24 research outputs found

    Abstract Data Types without the Types. Dedicated to David Turner on the occasion of his 70'th birthday

    Get PDF
    The data abstraction mechanism of Miranda may be adapted to a dynamically typed programming language by applying ideas from gradual typing

    Parametricity in an Impredicative Sort

    Get PDF
    Reynold\u27s abstraction theorem is now a well-established result for a large class of type systems. We propose here a definition of relational parametricity and a proof of the abstraction theorem in the Calculus of Inductive Constructions (CIC), the underlying formal language of Coq, in which parametricity relations\u27 codomain is the impredicative sort of propositions. To proceed, we need to refine this calculus by splitting the sort hierarchy to separate informative terms from non-informative terms. This refinement is very close to CIC, but with the property that typing judgments can distinguish informative terms. Among many applications, this natural encoding of parametricity inside CIC serves both theoretical purposes (proving the independence of propositions with respect to the logical system) as well as practical aspirations (proving properties of finite algebraic structures). We finally discuss how we can simply build, on top of our calculus, a new reflexive Coq tactic that constructs proof terms by parametricity

    Proofs for free - parametricity for dependent types

    Get PDF
    Reynolds' abstraction theorem shows how a typing judgement in System F can be translated into a relational statement (in second order predicate logic) about inhabitants of the type. We obtain a similar result for pure type systems: for any PTS used as a programming language, there is a PTS that can be used as a logic for parametricity. Types in the source PTS are translated to relations (expressed as types) in the target. Similarly, values of a given type are translated to proofs that the values satisfy the relational interpretation. We extend the result to inductive families. We also show that the assumption that every term satisfies the parametricity condition generated by its type is consistent with the generated logic

    Proof-relevant parametricity

    Get PDF
    Parametricity is one of the foundational principles which underpin our understanding of modern programming languages. Roughly speaking, parametricity expresses the hidden invariants that programs satisfy by formalising the intuition that programs map related inputs to related outputs. Traditionally parametricity is formulated with proofirrelevant relations but programming in Type Theory requires an extension to proof-relevant relations. But then one might ask: can our proofs that polymorphic functions are parametric be parametric themselves? This paper shows how this can be done and, excitingly, our answer requires a trip into the world of higher dimensional parametricity

    Parametricity and Dependent Types

    Get PDF
    Reynolds' abstraction theorem shows how a typing judgement in System F can be translated into a relational statement (in second order predicate logic) about inhabitants of the type. We (in second order predicate logic) about inhabitants of the type. We obtain a similar result for a single lambda calculus (a pure type system), in which terms, types and their relations are expressed. Working within a single system dispenses with the need for an interpretation layer, allowing for an unusually simple presentation. While the unification puts some constraints on the type system (which we spell out), the result applies to many interesting cases, including dependently-typed ones

    A Relationally Parametric Model of Dependent Type Theory

    Get PDF
    Reynolds’ theory of relational parametricity captures the invariance of polymorphically typed programs under change of data representation. Reynolds’ original work exploited the typing discipline of the polymorphically typed -calculus System F, but there is now considerable interest in extending relational parametricity to type systems that are richer and more expressive than that of System F.This paper constructs parametric models of predicative and impredicative dependent type theory. The significance of our models is twofold. Firstly, in the impredicative variant we are able to deduce the existence of initial algebras for all indexed functors. To our knowledge, ours is the first account of parametricity for dependent types that is able to lift the useful deduction of the existence of initial algebras in parametric models of System F to the dependently typed setting. Secondly, our models offer conceptual clarity by uniformly expressing relational parametricity for dependent types in terms of reflexive graphs, which allows us to unify the interpretations of types and kinds, instead of taking the relational interpretation of types as a primitive notion. Expressing our model in terms of reflexive graphs ensures that it has canonical choices for the interpretations of the standard type constructors of dependent type theory, except for the interpretation of the universe of small types, where we formulate a refined interpretation tailored for relational parametricity. Moreover, our reflexive graph model opens the door to generalizations of relational parametricity, for example to higher-dimensional relational parametricity

    A Computational Interpretation of Parametricity

    Get PDF
    Reynolds' abstraction theorem has recently been extended to lambda-calculi with dependent types. In this paper, we show how this theorem can be internalized. More precisely, we describe an extension of Pure Type Systems with a special parametricity rule (with computational content), and prove fundamental properties such as Church-Rosser's and strong normalization. All instances of the abstraction theorem can be both expressed and proved in the calculus itself. Moreover, one can apply parametricity to the parametricity rule: parametricity is itself parametric
    corecore