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Abstract

Consider two widely used definitions of equality. That of Leibniz: one value equals another if any
predicate that holds of the first holds of the second. And that of Martin-Löf: the type identifying
one value with another is occupied if the two values are identical. The former dates back several
centuries, while the latter is widely used in proof systems such as Agda and Coq.

Here we show that the two definitions are isomorphic: we can convert any proof of Leibniz
equality to one of Martin-Löf identity, and each conversion followed by the other is the identity.
One direction of the isomorphism depends crucially on values of the type corresponding to Leibniz
equality satisfying Reynolds’ notion of parametricity and functional extensionality. The existence of
the conversions is widely known (meaning that if one can prove one equality then one can prove the
other), but that the two conversions form an isomorphism (internally) in the presence of parametricity
and functional extensionality is, we believe, new.

Our result is a special case of a more general relation that holds between inductive families and
their Church encodings. Our proofs are given inside type theory, rather than meta-theoretically. Our
paper is a literate Agda script.
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1 Introduction

If anything is sufficiently important, there will be more than one way to do it. For instance,
the concept of two objects being the same can be expressed in at least two ways, Leibniz
equality and Martin-Löf identity.

Leibniz asserted the identity of indiscernibles: two objects are equal if and only if they
satisfy the same properties (Leibniz, 1686). This principle sometimes goes by the name
Leibniz’ Law, and is closely related to Spock’s Law, “A difference that makes no difference
is no difference”. Leibniz equality is usually formalized to state that a .

= b holds if every
property P that holds of a also holds of b. Perhaps surprisingly, this definition is sufficient
to also ensure the converse, that every property P that holds of b also holds of a.

The setting for our paper is dependent type theory. We present our development as a
literate script for the proof assistant Agda, although our results should be easy to carry
over to other settings. In fact, we also provide Coq versions of our results. Such systems
typically define equality in the style introduced by Martin-Löf (Martin-Löf, 1975). We will
express Martin-Löf identity by stating that the type a ≡ b is inhabited when a is the same
as b. We say that refl inhabits the type a ≡ a, while the type a ≡ b is empty when a and b
are distinct.

Martin-Löf identity has been the subject of considerable discussion (Streicher, 1993;
Hofmann & Streicher, 1996; Altenkirch et al., 2007; the Univalent Foundations Program,
2013; Cohen et al., 2016). In contrast, Leibniz equality has seen surprisingly little discus-
sion in our community.

It is not hard to show that both concepts are equivalence relations: each is reflexive,
symmetric, and transitive. Further, it is well known that Leibniz equality (a .

= b) implies
Martin-Löf identity (a ≡ b), and vice versa. Indeed, the former is sometimes taken as the
name of the latter (Pfenning & Paulin-Mohring, 1989; Coq Developers, 2017). Here, to
avoid confusion, we stick to calling each by its own name as defined above.

Simply stating that Leibniz equality implies Martin-Löf identity, and vice versa, is a
weak connection: it means that there is a function that takes every proof of the former into
a proof of the latter, and a function that takes every proof of the latter into a proof of the
former. Here we prove something stronger, namely that Leibniz equality is isomorphic to
Martin-Löf identity: the two functions of the previous sentence are inverses, giving a one-
to-one correspondence. As such, our results imply more than just the existence of equality
proofs, but also relate their computational content. Isomorphism plays a distinguished role
in category theory and homotopy type theory, where it is referred to as an equivalence, and
the computational content of equality proofs is increasingly important in recent type theo-
ries such as Cubical (Cohen et al., 2016) and HoTT (the Univalent Foundations Program,
2013). So far as we are aware, our claim that Leibniz equality is isomorphic to Martin-Löf
identity is new.

Our proof of the isomorphism depends on the assumption that values of the type cor-
responding to Leibniz equality satisfy a suitable notion of parametricity. Parametricity
was originally defined for the polymorphic lambda calculus (also known as System F) by
Reynolds (Reynolds, 1983). Applications of parametricity to functional programming are
given by Wadler (Wadler, 1989). While most descriptions of parametricity are in terms of
semantics, a simple syntactic description of parametricity as a mapping from System F to
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second-order logic appears in Wadler (Wadler, 2007). Parametricity has been adapted to
dependent type theory (Bernardy et al., 2012; Atkey et al., 2014; Bernardy et al., 2015;
Nuyts et al., 2017).

Our proof of the isomorphism also depends on the assumption that the Martin-Löf
identity type satisfies functional extensionality: two functions are equal if and only if they
map equal inputs to equal results. A posteriori, our result implies Leibniz equality then also
satisfies functional extensionality.

Leibniz equality can be viewed as the Church encoding of Martin-Löf identity. Pfenning
and Paulin-Mohring conjectured that inductively defined data types are isomorphic to their
Church encodings in the presence of parametricity (Pfenning & Paulin-Mohring, 1989).
Several special cases of this are known in the literature. Hasegawa demonstrates that
categorical product and sum are isomorphic to their Church encodings in the presence
of parametricity (Hasegawa, 1994), and Wadler demonstrates that the inductive definition
of natural numbers is isomorphic to the Church numerals assuming that Church numerals
satisfy parametricity (Wadler, 2007). Atkey, Ghani and Johann proved a general version
of the conjecture using their formulation of parametricity in dependent type theory (Atkey
et al., 2014). This paper can be viewed as zooming in on a special case of the property, but
note that we prove the equivalence inside type theory, rather than meta-theoretically.

Leibniz equality is normally formulated in an impredicative setting: when we say that
a .
= b holds if every property P that holds of a also holds of b, the property P may itself refer

to Leibniz equality. Here, perhaps surprisingly, we formulate our results in the predicative
setting of Agda, where the propery P may not refer to Leibniz equality. However, there
is no difficulty in extending our results to an impredicate setting, and we have done so in
Coq.

Our results depend only on parametricity and functional extensionality. Practically, this
means that our results are valid in a traditional setting where the principle of Uniqueness
of Identity Proofs (UIP) holds (all proofs of the same equality are equal), or equivalently,
Streicher’s Axiom K (Streicher, 1993). However, they also apply in the setting of homotopy
type theory (the Univalent Foundations Program, 2013), where other principles like Uni-
valence (roughly: any two isomorphic types are equal) can be used, but UIP and Axiom K
are inadmissible.

This note is a literate Agda script. Its source is available as an artifact, and can be directly
executed in Agda. We also submit as an artifact the same proof in Coq. Our Agda proof uses
a predicative setting, and the Coq proof uses both predicative and impredicative settings.

This paper is organised as follows. Section 2 introduces Martin-Löf identity, and Sec-
tion 3 introduces Leibniz equality. Section 4 reprises a related result from the literature,
where two types are shown to be isomorphic in the presence of parametricity. Section 5
presents our proof that Leibniz equality is isomorphic to Martin-Löf identity. Section 6
applies our main result to show that all universe-polymorphic variants of Leibniz equality
are isomorphic. Section 7 concludes.

Our script begins with a little housekeeping. We use an Agda pragma to avoid pattern
matches that depend on Axiom K (Cockx et al., 2014; Cockx et al., 2016).

{-# OPTIONS --without-K#-}
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This ensures that we do not use Axiom K by accident, and thus, our development can be
carried out the same in homotopy type theory.

We make use of modules. As required by Agda, our entire development is encapsulated
in a module with the same name as the file containing this paper.

module LeibnizEquality where

We only import one module from the Agda standard library, which defines universe levels.

open import Agda.Primitive public

2 Martin-Löf identity

As mentioned in the introduction, we follow Martin-Löf (Martin-Löf, 1975) by taking the
identity type a≡ b to be the type expressing the equality of two objects a and b. This type
has a single constructor, refl : a≡ a. If an element a≡b : a≡ b can be constructed, then a and
b are considered equal. On the other hand, if a and b are obviously distinct, for example
a = 0 and b = 1, then a ≡ b is an empty type. (Here we have followed the usual Agda
convention, where we let the identifier a≡b range over values of the type a ≡ b. In Agda
almost any sequence of characters not containing a space may be used as an identifier.)

We encapsulate this section as an Agda module, assuming a set A for all definitions at
once.

module Martin-Löf {`} {A : Set `} where

We define equality at types A in any universe Set `, as usual in Agda. We will return to
universe polymorphism in Section 6.

We define ≡ inductively as an indexed data type with the single constructor refl:

data _≡_ (a : A) : A→ Set ` where
refl : a ≡ a

This characterises Martin-Löf identity as the least type containing refl : a≡ a for any a : A.
Martin-Löf identity satisfies the standard properties of an equivalence relation: reflex-

ivity, symmetry, and transitivity. In Agda, we can show these properties using dependent
pattern matching (Coquand, 1992):

reflexive≡ : {a : A}→ a ≡ a
reflexive≡ = refl

symmetric≡ : {a b : A}→ a ≡ b→ b ≡ a
symmetric≡ refl = refl

transitive≡ : {a b c : A}→ a ≡ b→ b ≡ c→ a ≡ c
transitive≡ refl refl = refl

We end the module, and make all its definitions available. This allows us to invoke ≡ at
any type, not just A.

open Martin-Löf public
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We require one additional assumption, namely functional extensionality, which says that
two functions are equal if they map equal values to equal results:

postulate
ext : ∀ {` ` ′} {A : Set `} {B : A→ Set ` ′} {f g : (a : A)→ B a}→

(∀ (a : A)→ f a ≡ g a)→ f ≡ g

Although functional extensionality follows from univalence, it is strictly weaker and it can
also be used in type theories that assume UIP. (Throughout the paper, we use Agda’s ∀
syntax which allows us to omit the type annotation for some quantified variables, in this
case ` and `′).

3 Leibniz Equality

Following Leibniz, two objects are equal if they satisfy the same predicates. Let a and b be
objects of type A. We say that a .

= b holds if for every predicate P over type A we have that
P a implies P b.

module Leibniz {`} {A : Set `} where
_ .
=_ : (a b : A)→ Set (lsuc `)

_ .
=_ a b = (P : A→ Set `)→ P a→ P b

We will see shortly that this definition implies its converse: for every predicate P over type
A we also have that P b implies P a.

Leibniz equality is reflexive and transitive, where the first is shown by a variant of the
identity function and the second by a variant of function composition.

reflexive .= : {a : A}→ a .
= a

reflexive .= P Pa = Pa

transitive .= : {a b c : A}→ a .
= b→ b .

= c→ a .
= c

transitive .= a .
=b b .

=c P Pa = b .
=c P (a .

=b P Pa)

Symmetry is less obvious. We have to show that if P a implies P b for all predicates
P, then the implication holds the other way round as well. Given a specific P and a proof
Pb of P b, we have to construct a proof of P a given a .

= b. To do so, we instantiate the
equality with a predicate Q such that Q c holds if P c implies P a. The property Q a is
trivial by reflexivity, and hence Q b follows from a .

= b. But Q b is exactly a proof of what
we require, that P b implies P a.

symmetric .= : {a b : A}→ a .
= b→ b .

= a
symmetric .= {a} {b} a .

=b P = Qb
where
Q : A→ Set `
Q c = P c→ P a
Qa : Q a
Qa = reflexive .= P
Qb : Q b
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Qb = a .
=b Q Qa

open Leibniz public

4 A related result

As warm up to the equivalence of Martin-Löf identity and Leibniz equality, we show a
well known related result where proving an isomorphism requires parametricity (Wadler,
1989).

We encapsulate this section as an Agda module, so that we may reuse some names later.

module WarmUp {`} (A : Set `) where

We show that the types A and T A are isomorphic, where T A is defined as follows.

T : Set (lsuc `)
T = ∀ (X : Set `)→ (A→ X)→ X

The type T A is related to continuation passing style (CPS): a value of type A accepts a
continuation of type A→ X and returns a value of type X . It can also be seen as the Church
encoding of the datatype Box A with a single constructor box : A→ Box A.

One direction of the isomorphism will require the parametricity of type T A, which we
postulate.

postulate
paramT : (t : T)→ (X X ′ : Set `) (R : X→ X ′ → Set `)→

(k : A→ X) (k ′ : A→ X ′) (kR : (a : A)→ R (k a) (k ′ a))→
R (t X k) (t X ′ k ′)

This postulate (and the one we will encounter in the next Section) can be proven in type
theories that offer an internal notion of parametricity (Nuyts et al., 2017). In other type
theories, a proof can be derived mechanically for any closed value of type t (Bernardy
et al., 2010).

To unpack the property, let R be a relation between types X and X ′. Assume a : A and
t : T A, with functions k : A→ X and k′ : A→ X ′. Parametricty for T A tells us

if (k a,k′ a) ∈ R then (t k, t k′) ∈ R.

We can diagram parametricity by

A X 1 X

A X ′ 1 X ′

k

id R

t k

id R

k′ t k′

where horizontal lines represent functions and vertical lines relations.
The isomorphism between A and T A is given by a pair of functions, i and j. The forward

direction takes a : A to a function that accepts k : A→ X and returns k a.
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i : A→ T
i a X k = k a

The reverse direction takes t : T A, instantiates it at type A and applies it to the identity
function at type A.

id : A→ A
id a = a

j : T→ A
j t = t A id

It is trivial to show that j is a (left) inverse of i.

ji : (a : A)→ (j (i a) ≡ a)
ji a = refl

Showing that i is inverse to j requires an application of parametricity. First, we prove the
result up to functional extensionality.

ijext : (t : T) (X : Set `) (k : A→ X)→ (i (j t) X k ≡ t X k)
ijext t X k = paramT t A X R id k (λ a→ refl)
where
R : A→ X→ Set `
R a x = k a ≡ x

To unpack this, given t : T A and X and k : A→ X , we have i (j t) X k = k (t A id) by
definition of i and j, so we need to show

k (t A id)≡ t X k

Recall that parametricity holds for an arbitrary relation R from X to X ′, and arbitrary
k : A→ X and k′ : A→ X ′. Instantiate X to A and k to id, and X ′ to X and k′ to k, and choose
R so that (a,x) ∈ R iff k a≡ x. Then parametricity instantiates to

if k a≡ k a then k (t A id)≡ t X k.

The hypothesis holds trivially, and the desired result follows immediately from the con-
clusion. We can diagram the instance of parametricity by

A A 1 A

A X 1 X

id

id k

t id

id k

k t k

where now both horizontal and vertical lines represent functions.
Applying extensionality yields the final result.

ij : (t : T)→ (i (j t) ≡ t)
ij t = ext (λ X→ ext (λ k→ ijext t X k))
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This completes the section and closes the module (permitting us to redefine i, j, ij, and ji
in the next section).

5 .
='≡

Following the outline of the previous section, we now prove an isomorphism between
Leibniz equality and Martin-Löf identity.

One direction of the isomorphism will require the parametricity of Leibniz equality,
which we postulate.

module MainResult {`} (A : Set `) where

postulate
param .

= : {a b : A} (a .
=b : a .

= b)→
(P P ′ : A→ Set `)→ (R : (c : A)→ P c→ P ′ c→ Set `)→

(Pa : P a) (P ′a : P ′ a)→ R a Pa P ′a→
R b (a .

=b P Pa) (a .
=b P ′ P ′a)

To unpack this, for a given c : A and predicate P,P′ over A, let R c be a relation between
P c and P′ c. If Pa is a proof that P a holds, then a .

=b P Pa is a proof that P b holds, and
similarly if P′a is a proof that P′ a holds. Parametricity for .

= tells us

if (Pa,P′a) ∈ R a then (a .
=b P Pa,a .

=b P′ P′a) ∈ R b.

We can diagram parametricity by

P a P b

P′ a P′ b

a .
=b P

R a R b

a .
=b P′

where horizontal lines represent functions and vertical lines relations.
The isomorphism between a≡ b and a .

= b is given by a pair of functions, i and j. In the
forward direction, if we know a≡ b we need for any P to take a proof of P a to a proof of
P b, which is easy since identity of a and b implies that any proof of P a is also a proof of
P b.

i : {a b : A} (a≡b : a ≡ b)→ a .
= b

i refl P Pa = Pa

This function i is often called subst because it allows us to substitute b for a if we have a
proof a≡ b. It is also called transport in the context of homotopy type theory.

In the reverse direction, given that for any P we can take a proof of P a to a proof of
P b we need to show a≡ b. The proof is similar to that for symmetry of Leibniz equality.
We take Q to be the predicate that holds of c if a ≡ c. Then Q a is trivial by reflexivity of
Martin-Löf identity, and hence Q b follows from a .

= b. But Q b is exactly a proof of what
we require, that a≡ b.
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j : {a b : A}→ a .
= b→ a ≡ b

j {a} {b} a .
=b = Qb

where
Q : A→ Set `
Q c = a ≡ c
Qa : Q a
Qa = reflexive≡
Qb : Q b
Qb = a .

=b Q Qa

It is trivial to show that j is the inverse of i.

ji : {a b : A} (a≡b : a ≡ b)→ j (i a≡b) ≡ a≡b
ji refl = refl

Showing that i is inverse to j requires an application of parametricity. First, we prove the
result up to extensionality.

ijext : {a b : A} (a .
=b : a .

= b)→
(P : A→ Set `) (Pa : P a)→ i (j a .

=b) P Pa ≡ a .
=b P Pa

ijext {a} a .
=b P Pa = param .

= a .
=b Q P R refl Pa refl

where
Q : A→ Set `
Q c = a ≡ c
R : (c : A) (Qc : Q c) (Pc : P c)→ Set `
R c Qc Pc = i Qc P Pa ≡ Pc

To unpack this, given a proof a .
=b of a .

= b, a predicate P over type A, and a proof Pa : P a,
we have i (j a .

=b) P Pa = i (a .
=b Q refl) P Pa by definition of j, so we need to show that

i (a .
=b Q refl) P Pa≡ a .

=b P Pa

where Q c = a ≡ c, just as in the definition of j. Recall that parametricity holds for an
arbitrary relation R c from P c to P′ c. Instantiate P to Q and P′ to P, and choose R c so
that (Qc,Pc)∈ R iff i Qc P Pa≡ Pc. Note that Qa = a≡ a, so we can prove it by refl. Then
parametricity instantiates to

if i refl P Pa≡ Pa then i (a .
=b Q refl) P Pa≡ (a .

=b P Pa).

The hypothesis holds by definition of i, and the desired result follows immediately from
the conclusion.

Applying extensionality yields the final result.

ij : {a b : A} (a .
=b : a .

= b)→ i (j a .
=b) ≡ a .

=b
ij a .

=b = ext (λ P→ ext (λ pa→ ijext a .
=b P pa))

6 Universes and predicativity

So far, we have not paid much attention to the role of universe levels in the two definitions
of equality. In this section we rectify this by studying variants of the two equalities with
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more general universe levels and considering how they are related. If you don’t care about
universe levels, you can safely skip this section.

To avoid inconsistencies with the rule Set : Set, most type theories use a hierarchy
of universes Set0,Set1,Set2, . . . where each universe is a member of the next. Universe
polymorphism is a feature of proof assistants such as Agda and Coq that allows one to
define types at all universe levels at once. For example, in Section 2 we defined Martin-Löf
identity for types in any universe Set `. Here ` can be instantiated to any concrete universe
level 0,1,2, . . . Agda provides two basic operations on levels: lsuc ` increases the level by
1 and `1t `2 takes the maximum of two levels.

Although we have shown that Leibniz equality and Martin-Löf identity are isomorphic,
there is still a small but significant difference if we look at their universe levels. Specifically,
if A : Set ` and x,y : A then we have x≡ y : Set ` but x .

= y : Set (lsuc `). The reason for this
is that Agda is a predicative theory: any type that makes use of Set ` must be defined at
least at level lsuc `. What our proof shows is that in the particular case of Leibniz equality,
this was not really necessary: since it is equivalent to a type defined at level `, it could
be defined at universe level ` itself without breaking soundness of the system. This could
be accomplished in a type theory with resizing rules (Voevodsky, 2011). Here we show a
similar result relating variants at different levels directly in Agda.

We again begin a new module in order to reuse names from the previous section.

module UniversePolymorphic {`a} (A : Set `a) where

In the definition of Leibniz equality, both the type A and the property P have the same
universe level `. Here, instead, we fix A to be at level `a and permit P to be at a different
level `. This leads to an infinite family of variants of Leibniz equality .

=〈 ` 〉, one for each
universe level `.

_ .
=〈_〉_ : ∀ (a : A) ` (b : A)→ Set (`a t lsuc `)

_ .
=〈_〉_ a ` b = (P : A→ Set `)→ P a→ P b

This definition enjoys the same basic properties of Leibniz equality .
= as defined above,

e.g., reflexivity, symmetry and transitivity.

reflexive` : ∀ {`} {a : A}→ a .
=〈 ` 〉 a

reflexive` P pa = pa

transitive` : ∀ {`} {a b c : A}→ a .
=〈 ` 〉 b→ b .

=〈 ` 〉 c→ a .
=〈 ` 〉 c

transitive` a .
=b b .

=c P pa = b .
=c P (a .

=b P pa)

symmetric` : ∀ {`} {a b : A}→ a .
=〈 ` 〉 b→ b .

=〈 ` 〉 a
symmetric` {`} {a} {b} a .

=b P pb = a .
=b Q qa pb

where
Q : (c : A)→ Set `
Q c = P c→ P a
qa : Q a
qa pa = pa
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One might think that the relation .
=〈 ` 〉 gets smaller as ` increases, since we quantify

over more predicates. However, an interesting consequence of our main result is that all
different instances of this polymorphic Leibniz equality are actually equivalent, provided
the level ` is at least as big as `a (the universe level of A). In other words, a .

=〈 ` 〉 b
and a .

=〈 ` ′ 〉 b behave identically for all `,` ′ ≥ `a. Intuitively, this is because they are all
equivalent to a single type, namely Martin-Löf equality x ≡ y. We show this formally by
implementing a function converting from one instance to another, and showing it is its own
inverse.

If ` and ` ′ are distinct, then we cannot convert directly from a .
=〈 ` 〉 b to a .

=〈 ` ′ 〉 b.
Instead, we will convert first from a .

=〈 ` 〉 b to a universe-polymorphic variant of Martin-
Löf identity. Once this is done, we only have to convert between the different versions of
this Martin-Löf identity type, which will turn out to be straightforward.

First, we define the polymorphic variant of Martin-Löf identity. This type ≡〈 ` 〉 is
defined at universe level `a t `, in particular its level is always at least as big as `a.
(Agda also allows defining ≡〈 ` 〉 at level ` or indeed even at level 0, but the theoretical
foundations of this feature seems rather shaky so we refrain from using it here.) If ` = `a

we regain the standard definition of Martin-Löf identity.

data _≡〈_〉_ (x : A) ` : A→ Set (`a t `) where
refl : x ≡〈 ` 〉 x

Since ≡〈 ` 〉 is an inductive datatype, we can eliminate it into types of any universe. In
contrast, we can eliminate .

=〈 ` 〉 only into types of universe level exactly ` by its very
definition.

As in the previous section, we can define a function i converting from a ≡〈 ` 〉 b to
a .
=〈 ` 〉 b:

i : ∀ {`} {a b : A} (a≡b : a ≡〈 ` 〉 b)→ a .
=〈 ` 〉 b

i refl P Pa = Pa

To go in the opposite direction, we want to apply the proof of Leibniz equality to the
polymorphic Martin-Löf identity type, which is defined at universe level `at`. So we need
to require that the level argument to .

=〈 _ 〉 is of the form `at`. This means we can convert
from a .

=〈 `at ` 〉 b to a≡〈 `at ` 〉 b:

j : ∀ ` {a b : A} (a .
=b : a .

=〈 `a t ` 〉 b)→ a ≡〈 `a t ` 〉 b
j ` {a} {b} a .

=b = a .
=b P0 refl

where
P0 : A→ Set (`a t `)
P0 c = a ≡〈 `a t ` 〉 c

We make the argument ` to j explicit to help Agda with the inference of universe levels in
the proofs below.

We can also implement a function k≡ converting between variants of a ≡〈 ` 〉 b at
different universe levels:

k≡ : ∀ {`} ` ′ {a b : A} (p : a ≡〈 ` 〉 b)→ a ≡〈 ` ′ 〉 b
k≡ ` ′ refl = refl
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Using this conversion together with i and j allows us to convert between variants of
a .
=〈 ` 〉 b too:

k .= : ∀ ` ` ′ {a b : A}
(a .
=b : a .

=〈 `a t ` 〉 b)→ a .
=〈 `a t ` ′ 〉 b

k .= ` ` ′ a .
=b = i (k≡ (`a t ` ′) (j (`a t `) a .

=b))

To prove that all types of the form a .
=〈 `at ` 〉 b are equivalent, we need to show that

k .= is its own inverse. More precisely, we will show that k .= ` ` ′ and k .= ` ′ ` are inverse
to each other. Since k .= is composed of three functions i, k≡ and j, it is sufficient to show
that:

1. i and j are mutual inverses.
2. k≡ is its own inverse.

The proof of the first statement is a straightforward generalization of the proof in the
previous section. For the interesting direction it relies again on parametricity of Leibniz
equality:

postulate
param .

= : ∀ {`} {a b : A}→ (a .
=b : a .

=〈 ` 〉 b)→
(P P ′ : A→ Set `)→ (R : (x : A)→ P x→ P ′ x→ Set `)→

(Pa : P a) (P ′a : P ′ a)→ R a Pa P ′a→
R b (a .

=b P Pa) (a .
=b P ′ P ′a)

ji : ∀ ` {a b : A} (a≡b : a ≡〈 `a t ` 〉 b)→ j (`a t `) (i a≡b) ≡ a≡b
ji ` refl = refl

ijext : ∀ ` {a b : A} (a .
=b : a .

=〈 `a t ` 〉 b) (P : A→ Set (`a t `)) (Pa : P a)→
i (j (`a t `) a .

=b) P Pa ≡ a .
=b P Pa

ijext ` {a} a .
=b P Pa = param .

= a .
=b P0 P R refl Pa refl

where
P0 : A→ Set (`a t `)
P0 c = a ≡〈 `a t ` 〉 c
R : (c : A) (P0c : P0 c) (Pc : P c)→ Set (`a t `)
R c P0c Pc = i P0c P Pa ≡ Pc

ij : ∀ ` {a b : A} (a .
=b : a .

=〈 `a t ` 〉 b)→ i (j (`a t `) a .
=b) ≡ a .

=b
ij ` a .

=b = ext (λ P→ ext (λ pa→ ijext ` a .
=b P pa))

As promised, the second statement is easy to prove by pattern matching:

kk≡ : ∀ {` ` ′} {a b : A} (a≡b : a ≡〈 ` 〉 b)→ k≡ ` (k≡ ` ′ a≡b) ≡ a≡b
kk≡ refl = refl

Finally, we put these components together (using cong and transitive≡) to prove that
the types a .

=〈 ` 〉 b are equivalent for all `.

cong : ∀ {` ` ′} {X : Set `} {Y : Set ` ′} {a b : X}→ (f : X→ Y)→ a ≡ b→ f a ≡ f b
cong P refl = refl
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kk .= : ∀ {` ` ′} {a b : A} (a .
=b : a .

=〈 `a t ` 〉 b)→ k .= ` ′ ` (k .= ` ` ′ a .
=b) ≡ a .

=b
kk .= {`} {` ′} a .

=b =
transitive≡
(cong i (cong (k≡ (`a t `)) (ji ` ′ (k≡ (`a t ` ′) (j (`a t `) a .

=b)))))
(transitive≡ (cong i (kk≡ (j (`a t `) a .

=b))) (ij ` a .
=b))

7 Conclusion

We have shown that Leibniz equality and Martin-Löf identity are isomorphic, under uncon-
troversial assumptions of parametricity and functional extensionality. The proof is straight-
forward, and it was previously unknown. We wonder whether, with this proof in hand, it
might not be too difficult to show the general result, conjectured by Pfenning and Paulin-
Mohring (Pfenning & Paulin-Mohring, 1989), that inductive data types are isomorphic to
their Church encodings in the presence of parametricity.
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