23,797 research outputs found

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat

    Inferring causal relations from multivariate time series : a fast method for large-scale gene expression data

    Get PDF
    Various multivariate time series analysis techniques have been developed with the aim of inferring causal relations between time series. Previously, these techniques have proved their effectiveness on economic and neurophysiological data, which normally consist of hundreds of samples. However, in their applications to gene regulatory inference, the small sample size of gene expression time series poses an obstacle. In this paper, we describe some of the most commonly used multivariate inference techniques and show the potential challenge related to gene expression analysis. In response, we propose a directed partial correlation (DPC) algorithm as an efficient and effective solution to causal/regulatory relations inference on small sample gene expression data. Comparative evaluations on the existing techniques and the proposed method are presented. To draw reliable conclusions, a comprehensive benchmarking on data sets of various setups is essential. Three experiments are designed to assess these methods in a coherent manner. Detailed analysis of experimental results not only reveals good accuracy of the proposed DPC method in large-scale prediction, but also gives much insight into all methods under evaluation

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Model reconstruction from temporal data for coupled oscillator networks

    Get PDF
    In a complex system, the interactions between individual agents often lead to emergent collective behavior like spontaneous synchronization, swarming, and pattern formation. The topology of the network of interactions can have a dramatic influence over those dynamics. In many studies, researchers start with a specific model for both the intrinsic dynamics of each agent and the interaction network, and attempt to learn about the dynamics that can be observed in the model. Here we consider the inverse problem: given the dynamics of a system, can one learn about the underlying network? We investigate arbitrary networks of coupled phase-oscillators whose dynamics are characterized by synchronization. We demonstrate that, given sufficient observational data on the transient evolution of each oscillator, one can use machine learning methods to reconstruct the interaction network and simultaneously identify the parameters of a model for the intrinsic dynamics of the oscillators and their coupling.Comment: 27 pages, 7 figures, 16 table

    Genome-wide discovery of modulators of transcriptional interactions in human B lymphocytes

    Full text link
    Transcriptional interactions in a cell are modulated by a variety of mechanisms that prevent their representation as pure pairwise interactions between a transcription factor and its target(s). These include, among others, transcription factor activation by phosphorylation and acetylation, formation of active complexes with one or more co-factors, and mRNA/protein degradation and stabilization processes. This paper presents a first step towards the systematic, genome-wide computational inference of genes that modulate the interactions of specific transcription factors at the post-transcriptional level. The method uses a statistical test based on changes in the mutual information between a transcription factor and each of its candidate targets, conditional on the expression of a third gene. The approach was first validated on a synthetic network model, and then tested in the context of a mammalian cellular system. By analyzing 254 microarray expression profiles of normal and tumor related human B lymphocytes, we investigated the post transcriptional modulators of the MYC proto-oncogene, an important transcription factor involved in tumorigenesis. Our method discovered a set of 100 putative modulator genes, responsible for modulating 205 regulatory relationships between MYC and its targets. The set is significantly enriched in molecules with function consistent with their activities as modulators of cellular interactions, recapitulates established MYC regulation pathways, and provides a notable repertoire of novel regulators of MYC function. The approach has broad applicability and can be used to discover modulators of any other transcription factor, provided that adequate expression profile data are available.Comment: 15 pages, 3 figures, 2 tables; minor changes following referees' comments; accepted to RECOMB0

    Psychophysiological modelling and the measurement of fear conditioning

    Get PDF
    Quantification of fear conditioning is paramount to many clinical and translational studies on aversive learning. Various measures of fear conditioning co-exist, including different observables and different methods of pre-processing. Here, we first argue that low measurement error is a rational desideratum for any measurement technique. We then show that measurement error can be approximated in benchmark experiments by how closely intended fear memory relates to measured fear memory, a quantity that we term retrodictive validity. From this perspective, we discuss different approaches commonly used to quantify fear conditioning. One of these is psychophysiological modelling (PsPM). This builds on a measurement model that describes how a psychological variable, such as fear memory, influences a physiological measure. This model is statistically inverted to estimate the most likely value of the psychological variable, given the measured data. We review existing PsPMs for skin conductance, pupil size, heart period, respiration, and startle eye-blink. We illustrate the benefit of PsPMs in terms of retrodictive validity and translate this into sample size required to achieve a desired level of statistical power. This sample size can differ up to a factor of three between different observables, and between the best, and the current standard, data pre-processing methods

    Combined aptamer and transcriptome sequencing of single cells.

    Get PDF
    The transcriptome and proteome encode distinct information that is important for characterizing heterogeneous biological systems. We demonstrate a method to simultaneously characterize the transcriptomes and proteomes of single cells at high throughput using aptamer probes and droplet-based single cell sequencing. With our method, we differentiate distinct cell types based on aptamer surface binding and gene expression patterns. Aptamers provide advantages over antibodies for single cell protein characterization, including rapid, in vitro, and high-purity generation via SELEX, and the ability to amplify and detect them with PCR and sequencing
    corecore