134 research outputs found

    Metadata Publication and Search System in JAMSTEC

    Get PDF
    Poster PS6-09, 1st ICSU World Data System Conference: Global Data for Global Science (September 3-6, 2011, Kyoto, Japan

    PICES Press, Vol. 7, No. 1, January 1999

    Get PDF
    Taking stock and looking to the future - note from former PICES Chairman The state of the western North Pacific in the first half of 1998 The status of the Bering Sea in the first eight month of 1998 The state of the eastern North Pacific since February 1998 Highlights of PICES VII, review of SB activities and future workplan The second PICES Workshop on the Okhotsk Sea and ajacent area PICES-GLOBEC Climate Change and Carrying Capacity Program: A report from PICES VII Data management for the CCCC Program Report on GOOS Living Marine Resource Panel Meeting Photos from PICES VII Vjatcheslav Petrovich Shuntov GLOBEC Canada: Who we are, what we’ve been doing and where we’re headed The Ocean Carrying Capacity Research Program (OCC) at the Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska JAMSTEC research activities in the northern North Pacific People and event

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72

    Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean

    Get PDF
    This report provides a summary of the 5th meeting of scientific experts on Fish Stocks in the Central Arctic Ocean (FiSCAO) on October 24‐26, 2017, in Ottawa, Canada. At the request of the 10 parties negotiating on an agreement to prevent unregulated commercial fishing in the High Seas portion of the Central Arctic Ocean (CAO), participants of the 5th FiSCAO meeting were tasked with addressing four Terms of Reference, summarized below: ToR 1. Design a 1‐3 year long mapping program. ToR 2. Design a monitoring program. ToR 3. Identify human, financial, vessel/equipment resources needed for mapping and monitoring. ToR 4. Develop data collection, sharing, and hosting protocols that outline the details of what and how data shall be collected, shared, and hosted for consideration by the Parties. The 5th FiSCAO meeting included scientific representatives from seven states including Canada, the People's Republic of China, the European Union, Iceland, the Republic of Korea, the Kingdom of Norway and the United States of America. The meeting also included representatives from the International Council for the Exploration of the Sea (ICES), the North Pacific Marine Science Organization (PICES) and the Arctic Council’s Protection of the Arctic Marine Environment (PAME) and Conservation of Arctic Flora and Fauna (CAFF) working groups. The report summarizes the elements for collecting baseline data (i.e., a mapping program) in the high seas CAO to achieve the goals of documenting species distributions, relative abundances and key ecosystem parameters (ToR 1). The mapping program describes the priority areas to sample, the types of data to collect and possible data collection approaches to employ. Participants emphasized that existing planned surveys are very limited, and that significant dedicated resources will be required to implement the mapping program. The report outlines a strategy for monitoring indicators of fish stocks and ecosystem components (ToR 2). The report includes a list of existing monitoring programs and a prioritized list of indicators to detect environmental change in the high seas CAO. Further refinement of a monitoring program will use information from the mapping program (ToR 1). Participants emphasized the need to begin monitoring as soon as possible and that additional research is required to operationalize monitoring indicators. The report summarizes the preliminary cost estimates (ToR 3) to implement a mapping program to collect data in the high seas portion of the CAO using a vessel of opportunity and in the Pacific Gateway region of the CAO using an independently‐organized survey. Cost implications for the monitoring program and other scientific activities are also listed (e.g., data analysis, data management). The report includes a draft data sharing policy as the foundation for a future data sharing protocol, including the technical specifications for data sharing (ToR 4). The development of the data sharing protocol will require negotiation and legal review among the participating states. A data management and data sharing pilot study on a CAO fish database is suggested to test a framework

    CLIVAR Exchanges - Special Issue: WCRP Coupled Model Intercomparison Project - Phase 5 - CMIP5

    Get PDF

    Cruise Report: EX-17-11 Gulf of Mexico 2017 (ROV and Mapping)

    Get PDF
    From November 29, 2017 to December 21, 2017, the NOAA Office of Ocean Exploration and Research (OER) and partners conducted a telepresence-enabled ocean exploration expedition on NOAA Ship Okeanos Explorer to collect critical baseline data and information and to improve knowledge about unexplored and poorly understood deepwater areas of the Gulf of Mexico. The Gulf of Mexico 2017 (EX-17-11) expedition was part of a series of expeditions between 2017 and 2018 that explored deepwater areas in the Gulf of Mexico. During 23 days at sea, 17 remotely operated vehicle (ROV) dives were completed off the Western Florida Escarpment and in the central and western Gulf of Mexico. Over 93 hours of ROV bottom time were logged at depths between 300 and 2,321 meters. Over 20,000 square kilometers of seafloor were mapped. A total of 138 biological and 11 geological samples were collected. The expedition gathered over 280,000 live video views worldwide and the OER website received over 35,600 views. A core onshore science team of over 80 participants from around the world collaborated and supported real-time ocean exploration science. The data associated with this expedition have been archived and are publicly available through the NOAA Archives

    Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study.

    Full text link
    BACKGROUND: Metal corrosion in seawater has been extensively studied in surface and shallow waters. However, infrastructure is increasingly being installed in deep-sea environments, where extremes of temperature, salinity, and high hydrostatic pressure increase the costs and logistical challenges associated with monitoring corrosion. Moreover, there is currently only a rudimentary understanding of the role of microbially induced corrosion, which has rarely been studied in the deep-sea. We report here an integrative study of the biofilms growing on the surface of corroding mooring chain links that had been deployed for 10 years at ~2 km depth and developed a model of microbially induced corrosion based on flux-balance analysis. METHODS: We used optical emission spectrometry to analyze the chemical composition of the mooring chain and energy-dispersive X-ray spectrometry coupled with scanning electron microscopy to identify corrosion products and ultrastructural features. The taxonomic structure of the microbiome was determined using shotgun metagenomics and was confirmed by 16S amplicon analysis and quantitative PCR of the dsrB gene. The functional capacity was further analyzed by generating binned, genomic assemblies and performing flux-balance analysis on the metabolism of the dominant taxa. RESULTS: The surface of the chain links showed intensive and localized corrosion with structural features typical of microbially induced corrosion. The microbiome on the links differed considerably from that of the surrounding sediment, suggesting selection for specific metal-corroding biofilms dominated by sulfur-cycling bacteria. The core metabolism of the microbiome was reconstructed to generate a mechanistic model that combines biotic and abiotic corrosion. Based on this metabolic model, we propose that sulfate reduction and sulfur disproportionation might play key roles in deep-sea corrosion. CONCLUSIONS: The corrosion rate observed was higher than what could be expected from abiotic corrosion mechanisms under these environmental conditions. High corrosion rate and the form of corrosion (deep pitting) suggest that the corrosion of the chain links was driven by both abiotic and biotic processes. We posit that the corrosion is driven by deep-sea sulfur-cycling microorganisms which may gain energy by accelerating the reaction between metallic iron and elemental sulfur. The results of this field study provide important new insights on the ecophysiology of the corrosion process in the deep sea
    corecore