100 research outputs found

    Intercalation properties of context-free languages

    Get PDF
    Context-freedom of a language implies certain intercalation properties known as pumping or iteration lemmas. Although the question of a converse result for some of the properties has been studied, it is still not entirely clear how these properties are related, which are the stronger ones and which are weaker;Among the intercalation properties for context-free languages the better known are the general pumping conditions (generalized Ogden\u27s, Ogden\u27s and classic pumping conditions), Sokolowski-type conditions (Sokolowski\u27s and Extended Sokolowski\u27s conditions) and the Interchange condition. We present a rather systematic investigation of the relationships among these properties; it turns out that the three types of properties, namely pumping, Sokolowski-type and interchange, above are independent. However, the interchange condition is strictly stronger than the Sokolowski\u27s condition;Intercalation properties of some subclasses of context-free languages are also studied. We prove a pumping lemma and an Ogden\u27s lemma for nonterminal bounded languages and show that none of these two conditions is sufficient. We also investigate three of Igarashi\u27s pumping conditions for real-time deterministic context-free languages and show that these conditions are not sufficient either. Furthermore, we formulate linear analogues of the general pumping and interchange conditions and then compare them to the general context-free case. The results show that these conditions are also independent

    Master index volumes 51–60

    Get PDF

    New Results on Context-Free Tree Languages

    Get PDF
    Context-free tree languages play an important role in algebraic semantics and are applied in mathematical linguistics. In this thesis, we present some new results on context-free tree languages

    Architectural Refinement in HETS

    Get PDF
    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement language, that we equip with a notion of refinement tree and with calculi for checking correctness and consistency of refinements. Soundness and completeness of these calculi is also investigated. Finally, we present the integration of the VSE refinement method in HETS as an institution comorphism. Thus, the proof manangement component of HETS remains unmodified

    REGULAR LANGUAGES: TO FINITE AUTOMATA AND BEYOND - SUCCINCT DESCRIPTIONS AND OPTIMAL SIMULATIONS

    Get PDF
    \uc8 noto che i linguaggi regolari \u2014 o di tipo 3 \u2014 sono equivalenti agli automi a stati finiti. Tuttavia, in letteratura sono presenti altre caratterizzazioni di questa classe di linguaggi, in termini di modelli riconoscitori e grammatiche. Per esempio, limitando le risorse computazionali di modelli pi\uf9 generali, quali grammatiche context-free, automi a pila e macchine di Turing, che caratterizzano classi di linguaggi pi\uf9 ampie, \ue8 possibile ottenere modelli che generano o riconoscono solamente i linguaggi regolari. I dispositivi risultanti forniscono delle rappresentazioni alternative dei linguaggi di tipo 3, che, in alcuni casi, risultano significativamente pi\uf9 compatte rispetto a quelle dei modelli che caratterizzano la stessa classe di linguaggi. Il presente lavoro ha l\u2019obiettivo di studiare questi modelli formali dal punto di vista della complessit\ue0 descrizionale, o, in altre parole, di analizzare le relazioni tra le loro dimensioni, ossia il numero di simboli utilizzati per specificare la loro descrizione. Sono presentati, inoltre, alcuni risultati connessi allo studio della famosa domanda tuttora aperta posta da Sakoda e Sipser nel 1978, inerente al costo, in termini di numero di stati, per l\u2019eliminazione del nondeterminismo dagli automi stati finiti sfruttando la capacit\ue0 degli automi two-way deterministici di muovere la testina avanti e indietro sul nastro di input.It is well known that regular \u2014 or type 3 \u2014 languages are equivalent to finite automata. Nevertheless, many other characterizations of this class of languages in terms of computational devices and generative models are present in the literature. For example, by suitably restricting more general models such as context-free grammars, pushdown automata, and Turing machines, that characterize wider classes of languages, it is possible to obtain formal models that generate or recognize regular languages only. The resulting formalisms provide alternative representations of type 3 languages that may be significantly more concise than other models that share the same expressing power. The goal of this work is to investigate these formal systems from a descriptional complexity perspective, or, in other words, to study the relationships between their sizes, namely the number of symbols used to write down their descriptions. We also present some results related to the investigation of the famous question posed by Sakoda and Sipser in 1978, concerning the size blowups from nondeterministic finite automata to two-way deterministic finite automata

    Securing Software in the Presence of Third-Party Modules

    Get PDF
    Modular programming is a key concept in software development where the program consists of code modules that are designed and implemented independently. This approach accelerates the development process and enhances scalability of the final product. Modules, however, are often written by third parties, aggravating security concerns such as stealing confidential information, tampering with sensitive data, and executing malicious code.Trigger-Action Platforms (TAPs) are concrete examples of employing modular programming. Any user can develop TAP applications by connecting trigger and action services, and publish them on public repositories. In the presence of malicious application makers, users cannot trust applications written by third parties, which can threaten users’ and platform’s security. We present SandTrap, a novel runtime monitor for JavaScript that can be used to securely integrate third-party applications. SandTrap enforces fine-grained access control policies at the levels of module, API, value, and context. We instantiate SandTrap to IFTTT, Zapier, and Node-RED, three popular JavaScript-driven TAPs, and illustrate how it enforces various policies on a set of benchmarks while incurring a tolerable runtime overhead. We also prove soundness and transparency of the monitoring framework on an essential model of Node-RED. Furthermore, nontransitive policies have been recently introduced as a natural fit for coarse-grained information-flow control where labels are specified at the level of modules. The flow relation does not need to be transitive, resulting in nonstandard noninterference and enforcement mechanism. We develop a lattice encoding to prove that nontransitive policies can be reduced to classical transitive policies. We also devise a lightweight program transformation that leverages standard flow-sensitive information-flow analyses to enforce nontransitive policies more permissively

    Formal modelling and analysis of broadcasting embedded control systems

    Get PDF
    PhD ThesisEmbedded systems are real-time, communicating systems, and the effective modelling and analysis of these aspects of their behaviour is regarded as essential for acquiring confidence in their correct operation. In practice, it is important to minimise the burden of model construction and to automate the analysis, if possible. Among the most promising techniques for real-time systems are reachability analysis and model-checking of networks of timed automata. We identify two obstacles to the application of these techniques to a large class of distributed embedded systems: firstly, the language of timed automata is too low-level for straightforward model construction, and secondly, the synchronous, handshake communication mechanism of the timed automata model does not fit well with the asynchronous, broadcast mechanism employed in many distributed embedded systems. As a result, the task of model construction can be unduly onerous. This dissertation proposes an expressive language for the construction of models of real-time, broadcasting control systems, and demonstrates how effi- cient analysis techniques can be applied to them. The dissertation is concerned in particular with the Controller Area Network (CAN) protocol which is emerging as a de facto standard in the automotive industry. An abstract formal model of CAN is developed. This model is adopted as the communication primitive in a new language, bCANDLE, which includes value passing, broadcast communication, message priorities and explicit time. A high-level language, CANDLE, is introduced and its semantics defined by translation to bCANDLE. We show how realistic CAN systems can be described in CANDLE and how a timed transition model of a system can be extracted for analysis. Finally, it is shown how efficient methods of analysis, such as 'on-the- fly' and symbolic techniques, can be applied to these models. The dissertation contributes to the practical application of formal methods within the domain of broadcasting, embedded control systemsSchool of Computing and Mathematics at the University of Northumbri
    • …
    corecore