148 research outputs found

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Block-level discrete cosine transform coefficients for autonomic face recognition

    Get PDF
    This dissertation presents a novel method of autonomic face recognition based on the recently proposed biologically plausible network of networks (NoN) model of information processing. The NoN model is based on locally parallel and globally coordinated transformations. In the NoN architecture, the neurons or computational units form distributed networks, which themselves link to form larger networks. In the general case, an n-level hierarchy of nested distributed networks is constructed. This models the structures in the cerebral cortex described by Mountcastle and the architecture based on that proposed for information processing by Sutton. In the implementation proposed in the dissertation, the image is processed by a nested family of locally operating networks along with a hierarchically superior network that classifies the information from each of the local networks. The implementation of this approach helps obtain sensitivity to the contrast sensitivity function (CSF) in the middle of the spectrum, as is true for the human vision system. The input images are divided into blocks to define the local regions of processing. The two-dimensional Discrete Cosine Transform (DCT), a spatial frequency transform, is used to transform the data into the frequency domain. Thereafter, statistical operators that calculate various functions of spatial frequency in the block are used to produce a block-level DCT coefficient. The image is now transformed into a variable length vector that is trained with respect to the data set. The classification was done by the use of a backpropagation neural network. The proposed method yields excellent results on a benchmark database. The results of the experiments yielded a maximum of 98.5% recognition accuracy and an average of 97.4% recognition accuracy. An advanced version of the method where the local processing is done on offset blocks has also been developed. This has validated the NoN approach and further research using local processing as well as more advanced global operators is likely to yield even better results

    Image representation and compression using steered hermite transforms

    Get PDF

    Digital image compression

    Get PDF

    The contour tree image encoding technique and file format

    Get PDF
    The process of contourization is presented which converts a raster image into a discrete set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimises noticeable artifacts in the simplified image. The contour merging technique offers a complementary lossy compression system to the QDCT (Quantised Discrete Cosine Transform). The artifacts introduced by the two methods are very different; QDCT produces a general blurring and adds extra highlights in the form of overshoots, whereas contour merging sharpens edges, reduces highlights and introduces a degree of false contouring. A format based on the contourization technique which caters for most image types is defined, called the contour tree image format. Image operations directly on this compressed format have been studied which for certain manipulations can offer significant operational speed increases over using a standard raster image format. A couple of examples of operations specific to the contour tree format are presented showing some of the features of the new format.Science and Engineering Research Counci

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Solutions to non-stationary problems in wavelet space.

    Get PDF

    Wavelets and Subband Coding

    Get PDF
    First published in 1995, Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding. The book developed the theory in both continuous and discrete time, and presented important applications. During the past decade, it filled a useful need in explaining a new view of signal processing based on flexible time-frequency analysis and its applications. Since 2007, the authors now retain the copyright and allow open access to the book

    Colour image coding with wavelets and matching pursuit

    Get PDF
    This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio
    • …
    corecore