1,756 research outputs found

    Cross Domain Privacy Protection for Location-Based Services

    Get PDF
    This paper investigates the current status of Information System Security (ISS) within New South Wales State government agencies in Australia. A 3-year longitudinal survey was used to increase awareness and motivate ISS managers. In addition, the survey was used as a management tool to monitor compliance with ISS standard’s controls (AS/NZS17799:2001). In 2004 an amendment to the standard added critical success factors (CSFs) as being necessary for an agency’s movement to accreditation. An analysis of the CSFs results was undertaken to determine the status of an independently acting agency’s security readiness and they were summarized to then provide an overall measure. This measure provided a ‘benchmark’ for an agency’s security readiness to the standard’s CSFs (AS/NZS17799:2004.AMDT). While the process for improving security based on CSFs is adequate, actual improvement in ISS across government requires further effort. This research contributes to the level of understanding of ISS compliance within e-Government

    CAREER: Data Management for Ad-Hoc Geosensor Networks

    Get PDF
    This project explores data management methods for geosensor networks, i.e. large collections of very small, battery-driven sensor nodes deployed in the geographic environment that measure the temporal and spatial variations of physical quantities such as temperature or ozone levels. An important task of such geosensor networks is to collect, analyze and estimate information about continuous phenomena under observation such as a toxic cloud close to a chemical plant in real-time and in an energy-efficient way. The main thrust of this project is the integration of spatial data analysis techniques with in-network data query execution in sensor networks. The project investigates novel algorithms such as incremental, in-network kriging that redefines a traditional, highly computationally intensive spatial data estimation method for a distributed, collaborative and incremental processing between tiny, energy and bandwidth constrained sensor nodes. This work includes the modeling of location and sensing characteristics of sensor devices with regard to observed phenomena, the support of temporal-spatial estimation queries, and a focus on in-network data aggregation algorithms for complex spatial estimation queries. Combining high-level data query interfaces with advanced spatial analysis methods will allow domain scientists to use sensor networks effectively in environmental observation. The project has a broad impact on the community involving undergraduate and graduate students in spatial database research at the University of Maine as well as being a key component of a current IGERT program in the areas of sensor materials, sensor devices and sensor. More information about this project, publications, simulation software, and empirical studies are available on the project\u27s web site (http://www.spatial.maine.edu/~nittel/career/)

    Mobility is the Message: Experiments with Mobile Media Sharing

    Get PDF
    This thesis explores new mobile media sharing applications by building, deploying, and studying their use. While we share media in many different ways both on the web and on mobile phones, there are few ways of sharing media with people physically near us. Studied were three designed and built systems: Push!Music, Columbus, and Portrait Catalog, as well as a fourth commercially available system – Foursquare. This thesis offers four contributions: First, it explores the design space of co-present media sharing of four test systems. Second, through user studies of these systems it reports on how these come to be used. Third, it explores new ways of conducting trials as the technical mobile landscape has changed. Last, we look at how the technical solutions demonstrate different lines of thinking from how similar solutions might look today. Through a Human-Computer Interaction methodology of design, build, and study, we look at systems through the eyes of embodied interaction and examine how the systems come to be in use. Using Goffman’s understanding of social order, we see how these mobile media sharing systems allow people to actively present themselves through these media. In turn, using McLuhan’s way of understanding media, we reflect on how these new systems enable a new type of medium distinct from the web centric media, and how this relates directly to mobility. While media sharing is something that takes place everywhere in western society, it is still tied to the way media is shared through computers. Although often mobile, they do not consider the mobile settings. The systems in this thesis treat mobility as an opportunity for design. It is still left to see how this mobile media sharing will come to present itself in people’s everyday life, and when it does, how we will come to understand it and how it will transform society as a medium distinct from those before. This thesis gives a glimpse at what this future will look like

    Monitoring Dynamic Spatial Fields Using Responsive Geosensor Networks

    Get PDF
    Many environmental phenomena (e.g., changes in global levels of atmospheric carbon dioxide) can be modeled as variations of attributes over regions of space and time, called dynamic spatial fields. The goal of this project is to provide efficient ways for sensor networks to monitor such fields, and to report significant changes in them. The focus is on qualitative changes, such as splitting of areas or emergence of holes in a region of study. The approach is to develop qualitative and topological methods to deal with changes. Qualitative properties form a small, discrete space, whereas quantitative values form a large, continuous space, and this enables efficiencies to be gained over traditional quantitative methods. The combinatorial map model of the spatial embedding of the sensor network is rich enough so that for each sensor, its position, and the distances and bearings of neighboring sensors, are easily computed. The sensors are responsive to changes to the spatial field, so that sensors are activated in the vicinity of interesting developments in the field, while sensors are deactivated in quiescent locations. All computation and message passing is local , with no centralized control. Optimization is addressed through use of techniques in qualitative representation and reasoning, and efficient update through a dynamic and responsive underlying spatial framework. Effective deployment of very large arrays of sensors for environmental monitoring has important scientific and societal benefits. The project is integrated with the NSF IGERT program on Sensor Science, Engineering, and Informatics at the University of Maine, which will enhance educational and outreach opportunities. The project Web site (http://www.spatial.maine.edu/~worboys/sensors.html) will be used for broad results dissemination
    • 

    corecore