d, e, f}
dep on(not a, P ) = {not a,¬a, not b,¬b, c, d, not e,¬e, not f,¬f}

dep on(b, P ) = {b}
dep on(not b, P ) = {not b,¬b}

dep on(c, P ) = {c, d, not e, not f}
dep on(not c, P ) = {not c,¬c, not g, not d,¬d, e, f}

Definition 10.1.9 (Relevant rules) The set of relevant rules of program P for literal L,
rel rul(P, L), is the set of all rules with head H such that H ∈ dep on(L,P ) or not H ∈
dep on(L,P ).

Example 10.5 For program P of example 10.4, the set of relevant rules for the literals whose
dependencies were calculated there, are (where for brevity only their identifying numbers are
presented):

rel rul(P, a) = {(1), (2), (3), (4)}
rel rul(P, not a) = {(1), (3), (4)}

rel rul(P, b) = {}
rel rul(P, not b) = {}

rel rul(P, c) = {(3), (4)}
rel rul(P, not c) = {(2), (3), (4)}

Definition 10.1.10 (Relevance) A semantics Sem complies with the principle of relevance
iff for every noncontradictory program P and every literal L

L ∈ Sem(P ) ⇔ L ∈ Sem(rel rul(P,L))

The importance of this structural property is well recognizable if we think of top–down
procedures for deciding the truth value of some literal. A semantics not complying with this
principle cannot have a purely top–down procedure based on rewriting techiques.

Theorem 10.1.7 WFSX complies with the principle of relevance.
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Proof: It is easy to see that for the definition of support (definition 8.3.14) of some literal L
in any program P , only rules of rel rul(P, L) are used. Since the truth value of a literal can
be determined from the existence or not or a support for it (cf. proposition 8.3.10), it follows
easily that WFSX complies with relevance. ♦

Another property mentioned above in this work (in section 5.1.3) is supportedness. Recall
that a semantics complies with supportedness if an objective literal L is true in the semantics
of P iff there is rule in P with head L and whose body is also true in the semantics of P.

Theorem 10.1.8 WFSX complies with supportedness.

Proof: Trivial in the complete scenario semantics (which is equivalent to WFSX by theorem
7.4.9). ♦

10.1.3 Complexity results

Several times in this work we’ve said that we are interested in a computable semantics, and
that computational cost is for us an important issue.

Unfortunately WFSX is not recursively enumerable (cf. definition 4.3.1). This is a difficulty
WFSX shares with most reasonable semantics for normal logic programs, including the well–
founded semantics (WFS) of [Gelder et al., 1991].

However, as proven in [Gelder et al., 1991], the complexity of the decision problem in WFS
for Datalog programs (i.e. programs without function symbols) is polynomial. In this section
we show that the addition of explicit negation into WFS does not increase the complexity of
the latter.

We begin by showing that if one knows à priori that some Datalog program P is noncon-
tradictory then the decision problem4 in WFSX of P is polynomial.

Theorem 10.1.9 The decision problem for any noncontradictory Datalog program P under
WFSX is polynomial in the size of the ground version of P .

Proof: This proof follows closely the proof about the complexity of WFS in [Gelder et al., 1991].
We show that the well–founded model can be constructed in polynomial time, after which

any query can be answered immediately. We do this proof using the equivalent definition of
WFSX, of theorem 6.7.2.

According to that theorem, the positive part of the well–founded model T is the least fixpoint
of the operator ΓΓs, the negative part F being the complement of the application of Γs to that
least fixpoint.

At each stage Tα of the induction, until the fixpoint is reached, at least one element of
the Herbrand base is added to Tα+1, so the fixpoint must be reached in a number of steps
polynomial in the size of the H5. So we need only show that ΓΓsTα can be found in polynomial
time and that, given T, F can also be found in polynomial time.

It is clear that for these proofs it is enough to show that, for any set S of objective literals,
the computation of both ΓS and ΓsS is polynomial. Since ΓsS is equal to ΓS applied to a
seminormal version of the program, and clearly the seminormal version is computable in linear
time, we only show that the computation of ΓS is polynomial.

• The computation of ΓS starts by deleting all rules whose body contains a default not L
such that L ∈ S. It is clear that this computation is O(| S | ∗ | P |).

4As usual, by decision problem we mean the problem of deciding whether some literal L belongs to the
semantics of the program.

5This kind of argument is standard, viz. [Chandra and Harel, 1982, Vardi, 1982, Gurevich and Shelah, 1986,
Immerman, 1986, Gelder et al., 1991].
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• Then all default literals in the bodies of the remaining rules are deleted. This computation
is O(| P |).

• Finally, the TP of the resulting positive program is computed. It is well known that the
computation of TP of a positive program is polynomial.

Thus the computation of ΓS is polynomial. ♦
According to this theorem we can only say that if one knows that some program P is

noncontradictory then it can be decided in polynomial time whether some literal is true in
WFSX (P ). However the result can be generalized by withdrawing the à priori knowledge about
the noncontradiction of P. This is so because:

Theorem 10.1.10 The problem of determining whether a Datalog extended program P is con-
tradictory under WFSX is polynomial in the size of the ground version of P .

Proof: From the correspondence theorem 6.6.1 and proposition 6.3.2 it follows directly that a
Datalog program P is contradictory iff the least fixpoint of the sequence:

T0 = {}
Tα+1 = ΓΓs(Tα)

contains some objective literal L and its complement ¬L.

Since the computation of that fixpoint is polynomial (cf. theorem 10.1.9), it follows easily
that to determine whether P is contradictory is also polynomial. ♦

10.2 Comparisons

Throughout the text above, several comparisons were made between WFSX and other semantics
for extended logic programs.

Comparisons with the semantics of [Przymusinski, 1990a] were made in chapter 3 and section
5.1 where we argued that this semantics does not impose any connection between the two
types of negations. In fact, as mentioned in chapter 3, our insatisfaction with the semantics of
[Przymusinski, 1990a] in what concerns that desired connection was one of the main motivations
for defining a new semantics for extended logic programs.

Also in section 5.1, some comparisons were made with the semantics of [Przymusinski,
1991b]. There we point out that that semantics does not comply with supportedness. Epistemic
comparisons with that semantics were made not only in that very section, where we argued that
supportedness closely relates to the use of logic as a programming language, but also in section
5.2 where we related the use of classical negation ∼L of [Przymusinski, 1991b] with the epistemic
reading “L is not known to be true”. In contradistinction, explicit negation ¬L of WFSX has
the reading “L is known to be false”. In subsection 5.2.2 we compared these two readings and
argued in favour of the latter.

Epistemic comparisons with answer–set semantics [Gelfond and Lifschitz, 1990] were drawn
indirectly in section 5.2 (via the correspondence between answer–set semantics and Moore’s
autoepistemic logic), and in chapter 6 (via the correspondence between answer–set semantics
and Reiter’s default logic).

However no detailed comparisons between WFSX and answer–set semantics concerning
structural properties were made yet. The only structural properties pointed out for answer–sets
were the ones studied in section 5.1, where we found out that intrinsic consistency, coherence
and supportedness are verified by both answer–sets and WFSX.
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Recall that, as mentioned in chapter 3, one of our main qualms with answer–set semantics
was in what regards its structural and computational properties. In this section we make addi-
tional comparisons between WFSX and answer–sets. These comparisons are made either using
the properties in the previous section, or via structural properties of nonmonotonic formalisms
that correspond to answer–sets.

We start by comparing the complexity results of both semantics. In the previous section
we have shown that for Datalog programs the complexity of both the decision problem and the
problem of finding if some program is contradictory in WFSX is polynomial. In contrast, in
[Marek and Truszczynski, 1991] the authors show that, even for Datalog programs, the problem
of finding if a program has answer–sets is NP–complete, and the decision problem for programs
with answer–sets is co–NP–complete.

As proven above, WFSX enjoys some structural properties with regard to the organization
of its models. In particular:

• partial stable models under set inclusion are organized into a downward–complete semi-
lattice, its least element being the well–founded model;

• the intersection of all partial stable models is equal to the well–founded model, and can
be computed by an iterative bottom–up process.

None of these properties is enjoyed by answer–set semantics. In fact, by its very definition,
no answer–set is comparable (wrt ⊆) with other answer–sets. Thus, for deciding if some literal
is a consequence of a program under the answer–set semantics one cannot rely on a single least
model (as in WFSX) and, in contrast, have first to compute all answer–sets and then their
intersection.

Given that answer–set semantics corresponds to Reiter’s default logic (cf. [Gelfond and
Lifschitz, 1990]), this problem is related with the property of uniqueness of minimal extension
studied in section 6.2. There we point out more problems with Reiter’s default logic (and given
the correspondence results of [Gelfond and Lifschitz, 1990], also with answer–set semantics)
that result from the inexistence of a unique minimal extension. In particular, we argue it is
undesirable that the cautious (or sceptical) version of the semantics not be itself a model of
it. Next we present some other undesirable properties of the sceptical version of answer–set
semantics.

By the sceptical version of the answer–set semantics we mean (as usual) the semantics
AS(P ) determined by:

L ∈ AS(P ) iff L is in all answer-sets of P
not L ∈ AS(P ) iff there is no answer–set of P containing L

where L is any objective literal of the extended program P.

Cumulativity is one structural property obeyed by WFSX (cf. theorem 10.1.1) and not by
the sceptical version of answer–sets. The example below shows this is indeed the case:

Example 10.6 Consider program P :

a ← not b
b ← not a
c ← not a
c ← not c
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whose only answer–set is {c, b}. Thus c ∈ AS(P ), and b ∈ AS(P ). However

b 6∈ AS(P ∪ {c}).

In fact P ∪ {c} has two answer–sets:

{p, a} and {p, b}

Since one of them does not contain b, b 6∈ AS(P ∪ {c}).
This very same example also shows that answer–set semantics is neither strongly nor cau-

tiously rational. In fact not c 6∈ AS(P ), b ∈ AS(P ), and P ∪ {c} is noncontradictory, but
b 6∈ AS(P ∪ {c}).

Being noncumulative, answer–set semantics not only gives in some cases very unintuitive
results, but also some added problems in its computation accrue. In particular, even for propo-
sitional programs, the computation of answer-sets cannot be made by approximations6: once it
is found that an objective literal is in every answer–set, that literal cannot be added as a fact
to the program.

This also points out problems in finding an iterative bottom–up process for computing
answer–set semantics, since usually such methods use already computed results as lemmas.

Another structural property studied in the previous section and obeyed by WFSX is rele-
vance. The example below shows that answer–set semantics does not comply with relevence.

Example 10.7 Consider program P :

a ← not b
b ← not a
c ← not a
¬c

whose only answer–set is {¬c, a}. The rules relevant for a are the first two. However a is not in
the answer–set semantics of just those relevant rules.

In fact, rel rul(P, a) has two answer–sets: {a}, and {b}. Since one of them does not contain
a, a 6∈ AS(rel rul(P, a)).

This shows that, in contradistinction with WFSX, there can be no purely top–down proce-
dure for determining if some literal is true under the answer–set semantics. Such a procedure
would have to examine more rules than the ones on which the literal depends.

Another interesting result concerning comparisons between WFSX and answer–sets is:

Theorem 10.2.1 If an extended logic program has at least one answer–set it has at least one
partial stable model.

Proof: Follows directly from theorem 6.4.4, given the correspondence between Ω–extensions and
PSMs (cf. theorem 6.6.1), and the correspondence between Reiter’s extensions and answer–sets
(cf. [Gelfond and Lifschitz, 1990]). ♦

From this theorem it follows that WFSX gives semantics to at least the same programs
answer–sets does. Examples in section 7.5 show that some programs have partial stable models
and no answer–set. Thus we say that WFSX generalizes answer–set semantics, in the sense that

6For nonpropositional programs, it was already shown (in section 7.5) that the computation of an answer–set
cannot in general be made by finite approximations.
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it assigns meaning to more programs.

For programs where both answer–set semantics and WFSX assign a meaning, the compu-
tational methods of the latter can be viewed as sound methods for the former:

Theorem 10.2.2 (Soundness wrt to answer–set semantics) Let P be an extended logic
program with at least one answer–set. Then WFSX is sound wrt the answer–set semantics, i.e.
for every literal L :

L ∈ WFSX(P ) ⇒ L ∈ AS(P )

Proof: Follows directly from theorem 6.4.5, given the correspondence between Ω–extensions and
PSMs (cf. theorem 6.6.1), and the correspondence between Reiter’s extensions and answer–sets
(cf. [Gelfond and Lifschitz, 1990]). ♦

This theorem only guarantees soundness for programs with answer-sets. As stated above in
this section, the problem of determining whether a program has answer–sets is NP–complete.
Thus, even though the methods of WFSX seem to be good sound computational methods for
answer–sets, they are not as good for that purpose because one first has to determine the
existence of answer–sets.

One way to define good computational methods for the decision problem in answer–set
semantics is to restrict the class of programs (based on some syntatic criteria, in the spirit
of [Dung, 1992b]) where those methods can be applied, and then use WFSX. The study of
syntatic properties guaranteeing the existence of answer–sets and its equivalence to WFSX, i.e.
guaranteeing that WFSX can be used to correctly compute answer–set semantics, is however
beyond the scope of this work.
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Appendix A

A Prolog top–down interpreter for
WFSX

Here, for the sake of completeness, we present a Prolog top–down interpreter for WFSX.
This interpreter is based on the derivations procedures for well–founded semantics of normal

logic program of [Pereira et al., 1991e], and results from of generalization of it as suggested in
page 37.

The code of the interpreter follows closely the code of an interpreter for WFS, described
in [Pereira et al., 1992e]. Its correctness for propositional programs follows directly from the
results of [Apaŕıcio, 1993] regarding derivation procedures for WFSX.

For this interpreter, programs are sets of rules of the form:

H :- B1, ..., Bn, not C1, ..., not Cm

where H, B1, ..., Bn, C1, ..., and Cm are predicates or terms of the form -P where P is a predicate.
-P stands for the explicit negation of P.

The goal demo( G ) succeeds if the literal G is true in the well–founded model of the program,
and fails otherwise.

% **************************************************
% Meta Level demo predicate
% **************************************************

demo( G ) :- demo( G, [[]] ).

demo( not true, _ ) :- !, fail.
demo( true, _ ).
demo( G, Cx ) :-

prunning( G, Cx, Com ), !, Com.
demo( (A,B), Cx ) :-

demo( A, Cx ), demo( B, Cx ).
demo( G, Cx ) :-

add_to_Cx( G, Cx, NCx ),
rule( G, Body ),
demo( Body, NCx ).
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% **************************************************
% Determining rules for literals
% **************************************************

rule( not G, B ) :-
clause_neg( G, B ).

rule( G, B ) :-
clause( G, B ).

% Rules for default literal ’not G’
clause_neg( G, true ) :- % a fact if G has no rules

not clause( G, _ ).
clause_neg( G, Body ) :-

findall( B, clause(G,B), L ),
one_from_each( L, Body ).

clause_neg( G, B ) :- % The coherence principle
obj_compl(G,ObjCG),
clause( ObjCG, B ).

one_from_each( [B1], CSB ) :- !,
member_conj( B1, SB ),
compl( SB, CSB ).

one_from_each( [B1|RestBodies], (CSB,SRest) ) :-
member_conj( B1, SB ),
compl( SB, CSB ),
one_from_each( RestBodies, SRest ).

% Selects, in turn, each literal from a clause
member_conj( A, A ) :-

A \= ( _, _ ).
member_conj( (A,_), A ).
member_conj( (_,B), A) :-

member_conj( B ,A ).

% Default complement
compl( not G, G ) :- !.
compl( G, not G ).

% Objective complement
obj_compl( -G, G ) :- !.
obj_compl( G, -G ).

% **************************************************
% Pruning
% **************************************************

% loop in ’not G’ in the last context succeds
prunning( not G, [LCx|_], true ) :-

member( not G, LCx).
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% loop detection in different contexts
prunning( G, Cx, fail ) :-

in_all_Cx( G, Cx ).

% Detects if either G or its complement is in the contexts
in_all_Cx( G, [[G|_]|_] ).
in_all_Cx( G, [[NG|_]|_] ) :- compl( G, NG ).

in_all_Cx( G, [[]|Cx] ) :-
in_all_Cx( G, Cx ).

in_all_Cx( G, [[_|T]|Cx] ) :-
in_all_Cx( G, [T|Cx] ).

% **************************************************
% Context Management
% **************************************************

add_to_Cx( G, [[]], [[G]] ) :- !.
add_to_Cx( G, [Sn|OtherS], [[G|Sn]|OtherS] ) :-

same_sign( G, Sn ), !.
add_to_Cx( G, [Sn|OtherS], [[G]|[Sn|OtherS]] ).

% same_sign decides if a literal has the same (default) sign
% of the current context
same_sign( not _, [not _|_] ).
same_sign( G, [C|_] ) :-

G \= (not _),
C \= (not _).
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Appendix B

Additional definitions

In this section we recall the definition and some properties of support sets of normal logic
programs, introduced in [Pereira et al., 1991a].

Definition B.0.1 (Support set) A Support Set of a literal L belonging to the WF Model MP

of a program P , represented as SSP (L), or SS(L) for short, is obtained as follows:

• If L is an atom:

– Choose some rule of P for L where all the literals in its body belong to MP . One
SS(L) is obtained by taking all those body literals plus the literals in some SS of each
body literal.

• If L = not A:

– If there are no rules for A in P then the only SS(L) is {}.
– Otherwise, choose from each rule defined for A, a literal such that its complement

belongs to MP . A SS(L) has all those complement literals, and the literals of a SS
of each of them.

By considering all possible rules of P for a literal all its SSs are obtained.

Here we define Rules(SSP (L)) ⊆ P as the rules used in the definition above to build SSP (L).

Proposition B.0.1 (Existence of support set) Every literal L belonging to the well–
founded model of a program P has at least one support set SSP (L).

Since by definition every literal L with a support set SSP (L) belong to the WFM of P, we
can say that a literal has at least one support set iff it belongs to the WFM.

Other properties of support sets, which are used in some proofs of this paper, are presented
below.

Proposition B.0.2 For any atom A such that A ∈ WFM(P ), there is at least one support set
S of A such that A 6∈ S and not A 6∈ S.

Proposition B.0.3 Let P be a program, A ∈ WFM(P ) be an atom, and SSP (A) a support
set of A. Then A ∈ WFM(P ′) for every program P ′ such that:

Rules(SSP (A)) ⊆ P ′ ⊆ P
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Appendix C

Proofs of theorems

Proof of theorem 5.1.1: We prove this theorem here only for the case of a stationary seman-
tics. The proof for stable semantics is quite similar and is omitted.

⇒ If a stationary semantics is coherent then for any P ∗ every model M of P ∗ having ¬ A also
has not A. By proposition 5.1.1:

not A ∈ M ⇔∼A ∈ M.

Similarly we conclude that for every M :

A ∈ M iff ∼¬ A ∈ M.

Thus, given that models of clausal programs are always total, every model containing A
does not contains ¬ A, and every model containing ¬ A does not contain A, which is the
consistency requirement.

⇐ If a stationary semantics is consistent then for any P ∗ every model M of P ∗ having ¬ A
does not have A, and vice–versa. By proposition 5.1.1:

A 6∈ M ⇔∼A ∈ M ⇔ not A ∈ M.

Similarly we conclude that for every M :

¬ A 6∈ M ⇔∼¬ A ∈ M ⇔ not ¬ A ∈ M.

Thus:
¬ A ∈ M ⇒ A 6∈ M ⇒ not A ∈ M

and
A ∈ M ⇒ ¬ A 6∈ M ⇒ not ¬ A ∈ M

which, by definition of AX¬ model, is equivalent to coherence.

Proof of theorem 5.1.4: Consider the fixpoint equation:

P ∗ = ¬ P ∪AX¬ ∪
{
not L | P ∗ |=

CIRC
∼L

}
∪

{
∼not L | P ∗ |=

CIRC
L

}
.

By definition, the expansions of the stationary semantics with classical negation are the
fixpoints of the equation obtained from the one above by deleting the set of axioms AX¬ and

203
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replacing in ¬ P every occurence of an objective literal ¬ L by ∼L. Hereafter we denote such
programs by ∼ P.

Let P ∗
1 = ¬ P ∪ AX¬ ∪ S be a stationary AX¬ expansion of P, and let P ∗

2 =∼ P ∪ S. We
prove that P ∗

2 is an expansion of the stationary semantics with classical negation.

For every objective proposition L, by the axioms in AX¬, ¬ L ⇔∼L. So, it is clear that the
models of P ∗

1 are the models of P ∗
2 modulo propositions of the form ¬ L. Thus for every atom

A :
P ∗

1 |= A ⇔ P ∗
2 |= A (+)

We now prove that for every atom A:

P ∗
1 |=CIRC

∼A ⇔ P ∗
2 |=CIRC

∼A (&)

(⇒) Let M ′
1, . . . , M ′

n be all the minimal models of P ∗
1 , and let M ′′

i be the model obtained
from M ′

i by removing all propositions of the form ¬ L.

As we’ve seen above, all such M ′′
i are models of P ∗

2 and, as only positive propositions are
removed, they are also the minimal models of P ∗

2 . Thus, if ∼A is a consequence of all
minimal models of P ∗

1 it is also a consequence of all minimal models of P ∗
2 .

(⇐) Let M ′′
1 , . . . , M ′′

n be all the minimal models of P ∗
2 , and let

M ′
i = M ′′

i ∪
{¬ L | L 6∈ M ′′

i

}
.

All such M ′
i are models of P ∗

1 .

Let us assume that one M ′
i is not a minimal models of P ∗

1 , i.e. there exists a model N of
P ∗

1 such that N≤̄M ′
i , and N 6= M. In such a case, by definition of ≤̄:

Npos ⊆ M ′′
i ∨ (Npos = M ′′

i ∧N ⊆ M ′
i)

where Npos is the subset of N obtained by deleting from it all literals of the form ¬ L.

Clearly Npos is a model of P ∗
2 . Thus, if the first disjunct holds, M ′′

i is not a minimal model
of P ∗

2 , which contradicts one of our hypotheses.

If Npos = M ′′
i then for N to be a model of P ∗

1 , by the axioms in AX¬, for every atom A :

A 6∈ Npos ⇒ ¬ A ∈ N

So, by definition of M ′′
i :

M ′′
i ⊇ N

which also contradicts our hypotheses.

With the results above we now finalize the proof that P ∗
2 is an expansion. Since P ∗

1 is an
expansion:

S =
{
not L | P ∗

1 |=CIRC
∼L

}
∪

{
∼not L | P ∗

1 |=CIRC
L

}

By (&) :
P ∗

1 |=CIRC
∼L ⇔ P ∗

1 |=CIRC
∼L

As already mentioned in page 43, it is known (cf. [Lifschitz, 1985, Etherington et al., 1985,
Gelfond et al., 1989]) that for any proposition A of any theory T :

T |=
CIRC

A ≡ T |= A
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Thus:
P ∗

1 |=CIRC
L ⇔ P ∗

1 |= L
by (+)⇔ P ∗

2 |= L ⇔ P ∗
2 |=CIRC

L

Replacing in S these equivalence results:

S =
{
not L | P ∗

2 |=CIRC
∼L

}
∪

{
∼not L | P ∗

2 |=CIRC
L

}

Recall that by definition P ∗
2 =∼ P ∪ S so, replacing S by its value:

P ∗
2 =∼ P ∪

{
not L | P ∗

2 |=CIRC
∼L

}
∪

{
∼not L | P ∗

2 |=CIRC
L

}

i.e. P ∗
2 is an expansion of the stationary semantics with classical negation.

The proof that every expansion of the stationary semantics with classical negation corre-
sponds to a stationary AX¬ expansion is similar to the one above, and is omitted.

Proof of theorem 5.1.6:
Proving the equivalence between the two alternative definitions is trivial. Thus we only

prove the equivalence between WFSX and the second definition presented in the theorem.

Without loss of generality (cf. theorem 10.1.2) we assume that programs are in the semantic
kernel form, i.e. a program is a set of rules of the form:

L ← not A1, . . . , not An n ≥ 0

We begin by proving a lemma:

Lemma C.0.3 Let ¬ P be a clausal program and let P+ be:

P+ = ¬ P ∪ Sn ∪ Sp

where Sn is a set of default literals of the form not L, and Sp is a set of default literals of the
form ∼not L.

For every clause with L in ¬ P, i.e. of the form:

L∨ ∼not A1 ∨ . . .∨ ∼not An ∈ ¬ P

there exists ∼not Ai ∈ Sp, iff
P+ |=

CIRC
∼L

Proof:

(⇒) Let ∼not Aj be one literal in the j-th clause with L such that ∼not Aj ∈ Sp
1.

Then all models of P+ contain a set of such ∼not Aj :

{∼not A1, . . . ,∼not Am}

where m is the number of clauses with literal L.

Thus every clause with L is satisfied by all models of P+ independently of the truth value
of L, and thus:

P+ |=
CIRC

∼L

1By hypothesis such a literal always exists.
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(⇐) Assume the contrary, i.e. there exists a clause:

L∨ ∼not A1 ∨ . . .∨ ∼not An ∈ ¬ P

such that
{∼not A1, . . . ,∼not An} ∩ Sp = {}

and P+ |=
CIRC

∼L.

Then, given that, by the form of programs, literals of the form ∼not L can only be a
consequence of P+ if they belong to Sp, there exists a model M of the circumscription
such that

{not A1, . . . , not An} ⊆ M

and thus L belongs to that model. So P+ 6|=
CIRC

∼L.

♦
Given that complete scenaria (definition 7.3.1 in section 7) correspond to partial stable

models (cf. theorem 7.4.9), it is enough to prove that there is a one to one correspondence
between the fixpoints of:

P ∗ = ¬ P ∪
{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}
∪ {∼not L | P ∗ |= L}2

and complete scenaria.
This correspondence is proven in two parts:

• first we prove that if P ∪H is a complete scenario then

P ∗ = ¬ P ∪H ∪ {∼not L | P ∪H ` L}

is an expansion.

• then we prove that if P ∗ is an expansion then

P ∪
{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}

is a complete scenario.

Let us assume that P ∪H is a complete scenario. i.e.

(i) not L ∈ H ⇒ not L ∈ Mand(H) or not L ∈ Acc(H)
(ii) not L ∈ Mand(H) ⇒ not L ∈ H
(iii) not L ∈ Acc(H) ⇒ not L ∈ H

We show that
P ∗ = ¬ P ∪H ∪ {∼not L | P ∪H ` L}

is an expansion of the clausal program ¬ P of P, i.e.

H ∪ {∼not L | P ∪H ` L} =
{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}
∪ {∼not L | P ∗ |= L}

We’ll do that by separately proving the two equalities:

{∼not L | P ∪H ` L} = {∼not L | P ∗ |= L} (eq1)
H =

{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}
(eq2)

2Within this proof we designate expansions as such fixpoints
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To prove the first equality we have to show that

P ∪H ` L ⇔ P ∗ |= L

By definition of `, P ∪H ` L iff there exists a rule

L ← not A1, . . . , not An ∈ P

such that
{not A1, . . . , not An} ⊆ H

By definition of clausal program ¬ P of a program P, such a rule exists iff

L∨ ∼not A1 ∨ . . .∨ ∼not An ∈ ¬ P

And, by construction of P ∗,

{not A1, . . . , not An} ⊆ H ⇔ {not A1, . . . , not An} ⊆ P ∗

Thus, clearly P ∗ |= L.

For the equality (eq2), we have to prove that:

1. P ∗ |= ¬ L ⇒ not L ∈ H

2. P ∗ |=
CIRC

∼L ⇒ not L ∈ H

3. not L ∈ H ⇒ P ∗ |=
CIRC

∼L or P ∗ |= ¬ L

1. By equality (eq1):
P ∗ |= ¬ L ⇔ P ∪H ` ¬L

and by definition of Mand(H) :

P ∪H ` ¬L ⇒ not L ∈ Mand(H)
by (ii)⇒ not L ∈ H

2. By lemma C.0.3, P ∗ |=
CIRC

∼L iff

∀L∨ ∼not A1 ∨ . . .∨ ∼not An ∈ ¬ P | ∃ ∼not Ai ∈ P ∗

By construction of P ∗, ∼not Ai ∈ P ∗ ⇔ P ∪H ` Ai.

By definition of clausal program ¬ P of a program P :

L∨ ∼not A1 ∨ . . .∨ ∼not An ∈ ¬ P
⇔

L ← not A1, . . . , not An ∈ P

By definition of acceptable hypotheses, if for every rule

L ← not A1, . . . , not An ∈ P

there exists an Ai such that P ∪H ` Ai, then not L ∈ Acc(H).

Thus:
P ∗ |=

CIRC
∼L ⇒ not L ∈ Acc(H)

by (iii)⇒ not L ∈ H
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3. By (i) :
not L ∈ H ⇒ not L ∈ Mand(H) or not L ∈ Acc(H)

If not L ∈ Mand(H) then, by definition of Mand(H) :

P ∪H ` ¬L

and, by equality (eq1), P ∗ |= ¬ L.

If not L ∈ Acc(H) then, by definition of Acc(H), for every rule of the form

L ← not A1, . . . , not An ∈ P

there exists an Ai such that P ∪H ` Ai.

By construction of P ∗, if P ∪H ` Ai then ∼not Ai ∈ P ∗. Thus, for every clause

L∨ ∼not A1 ∨ . . .∨ ∼not An ∈ ¬ P

there exists ∼not Ai ∈ P ∗, and by lemma C.0.3, P ∗ |=
CIRC

∼L.

• Let us assume that P ∗ is an expansion, i.e.

P ∗ = ¬ P ∪
{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}
∪ {∼not L | P ∗ |= L}

We prove now that
P ∪

{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}

is a complete scenario, i.e. by making

H =
{
not L | P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

}

the above conditions (i), (ii), and (iii) hold.

(i) By definition of H :
not L ∈ H ⇒ P ∗ |=

CIRC
∼L or P ∗ |= ¬ L

Similarly to the proof in point 2 above, it is easy to prove that if P ∗ |=
CIRC

∼L then
not L ∈ Acc(H), and that if P ∗ |= ¬ L then not L ∈ Mand(H). So:

not L ∈ H ⇒ not L ∈ Mand(H) or not L ∈ Acc(H)

(ii) By definition of Mand(H) :

not L ∈ Mand(H) ⇒ P ∪H ` ¬L

Thus there exists a rule in P of the form

¬L ← not A1, . . . , not An

such that
{not A1, . . . , not An} ⊆ H

So, by definition of H and given that P ∗ is an expansion, there is a clause in ¬ P of the
form

¬ L∨ ∼not A1 ∨ . . .∨ ∼not An

such that
{not A1, . . . , not An} ⊆ P ∗

and clearly P ∗ |= ¬ L. Thus, by definition of H, not L ∈ H.
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(iii) If not L ∈ Acc(H) then, by definition of Acc(H), for every rule of the form

L ← not A1, . . . , not An ∈ P

there exists an Ai such that P ∪H ` Ai.

If P ∪H ` Ai for some Ai, then there is a rule in P of the form

Ai ← not B1, . . . , not Bm

such that
{not B1, . . . , not Bm} ⊆ H

Thus, by definition of H and given that P ∗ is an expansion, there is a clause in ¬ P of
the form

Ai∨ ∼not B1 ∨ . . .∨ ∼not Bm

such that
{not B1, . . . , not Bm} ⊆ P ∗

So P ∗ |= Ai and, because it is an expansion, ∼not Ai ∈ P ∗.

According to lemma C.0.3, P ∗ |=
CIRC

∼L and, by definition of H, not L ∈ H.
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Proof of proposition 6.4.1: We begin by proving a lemma:

Lemma C.0.4 For every noncontradictory default theory ∆, and any context E of ∆ :

Γ′∆s(E) ⊆ Γ′∆(E)

Proof: In ∆s every default rule has more literals in the justifications than the corresponding
rule in ∆. Thus for every context E, in ∆s less rules are applicable, and so Γ′∆s(E) ⊆ Γ′∆(E). ♦

Now we prove separately each of the points in the proposition:

1. Let S be the least fixpoint of Γ′∆sΓ′∆.

By lemma C.0.4:
Γ′∆(S) ⊇ Γ′∆s(S)

By the antimonotonicity of Γ′∆s (lemma 6.3.3):

Γ′∆s(Γ′∆(S)) ⊆ Γ′∆s(Γ′∆s(S))

i.e., given that S is by its definition a fixpoint of Γ′∆sΓ′∆ :

S ⊆ Γ′2∆s(S)

So:
lfp(Γ′∆sΓ′∆) ⊆ Γ′2∆s(lfp(Γ′∆sΓ′∆))

i.e. the least fixpoint of Γ′∆sΓ′∆ is a pre–fixpoint of Γ′2∆s , and thus by the properties of
monotonic operators:

lfp(Γ′∆sΓ′∆) ⊆ lfp(Γ′2∆s)

2. Again let S be the least fixpoint of Γ′∆sΓ′∆, and let GS = Γ′∆(S).

By lemma C.0.4:
Γ′∆s(GS) ⊆ Γ′∆(GS)

i.e., by the definition of GS :

Γ′∆s(Γ′∆(S)) ⊆ Γ′∆(Γ′∆(S))

So:
lfp(Γ′∆sΓ′∆) ⊆ Γ′2∆(lfp(Γ′∆sΓ′∆))

i.e. the least fixpoint of Γ′∆sΓ′∆ is a pre–fixpoint of Γ′2∆.

3. Now let S be the least fixpoint of Γ′2∆s , and let GS = Γ′∆s(S).

By lemma C.0.4:
Γ′∆s(GS) ⊆ Γ′∆(GS)

i.e., by the definition of GS :

Γ′∆s(Γ′∆s(S)) ⊆ Γ′∆(Γ′∆s(S))

So:
lfp(Γ′2∆s) ⊆ Ω(lfp(Γ′2∆s))

i.e. the least fixpoint of Γ′2∆s is a pre–fixpoint of Ω.



211

4. Finally, let S be the least fixpoint of Γ′2∆.

By lemma C.0.4:
Γ′∆(S) ⊇ Γ′∆s(S)

By the antimonotonicity of Γ′∆ (lemma 6.3.3):

Γ′∆(Γ′∆(S)) ⊆ Γ′∆(Γ′∆s(S))

i.e., given that S is by its definition a fixpoint of Γ′2∆ :

S ⊆ Ω(S)

So:
lfp(Γ′2∆) ⊆ Ω(lfp(Γ′2∆))

i.e. the least fixpoint of Γ′2∆ is a pre–fixpoint of Ω.

Proof of theorem 6.6.1: We begin by stating some propositions useful in the sequel.

Proposition C.0.4 Let ∆ = (D, {}) be a default theory and E a context such that Γ′∆(E) is
noncontradictory. Then:

L ∈ Γ′∆(E) ⇔ ∃{b1,...,bn} : {c1,...,cm}
L ∈ D, ∀i, j bi ∈ Γ′∆(E) ∧ ¬cj 6∈ E

Proof: It is easy to see that under these conditions Γ′∆(E) = Γ∆(E). Thus the proof follows
from properties of the Γ∆ operator. ♦

Proposition C.0.5 Let E be an extension of a default theory ∆ = (D, {}). Then:

L ∈ Ω(E) ⇔ ∃{b1,...,bn} : {¬c1,...,¬cm}
L ∈ D such that

∀i, j, bi ∈ E ∧ bi ∈ Γ′∆s(E) ∧ cj 6∈ Γ′∆s(E).

Proof: By definition of Γ′∆, and given that W = {}, it follows from proposition C.0.4 that for
L ∈ Ω(E) there must exist at least one default in D applied in the second step, i.e. with all
prerequesites in Ω(E) and all negations of justifications not in Γ′∆s(E). By hypothesis E is an
extension; thus E = Ω(E) and E ⊆ Γ′∆s(E); so for such a rule all prerequesites are in E and in
Γ′∆s(E), and all negations of justifications are not in Γ′∆s(E). ♦

Proposition C.0.6 Let E be an extension of a default theory ∆ = (D, {}). Then:

L 6∈ E ⇒ ∀{b1,...,bn} : {¬c1,...,¬cm}
L ∈ D, ∃i, j, bi 6∈ E ∨ cj ∈ Γ′∆s(E)

Proof: If L 6∈ E then, given that E is an extension, L 6∈ Ω∆(E). Thus no default rule for L is
applicable in the second step, i.e. given that W = {}, and by proposition C.0.4, no rule with
conclusion L is such that all its prerequisites are in Ω∆(E) and no negation of a justification is
in Γ′∆s(E). ♦

Proposition C.0.7 Let E be an extension of a default theory ∆ = (D, {}). Then:

L 6∈ Γ′∆s(E) ⇔ ∀{b1,...,bn} : {¬c1,...,¬cm}
L ∈ D,

∃i, j, bi 6∈ Γ′∆s(E) ∨ cj ∈ E ∨ ¬L ∈ E
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Proof: Similar to the proof of C.0.6 but now applied to the first step, which imposes the use of
seminormal defaults. Thus the need for ¬L ∈ E. ♦

We now prove the main theorem:

(⇒) E is a Ω-extension of ∆ ⇒ I is a PSM of P.

Here we must prove that for any (objective and default) literal F , F ∈ I ⇔ F ∈ Φ(I).
We do this in three parts: for any objective literal L :

1. L ∈ I ⇒ L ∈ Φ(I);

2. L 6∈ I ⇒ L 6∈ Φ(I);

3. not L ∈ I ⇔ not L ∈ Φ(I).

Each of these proofs proceeds by: translating conditions in I into conditions in E via
correspondence; finding conditions in ∆ given the conditions in E, and the fact that E is
an extension; translating conditions in ∆ into conditions in P via correspondence; using
those conditions in P to determine the result of operator Φ.

1. Since I corresponds to E and E is a Ω-extension:

L ∈ I ⇔ I(L) = 1 ⇒ L ∈ E ⇔ L ∈ Ω∆(E)

By proposition C.0.5:

L ∈ Ω∆(E) ⇔ ∃{b1,...,bn} : {¬c1,...,¬cm}
L ∈ D,

∀i, bi ∈ E ∧ bi ∈ Γ′∆s(E) and
∀j, cj 6∈ Γ′∆s(E).

By translating, via the correspondence definitions, the default and the conditions on
E into a rule and conditions on I:

L ∈ E ⇒ ∃L ← b1, . . . , bn, not c1, . . . , cm ∈ P,
∀i, I(bi) = 1 and ∀j, I(cj) = 0

⇒ L ∈ least
(

P
I

)

by properties of least
(

P
I

)
.

Given that the operator Coh does not delete literals from I :

L ∈ I ⇒ L ∈ Φ(I).

2. Since I corresponds to E :
L 6∈ I ⇔ L 6∈ E.

By proposition C.0.6:

L 6∈ E ⇒ ∀{b1, . . . , bn} : {¬c1, . . . ,¬cm}
L

∈ D

where either a bi 6∈ E or a cj ∈ Γ′∆s(E), .
Translating, via the correspondence definitions, the default and the conditions on E
into a rule and conditions on I :

L 6∈ E ⇒ ∀L ← b1, . . . , bn, not c1, . . . , cm ∈ P,
∃i, j I(bi) 6= 1 ∨ I(cj) 6= 0

⇒ L 6∈ least
(

P
I

)
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by properties of least
(

P
I

)
.

Given that the operator Coh does not add objective literals to I :

L 6∈ I ⇒ L 6∈ Φ(I).

3. Given that E corresponds to I :

not L ∈ I ⇔ L 6∈ Γ′∆s(E)

By proposition C.0.7:

L 6∈ Γ′∆s(E) ⇔ ∀{b1,...,bn} : {¬c1,...,¬cm}
L ∈ D,

∃i, j bi 6∈ Γ′∆s(E) ∨ cj ∈ E ∨ ¬L ∈ E

Translating into logic programs:

L 6∈ Γ′∆s(E) ⇔ ∀L ← b1, . . . , bn, not c1, . . . , cm ∈ P,
(∃i, j I(bi) = 0 ∨ I(cj) = 1) ∨ ¬L ∈ E.

By properties of the least operator.

not L ∈ I ⇔ not L ∈ least

(
P

I

)
∨ ¬L ∈ E (∗)

It was proven before that:

¬L ∈ E ⇔ ∃¬L ← b1, . . . , bn, not c1, . . . , not cm ∈ P,
∃i, j I(bi) = 1 ∨ I(cj) = 0.

By properties of leastP
I :

¬L ∈ E ⇔ ¬L ∈ least

(
P

I

)

Using correspondence, we can simplify the equivalence (∗) to:

not L ∈ I ⇔ not L ∈ least
(

P
I

)
∨ ¬L ∈ least

(
P
I

)
⇔

⇔ not L ∈ Φ(I)

this last equivalence being due to the definitions of operators Coh and Φ.

(⇐) I is a PSM of P ⇒ E is a Ω-extension of T.

By definition of correspondence between interpretations and contexts, it is easy to see
that E is consistent and E ⊆ Γ′∆s(E). So we only have to prove that E = Ω∆(E). We do
this by proving that:

∀L L ∈ E ⇔ L ∈ Ω∆(E).

By definition of corresponding context:

L ∈ E ⇔ I(L) = 1

Since I is a PSM of P :

I(L) = 1 ⇔ ∃L ← b1, . . . , bn, not c1, . . . , not cm ∈ P,
∀i I(bi) = 1 and ∀j I(cj) = 0
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where n,m ≥ 0.

By translating, via the correspondence definitions, the rule and the conditions on I into
a default and conditions on E:

I(L) = 1 ⇔ ∃{b1,...,bn} : {¬c1,...,¬cm}
L ∈ D,

∀i bi ∈ E ∧ bi ∈ Γ′∆s(E) and
∀j cj 6∈ E ∧ cj 6∈ Γ′∆s(E)

Given that such a rule exists under such conditions, it follows easily from proposition
C.0.4 that:

L ∈ E ⇔ L ∈ Ω∆(E)
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Proof of theorem 7.4.1:

1. Let C be a (possibly infinite) set of complete scenaria, i.e.

C ⊆ CSP and C 6= {}.

Let C↓ be the set of all admissible scenaria contained in all scenaria of C, and let S0 be
the union of all elements in C↓.
Since that:

∀S ∈ C | S0 ⊆ S

it is clear that S0 is admissible. It remains to prove that S0 is also complete.

Let not L be a literal acceptable wrt S0. Then S′ = S0 ∪ {not L} is again admissible and
so, by definition, S′ ∈ C↓. Thus not L ∈ S0.

If not L is mandatory wrt S0 then, since S0 is admissible, not L ∈ S0. Thus S0 is complete.

2. The proof of this point is obvious given the previous one.

3. The program in example 7.14 shows that in general a maximal element might not exist.

Proof of lemma 7.4.7: Without loss of generality (by theorem 10.1.2) we consider that P is
in semantic kernel form, i.e. P is a set of rules of the form:

L ← not A1, . . . , not An n ≥ 0

Let S = T ∪ not F be a PSM of P , i.e. (according to the equivalent definition of PSMs
(theorem 6.7.1) in section 6.7):

(i) T = ΓΓsT

(ii) T ⊆ ΓsT

(iii) 6 ∃L | {L,¬L} ⊆ T

and additionally F = {L | L 6∈ ΓsT}.
Let H = {not L | L 6∈ ΓsT}3. We prove that P ∪H is a complete scenario, i.e. for all not L :

1. not L ∈ H ⇒ P ∪H 6` L

2. not L ∈ H ⇒ not L ∈ Mand(H) ∨ not L ∈ Acc(H)

3. not L ∈ Mand(H) ⇒ not L ∈ H

4. not L ∈ Acc(H) ⇒ not L ∈ H

This proof is accomplished by proving separately each of the conditions above.

1. By definition of H :
not L ∈ H ⇔ L 6∈ ΓsT.

Given that the P is in the semantic kernel form:

L 6∈ ΓsT ⇒ ¬L ∈ T ∨ ∀L ← not A1, . . . , not An | ∃Ai ∈ T

3I.e. H ≡ not F.
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Let us assume the first disjunct:

¬L ∈ T
by (iii)⇒ L 6∈ T

by (i)⇒ L 6∈ ΓΓsT

Again because P is in semantic kernel form:

1st disjunct ⇒ ∀L ← not A1, . . . , not An | ∃Ai ∈ ΓsT

By definition of H :

1st disjunct ⇒ ∀L ← not A1, . . . , not An | ∃not Ai 6∈ H
trivial⇒ P ∪H 6` L

Now let us assume the second disjunct; then:

Ai ∈ T
by (ii)⇒ Ai ∈ ΓsT

by def of H⇒ not Ai 6∈ H

Thus:

2nd disjunct ⇒ ∀L ← not A1, . . . , not An | ∃not Ai 6∈ H
trivial⇒ P ∪H 6` L

2. As proven at the begining of 1 above:

not L ∈ H ⇒ ¬L ∈ T ∨ ∀L ← not A1, . . . , not An | ∃Ai ∈ T

Let us assume the first disjunct:

¬L ∈ T
by (i)⇒ ¬L ∈ ΓΓsT ⇒ ∃¬L ← not B1, . . . , not Bm | ∀Bi, Bi 6∈ ΓsT

By definition of H, Bi 6∈ ΓsT ⇒ not Bi ∈ H. Thus trivially:

1st disjunct ⇒ P ∪H ` ¬L
by def of Mand(H)⇒ not L ∈ Mand(H)

Now let us assume the second disjunct:

Ai ∈ T
by (i)⇒ Ai ∈ ΓΓsT

2nd disjunct ⇒ ∃Ai ← not C1, . . . , not Ck | ∀Cj , Cj 6∈ ΓsT ⇒ P ∪H ` Ai

Thus the second disjunct implies:

∀L ← not A1, . . . , not An | ∃Ai, P ∪H ` Ai
by def of Acc(H)⇒ not L ∈ Acc(H)

3. By definition of Mand(H) :

not L ∈ Mand(H) ⇒ ∃¬L ← not A1, . . . , not An | ∀not Ai, not Ai ∈ H

By definition of H, not Ai ∈ H ⇔ Ai 6∈ ΓsT. Thus:

hyp. ⇒ ¬L ∈ ΓΓsT
by (i)⇒ ¬L ∈ T

by seminormallity⇒ L 6∈ ΓsT ⇔ not L ∈ H
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4. By definition of Acc(H) :

not L ∈ Acc(H) ⇒ ∀L ← not A1, . . . , not An | ∃Ai, P ∪H ` Ai.

Now:
P ∪H ` Ai ⇒ ∃Ai ← not B1, . . . , not Bm | ∀not Bj , not Bj ∈ H

By definition of H :
not Bj ∈ H ⇒ Bj ∈ ΓsT

Thus Ai ∈ ΓΓsT, and by (i) Ai ∈ T. So:

not L ∈ Acc(H) ⇒ ∀l ← not A1, . . . , not An | ∃not Ai, Ai ∈ T ⇒

⇒ L 6∈ ΓsT ⇒ not L ∈ H

Proof of lemma 7.4.8: Given that P ∪H is a complete scenario then, for all not L :

(i) not L ∈ H ⇒ P ∪H 6` ¬L

(ii) not L ∈ H ⇒ not L ∈ Mand(H) ∨ not L ∈ Acc(H)

(iii) not L ∈ Mand(H) ⇒ not L ∈ H

(iv) not L ∈ Acc(H) ⇒ not L ∈ H

Let S = {L | P ∪H ` L}. According to theorem 6.7.1 we must prove that:

1. ∀L | L ∈ S ⇒ ¬L 6∈ S

2. S ⊆ ΓsS

3. S = ΓΓsS

4. H = {not L | L 6∈ ΓsS}
In order to prove this lemma we begin by proving that

ΓsS = {L | not L 6∈ H} (C.1)

This is achieved by proving (where U = {L | not L 6∈ H}):
(a) ∀L | L 6∈ ΓsS ⇒ L /∈ U

(b) ∀L | L 6∈ U ⇒ L /∈ ΓsS

(a) By definition of Γs :

L 6∈ ΓsS ⇒ ¬L ∈ S ∨ ∀L ← not A1, . . . , not An | ∃Ai ∈ S

We prove that both disjuncts imply L 6∈ U :

¬L ∈ S
def of S⇒ P ∪H ` ¬L

def of Mand(H)⇒ not L ∈ Mand(H)

Since P ∪H is a complete scenario:

not L ∈ Mand(H) ⇒ not L ∈ H
def of U⇒ ÃL 6∈ U
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Since:
Ai ∈ S

def of S⇒ P ∪H ` Ai

the second disjunct implies:

∀L ← not A1, . . . , not An | ∃Ai, P ∪H ` Ai
def of Acc(H)⇒ not L ∈ Acc(H)

Given that P ∪H is a complete scenario:

not L ∈ Acc(H) ⇒ not L ∈ H ⇔ ÃL 6∈ H

(b) By definition of U :
L 6∈ U ⇔ not L ∈ H

Since H is complete scenario then by (ii):

L 6∈ U ⇒ P ∪H ` ¬L ∨ ∀L ← not A1, . . . , not An | ∃Ai, P ∪H ` Ai

Both disjuncts lead to the conclusion that L 6∈ ΓsS :

• P ∪H ` ¬L
def of S⇒ ¬L ∈ S

by seminormallity⇒ L 6∈ ΓsS

• P ∪H ` Ai
def of S⇒ Ai ∈ S ⇒ L 6∈ ΓsS

Now we prove the four points above:

1. Trivial because P ∪H is a consistent scenario.

2. Since ΓsS = U, we have to prove that:

S = {L | P ∪H ` L} ⊆ {L | not L 6∈ H} = ΓsS

which is also trivial because P ∪H is a consistent scenario.

3. The proof of this point is divided into two parts.

(a) ∀L | L 6∈ ΓΓsS ⇒ L 6∈ S, i.e. S ⊆ ΓΓsS.

L 6∈ ΓΓsS ⇒ ∀L ← not A1, . . . , not An | ∃Ai ∈ ΓsS

If Ai ∈ ΓsS then by equivalence (C.1) above not Ai 6∈ H. Thus:

∀L ← not A1, . . . , not An | ∃not Ai 6∈ H ⇒ P ∪H 6` L
def of S⇒ L 6∈ S

(b) ∀L | L ∈ ΓΓsS ⇒ L ∈ S, i.e. S ⊇ ΓΓsS. Thus:

L ∈ ΓΓsS ⇒ ∃L ← not A1, . . . , not An | ∀Ai Ai 6∈ ΓsS

If Ai 6∈ ΓsS then by equivalence (C.1) above not Ai ∈ H. Thus:

∃L ← not A1, . . . , not An | ∀not Ai, not Ai ∈ H

⇒ P ∪H ` L
def of S⇒ L ∈ S

4. From equation C.1, for every objective literal L :

L ∈ ΓsS ⇔ not L 6∈ H

or equivalently:
L 6∈ ΓsS ⇔ not L ∈ H

i.e.
H = {not L | L 6∈ ΓsS}
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Proof of lemma 9.1.1: We prove that for all not a′ ∈ B(P ), if 〈A;WFM(P + A)〉 is incon-
sistent then

〈A ∪ {
not a′

}
;WFM(P + (A ∪ {

not a′
}
))〉

is also inconsistent.
By definition of inconsistent A–model:

∃not b ∈ A | b ∈ WFM(P + A)

so it suffices to guarantee that:

b 6∈ WFM(P + (A ∪ {
not a′

}
)) ⇒ a′ ∈ WFM(P + (A ∪ {

not a′
}
)).

Consider b 6∈ WFM(P +A∪{not a′}). Since b is true in P +A, and since P +(A∪{not a′})
only differs from P + A in rules with a′ or not a′ in the body, it follows that there is a support
set SSP+A(b) containing a′ (in appendix B we recall the definition of support set introduced in
[Pereira et al., 1991a]), and thus, by definition of support set, a′ is also true in P + A.

Since a′ ∈ WFM(P +A), by propositions B.0.1 and B.0.2 there is a support set SSP+A(a′)
(according to the definition B.0.1 of support set for normal programs) such that:

a′ 6∈ SSP+A(a′) and not a′ 6∈ SSP+A(a′).

As the addition of not a′ to P + A only changes rules with not a′ or a′, then:

Rules(SSP+A(a′)) ⊆ P + (A ∪ {
not a′

}
) ⊆ P + A

and by proposition B.0.3 a′ ∈ WFM(P + (A ∪ {not a′})).

Proof of lemma 9.2.1: First let us assume that L is an objective literal.
If L ∈ WFSX (P ) then there exists a rule in P

L ← B1, . . . , Bn, not C1, . . . , not Cm

such that
{B1, . . . , Bn, not C1, . . . , not Cm} ⊆ WFSX (P )

If this rule is not deleted in P + A, i.e.

{not B1, . . . , not Bn} ∩A = {}

then this theorem applies recursively4 and so:

{B1, . . . , Bn, not C1, . . . , not Cm} ⊆ WFSX (P + A)

Given that the rule is not deleted:

L ← B1, . . . , Bn, not D1, . . . , not Dk ∈ P + A

where
{not D1, . . . , not Dk} ⊆ {not C1, . . . , not Cm}

Thus L ∈ WFSX (P + A).

If the rule is deleted then there exists in A one not Bi where Bi is one elements of the
rule body. Applying this theorem recursively for Bi it follows that Bi ∈ WFSX (P + A), i.e.

4The base conditions for the recursion are similar to those of proposition 9.1.4 and are omitted for brevity.
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〈A;WFSX (P + A)〉 is not consistent, contradicting this way one of our hypotheses.

If the literal is of the form not L the proof follows along the same lines of the proof of
proposition 9.1.4, and is omitted.

Proof of theorem 9.2.3: We have to prove that for any two consistent A–models 〈A;M〉 and
〈A′;M ′〉, their meet 〈A∩A′; M ′′〉 exists, is unique, and is a consistent A–model. The uniqueness
is guaranteed by definition of A–model, given the uniqueness of WFSX of any program.

We begin by proving (by contradiction) that P+(A∩A′) is noncontradictory, i.e. 〈A∩A′;M ′′〉
is an A–model.

Assume that P +(A∩A′) is contradictory. Then there are in P +(A∩A′) at least two rules
with complementary heads whose bodies are true in the paraconsistent WFSX. If none of these
rules is deleted in one of P + A or P + A′ then either P + A or P + A′ is contradictory. If one
of the rules is deleted, say in P + A, then there exists in the body of that rule one Bi such that
not Bi ∈ A. Since Bi is true in P +(A∩A′), similarly to the proof of lemma 9.2.1 one can prove
that Bi ∈ WFSX (P + A), i.e. 〈A; M〉 is inconsistent, thus contradicting one of our hypotheses.

Following the lines of the proof of lemma 9.1.1, but using the definitions of support for ex-
tended programs (definition 8.3.14) instead of that for normal programs, it is easy to prove that
if an A–model is inconsistent then all A–models greater than it are also inconsistent. Given this,
and on the assumption that 〈A; M〉 and 〈A′; M ′〉 are consistent, it follows that 〈A ∩A′;M ′′〉 is
also consistent.

Proof of lemma 9.2.4: Let:
AJ =

⋃

k∈K

Ak

We have to prove that:

1. P + AJ is noncontradictory.

• By contradiction, assume that P + AJ is contradictory. Then by definition all max-
imal A–models are untenable (contradiction).

2. There exists no not L ∈ AJ such that L ∈ WFSX (P + AJ).

• Again by contradiction, assume that there exists one not L ∈ AJ such that L ∈
WFSX (P + AJ). If not L ∈ AJ then there exist one A–model 〈Ai; Mi〉, maximal
in CS, such that not L ∈ Ai. Since L ∈ WFSX (P + AJ), 〈Ai;Mi〉 is untenable
(contradiction).

3. There exists no consistent A–model 〈A;M〉 such that L ∈ M and not L ∈ AJ .

• By definition of candidate structure, every A–models 〈Ai; Mi〉 in CS is sustainable.
Thus there is no A–model 〈A;M〉 such that L ∈ M and not L ∈ Ai and so, given
that this holds for all Ai in CS, there is no A–model 〈A;M〉 such that L ∈ M and

not L ∈
⋃

k∈K

Ai

i.e. the join is sustainable.
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Proof of theorem 10.1.3:
Let P be an extended logic program and let P ′ be the program obtain from P by replacing

the rule r of P

H ← B1, . . . , Bn, not C1, . . . , not Cm

by the rule r′ :
H ← not ¬B1, B1, . . . , Bn, not C1, . . . , not Cm

We begin by proving that if M is a PSM of P, and B1 and ¬B1 are not both undefined in
M5 then P

M = P ′
M

6. Since the modulo transformation is made rule by rule, and P − r = P ′− r′,
to prove that it is enough to show that r

M = r′
M .

Assume that M is a PSM of P. Then:

• If B1 ∈ M then, since M is a PSM and thus also an interpretation, not ¬B1 ∈ M, and so
the default literal not ¬B1 is deleted from r′ in r′

M . Thus, trivially, r′
M = r

M .

• If ¬B1 ∈ M, then it is clear that the rule is deleted in both cases, and so r
M = r′

M = {}.
• If not B1 ∈ M then both rules again are deleted.

• If not ¬B1 ∈ M then the literal is deleted from r′, and so r′
M = r

M .

• Since we are assuming that B1 and ¬B1 are not both undefined in M, no other case can
occur.

So for these cases:

M = Coh

(
least

(
P

M

))
⇒ M = Coh

(
least

(
P ′

M

))

i.e. M is a PSM of P ′.

Now let M be a PSM of P ′, such that:

M ∩ {B1,¬B1, not B1, not ¬B1} = {}

If the rule r is deleted in P
M , then it is clear that r′ is also deleted in P ′

M , and so P
M = P ′

M .
Thus we are in a similar situation as the one before, and M is a PSM of P.

Otherwise let:
r

M
= H ← B1, . . . , Bn, not Ci, . . . , not Cj

where {not Ci, . . . , not Cj} ⊆ {not C1, . . . , not Cm}. Then:

r′

M
= H ← u, B1, . . . , Bn, not Ci, . . . , not Cj

From the definition of the least operator, and the hypothesis that B1 is undefined in M, it
is clear that the rule r

M does not provide a way of proving H in P
M and not H does not belong

to least
(

P
M

)
.

Since u is in the body of r′
M the same happens in P ′

M .

From this result it follows trivially that also in this case M is a PSM of P ′. So in every case,
if M is a PSM of P it is also a PSM of P ′.

5I.e. M ∩ {B1,¬B1, not B1, not ¬B1} 6= {}.
6Where P

M
is as in definition 4.2.1.
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The proof that if M is a PSM of P ′ it is also a PSM of P, is quite similar and is omitted
for brevity.

The proof that “P is contradictory iff P ′ is contradictory” follows directly from the proof
above. Note that the statement is equivalent to “P is noncontradictory iff P ′ is noncontradic-
tory”.

If P is noncontradictory then it has at least one PSM. Let M be one PSM of P. Then, as
proven above, M is also a PSM of P ′, i.e. P ′ is noncontradictory. Similarly, if P ′ is noncontra-
dictory P is also noncontradictory.


