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0.1
~

A revi~w of some important image compression techniques is presented.

The raEid development of communication technologies has broughLthe ~rcl.1.1d.L-----

Closer together, and visual communication is an specially important part of it, be

cause the human being finds that images are a very powerful and natural way of

information. But the limited bandwidth of channels and finite storage space cannot

efficiently meet the demands of image data without compression technologies. In the

future image compression technology will be a fundamental aspect of communication

technologies.

The lossless methods are reviewed firstj they are important in sensitive areas

where the images mus~ not be altered by the compression process, and they are also

important as elements in the lossy image compression methods:

The lossless methods reviewed include: minimum redundancy coding, and dictio

na.ry based methods. Some lossless methods specific for image compression like run

length coding are also reviewed.

Lossy methods are presented next, they provide much greater compreSSIOn by

_exIJloiting_the human-visua.l system-eharaeteristics. They are becoming widespread

because of the demand for the use of images in many areas, like computers or telecon

ferencing systems. The methods reviewed include: waveform coders, vector quantiza

tion , block truncation, linear transform, vector transform, sub-band coding, wavelet

transform, pyramid coders, fractal coders, contour-texture, and model-based coders.

One of the most promising techniques are the sub-band coders. They show very

good compression ratios and have been shown to perform better than some transform

coders.

Another interesting and relatively new technique presented is the vector transform,

which is still an active area of research.
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Chapter 1

Introduction

This study aims at presenting the current state of digital image compression, and

possible advances. The path chosen is to review the relevant techniques that have

been used, and to deepen the coverage in the most promising ones.

Finally, future directions for research are suggested.

1.1 The information age

The agricultural age was based on plows and the animals that pulled them;

the industrial age, on engines and the fuels that fed them. The information

age we are now creating will be based on computers and other means of

access to information[lO].

Information permeates all human activity. It comes in a multitude of different

forms; from noise to music, from art to news, from sentimental letters to tax returns.

Greater access to information can dramatically enhance human activity. Only a

century ago, information traveled at the speed of its human companions, today it

reaches up to the hardly comprehensible gigabit per second range. This creates whole

new opportunities for the use of information. Our lives can be enriched by the new

ways of interaction, new ways of learning and working, new freedom.

Today m.en are nom~d-s, a considerable number of people spend a significant part

of their time traveling. This has been made possible by the improved communications

2



".

_______ systems of today; seldom is one far away from a phone (cellular), a faxmachine~r --1

a computer with data transfer capabilities. But further improvement in communica-..
tiona technology will only reduce the need to move, it will no longer being necessary

to live where one works; multimedia systems wi~l enable people scattered in distant

locations to share the same visual space and work cooperatively. The possibility is

present now to start undoing the aggregation created during the industrial revolu

tion that dictated t.hat we live where we work. Good teleconferencing and efficient

--------l-b~r·oadband services will make travel unnecessary for communication purposes.

Advanced e-mail will allow transmitting text along with audio (voice) and images

or video. With these features, the applications for e-mail will be broadened and some
...-.--- - --------1

of the social cues, now lost in the pure text systems, can be conveyed. This wili

improve the use of e-mail to permit close, ongoing cooperation among coworkers who

are physically located in different corners of the world.

We have seen a dramatic reduction in the cost of computers, making them available

almost everywhere.: At the same time, the cost of communication has followed a

similar reduction in cost. Together this relentless fall in cost has transformed a

promise oX.fly~ergy into a t';l.llgible real po~ential for dramatically altering our lives.

Computers in the future will lose their identity, they will. become inconspicuous

devices that blend into the ambient -like telephones are now- acting as extensions

for more effective human communication.

In the 1960's only experts used computers, by the 1970's specialists with the need

had access to them, by the 1980's any ~.ndividual could have access to a computer.

In the next decade, computers will not be used by individuals in isolation anymore,

groups of people through networks will share valuable information. Computers will

not only be productivity enhancement tools, but will act as active collaborators in

the management of information in a human-computer symbiosis. Already machines

have joined humans in the exchange and creation of knowledge.

Information is power. The new ubiquitous access to information will democratize

human communications; everyone will have the chance to express his ideas in front

of others, and even more fully by the ability to use video, sound and text.

In recent years the ability to capture images outpaced our capacity to effectively

3



use them. 'For instance, during the past 20 years Landsat satellite images have been
.- f. --. ,

captured'incessantly, and yet human eyes have not seen 95 percent of them. InfQrma-

tio_n is perishable, like fresh fruit, with adequate data communication infrastructure,

information like the Landsat data ~ould be put in the hands of farmers, geologists,

city planners and others that would find it invaluable, in a timely manner, before it

loses its value. ",

The inevitable future of immense data storage capacities and swift .transmission

speeds create opportunities for the fulfillment of human needs in the virtual world of

information as an alternative to the real world we are accustomed to. Multimedia

systems will enable us to explore subject matter, not as abstract knowledge, but
-------

"virtually" as real as if we were experiencing it. "Teleprecense" could allow us to

extend our senses to another place~ real places, or~for researcli, virtual places to

explore data. The increased load of information and the need to share it demand

efficient storage and transmission.

"A picture is worth a thousand words", it is well known that images are a form

of information that has a specially relevant role for humans. We understand more

through images than any other means. Therefore, images have been a very prominent

field in which technology has helped bring to everyday life. One has only to look at

the importance of television and photography to understand the great significance of

images as information.

1.2 Advantages of Digital Image Representation

But Television and photography are analog media, with all the disadvantages that it

implies. As an example of the importance of digital format for images the U.S. has

decided to go ahead with a digital high definition television (HDTV) format, against

the choice of Europe and Japan that use nondigital systems.

The first obvious advantage of digital images is that unlike analog signals, they

do not degrade with transfers or copies. A VHS videotape will look much worse

after copying repeatedly than the original, whereas a digital image will look the same

(assuming no bit errors) no matter how many times it is transmitted or rerecorded

4



on storage media.

-The analog video formats NTSC" and PAL havemany limitations. They are noisy

and lack sharpness, and they were never intended for' close up viewing, or frame by

fra.me. KIianaloglmage-foftnaris inesca.pably tiea to its native display hardwarej an

NTSC signal is only displayable in NTSC monitors. Ther~are devices capable of doing

a transcoding of analog image formats, but their use is limited and complex. With

a digital format, an image is easily displayed'in many different types of monitors,

printers, etc., at any frame rate or resolution. A digital format is not a definite

requirement for this, but it makes it relatively easy.

Another advantage of digital representation is the relativ,e ease of rescaling; an

image that normally would fill the screen can 'be reduced to fill only a quarter of it, or

can be enlarged to have a part of it filling the whole screen. This variable resolution

capability also means that the image can be displayed in hardware having differing

resolution, the images become independent of the resolution of the output device.

The digital format also results in great flexibility for the transmission of the im

ages. High speed optical fiber, ethernet, or other synchronous or packet based trans

mission methods can be used to transmit the images in real time as long as the

bandwidth is sufficientj on lower bandwidth channels (serial), non-realtime transmis

sion is possible.

Conversely, depending on the ~~ndwidth available, the information content (qual

ity, resolution) of the image can be adjusted to maintain a real-time transmission.

Or the quality of the image can be the specified factor and bandwidth consumed as

needed (in packeted transmission). As the devices with higher ~esolution and quality

are also the costliest, cost independence is achieved because an inexpensive device

could-displa-y anamanlpul'iite'fIi-e digital images, but not with the highest quality or

resolution.

Another advantage of rescalability of digital images is that it brings the possibility

of watching many channels simultaneously in card size windows on the screen before

choosing one to watch exclusively.

In moving images, the resolution needed when there is much movement is much

less than when a still image is presented.

5
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The transmitter can have the ability to scale the output bitstream to be constant,
~--------- - . . ~

to accommodate a limited bandwidth"' channel, even when'the information rate is

variable depending on the nature 9£ the scene. :This is possible in a digital domain

due to the quality/size tradeoff. Also, the allocation of bits among several programs

can be adjusted when they are transmitted through the same channel, giving the

important programs more bandwidth than secondary programs.

The receiver could reconstruct the image from a transmitted bitstream. But if it

does not want to or cannot use the full quality or resolution, it could be possible to

ignore some segments of the bitstream that are only needed for the highest quality and

still-produce a correct image sequence. This incomplete decoding of the bitstream can

result in less resolution in ~a(;h frame, or less frames per second with fun resolution.

A receiver capable of full resolution decoding can also use this feature to partially

decode four bitstreams simultaneously and display them at quarter screen size, and

at the same time still use no more computing resource.,s than when showing a full

frame at full screen size. A reasonable quality is to have moving video as good as

broadcast quality NTSC and still images as good as 35mm photographs,

The cost associated with digital technology keeps falling, making the availability of

systems with the capabilities mentioned above -scalable decoding of multiple image

bitstreams with adjustable quality/size tradeoffs- certain. And the continuous price

fall will make them affordable to everyone.

It is also important to realize the significance of integrating several media -like

text, speech, video- to enhance our communication capabilities in what is now called

multimedia. Today video does not yet have the manipulation freedom commonly as

sociated with text or graphics. Until it is possible to cut, paste, and manipulate video

together with other data types, such as text or structured graphics, one cannot speak

of real integration in a multimedia environment. Multimedia will be an important

tool, combining video, audio, and text. With a digital representation it is possible to

bundle video data into packets to be quickly transmittedj with high 'capacity fiber)

several programs can be received simultaneously. One decisive advantage of such an

approach is the possibility of receiving more material than one necessarily watches,

For instance, in the future when one is watching a story on the Cable News Network

6



___(C~N) one could ask ad~~per cov~~~ge o~a certain subject and get it, because it was

transmitted together with the original st9ry.

Digital television has more to offer than simply higher picture resolution. Ad

ditional related non-image information can. be bundled with the digital images, like.

actors position, background matte areas of the scenes, or lighting specification that

would allow some crude editing of the scenes.

1.3 Importance of Image Compression _

Tma an essential art in the information a e. From the view~

point of communications, the reason is limited bandwidth. Ever since technology

has allowed man to use chan.!1~ls (coop~r cables, optical fib~~leetromagneticwave~l _

to communicate, they have imposed a limitation on the tran~mission speed. This

limitation of channel capacity, as introduced in information theory by Shannon in

1948, is a hard limit [40]. Channel capacity is used to specify the asymptotic limit

on the maximum rate at which information can be conveyed reliably over a channel.

To efficiently use the limited bandwidth of a channel, it is necessary to reduce the

redund~cy of the transmitted data stream, which is accomplished with data com

pression techniques. A further dramatic improvement is achieved if by realizing that

the human eye can't perceive some of the information in an image, that useless infor-

mation is removed prior to transmission. This non-essential-information removal can

result in dramatic improvement of bandwidth efficiency use. This is what normally

is accomplished by the lossy image compression techniques.

Similar to the limitations in information transmission is the limitation in informa

tion storage. The cost of digital storage keeps falling, opening possibilities previously

considered too masllive. But for images the requirements are tremendous, and certain

applications will use hundreds, if not thousands, of images (like Image Databases).

For moving images; which after all is nothing more than a sequential stream of still

images at up to 70 frames per second, the storage requirements soon become taxing

even for today's most capable storage media.

Certainly, the easiest way to reduce the size of digital images is to use a lower

7



resolution and/or lower qual!ty, or for moving images, to use a slower frame rate._B_u_t__

a lower frame rate is not viewable, it strains the sight and breaks the continuity of

the action. A l~wer resolution lacks detail and is unacceptable in some situations.

One of the aspects of image compression technology is that the implementability

of a technique is sometimes overlooked. Soine techniques look very good in theory

but limited resources (space, computation) sometimes render them impossible to im

plement. Complexity is another issue that can't be overlooked. If the complexity of a

technique is very high, then the cost of using it will be high too, and only the critical

applications that demand it will be able to afford it. Finally, if the compressed infor

mation must How through some noisy channel, the error sensitivity of the technique. . .

can become very important. If a technique can't sustain an error it will be unsuitable

for error prone situations.

Recently, the dramatic cost-performance improvements in VLSI technology, com

munications technology (optical fiber and, transducers), and data storage (dynamic

ram, magnetic media, and optical disks) are opening possibilities for uses of digital

images as described above. But these same advances will allow great improvements

- in image compression techniques.

1.4 Image Coding as Analysis/Synthesis System
.,

Although this thesis deals only with image coding, there is an advantage in taking

a more general abstract view of coding systems. The view as an Analysis/Synthesis

system provides_a_unifying approach for several applications.

In computer vision, an image given as an array of intensity values is to be in

terpreted in some meaningful way. The image processing carried out by the human

visual system can also be interpreted as an analysis system. Thilt approach allows the

integration of other related areas of research, and benefits from their contributions

[30].

This view as an Analysis/Synthesis system serves also as an integrating approach

to many methods for image coding. In methods like scene modeling coding, the

8



ima.g~s_are analyzed to identi~ objects. These objects are then resynthesized to re

produ~e the image [12]. In the region textiir~ coders the image is analyzed and the

edge information is coded separately from the texture information [36]. In fractal

compression, the fractal codes produced contain geometric and measure-theoretic in

formation about the image data [6]. In thettansform coders, the coefficients are

extracted from the image. Even in PCM, pixel intensity values can be considered as

the parameters extr:acted through the analysis of the image.

Ill; the following chapters, a look at some of the important image compression tech

niques will be presented.

"
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Cb.apter 2

Lossless Image Compression

The required quality for images varies widely depending on the application. For some

applications, like medical imaging, the quality is paramount; the image must be bit

by bit identical to the original; lives may depend on it. Any artifacts introduced to

an image like an X-ray radiograph can result in an incorrect diagnosis of a medical

condition.

For applications like videotelephone, the quality can be sacrificed to allow for the

limitations of the systemsj it is acceptable for the resulting image to be somewhat

different from the original.

Different compression methods can trade a certain loss of accuracy in exchange

for much greater compression. Thus, image compression can be divided in two major

branches, lossless and lossy.

2.1 Compression methods classification

2.1.1 Lossless

Lossless is when the output image data is bit by bit identical to the input data in

all cases. This is desirable for very critica(information, but it rarely yields a high

compression ratio. The maximum compression is the bit rate of the information

content of the image. Although the information content of data is relative to the

10



model used for it, it is only in rare cases that:data is found with a very low information

content.

These lossless methods are useful for any ,digital data: text, digitized sound, bilevel

images (1 'bit depth), and other data. Typical size reduction values for lossless com

pression of text files is 2:1; and 15:1 is typical for bilevel images. [13]

2.1.2 Lossy

Much of the current interest is in the lossy image compression techniques. They are

called lossy because some loss of information occurs, due to the compression.

They are specially effective for natural images and sounds. But because these

data are already digitized analog signals, the idea of the output not matching the

input exactly is more acceptable.

The information confained in a picture depends on several factors. The most im

portant" ones are: resolution (the number of pixels in the image), and color depth (the

number ofdistinct colors that each pixel can have). But also contributing are: noise,

dynamic range, contrast etc. Therefore, the exact information content of an image is

-~-'mffiCUIt to quantiIy, especiallysince tnenuman seriSitivitYTo~t:nesecharacteristfcs is~---~---

complex, and human vision psychophysics find redundant information present.

These redundancies are:

• Spatial redundancy, neighboring pixels are correlated.

• Spectral redundancy, different spectral bands are correlated.

• Temporal redundancy, the same pixels at adjacent times are correlated.

Considering the reduction of these redundancies and tailoring the process to account

for the nonlinearities of human vision, compression ratio of up to 20:1 with only a

minimal visible loss are achievable for still images, and 100:1 for moving video.

The lossy approach to image compression makes them take little space when

compressed, and it is made to yield a representation that, when decoded, humans

will find very similar to the original.

11
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Some noise ~d artifacts are added to the image "that can be perceived. Careful

study of human visual"psychophysics has foc~~d.attention on approacnes that cause

little perceived loss in quality, but accomplish great compression.

Most of the lossy approaches allow for different "quality levels" gaining better

quality at the expense of less compression.

2.2 General Lossless compression'

Th~se methods are also called noiseless coding (do> not add noise to the signal),

entropy coding (reduce or eliminate redundancies through statistical or decomposition

techniques), or information-preserving coding (no information is destroyed by the
.Q'.

coding). '

In the theory of noiseless data compression, the process cail be divided in two

parts: modeling and coding.

Modeling is the process of generating predictions on the input data stream, pos

sibly within a context.

Coding is translating the input data stream into bits according to the probabilities

given by the model.

. There are two main schools of compression algorithms: Minimum Redundancy

Coding, and Dictionary based compression. They are the basis for most lossless

compression schemes in use today.

2.2.1 Minimum Redundancy Coding

The interest on data compression started with the work of Claude Shannon on Infor

mation Theory.

In information Theory the term entropy is defined as the negative logarithm of

the probability of a symbol occurring. The entropy of a data stream is the sum of

the entropy of all the individual symbols. The entropy of a message is the infor

mation content of the message. Thus, Number of bits = -log2(probability) is the

information content of the message in bits. The number of bits in excess of this on

12



the message indicates that· redundant information is present. in the message, and the'
, '

. possibility of reducing it opens the door to data compression.

Once the concept of ~nformation content exists, it is only natural to attempt to

represent the message in that many bits, in effect eliminating all redundancy originally

present.

A very common representation for text is the ASCII code, but since all symbols

(characters) are represented with the same number'of bits, it is a redundant rep

resentation. If the probability of different symbols to appear in the data stream is

different, it follows that the minimum redundancy representation is one where each .-i
----- - - -

gets as many bits as its information content, that is, variable length codes.

. Driving the coding section is the model, which provides the probabilities.

The simplest model is a static one: several representative blocks of data are an

alyzed and a model is created based on them. This model can ilOW be used to

compress similar other data blocks, but the compression can only be as good ,as these

data blocks resemble the data blocks used to create the model. If the data subject to

compression is very different from the one used to create the model, the compression

will be poor and there can even be data expansion (after compression the number of

bits will increase).

Therefore, it is natural to use dynamic models. For each data stream a model is

created that models it as best as it is possible. But since each data stream is getting a

different model, the model itself has to be stored with the compressed data. The space

required to store the model can become a severe limiting factor: an order-O model

(considering only the present symbol) takes very little space, but with higher order

models, the compression can increase dramatically. An order-1 model can increase the

storage it uses from 256 bytes to 65536 bytes. The compression is likely to increase

greatly with this order change, but it will probably be undermined by the overhead

of passing the model to decompress it.

The solution here is to use adaptive models. Here statistics of the data stream

are continually adjusted as the data stream is processed. Some of the prominent

algorithms and brief descriptions of how they work will be presented as follows.

13



Shannon-Fano 90ding

This method was developed by Claude E. Shannon and Robert M. Fano. It uses the

notion that if the probability of each symbol in a message is known, the message

could be represented by codes in a way that takes less space.

Its most important characteristics are:

• The most probable symbols have corresponding codes with a small number of

bits, and less probable sy~bols have longer codes.

o The codes can be uniquely decoded.

To be uniquely decodable the codes are built as a binary coding tree. The code starts

at the root of the tree, and follows the corresponding branches (lor 0) aggregating

the bits along the way, until it reaches a leaf.

The algorithm to build the coding tree is [35]:

o Build a table of symbol probabilities.

o Sort this table with the most probable symbol first, least probable last.

o Split the table, such that the total probability of the top half and the bottom

half are as nearly equal. These are the first two branches of the coding tree.

o Recursively split the resulting tables assigning them to branches until only leafs

are at the end of branches.

Huffman Coding

While Shannon and Fano worked on the problem from the root to the leaves, one of

Fano's students, David A. Huffman, realized that the optimal solution could be found

by proceeding from the leaves to the root. At the age of 25, while working on a term

paper for Fano, almost giving up after months of failed attempts, Huff~an had his' t

insight.

Here's the algorithm [17]:

14



e Start with all" the sy;mbols as leaves of- a tree. They are nodes of a tree t~b_~ _

built, and for 'now they are said to be free. Each node has a. weight equal to its

probability.

o The two least weighted nodes are located, a parent node is created for them,

giving it a weight the sum of its two children.

o The two children nodes are marked as not free, the parent node is marked as

fr.ee.

o The last two steps are repeated until only one node remains (the root).

This resulting binary tree is the coding tree. To find the code-for a symbol, follow

the branches, starting from the root to the leaf, aggregating the bits along the way

[42].

Adaptive Huffman Coding. As described above, Huffman coding only uses the

symbol probabilities to code the symbols. The effectiveness of this coding depends

on the model used to calculate the probability of each symbol. In an order 0 model

(context-free model) each symbol's probability is calculated without considering the

preceding symbols. To decode this kind of compression, only the code tree and ,the

data need to be given to the decoder. If the coding tree is static, it can be part of

the decoder, and it is not necessary to give it to the decoder.

But to improve the performance, an order 1 model could be used. However, in

that way, the need arises to include many coding trees (one for each context), and

the improvements of compression can be nullified by the overhead incurred.

This drawback can be mostly eliminated by using adaptive coding. In this way

we can use higher order modeling without extra penalty for the added statistics.

Adaptive coding is a method not only for Huffman coding, it is applicable to almost

any coding method.

The idea here is to update the model at the encoding end after each symbol is

coded, and at the decoding end the model is updated after each symbol is decoded.

In this way, if both ends start with the same model, they keep it identical throughout

the process.
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Now it is possible to look at several previous symbols to do higher order modeli!1g

on both;endswithout having to transmit the whole model, because it is constructed

on the fly. The drawback is that the model is ignorant of statistics of the sym~ols that

are ahead. Another drawback is 'that if the overhead of updating the model with-each

decoded symbol is great, the performance suffers greatly. Thus, efficient adaptive

coding depends on .the possibility of having a very efficient method of updating the

model with each decoded symbol.

For Huffman coding there are efficient algorithms for dynamic updating of the

model, based on swapping nodes in the tree when the model needs updating [4].

Arithmetic Coding

Huffman coding is the optimum variable length code that can be created. But it

is not optimum in general because an integer number of bit~ must be used, which

implies that it is only optimum when the probabilities of symbols are integral powers

of ~, and this is only a particular case [18].

It is possible to envision a coding strategy that does not use an integer number of

bits to code each symbol. This is the way Arithmetic coding works.

Arithmetic coding achieves this by treating the whole message as a single symbol,

and it can be arbitrarily close to the theoretical entropy bound for compression.

This is the basic idea: the message is represented by an interval of real numbers

in the range 0 ~:i: < Ij the longer the message, the smaller the interval gets, and the

number of bits used to specify the interval gets larger.

Each additional symbol in the message reduces the interval by an amount inversely

proportional with its probabilitYi the more likely symbols reduce the interval by a

lesser amount, adding less bits to the code. The final code is a single real number

from the resulting interval which can be uniquely decoded to reconstruct the original

message.

To construct this number, a probability is assigned to each symbols by the model

used. Then an interval out of the range 0 ~ x < 1 is assigned to each symbol, and

the size of the assigned interval is proportional to the probability of the symbol. Each

symbol now owns the interval assigned, excluding the upper bound.
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At the start, the message is represented by the whole interval 0 to 1.-

With the first symbol, the interval is reduced to the interval assigned to this

symbol.

With the next symbol, the interval is now reduced to the interval assigned to this

symbol within the interval defined by the previous symbol.

This process is repeated until all the symbols are encoded [34].

__Ap,_~CI.IIlple will clarify this process.

The word "sta.tistics" has ten letters (symbols), with the probabilities as shown

in Table 2.1.

letter probability
a 1/10
c 1/10 -
1 2/10
s J 3/10
t 3/10

Table 2.1: Symbol probabilities for arithmetic coding example

Therefore' one possible way to assign the intervals (the order is unimportant as

long as the decoder follows the same one) is as shown in Table 2.2.

letter range
a 0.00-0.10
c 0.10-0.20
1 0.20-0.40
s 0.40-0.70
t 0.70-1.00

Table 2.2: Intervals for arithmetic coding example

With these intervals assigned to letters now is possible to follow the encoding of

this message as shown in Table 2.3.

The low and high columns define the current interval after processing each symbol.

After the first symbol the interval is reduced from 0-1 to 0.4-0.7. The size of the

interval is reduced to 0.3.
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symbol low high interval size
0.00 1.0 1.0

s 0;40 0.70 0.3
t 0.61 0.70 , 0.09
a 0.61 0.619 0.009
t 0.6163 0.619 0.0027
1 0.61684' 0.61738 0.00054
s 0.617056 0.617218 0.000162, .,

"

t 0.6171694 0.617218 0.0000486
1 0.61717912 0.61718884 0.00000972
c 0.617180092 0.617181064 0.000000972
s 0.6171804808 0.6171807724 0.0000002916

Table 2.3: Encoding of arithmetic coding example

The second symbol reduces the interval to 0.7-1.0 within 0.4-0.7, thus low =

(0.7 - 0.4) x 0.7 + 0.4 = 0.61 and high = (0.7 - 0.4) x 1.0 +0.4 = 0.7.

This continues until the last symbol is encoded.

The code to be transmitted can be the number 0.6171804808, because it belongs

to the resulting interval, which means that it represents all the original symbols. The

decoder must know the probability table used to compress it or the system can use

an adaptive approach as previously discussed.

To decode the message the first step is to determine the interval which contains

the number to be decoded. This interval defines the first decoded symbol. .-

Then this range is expanded to 0 S x < 1. The next symbol can now be decoded.

The process continues until the last symbol is decoded.

The determination of the end of the message can be handled in two ways, with

an end-of-message symbol or simply informing the decoder of the number of symbols

to decode (storing the length of the message in the message itself or separately).

For the previous encoded message the decoding proceeds as shown in Table 2.4.

The example above was presented in decimal numbers to simplify the explanation,

in a real implementation binary numbers are used. Also, floating point math routines

are not necessary; it is best to use 16-bit or 32-bit integer math by shifting out the high

bits as the low bits get filled. This is possible since the interval shrinks monotonically:

once the most significant bits of the interval boundaries match, they can't change.
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number 10 hi .decoded symbol
.0.6171804808 -D.40 0.70 s
0.723934936 0.70. 1.00 t
0.07978312 0.00 0.10 - a
0.7978312 0.70 1.00 t
0.326104 0.20 0.40 1

0.63052 0.40 0.70 s
0.7684 0.70 1.00 t
0.228 0.20 0.40 1

0.14 0.10 0.20 c
0.4 0.40 0.70 s

Table 2.4: Decoding for arithmetic coding example

Orie issue not considered here is the possibility of underflow, since the high bits can

only be shifted out when they match. A complete examination of the implementation

issues can be found in [35].

Arithmetic coding is just that, a coding methodj to be useful for data compression

it has to be used with a model, and the performance is critically affected by the model

used [35].
,.'"

2.2.2 Dictionary based compression

There is another approach to compression that is popular and is widely used. Instead

of encoding symbols in variable length strings of bits, this approach encodes variable

length sequences of symbols as single tokens. This is called dictionary compression.

Briefly, the basic principle can be understood by a simple example.
,

Consider a book with all the possible words of the English language. Every word

can be uniquely identified by its page number and position within the page. It is now

possible to compose sentences by using page numbers and positions from that book

instead of words. It is reasonably possible to express the page and position of any

word in 20 bits. A word in English using ASCII code is on average about 40 bits

long. It is clear that this simple example achieves a 50% reduction in the size of the

message.

A tradeoff can be made between static and adaptive dictionaries. To encode
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certain data with limited set of words;-it' is possible-that -a-static dictionary tailored

for that set performs best. But most well known dictionary schemes are adaptive.

These systems can start with a limited dictionary or even no dictionary at all. Symbol

sequences are added to the dictionary as the message is processed.

These compression schemes originated with the work of Jacob Ziv and Abraham

Lempel in the late 1970's [51] [52]. The two basic compression methods are known as

LZ77 and LZ78. In LZ77 the dictionary is a "sliding window" over the previous part

of the message. In LZ78 the dictionary is constructed by adding one more symbol to

the entry in the dictionary when a match is found in the message.

LZ77

The original LZ77 algorithm uses a window into the message with two parts: the

dictionary, and a look-ahead buffer. The encoder looks' for matches of the string

starting at the current symbol in the dictionary. When a match is found, the index

to its position, the length of the match and the character following the match in the

lookahead buffer are combined in the next token emmited [35] [51]. A simple example

can show this. Using a window of total length 42, divided into 30 dictionary and 12

look-ahead buffer, when the window contains the string "toward a comprehension of

LZ77 compression", the encoder state is as shown in Table 2.5.

dictionary look-ahead
buffer

toward a comprehension of L277 compression
000000000011111111112222222222 333333333344
012345678901234567890123456789 012345678901

Table 2.5: First state for LZ77 coding example

The current symbol is at index 30. A partial match of "_compression" into the

dictionary it is found at index positions 08 to 14. The match is 7 characters long.

Now the token emitted is 08,07,s. After the token is emitted, the buffer now is as

shown in Table 2.6.

Again, looking for a match of "sion ", it is found at 10 and it is 5 characters

long. The token emitted is 09,05,_.
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dictionary look-ahead
buffer

comprehension of LZ77 compres sion
000000000011111111112222222222 333333333344
012345678901234567890123456789 012345678901

Table 2.6: Second state for LZ77 coding example

The LZ77 algorithm has been refined to the LZSS which uses binary trees for the

dictionary and, in general, avoids some of the bottlenecks and performance problems

in the LZ77 algorithm [35].

LZ78
, ,

Even with all the performance possible with the LZ77 algorithm, Ziv and L~,mpel

found that for certain applications it could be improved.

One of the disadvantages of the LZ77 algorithm is that by using a finite length

window, the oldest contents of the buffer are thrown away, and they could contain

valuable dictionary entries. This is just a characteristic of the LZ77 algorithmj it is

biased toward exploiting recency in the symbol stream [35]. This can work very well

in sorted data, but not as well for random data.

The second limitation of the LZ77 algorithm is that the longest match possible is

the length of the lo?k-'ahead buffer.

So the concept of a window is abandC?ned to develop what now is known as the

LZ78 algorithm. Now the dictionary is potentially any symbol sequence previously

encountered [47] [52]. The details are as follows.

In the LZ78 algorithm both the encoder and the decoder start with a nearly empty

dictionary, the only entry present at the start is the null string.

The general step taken is to add a symbol to the current string as long as it

matches some string in the dictionary.

When the match is broken, the whole current string including the last character

read (the one that broke the match), is added to the dictionary. And the token

representing this string is output: the index of the string matched plus the last

character (that broke the match).
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The dictionary is maintained as a tree, with the null. string at the root.

An improvement of the basic LZ78 is the LZW algorithm [47], used in the UNIX

compress program. In.LZW every possible symbol in the alphabet is preloaded in the

dictionary before processing starts.

An example of LZW will clarify the algorithm. Considering the string "coleo

mucompacompuscomputkomputedcomputer" , the LZWcoding proceeds as shown in

Table 2.7.

Characters output new new
input code index string
co c 256 co
1 o. 257 01
c 1 258 Ic
om 256 259 com
u m 260 mu.
c u 261 uc
omp 259 262 comp
a p 263 pa
c a 264 ac
ompu 262 265 compu
s u 266 us
c s 267 sc
?mput 265 268 comput
1 t 269 ti
c i 270 ic
ompute 268 271 compute
d e 272 ed
c d 273 dc
omputer 271 274 computer
EOF I'

Table 2.7: LZW coding example

The indices 0-255 are already taken, they are the basic alphabet. The first match

(for 'co') is broken right after the second letter, '0', the string 'co' is added to the

dictionary at index 256, and the index for the 'c' character is output. Next '1' is

input, the match for '01' breaks at 'I', '01' is put in the dictionary at index 257, and

the index for '0' is output. Now 'c' is read, the match for 'le' breaks at 'c', 'le' is

added at index 258, and the index for 'I' is output. 'om' is read because a match was

found ,up to 'co' at index 256, em' breaks the match, 'com' is added at index 259, and

the index for 'co' (256) is output. And so on.

_One possible source of inefficiency in this algorithm is the fact that the size of
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,,' '.

the index chosen determines 'the number of entries that are possible in the dictionary.

This means that the dictionary will fill up, and after it is full no more entries are

created in the dictionary. Furthermore, if the contents of the file change significantly

in a later part of the file, the matches will be inefficient, and. the compression ratio

will fall.

One solution is to have the encoder monitor the compression, and if it .falls below

an acceptable level, discard the dictionary and start over again. Another enhancement

is to use shorter index codes when the table is being built, and switch to longer index

codes when the table outgrows the current index size.

2.3 Lossless methods for image compression

The nature of image data lends itself to other approaches for compression. Probably

the simplest observation is that for simple images, the data is likely to contain long

sequences of repeated symbols, and if the symbol is not repeated it is at least likely to

have a similar value from the previous one. Two techniques that can take advantage

__ ~fthis charaeterof imag~~ are~!l,!n leng~~ co~ing and prec!ictjve c:oding.~ _

2.3.1 Run length Coding

As the name suggests, run length encoding is a technique to encode long sequences of

repeated symbols with only one symbol and a repetition count. A run is a sequence

of consecutive symbols with the same value. A single code is emitted for each run,

describing the symbol value and the repetition count. Usually these are variable

length codes (huffman codes).

Run length coding is very effective for bilevel images (black and white), since they

are usually sparse (text or diagrams) [36]. In bilevel images the white runs are longer

on average than the black runs. Therefore it is common to use different codes for the

the white runs than for the black runs.

For images with multilevel symbol (gray scale or color) it is possible to use run

length coding by applying it to each bitplane separately. It is also useful to encode the
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pixel values in gray code, to reflect th~ spatial redundancy in the bitplane structure,

and maximize the length 'of the runs.

A possible complication is that the le~gth of the runs should not be unbound~d,

to avoid an excessive size in the code table. The modification consists of limiting the

run length to some value, and runs that exceed this value are split.

On bilevel images this technique on the average yield~ a compression ratio of 12:1

[36].

2.3.2 Predictive Coding

Predictive coding exploits the correlation of adjacent pixels in images. The basic

system uses previous pixel values to predict the value of the current pixel, and the

error (or difference signal) resulting from subtracting the predicted value from the

real value, is eric'oded by a fixed or variable length code, and transmitted.

The encoder has two main parts:

o The predictor.

o Tliecode genera.tor.

The pixel value is f(x,y), the predicted pixel value is f'(x,y), and the error is e(x,y)

such that f'(x,y) +e(x,y) = f(x,y). It is only neccesary to encode the error e(x,y)

to reconstruct the signal. If the error is encoded losslessly the signal will be recovered

losslessly. For lossy compression, e(x, y) can be nonuniformly quantized before coding,

in exchange for a greater size reduction.

The predicted value, f'(x, y), is based on the previous pixel values, f( x-I, y), f( x, y

1), f( x-I, y - 1), ... which are reconstructed before f( x, y).

It is possible to distinguish one-dimensional predictors, in which only pixels on

the same row as the predicted pixel are used; and two-dimensional predictors, which

also use pixels in previous rows.

Another classification is linear or nonlinear, depending on whether the predictor

is a linear or nonlinear function of the precceding pixels.
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(2.1 )

. .
Finally it is possible to separate them into fixed an~ adaptive predictors. Fixed

predictors remain the same regardless of the data.-Adaptive predictors change their

characteristics as a function of the data [36].

A linear predictor can be written as,

N N
1'(x, Y) ="L L CXi,;f( x - i, y - j).

j=Oi=O

H the coefficients CXi,j are chosen to minimize the error, many of the error values

are small, ~and by coding them using a variable length code, compression is achieved

[26].
DPCM is examined in the next chapter in more detail when the lossy techniques

are examined.

2.4 Lossy

Graphic files that respond well to lossless techniques are usually of limited color depth

and contain only simple features. True color images (24 bitplanes) which are usually

big (and therefore benefit most from compression) do not compress well with lossless

techniques, because every pixel is likely to be different from i~s neighbors, even in

regions of similar hues, like sky sections or flesh tones. With these kinds of images,

lossless techniques do not compress much. There is a limitation to the statistical

redundancy that can be exploited in images.

To improve upon this limit, it is necessary to switch to lossy techniques, which ex

ploit not only the statistical redundancy, but exploit the human vision psychophysics

which finds a sizable part of the image information redundant. To include those

display characteristics that a human observer cannot perceive is wasteful.

It is important to note that although the lossless techniques for themselves are

not generally sufficient to efficiently compress true color images, they are nevertheless

indispensable as part of the lossy compression techniques. The lossless algorithms pro

vide an extra statistical redundancy reduction after the human vision psychophysics

redundancies are reduced.
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An important approach isthe JPEG standard, which is an hybrid method. JPEG

specifies a .DOT transform followed by quantization by a table; this is the human

vision psychophysics redundancy reduction. The last steps in the JPEG encoder

rearrange the AO coefficien_ts in zig-zag runs and performs run length and huffman

(or arithmetic) coding. The DO coefficients go through a DPCM stage and huffman

(or arithmetic) coding.

The JPEG algorithm is a. good example of the combined use of the lossless tech

niques as part of a lossy algorithm.

In the rest of this thesis, some of the important lossy methods are reviewed.
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Chapter 3

Image Compression 'Coders

There has been up to now a great deal of research into a variety of compression

methods for images, and many of these methods have been implemented using soft

ware, hardware or both. In this chapter some of these methods will be explored.

But research continues and further improvements are expected with better time- and

-space-domain schemes.

Tlie various compression approaches discussed in this chapter can be combined to

achieve better performance than any of them could yield alone. For example, discrete

-cosine transform and differential pulse code modulation, sub-band decomposition and

discrete cosine transform, or differential pulse code modulation and vector quantiza

tion. These mixed approaches are called Hybrid Coding. A typical combination is to

use transform coding for spatial compression, and Huffman or arithmetic coding for

statistical compression.

3.1 Waveform Coders

In waveform coding the goal is to code the waveform that describes ,the image in a

simple way, likedireetly coding the image intensity at each pixel, or some simple vari

ation like coding the difference between consecutive pixel's intensities. The advantage

of waveform coders is their simplicity both conceptually and computationally. But

waveform coding generally does not attempt to exploit the nature of the source of
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the waveform being coded, and because of this, i.t cannot do as well as other coders,

especially at very low bit rates.

3.1.1 Pulse Code Modulatiun (PCM)

Considering the image source as an array of discrete pixeIs-withcontinuous pixel

intensity functions, PCM is the simplest waveform coding.

In basic PCM the pixel intensities are quantized by a uniform quantizer. For

monochrome images 8 bits/pixel is considered enough to preserve good quality. For

other application where very accurate reproduction of images is needed, such as med

ical imaging, 12 bits/pixel is appropriate.

A simple way to improve the performance of the basic PCM coder is by noting that

generally intensity values are not uniformly distributed in the dynamic range provided

by the quantizer. It is possible to perform a nonlinear mapping of the intensity values

to achieve a near uniform distribution prior to the uniform quantization step, and

apply the inverse nonlinear mapping after the uniform quantization. This achieves a

nonuniform quantization which puts more levels in the intensity regions where they

are needed.

When the quantization is too coarse (4 bits/pixel), the quantization noise becomes

visible as false contours in the image. In this case it is possible to use pseudorandom

noise added to the signal to reduce the visibility of the quantization noise [36].

3.1.2 Delta Modulation (DM)

In the PCM techniques mentioned above, the (usually) strong correlation among

pixels is not exploited. A way to take advantage of it is through DM, where each

pixel's intensity is coded as a single bit, indicating whether it is higher or lower

than the previous pixel intensity. The variance of the difference signal is usually

considerably lower than PCM due to the correlation of spatially close pixels.

If we consider the source signal f(n) and the reconstructed signal after DM j(n),

then in DM what is coded is e(n) = f(n) - j(n -1), the difference from the previous

pixel intensity. e(n) is quantized to %if e(n) is positive and to -% if e(n) is negative
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or ~ero. !:l is the step size, it is a very important parameter in DM. The quantized

e(n) is e(n)l which is what the DM decoder receives. The decoder reconstructs the

image byj(n) = j(n -1) +e(n).
The im:portance; of !:l is th~t for smooth regions of the signal f (n), j (n) will vary

around the correct value in !:l jumPSl creating granular noise. To reduce the granular

noise it is then desirable to have a small !:ll but in the regions where the gradient

is strong j(n) will not be able to follow f(n) unless !:l is large enough, causing

slope overload distortion. The step size !:l is chosen as a compromise between these

requirements.

A possible improvement is to use a step size adapted from local statistics of f(n).

In the case of images or"other 2D signals, f(n) is a mapping of f(nl,n2) in some

way that preserves the correlation among pixels. With the limitation of only two

levels in DM, for adequate reproduction of images it becomes necessary to use a

sampling rate several times the the Nyquist rate [36]. ."

3.1.3 Differential Pulse Code Modulation (DPCM)

In DPCM the value of each pixel is predicted from tlievalues of previous pixels, and

only an error signal to correct the predicted value is coded.

At the decoder, only the error signals are available. The pixel values are predicted

from previous pixel values, and corrected by the error signal.

At the encoder, the predicted pixel value is subtracted from the real pixel value,

and only the error is coded.

Let y(mln) be the original pixel value, y'(m1n) the predicted pixel value, y(m,n)

the reconstructed pixel value, e(m, n) the error signal, and e(m, n) the quantized error

signal, as shown in Figure 3.l.

The equations that govern a DPCM are then

...

e(m,n) = y(mln) - y'(m,n)

e(m,n) = Q[e(m,n)]

y(m,n) = y'(m,n) +e(m,n)
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Figure 3.1: Block diagram of DPCM.
I
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Altho~~dt is possible to use nonlinear predictors, in the~esign of most DPC}1 ~- _

coders a linear predictive model is used of the form

y'(m, n) = E E a(k1 , k2)y(m - k1 , n - k2)
(kl,k2 ) ERa

Where Ra is a region around y(m, n) where a(k1 , k2 ) is non zero, that is, the

pixels used to predict y(m,n). A typical Ra includes a(O, 1) a(l, 0) a(l, 1), which is,

y(m,n-l), y(m-l,n), y(m-l,n-l) are used to predict the value ofY(m,n).

The goal in using prediction is to reduce the variance of e(m, n) (a;), then it is

reasonable to estimate a(k1 , k2 ) by minimizing

E[e2(m,n)] = E[(y(m,n) - y'(m,n))2] (3.5)

E[e2(m, n)] = E [(y(m, n) - E E a(k1 , k2)y(m - k1 , n - k2))2] (3.6)
(k1 ,k2 ) ERa

Since y(m, n) is a function of a(k1 , k2) and depends on the quantizer used, solving for

that expression is a non-linear problem. But y(m, n) is the reconstructed version of

y(m,n)j it is reasonable to use y(m,n) as y(m,n) and find a(k1 , k2) by minimizing

E [(y(m, n) - E E a(k1 , k2)y(m - k1 , n - k2))2]
(k1 ,k2 ) ERa

Simplifying, deriving with respect to each a(k1 , k2), and setting equal to zero, the

solution comes from solving a set of equations of the form



Ry(ll' '2 ) = :E :E a(k1 , k2 )Ry(h - k1 , 12 - k2 ) (3.8)
(kl,k2) ER,.

Where y(m, n) is assumed a stationary random process with correlation fu~tion

Ry(ll' '2),

Typical values from the solu~ion to the equations are a(O,l) = a(l, 0) = 0.95 and

a(l, 1) = "':0.95.

For a good quality reproduction a typical value for DPCM is 3 bits/pixel [26].

One of the problems with DPCM is that minimizing the variance of e(m, n), as .

described above, is not necessarily the same as minimizing the bit rate, which is the

real goal [36].

3.2 Vector Quantization

Shannon's rate-distortion theory indicates that it is always possible to obtain better

performance by coding vectors instead of scalars. This is notably true for highly

correlated data sources, but it is true even for uncorrelated data, i.e., it consists of

a sequence of independent random variables [26]. Although other meThods-acnieve -----

dramatic data compression ratios, if they quantize scalars they are, in a Shannon

sense, suboptimal; their performance would be theoretically better if they coded

vectors instead of scalars. This is the basis of Vector Quantization (VQ).

Vector Quantization was first applied to analysis/synthesis of speech and waveform

coding, where it accomplished dramatic reductions in bandwidth. It also proved very

useful in digital image encoding. For image compression systems, various approaches

have been used. Vectors used are typically consecutive subrasters; 2-dimensional

subblocks of the picture. They can be Memoryless Vector Quantized, or Vector

Pred.ictive Quantized. The vectors can also be taken in the transform domain of the

image, or a combination of these can be used (hybrid domains).
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Figure 3.2: Block diagram of memoryless VQ.

3.2.1 Memoryless Vector Quantization

Vector quantization is a method for the mapping of an input sequence of vectors into

another s~quenceof discrete vectors. The goal in such operation is data compression.

The simplest VQ is the memoryless vector quantizer. In it, instead of quantiz

ing scalars individually, as in PCM, they are combined in blocks and then jointly

quantized. In this respect, memoryless VQ is a generalization of PCM to the multi

-dimensional-case. --

Data compression is achieved because a short code is assigned to each discrete

vector, and only the code needs to be transmitted or stored. As shown in Figure

3.2, each vector in the input sequence is mapped, using nearest neighbor rule, to a

discrete vector. At the decoding stage, the discrete vector is looked up in the table

using the transmitted or stored code.

Mathematically [15], memoryless vector quantization consists of two mappings:

the encoder which assigns to each input vector x = (XO, Xl,"', Xk-l) a channel symbol

,),(x) in some channel symbol set M, and a decoder assigning to each channel symbol

in M a value in the reproduction alphabet A. The channel symbol set can be assumed

as the space of all 2R binary R-dimensional vectors. The reproduction alphabet A

is a subset of the input vector space. With M elements in M, R = log2 M is the

rate of the quantizer in bits per vector, and r = R/k is the rate in bits per sample,

where k is the number of elements in the vector of samples (xo, Xl,'" ,Xk-l)' In an
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(3.9)

image compression system ~he vectors can be..consecutive subrasters, and the samples

typically are pixel values.

An important characteristic to note is tl~at in PCM only an integer number of

bits per s~ple is possible, whereas VQ-allows fractional values. This limits the bits

per sample in PCM to 1 bit per sample or more, but VQ can have less than 1 bit per

----. -~--;-sample-f26l-.-.----

Since the goal of this quantization is data compresslion, the minimization needed

is a "good" reproduction with the lowest bit rate R. To quantify this "good" repro

duction, a measure of distortion is needed. A system provides "good" reproduction

if the long term average distortion is small.

1 n-I

lim - L d(Xi, Xi)
n-+oo n i=O

where d(Xi, Xi) is the distortion measure, Xi is the input vector, and Xi is the repro

duced' discrete vector. The task of selecting the~distortion measure is controversial,

difficult and usually depends on the characteristics of the vector sets. A common

one used is the squared error distortion measure. Here the vectors are eonsidered as

members of the k-dimensional Euclidean space and it is defined as

k-I

d(x, x) = Ilx - xI1 2 = I:(Xi - Xi)2
i=O

(3.10)

This is the simplest distortion measure, but generalizations permitting input-depen

dent weighting have proved useful and only slightly more complicated. It is usual to

express the distortion performance as

E(llxII 2
)

SNR = 10loglo E[d(x, x)] (3.11)

the signal-to-noise ratio.

The long term average distortion, as stated above, is what must be minimized.

For (3..§laj;ionary and er.godic process,the-limit-ing-t-ime-average-1s-th-e-mathematicai

expectation. Although the mathematical expectation is useful for developing theo

retical results for performance, it is not very useful for the design of the quantizer

since the statistics of the vector sources are not generally known. In the case of im

ages, there isn't any generally accepted accurate probability distribution. Therefore,
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a common approach is to use a long series of images as a training sequence. Given a

way to calculate the average distortion in the images of the training set of a vector

quantizer, design a code that minimizes this average distortion.

For a stationary and ergodic process, the training sequence approach average

should be very close to. the expected val-ue. But real sources are not always stationary

and ergodic. Nonetheless, if a sufficiently long training sequence is used, the resulting

code should perform almost as well on new data from the same source as it did for

the training sequence. A sufficient condition for this to be true is that the source be

asymptotically mean stationary, it is not required for it to be stationary and .ergodic

[15]..

The conditions that establish optimality for VQ can be found following the same

logic used by Lloyd [28] in his development of the optimal PCM quantization with

mean squared error distortion measure. The necessary properties are [15],

1. The encoder that minimizes the average distortion is the one that selects the

code that yields the minimum distortion at the output. This means thM-th'e

best encoder does nearest neighbor mapping.

2. The decoder that minimizes the average distortion is the one that assigns to

each code the generalized centroid of all the input vectors that at the encoder

result in that 'code.

To use this in the design of a memoryless VQ, all that is required is to have a

distortion measure, and a way to compute the centroid. Thus, the following basic

algorithm [15],

1. Given: A training sequence and an initial decoder.

2. Encode the training sequence using the given decoder minimum distortion rule.

If the average distortion is small enough, finish.

3. Replace the old reproduction vector of each codeword by the centroid of all

training vectors which were mapped into that codeword in step 2. Go to step

2.
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This algorithm,was developed by Linde, Buzo, and Gray [27] and it is known as
i

the LBG algorithm:

As stated above, the algorithm can yield different results for different initial.code

book taoles.Moreover, its iterative nature does not result in generally optimum

codebooks. It does result in locally optimum codebooks, but ma:p.y such codebooks

can exist and some of them will result in poor performance. For those reasons, it is

important to enhance the algorithm with good initial codebooks and by trying with

several ones.

Two basic techniques to procure the initial codebook have been important: start

with a small basic codebook and recursively construct the correct size one, or start

with a simple codebook of the right size.

Perhaps the simplest approach is to take the first 2R vectors of the sequence as

the initial codebook. A simple extension of this method is to take the vectors widely

spaced from the training sequence.

Another simple approach is to use a scalar uniform quantizer or other scalar code,

and form the initial codebook vectors from all possible concatenation of the scalar

codes.

For k-dimensional Euclidean space, a possible approach is to start with a scalar

quantizer Co, and form a two dimensional code Co x Co, as explained above, and use

this as the initial codebook to design a two-dimensional VQ. Once the two-dimensional

VQ (C2) is obtained, a three-dimensional code is formed with all pairs of C2 and Co,

and this is the initial codebook to the three-dimensional VQ. The process is repeated

until the correct size is achieved.

Linde et al. [27] use a splitting technique. First start by using a single optimum

codeword (the centroid ofthe whole training set). Then split this codeword in two: the

originarcodeword, and a new one, which is formed by introducing a small perturbation

on the previous codeword. Then the LBG algorithm is used to optimize this codeword

set. Those steps -splitting and optimizing- are repeated until the correct slze

codebook is formed.

There are other techniques for obtaining the initial codebook.

Among the advantages of the memoryless VQ is the extremely fast decoding (it is
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a simple table lookup), and the simplicity. It has been found that VQ performs very

well at very low bit rates.

But VQ has its disadvantagesj as it can be gathered from the explanations above,

the coding procedur~ can become ~ery computationally intensive, and the storage

requi~ement·s are great too. And the use of blocks introduces a blocking effect where

the edges of the blocks become visible. This blocking effect can be very noticeable,

Farrelle [11] mentions that it has been shown to be ten times more objectionable than

simple white noise added to the image for the same SNR.

Spatial Vector Quantizers(SVQ).

For coding images a simple approach is to take blocks of adjacent pixels as the vectors.

Initially blocks of 3x 3 or 4 x 4 were used, but recently good results have been obtained

for larger blocks. The basic approach is simple Memoryless VQ of these blocks.

3.2.2 Variations of memoryless VQ

Tree-searched VQ

In the case mentioned above of the splitting technique, it is possible to increase

performance by using a binary search tree. In this case, the procedure is as follows:

first find the centroid of complete training sequence, split this codeword and optimize

the resulting two codewords. Next partition the training sequence in two, assigning to

the first codeword all the training vectors that map to it, and to the second codeword

all the vectors that map to the second codeword. Now it is possible to treat the two

groups independently. Each.group is now split in two and optimized to obtain a four

codeword VQ. Lets use now this codebook. To locate the nearest neighbor to an input

vector, it is no longer necessary to do an exhaustive search of the whole codebook,

first the input vector is mapped to one of the two original split vectors, and then it

is mapped to the nearest vector within that group.

The basic concept can be used with deeper trees, or can be used with other non

binary trees.

The number of reproduction vectors remains the same, but storage requirements
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increase. Also some optimality is lost in the s.ense that since an exhaustive search".

is not· performed anymore, it becomes possible to select a codeword that doesn't

minimize the distortion when reproduced. But the efficiency of the searches can be
,-

greatly improved, compar.ed with a full search for the nearest neighbor which results in

an exponential dependence of the number of computations performed on the number

of scalarB in the vector and the number of bits per scalar [26].

Other techniques to create search trees can be used, such as starting with a whole

codebook and designing a search tree into it.

Multistep VQ

Here two small codebooks are used. Initially the input vector is encoded 'using the

first codebook, and then the error of the reproduced vector is also VQ encoded with

the second codebook. The reproduction is accomplished by decoding both codewords

and adding them. This approach greatly reduces the storage requ-irements since for

2N vectors in each codebook, 2 X 2N vectors need to be stored against 22N for a normal

VQ.

------------Gainf-Shap~-VQ~---· ..

In this type, different VQs are used to code the "gain" and "shape" of a waveform.

"Shape" is defined as the input vector normalized by a "gain" term. Another pos

sibility -especially for images where the sample mean of pixel intensities in a small

region is slowly varying- is to scalarly quantize the sample mean of the vector, then

subtract the coded sample mean from all samples in the vector, and finally VQ the

vector.

An improvement of this is to subtract the already quantized mean from the vector,

such that the shape vector includes the mean quantization error. This is called

mean/residual vector quantizer (M/RVQ) [33].

Another variation is to convert each vector to another vector with zero mean and

unit standard deviation, then they can be Memoryless VQ with LBG algorithm. The

mean and standard deviation can be scalar quantized and sent with the vector codes.

Also, a VQ can be used for thatJa.ter statistical information.
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Lattice VQ

For source distributions that are approximately uniform for a bounded region, a

Lattice quantizer can be used, which is a k-dimensional generalization of the scalar

uniform quantizer.

Code Replenishment VQ

A simple approach to avoid having a :fixed codebook for the whole image is to subdi

vide the image in blocks of several vectors, a codebook is"'created for each subimage,

each created codebook is transmitted along with the codewords for the vectors in

that subblock. But this approach suffers from several problems: redundant vectors

. among subimages are multiply transmitted, there is too much side information to

transmit (all codebooks), the computation requirements are too great (create all new

codebooks). _

Another approach to replenish the codebooks that is 'similar but better is not to

change the whole codebook each time, instead only change a p·art of it. A measure of

the distortion for each transmitted vector is taken, and if the distortion is too gr.eat,

instead of transmitting the codeword, this vector is given another codeword and is

. added to the codebook..

If the coding is performed on a series of im"ages, then it is possible to generate a

codebook only for the first image and transmit it along with the codewords for this

first image. For the following images, if a codeword for a vector does not change

from the previous image, it is not necessary to transmit it. Although the imag~s

in a sequence have a tendency to remain very similar, a codebook replenishment is

necessary to handle the changing statistics of the image. But if the image sequence

has a dramatic change it is better to create a new codebook.

3.2.3 Memory Vector Quantization

One possibility to improve the memoryless VQ is precisely to make it have memory.

It is important to note that information theory implies that the memoryless VQ

can perform arbitrarily close to the optimal data compression. Therefore, VQ's with
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memory can perform no better than memDryless VQ, but the complexity (space a.nd

time) of a memoryless VQ using large vectors can preclude its use for a given distortion,.

specification, where a less complex VQ using shorter vectors with memory can meet

the specified distortion -level.

Feedback Vector Quantizers

A simple manner- to do this' is by choosing a different codebook for each vector, de

pending on the previous vectors. The decoder needs to know which codebook to

use fo~ each vector it has to decode. This can be accomplished in several ways. If

the encoder chooses the codebook based on its previous outputs, the decoder can

track the same selections. This is called feedback vector quantization. If the code

book selection is transmitted explicitly, then it is called adaptive vector quantization.

Feedback vector quantization can be considered a vector generalization of the scalar

adaptive quantizer with backward estimation. The adaptive vector quantization can

be considered a vector generalization of the scalar adaptive quantizer with forward

estimation.

A general description of a feedback vector quantization follows. The encoder and

the decoder can be considered to have a state. For each distinct state there can be

a different codebook associated with that state. Both the encoder and the decoder

start from the same state. When the encoder outputs the first code, it uses it to

determine its next state. When the decoder receives the code it correctly decodes it

since it is in the same state that the encoder was to encode it, and it uses the received

code to transition to the next state. Now both decoder and encoder are again in the

same state. As long as the decoder can track the encoder states, the decoding is

correctly performed. But the big drawback of this approach is that if an error occurs

and the decoder loses track of the state of the encoder, the results from the decoder

are invalid f~om that point on. A solution is to have a periodic reset on the states,

or error control.

It has not been stated that the number of states has to be finite, but in the cases

where it is, the system is called a finite-state vector quantizer (FSVQ), and it is

suitable to VLSI implementation.
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'Clas~ified VQ

At very low bit rates, the edges of the image can become severely distorted, because

there aren~t enough vectors to ,reproduce all possible orientations of an edge. If

the vectors are precla.ssified by their orientation and then VQ with an appropriate

codebook, an~ improvement is achieved, in spite of~the overhead incurred to indicate

the vector class.

This approach can be extended to use a larger number of classes. Appropriate

codebooks for each class can be constructed with the LBG algorithm. An example

of the classes can be: horizontal edges, vertical edges, 45 degree edges, no edge,

significant gradient but no edge, shades, textures, etc. An improvement is to use

different coding depending on'the character of the block; Gain/Shape VQ for edge

blocks, VQ on the DOT coefficients for blocks with moderate gradient, etc.

One aspect that has not been considered up to now is the fact that a fixed block

size' is not necessarily optimum throughout the picture, the classification can fur

ther subdivide complex blocks (containing several edges) and leave s~me big blocks

(shades or textures) undivided. For a better performance, a split-merge segmentation

technique can be used to define the subblocks [33].

Finite-State Vector Quantization (FSVQ)

A general d~sign procedure for a finite-state vector quantizer can be outlined as follows

[15]:

1. Design an initial set of state codebooks and an arbitrary next-state function.

2. Given the next state function, use a variation of the LBG algorithm to attempt

to improve the state codebooks.

The variation of the LBG algorithm is a slight extension to include the states of the

system. When replacing all the reproduction vectors by the centroids of the vectors

that mapped into them, take into account the state of the system, that is, calculate

all the centroids for each state separately and substitute them for the reproduction

vectors separately for each state.
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The procurement of the initial set of codebooks is a difficult matter. A possible
--<

approach is to use the LBG algorithm to design an initial codebook. Then partition

the training sequence by grouping all the training vectors that follow the ones that

map together. For each group the LBG algorithm is now used to design its codebook.

A more detailed description can be found in [15].

For image coding several approaches to design a FSVQ have been proposed, one

mentioned in [33] uses a state transition function based on a classifier using intensity

and geometric correlations between neighboring blocks.

Vector Predictive Quantization

The vector generalization of DPCM is the vector predictive quantizer (VPQ). A

predictor is used to forecast the next vector, based on previous vectors, and only the

error in this prediction needs to be transmitted. The predictor can be simply the

last vector, or an average of the last two vectors. The LBG algorithm can be used to

design a VQ for the prediction error sequence.

For image coding a possible approach is making use of a classifier to separate

the blocks into categories and use a separate predictor and error codebook for each

category.

3.2.4 Codeword Assignment

The specifics of the codeword assignments -relating each codeword with a specific

string of bits- has not been discussed. Uniform-length codeword assignment is the

simplest, but it is not optimal since the probabilities of codeword appearance is

not uniform. By assigning shorter codewords to the more probable messages and

longer codewords to the less probable, it is possible to reduce the bit rate. If the

codeword probabilities are known, it is possible to use Huffman coding [17] to design

a uniquely decodable optimal codeword set, which results in the lowest possible bit

rate. The extra complexity introduced to the system when using variable length

codewords results from the possibility of receiving a sequence of several low probability

codewords. That would greatly increase the bit rate for a short time, which means
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that buffers must be provided in the system to handle the uneven bit rate.

The problems of codeword assignment and vector quantization are not indepen

dent, they are very interrelated. A change in the codebook design can result in much

different codeword probabilities, which in turn affects the optimality of the codeword

assignment. Optimally, both should be considered together, but this results in a very
--.

complex highly nonlinear problem, for which no general solution is yet known. [26].

3.2.5 Use of VQ for Image Coding

For image coding, VQ techniques have found many applications. Some of the more

specific ones for image coding are covered here.

Transform Vector Quantizer (TVQ)

Transform coding, rvhich will be covered in the next section, is a method to convert

statistically dependent scalars into independent coefficients. For image compression,

usually the transform coefficients are nonuniformly scalar quantized using a bit as

signment based on human perception, this results in many of the high frequency

coefficients being discarded.

For adaptive transform coding, several bit assignment matrices are used for differ

ent blocks depending on a classification of the blocks. VQ of the transform coefficients

can be more efficient than in the spatial domain because the transform coefficients

have better defined distributions, than the pjx_el values in pictures.

Another adaptive technique is to use a classifier according to the activity class

and to use simple transform coding with zonal scalar coding of the low frequency

components, combined with Vector quantization of the high frequency components.

This markedly improves the quality of the image at low bit rates especially around

the edges [33].

Another simpler technique is to use a one-dimensional transform along the horizon

tal scan lines of the image. This leaves the interline coefficients highly correlated, then

a Vector Quantizer can be used where the vectors are taken as the vertical columns

of coefficients. The transform coefficients can be normalized for zero mean and unit
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sta.ndard deviation before the Vector Quantization. Also, different codebooks can be

used for different frequency columns.

This can be extended to a two-dimensional transform, where the image is di

" vided into blocks and a transform is applied to each one independently, leaving 'the

interblock correlation present. Now vectors can be formed by the corresponding co

efficients from the blocks and vector quantized after normalization.

InteiframeTransform Vector Quantization (ITVQ) When several frames are

to be compressed, the computational complexity for three-dimensional transform cod

ing is very large. One approach is to use two-dimensional transform coding in the
~

two spatial directions, and use a vector quantizer in the temporal dimension. The di-

menslOnoHlle-veetor used in this temporal direction should be adaptive, since image

sequences can have little change over some time, but they can have drastic changes

at other times.

Subband Vector Quantizers (Subband VQ) Subband coding of images as in

troduced by Woods and O'Neil [49] employed DPCM to e~code each band. But VQ

can be employed here too, where it would exploit the redundancies between the spec

tral bands. The vectors would be taken as one sample for each of the bands, that is,

the dimension of the vectors would be the number of bands.

3.3 Block Truncation Coding

This coding technique is simpler to implement compared to transform coding or vector

quantization.

The approach with this method is to preserve the local image statistics, usually

using small blocks (4 x 4 is typical). Since no global statistics are necessary, this

method is fast and simple. Another characteristic is that the compressed size can be

fixed, and it is independent from the image.

The image is divided into blocks of size n x n. Then the pixels in each block,

Xl, X2, ••• , X N (N = n X n), are quantized to only two levels, Yo and YI. Tbese levels
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are chosen to preserve the block sample mean x and the second moment x 2•

The quantization levels are.given by [9]:

Yo ='ii- (1~ (3.12)

Yl= X +O'~ (3.13)

where 0' is the standard deviation, a is the number of pixels above the threshold, and

f3 is the number of pixels below the threshold (a +f3 = N).

The choice of the threshold is more difficult. Although the mean x is commonly

used, the goal should be minimizing the mean square error (MSE), which is given as

-----[B2],---

M SE = 20'2 - 2O'~(X - x(f3)) (3.14)

where x(f3) is the mean of the pixels below the threshold.

This shows that the block mean x is not necessarily the optimum threshold.

The optimal-threshold can be found by-choosing among the image's quantization 

levels the one that minimizes the MSE expression.

Decoded BTC images show good reproduction of edges and acceptable reproduc

tion of textures. But in large areas of slowly cha~ing color or brightness, the coarse

quantization shows as block discontinuities and contouring [36].

For details of one implementation of the algorithm see [23].

An improvement to the BTC algorithm is to use a variable block size (variable

block truncation coding (vBTC) [32]), where the initial block subdivision uses large

blocks. The statistics are calculated for these blocks, and if the (J for a block is above

a given threshold, this block is subdivided in four. This subdivision process continues

until 0' is below the threshold for each block or its size is 2 X 2.

3.3.1 Some results

For gray scale images, Kamel [32] reports results of 1.63 bits/pixel for "Lena" using

the BTC with mean threshold, and 1.37 bits/pixel for vBTC with optimal threshold.
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3.4 Transform Coders

Discrete transform c.c:'ding is a technique that takes blocks of pixels from the image

and transforms them to the another domain, which is different from the pixel intensity

domain.

The important characteristics that can make this approach useful for image coding

. are: the transform decorrelates the coefficients in the given block, and the energy is

concentrated in fewer coefficients. These are called the correlation reduction property

and the energy compaction property [26]. This allows the use of two mechanisms to

achieve bit-rate reduction:

o Some of the transform coefficients can be discarded because they contribute

very little to the perceived image content.

o Some of the transform coefficients can be coarsely quantized and that does not

degrade the picture quality dramatically.

Transform coding techniques are generally expensive computationally, but for low

bit/rate applications, they usually perform better than other simpler techniques, like

waveform coding.

In a simple transform image coding system, a block of pixels from the ongI

nal image f(nl' n2) first undergoes the linear transform, which yields the transform

coefficients Tf(k1 , k2 ), and it is then quantized to Tf(k1 , k2 ). Before storage or trans

mission the quantized coefficients Tf(k1 , k2 ) are assigned to binary codewords. This

is repeated for all blocks that make up the image.

The decoding stage recovers the transform coefficients, Tf(k1 , k2),·from the code

words, and performs the inverse transform to obtain j(nl, n2)' the recovered block.

All the blocks together make the recovered image.

3.4.1 Image coding transforms

For image coding the useful transforms are linear and can be expressed as 1

N1-l N2-1

Tf(k1l k2) = L L f(nl' n2)a(nl l n2, k1l k2)
nl=O n2=O
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(3.16)

\

N1-l N:l-l

f(nl 1 n2) = l: l: Tf(k1l k2)b(nl~n2' k1l k2)
k1=O k~=O

where a(nl ln2, k1l k2) are the orthonormal basis functions that define the trans

form, and b(nl ln2, kll k2) defines the inverse transform. It is possible to look at

f(nll n2) as a.-linear combination ofthe basis functions b(nl ln2, k1 , k2), where Tf(k1, k2)

are the amplitud~sof these basis functions in the linear combination. Furthermore, it

is possible to interpret the coefficients Tf(k1, k2) as amplitudes of generalized spectral

components when the basis functions have some form of sinusoidal behavior.

The general form presented above can betremendously exp,~nsivecomputationally,

therefore it is often simplified to the case when the transformation is separable. In

the separable case, the transform can be expressed as,

Nl-IN~-l

TAk1, k2) = l: l: f(nl' n2)aR(nl, k1)ac(n2' k2)
nl=O n~=O

N1-l N~-l

f(nl,n2) = l: l: Tf(k1, k2)bR(nl' k1)bc(n2' k2)
k1=O k~=O

(3.17)

(3.18)

~

where aR(nl l kI) and bR(nll k1 ) are the row basis functions, ac(n2, k2) and bc(n2' k2)

are the column basis functions. It is now possible to perform 1-D transforms on the

columns, followed by another 1-D transform on the rows,

(3.19)

(3.20)f(n" n,) = E[f:Tf(k" k,)bc(n" k,)] bR(n" k,)

With separable basis functions, the computation can be reduced by orders of

magnitude, compared to direct computation. For some of the popular transforms,

additional computational savings are achieved due to the behavior of the basis func

tions.

An example of a separable discrete linear transform whose transform coefficients

can be interpreted as spectral coinponents is the discrete Fourier transform (DFT),
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(3.21)

1 N1 -1 N2-1

f(nl' n2) = l: :E F(k1, k2)ei(21r/Ndklnl ei (21r/N2 )k2n2 (3.22)
JN1N2 'k1=O k2=O

An important characteristic of the transforms that have been used for image cod

ing is the property 'that coefficients with a small magnitude cOlitribut~ only a small

amount of energy to the signal [26].

From the energy compaction point of view, the best transform is the Karhunen

Loeve transform (KLT) [36]. In the KLT the basis functions are the real, orthonor

malized eigenvectors of Kt(nl, n2, h,12) [36], where

(3.23)

The KLT transform is important more theoretically than practically, because of

the difficulties involved. The basis functions depend on the image characteristics, and

must be calculated for each different image. In general there is no computationally

efficient algorithm to calculate the transform coefficients.

For these and other difficulties the KLT is rarely used in image coding, and also

because the DCT is very close to the KLT performan'ce in images which are highly
~

correJated. '

With images that exhibit "nearly stationary" statistics, it is found that their KLT

basis functions are very similar to the ones obtained for the KLT of highly correlated

first order Markov processes [11]. And of the transforms considered for image coding,

the discrete cosine transformJDCT) also shows very similar basis functions. This

seems to be part of the reason of the good performance observed for the DCT [36] in

image coding applications. Considering the performance and the computation cost,

the DCT is considered the best choice [26].

Most of the rest of this section will concentrate on the DeT.

Other image coding transforms

Other transforms that have been considered for image coding are:
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Discrete fourier transform (DFT). The DFT has been mentioned above, and

it has been used in some early image coding systems [50]. But the DFT does not

achieve an energy compaction as good as the DOT. The reason DFT has worse energy

compaction than the DOT is due to the sharp discontinuity that occurs at the block

boundary, which contributes energy ,to the high frequency components [26]. The DCT

does not present this artificicJ discontinuity.

It has found use in the case of Recursive Block Coding [11], where the image

information is separated into two components, and one component typically has its

KLT basis functions very similar to basis functions of the DST.

Slant transform. The Slant transform is thought to better approximate the local

behavior of the image, and therefore provide better energy compaction [36]. It is

similar to the DCT and the performance is not much different in most useful cases.

But the DCT is preferred, although there is an efficient algorithm to calculate the

Slant transform.

Walsh-Hadamard transform (WHT). This transform can be constructed re

cursively, starting. from H1 = 1 then,

(3.25)

Then the column vectors of the T matrix are the basis functions of the WHT,

where

(3.26)
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an example of N =,4

1
T=

2

1 1

1 -1
~

1 1

1 -1

1 1

1 -1

-1 -1

-1 1

In the WHT the concept of frequency i~ called sequency and is defined as the number

of zero crossings divided by two. To have the coefficients ordered by decreasing energy

content it is necessary to use sequency ordered WHT [36]. The use of only +l's and

-l's in the WHT transform makes it very fast, but the energy compaction is not as

good as the DFT or DOT.

Haar transform. The Haar transform basis functions contain only +l's, -l's, and

zeros. This allows very fast computation, since the operations are very simple, but

the energy compaction performance is not very good.

Lapped orthogonal transform (LOT). This transform attempts to reduce the

blocking effect that appears in the DOT when the bit rate is very low.

In it the basis functions from adjacent blocks overlap, that is, for a 1D block of

N samples, N coefficients are calculated that map the block into a set of N basis

functions. But these basis functions have more than N samples each [48].

The LOT greatly reduces the block to block discontinuities compared to the DOT

at low bit rates, and a fast algorithm (30% slower'than a similar DOT) has been

implemented [29].

3.4.2 Implementation of neT coding

The DOT is defined as,

49



(3.30)

(3.29)

Zonal coding of coefficients

The energy compaction resulting from the transformation allows the discarding of

many of the coefficients, which in part is reponsible for the compression achieved.

One approach to reducing the number of coefficients to consider is zonal coding.

Within the block of transformed coefficients, a zone with the important coefficients is

selected, and all the other coefficients are discarded. Only the coefficients within the
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where

Image division in blocks

The usual approach is to divide the image into blocks. These blocks are then trans

formed independently. Since each block is processed independently, the coding can

take advantage of this and be adaptive to the local image characteristics within eachi block. The blocking also reduces'the intensive computations, and the memory require

ments are also reduced, since only one block is needed in memory at a time. Another

advantage of this is that it allows parallel implementations, where each processor

operates on individual blocks.

Typical block sizes are 8 x 8 and 16 x 16. The energy compaction improves as the

block size is increased, but the average energy compaction does not improve much

with block sizes above 8 x 8 [36].



selected zone are coded, the discarded coefficients are assumed to be zero. The shape

and size of the zone is affected by many factors, including the transform used and

the available number of bits in which to fit the code. The zones selected are those

that have been shown to contribute most to the image perception, 'typically the low

frequency coefficie;nts.

Threshold coding of coefficients

An adaptive method that is also used is threshold coding. It adapts to the local

block statistics. Now the coefficients resulting from the transform are compared

to some defined threshold, and only those above the threshold are coded; the rest
.C' ..

are discarded. Threshold has an advantage over zonal coding in that sometimes a

coefficient outside of the zone is large and important, and zonal coding would just

discard it just the same as if it were not important. Threshold coding would find it

important and would code it. But in threshold coding the exact location of the coded

coefficients is not known in advance, therefore the location of the coefficients has to

be coded too, which slightly increases overhead.

Bit allocation among coefficients

In a typical system, the bit-rate is fixed and each image must fit within a certain num

ber of bits. The available bits must be decided among all the blocks and coefficients

as to provide the best image at that bit-rate. Typically in DCT the variance is much

greater in the low frequency coefficients, and they need more bits to be accurately

described, while the high frequency coefficients can be coarsely quantized.

3.4.3 Degradations of DeT coding

Since the DCT transform coding is a lossy technique, it is necessary to consider what

form this loss takes.

The effect of quantizing the transform coefficients produces quantization noise.

The character of the quantization noise in transform coded images is different from
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the one in waveform coding. One characteristic is the loss in detail due to the high fre

quency components being small and getting discarded (by zonal or threshold coding)j

, the images appear blurred compared to the original.

When the coefficients are quantized too coarsely, the image shows a noticeable

grammess.

IT within a block there is a smooth area, and a high detail busy area, the quan

tization error in the resulting high frequency coefficients (to account for the detail),

--will--show-as--a.-distortion-pattern on the smooth area.

But perhaps the most noticea.ble distortion is the blocking effect, whi-<:h is a dis

tortion visible at the boundary among blocks due to discontinuities in the intensity

values. This results from each block being transformed independently.

3.4.4 JPEG standard

The JPEG standard is named after the Joint Photographic Experts Group, which

developed it [45], joint refers to the collaboration between ISO and CCITT.

.The standard addresses the needs for continuous-tone still-image applications such

as desktop publishing, photovideotex, graphic arts, or medical imaging.

In March 1987 the process began with twelve proposals for still picture compres

sion. By June of the same year the Group had narrowed down the choices to a DCT

design, a DPCM design and a Progressive Block Truncation design. The DCT tech

nique using 8 X 8 blocks showed better results than the others and was chosen for the

standard. .
The standard developed is really a family of image compression techniques rather

than a single image compression algorithm. It provides ,several modes that allow se

quential encoding, progressive encoding, hierarchical encoding and lossless encoding.

Sequential encoding takes the image and encodes it in a single left-to-right, top

to-bottom scan.

Progressive encoding makes it possible for the decoder to show the image as it is

being built up, adding detail as the decoding progresses.
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In hierarchical encoding lower resolution versions of the image are accessible with

out needing to decompress the whole image. This is useful for browsing image collec

tions, or for low·'resolution displays.
"

The lossless method is based on a DPCM scheme, followed by an entropy coder

[13].
Only the Baseline sequential coder-decoder (codec) will be discussed here, which

has been the only JPEG codec implemented widely. The Baseline sequential algorithm

specifies that the image has to be broken down into 8 x 8 blocks. A DCT on each

block results in 64 coefficients, which are quantized through a quantization. table.

Finally, the quantized coefficients are run length and huffman, or arithmetic coded.

Preprocessing

Color images can be represented in different color systems where the image is made

up of several components (RGB, OMYK, YUV), and grayscale images are considered

as having a single component. Each color component is coded separately.

For efficient compression it may be desirable to convert the image to a different

color system before encoding it. Gamma adjustments may also be performed here.

For example, YUV is better than RGB when compressing natural images,be~ause

the chromatic components can be subsampled without noticeable degradation.

neT transform

The different components of the image are then divided into 8 x 8 non-overlapping

blocks. TIle sequence of 8 x 8 blocks goes then through a DOT transformation. The

resulting 64 coefficients represent the spatial frequency contents of the block.

The zero frequency component is called the DO coefficient, the rest are the AO

coefficients.

Quantization

The coefficients are now uniformly quantized using a 64 element quantization table.

Quantization is defined as the division of each DOT coefficient by its corresponding
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quantizer step size (in the quantization table), followed by rounding to the nearest

integer [45]. The quantization table can specify a different step size for each coefficient.

This is the way the process discards information which is not visually significant.

Before the quantization step, no loss of information has taken place (assuming full

precisi<?n in the operations). It is this quantization step that introduc'es the loss in

the image.
i

IT the image has more than one component, each one can have its quantization
-- •.._----_.._-~-~_._~ -._._---~ ---- ---"-------_... _-

table.

Coefficient reordering

After the coefficients have been quantized, the AC coefficients are reorganized as a

linear array in ascending order of frequency. This is accomplished by scanning the AC

coefficients in the block in a zigzag route starting from the lower frequency coefficients

towards the highest frequency ones [2]. Considering the 8 X 8 block of coefficients

with the DC coefficient Coo, and the highest frequency coefficient Cni the zigzag scan

follows: COl ClD C20 Cn C20 C30 C21 ••• C07 C16 C25 C34 C43 C52 C61 C70 . .. C75 C66

C57 C67 C76 C77 •

Coding of DC coefficients

The DC coefficients are treated differently. Because there is usually still a strong

correlation between the average values (DC coefficients) of adjacent blocks, each DC

coefficient is encoded as the difference from the DC coefficient of the previous block.

Entropy coding of AC coefficients

Finally, all quantized AC coefficients in the order specified and the DC coefficients dif

ferences are entropy coded to achieve further compression losslessly. Two alternatives

can be used: Huffman or arithmetic encoding.

In the Baseline sequential codec each non-zero AC coefficient is represented by

the a runlength of zero AC coefficients and its nonzero value. This sequence of

runlength/nonzero-coefficient is then Huffman coded.
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Decoding

Decompression is roughly the inverse process from compression, but some additional

steps may be taken to produce a better output image.

Briefly, these are the steps followed:

e Huffman or arithmetic decoding of the coefficient sequence.

···e--Quantization-descaling and zigzag reord~ring of the elements in each 8 x 8 block.

o Assemble the image from the 8 x 8 blocks.

o Inverse DCT transformation of each 8 x 8 block.

o Interpolation of subsampled components (if any) to recreate the correct sized

raster. At this point a pixel image of the original dimensions has been recreated.

o If color, space reconversion when needed (e.g., YCbCr to RGB). Gamma ad

justment may also be performed here.

3.5 Vector Transform Coder

Recently a new transform was introduced for image compression, the Vector Trans

form. This transform operates on blocks of vectors, unlike the "scalar transforms"

which operate on blocks of scalars.

To introduce the concept of the Vector Transform, it is useful to examine the

parallel between some scalar and vector techniques.

As previously discussed, PCM takes a sequence of discrete samples and quantizes

them. If a sequence of vectors is taken and jointly quantized, it is called memoryless

VQ. Therefore, memoryless VQ can be seen as the vector generalization of PCM.

In DPCM a sequence of samples is taken, and only the error of the predicted

value for the next sample, is coded. When compressing a sequence of vectors, where

the next vector is predicted from previous vectors, and the difference is coded, the

technique is called Predictive VQ. Thus, Predictive VQ can be considered a vector

generalization ofRPCM.
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In the transform coding, a~ discussed above, a sequence of samples is taken and

transformed to another domain, where they were quantized. It is possible now to see

that Vector Transform is the generalization of that to the vector case.

A sequence of vectors is transformed into another set of vectors of a different

domain. Then this set of vectors can be vector quantized (VQ), resulting in a sequence
I

of codewords. .

To recover the image, the codewords are looked up· in a table, and the resulting

vectors are inverse-transformed into the recovered sequence of vectors that describes

the image.

3.5.1 Vector Transform

Consider a set of N vectors {xo, Xl, X2," . ,XN-l} where each vector has N/2 elemerrts,

Xn = [:Z:O,n, :Z:l,n, :Z:2,n, ••. ,:Z:(N/2)-l,nf with n = 0, 1,2, ... , N -1. The vector transform

is defined [25]:

(3.31)

_ ... (3.32) _

where

0 1 0 0 0

0 0 1 0 0

w= (3.33)
0 0 0 1 0

0 0 0 0 1

-1 0 0 0 0 lfxlf

with this properties:

1~ W N / 2 =-1 (3.34)
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2.

3.

(3.35)

(3.36)

r4.
[Xo, Xl, X2, •• ; ,X(N/2)-2' X(N/2)-I]W = [-X(N/2)-I' XO, Xl, X2, ... , X(N/2)-2]

5. If N is a power of 2, i.e. N = 2t , then

(3.37)

N I { ..~- S = :t W qk = NI
k=O 0

if q mod(N) = 0

if q mod(N) =I- 0
(3.38)

Properties 1 through 4 are easy to understand and a proof of property 5 can be

found in [25].
With the properties mentioned above it can be shown that {xn } and {Xd form

a transform pair. Recalling the definition of the vector transform,

1 N-IXr = - 2: xTWnk (3.39)VIi n=O n

If {x'n} is the inverse transform of {Xk } above, then it must be true that x'n =

X n for n = 0,1,2"", N - 1.

1 N-I

x,T = - 2: XrW-nk

n VIi k=O

1 N-I 1 N-I
x,T = -2: -2: xTwmkw-nk

n VIi k=O VIi m=O m

(3.40)

(3.41)

,
and using property 5

1 N-l N-l
x,T = _ '" x T '" w(m-n)k

n NLJ mLJ
m=O k=O

(3.42)

N-l . { NI
S = 2: w(m-n)k =

k=O 0
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if (m - n) mod(N) =I 0
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only when m =n then S = NI, thus x'~ = 1x~NI = x~ for n = 0,1,2",,) N-1.

It is certain that (m - n) mod(N) = 0 only occurs when m = n because both

m,n E {a, 1,2,···,N -1} which implies -N < m - n < N.

3.5.2 Statistical properties of transform vectors

With the Vector Transform now defined, its properties can be discussed.

- ------------S-calartransforms like the DCT have the energy packing property which allows

compression by reaucing the energy content on some coefficients and thus making it

possible to discard them, or coarsely quantize them. Also, the transform coefficients

are less correlated which allows efficient coding even if performed separately.

The Vector Transform also shows similar properties. The set of transformed vec

tors ,are less correlated than the set of data vectors. The set of transform vectors have

their energy concentrated in a few of the vectors, other vectors contribute very little

to the total energy.

It has been shown [25] that for a simplified 2D model of pixels correlations, 91 %

of the energy is concentrated in vectors Xo, Xl, and X7 for N=8. It is also shown

that correlations between vectors in the transform domain are much less than that of

correlations between the data vectors. The simplified 2D model of pixels correlation

is based on these assumptions:

o The correlatiqn is separable into the product of horizontal and vertical correla

tions.

o Both -horizontal and vertical- processes as first order Markov processes .

• The one-step correlation coefficient is p in both directions.

The vector set is taken from the image raster as N horizontally adjacent vectors.

These vectors are N /2 pixels long and are taken as columns of the raster. For the

results mentioned above p = 0.91.
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(3.44)

3.5.3 VQ in the Vector transform domain

As shown above, pixels from an image are grouped into vectors of length N/2, and

sets of N vectors are then Vector Transformed into sets of N transform vectors. After

the Vector Transform, the number of vectors is still the same as in the original image.
. Q

But since now some of these vectors are much less important than others, it is possible

to compress the image by Vector Quantizing these transform vectors with codebooks

-sizecLa.pprQp.ria.lelJ' for their contribution to the energLconJr::nt of the image. .,-

Several algorithms have been considered for the codebook size allocation, and

their design [25].
4fJ A simple extension of an algorithm proposed for bit allocation in "scalar" trans

form coding [16] results in this formula for the number of bits allocated to the kth

transform vector Xk:

N 1 (N/2-1 1 N-l N/2-1 )
bk = "2R +"2 log2 n Ul,k - N L log2 n Ul,k

1=0 k=O 1=0

where Ul,k is the variance of the i th element of the kth transform vector. Then N

codebooks can be created with the LBG algorithm [27] where the kth codebook has

21>" entries.

Another approach is to allocate bits directly using the transform vectors. It is

based on the relation between the VQ distortion and the ent~opy of the codebook

[39]. The derived bit allocation formula is [25],

where

N N ( 1 N-l )
bk = -R + - log2 u~ - - L log2 u~

2 4 N k=o
(3.45)

(3.46)

Again, once the codebook size is known, the LBG algorithm is used to create the

codebooks.

But the LEG algorithm allows another approach. In the cases where it is difficult

to obtain a relationship between distortion and the number of quantization levels in
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(3.47)

~~- -----~.---_.-----

a closed form, it is still possible to use the L13G algorithm.

The LBG algorithm can. create a codebook Ok for the transform vector X k given a

distortion measure Dk for a specified number of bits bk . The objective is to minimize

.the average distortion,
N-l 2

'" CTkD = L.J NDk.
k=o

If the distortion measure Dk· is a complicated function of bk, the minimization of D

.can be a very complex nonlinear problem. But the number of codebooks is constant

(N) and the total number of bits to allocate is fixed CEf:::o1 bk = constant). This

makes the search space finitej an exhaustive search is feasible.

Start with a bit allocation {bk }, and create k codebooks, one for each transform

vector. Compute the average distortion as defined above. Repeat this for all possible

bit allocations {bk }, and keep the one with the lowest average distortion D.

Finally, it is possible to incorporate the iteration for bit allocation into the LBG

algorithm. This modified LBG algorithm follows [25],

1. For k = 0,1,2", ·,N -1, set bk = 0, Sk = 1, and Ck = { centroid of X k of the

training data }.

2

2. Compute the weighted distortion}} Dk for each k using a distortion measure of

choice.

3. For each k, split the reproduction vector in Ok into two vectors and optimize

Ok with Sk = 2 (i.e., bk = 1).

2

4. Compute the weighted distortion}} Dk , again for each k.

5. Let Dold and Dnew be the first and second sets of weighted distortions, respec

tively.

6. Let Bold and Bnew be the first and second sets of bit allocations, respectively.

7. Let Cold and C new be the first and second sets of codebooks, respectively.

8. Take the difference of the two weighted distortions for each k and let it be 6.k.
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9. Identify the index k = km , which has the largest decrease in the weighted

distortion, ie., fj,lcm =max{fj,k}'

10. Let blcm = blcm +1 in both Bold and B new .

11. Replace the codebook Ckm in Gold with that in G new .

. l 2

12. Replace the value of u'NTn Dkmin Dold with the corresponding value in D new .

13. Split each reproduction vector in Ckm into two vectors, optimize C km with double

size, and replace Ckm in Cnew with the newly optimized Ckm •

:I

14. Compute the weighted distortion u~D km of the new codebook C km and put it

in Dnew •

15. Take the difference of the two weighted distortions in D old and D new for the

index km and replace the old value of fj,km with this new value.

16. Repeat steps 9-15 until the total number of bits in Bold equals the predetermined

value (N/2)R.

17. Cold now contains the codebooks to code the transform vectors.

This modified algorithm produces a set of codebooks of the appropriate sizes.

Recent research in this area has showed the existence of other Vector Transforms,

and a way to find them. The search for one with better energy packing properties is

expected to yield a better Vector Transform than the one described here.

3.6 Sub-band, Wavelet and Pyramid coders

These coders share, among other characteristics, the advantage of allowing progressive

transmission, and scalable resolution decoding.

In progressive transmission, the lower resolution representation of the images are

sent first followed by the higher resolution information. At the receiver the image is
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.immediately representable as a low resolution version of the it, and the reaolution is
. .

increased with the extra incoming information until the image is complete.

Scalable resolution decoding means that it is easy with these representations for

the decoder to ignore the higher resolution information without having to decode it,

and in that way a get lower resolution version of the image. This is useful for non

full screen viewing of images, and for slow decoders to be able to display an image

sequence at th~ appropriate frame rate.

3.6.1 Pyramid Coders

A pyramid is a data structure that provides a sequence of increasing resolution infor

mation of an image. It is used in areas of image processing, and it has been found

useful in image coding.

Burt and Adelson [7] developed a Laplacian pyramid representation for image

coding, which is made of successively lower resolution images.

The original image of N X N pixels with N = 2M+1 is represented as fo( nl, n2)'

and is called the base level image.

Then the base level image fO(nl, n2) is low-pass filtered with hO(nl, n2) such that

(3.48)

Then ft(nl, n2) is subsampled (which is possible because of the low-pass filtering)

and denoted by fl(nl, n2), which is now called first-level image of the pyramid.

The pyramid is now constructed recursively by low-pass filtering and subsampling

higher levels of the pyramid, as fl(nl,n2) was created from fO(nl,n2)'

This is repeated until the top level k is reached, such that the image is represented

as a multiresolution pyramid fO(nl,n2), !I(nl,n2), f2(nl,n2), "', A(nl,n2)'

The low-pass filter and subsampling operations allow many variations. The Gaus

sian pyramid representation [7] uses a low-pass separable 5 X 5 filter given by,

(3.49)
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n = 0 ~

n= ±1
n= ±2

(3.50)

where a is a parameter usually chosen between 0.3 and 0.6.

When a = 0.4 the resulting filter has Gaussian shape, which is the origin of the
.;t.

name Gaussian Pyramid.

The choice of h(·) above results in zero phase and in the DC component being

passed unaffected. The separability is for computation efficiency.

The subsampling is by a factor of two in each direction (vertical and horizontal).

(3.51)

In this way each higher level !i+l(nl, n2) is about one quarter the size of the

pr~~~~ l:vel !i\nl,-n21.
With the Gaussian Pyramid representation defined, it is now possible to Took at

the coding procedure. The original image !O(nl' n2) is coded as the difference of

a prediction of !O(nl,n2) from !1(nl,n2)' !O(nl,n2) is predicted from !1(nl,n2) by

interpolation, denoting if(nl' n2) the prediction of !o(nl, n2)' The error signal is,

(3.52)

with 1[·] being the spatial interpolation function.

Then !I(nl,n2) is coded similarly from the prediction of it by h(nl,n2), and so

on, until the top of the pyramid is reached.

The images !k(nl, n2) and ei(nl, n2) for k = 0, 1, 2, ... , k - 1 are called the Lapla

cian pyramid.

Each of the levels of the Laplacian pyramid can be quantized and coded in a way

adapted to its characteristics. And the decoder recovers the image recursively by,
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(3.53)

It can be seen from the description above that the pyramid coding is closely related

to the sub~band coding (covered in the next section), because a bandpass operation

is pedormed implicitly for the error images. But it does not "Use the formal concept

of division of the image in frequency bands, or the use of QMF filters.

The Laplacian Pyramid has also found use in other areas, i.e., in edge detection

algorithms [26].

3.6.2 Sub-Band Coders

Sub-band coding is a technique that came from the area of speech coding. The basic

idea is to split the signal into narrower frequency bands, and encode each one with a

coder and bit rate matched to its properties.

Woods and O'Neil [49] were the first to use Sub-band coding for images in 1986.

Previous work related to this is the Pyramid coder of Burt and Adelson [7] and some

older image encoding approaches by Kretzmer and Schreiber [38], but none of them

-- -used-sub-band concepts-or QMF filters.

Quadrature Mirror Filters

The basic idea is then to split the image in several spatial frequency bands, but if

each band has the same number of pixels as the original image, no compression would

be achieved, but rather an expansion.

Since each band has a narrow frequency content, it is possible to demodulate them

to baseband and subsample them to achieve the same number oj pixels as the original

image. But since any real filter has some transition band, aliasing will result with

this process and the image would be degraded. It is possible to cancel out the aliasing
, .

effect of the filter transition band using quadrature mirror filters (QMF) [31]. Since

the use of QMF started in the sub-band speech coding, the 1-D case will be examined,

and then extended to 2-D.
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Figure 3.3: Block diagram of Subbandsystem.

Lets consider the sub-band system shown in Figure 3.3.

The input signal is split in two bands, subsampled by 2, upsampled by 2, filtered

to eliminate aliasing due to upsampling, and summed to obtain the reconstructed

signal. The input is :z:(n) with Fourier transform X(eiw ) and the output is y(n) with

Transform Y( eiw ). Note that the upsampling operation inserts zeros into the signal.

Now, the output can be expressed as,

2Y(eiW ) = C(eiw)X(eiw ) +A(eiw )X(ei(w+lI"))

where C(eiw ) isthe channel filter, given by

(3.54)

C(eiW ) = HI(eiw)Gl(eiw) +H2(eiw)G2(ejW)

and A(eiw ) is the alias filter

(3.55)

(3.56)

From this description it is clear that reconstruction without aliasing effects requires

A(eiw ) = O. And distortion free reconstruction requires C(eiw ) = e- jwp since the

output becomes

(3.57)2Y(eiw ) = e-iwpX( eiw )

which is simply_y(n) = x(n - p).

Lets examine the conditions necessary to meet these requirerri.~nts. If the recon

struction filters are chosen as

(3.58)
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(3.59)

Then A(eilll ) = 0 is obtained, and the total system frequency response is,

(3.60) ,

For the distortion free reconstruction condition, it has been found that QMF fil

ters result in perfect reconstruction only in two limited cases: infinitely long filters,

and'when they are of order one. None of these cases are useful in real implementa

tions, therefore several approaches have been used to approximate the C( e;W) = e-;wp

condition [41] [21]. A good set of filters can be found in [8].

QMF also meet 'the condition

(3.61)

and are limited to have even length.

These conditions indicate that the filters should satisfy,

(3.62)

(3.63)

It is useful to look at the filter design problem also from the time domain point

of view, to better understand the aliasing cancellation. The filters must satisfy,

hl(L - 1 - n) = hl(n)

h2(L - 1 - n) = -h2(n)

L
n=O 12··· --1, " , 2

n = 0,1,2"" ,L - 1

(3.64)

(3.65)

Where L is the length of the filter.

Lets call the original signal x(n), the low pass filtered signal before subsampling

xI(n), the low pass signal after subsampling and upsampling PI (n), the low pass signal
...
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after the interpolation filter 'Ul(n), and the recovered signal y(n). In the time domain

the lower frequency band contribution to the recovered signal is,

L-l
~~~-~{n-)- ~fi)x(n - i) (3.66)

i=O

L-l
Pl(n) = L h1(i)[x(n - i) + (-ltx(n - i)] (3.68)

i=o

L-l
'Ul(n) = L 91(k)Pl(n - k) (3.69)

k=O

L-l L-l
'Ul(n) = L L !h(k)h1(i)x(n - i - k)[1 +(-It-k] (3.70)

i=O k=o

and a similar expression can be derived for the high pass signal contribution U2(n).

The reconstructed signal is,

-

(3.71)

and it can be expanded and expressed as

y(n) = Y(n) +y(n)

where

(3.72)

L-l L-l
y(n) = (_I)n L L h1(i)h1(kx(n - k - i))[( _1)k - (_I)i] (3.73)

i=O k=O

L-l L-l
y(n) = (-It L L h1(i)h1(kx(n - k - i))[1 - (_l)i+k] (3.74)

i=O k=O

y(n) is the aliasing component, but under the filter constraints it is always zero.

When i = k then [( _1)k - (-I)i] is clearly zero. And when i =I k the quantity within
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x(m,n) -Rows - - Columns-

Yll(m,n)

Ylh(m,n)

Yhl(m,n)

Figure 3.4: Block diagram of 2D Subband decomposition.

the sum is exactly the negative of the quantity with the values of i and k exchanged.

These terms cancel in a pairwise mann.er.

The sub-band concepts can be extended to 2-D, but in generarthe filter design,

problem is complicated. But considering a separable filter case, it is possible to use

1-D QMF filters in a tree structure as shown in Figure 3.4.

Here each HP and LP block is a high-pass and low-pass filter respectively, and 2 1is

subsample operation. With such arrangement, the image is split into four sub-images,

each with 1/4 as many pixels. For example, the sub-band image Yll(m,n) contains

the low-frequency-horizontal-low-frequency-vertical information. Keep in mind that

such decomposition can be applied recursively to further split each band further into

narrower frequency bands. If two levels of the tree structure shown were used, the

result would be 16 sub-bands, each 1/16 the size of the image. Tt is also possible to

only further split the low frequency sub-image.

Quantization

Woods and O'Neil chose DPCM coding and considered that all the sub-bands' errors

functions fitted the Laplacian probability density function (pdf) «quite well" [49] and

therefore chose the optimal quantizer for that pdf.
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But later it was .determined by Gharavi [48} that the subjective performance of

the quantizers designed based a Laplacian pdf were not suitable, attributing it to

picture noise. !P

And more recently, using DPCM for the lowest frequency band only, and-PCM

for the rest [48], fitting sub-band values and error values with Laplacian pdfs of equal

variance has shown that the real pdfof the sub-bands is more peaked and narrower:

the best fit is not the Laplacian pdf.

But the class of pdfs called the Generalized Gaussian pdf can fit the sub-band

data much better. The Generalized Gaussian pdf is defined as,

with

and

/

p(x) = ae-1bxl-r (3.75)

(3.76)

(3.77)
_ 1 r (~)

b-- --
Clx r (~)

where r(.) is the the Gamma function as defined in [1]. The parameter, controls

the shape of the pdf, with, = 0.6 typically fitting the sub-band data well.

There are two special cases for the, parameter, for, = 1.0 it turns into the

Laplacian pdf, and for, = 2.0 it turns into the Gaussian pdf.

Assume for now that all the sub-bands will be PCM coded, except the lowest

frequency band which will be DPCM coded, and that there are 16 to 28 sub-bands.

To find the best fit to the sub-band data, the well known statistical tests Kolmogorov

Smirnov (KS) and the chi-squared (X2
) can be used. For a typical image the,

parameter was found to be in the range 0.50 ~ , ~ 0.60 for most of the sub-bands,

the higher frequency sub-bands deviate from this range due to noise [48]. For the

lowest frequency band (which is DPCM instead of PCMcoded) a typical value is

, = 0.75.



Once the typical pdf has been determined for the sub-band data, the appropriate

quantizer is designed based o~ it.

An algorithm to design a minimum mean-square error quantizer is presented here.

It is somewhat similar to the LBG algorithm used in VQ.

Given the optimal decision levels by [48],

Xl,opt = -00

Xk,opt = ~(Yk,opt +Yk-l,opt)

XL+l,opt = 00

k = 2,3,4, ... , L. (3.78)

where Xk, k = 1,2,3"" ,L + 1 are the decision levels and Yk, k = 1,2,3,' .. ,L are

the representation levels. The representation levels are given now by,

JX
Is+l,OPt xp (x)dx

_ XIs,opt :z:

Yk,opt - J:Z:Is+l,OPt p (x)dx
XIs,opt :z:

k = 1,2,3, ... ,L. (3.79)

o Start with initial guess for all representation levels, i.e., uniform quantizer.

o Using equation 3.78 the corresponding decision levels are computed, and from

these a new set of representation levels are calculated using equation 3.79.

• The above step is iterated until the specified MSE is reached.

With the quantizer designed the next concern is the coding of these quantized

values.

Coding

To efficiently encode the sub-bands it is necessary to determine an appropriate coding

scheme and bit rate for each sub-band. Some commonly applied methods are simple

PCM, DPCM [49], VQ [22], or combinations of several methods, i.e., DCT only for

the lowest frequency band [3]. ,
In the original work by Woods and O'Neil [49] DPCM.' Was used because it was

considered more efficient than PCM.

As previously stated, in DPCM a linear predictor of the form
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y'(m, n) = L: L: a(k1,k2)y(m - k1 , n - k2) (3.80)
; (k1 ,k2 ) ER..

is used where Ra is a region around y(m,n) where a(k1 , k2) is non zero, that is,

the pixels used to predict y(m, n).

Woods and O'Neil [49] used' a Ra including a(O,l) a(l, 0) a(l,l), which is, y(m, n

1), y(m- - 1, n), y(m - 1, n -1) were used to predict the value of y(m, n).

To determi~e the compression ratio, it is necessary to specify a number of bits

(B) to use for the image, and allocate this bits to the sub-bands while minimizing

~n error measure, i.e., the mean-square-error (MSE). In the case of using DPCM

for all sub-bands, the DPCM MSE is equal to the quantizer MSE in each band

cr~ = E[(y(m, n) - y(m, n))2].

In the Woods and O'Neil coder [49],

(3.81 )

where g~4.5 for the Laplacian pdf, which was assumed in this case for all the

sub-bands, and the optimal quantizer for the Laplacian pdf was used [49].

Then minimizing the total variance,

M

L gcr;2-2Bh (3.82)
k=l

where M i~ the number of bands. The solution for the MSE optimal bit assignment

then is [49],

Bk = B + ~ log2 [CT~'k] )1 ~ k ~ M (3.83)
2 CTgm

where cr;m = (II~lCT;,k)l/M is the geometric mean of CT;,k'

But it has been shown that DPCM is not optimal for all the sub-bands [48]. A

better approach is to compare the coding gain for different methods and choose the

appropriate one. Looking at a simple case, the coding gain of DPCM over PCM is,

(3.84)
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where O'~ is the signal variance and CT~ is the prediction error variance.

It is shown by Westerink et al. [48] that the coding gain (Gp ) for DPCM oyer PCM
, ..1

is only beneficial for the lowest frequency sub-band. The other sub-bands containing

higher frequencies did not show significant decrease in the variance of the prediction

error. The linear predictive model used the region Ra including a(O,l) a(l,O) a(l, 1),

which is, y(m,n -1), y(m - 1,n), y(m - 1,n - 1) were used to predict the value of

y(m, n). For a typical image the coding gain (Gp ) in the lowest frequency s~b-band
, -

was 7.44.

Finally, after the coding method and quantizer for each band have been designed

it is possible to exploit the difference in the probability of the quantized levels and

remove this statistical redundancy. Two efficient ways to do it are huffman coding

(variable length codewords), and arithmetic coding.

Some Results

For monochrome images 512 x 512 the results of Westerink et al. [48] show good

quality at 0.6 bits/pixel and at 1.0 bits/pixel the coding errors are very hard to find.

But even where the errors are noticeable, they are much less objectionable than the

blocking effects seen on block DCT or VQ. Compared to a block DCT of similar

complexity (8 x 8 blocks) the sub-band shows an improvement of 0.6 to 1.4 dB in

SNR.

For color images, a good quality is achieved with only 0.8 bits/pixel [48].

3.6.3 Wavelet Coders

Wavelet theory has been recognized recently as the unifying framework for a number

of techniques, which include sub-band coding and pyramid coding [37]. Although

this recognition as unifying framework is recent, the ideas behind it date from the

beginnings of this century.

In signal analysis the Wavelet Transform (WT) provides an alternative to the

Gabor transform or Short-Time fourier transform. For our purposes it is useful to

look at the Wavelet transform as a signal decomposition into a set of basis functions,
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these are the wavelets. The basis functions are created from a single prototype wavelet

and are obtained by dilations and, contractions (scalings), and shifts. All wavelets can

be considered bandpass filters with constant Q, because they are derived from the

same prototype.

In the ,wavelet theory, the concept of frequency is substituted by the concept of

scale.

Wavelet theory considers continuous and discrete cases. The Continuous Wavelet

Transform (CWT) applies to continuous signals when continuous scale and time pa

rameters are used. The Wavelet series expansion applies to the case of continuous

signals but with 1iscrete time and scale parameters. And, the Discrete Wavelet

Transform (DWT) is used for discrete time signals. Notice the parallel to the Fourier

Transform, Fourier series and Discrete Fourier Transform.

One of the motivations for the use of wavelet theory is to represent functions

that are local in space and frequency. Comparing with Fourier series, sines and

cosines are perfectly local in frequency but global in space, which means that the

frequency representation of a short pulse is spread over the whole frequency axis, and

to reconstruct it, the Fourier series depends heavily on cancellation [43]. A possibility

is to use a window in the Fourier transform to approximate stationary behavior. But

this places limitations on the frequency-time resolution.

Now looking at the CWT defined as [37]

where

ff dadT
x(t) = c GWT:c(T, a)ha,'T(t)~

- 1 (t - T)ha,'T(t) = yfah -a-

(3.85)

(3.86)

(3.87)

h(t) is the prototype wavelet, a is the scale factor, and c is a constant that does

not depend on the signal.
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The CWT results in a set of wavelet coefficients that indicate how closely the

signal is to each basis function.

H the wavelets' parameters a and T are appropriately discretized, the basis func

tions form a. orthonormal basis, that is,

J { I , ifj = j'andk = k'
hi,k(t)hj',k,(t)dt = 0

otherwise
(3.88)

It is possible now to exactly represent any arbitrary signal as,a weighted sum of

basis functions,

._-~

with

where

x(t) = LLci,khi,k(t)
j k

Ci,k =Jx(t)hi,k(t)dt

(3.89)

(3.90)

(3.91)

for a true orthonormal basis: ao - 2, and the choice of h(t) is restriete

Considering now the discrete time case, the sub-band coding technique can be

viewed as a decomposition into an orthonormal basis, and the reconstruction from

the sub-bands as summing the orthogonal projections.

Looking at sub-band filters in the time domain [21]' where g(n) is the lowpass

filter and h(n) is the highpass filter which are related by,

h(L - 1 - n) = (-1tg(n)

where L is the filter length.

The expansion of the signal into an orthonormal basis is,

x/(k) = Lx(n)g(-n+2k)
n
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xh(k) =L:x(n)h(-n +2k)
n

And the resynthesis of the sum of the orthogonal projections is,

00

x(n)= L: [xl(k)g(-n+2k)+Xh(k)h(-n+2k)]
k=-oo

(3.93)

(3.94)

The structure of computations in a DWT and in octave-band filter bank used in

sub-band coding is identical. 'The difference is on the views and the interpretations,

but the main difference is in the filter design.

Wavelet filters are chosen to be regular, which means that the continuous-time

wavelet hc(x) is at least continuous, or better, once or twice continuously differen

tiable. The regularity is the number of times that hc( x) is differentiable.

There are filters designed for two-band filter banks, which are used in sub-band

coding, that are not regular. But since in image coding the decomposition is usually

not performed more than 3 levels, this does not present a problem.

It is still unclear whether regular (wavelet) filters are better than others in image

coding schemes, or the regularity order needed for good performance.

3.7 Fractal Coders

In natural images of real world objects, their boundaries and textures exhibit great

roughness and irregularity. Often they do not simplify under magnification, and

contain self similar subimages of themselves.

Fractal images exhibit much of the same behavior. This suggests that the redun

dancy of images can be exploited for compression by modeling it as the redundancy

in fractals. Then, a natural question is: Is it possible to choose a fractal formula that

arbitrarily approximates a given picture?

Since a fractal can be described in a small set of parameters and formulas, while

retaining much or all of the image complexity, compression can be achieved by rep

resenting the image with the fractal.

That is the basis for fractal image compression.
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3.7.1 What are fractals

Fractals are geometric or data structures which do not simplify under magnification

[5]. Another characteristic of fractals is extremely high vis1J.al complexity while having

a low information content. They can usually be constructed from simple parameters

or formulas.

Typical fractal pictures are the Julia sets which can be produced from a simple

set of rilles.

3.7.2 Iterated Function Systems codes

For image compression, the kind of fractals used are called iterated function systems

(IFS). IFS theory is an extension of classical geometry. An IFS is composed of

affine transformations and probabilities, and it can contain any number of affine

transformations.

Affine transformations are combinations of scalings, rotations and translations of

the coordinates. These affine transformations express relations between parts of an

Image.

IFS uses only these relations to define the intricacies of the picture.

In two dimensions, the affine transformation T is defined as,

T(x,y) = (x',y') (3.95)

where

x' =Ax+ By+ C (3.96)

y' = Dx +Ey+F (3.97)

The six coefficients A, B, C, D, E, and F define the transformation T. The nota

tion T(S) denotes the subimage of T on a set of points S.

The affine transformations should be contractive, which means that they should

always move points closer together. If IP - QI is the distance between the points P

and Q,
IT(P) - T(Q)I = s x IP - QI
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where s is the contractivity factor and s < L

A probability is specified for each transformation, and it is used in the decoding

process. The proba.bilities denote the relative importance of each transformation.

They must add up to 1.

To decode an IFS code into a picture the random iteration method is used. Here

is the algorithm for the random iteration method:

o Start with x = 0, y = o.

o For n = 0 to N do

G Choose one of the transformation according to its probability.

o Apply the transformation to x,Y.

o If n > m, plot (x,y)

o end For

Where N is the number of iterations to perform, and m is the number of initial

points that are not plotted. Because of the randomness of the method, there has

to be an initial settling period of m iterations without plotting, but because the

transformations are contractive, the algorithm always converges.

A color look-up table can also be specified for the created picture. Usually only

a limited set of colors is employed, and linear interpolation is used to generate inter

mediate ones.

3.7.3 Decoding

Decoding can be looked at as an image processing operation. Given an IFS code, the

random iteration method is used until the image converges. How is it determined

if the image created by the IFS code converges? A measure of image similarity is

needed. The one used is called the Hausdorff Image Distance.
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Hausdorff Image distance

The Hausdorff distance measures how similar two images are.

Considering only bilevel images for now, in a space S with R rows and P pixels

per row.

The distance from a point a to an image B is defined as the closest Euclidean

distance,

d(a, B) = minimurn(la - bl : for bin B)

Now, the distance from an image A to the image B is defined as,

d(A, B) =maximum(d(a, B) : for a in A)

(3.99)

(3.100)

This is not a symmetric measure; d(A, B) can be different from d(B, A). Thus, the

Hausdorff distance between A and B is,

H(A, B) = maximurn(d(A,B),d(B,A)) (3.101)

?
IT the Hausdorff distance between two images is zero, they are identical; if it is less than.

the distance between adjacent pixels, they are indistinguishable at that resolution.

The Hausdorff distance can be generalized to grey-scale and color by using higher

dimensions; where images are surfaces, and the Hausdorff metric measures distances

between surfaces.

The decoding process

Associated with every IFS code is a unique set called the attraetor of the code.

The attraetor A attr(G) of the IFS G is defined as the only set with the

property,

(3.102)

Starting with A(O) (any non-zero subset), define A(i) = G(A(i - 1)). Now, the

sequence A(O), A(l), . " converges to the attraetor A, in the Hausdorff sense. For

larger i, smaller H(A(i), A). The Hausdorff distance becomes smaller than the screen

resolution for i typically in the 10 - 50 range, and the image is decoded.

The attraetor attr(G) is the image encoded by the code G.
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3.7.4 Encoding

Encoding is more complex than decoding. The first problem is, how to find the affine

transformation that produces the needed effect? It is possible to take the two sets of

points, (Xi, Yi) and (x~, yD, and find the coefficients A, B, 0, D, E, F by solving a set

of linear equations using the definition of affine transformation.

The problem now is to define a systematic method for finding the affine transfor

mations that will produce an IFS enc04ing of the desired image. The answer lies in

. the Collage Theorem.

The Collage Theorem

The Collage Theorem guarantees that it -is always possible to find an IFS to encode

the image, and gives a method for doing so [5].

Let B be a target image and let 0 be an IFS code with contractivity

factor 0 < s < 1. If the Hausdorff distance between Band O(B) is less

than E, then the Hausdorff distance between Band attr(0) is less than

1~1J [6].

The important implication of the Collage theorem is that to find the IFS code for

an image, the following method should be used. Small (affine) copies of the image

should be arranged to cover the image itself as exactly as possible. The better this

"collage" of affine copies of the image approximates the image itself in the Hausdorff

distance sense, the closer the decompressed image will be to the original image. The

IFS code is defined by this "collage" of deformed copies of the image.

A very important result is that if E < (1 - s) X resolution, the compression will

be lossless.

Another important consequence of the Collage theorem is that for IFS codes that

are similar, the attractors are also similar. This is important because it means that

small errors in codes result in small errors in the images.
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The inverse problem

The inverse problem/of iterated transformation theory is finding the IFS code that

best reproduces the original image.

Traditional computer graphics can be- seen as an attempt to represent images in

terms of simple geometrical shapes: points, lines, boxes, circles, and so on. Since the

description of these simple shapes is very compact, it is an -efficient (small) repre

sentation of images. It is possible for a system to have an even greater collection of
------ - -

primitive elements (including textures, etc) and to compose images using them. This

is suitable for artificial images.

But to encode natural images the collections of shapes that traditionally could be

used becomes rather limiting. In the worst case, the image description ends being

a collection of independent points with different colors (a completely uncompressed

picture), which is very inefficient.

The solution is to have a much richer set of geometrical shapes to represent images.

Fractals can be used as this richer set of geometrical shapes. The problem is to find

the fractals that can describe' an image, and a way to compactly define them.

The first step in fractal compression is an image processing step: the image is

broken into segments using edge detection, image analysis, texture analysis, and

others. /~

Then the segments are matched against a library of fractal shapes. This catalog of

fractals is ordered in such a way that similar fractals are close together, which allows

automated procedures to find the fractal that best approximates a given segment.

lY Finally, using the Collage theorem, an IFS code is created.

3.7.5 Complexity

The high compression ratios that are possible with fractals are not without their cost.

Fractal compression is a very computation intensive technique, both for the compres

sion phase, and for the decompression phase. For practical application, specialized

hardware is necessary.
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On typical workstations, t~e compression process can take hours per image. Fortu

nately theJcomputations required are mainly multiplications and accumulations, and.. I

are ite~ative in nature. This simplicity allows these operations to be implemented in
I .

high speed VLSI designs.

3.7.6 Some results

In earlier papers, Barnsley [5] has claimed compression ratios of 10 000:1 and higher.

But that is only for very special cases (sky of clouds, and others).

For more common images, with acceptable reproduction, Jacquin [20] achieved

0.68 bit/pixel with a 256 x 256 pixels with 6 bitplanes grayscale "Lena" image.

3.7.7 Relation to other image coding methods

Fractal compression can be related to other image compression methods. Since the

first step is a search through a catalog of fractals to find a match, this is similar to the .

way a vector quantizer searches the codebook. If the image segmentation is limited

to blocks-of-a-smalLnumber of-sizes, the similarities are even more apparent ~~-----

Fractal compression can also be related to wavelet transform coding. They both

make use of a set of self-similar family of basis functions. Researchers are investigating

the possible benefits of this relation to find solutions to the inverse problem [14].

3.8 Contour-Texture Coders

There are several motivations for this approach to image coding. Generally, images

cannot be modeled as two-dimensional, stationary, Gaussian random fields. Also

important in the Contour-Texture coders is the understanding of the human visual

system (HVS), in which the contours and the textures that make up the image are

processed separately, and it is also known that the HVS has directional sensitivity.

The basic idea is to separate the image in areas of texture (areas with no noticeable

defined intensity gradients) and the edges (positions of sharp intensity transitions).
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The texture regions can approximate a Gaussian random field, and this permits effi

Cient coding with transform techniques [36]. The edges can be coded separately from

the texture, with schemes appropriate to their nature.

An example of th~-sensitivity of the HVS can be seen in the artifacts perceived in

some JPEG (DOT based on 8 x 8 blocks) compressed images at a high compression
I -

ratio, where the blocking effect (vertical and horizontal edges at the block boundaries)

isnoticeable at a much lower SNR than other distortions [11].

The precursor to these methods is the Synthetic Highs system [38L where the

image information was divided in two parts, one with the high frequency content,

and another one with low frequency content. These two components were coded

separately.

Since some of these techniques associate the edg~ information with the high fre

quency content of the image, they are in that sense the precursors of the subband

coding techniques.

3.8.1 Segmenting the image and coding separately

The HVS is very sensitive to the edges in images. This leads to the approach of

coding the edges and their position very accurately, and the rest of the image can be

coded with very high compression without degrading much of the visual information

content of the decoded image.

Van and Sakrison Code

In the system designed by Van and Sakrison [50L for grey-scale images, they split the

image information into two components:

o A discontinuous component representing the edges caused by distinct objects,

and

• A continuous component to account for smooth regions and texture.

Based on the characteristic of the HVS of being sensitive to relative changes in

intensity, and not to absolute intensity levels, they decided to use the cube root
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of the intensity as the function to encode (nonuniform quantization). Then they

compare the resulting function to a Gaussian random process. Since typical images

have 'abrupt changes in intensity (edges at objects boundariesYthey concluded that

the image intensity; function could be split into a discontinuous component d(x, y),

which approximates the sharp object edges and linear intensity changes due to object

sh~ding, and r(x, y),-which is the residual information after subtracting d(x, y) from

the cube root 'intensity function. r(x,y) should approximate a sample field from a

Gaussian random field, and it can be efficiently described by aTransform code. Then

if i(x, y) is the original intensity function,

u(x,y) = [i(x,y)]t

is the cube root intensity function, and

u(x,y) = d(x,y)+r(x,y)

MinImum NoIse Yisibilityco-diIliTMNVC)

(3.103)

(3.104)

MNVC [44] exploits the HVS to reduce the noise visibility in the compressed images

--f44. The uantizin noise is redistributed from the smooth areas to the edges or

busy areas of the images. It uses a subsampled low-frequency component and a

coarsely quantized high frequency component with pseudo random noise added in

a_distribJ!tion that IIloves it to thee~ges and busy areas of the picture, where it is

masked by the HVS. In this way it achieves equal visibility of the noise in all areas,

which reduces its visibility in smooth regions of the image.

Contour-Texture by region growing

This technique has been reported to yield compression ratios of 38:1 for grey scale

images with large smooth regions and defined edges [24]. The first step is segmentation

of the image by a region growing technique. This step provides a description of

the image in terms of two components: adjacent regions of the image where sharp

discontinuities are absent, and the edges of these regions. To allow an affective region

growing algorithm to operate, the granularity of the image has to be reduced, but the
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edges m4 be pres~d. Otberwise tbe regions-donot grow well, and the resulting

segmentaion is made up of many small regions. To this end an inverse gradient

filter is u1d [46] beca.use it can adapt its coefficients to the local contrast. This filter

behaves 1an low-pass in smooth regions, and as all-pass near sharp discontinuities.

The r .on growing algorithm is based on grouping adjacent pixels that share a

common aracteristic. The procedure starts with a pixel, and using a property of

this pixel ook for adjacent pixels with the same property. All adjacent pixels sharing

the prop y make up a region. The property they share can be as simple as the grey

scale val ,or a range of values. The selection property can be fixed, or it can be

adaptive, anging ,dynamically to grow the region as large as possible, but always

keeping all selected pixels sharing the property. The selection property can also be

a more complex measure, like energy content within a given frequency band. Once a

region can grow no more, another pixel outside the region is chosen to grow another

region. The process continues until there are no pixels ouside of a region.

The resulting region set can be post-processed to reduce the number of regions or
, ,

remove some artifacts, like thin regions two pixels wide where there are no "inside"

pixels and the contour pixels completely fill region.

To reduce the number of regions, those adjacent ones with very similar properties

can be merged, or very small regions can be simply discarded.

The resulting regions and textures are coded separately.

Contour-Texture by edge detection

The emphasis in this scheme is in preserving the edge information of the image accu

rately.

Kunt et ai. [24] uses an edge element (EE), defined as a two dimensional step

function, as the basic representation for the edge detection algorithms. An EE has

a defined width and direction, e, where Ie'! = I is the width and arg(e) defines the

orientation. The edge element set (ES) contains all the edges for an image. Subsets

of the ES can be extracted which restrict their EE members to a certain orientation

interval. The center orientation of the interval is called the principal direction.

Directional filters are used to identify all the EEs of each subset that define the
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edges' of an image. Eight principal directions are defined, and directional filters are

used 'to obtain eight directional images. Then zero crossings -which correspond to

the position of the edges- are searched in the principal direction of each directional

imalte. The width of the edges thus detected is calculated from the gra,dient of the

zero crossing. The 'directional images are subsampled before the zero crossing edge

detection, and a threshold is set for the width of the edge such that weak edges (not

a sharp transition) are discarded. Since the directional images are subsampled at the

encoding stage, the length of an edge at the decoding stage is the subsampling rate

in pixels.

This technique has been reported to result in a compression ratio of 41:1 for grey

scale images with sharp edges and large smooth regions (a building picture) [24].

3.8.2 Encoding

Here is a brief description of the encoding process used by Yan and Sakrison [50].

The image is coded line by line in a normal raster scan order.

o The cube root of the luminance function, u(x, y), is fitted piece-wise with

straight linesd(x,y), and the breakpoints which define the piece-wise fit are

encoded.

o Get the residual, r(x, y) = u(X;y) - d( x, y), and encode it with a full raster

-Fourier transform.

The MNVC coding is performed as follows [44],

o A low pass two-dimensional filter extracts the low-frequency component of the

Image.

o The low frequency component is subsampled and coded.

" The subsampled low-frequency component is interpolated and subtracted from

the original image signal.
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(» This resulting high frequency component is coded using a nonuniform' noise

quantizer.

The noise quantizer comprises a nonlinear transformation to compress the range,

followed by the addition of pseudo random noise, and uniform quantization.

The Coding procedure for the contours in the region growing technique is,

o The image is processed by the region growing algorithm to produce a collection

of regions that cover the image.

o The contours defining the border of regions are simplified to code common

borders only once.

o The resulting contour segments are fitted with straight lines, circle segments,

or not fitted a.t ail and explicitly coded, depending on the co~t in bits for the

description, subject to a given error measure.

o The resulting description averages about 1.2 bits per contour point.

The texture coding for the region growing technique is,

.. The general shape of the grey level of each region is approximated by polynomial

functions of orders 0, 1 and 2.

.. The least costly approximation is chosen, based on the number of bits needed

to encode the polynomial coefficients and the mean-square error of the approx

imation.

o The mean-square error for each decoded region to the original region is coded

to control the amount of granularity added in the decoding stage.

In the case of the edge detection Contour-Texture technique, the eight directionally

filtered and the low-pass image have to be coded [24], thus:

o The low-pass image is transform coded, with the transform coefficients zonally

quantized.
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o The eight directional images are subsampled 5:1, and the zero crossing detection

and edge width calculation performed. The resulting positions and magnitudes

are run-length coded using Huffman variable length codes, with an average of

4.5 bits per point.

3.8.3 Decoding

The decoding in Yan and Sakrison's system [50] follows these steps,

o Reconstruct d(x, y), the piece-wise straight lines fit, from the breakpoints.

o Recover the residual from the transform coefficients and obtain r( x, y).

o The recovered cube root of the luminance function is u(x, y) = d(x, y) +r( x, y).

o Cube u(x,y) to get the recovered luminance function ~(x,y) = [u(x,y)J3.

The MNVC decoding steps are [44],

o The same pseudo random noise used in the encoding is subtracted from the

high frequency component.

o The inverse nonlinear transformation restores the range of values of the high

frequency component.

• The low frequency component is reconstructed by interpolating the subsampled

version, and it is added to the high frequency component, resulting in the

decoded image.

For the region growing coding technique, the decoding is simple [24]:

o The grey scale shape is created for each region from the polynomial coefficients.

o the region is clipped by the shape given by the contour points.

o To restore the lost granularity, zero-mean Gaussian pseudo random nOIse IS

added with its variance determined by the mean-square error of the decoded

region to the original region.
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The decoding for the case of the edge detection Contour-Texture scheme is [24]:
; .

o The low-pass component of the image is reconstructed by the inverse transfor-
i

mation of the coefficients.

o Then the edges are recqnstructed by synthesizing the directional images from

the zero-crossings and their magnitude.

3.8.4 Similar cOdeJ
The other significant coder related to the ones described above is the Recursive BlockI .
Coder (RBC). Farrelle [11] describes the RBC, in which the image is separated in

a boundary response and the residual after subtracting this boundary response. The

boundary response results from a scheme to model the image using stochastic partial

differential or difference equations [11]. Briefl.y, the boundary response is a subsam

pled version of the image. The residual component is coded using two-dimensional

transform techniques. The boundary response is simply PCM coded.

3.9 Model-based Coders

In visual communications -leaving out the case of artificial images- there are three

levels to consider [12]:

o the scene.

• the image of the scene.

O' the perceived image of the scene by the Human Visual System (HVS).

The image compression field has centered its attention on the second and third

levels. In the lossless coding techniques the image is encoded, seeking to eliminate

the redundancy present, based on some model of the image.

More recently, the HVS has been taken into consideration in the compreSSIOn

process. In the lossy techniques, the image is coded seeking to reduce the content that
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. is not meaningful to the HVS~ Information that the HVS does not find contributing

--------tto-the-information content orlan image can be eliminated, and the image should be

perceived by the HVS to be vfry similar to the original.

Another approach that coUId reduce the bit rate required is to view the problem,
from the first level. Instead of coding the image of the scene, code the scene itself.

I
After aU, the scene is the original source of the information; the image is only a

representation of the scene.

This is restricted to the cases of natural images, because for artificial images,

there is no scene as the origin of information. And in the case of artificial images,

the mechanisms used to produce it usually provide a compact description of it. For

instance, an image of text is an artificial image, there is no scene originating it. But

the ASCII codes for the letters in the image of the text provide a compact way of

describing this artificial image.

The goal in scene coding is to describe the contents of the scene in enough detail

to allow an accurate reconstruction of the original scene at the decoding phase. In

general, for a scene description, the amount of information can be much greater than

.that contained in an image of the picture. Also, the task of extracting the scene

description from an image is a complex operation, being the focus of research in the

field of computer vision (ev).._-

But improvements are possible with this approach, even for very simplified cases.

One example is the use of object identification in a scene to separate static background

from moving foreground objects, and using predictive coding to separately encode

those image areas.

Limiting the set of objects to appear in the scene

One important simplification is possible when the scenes to be coded contain mostly

known objects. Here the objects can be recognized and be described in high-level
\

terms. This has been called "Semantic Image Coding" [12].
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Typical of this class is the teleconference situation, where the important objects

to be recognized are the head and shoulder of the person participating. The possible

complications derive from the non-rigidity of the objects, and from the fact that they

contain large amounts of detail.

Some results show the possibility of compression to orders of magnitude less than

1 bit/pixel for teleconference video sequences [12].

3.9.2 Encoding

The encoder starts with the image which is analyzed identifying the objects present

in the scene. Parameters -like shape, position, color, texture- are extracted to

define the objects in the scene. This parameter extraction is based on a 3D-model of

the objects which is also used in the decoding. These 3D models of objects serve not

only as the a priori knowledge that reduces the required bandwidth, but also as aids

in object recognition.

If an object moves, motion parameters are extracted that can specify the object

state in its six degrees of freedom. 'In the case of objects like a head, other very

--------lJimEIWpGftan.t--.pMame-ters must-a!se-b~d,to account for facial expressions, and

the non-rigid deformations.

Image Analysis

This is a problem in the field of CV, attempting to find meaningful descriptions of

objects from an image.

The first step should be segmentation of the image into parts corresponding to the

objects. Object recognition can be performed at the same time or after segmentation.

Next, the shape of the object is estimated based on the assumed complexity of

the object, and on the illumination applied. This is a very complex problem, and

although research has advanced in its solution, it can be arbitrarily complex and

highly under-determinedj for some cases it is not possible to solve it.

In the case of known objects it is necessary to identify them. Once the objects
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have been identified or their shape estimated, it is only necessary to extract its po

sition, orientation, and motion. For non-rigid objects other parameters must also be

extracted and coded.

When the objects are people, once the head object has been identified, its orien

tation and position have to be estimated. Since image analysis can be considered an

inverse modeling from image synthesis, one way of analyzing the picture is through

repeated forward modelling. This is the process of generating the forward model with

some given parameters (synthesize the image) and attempting to reduce the disparity

to the real image (by adjusting the parameters), until the disparity is small [19]. But

this approach requires great computation, and problems arise due to illumination and

surface reflectance properties. A solution is to use simplified models to estimate the

global position.

Then, it is possible to parameterize the facial expression. To identify the facial

features within the head, a 2D model can be used. With this model, geometric criteria

are used to search for the eyes, mouth and nose. Now with the global position of the

head and the identified facial features, the facial expression parameters are extracted,

which are the positions of defined points within the face.

3.9.3 Decoding

The decoding is the resynthesis of the scene from the original point of view, generating

an image.

The decoder contains the same 3D-model used to encode the image, and based on

this model it can apply the parameters received to synthesize the original scene and

project it into a 2D image.

Image Synthesis

The synthesis of an image from a description in terms of 3D objects is a problem

common to other areas like computer graphics (CO). Within these areas powerful

photorealistic rendering techniques have been developed.

It is possible to use simple primitives (spheres, triangles, and others) to construct
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almost any object, and advanced shading techniques like Phong shading render them

with smooth surfaces. Textures can be synthesized and mapped on-the-objects~-Itis---

also possible to allow the mapping of images onto the surfaces of objects to improve

their realism. An image of the face of a person can be mapped onto a simpler

geometric object ofa head to create a more realistic image of a person.

For people, the facial parameters are used to move the underlying control points

in the geometrical object describing the head. If a image map is used it can also be

appropriately warped.

3.9.4 Relation to Virtual Reality

If instead of modeling the image what is modeled is the scene itself, it is important

to understand the significance that such an approach can have as it relates to the

field of virtual reality. Representing the scene as a 3D description does not limit the

decoding to a representation of the scene as a 2D projection image from a certain

point of view.

With advances in display technology it is conceivable to generate the whole scene

in an artificial environment. In that way the decoding not only allows one to watch
- ---

the images from a fixed point of view, but to study the whole scene. The amount of

information transmitted would still be limited, but this approach permits fuller use

of-the perceptual capabilities of humans, and allow them to perceive more efficiently

and absorb more of the information presented.
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Chapter 4

Conclusions

Some of the most important image compression techniques have been reviewed here.

The diversity indicates that there is a great range of applications with different re

quirements for image compression, and that there are schemes to meet many of those

needs. But research activities clearly indicate that there are many more areas where

image compression technologies are advancing, and that there will be a much broader

application of image compression technologies. Not only will there be new areas, but

new schemes are still being created, like fractal compression.

Looking at the importance of communications, the role of images in communica

tions, and the need for digital image compression, the importance of this technology

is clearly increasing.

First the lossless data compression methods were reviewed. These methods, al

though useful for their universality, are not very good for natural images, where there

is little statistical redundancy to exploit. For very simple images, like a 1 bitplane

drawing they can provide typically about 12:1 compression. It is well known now

that the human visual system is insensitive to several characteristics in images, which·

only a lossy method can exploit for improved compression. There are areas where

the integrity of the images is paramount, like medical imaging or remote sensing,

and these areas cannot afford any loss in the images, therefore they have to resort to

the lossless methods. Nevertheless, lossless methods are also very important because,

combined with the lossy image compression methods, they provide the last statistical
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redundancy reduction.

Next the lossy methods were reviewed, starting with some of the simple methods

such as DM or DPCM that are not as powerful as the transform coders or sub

band coders. The advantage of the simple methods, of course, is their low cost, fast

performance and simple designs. Methods like Vector Quantization are very powerful,

but can also be very computationally intensive. But part of the importance of VQ is

that according to the information theory, it is better to quantize vectors of samples

than samples, even'if the samples are uncorrelated. Bec~use of this, VQ has found

uses combined with other methods, i.e., to vector quantize the transform coefficients

in some systems, or the sub-bands in sub-band coding. There are many variations of

VQ and, as hardware performance improves, it will be possible to use VQ in more

applications.

Then there are the transform cpders, they are very important now, in part because

they are at the heart of some of the standards now coming into wide use, like JPEG,

and for moving images MPEG. DCT has proven to be very popular because of its

-;~~y-~loset~id~a.l p~~forma~ce compared t~the KLTfo~ ~~-~t ~~a:ges:---BuCother

transforms also find use, like the DST that is part of the Recursive Block Coding

technique.

A recent addition to the scene of compression schemes is the Vector Transform,

where it shows great promise. But this is one of the areas where only more research

will bring a perspective on its applicability. One fruitful area for future exploration

is the use of vector transform in areas where VQ was previously used. An example

can be a sub-band decomposition where the number of sub-bands becomes the size of

the vectors. Then it is possible to take as the vector samples the same corresponding

pixel in each sub-band, taking advantage of the inter-band redundancy. These vectors

can then be Vector Transformed to reduce the remaining spatial redundancy. The

other possible advantage of this approach is that as the sub-bands are smaller in size

than the full initial raster, the vector transform blocks may not be as visible as in

some earlier results for a very low bit rate.

Some of the most promising results come from the sub-band coders, where reports

c-; of more than IdB advantage over DCTbased coders are found. Part of increased
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performance of the sub-band coders comes from having narrower bands to code which

seems to make them have flatter spectra than full-band soiIrce. One advantage of sub

band over DOT is that although DOT has good frequency localization , its spatial

localization is rather poor, whereas sub-band has both: good frequency localization

and good spatial localization. Sub-band does not introduce the blocking effects that

appears in block transform coding, or in VQ when the vectors taken are square blocks.

, On recent development unifying several areas is the Wavelet theory, it has provided

new tools to better understand the effects of the different compression techniques.

But the most direct results from wavelet theory, in the form of filter designs based on

wavelets, does not seem to provide much improvement over other filter designs used

in sub-band coding.

An interesting and radically different approach is taken by the fractal coders.

Based in part on the premise of the pleasing visual characteristics of fractals (high

visual complexity while having low information content), the fractal coder had been

claimed to have compression ratios never before achieved. But a more realistic anal

ysis reveals that there-areIrffiltaBons to thec()mp-ressT()n-p~;~-;ible~~b~tth~e-I()~se~and

distortions introduced by the fractal nature of the process result in images that are

nevertheless pleasing to look at. For example, a fractal coded image can be decom

pressed to an image of much higher resolution than the original, and the result is not

a pixelized looking picture, but rather the decompression process seems to introduce

artificial detail not present in the original image that was compressed. The fractal

compreSSIon also can possibly be performed losslessly, for a given resolution.

For some specialized situations, like teleconferencing, it may be possible to encode

pictures by using knowledge about the contents of the scene. In Model-based coders,

the objects present in the scene can be recognized and parameterized. If only the

parameters have to be transmitted, a great compression has been achieved. The re

ceiving end takes the parameters and reconstructs the scene as viewed by the encoder.

Another somewhat' limited situation is where images are composed of simple areas.

This type of image lends itself to be analyzed and coded by identifying the contours

of the areas, and the texture of those areaSj great compression with little visible loss

is achieved. But this method does not perform as well with more natural images like
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people. l!

_The future development of communication technologies and the increasing power

of the computation hardware at affordable prices, will inevitably bring the image
"e ~

compression technologies to be a fundamental p~rt of the lives of people around the

world, and it is happening already, faster than most people realize.
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