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Abstract 

Non-stationary signals and systems are investigated in this thesis as to how they 

can efficiently be described, deconvolved, denoised, compressed and implemented on 

a fast processor by transforming the signal/system to another mathematical space. 

Shortcomings of classical Fourier transforms, in this field, can primarily be remedied 

by the introduction of time windows resulting in the Gabor transform. This proves 

not to be so satisfactory for our purpose. Finally, orthogonality of time and frequency 

windows are considered to effectively decompose the signal into a wavelet space. The 

associated discrete wavelet transform reshapes the sampled data of the signal into a 

more compact form : Specific properties of the signal are not only better understood 

but also more compactly represented in the new space .Deblurring for instance, 

becomes more effectual. This is crucial when investigating real-time processing. An 

efficient algorithm not only tells us how the signal processing could be quickly 

implemented, it can also reveal what hardware looks most appropriate for the 

analysis. 

In this context it is interesting to compare FIR filtering with wavelet filtering : 

They both use convolution, the wavelet filter is, leaving decimation/interpolation out 

of consideration, a very specific FIR filter with a natural finite support and very much 

governed by orthogonality conditions. The classical FIR filter always makes use of a 

truncated (windowed) set of filter coefficients and judges a 'brickwall' frequency 

characteristic as the primary objective. For the hardware we conclude that there is a 

common need on intensive Multiply-Accumulate (MAC) operations. 

With the appropriate choice of wavelet transform, the wavelet space contains less 

correlated data. One could see this as a lossless compression operation. This allows 

statistical filters like Wiener filters to be more efficiently run. 

Considering implementation, two problems arise. First, how fast can a discrete 

wavelet transform be run on a computer. Biorthogonal transforms with the lifting 

scheme are the ultimate choice.(See Chapter 6). Second, on what microcomputer chip 

can these algorithms best be implemented.(See Chapter 7). Digital signal processing 

requires a lot of parallelism to boost the performance to a real-time processing level. 

Two systems are investigated : the VSP system from Philips with a vast amount of 



Abstract ix 

primitive ALUs and the MVP from Texas Instruments with one master and four 

elaborated slave processors. The last one proved to be the most effective one. When 

many processors are involved in a real-time process it turns out to be extremely 

difficult to equally divide the weight of the algorithm over the minimal amount of 

processors. 

Chapter 8 comprises a summary of the main results and suggestions for further 

research. 
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Introduction : How the Thesis Developed 

and its Organisation 

xii 

In 1990, my Institution established a number of postgraduate collaborations with 

English, French, Czech and Slovak Universities in the field of avionics and micro 

electronics. The activities with Western European Universities concentrated on 

curriculum and course development for the STAR (Specialised Training in 

Aeronautics and Research) program. In collaboration with the Technical Universities 

of Prague, Bmo and Bratislava in Eastern Europe we organised an MSc course and a 

research program in micro electronics based on a TEMPUS project which involved 

me as a lecturing in digital signal processing (DSP). 

It was with this background that, early in 1993, I contacted Cranfield University 

with the view of collaboration in avionics. As I was a specialist in nsp it seemed an 

intriguing idea to me to further develop my nsp knowledge in the field of aerospace 

techniques. A PhD was a good synthesis of co-operation in research in a well 

established European University. 

I was very pleased when I first came to Cranfield, that Prof. Jonathan Blackledge 

wanted to consider my vague proposal for collaboration. He introduced me to one of 

his MSc students, Patrick Lezeau, who had finished his thesis on 'Solutions to the 2D 

Non-Stationary Deconvolution Problem' . He asked me if I was interested in non

stationary problems and I said yes although I only vaguely knew what he meant 

because until then, as an engineer, I had almost exclusively been busy with stationary 

problems. After reading Lezeau's thesis I became very much interested in the subject 

and I made an agreement with Prof. Blackledge to start a general study on non

stationary problems in DSP. That is where it started! 

Being a part time student it was important to me that there were some common 

interest between the activities at the school of Computing Sciences and my Institution, 

the KHBO. Therefore the idea was developed to situate the thesis as follows: 

• At the DMU : Investigate and develop new algorithms for non-stationary signals 

and systems. 
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• At the KHBO: Implement these algorithms on fast video processors. Investigate 

the performance and develop new visions for future semi-custom and full custom 

DSP and image processing chips. 

In the first year I investigated the behaviour of stochastical processes to become 

aware of non-stationary problems and their possible solutions. I also studied image 

processing to become conscious of the complexity of 2D problems. My first 

temptation to tackle non-stationary problems was by exploring the field of stationary 

techniques and the way in which way they were applicable. 

The use of the chirp z transform was a first attempt to detect a stationary signal 

after it had been convolved with a non-stationary kernel. The results are described at 

the end of Chapter 2. This chapter contains also some fundamentals on Signal 

Theory. Although not strictly being part of the non-stationary problem, I found it 

useful to incorporate it in a general review on Signals and Systems. It reminded me of 

linearizing techniques in non-linear network analysis. When signals in an electronic 

analogue system become larger, the response of the system can gradually alter 

becoming non-linear. An interesting field of research concerns the weakly non-linear 

systems where both system descriptions meet. Examinations of non-linear systems 

often make use of linear techniques as a first approximation to the solution. The same 

is true for stationary / non-stationary signals and systems. 

Chapter 3 considers the numerical techniques for non-stationary deconvolution 

in ID and 2D. Considering the nature of speech processing and knowing the Linear 

Predictive Coding (LPC) technique I became aware of the need to analyse non

stationary signals in such small time or space frames that they are by themselves only 

weakly non-stationary (i.e. approximately stationary). This brought me to Short Time 

Fourier Transforms and later on to Gabor and Wavelet Transforms. 

I had only been involved with Fourier, Laplace and z Transforms in filter and 

control engineering. It seemed interesting to me to make an historical and a technical 

study of how these transforms were discovered and how they gradually became 

mature disciplines. 

I started with Joseph Fourier and his harmonic decomposition of periodic signals 

and ended with Luc Sweldens lifting scheme for fast biorthogonal wavelet 
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transforms. This evolution is described historically in Chapter 1 where it is presented 

as a literature survey. 

Chapter 4 not only treats classical digital filters in ID and 2D, it also 

concentrates on Wiener filters and how they can be used in wavelet spaces to remove 

noise out of a noisy signal. Wavelets are used before they are explained. This was 

done to keep all the Wiener filter applications together. We refer to Chapter 5 for all 

theoretical background on wavelets. 

Chapter 5 depicts in a mathematical language the evolution from Fourier 

analysis to wavelet transforms. It ends with some applications of Daubechies' 

wavelets. 

When I started my research there were few publications on wavelets and on how 

to build them. I spend quite some time in my second year on designing some proper 

wavelets and the software to do the analysis. I found it very inspiring and it gave me a 

profound insight in to what wavelets are and how they should be used. This is 

reported in Appendix to the Chapters 5 and 6. 

It was initially frustrating when I first started surfing on Internet and I found many 

reports on applications I was working on. The wavelet construction was one of them. 

Thus, in my third year, which was almost completely oriented to applications like 

real-time Wiener filtering in wavelet space. I consulted the Internet intensively and 

reoriented my research to algorithms, which were reported on the Internet but not yet 

officially published like for example Sweldens' lifting scheme for biorthogonal 

wavelets. Consequently it was implemented in a Video Signal Processor (VSP), which 

was my original contribution to the field. The Internet can't be ignored in modem 

research, it is a powerful window on science if one can risk looking at it. It very much 

broadens the view on how the world responds on new techniques and it helps one to 

keep the pace with new developments. 

Chapter' looks more deeply at the wavelet problem and explores new wavelets 

such as biorthogonal wavelets and algorithms such as the lifting scheme for example 

which is not based on Fourier transforms . This lifting scheme is thoroughly 

investigated on its efficiency for further applications on VSPs. 
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In Chapter 7 new processors for real time image processing such as the Philips 

Video Signal Processor (VSP) and the TMS320C80 from Texas Instruments are 

explored. Non-stationary signal processing like noise reduction and image 

compression are implemented on them. Finally some philosophical thinking IS 

produced how ASICs for real time image processing could be build efficiently. 

Integrated in the text, some Mathcad® files were introduced. Although these 

instructions are mathematically well edited and understandable, a review of the most 

important Mathcad instructions is made at the end of the thesis. 

Chapter 8 formulates the results of the thesis and makes some suggestions for 

further research. 

To conclude, my PhD work, reported in this thesis, produced a general review on 

stationary and on non-stationary problems in digital signal and image processing. It 

was not the intention to focus on one particular problem but to look at the area in the 

broadest way and to come to algorithms which could efficiently be implemented on 

VSP chips. The final goal was to find out which computer architecture was most 

appropriate for the treatment of non-stationary signals. 

For me, personally, it was a fantastic experience and it enhanced very much my 

mathematical knowledge in the field of DSP. As an engineer, it gave me the 

opportunity to look at applications and implementations with a much greater palette of 

tools then I had before. However, to quote Leonardo da Vinci : 'There is no higher or 

lower knowledge, but one only, flowing out of experimentation'. 

I am sure that ,in the future, this acquired knowledge will result in a successful 

collaboration between my Institute and the Department of Mathematical Sciences of 

the De Montfort University. An ESPRIT proposal is already established where the 

techniques described will be used. 
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CHAPTER 1 

Literature Survey 

1.1. Introduction 

The intention of this literature survey is first to present a brief overview of the 

evolution of signal analysis during the history of mathematics. Yves Meyer gives in 

his book ' Wavelets, Algorithms & Applications' , an interesting historical 

perspective on Wavelets. [61] . Very recently a new book came on the market which 

tells the story of wavelets 'The World According to Wavelets' which depicts in a 

very accessible way wavelets, how they were created and the people involved with 

the topic.[58] 

In this Chapter a review of the consulted literature, especially on wavelets, is 

given. A systematic discussion on what wavelets are , how they are constructed and 

where they can be applied, is given. 

Finally, books and literature on other subjects such as non-stationary 

deconvolution, chirp z transform, Wiener filtering are reviewed . 

1.2. Signal Analysis before Wavelet Era 

Returning to the origins brings us to Joseph Fourier. He asserted in 1807 that any 

2n-periodic function x(t) can be reconstructed with a sum of sines and cosines: 

.. .. 
x(t) = ao + Lak cos(kt) + Lbk sin(kt) ( 1.1) 

k=1 t .. 1 

with the well known expressions for ao ,at. bk. (See Chapter 2) 
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These were very surprising results and they focused mathematicians on a better 

understanding of functions and integrals. In fact until then entire series were used to 

represent and manipulate functions. By passing from power series like: 

( 1.2) 

to expressions of the form 

~ ~ 

ao + Lak cos(kt) + Lbk sin(kt) ( 1.3) 
k=1 *=1 

a whole new world of mathematical thinking was introduced. 

In 1873, Paul Du Bois-Reymond constructed a continuous, 21t-periodic function 

of a real variable , whose Fourier series diverged at a given point. For Fourier's 

statements to stay true some refinements on function notation, convergence of Fourier 

series and research on other orthogonal systems were necessary. 

Lebesgue formulated the functional concept best suited for Fourier series. It 

involved the space L 2[0,21t] of square integrable functions on the interval [0,21t]. 

Another research path led to wavelets. This path was followed by Haar who 

wondered if there existed orthogonal systems other than those based on sines and 

cosines. 

In particular could a set of orthogonal functions {ho(t),hl(t), .... ,hn(t), ... } defined 

on [0, I) be found so that for any function x(t) continuous on [0, I) the series 

( 1.4a) 

1 

where (x,hn ) = f x(t)hn (t)dt (l.4b) 
o 

converges to x(t) uniformly on [0, I)? 
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In 1909 Haar discovered a very simple solution, not imagining that he in fact 

opened the route to the discovery of an infinite number of solutions . The Haar 

system makes use of a non continuous block function . 

The basic function is hl(t) =1 on [0,%) ,-Ion [y2,l) , and 0 outside the interval 

[0,1) .Translated and dilated versions of hl(t) form an orthogonal set. (The theory and 

applications of this is described in more detail in Chapter 5) . One criticism on the 

Haar construction is that the building blocks hn(t) used to construct continuous 

functions are themselves not continuous functions ! The approximation with a limited 

number of terms in Eq. (1.4) results in a sample and hold action with the mean value 

of x(t) during the hold time being a sample value. Another problem arises when 

continuous functions with continuous derivatives are to be approximated by a Haar 

system. This situation is completely inappropriate and leads to an infinite number of 

terms! A much better solution in this case would be a polynomial or higher order 

approximation instead of the simple sample and hold rule. 

Faber and Schauder replaced the block function by a triangular one with basic 

function: l1(t) = 2t on [O,V2) , 2( I-t) on [y2,1) , and 0 outside the interval [0,1). Once 

again a set of functions could be constructed with dilated versions of the basic 

function and a so called Schauder basis could be constructed. 

In 1927, Philip Franklin a MIT professor had the idea of building an orthogonal 

basis starting from the Schauder basis. It had the advantage of decomposing any 

function in L2[O,I) which the Schauder or Haar bases could not. The weakness of the 

Franklin basis was that it had no longer a simple algorithmic structure. The functions 

in a Franklin basis are unlike those of the Haar or Schauder basis; they are not derived 

from a fixed function by integer translations and dyadic dilations. This defect caused 

the Franklin system to be abandoned for almost 40 years. It was Stromberg who 

discovered in 1980 an asymptotic estimate of the Franklin function which could be 

translated and dilated to construct an orthogonal basis. 

Before coming to recent times it is important to mention that in the 1930s 

scientists were interested in mathematical tools to describe the Brownian motion and 

hence random signals. This brings us to non-stationary signals. A straightforward 

procedure, with the Fourier transform in mind. was to analyse these signals in time 
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slots . A time translatable window was created to slide over the signal. The Short 

Time Fourier Transform (STFT) was born. In 1946 Dennis Gabor [40], well aware of 

short time changing frequencies in speech and music, wrote that: In the framework of 

Fourier analysis where sines and cosines oscillate for all times, it would be a 

contradiction in terms to consider short time changing frequencies. He soon became 

aware of a painful compromise : The smaller the window the better sudden changes 

could be located ,but the blinder one becomes to lower frequency components in a 

signal. By choosing a bigger window, more could be seen of the low frequencies but 

at the expense of localising a phenomenon in time. Gabor was one of the first to 

relate the Heisenberg uncertainty principle in physics to signal and communication 

theory . So he introduced the principles of time resolution ( ~t) and frequency 

resolution ( ~f ) into signal analysis. He also found a lower bound solution for the 

Heisenberg uncertainty principle, i.e. 

~t ~f ~ 1/41t (l.5 ) 

The Gaussian window seemed to be the lower bound solution for the Heisenberg 

compromise. Nonetheless Gabor had to admit that with his 'Gabor Transform' it was 

not possible to create orthogonality as with the classical Fourier Transform. 

1.3. Wavelets 

Meyer[61] states that it is almost a job for an archaeologist to find the roots of 

wavelets! Wavelets were implicit in mathematics, physics, signal and image 

processing, and numerical analysis long before they were given the status of a unified 

scientific discipline. As a starting point however he takes the work of Jean Morlet, a 

geophysicist working for the French oil company Elf-Acquitaine who developed 

wavelets as a tool for oil prospecting. 

The standard way to look for oil , introduced in the I 960s, is to send seismic 

impulses underground and to analyse their echoes. This analysis is supposed to tell 

how deep and how thick the various layers are and what they are made of. Roughly 
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speaking, the frequencies of the echoes are linked to the thickness of the various 

geological layers, with high frequencies corresponding to thin layers. 

Around 1975 Morlet reintroduced the 30 years old Gabor Transform but ran into 

the impreciseness of time measurements in the high frequencies. Another serious 

drawback was the absence of a numerical algorithm to reconstruct the signal from the 

transform. 

Thus Morlet took another approach. Instead of keeping the window fixed and 

filling it up with oscillations of different frequencies he did the opposite ; he kept the 

number of oscillations in the window constant and varied the width of the window by 

stretching or compressing it. He called them wavelets of constant shape to 

distinguish them from what he called the Gabor wavelets. 

Morlet developed empirical methods for decomposing signals into wavelets and 

reconstructing them. His work was rejected by colleagues and he sought a stronger 

mathematical support in Marseille where Alex Grossmann was working on quantum 

mechanics and signal processing. 

There was the 'Morlet recipe' for the transform but it was not clear whether its 

numerical tools were true in general or just approximations. To validate the empirical 

work, Grossmann and Morlet [19] first showed that the energy of the signal was 

unchanged under transform action so that one could exactly transform back and forth. 

Unlike the Fourier transform where only one integral was involved in the inverse 

transform this Morlet transform needed a double integral due to the double variable 

(time and frequency) which was involved. Finally,[19] they found a good 

approximation with one integral but then started worrying about the error. It was only 

after many numerical experiments that they dared to say that the error was zero! 

Thus the first description of a wavelet was produced. The next step was to 

consider orthogonality. In 1981 Roger Balian thought he could prove that it was not 

possible to have an orthogonal representation with Gabor transform. Meyer had a 

similar idea and thought he could prove that orthogonal wavelets didn't exist. In 1985 

he failed, by precisely constructing by trial and error, the kind of wavelet he thought 

didn't exist! Daubechies [57] wrote later that it was almost a miraculous discovery, 

because it was realised without an underlying concept as Meyer later admitted. 
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Another disappointment for Meyer was to find that Stromberg had created another 

orthogonal wavelets 4 years earlier. 

This was really the start of an increase in consciousness about different research 

fields all heading in one direction. More progress was made when in 1986 a 23-year

old student, Stephane Mallat said to Meyer that the multiresolutional analysis as 

wavelets was essentially the same thing that electrical engineers had been doing under 

other names. Meyer stated that : This was a complete new idea, the mathematicians 

were in their corner, the electrical engineers were in theirs, the people in vision 

research like David Marr were in yet another corner, and the fact that a young man 

like Mallat was capable of saying that they were all doing the same thing and that 

they had to look at it in broader perspective, that was quite remarkable! 

A publication [9] resulted out of this meeting in which it was made clear that the 

work that existed in many guises and under different names like wavelets, the pyramid 

algorithms used in image processing, the subband coding of signal processing, the 

quadrature mirror filters of digital speech processing were at heart all the same. Using 

wavelets to look at a signal at different resolutions can be seen as applying a 

succession of filters, filtering out high frequencies with short wavelets and low 

frequencies with long wavelets. 

Wavelet theory benefited very much from Mallat's original ideas. For example, 

the new concept of a scaling function made it indirectly possible to construct a Fast 

Wavelet Transform (FWT) . Ronald Coifman said that Mallat's fast computing 

algorithm had the same effect on non-stationary analysis as John Tukey's FFr 

algorithm on classical Fourier analysis. Mallat also described in a framework how to 

construct new orthogonal wavelets. 

Unlike the Morlet or Meyer wavelets these new wavelets were created using 

iteration processes. Meyer said of this: Mallat launches brilliant ideas that keep two 

or three hundred people busy, then he goes on to something else. It was Ingrid 

Daubechies with her tenacity, her capacity of work, who implemented it. 

Daubechies wanted to construct wavelets for which it took much less 

computational time to calculate coefficients than Meyer's infinite orthogonal 

wavelets. Daubechies' constraints were very severe; in addition to orthogonality she 
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wanted the wavelets to be finite (i.e. with compact support), very smooth and with 

vanishing moments. (See Appendix 5B) . She could create a whole set of wavelets, 

starting with the Daubechies2 ( 2 filter coefficients) which was found identical to the 

Haar transform and proceeding with Daubechies4 •... Daubechies20 . The technique is 

explained in Appendix 5b. 

When the euphoria of all this splendid mathematical theory past, researchers 

started asking questions about how to apply it efficiently in for example speech and 

image processing where new ideas started to be voiced . 

The biorthogonal wavelet was created to allow the use of symmetrical filter 

coefficients . Orthogonal wavelets were all constructed with asymmetrical filter 

coefficients. 

Wavelet packets were constructed by making use of the best basis technique. 

Instead of finishing with the wavelet coefficients based on Mall at' s scheme ( for 

bandpass filtered signals) all spaces are continuously split up in two equal 

subspaces., Information costs are calculated for the original space and the two sets of 

coefficients in the subspaces. Information costs in all spaces are compared and 

minimal values are used as a directive to construct the best basis .(See Chapter 7) 

This gives better compression ratios than with plain wavelet analysis for example. 

,. ----, 
I I ,-51-, 

Fig.I.I. Sche1tUltic representation of a space and its subs paces after using splitting 
on 3 levels. The top rectangle represents the space V3 and each other rectangle 
corresponds to a certain subspace of V3 generated by wavelet packets. The slanted 
lines between the rectangles indicate the splitting. The dashed rectangles then 
correspond to the wavelet multiresolutional analysis VJ = Vo tB Wo tB WJ tB W2 (See 
Paragraph 5.4.5). The bold rectangles correspond to a possible wavelet packet 
splitting which is. dependent on the information cost. a possible best basis. 
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The lifting scheme could be seen as a kind of turbo FWT . By using biorthogonal 

wavelets and taking into account the symmetry in its filtercoefficients Sweldens et al. 

[12] were able to construct a very efficient algorithm almost at the speed of FFf! 

This is used in the research on noise reduction using Video Signal Processors (VSP) 

in this thesis. 

New fields of research are wavelets for irregular sampled data where the lifting 

scheme could be very useful. Also wavelets on spheres are under investigation. They 

could for instance be used in space research on the characteristics of the earth's and 

other planet's surfaces. These and other new topics were suggested by Wim Sweldens 

[ 18] 

This historical review is not intended to be complete. In fact, I used it as a 

guideline for my study of wavelets. It gave me a better understanding how it could be 

embedded. In Chapter 5 further mathematical details are presented. 

1.4. Publications 

1.4.1 Tutorial Literature 

The first paper I was confronted with when starting my Ph.D. work was the article 

of I.M. Blackledge and P. Lezeau [1] which was a compilation of Lezeau's MSc 

thesis at Cranfield University. It investigates the algebraic solutions of non-stationary 

deconvolution. 

Seeking for alternative techniques for non-stationary signal analysis I became 

interested in wavelets. The fist article I found enticing was an IEEE paper of O. Rioul 

and M. Vetterly [2] : It developed a good balance between historical evolution of 

signal analysis and mathematical background, written from an engineers viewpoint. 

This definitively put me on the wavelet trail and articles like Bultheel 's [4] one 

affirmed to be a very comprehensive introductory article. An explanation of the 

mathematical background was found in [5]. Once the basics understood I went 
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searching for implementation algorithms : R. Strichartz [7] , C. Taswell and K. 

McGill [8] describes on how to implement Mallat's Fast WT in an algorithm. 

I also explored the origin of wavelets this brought me to some basic articles from 

Grossmann and Morlet [19] and Daubechies [13],[17]. In Hubbard's book [58] a lot 

of eminent mathematicians testify about their experiments with wavelets; very 

interesting to read and inspiring for a better understanding of wavelets. 

With some algorithms, written in Matlab, the need for better understanding of 

Mallat's scheme brought me to his article on multiresolutional analysis [9]. At that 

time I started searching on Internet for new visions on wavelets . So I found W. 

Sweldens' publication on multiresolutional analysis.[II] and its presentation of the 

lifting scheme [10] . This new idea opened new interesting prospects on wavelets : 

The use of spline polynomials for the construction of biorthogonal wavelets in a fast 

lifting scheme with simple arithmetic. 

The study of Unser's articles [20], [21] certified my vision on the importance of 

spline polynomials for the construction of biorthogonal wavelets. 

As a last interesting article I found Sweldens' [18] : 'Wavelets: What Next?': 

Very inspiring. 

1.4.2. Applications 

Most of my work was oriented to deconvolution in the very broad sense : non

stationary deconvolution, noise reduction, object identification, etc. The papers 

consulted were either directly or indirectly used in the applications reported in this 

thesis. There is for instance information about spline functions implemented in the 

lifting scheme for biorthogonal wavelets.[ 12] There are also publications from 

astrophysicists trying to make better pictures of the universe 

.[24],[25],[26],[27],[28],[29] and there are papers from people working in Morlel's 

footsteps and attempting seismic exploration to extract hidden information by using 

Gabor and Wavelet transforms [30],[31]. 
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In this context, two-dimensions is a natural next step . Image processing, much 

more then one-dimensional signal processing, needs efficient algorithms . 

Applications such as direction detection were studied.[34],[35],[36]. 

The IEEE Engineering in Medicine and Biology [33] looks at a number of uses 

of Wavelets in Image Processing. All kinds of biomedical signals are analysed. 

Transforms performed on data normally result in a more compact organisation of 

the data. Neural networks can profit from this because they need less data for training. 

[60] 

There is currently considerable efforts being invested to extract music, originally 

performed by Johannes Brahms, from an old wax drum .This is reported in[39] . 

1.5. Books 

Ingrid Daubechies' 'Ten Lectures on Wavelets' [57] proved to be the most 

valuable book on wavelets. She was a privileged witness at the birth of wavelets. Next 

to the mathematical explanation she gives a lot of interesting background comments 

about the why and how. Considering the time when it was written, in my opinion not 

yet surpassed. 

Yves Meyer's book :' Wavelets, Algorithms & Applications' [61] is based on 

lecture notes written by Meyer. He is a brilliant mathematician says Daubechies, an 

important personality in the wavelets but didactically this book is not so well built. 

He present an interesting historical review on wavelets but considering it appeared a 

year later on the market than Daubechies' book , it is not really an original 

publication. 

B.Ruskai (ed)'s 'Wavelets and their applications '[65] is just a collection of 

articles with a broad field on applications. 

Gilbert G. Walter's 'Wavelets and Other Orthogonal Systems with Application.' 

is a rather disappointing book. The publisher presents it with the comment "Unlike 

most other books that are excessively technical, this text presents the basic concepts 

and examples in a readable way". There is indeed less mathematics in it than In 

Daubechies' book but it does not make it easier to understand it because, at least In 
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my opinion, the author by omitting some fundamental mathematics, produces 

sometimes sloppy explanations or proofs. 

M. Victor Wickerhausen's 'Adapted Wavelet analysis from Theory to Practice' IS, 

referring to the publisher .. a detail-oriented text, intended for engineers and applied 

mathematicians who must write computer programs to perform wavelet and related 

analysis on real data". It provided me with a lot of information and almost ready to 

use C software for wavelet analysis and synthesis. 
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CHAPTER 2 

System Theory 

2.1. Introduction 

In the preceding chapter a historical review was first made of the evolution in 

signal and system theory, the field to be researched was explored and a scenario for 

research was outlined. 

Because a lot of advanced mathematics will be involved in non-stationary signal 

analysis a sound foundation on basic system theory is desirable. In this Chapter 

sampling, convolution, deconvolution and Fourier transforms are defined together 

with the z-transform and the limitations when confronted with non stationary signals. 

Some related research field such as the chirp z transform are also discussed. 

2.2. Signals and Systems 

We will consider analogue and discrete signals and systems. Mathematically a 

treatment of signals and systems is identical. Physically however, they have a totally 

different meaning . Signals will be used to examine systems or as mathematical 

expressions on how systems respond to stimulating signals. We will use expressions 

like f(t),sCt), x(t), yet), ... for analog signal and reserve h(t) for system notation, (t: 

continuous time notation; t E ~ ).The discrete versions will be f(n.ts), s(n.ts), x(n.ts), 

y(n.ts), .. h(n.ts) nE Z where ts is the sampling time and fs the sampling frequency = 
I/ts). The shorthand notation will be fen), sen), x(n), y(n), .. hen). 

In two-dimensions we will use expressions like f(x,y), g(x,y), s(x,y) for images. 

(x,y will in this case stand for a continuous space notation in the plane; x,yE ~ ). 
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Systems like filters for instance acting upon images will use the expression h(x,y). 

Note that these continuous expressions have only a theoretical meaning but could be 

advantageously used in transforms to mathematically study the subject. Since 

digitisation is possible, image processing makes use of discrete co-ordinates. The 

pixel distance is never mentioned; it is in fact dependent on the size of screens and 

paper on which the image is 'projected' . The discrete versions will be notated as 

f(n"n2) g(n"n2), s(n"n2), h(n"n2). (n\,n2 E Z). If necessary, pixel distance can be 

calculated by inverting the pixels per inch expression (ppi). 

We will distinguish 3 kinds of analog and discrete signals and systems: 

I. Specific test signals 

• O(t), O(n) : one dimensional delta pulse. Note that O(t) is an impulse of 

-
infinite height with J 5(t)dt = 1 . (Theoretically useful but not practically 

manageable). o(n) is just a pulse of amplitude I at n=O. 

• O(x,y) , O(n"n2) : two dimensional delta pulse. 

• u(t) , u(n) : one dimensional unit step. 

• u(x,y), u(n"n2) : two dimensional unit step. 

• u(t) - u(t-to) , u(n) - u(n-m) : one dimensional pulse of width to (analog) , m 

(discrete). 

• u(x,y) - u(x - xo. y - Yo) , u(n),n2) - u(n)-m),n2-m2) : two dimensional analog 

and discrete pulses. 

2. Deterministic and stationary Inonstationary signals and systems. We distinguish 

periodic and non-periodic signals and systems: 

- -• L O(t - mtJ; me Z or discrete LO(n - k); n,ke Z Analog and 
m=-- k=-

discrete delta pulses series. 
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• sin(27tft), sin(21tnJ/fs) or also sin (cot) , sin(O.n) with 0)::21tf and 0=27tf/fs 

or also dOn. (periodic) 

• ei·01nl d·o~ n2 : 0, and O2 are in this case the two-dimensional frequency 

( angular velocities) variables. 

• nonstationary signals : discontinuous steps In amplitude response of 

sinusoidal functions result in nonstationary behaviour. 

An example: x(t) ={ sin(oo,t) for 0 ~ t $ 'tl + sin(002t) for 't, < t ~ 't2 }. 

• specific non-periodic signals are very often impulse responses of systems 

described by exponentially decaying functions. This property is very 

important because it will make the integration or summation (eq. 2.3) 

possible. 

-
A condition for this will be : f h(t)dt < 00 

or in discrete form 
n=--

Some examples: h(t) = e·al (a >0) or discrete h[n] = an.sin(~.n) (O<a <1 ) 

t =0 •. 01.. 1 a = 5 

0.5 1.5 

ansin(~·n) 
coo 

OJ 

n =0 .. 50 

o 
o 

a 

0.=,9 ~ 

3Ja 

o 0 0 ~-.atlT7 .' 
o 

o 

5 

-Oj~!P~----------' 
o 20 40 60 

n 

Fig.2.1. Analogue and discrete impulse responses. 
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3. Non-deterministic stationary/non stationary signals. 

Many of the one or two-dimensional signals we want to examine like f(n): 

sampled speech or x(nl,n2): an image are random processes which are 

characterised by a joint probability density function (pdf). A discrete I D random 

process is said to be stationary or homogeneous in the strict sense if the joint 

probability density function does not depend on the origin of the index n: 

pdf(na)=pdf(nb)' Most of the signals we consider will be stationary in the wide sense 

: In stead of the very general requirements on the probability density function only the 

mean value and the correlation function will be involved E[f(n)] = mf (= cst ) 
means that the expectation of fen) or its mean value is constant. E[f(k)f*(k-n)] = 

Rr(n) for all k E Z means that the autocorrelation function is only dependent on the 

delay n.«( : complex conjugate of f). The special case of n = 0 reshapes this 

expression into Rr(O) = cr? (= cst ). This implies that the variance of a stationary 

signal is also a constant. 

Non-stationary signals are described by their probability density function. When 

the samples are known there is no problem to send a non stationary signal trough a 

stationary system and normal convolution provides the result. When only the mean 

value and the variance are known the convolution operation results in some simple 

expressions (see 2.3.2). Specific techniques for non stationary convolution and 

deconvolution will be developed in the Chapters 3 and 5. 

2.3. Convolution 

2.3.1. 1 D Convolution 

The operation of sending a signal through a system is called a stationary 

convolution when the system function itself does not change during the operation. The 

simplest signal to 'interrogate' a system is a delta pulse. To describe the operation, in 

engineering terms phrased as "sending a signal through a system" one first needs the 
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mathematical shifting operation: O(t) is the delta pulse at the origin (t = 0); to delay 

the delta pulse with 't time units, the expression should be modified to O(t -'t) which 

give a delta pulse at t = 'to 't can be positive or negative and should be considered on 

the interval -00 to +00. For causal systems we start from O. To 'catch' the specific value 

of a system, one should take h('t).O(t - 't). Finally, all these values are 'collected' with 

the integral : 

~ 

h(t) = J h(r)8(t - r)dr (2.1 ) 

This integral operation becomes a summation expression with discrete functions: 

-
hen) = Lh(k)8(n - k) (2.2) 

h=--

Because of this "interrogation" operation h(t) and hen) are called the continuous and 

discrete impulse responses of the system. 

Considering the fact that signals and systems can be constructed as linear 

combinations of delta pulses, the convolution of a more general function x(t) (or x(n» 

with a system h(t) (or hen) ) can de described as 

- ~ 

y(t) = f h(r)x(t - r)dr ( or yen) = Lh(k)x(n - k) ) (2.3) 
k=-

The operation is commutative. A shorthand notation makes use of the operator * 

yet) = h(t) * x(t) = x(t) * h(t) (or y(n)= hen) * x(n) = x(n) * h(n» (2.4) 
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2.3.2. Convolution of Non Stationary Signals 

When only the mean or variance of a signal is known ,the convolution ends in a 

simple multiplication. Without proof we note that: 

-
mean,,",p", = Lh(n).meanlnl,", (2.5) 

11=--' 

-
2 ~ 2 2 

G"",,,", = £.. h ( n ). GlnP"' (2.6) 
n=-

Causal systems start from n = O. 

2.3.3. 2D Convolution 

Theorems for 10 convolution can be transposed to 20. Another terminology is 

sometimes used : the input signal will be called the object function, instead of an 

impulse response one speaks of a point spread function (psO and the output signal is 

called the blurred object . [59] describes extensively the 20 convolution and its 

applications. The operation is defined by the following expressions: 

- -
y(n, ,n2 ) = L Lh(k, ,k2 )x(n, - k, ,n2 - k 2 ) (2.7) 

(2.X) 

The same expressions as (2.5) and (2.6) can de derived for the propagation of mean 

values and variances through a stationary point spread function. To keep for instance 

the mean value of an image constant in a convolution operation, the values of h( n ,.nz) 

are chosen in such a way that the sum of all h(n"n2) is equal to I. 
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2.4. Algebraic Modelling of the Convolution Operation 

2.4.1. ID Operation 

The discrete convolution can also be performed with a matrix operation. To do so 

a circulant matrix H must be constructed with the delayed function. The simplest way 

to explain this is with an example: Consider a system h(n) = an, nE {a,!, ... N-I} 

, 
(N=3) and a signal x(n) = {1,1,I,O,O,O} then g(n) = h(n) * x(n) = {1,I+a,l+a+a-, 

a+a~.a2}. The matrix construction for the convolution results in : 

0 0 
2 

I 1 ! I a a 

0 0 
2 a+1 la a a 

2 2 
+a+1 H a a 0 0 a x = y a 

0 
2 2 

'0 a a 0 0 0 
a ~ a 

2 0 
2 

0 0 a a o J 
a 

H .X = Y (2.9) 

0 0 a 
2 a 

0 0 
2 , atl a a a' 

, , 2 
a- a 0 0 a" ~ a + a + I 

0 

10 
, , a" + a a- a 0 01 0 

o j lo 
, 

0 0 a a 
a-

Note the circulant construction of the matrix H . In the successive columns a 

delayed and circulant version of the system elements is reproduced . The number of 

columns is dependent on the number of elements in the discrete signal (M). The 
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number of rows is dependent on the number of elements in the convolution result 

(M+N-I). 

When the columns of the H matrix are not composed of the same elements of 

h(n); for example when a would take another value in every column, the system is 

called non stationary and the operation is a non stationary convolution. A further 

discussion of this problem is given in Chapter 3 . 

2.4.2. 2D Operation 

The digitised object function x(nl,n2) and the point spread function h(nl,n2) of 

sizes A x Band C x D are extended to M x N by padding them with zeros. With M 

~ A + C -1 and N ~ B + D -I overlap is avoided . When M = max(A,C) and N = 

max(B,D) we call the operation a circular convolution. This result in an overlap at 

the edges of the image, if A « C and B « D the effect is negligible. 

To construct the H matrix of dimension MN x MN ,M2 partition should be 

considered with each partition of a size N x N. 

Ho ~-I ~-2 I I HI 

HI Ho ~-I I I H2 

H2 HI Ho I I H3 
H 

H2 HI I I H4 

I I I 

HM_1 HM_2 HM- 3 I I Ho (2.10) 

Each partition Hj is constructed from the j'h row of the extended point spread 

function h(nl,n2) : 
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h 
J .0 hj . N _ 1 h 

J.N- 2 
I I h 

J. 1 

h 
J.I 

h 
J.O 

h J.N- 1 
I I h. 0 

J. -

h 
J.2 

h 
J.1 

h 
J.O 

I I h 
H 

j.3 

J h h 1 h 4 J.2 
I I 

J. J. 

I I 

h 
J. N - 1 hj . N - 2 h 

J.N- 3 
I I h 

J.O (2.11 ) 

As with the impulse response for the ID case, the point spread function for the 

2D case will be considered to be periodic. Hj is a circulant matrix, and the blocks of 

H are subscribed in a circular manner. For these reasons, the matrix H in Eq.(2.9) is 

called a block-circulant matrix. 

Equation (2.9) still holds, but the dimension of becomes very loose. For M=N=256 

the size is M2 x N2 = 262,144 x 262,144. 

2.5. Transfer Function 

A very interesting signal function to convolve a stationary system with is the 

complex exponential dwt 
( or for the discrete case dOn) because this signal function 

stays invariant under convolution : 

- -J h(r)e}W(,-ndr = e}~ J h(r)e-1WTdr 

For the purpose of official definitions one interchanges 't for t. This is not a problem 

however, because they both represent time. 
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-
H({J) = J h(t)e-1iadt (2.12) 

e'Olt is an eigenfunction for the operation and H(ro) are the eigenvalues. Note that it is a 

frequency domain function. A more general name for H(ro) is the transfer or system 

function. In the discrete case the convolution operation becomes 

- -
Lh(k)ej{l(n-k) = e jUn Lh(k)e-1Uk 

k=- k=-

The same remark applies for the continuous function : Switch k for n. This is 

important because it sometimes leads to confusion about the variable k which in the 

Discrete Fourier Transform (OFf) is used as an integer frequency counter while n is 

used as an integer time counter! 

-
H(ej{l) = Lh(n)e- jUn (2.13) 

n=-

eiU is once again an eigenfunction and H(ein) could be considered as eigenvalues. 

H(e'u) is called the transfer function of the discrete system hen). H(e'u) is continuous 

and periodic. Two problems need to be solved to come to a matrix notation for (2.13) 

(i) The sum has to be made finite and the impulse response assumed periodic: 

- N-I 

hen) = hen + m.N) with m E Z and L~L 
o 

(ii) The complex exponential expression has to be made discrete: n ~ 21t.kiN 

This results in the Discrete Fourier Transform (Off) : 

N-I 

H(k) = Lh(n)e- j2
Id:

n
IN (2.14) 

n=O 
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This is a very intuitive approach and it helps developing practical solutions! 

2.6. Fourier Transforms 

The definition of the transfer function is in fact identical to the one used for 

the Fourier Transform. In this section we will restrict ourselves to review the 

transforms for 4 different cases of stationary signals Non stationary signal 

transforms are treated in Chapter 5. The theory can be found in [63] . Here we 

focus on a few very special properties of the transforms. We will use a square 

wave and show the differences and similarities for all of the following four cases: 

(i) continuous non-periodic signals/systems are transformed with the Fourier 

Integral. 

(ii) continuous periodic signals/systems are analysed with the Fourier Series. 

(iii) discrete non-periodic signals/systems are analysed with the Discrete Fourier 

Series. 

(iv) discrete periodic signals/systems are transformed with the Discrete Fourier 

Transform. 

2.6.1. Fourier Integral 

We consider a unique pulse h(t) = 1 for 0 $ t $ to 

= 0 for to < t $ 1. 

In our example we take to = .5. 

(J) =0 .. 32 h(l) =if(1~.5.1.0) 

H(ro) c I: h(I)·, J ···'dl 

(2.15) 
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Fig.2.2. Non periodic analogue pulse and its non periodic analogue amplitude 
spectrum to.sinc( ro. tr/2 ) is the result of the Fourier integral for the amplitude 
response. 

Remark: The Fourier transform of a non-periodic continuous function in time domain 

results in a non-periodic continuous function in frequency domain. The inverse 

transform can also be performed with an integral and is therefore numerically not of 

interest. 

2.6.2. Fourier Series 

A periodic version of the same pulse can be decomposed into the following 

series. In this example, we consider a periodic pulse with a width to = .5 and a period 

T=4 

n = 0 .. 20 T ~4 h(t) ::if(tS.5,I,O) 

o~r . j ·2'X'n·1 

C h(t)·e T dt 
n 

(2.16) 
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Fig. 2. 3Due to the periodization of the signal the spectrum has become discrete. The 

amplitude of the discrete spectrum is described by: (tolT).sinc(:r.n.tolT). 

Remark : Composing the original signal back with the harmonics is possible with an 

infinite sum formula. Numerically, this is not possible without errors and thus far 

from practical! 

2.6.3. Discrete Fourier Series 

A discrete version of the pulse can be made by sampling the analogue pulse at 

sample intervals t5' In our example we choose t5 = .1 sec. This brings the number of 

non-zero samples in the discrete series to M =6. 

nO .. 100 
It 

0, .. 2·1t h(n) ii{n"5,1,0) 
20 

00 

H(O) \' h(n)'~ n'O 
L.....J 

n=O 

(2.17) 
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h( n) H(!I) 
000 

of- 0000000000000 It< 
0 

I 

0 10 20 0 2 4 6 

n n 

Fig. 2.4. The spectrum of a discrete pulse is continuous. The amplitude response is 

characterised by the expression.' sin(QMI2)/sin(fl/2) 

Remark : Periodicity has come into the spectrum. 

2.6.4. Discrete Fourier Transform (DFT) 

Fourier and discrete Fourier series have to be combined to produce a discrete 

finite signal in both spaces. The fact that one has to accept that it is periodic in both 

spaces can be annoying and special contra measures should be taken when using 

DFTs for analysing non-periodic signals. In this example a pulse is analysed. As one 

has to accept that it must be considered as periodic, errors compared with the Fourier 

integral results will gradually increase as one reaches half sampling frequency (k=20). 

N 40 n O .. N 

k O .. N h(n) if{n <5,1,0) 

N I j 2ltnk 

H(k) 
I L h( n )·e 

N 

N 
n=O 

(2.18) 



System Theory 

h( n) 
000 

o lIIiHilll" IIIlII:umDDIIIIIIDIllmItl 

o 20 40 

n 

26 

0.2 .------r-----------, 

H(k) 0.1 Il 
000 o 

o 
o 

Il 

o 

Fig. 2. 5. The amplitude response in the frequency domain is characterised by 
sin(1t.M.kIN) / N.sin(1t.kIN) 

Remark : Redundancy can be removed from the calculation of the OFT. By 

considering powers of two as the number of samples involved in the OFT the 

complexity of calculation can be reduced from N2 operations to (N/2)log2N. The OFT 

then becomes FFT (Fast Fourier Transfonn). 

2.6.5. 2D DFT 

All 10 transfonns can be transposed to equivalent 2D transfonns. The OFT is the 

only usable transfonn for numerical applications. Therefore we only consider this 

transfonn and refer for a theoretical background to [59]. The 2 OFT can be defined 

as: 

NI 16 N2 16 

iJNI <nl'NI 5,i~NI <n2'NI 
\ 

\ 
I 

nl O,.NI n2 0., NI xnl ,n2 5, \,0
1
,0; 

\ 4 \4 . / 

kl O,.NI k2 O .. NI 

NI \ N2 I j2l!klnl j 1I·k2·n2 

Xkl ,k2 
\' \' NI N2 X ,e ,e 
~ ~ nl,n2 

kl = 0 k2= 0 

(2.19) 
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Fig.2.6. Spatial pulse and its 2D DFT amplitude representation. A shift operation has 
been performed on the spectral data so that the zero frequencies are translated to the 
middle of the k"k2 plane. 

2.6.6. Discrete Cosine Transform (OCT) 

The Discrete Cosine Transform is extensively used in image coding, especially in 

lPEG. It can be used to obtain a more compact data information on images before 

sending it through a neural network for identification. Once again we refer to [59] for 

an in depth expose on the subject. The transform is defined as : 

N-J 

C, (k) = L2x(n)cos(mV / 2)k(2n + I) for 0 ~ k ~ N -I (2.20) 
() 

= 0 otherwise 

One of the major advantages is the fact that if x(n) is real, C)l(k) is also real. Thus it 

allows one to work with real instead of complex frequency data. It not only halves 

memory space but due to the very compact form of the transformed data it can for 
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instance successfully be used as an input for neural networks to identify objects with 

much less data. (See Chapter 8) 

n = 0 .. 31 

k =0 .. 31 

x 
n 

000 

o 

o 

Xn = if(n $.7.1.0) 

C xk 
000 

iI'" " " "i ... " " i Ii "Hi 

)0 20 30 40 

n 

eX = costr( x) 

)0 

b 
0 

5 
0 

0 D%l0~ 

-5~------_.......J 

o 10 20 

k 

30 40 

Fig.2.7. Cosine transform of square wave pulse. 

The 20 Discrete Cosine Transform is defined by : 

N1-IN1-1 

Cx (k .. k 2 ) = L L4x(n .. n2 )COS«n:N1 / 2)k) (2n, + l»cos«mV 2 / 2)k2 (2n 2 + I» 
nl=Onl=O 

= 0 otherwise (2.21 ) 

2.6.7. Duality 

Although the inverse Fourier transforms were not defined explicitly in this 

chapter, one can find out [59] that there is definite symmetry in the equations. They 

are similar but not quite identical in form. This phenomena is called the duality in the 

Fourier transform (FT). An illustration is found in Fig.2.S . It shows that: 
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square wave in time domain -7 FT -7 sinc function in frequency domain 

sine function in time domain -7 FT -7 square wave in frequency domain 

Note that the square wave (Fig. 2.8a.) is dimensionally the same as in Fig. (2.8d.). 

The duty cycle of the square wave in both domains is the same 

(t<l1'=.5/4=.125 = QoIQs=2 x .392121t=.1248). This principle proves very useful in 

the design of FIR (Finite Impulse Response) filters. 

I I 
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hI( n) 
000 
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0.05 
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a 
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D 000 
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Fig.2.8. Illustration of the duality principle of Fourier transforms. 

2.7. Diagonalization of the Circulant Matrix 

2.7.1. ID Operation 

We now consider the matrix multiplication of the circulant matrix H and a 

discrete function w(k). 
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e 

w(k) 
e 

j2ltk( N- I) 

N 
e 

It can be shown that: 

H. w(k) = A(k). w(k) (2.22) 

This expression indicates that w(k) is an eigenvector of the circulant matrix H and that 

A(k) is its corresponding eigenvalue. Next, let us form an N x N matrix W by using 

the N eigenvectors of H as columns: 

W = [w(O) w(l) w(2) w(N-I)] (2.23) 

The knth element of W , denoted by W(k,n) is given by 

W(k,n) = ei2ltknIN for k,n = 0,1,2, ... , N-l. 

The orthogonality properties of the complex exponential allows writing the inverse 

matrix W- I , by inspection; its knth element, symbolised as W-1(k,n) is 

W-1(k,n) = (lIN). e-j2ltknIN 

Multiplying these 2 equations : 

ww-1 = W-1W = I (2.24) 

where I is the M x M identity matrix. The importance of the existence of the inverse 

matrix W-1 is that it guarantees that the columns of W (the eigenvectors of H ) are 

linearly independent. Elementary matrix theory tells us that H may then be expressed 

in the form 
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H = WDW- I (2.25) 

or (2.26) 

where D is a diagonal matrix whose elements D(k,k) are the eigenvalues of H ; that is 

D(k,k) = A(k) (2.27) 

Equation (2.25) indicates that H is diagonalized by using W- I and W as expressed in 

eq. (2.26). 

2.7.2. 2D Operation 

The diagonalizing process of a block-circulant matrix is similar to the 1 D case. 

This is however not the subject of further research. 

2.8. Convolution property 

Signals convolve in time with systems and result in a new signals. It is 

interesting to find out how their respective transfer functions act upon each other: 

yet) = h(t) * x(t) or discrete : hen) = hen) * x(n) (2.28) 

Taking the system function of both sides of the equality results in 

- -
Yew) = f f h(r)x(t - r)dre- jllX dt 

I=-f=-

After some mathematical manipulations, which detailed explanation can be found in 

proofs of the convolution property [63] , the expression becomes: 

Y(ro) = H(ro). X(ro) 

The OFT produces : Y(k) = H(k). X(k) (2.30) 
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In plain words, this means that a convolution operation In the time domain is 

transformed into a multiplication in frequency domain. 

These expressions can easily be transposed to 2D. For the 2D DFT we have 

(2.31 ) 

2.9. Modulation Property 

Similar to the convolution property (see also (63) one can proof that for all 

Fourier transforms the multiplication of two signals in the time domain results in the 

convolution of the 2 transformed signals in frequency domain: 

(2.32) 

2.10. Deconvolution 

Eq. (2.29) can also be rewritten as : 

X(ro) = Y(ro)lH(ro) (2.33) 

The DFT case enables a numerical solution: X(k) = Y(k)lH(k) (2.34) 

In 2D we have (2.35) 

This means that there is an elegant way to deconvolve an output signal y(t) (or yen) ) 

from a system h(t) (or h(n» : Calculate the transfer functions of output and system 

and divide one by the other. The same argument can be made for the 2D case. 

However, in practice one is required to regularise the result. 

With matrix notation the 1 D and 2D deconvolution operation becomes 

H-I 
X = . y (2.36) 
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Calculating the inverse matrix is not always possible and can, for large matrices 

become very computer intensive. 

Substituting Eq. (2.25) in (2.36), 

(2.37) 

Multiplying both sides of the equality with W'I yields: 

(2.38) 

This expression is very similar to Eq. (2.33). W'IX , W·ly are the respective DFfs of 

x(n) , yen) for ID and x(n),n2) , y(n),n2) for 2D. D'I is the inverse matrix of the 

diagonal matrix D - a formidable reduction provided D is indeed a diagonal matrix. 

This is the case for circulant matrices H constructed from stationary signals. The 

more non-stationary the system is, the more non-zero elements will show up beside 

the diagonal and the more it will look like an ordinary matrix with no special 

properties to produce a fast inversion. 

2.11. Laplace Transform 

-
In engineering literature one very often states that J h(t)e - jra dt should be < 00 

,excluding some functions for the Fourier transform . The Fourier transform of the 

unit step function for example, results in 7tB(ro) + l/jro. Problem is B(ro) where 

B(ro)~oo when ro~O. This can be omitted by general ising the Fourier transform to 

complex variables or practically, introducing a decaying function (e,en) that has to be 

-
multiply with h(t) so that f h(t)e-me-jradt shows no more delta function in its 

solution. Defining s = a+jro results in a new transform variable and transform 
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~ 

H(s) = J h(t)e-J' dt (2.39) 

This is the Laplace Transform. All properties derived for the Fourier transform are 

also valid for the Laplace transform. To the series of expressions (2.15), (2.16) we add 

Y(s) = H(s).x(s) (2.40) 

and H(s) = Y(s)/X(s) (2.41 ) 

Note that the variable s is complex. This makes H(s) a rather 'complex' function. 

Values of s where H(s) is zero or infinite are very interesting. They are respectively 

called the zeros and poles in the s-plane of the system function. Stable systems will 

have poles in the left part (cr<O) of the s-plane. To illustrate this we consider a transfer 

function with 2 poles (c and d)and 1 zero (a). 

a =. 20,· J.. 0 00 =·25,· I.. 25 

i :: 0 .. 20 j = 0 .. 51 

MI. . =log( IH1(i- 20,j- 25)1) 
J.I 

a= 10.45 

C :: 15.45 

d :: 5.45 

s(a,w) =ad ·00 

Hl(a,w) - s(a,w) +- a. ___ 1 _ 

s(a,w)+-c s(a,w)+-d 

M2. =M1 
I.J J.I 
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M2 

Fig.2. IO. M 1 shows th e spatial representa tion of a tramler fun ction in s with 2 poles 
at s/=-5.45 and 52=- 15.45 and I zero at sJ=- IO. 45. The contour plot of M2 makes this 
clear. 

Laplace transforms are used ex tensive ly in filte r des ign and contro l engineering. 



System Theory 36 

2.12. Z Transform 

2.12.1 1D Z Transform 

Similar to the Fourier transform for analogue signals we generalise the discrete 

Fourier transform of signals or systems. We can introduce a discrete decaying function 

-
p-n . This reshapes expression (2.13) into Lh(n)p-"e- JOn

• With a new variable z = 
n=-

p dn we obtain a new transform called the z transform : 

(2.42) 
n=-

The convolution property is also valid for the z transform ,.i.e. 

Y(z) = H(z) . X(z) (2.43) 

and H(z) = Y(z)lX(z) (2.44) 

As with the Laplace transform, we have a complex variable in a complex plane. 

The position of poles and zeros of H(z) are important to examine the stability of 

systems. pdQ describes the z plane in polar co-ordinates. Discrete systems are said to 

be stable when their poles lie inside the unit circle defined by p= 1. A similar 

construction to the Laplace transform (Fig. 2.10) can be made. 

Z-transforms are of importance in describing and designing of digital filters and 

digital control systems. 

2.12.2. 2D Z Transform 

When the spectrum of a point spread function h(nl,n2) has to be calculated, the 

2D DFf does not always give a finite result. As with the ID z transform we have to 

- -
consider the finiteness of L Lh(nl'n2 ) and introduce a damping factor PIP2 to 

",=-112=-

make the transform possible. Eq (2.6) translated to 2D becomes 
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- -
L L h(n , ,n2 )PIP2e-jOlnle-jOln2 

nl=-";!=-

With ZI = Ple·jill.nl and Z2 = P2e-jn2·n2 we construct the 2D z transform : 

- -
H(z)= L Lh(nl'n2)ZI-nIZ2-nl (2.45) 

nl=-nl=-

These functions are 4 dimensional and rather difficult to depict. Stability 

considerations are also much more difficult than in the ID case. Although one could 

also speak of pole planes and zero planes we will only consider systems with zero 

planes because they are much more stable and can be implemented with a 2D 

convolution operation. 

2.13. The Chirp Z Transform 

The FFf imposes severe restrictions on the number of samples and the analysis 

contour. An efficient algorithm to analyse a finite duration sequence by evaluating its 

z transform along certain general contours in the z plane is the chirp z-transform. [64] 

It is about 3 times slower than the FFf for the same amount of data, but it has some 

major advantages. The number of samples in the original sequence and in the 

transformed sequence can be different and it offers the possibility to scan a well 

defined zone in the z-plane. 

Let x(n) be a given N-point sequence with z-transform 

N-I 

X(z) = Lx(n)z-n (2.46) 
n=O 

The z-transform becomes a DFf by considering the transform on the unit circle 

and taking Zk=el21tk1N with k =O .. N-l. 

N-I 

X (k) = Lx(n)e-j2l171kIN (2.47) 
n=O 
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With the Chirp Z Transform (CZT) the z-transform can he evaluated along a more 

general contour : Zk= A.W-k with k = 0 ... M-I (2.48) 

M being an arbitrary integer, not necessarily equal to N, and A and Ware complex 

numbers defined with their polar co-ordinates : 

A = Ao.ei27t eo and W = Wo. ei27t CPo (2.49) 

In Fig.2.12 a region, defined by the following parameters, is examined 

- 1 e =-
o 12 

aaa trace 1 

90 

270 

2-Jt.(90 -k·'Po) 

M =100 k =O .. M-I 

Fig.2.1 I. 

Chirp z-transform can be used to scan for poles and zeros inside the unit circle in the 
z plane. In this example we start at 33(f take 100 steps of -J(I while decreasing the 
radius from I to 0.085. 
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Note that by an appropriate control of A, Wand M all points inside the unit 

circle could, whitin reasonable limits, be reached. This makes an accurate 

investigation possible on the values of all poles and zeros in the z transform of a 

sequence. This is an interesting idea because identifying impulse responses which 

have poles who are situated near the centre of the unit circle are very difficult to detect 

because they fade out very quickly. 

This can very easily be demonstrated with 2 decaying sine waves x I and x2. 

(Fig.2.12.) In x2 it is hardly possible to detect the oscillatory nature of the signal. 

Their respective FFTs are in fact searching for tracks of poles on the unit circle. The 

more they are inside this circle the less identifiable they are. The principle of the chirp 

z-transform can be simplified to an FFT operation with the W 0 parameter integrated 

in the FFT analysis. It is like scanning the z plane, not on the unit circle but on circles 

with radius Wo inside the unit circle ! Note how well these transformed signals 

(X I chirp, X2chirp) identify the damped oscillations in x I and x2. 

n = D .. 128 al =.9 

~I 
1t 

--
4 

WD I ::.9 

a2 =.6 

~2 
1t 

--
8 

WD 2 =.6 

xl = al"'sin( n·~ I) 
" 

x2 = a2
n
·sin( n'~2) 

" 

xlchirp =wo 1-"·al".sin(n·~I) 
" 

x2 chirp = WO 2-"·a2"'sin( n'~2) 

" 
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Fig. 2. 12. Damped oscillations and the result 0/ chirp z techniques (= multiplication 
with the Wo parameter) 10 enhance the signal. 

The FFT of the processed signals shows sharply the oscillatory frequencies. It is 

as if the poles of the signals were lying on the unit circle. 

X I = cfft( x I) 

10·lxlnl 
Dod 

5o·IX2nl 
l(l(~ 

I x I ChifJ'n1 

I X2 ChifJ'n1 

X2 = cfft( x2) XI chirp = cfft( xl chirp) 

6~-------------------------~ 

2 

n'2'~ 
128 

Fig.2.J3. FFT's o/processed signals shows sharp peaking at rrl4 and rrl8. in contrast 
with the inaccurate indication in the classical FFT results. 
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2.14. Non Stationary Application 

When my research started, non stationary deconvolution was the first item I was 

confronted with. Initially, it seemed to me, that non stationary convolution was in fact 

a blurring action and that deconvolving had to do with removing the blurring. To 

translate these problems to usable mathematics the problem was reformulated as: 

which way was the identifiability of the poles and zeros of a non stationary system 

affected by blurring? 

This research is not completed because the usefulness of the concept became 

more and more irrelevant in the evolution of the work. However, I found it interesting 

enough to report about it : 

The usefulness of the chirp z transform will be examined by trying to identify an 

impulse response x constructed out of 3 individual impulse responses hI, h2 h3 and 

blurred by a non stationary convolution with a changing sinc function. (In the 

frequency domain, a varying low pass filter.) When signals are so well identifiable 

with a chirp z-transform techniques, one can consider in which way they are still 

'recognisable' after a masking non-stationary convolution operation. 

x(n) ~ h(n,n') ~ y(n) (2.50) 

Can y(n) be non stationary deconvolved from the non stationary kernel h(n,n ') ? 

We examine this with an example of a 3 pole signal x(n) composed of hl(n), h2(n) 

and h3(n) and a non stationary kernel h(n,n') (h_n_s : h_non stationary). h_n_s is 

constructed out of a varying sinc function (see fig.2.14). 

N 32 NI =N- I 

hi :; .9n·sin(n·.5) 
n 

n=O .. NI-I 

x - convol (hi, convol (h2, h3» 

h3 = .7
n
·sin( n· 2) 

n 

N2 = length ( x) n2 =0 .. N2- I 

X= cfft( x) 
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b 
0.2 ,....-----------, 

02·2·11 

N2 

2 

Fig. 2. 14. Time response (a) and frequency response (b) of a 3 pole system composed 
of hJ, h2• h3• 

A non stationary sine signal is generated with 90 different values. The extreme 

functions and their respective spectra are shown in Fig. 2.15 and 2.16. 

sine Ip(bw,n) 

M =90 

m = 000 20 

k =OooM 

= bw if n-O 

b 
sin(n·1[·bw) 

w· otherwise 
n·1[·bw 

~ .=.5 

h_n_s.5M . = h_n_s M h_n_s M 
m m.- m 

.= h n s 
- - m.M 

2 

F _H .5M = efft(h_n_s .5M) 
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Fig. 2. /5. Extreme values of the sinc functions. 

0.3 

IF_H 0 I 
ml 

~ 0.2 

IF-H5M ml --
iF_H M I 0.1 
I m 
~ 

0 
0 0.5 1.5 2 2.S 3 

m·2·X 

20 

Fig.2. /6. Extreme values within which the spectra of the blurring function changes. 

To analyse the signal x a matrix H_n_s must be constructed with the non 

stationary values of the sinc function to perform the non stationary convolution: 

y = H_n_s. x . 
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zl=O .. M-I 

z2 =0 .. M 

nsl =0 .. 110 

ns2 =0 .. 90 

0.5 

~ 0 

xn2 
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zeros I 2 = 0 z .Z 

modulo( m, k, N) = I mod_count <- (k + 1). N - k + m 

mod( mod30unt ,N) otherwise 

H n s = stac z h - - ns I. ns2 - - modulo( ns I . ns2. II I ) . ns2 

Ly = length(y) ly=O .. Ly - I 
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ly.n2 

50 

Fig. 2. 17. The original signal x (conv(h,.h2.h3 )) and its blurred version y. 
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To extract the original contents of the signal, the blurred signal is analysed inside 

the unit circle. Starting from p = I, taking steps of .05 we come to .5 and at all these 

values, the data is analysed with chirp z techniques. The final result is made by adding 

all these results together. In comparison with the results in Fig.2.14b one can clearly 

identify the different frequencies involved in the signal x. The blurring does not harm 

very much the analysis although the frequency n = 2 is hidden by the blurring. 
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chirp_z(h,p) = N<-Iength(h) 

for n2 EO .. N - 1 

. n2 
h Pn2<- p ·hn2 

cffl( h p) 

Y _mean = m_chirpz( y , .05, .5) 

m3hirpz( h. stp • min"p) = H_mean<- 0 

for pEl, 1 - SIp .. min"p 

H--- chirp_z( h. p) 

45 

H H mean<- H mean t·~-
- - IHo! 

200r-------------~--------------------------------~ 

0.5 1.5 2 2.5 

n2'2'~ ,ly·2·..!:. 
N2 Ly 

Fig.2.1B. Chirp analysis of original and blurred signal 

A more difficult problem in the analysis is the identification of the decaying 

values in the signal. The different chirp analyses have been collected and displayed in 

Fig.2.19. From the bottom to the top of the picture one sees the analyses from p = I to 

P = .5 in steps of 0,1. One can see that when one is close to oscillating frequencies 

they are very well marked. Further away (at p = I and p =.5) one sees only weak 

information about the involved frequencies. Every maximum per function identifies 

the involved frequency. With p = .9 there is a maximum on HHly,2 at n = .5. The next 

maximum is on HH1y,4 with p =.8 an n = I. The last maximum is not so well 

identifiable. 
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max_chirp;( h, stp , min.J') = for pEl, I - stp .. min.J' 

H<- chirp_z( h, P) 

H 
H. 

_norm<- IHol If p=1 

H_norm<- augment (H_norm, 1=01) otherwise 

HH = max_chirp;( y, .05, .5) 

50~------------------------------------------------~ 

40 

!H~y.ol 
-of-

IHH1y . 21 t-5 
-+- 30 

IH~y.41 t-IO 
~ 

IHH1y •61 t-IS 
~ 

IHH I t-20 20 
ly.8 ....,,-

O.S 1.5 

1t 
IY'2'

Ly 

2 

--- -----

2.5 3 

46 

Fig. 2. 19. The chirp z-transJorm is for this purpose reduced to a FFT not only on the 
unit circle in the z plane but on a number oj concentric circles with radii I, 0.9, 0.8, 
0.7, 0.6, 0.5. The bottom Junctional display isJor p =1, the upper oneJor p = .5. 
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2.15. Conclusions 

The chirp z transform solution in the non-stationary deconvolution problem is only a 

first approach to a finer analysis. The idea is, once the poles are roughly located to 

concentrate more into details on those regions in the z plane and then to locally 

analyse them with chirp z-transforms. However, as the apparent usefulness of such 

an analysis is not very great no further efforts were made to fine tune the analysis. 

A 2D analysis is also possible with the same approach but was not realised. The 

problem becomes much more complicated because in 2D one has to look for zero 

planes in a 4D space instead of zero points just in a plane. As we were looking for 2D 

techniques for deconvolution the idea was abandoned. 
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CHAPTER 3 

Algebraic Approach to Non-Stationary Convolution 

and Deconvolution 

3.1. Introduction 

So far in this thesis, signals and systems were only treated in a very general way. 

As we will evolve more and more to 2D systems, some definition of equivalent 

terminologies are appropriate. Optics was involved with images long before they 

could be digitised. A lot of terminology comes from this field and is still in use: 

• The input signal is very often called the object function in the object plane. 

• The impulse response in aID system is translated for 2D as an instrument 

function or point spread function (psf). Because of the convolution effect one 

also speaks of a blurring function. 

• The output signal is named the data function in the image plane. 

The algebraic solution of I-D convolution/deconvolution seems at a first glance 

rather simple. Convolution is straightforward. Equation (2.5) tells us that convolution, 

stationary or non-stationary, results in a multiplication of a matrix H and a vector x : 

y = H . x and x = H"I . Y (3.1 ) 

The same expression is valid for a 2D system. 

Deconvolving means, given the data function y and the instrumentation function 

H find the object function x by solving a linear system of algebraic equations. In 

simple terms we deblur the image. Most of the work in the deconvolution operation 

turn out to be the inversion of matrix H . There are no problem with this unless : 
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(i) H is singular and the inversion is not possible. For stationary processes in ID : 

Y(z) = H(z). X(z). Inverting the process results in X(z) = Y(z)lH(z). This shows 

that if H(z) has zeros the operation in the frequency domain is not possible. The 

matrix method suffers from similar problems with H"l, whether it is stationary or 

non-stationary . 

(ii) H is a circulant or block circulant matrix depending on whether the origin of the 

signal is one or two dimensional. Certainly for 2-D signals the H matrices can 

become very large and consequently the inversion a very (computer) time 

consuming operation. For stationary processes the H matrices can via the FFT be 

converted into a diagonal or block diagonal matrix; these transformed matrices 

can very easily be inverted. Normally there is no need to do so because the 

transfer function method is much more efficient. 

(iii) For non-stationary processes the classical convolution property does not hold 

anymore, in this manner only the matrix method is applicable. In this respect 

two algorithms have been investigated namely an under-relaxation scheme and a 

conjugate gradient method. 

3.2. Non Stationary Convolution 

In Chapter 2 a preliminary definition of non-stationary convolution was given. 

We now investigate the problem in greater depth. In the continuous case, convolution 

is an integral operation that associates the object function x to the data function y via a 

given point spread function h. Non-stationary convolution arises whenever the 

instrument function is not identical for all points over which the object function is 

convolved. If, for example, the convolution models the blurring of an image, the non

stationary form will result in portions of the image being less resolved (more blurred) 

than others. 

Several types of non-stationary processes can occur: 

I. Amplitude variation : The frequency content of the instrument function stays 

the same but the amplitude changes. 
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2. Frequency variation : The amplitude of the instrument function stays the 

same but the spectrum changes. 

3. Energy conservation: Combination of both types mentioned above but with 

constant energy in the instrument function. 

4. Shape variation : The most general case when the fundamental shape of the 

instrument function varies. 

To model non-stationary convolution, the stationary convolution operation can be 

extended from 

- -
y(t) = J h(r)x(t - r)dr [or yen) = Lh(k)x(n - k) ] (3.2) 

k=-

- -
to: y(t) = J h(r,t - r)x(t - r)dr or [ yen) = Lh(k,n - k)x(n - k) ] (3.3) 

k=-

The impulse response h(t) is variable and changes with the delay (t-t). 

In 20 the discrete convolution is modified from 

- -
y(nl.n2) = L Lh(k .. k2)x(n l -k .. n2 -k2) (3.4) 

*1=-*=-2 

- -
to: y(nl.n2) = L Lh(kl ;nl - k .. k2 ;n2 - k2 )x(nl - k .. n2 - k 2) (3.5) 

k l =-k=-2 

The discrete instrument function is variable and changes with displacement 

(n,-k"n2-k2). For practical cases the boundaries of summation are not infinite because 

the convolution masks are limited to a length of K (to and 20 case) and a width of L 

(20 case). Expression (3.3) and (3.5) becomes. 

K-I 

yen) = Lh(k,n - k)x(n - k) (3.6) 
k=-{) 
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K-I L-I 

and y(nl,n2 ) = L Lh(kl;nl -kl'k2 ;n2 -k2 )x(nl -kl'n2 -k2 ) (3.7) 
*,=--{) *2=0 

3.3. The Convolution as an Algebraic Operation 

Chapter 2 described the procedure for constructing circulant matrices. To extend 

them to non-stationary circulant matrices one fills in every column with the 

appropriate impulse response corresponding to that delay. In images one says that 

every point of the object function has a different point spread function and 

convolution with these point spread functions has to be accomplished. A variable 

blurring effect all over the picture is the result. 

Some examples will be used to describe the construction of circulant matrices for 

stationary and non-stationary signals. First we consider a stationary signal composed 

of 2 short impulse responses concatenated one after the other. { [exnl and [~nl stand in 

fact for [an] and [~n] with neO ... 3 }. 

hi = [ <XQ al a2 a3] and h2 = [ ~o ~ I ~2 ~3] -7 HI: stationary matrix 

a o ~3~2~I~O a3 a 2 a l 

a l ao ~3 ~2 ~l ~o a 3 a 2 

a2 a 1 ao ~3 ~2 ~ I ~ 0 a 3 

a 3 a2 a 1 a 0 ~ 3 ~2 ~ I Po 
HI = 

Po a3 a 2 a 1 a O ~3 ~2 PI 

P 1 ~o IX3 a2 a 1 a O P 3 ~2 

P2 PIP 0 a3 a 2 IX 1 a O P 3 

P 3 ~2 ~ 1 Po a3 IX2 a 1 aO 

The non-stationary version H2 will be constructed with the same 2 impulse 

responses but now in a delayed construction . The first four columns are constructed 
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with samples of the first impulse response, from the 5th column on samples of the 

second impulse response are used. 

ao 0 0 0 0 P3 P2 PI 

a 1 aO 0 0 0 0 P 3 P 2 

a2 al aO 0 0 0 0 P3 

a3 a2 a 1 aO 0 0 0 0 
H2 = 

0 a3 a2 a 1 Po 0 0 0 

0 0 a3 a2 PIP 0 0 0 

0 0 0 a3 P2 PI Po 0 

0 0 0 0 P3P2PIPO stationary matrix 

The multiplication's of HI with the vectors x I = [I I I I 000 O]T and x2 = [0000 I 

I I I ] T are equivalent to the convolutions y 1 = h h x 1 and y2 = hI * x2 . Note how 

the step response function changes due to the delay incorporated in x2 compared with 

xl : 

r a 0 0 0 0 0 P3 P2 PI ao 

a I ao 0 0 0 0 P 3 P 2 al+aO 

a2 a I aO 0 0 0 0 P3 a2+ a l+ a O 

a3 a2 a I aO 0 0 0 0 a 3+ a 2+ a 1 + a 0 
-;;. 

0 a3 a2 a 1 Po 0 0 0 0 
a3+ a 2+ a l 

0 0 PIP 0 0 0 
0 

a3 a2 a3+ a 2 
0 

0 0 0 a3 P2 PI Po 0 
0 a3 

0 0 0 0 P3P2PIPO 0 
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aO 0 0 0 0 ~3 ~2 ~ I ~3+~2+~1 

a I aO 0 0 0 0 ~ 3 ~ 2 
0 

~3+~2 
0 

a2 a I aO 0 0 0 0 ~3 ~3 0 

a3 a2 a I aO 0 0 0 0 0 0 
-> 

0 (X3 (X2 (XI ~O 0 0 0 ~O 

0 0 (X3 (X2 ~ I ~ 0 0 0 ~I+~O 

0 0 0 a3 ~2 ~I ~O 0 ~2+~I+~O 

0 0 0 0 ~3~2~1~0 ~3+~2+~1+~0 

Note also the delay and the circularity in the response ; ~o shows up as the 5th sample, 

the first sample composed from ~3 + ~2 + ~I should, in a non circular convolution, 

come after the 8th composed from ~3 + ~2 + ~I + (30 and so on. 

In the next example the symbolic impulse responses are changed for more 

elaborate and numerically composed signals. Signals fl and f2 composed of 64 

samples is constructed. The first 32 of them are non-zero and are constructed from 2 

sine waves f1 and f2 in different ways. 

N = 32 NI:: N - I N2 = floor(~I) 

k =O .. NI i =O .. NI n =0 .. 2·NI 

f is composed of 2 x 16 samples of f1 and f2 put one after the other. ff is slightly 

different and consist in 32 samples of fl and f2 added together. ffl takes just 16 

samples of f1 and ff2 takes 16 sample of f2. 
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fn =if(n~32,if(n~16,f1n,f2n) ,0) 

ff = if(n ~32, fI + f2 ,0) n n n 

ff1n = if( n S32, if( n S 16, fin' 0) ,0) 

ff2n = if( n ~32, if( n ~ 16, f2n' 0) ,0) 

54 

pi and p2 are two pulses of respectively 16 and 32 sample wide. They must be seen as 

different windows to define the 'life time' of the signals fl and f2. In f for example fl 

and f2 are non-zero for only 16 samples. On the contrary in ff, they are non zero for 

the first 32 samples. This will have its implications on the spectra of f and ff . In fact, 

multiplication's in time domain of the signals and the windows result in convolution 

of their respective Ff's. This could produce leakage in the resulting spectrum. An 

arbitrary combination of different windows starting and ending not at the same time, 

will produce an overall leakage and allow no detection of eventual starting time of 

signals. (which is too deeply hidden in the phase information) 

pI = if( n ~ 16, 1,0) 
n 

p2 = if( n ~32, 1,0) 
n 

f 
n 

---ff - 4 
n 

--pIn - 8 ...... 

PI =cfft(plsh) 

P2 = cfft( p2sh ) 

-15;L------------------------------.J 
o 10 20 30 40 50 60 70 

n 

Fig.3. J. Two sine waves are composed in a different way and result in f and.ff. The DFT of 
both signals will obscure their difference in time domain. Other techniques should be 
investigated to detect when signals start and stop.(See Chapter 5) 
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5 I 

5 10 15 20 25 30 35 

k 

Fig.3.2. Amplitude spectrum of the window pulses pi and p2. PI is the spectrum for the 16 
samples width pulse, P2 for the 32 samples width pulse. PI will produce leakage in the 
spectrum analysis when considering an FT analysis of the first 32 samples. 

Stationary circulant matrices for the first 32 samples will be constructed in F for f 

and in FF for ff. FF12 is a non-stationary construction with ffl in the first part of the 

circulant matrix and ff2 in the second one. 

Wk. =e 
.1 Fk.i=if(k- i;:-o,fk_i,fNI+I+k_i) 

FFk.i =if(k- i;:-O,ffk_i,ffNI+I+k_J 

Diagonalization in (D, DD and DD 12) produces the diagonal elements (r, IT and IT 12) 

DD12= W- I ·FF12·W 

rrl~ = DDl~.k 
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The FFf's of the first 32 samples of f and ff, respectively called fsh(ort) and ffsh(ort) 

and abbreviated to fsh and ffsh produce 

Fsh = cfft( fsh ) 

FFsh = cfft( ffsh ) 

c32.. 40 

0 0 

30 

20 

hel 

0 CI 

~ 
10 

Irr~ 00 

Jrrl\1 
)(l( 

IFshkl'5 - 40 
ODD -I 

IFFsh kl'5 - 40 T ~ II 
II " -ii-" Ii ;, , , 

1 ~ 
--"2 ' , . 

, I I I , i , I , I /0 1
, ,0\ ~ 

" 
I I 

f' : 
-3 01 \0 Ii c! \D 

/0\ 
I I I I jD\o , 

\ 
o \ 

a I a 0 0 
I 0 0 0 \ 0 

c-40-4O 
0 5 10 15 20 25 30 35 

cO~ k c3L 

Fig. 3.3. The upper part of the image shows the result of diagonalization. r shows the leakage 
in the spectrum. It could be seen as a warning that windowing was applied and the spectrum 
of those windows were convolved with the pure spectral lines. rr is perfect as spectrum 
information. The lower part shows the DFTs off and ff. The results are similar with the 
upper part ones. 

The picket fence effect in r is due to the fact that the signals fl and f2 are not 

permanently present or commensurate in the 32 sampled time window. IT gives a 

perfect result as long as the time window is not extended. The 32 samples spectrum of 

fl and f2 (FFsh) produces Fsh. In general one can conclude that Fourier technigues 
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whether using Fr or diagolization produces errors from the moment non-stationarity 

shows up . 

To get a better view on what is really happening, all elements with an absolute 

value negligible (>.1 %) compared with the maximum value are made zero in the 

matrices. We consider successively D I, the manipulated matrix D which consists of 

the eigenvalues of f. D2 represents DO, containing the eigenvalues of ff and finally 

03 the result of Fourier transform of a non-stationary signal. Remark the leakage in 

o I compared with 02 and the results in D3 which is not diagonal at all. Although the 

greatest elements are in the neighbourhood of the diagonal, taking only those values 

into account results in loss of information about the frequency content of the signal. 

Conclusion : Lossless non-stationary deconvolution in frequency domain is not 

possible. Other techniques ( See next section and Chapter 5) must be used to 

deconvolve non-stationary signals. 

01 . = J 1 0 .1 < I mal( 0) I .0.1 ( 0) .1] 
k , l 'l k . 1 1000 k ,l 

'-.~ ~tliili t.:.1J1.£ idaI.ti ~'~ J;:kJ L1!d L.l'::-llj tiir.£J ~K:A g?ill 
0 0 0 0 0 0 0 0 0 

0 4.7480 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 10.9120 0 0 0 0 

0 0 0 0 16 0 0 0 0 

01= 0 0 0 0 0 9.8920 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 3.5460 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

The diagonal values are proportional to the amplitude values of rk in Figure 3.3 
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O? . =) 100 ·1<l ma(oo)l.o· l<oO) .1] 
k.1 l 1e .1 1000 1e . 1 

. ·1~tet:.m:·-J{~tiJ'i:2i '-'~~" ~!~ If ;:-;'11"-" ;'W·{~f<I ~~f£'~~~d G;',,;lm ~ .. , ;.)ta.. .... ~ _'/" ~ t. ..... "" __ .. I.;~ ...... ~\olio. .... :0 ... ___ -...-. ',,-¥ :.tc".. ",-,J< 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 32 0 0 0 0 0 0 

D2= 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

I~ 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

The value 33 stands for the amplitude part of f2 in ff (value rr5 in Fig.3.3) 

D3 .= ji lODJ? .1 < Ima(DOI2)1 .0· IC OOI2) .1] 
1e .1 'l ie . 1 1000 1e . 1 

JJEilrlU .. 'J&2J,8~ . ·1' . 'b/"" • .. ·zr' '~"""'I I ~t:..J ~"~":""~U ~~.l.',jt;;.\:lj ill 

0 0.1610 0.355 0.5 0.2920 0.086 

1.507 2.597 1.507 0.449 0.223 0.398 0.3 13 0.123 

0 0.161 0.636 1.0520.981 0.4740 0.116 

1.124 0.449 3.329 4.402 1.394 1.228 1.124 0.405 

0.5 1.6440.98 1 5.761 7.1233.32 0.981 1.41 2 

03= 0.579 0.398 0.94 1.2284.7325.12 2.7830.433 

0 0.0340 0.355 0.981 1.403 1.211 0.559 

0.137 0.123 0.185 0.405 0.958 0.433 0.888 0.928 

0 0.0250 0.2190.5 0.4740 0.559 

0.087 0.071 0.106 0.245 0.549 0.27 0.2320.098 

0 0.02 0 0.163 0.344 0.292 0 0.189 

!lUI 0.175 0.05 0.2 0.179 0.539 0.204 0.327 0.075 

0 0.2660 0.2 0.271 0.594 0 0.624 

Q.I~J 0.04 0.1990.1450.1050.1690.277 0.064 
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3.4. Computer implementation 

For the 1 D case there is no problem to realise a non-stationary deconvolution . 

The convolution matrices are not too large to be efficiently manipulated. For a 128 x 

128 image the convolution matrix has 268,435,456 entries. Clearly, numerical 

stability as well as computing time are important challenges to overcome if algebraic 

deconvolution is to be of some value. 

The proposed solutions relies on three facts: 

1. Convolution matrices are often sparse, provided that the convolution masks 

are not too large compared to the support of the object function. 

2. Convolution matrices are very structured: the position of all non-zero entries 

can be predicted from the PSF. 

3. Point spread functions tend to have higher values at their origin, since the 

influence of the point where they are applied is nearly always predominant, 

hence the highest entries in the matrices will usually be found near the 

diagonals.(See examples) 

This suggests that the best way to approach the deconvolution problem is to use 

iterative methods. 

Two algorithms are particularly efficient: 

• An under-relaxation scheme. 

• A conjugate gradient method. 

Blackledge et al. [1] found also that: 

(i) Iterative methods applied to stationary processes are only marginally inferior to 

the usual restoration techniques (Wiener filter , etc .. ) especially for broad 

convolution kernels. Furthermore, signals restored using algebraic methods are 

qualitatively comparable to those obtained via Fourier transforms. 

(ii) Iterative methods are more efficient than segmentation for non-stationary 

deconvolution. 

(iii) The best iterative method depends on the type of convolution kernel : If it is 

smooth and wide (Gaussian kernel) under-relaxation is more suitable; 32 iterations 
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typically produce a good quality restoration . Conversely, if a discontinuous and 

narrow kernel is used the conjugate method will produce more accurate and faster 

results . Here again, 32 iterations are often sufficient to obtain good quality 

restoration . 

(iv) The main drawback of algebraic methods besides the computing and storage 

requirements, is the ill conditioned characteristics of the matrices . A contradiction 

arises : it is important that in ill-conditioned systems the number of iterations is 

kept minimal, however the more blurring in the data, the more iterations are 

required. 

3.5. Some Results 

Courtesy to Prof. J . Blackledge et al. , we now reproduce some results of the 

conjugate gradient method. 

(a) (b) 

Fig. 3.4. (a): 128 x 128 test picture. (b) : NOll -stationary cOJlvo/utionfor a tophat 

kemel with energy conservation ( the average top/wt /wlFwidth is A = 4 pixels) 
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Fig .3.4 .c. Algehraic restoration with the c01~jllgate gradient method 
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CHAPTER 4 

Digital Filters 

4.1. Introduction 

Chapter 2 covered some tools to describe and manipulate data. 1 D and 2D 

convolutions on signals and images with respectively stationary impulse responses 

h(n) and point spread functions (psf) h(nl,n2) resulted in a filtering operation like for 

example a blurring effect on an object function. The result of filtering can be very 

effectively studied in the frequency domain by analysing the z transforms H(z) and 

H(ZI,Z2) of respectively h(n) and h(nl,n2) . When the signal or image is non

stationary the convolution can still take place but the z transform of the signal or 

image does not exist and the convolution theorem cannot be applied any more. 

While filtering is a issue that can be described in the frequency domain by 

considering the positions of poles and zeros of the transfer function in z or (ZI,Z2) , 

their impulse response or psf can very easily be found by inverse z transforming. 

With zeros only, a convolution operation does the filtering. The convolution kernels 

will be called Finite Impulse Response (FIR) filters . When poles and zeros are 

involved a difference equation will represent the system in time domain (for 2D in the 

space domain) and will act upon an input signal to produce an output signals. This 

operation is called Infinite Impulse Response (IIR) filtering. Because of the poles 

these systems are not always stable and certainly for 2D there are no simple design 

rules as yet. Hence we will restrict ourselves in this chapter to FIR filters for the 2D 

case. 

Non-stationary convolution and deconvolution has been studied in terms of 

matrix operations. (Chapter 3). All transforms so far were based on correlations 

between complex exponential functions existing between -00 and +00, and the 
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analysing signal or image. If the signal or images contains local information (in time 

or space) the Fourier transfonn will only produce global information in the frequency 

domain. One way to still use these global techniques is to split up a non-stationary 

signal or image into quasi stationary time or space slots and then use the classical 

analysing techniques. For speech analysis, for example, time slots of about 30 ms are 

used. 

With this idea in mind it is still interesting to study the design of stationary filters. 

Here we consider the classical window approach and the Wiener filter technique and 

make a comparison. 

4.2. FIR Filter Design 

The duality principle discussed in Chapter 2 proved to be very useful to 

construct "brickwall" frequency characteristics. As filters are not the main topic of 

this thesis, only symmetrical, odd numbered discrete impulse responses are 

considered to realise linear phase filters. For a more elaborated discussion see [64] 

4.2.1. Low Pass FIR Filter Design 

The expression of the impulse response for a prototype low pass brickwall filter is : 

(4.1) 

with sinc(n) = sin(1tn)l7m and d_c being equal to the duty cycle of a brickwall 

pulse. We have to define here the bandwidth of the filter. With for instance d_c = IA 

Fig.4.1 shows the impulse response of an FIR filter with a spectral response composed 

of a pulse with duty cycle = I;'" 
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Fig. 4.1. h1(n) is the impulse response of a low pass FIR filter with a bandwidth of 

rrl4. 

To generalise the rule: 

I. Choose a low pass frequency flp relative to half the sampling frequency fs/2. 

2. Make d_c = 2flplfs. 

3. Insert the value into Eq. (4.1) : 

(4.2) 

4. The resulting infinite expression for hen) will have to be abbreviated to a finite 

length; hence the expression finite impulse response. This shortening will of 

course produce errors. They will be minimised by multiplying the impulse 

responses with appropriate windows (See section on windows). 

4.2.2. High Pass FIR Filter Design 

A high pass filter design makes use of the modulation principle: One can shift the 

frequency band to for example half sampling frequency n = 1t by multiplying the low 

pass filter construction with the cosine of this half sampling frequency. Suppose we 

try it with the low pass prototype filter designed in section 4.2.1. 

The example will have a high pass characteristic starting at 37t14. 

hen) = (_1)". (d_c).sinc(n.d_c) (4.3) 



Digital Filters 65 

0.4 1.5 

IjI 
0.2 

~ ~ \ 
/I ~ 

h2( n) 0 ~,.."IIIf)~ IH2(0)1 
-e I!I ~I' II 1l I I 0.5 

-0. ~~ 

-0.4 0 
t 

"-20 0 20 0 2 4 6 

n n 

Fig.4.3. Modulating the low pass impulse response with cos(n.rr) results in a high 
pass equivalent. ihp= 3rr14 

Design rules: 

1. Choose a high pass frequency fhp relative to half the sampling frequency fsl2. 

2. Calculate f2 = fsl2 - fhp 

3. Make d_c = 2f2/fs = 1-2fhplfs. 

4. Insert the value in Eq. (4.3) : 

5. Make the expression finite by using windows. 

4.2.3. Band Pass FIR Filter Design 

A band pass FIR filter can be designed following the same procedure as that used 

to design the high pass filter. The low pass prototype is modulated at another central 

frequency ilcen're by multiplying (4.1) with cos(2.7t.n.fcen're/fs). 

The example will have a centre frequency of 1tI2 and a bandwidth of 2x1tl4. The 

number of samples involved is 201 (from -100 ... 1 (0). 
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Fig. 4. 4. Impulse response and frequency characteristic of a bandpass filter with 
centre frequency tr/2 and bandwidth 2 xn:l4. 

Design rules : 

1. Choose the width of the band pass filter fbwand the centre frequency fcentre relative 

to half the sampling frequency f/2. 

2. Substitute d_c = 2fbJfs' 

3. Insert the d_c value in Eq. (4.1) . Inverse Fourier transforming proves that for 

band pass filters only half the d_c value should be put in the sinc function. Finally 

a multiplication with cos(1t.n.fcentjfs) is necessary for the frequency shift: 
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4. Make the expression finite by using windows. 

4.2.4. Band Reject FIR Filter Design 

Band reject filters can be designed starting from a band pass design. A band reject 

characteristic results from the subtraction of a constant frequency characteristic minus 

the characteristic of a band pass. Because z transforms are linear, one can transform 

back the subtraction operation to time domain : 

The example will have a centre frequency of 7t/2 and a bandwidth of 2x7t/4. 

n 100, 99 .. 100 

n It 
0, .. 2·11 

20 

d c .5 : duty cycle 

h4(n) 

H4(n) 

. ( d C \ Sin 11 ·n· - ) \ . 
2 (11 I ' d_c, d_c· ·cos n· 1·1 

<Xl 

'>' h4(n).e j nO 
L..J 

n = <Xl 

d c 2/ 1I·n· -
2 

(4.6) 
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Fig.4.4. Impulse response and frequency characteristic of band reject filter with 
centre frequency TrI2 and bandwidth 2x7rl4. 

Design rules: 

I. Choose the width of the band reject filter fbr and the centre frequency of the filter 

fcentre relative to half the sampling frequency fsl2. 

2. Substitute d_c = 2fb/fs. 

3. Insert the d_c value in Eq. (4.1) . Inverse Fourier transforming proves that for 

band pass filters only half the d_c value should be put into the sinc function. 

Finally a multiplication with cos(1t.n.fcentrelfs) is necessary for the frequency shift 

4. Apply Eq. (4.6). 

(4.7) 

5. Make the expression finite by using windows. 

4.3. Windows 

Due to the necessary truncation of the impulse responses their values abruptly 

drop to zero. One can consider this operation in terms of the multiplication of the 

infinite impulse response with a finite rectangular window. Due to the modulation 
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property, this multiplication in the time domain will result in a convolution in the 

frequency domain of the individually transformed signals. The rectangular window 

produces a sinc function in the frequency domain. The convolution of this sinc 

function with the ideal brickwall structure (flat characteristics in pass and stop bands 

and an infinite steep transient region) results in a much less ideal characteristic with 

an oscillatory pass and stop band and a finite steep transient region. This is called the 

Gibb's phenomena (See ripple and transition band in figures in section 4.2). 

To diminish these imperfections in the frequency domain a window with less side 

lobes in the frequency domain than that associated with a rectangular window could 

be used to multiply with the infinite impulse response. Hamming, Hanning and 

Kaiser are good windows to cope with this problem. 

An example illustrates the effect of a Hanning window. Note the disappearance of 

the oscillation in the pass and the stop bands, the better attenuation in the stop band 

but, as a disadvantage, the less steep the characteristic in the transition band. Better 

results can be reached with more samples in the impulse response. Intensive study 

would lead us to far and the reader is referred for other design techniques as well to a 

more specialised literature to [62] . These design tools were presented here as a first 

approach to 2D filtering. 2D kernels for convolution [ the point spread function 

h(n l,n2) ] could very easily be constructed by designing a spatial sinc function out of 

the one used earlier. We see however, that a Bessel function gives better results for 

constructing 2D FIR filters. 

w hanning(21) nl 0 .. 20 hl(nl) h(nl 10) 

20 

w(nl) wnl hw(nl) w(nl)·hl(nl) i h w(nl ).e jnln 

nl = 0 
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Fig.4.5. Fig.a shows a truncated sine function . Fig.b represents the Hanning 
window. Note the Gibb's phenomena. Fig.c is the result of the truncated sine function 
multiplied by a Hanning window. Fig.d presents a much smoother frequency 
characteristic, the disadvantage being the larger transition band. 

fig.a fig.b 
so 50 

20'log( IHUll! ) 
0 

2()log(IH w({l)I) 
0 

-s 

-I -I 
0 5 0 5 

n n 

Fig.4.6. The logarithmic characteristic shows in fig.b a much larger attenuation then 
infig.a. (Windowedfilter) 



Digital Filters 71 

4.4. 2D FIR Filter Design 

We will only concentrate on the low pass and high pass design because they are 

most used in image processing. Low pass filtering is a primitive way of noise filtering 

because most of the significant frequency components in a signal are low frequencies. 

High frequency components with no valuable data can be omitted. Contrast changes 

can be detected in a simple way by performing high pass filtering. 

4.4.1. 2D FIR Low Pass Filter 

A first attempt to design a 2D FIR low pass filter can be by starting from aID 

windowed (Hanning) sinc function. 

N = 31 

n 1 = 0 .. N - 1 n2 = 0 .. N - 1 h = NI<-IS 
nl.n2 

r<-~(nl- NI)2 + (n2- Nl)2 

0<- 2 

T<-4 

H = cfft( h) 

H_shift = ffUhift( H) 
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o. 
0.4 

o 

h 

Fig.4.7. Spatial sincfunction and its disappointing amplitude spectrum. Frequency 0 
for both frequency axis is set in the middle of the frequency plane with a ffcshiJt 
operation. 

Using a spatial SInC function produces too much ripple at the edge of the 

transition band. This is due to the fact that the inverse Fourier transform of a mesa

like spatial frequency representation (= 2D low pass frequency representation) results 

in a spati al Bessel function.[59] . To illustrate this consider the followin g example: 

nl =- 10. - 9 .. 10 

n2 =- 10. - 9 .. 10 

R = ~ 
2 

h Ip( nl , n2) 

To shift the design results from (-\ 0 .. \ 0) to (0 ... 20) the following instructions 
should be made: 
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k I () . 20 

k2 () . 20 

hs Ip - h Ip( k I 10, k2 - 10) 
k I . k2 

Hlp cfft ( hs Ip) 

Hlp amp IH I 
- kl . k2 1 1Pkl . k2 1 

(lOX 

o 

Fig.4.8. A Bessel function of the first kind and the first order gives much hetter results 
than the sinc function . Windowing could be considered bllt is, due to the lack in 
accuracy ill our visual system, not always necessary, 

The des ign lools can be used lO conslrucl a low pass kernel of 7x7 with a cut off 

frequency of rrJ3 , To keep the DC level filter invariant ,the point spread function 

should be normalised by the sum of all point spread function values . The resulting 

kernel is defined in h lip' 
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01 := -3, - 2 . .3 
02 3. 2 .. 3 

R 
1t 

3 

kl . 0 .. 6 

k2 0 .. 6 

h Ip(ol ,02) 

sum_hJp LL>IP(01,02) 

hI 
IPkl k2 

01 02 

h Ip(kl 3,k2 3) 

sum_hJp 
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Before applying the filtering on an image let us first introduce the Kagray image and 

consider its spectrum in Fig.4.9. 

r1 0 .. r fl 

cl O .. C fl 

fl READBM~ kagray ) 

r fl rows( fl ) 

c fl cols( fl ) 

Fl cffi( fl) 

FI 
i rl.cl, 
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Fig.4.9. Kograr und its logarithmic wilplirude specTrum. NOTe the absellce ill high 
ji'etjllenn compol/ellts in tile piClure. 

An image is a non-stationary signal, this means in the wide sense that the 

probability density function (pdf) changes from place to place in the picture. A 

changing pd f also implies local frequency changes that can't be detected by the 

classical Fourier transform. It will only globally reveal the freque ncy content of the 

picture . Filtering. based on stationary convolution does only a global filtering of the 

picture and local details just vanish under a low pass filler. To illustrate this let us 

consider a picture with noise. By eliminating the high frequenc y part of the noise the 

details in the picture will also be eliminated. 

n OI ~': , !. " 1 rnu(3 1) 

1'1 noise f1' no ise 

g Ip - [woucon\'()1 '-, ft noise' h 1 Ir,: 2D convolution 
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Fig.4.1O. Kagray plus noise an.d its low pass fil tered version. The noise is well 
eliminated hut also the detaiLs are gone. 

4.4.2. 20 FIR High Pass Filter 

A high pass filter allows the extraction of details in a picture, but enhances noise 

( or the non significant details) as well. The design is very easy: 

(4.8) 

An example illustrates this. Let us consider a high pass filter of 21 x2l elements which 

starts at 

fhp = rrl4. 



/J if!,iwl Fi l lers 

nl I D. 0 .. 10 

!l ~ 10. 9 .. 10 

R ".r:. 
4 

k I 0. 20 

k:: 0 .20 

o. 
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R , , 
·JI '" R·,: nl- +- n2" , h hp (nl. n2 ) - if' ( nl = 0 )·( n2= 0) .1 

H I hp 

Fig. -I. II. 2D High pass .filter hased on low pass Bessel fUllction design and its 
frequency response. 

For the image processing application we choose a 7x7 convo lution kernel. First 

we consider f iltering at Q I hp = 1tI8 and then at Q I hp = 1tI6. The higher the frequency . 

the smalkr the edges because only the very fast contrast changes are captured by the 

fi Iter, 
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Fig. 4.12. Kagray high pass filtering at Qhp= 7rl8 and Q2,,1'= 7rl6. Raising the 
ji-equel1cy cut off of the filter sharpens the edges where the contraslS changes 

4.5. Optimal Linear Filter Design 

4.5.1. Introduction 

Wiener filters are optimal linear filters. The requirement for the filter is to make 

the expectation of the squared error "as small as possible" , i.e. to filter the image or 

data x(n[ .n2)in such a way that it comes as close as possible to the original signal or 

object s(n [,n2). Note that the original signal is blurred by a convolution with the point 

spread function h(nl,n:J and additive noise(nl,112). Very often the blurring effect is not 

considered in the \Viener filter design. In fact, if the blurring effect is known, inverse 

filtering can first take away this blurring effect and Wiener filtering can concentrate 

on removing noise. Special care must be taken in these cases so that the transfer 

function of the blurring effect shows no zeros in the working frequency band because 
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by inverse filtering these zeros becomes poles and create infinite values in the transfer 

function of the deblurred image. [56] Inverse filtering is not further studied here. We 

will only concentrate on the removal of noise in a signal or image. To start with the 

noise is considered stationary. The removal of non-stationary noise could, as 

suggested in the introduction, be attained by splitting up the signal or image into 

boxes (where the process is quasi stationary) doing a box-dependent filtering and then 

adding the pieces together. Of course some overlapping of the boxes should be 

considered otherwise annoying discontinuities would show up. [39] 

Suppose a ID or 2D signal is blurred by h in a convolution process and further 

deteriorated by noise. An FIR filter with coefficients w has to be designed to minimise 

the error. 

x(n],n:;) = [s(n],n2) * h(n],n2)] + noise -7 Wiener filter -7 s_wien(nl,n2) 

w(n),n2) 

The error signal is e(n],n2) = s(n],n2) - s_wien(nl,n2) 

An expression like "as small as possible" means the minimisation of a cost 

function. For the Wiener filter design we choose for the expectation of the mean 

square error as the cost function. 

Wiener filters are adaptive filters because their coefficients have to be 

recalculated for each new input. The filter is designed as an FIR filter and the 

operation is a 2D convolution of the input signal x(nl,n2) with the Wiener filter 

coefficients. Stability is no problem because of the FIR structure. 

4.5.2. Derivation of the Wiener Hopf Equation for 2D 

Suppose that x(nl,n2) is the noisy observation of the signal s(n1,n2) blurred by 

h(nl,n2) and further deteriorated with noise(nl,n2). The complete signal x(nl,n2) must 
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be stationary . This procedure will mInImIse the mean square error between the 

original s(nLn2) and the processed s_wien(nl,n2) signal. 

(4.9) 

We wish to approximate s(nl.n2) by applying a linear estimator w(nLn2) on x(nl.n2) : 

(4.10) 

or (4.11 ) 

A cost function J is defined as the expectation of the mean square error 

(4.12) 

where E stands for the expectation operator. 

The problem now is to determine the condition for which J has a minimum value. 

We will concentrate on real input data and coefficients because the image we consider 

is real valued. A I-D complex analysis can be found in [69]. 

The filter coefficients are nl,n2 E Z 

Correspondingly, the gradient operator for the klh coefficient is defined as : 

(4.13) 

By applying this gradient operator to the cost function J, a gradient matrix will be 

obtained with kl,k2 elements 

V'hl.k2 = CWaW kl.k2 (4.14) 

To minimise the cost function, the gradient matrix must be simultaneously zero. 

Substituting equation ( 4.11) in (4.14) we obtain 
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(4.15) 

Using (4.9). (4.10) in (4.12) we have the following derivative 

( 4.16) 

Substituting this partial derivative into Eq. (4.15) and implementing the minimisation 

of the cost function leads to 

(4.17) 

Substituting (4.11) in (4.17) gives 

(4.18) 

or 

(4.19) 

The left hand side of equation (4.19) represents for the cross-correlation between 

s(n1.n2) and x(nLn2), however limited to the values where kI,k2 are non-zero. For a 

3x3 convolution kernel for example, the cross correlation matrix will be composed of 

9 elements. 

The right hand side of equation (4.19) represents for the convolution between the 

Wiener coefficients and the autocorrelation of x(nI,n2), also limited to the values 

where k(,k2 are non-zero. 

To avoid the convolution operation and to make the equation invertable the 

autocorrelation matrix is constructed out of the autocorrelation expression. The matrix 

expression of (4.19) becomes 
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(4.20) 

where rsx is the cross-correlation column vector. Rxx is the autocorrelation matrix 

and w stands for the column representation of the Wiener coefficients. Equation (4.20) 

is the 2D Wiener-Hopf equation. 

In 1 D this could be written as 

rsx(n) = Rxx (n) . wen) (4.21 a) 

where wen), or w(nl,n2) can very easily be found by inverting Rxx(n) or Rxx(nl,n2) and 

multiplying the result with rsx , i.e. 

(4.21b) 

4.5.3. Wiener Filtering in the Frequency Domain 

Instead of constructing the autocorrelation matrix in (4.20), the autocorrelation 

function of x rxx could be taken. The expression then becomes 

(4.22) 

Calculating the Fourier transform of this expression and solving it for HW(Ql,n2) 

which is the spectrum of wen] ,n2) results in 

(4.23) 

Suppose that s(n\,n2) is uncorrelated with noise(nj,n2) and that s(n],n2) is a zero

mean process. We then obtain: 
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(4.24) 

Reconsidering Eq.(4.9) and omitting the blurring effect of h(nr,n2) then taking 

the correlation with s(nl,n2) by using the expectation operator and substituting 

Eq.(4.24) into it we obtain: 

(4.25) 

or (4.26) 

With s(nl,n2) and x(nl,n2) being uncorrelated, we have 

(4.27) 

Computing the Fourier transform of Eq.(4.26) and Eq.(4.27) and then substituting the 

result into Eq.(4.23) produces the well known Wiener filter expression: 

(4.28) 

When the samples of the process are non zero-mean, the mean value should first be 

subtracted before filtering and added afterwards [59] : 

Hw(O) = Pss (0) / [PssCO) + Pnoise(O)] (4.29) 

4.5.4. Wiener filtering in wavelet space 

To make the review of the Wiener filtering concept complete it should also be 

investigated in wavelet space. The wavelet theory is extensively developed in Chapter 

5. For a complete understanding of what follows Chapter 5 should first be read! 
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One of the many aspects of wavelets is the fact that after applying a discrete 

wavelet transfonn a signal is subdivided into different levels which contains octave 

spaced, band pass filtered and decimated parts of the signal. Wavelet filtering is in 

fact a convolution operation with scaled versions of the same impulse response or 

psf. 

For use in Wiener filtering one should start with the approximation that the 

transfer function could be described by a constant at the different levels and equal to 

the variance at that level. Considering oversampling, the band between fs/4 and fsl2 

contains almost exclusively noise and its variance is used as a measure for the noise in 

the different bands or levels. In these circumstances Eq. (4.28) becomes 

(4.30) 

4.5.5. Comparative ID Study 

We consider successively 

• Wiener filtering in time domain using a limited convolution kernel and 

application ofEq. (4,21b). 

• Wiener filtering as in the first part but with only a Burg approximation of the 

original signal. 

• Wiener filtering in the frequency domain. 

• Wiener filtering in wavelet space. 

Wiener Filtering in Time Domain 

First we consider a I-D signal sen) constructed from a Gaussian nOlse source 

noise 1 (n) passed through a lowpass filter. The blurring effect is in this case omitted 

and only a white noise source noise2(n) with a variance of .084 is added. N is the 

number of samples in the signal. 
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n =0 .. N_segment - 1 nl = 0 .. N_scgment - 2 

noise 1 "gaussn (N_segment ) + .5 noise2 '" whiten (N_segment ) T .5 
noise2_ var = var( noise2 ) 
noise2_ var = 0.084 

The filtering is realised with a first order single pole IIR construction specified in Al 

a=.9 

AI (z) 
_ z 

z- a 

: DC - amplification 

: The IIR filter structure 

The source signal s(n) results from the response of noise 1 from the filter A l. 

N_segment is the number of samples. 

_ response (noise I ,A I , N_segment ) 
s=--~--~------~~~~ 

Al_O 

The deteriorated signal x(n) is created by adding 50% noise. The processes are 

assumed to be zero-mean. If this is not assumed, the mean value has first to be 

subtracted from the process and after the filtering added again. The zero-mean process 

is called xz I and is created by adding trailing zeros to x I until the length of the 

autocorrelation of x 1 is obtained. 

x=s -:- 15noise2 
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x_mean = mean( x) 

Xl =cfft(xl) 

s_mean :: mean( s ) s I :: s - s_mcan 

xz 1 = stack ( x 1. z 1) Xz 1 = efft( xz 1) 

To estimate the noise in the signal, oversampling is presumed and so the signal 

between fs/4 and fs/2 contains almost only noise. By separating it in a submatrix and 

calculating the variance of the ifft : 

X2- b . 'Xl N_segment N segment 1 0 0\ - su matrIX;, 4 2 -., 

x_leve12 :: icfft( X2) x_lev l_var = 0.194 

Wiener filtering in the frequency domain can very easily be done by taking the 

ratio of the cross-power of s, x and the auto-power of x as the transfer function of the 

filter, provided of course that the original signal s is known. 

xx 1:= correl( xl, x I) 

sxI =correl(sl,xI) 

-, 
Psxl 

Hl--
Pxxl 

Pxx 1: :: cfft( xx 1) 

Psx 1 :: cfft( sx 1) 

Vector division 
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This technique requires of course a large amount of CPU time due to the FFT's, 

the point by point division and the IFFI'. Time domain filtering will be less time 

consuming certainly when the value of the fjlter coefficients tends quickly to zero. 

Wiener filtering becomes a convolution operation with a limited number of non-zero 

filter coefficients. Of course the result will not be as good as with the frequency 

domain filtering .We consider a Wiener filter of length 8. The Wiener filter response 

results in s_ wien. 

Rx 11 J = iffi=O,xx I
J

• idi2:j, xx L ;' xx )1- I" ': 

" ,I J Ii 

-1 
Rxlinv = Rxl 

rsx I = sx I 
count_ w count_ w 

wI:: 2· Rx I in\>' ·rsx 1 

s_ wien 1 ' = response (x I. w l_nonn. N_segmcnt ) + x_mean 

:: O .. l\_wien - I 

wI wI_nonn :: ---
sum_wi 

The Wiener filter in Eq.(4.29) was derived on the assumption that the power 

spectrum of the original signal and noise could be calculated independently. In fact 

this means that the original signal is known. This is a trivial situation, therefore a 

technique must be chosen to estimate or approximate the original signal in the best 

possible way. 

Wiener Filtering using Burg's Approximation 

Burg's approximation seems to be very appropriate for a ID problem .A matrix B is 

constructed containing as denominator the auto-regressive coefficients of the Burg 

approach and a constant as numerator. The noise is estimated in the (fs/4, fs/2) band: 

B den :: burg (x 1, N_burg ) 
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B num = if( count_b =0,1,0) 
count_b 

B = augment (B num' B den! 

The frequency components of B are calculated by first producing its impulse 

response of B and then calculating its FFT : 

delta = it( n=O. 1,0) 
n 

b = response ( delta, B, N_segment ) 

B freq = efft( b ) 

H2 is the frequency domain expression for the Wiener filter. To go back to the 

time domain and to do the convolution with a limited number of coefficients 

,decimation of the frequency components should take place before applying IFFL 

Trying to work with a substitute of the original signal sen) by sending noise 

through the Burg filter and then working with the cross correlation of this substitute of 

sen) and x(n) does not give good results. One can of course create a signal with 

approximately the same frequency content as sen) but, due to the Fourier transform 

constraints, one cannot put the harmonics at the right place in the time domain by 

applying an IFFf . 

, N segment 
N deClm = --=-'---=--

- N_wien 

H2 decim = resample( Re( H2), 2· N_decim, 2) 

Vectorial product of Bfrcq and its 
complex conjugate. 

Decimation factor 

Subsampling 
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w'2 = ie fft H2 decim 

sum \\'2 :: L w2 

0.6 r------------------------------------------------------, 

wI nom] 0 ..1 <- -
- count_v.-

000 

\,.,2 norm 

o 
-)(l<~ counl_w 0.2 -

l( l( 0 l( l( Sl: t{ 
0 

o L---------------------------------------------~~-----J 
o 3 4 6 7 

COUnl_W 

Fig. 4. J 3 Comparison between wI: Wiener coefficients calculated from known 
signal situation and yv2 : Wiener coefficients using Burg 's approximation of the 
signal. The difference in Wiener coefficients reveals the rather poor estimation by 
Burg's approximation of the spectrum of sen). 

6 r-----------------------------------------------------~ 

S Wlen I - } 
- n 4 

s wicn2 + 2 
- n 

s 
n 

x - 2.5 
n 

-4L-----------------------------------------------------~ 
o IDO 2DO 3DO 4DO 500 600 

n 

Fig. 4.14 Comparison between different Wiener filtering results. SI1 is the pure signal, 
Xli stands for the signal + noise. s_wienl is the result of Wiener filtering in the time 
domain using a limited kernel of 8 coefficients and, knowing the original signal. 
s_wien2 does the Wiener filtering in the time domain using only a Burg 
approximation of the original signal. s.Jreq 1 gives the best result with the frequency 
domainfilrering. 
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Relying on a subjective comparison between the original, degraded and processed 

signals can sometimes lead to good choices for the right filter but it can be 

cumbersome to express these ideas in numbers. One of the objective criteria for 

comparison is the normalised mean square error (NMSE) leading to an estimation 

of the signal to noise ratio improvement (SNRimpr) . Another one is the 

correlation coefficient. All described in [59]. Note that these are just a few of the 

many possible objective measures and they can be misleading. 

NMSEsx = 100 yar( s - x) 
var( s) 

NMSEs_ wien2::; 100 yare s - s wien2) 
var( s) 

NMSEs_wienl= 100 yaT(s - s_wienl) 
yare s) 

yar(s - s freql) 
::; 100--'----==---'--'-

yar( s) 

. ' NMSEsx SNRlmprl ::; I (} log -----
\ !\TMSEs_ wien 1 

SNRimprl = 6.363 

. " I(}) ! NMSEsx SNRlmpD:: ogl -----
\. NMSEsjreq 1 

SNRimpr3= 284.81 

cor_coefl :: corr( s. s_ wien 1 ) 

cor_coefl = 0.611 

coccoef3 ::; corr( s. s_freq 1 ) 

cor_coef3 = I 

. ! NMSEsx 
SNRllnpr2 :: 1 (} log -----

\NMSEs_wien2 

SNRimpr2= 5.914 

cor_coef2 :: corr( s . s_ wien2) 

cor30ef2 = 0.571 

The signal to noise ratio improvements (6,363f--?5.914) and correlation 

coefficient (0.611 ~-?0.571) give comparative results. Compared with the visual 

results in FigA.14 an improvement of the signal to noise ratio is indeed realised. The 
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shape of the signal has changed and this is reflected in the rather poor correlation 

coefficients. 

Wiener Filtering in Wavelet Space 

Wavelet filtering is based on the fact that a wavelet transform results in a lossless 

splitting up of the signal in octave bands also called levels. [57] When N_segment is 

the number of samples then every level contains N_levellicvel
_ order samples . When 

the number of samples is for example 512 then level 1 extends from fs/4 until fs/2 

and contains 256 samples. Level 2 extends from fs/8 until fs/4 and contains 128 

samples, etc. For this application the Daubechies4 is chosen. An expansion is made by 

repeating every value a number of times so that all expanded levels contain the same 

number of samples and that they can be compared. 

X_ wavelet 0= dwavelet (x) 

wavelet levels o=_lo-=.g_( N-e_,-s....:eg::..-m_e_nt_) w _I = wavelet_levels 2 
- log(2) 

X_wav_expandn4.n",X_wave1ct1n4+1 ! n \, 
.. ~ flOOr( ------- i 

\2w_l-n4i-!; 

Note that the amplitude differences stand for more or less important coefficients 

in the wavelet space. In fact they mean that in some frequency bands the amplitudes 

are higher than in other ones. 
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lOr-------~--------~---------r---------r--------~--~ 

X_wav_expandl .n +9 5 
..r 

X_wav_expand
4 

n +6 
..r . 

X_wav_expand6 .
n 

+3 
..r 

X_ wavelel
n 

0 

-5~------~--------~------~~------~--------~--~ 
100 200 300 400 500 

n 

Fig.4.15 Wavelet expansion of signal x at level 7 with 4 samples, level 4 with 32 
samples and level 2 with 128 samples 

First we calculate the noise power (variance) of the signal in the highest 

frequency band (level 1 or also fS/4-fs/2) 

We now apply Eq. 4.30 at all levels 

X_ var_signal <- X_ var_signaCnoise - X_ var_noise 

X var signal 
Wien_fiIt<- ---'=---=-'='---

X_ vacsignaCnoise 

o if Wienjilt::::O 

Wien_fiIt otherwise 
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The wavelet attenuation coefficients which have to be applied at the different 

levels are collected in the vector H_wav_wien. Starting with level 7 ; it contains 4 

elements and represents the band (fs1256 - fsIl28). It is attenuated to 67.4% of its 

original level. Level 4 contains 32 elements, represents the band (fs/32 - fsl16) and is 

attenuated to 43.3% of its original level. 

0.674 

0.491 

0.723 

H_ way _ wien = 0.433 

0.226 

0.183 : 

o 

X_filt_ wavelet realises the multiplication with the attenuation coefficients at all 
levels. Idwavelet performs the inverse wavelet transform. 

,for ke O .. w_l- 2 

X way ,- X wavelet 
- k - k 

, X_way 

Some 'objective' measurements: 

__ 100 var( s - X_inv _fiIt_ wavelet) 
NMSEs_ wa velet 

var( s) 
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N'MSEsx 
SN"Rimpr3 = l(} log ------

NMSEs_ wavelet 
SN"Rimpr3= 8.154 

coccoef4 = 0.602 

94 

6r---------------------------------------------, 

s wien7 3 
- n 

X in\' tilt wavek" 2 - - - n 

sjreq~ I 

x 2 
n 

v 100 200 300 400 500 600 

n 

Fig.4.16. The wavelet filtering reduces the noise. maybe a bit too much! Parameters 
should be included in the classical Wiener expression to diminish the effect. 

Some conclusions: Wiener filtering in wavelet space looks promising. The signal to 

noise ratio improvement is better than with the classical Wiener filter coefficients. 

Lim [59] suggests to adapt the Wiener filter formula (4.29) to: 

with a. and ~ case empirical parameters to be determined case by case. This will be 

implemented into further research. We will not go further into more details on this 

matter, instead we will investigate a 2D case. 
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4.5.6. 2D Wiener filtering example 

In thi s study we compare the results of space domain Wiener filtering with a 

limited 9x9 kernel w(nl,n 2) and the Wiener filtering in wavelet space. The 

autocorrelation matrix Rxx and the cross correlation matrix rsx are constructed 111 a 

Matlab program called WIEr\2D2. This program was translated and incorporated into 

a more general object oriented C++ program called 2D DSP [45]. W is the point 

spread function. 

Vi = 

0.4298 0.1722 0.0739 0.0426 0.0348 0.0364 0.0349 0.0328 0.0270 
0.2076 0.0492 -0.0096 -0.0214 -0.0202 -0.0 168 -0.0169 -0.0237 -0.0253 
0.0930 0.0066 -0.0072 -0 .0136 -0.0105 -0.0081 -0.0119 -0.0131 -0.0189 
0.051 9 -0.0051 -0.0104 -0.0043 -0.0030 -0.0049 -0.0047 -0.0060 -0.0104 
0.0382 -0.0 121 -0.0054 -0.0003 -0.0024 -0.0039 -0.0065 -0.0014 -0.0056 
0.0236 -0.0130 -0.0025 -0.0013 -0.0006 -0.0026 0.0006 -0.0022 -0.0006 
0.0198 -0.0 163 -0.0020 0.0013 -0.0012 0.0009 0.0003 0.0003 0.0008 
0.01 54 -0.0 167 -0.0067 -0.0012 0 .0022 0.0000 0.0007 0.0010 -0.0016 
0.0087 -0.0257 -0.0066 -0.0041 -0.0006 -0.00 I 0 0.0027 0.0027 -0.0018 

Fig.4.17. original Lena picture 
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The Lena picture Cfig.4. 17) is deteriorated by 30% noise in Fig.4.18. 

Fig.4.1B. Lena deteriorated with 30% noise. 

The amplitude of the spectrum of w is presented in Fig.4.19. A fftshift operation is 

performed on the figure so that the DC level occurs in the centre of the frequency ... 

plane. 
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Fig.4.19. Amplitude spectrum of Wiener coefficients w(nj.n2). 

The result of the fi ltering is shown in FigA.20. This result is rather di sappointing 

and it does not improve very much by making the kernel larger. A 3x3 kernel gives 

almost the same resull. ·. This is [0 be expected since the noise is spread allover the 

spectrum and when it is of the same frequency as the original signal it becomes very 

difficult to remove . 
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FigA.20. Lena, Wiener filtered with a 9x9 convolution kernel 

Wiener filtering in wavelet space gives a better result. Fig. 4.21. is the wavelet 

transfonn of Lena. For simplicity, the Haar transform was performed until level 3. 

Special Mathcad functions were written to do the wavelet transform based on MaHat's 

scheme. The functions are called wavelecanal and wavelecsynt and have as 

arguments the picture name, the wavelet and the level (see Chapter 6) This scheme, 

but further extended into wavelet packages was also applied in a C program on a 

TMSC80 processor (see Chapter 7), the intention being to make a real time 

application. 

picture : = READBMR; lena256) 

pice way : = wavelet_anal (picture, Haar. 3) : 2D Haar wavelet transform on picture 
until level 3. 

The 2D wavelet transform with Mathcad tools is described in detail in chapter 6. 
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Fig.4.21 . Wavelet transformed Lena picTure into level 2. Lena conta ins 256x 256 
pixels. Lena is filtered and down-samfJled (:2) (keefJ on!.v the even samples) twice to 

produ.ce lhe levels 1 and 2. The square pictu.re ill the right bottom ( J28xI28 ) 
cOl/rains the high passfiltered {.md dmvll-sampled part of Lena along both axis [n],112J 

: (HHhndJ The lefl bottom picture (128xJ28) contains the high pass fil tered and 
do~vn-s{!}npled part along the n l axis and the low passftltered and down -sampled part 
along the 112 axis of Lena (HL Jtel'elJ The right upper comer fJicture presents the 
opposite filte ring of the former (LHhereIJ The left upper comer picture should 
conraill The low pass and dmvn-sampled versio/Z of Leila (LLJtmU' hut it is by itself 
subdivided into 4 /l ew equal square pictures containing ol/ce again (HHJtmU, 
(HL )lmU' (LH)/mU and (LLhn'eiJ This last one is , in the case of 3 levels is 
su.bdivided in (HHJtmU' (HLhmu, (LH)/neU and (LLhl'leIJ (Note: In DSP literature 
the down-samplin.g operation is very often referred to as a decimatio/l operation. The 
converse operation is referred lO as lip-sampling or also illferpolalion . ) 

30% noise is added to the picture to produce a noisy_picture and then a wavelet 

transform is once again performed. 
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Jim - cois (picture) 

1 - 0" dim--

=O .. Jim-- nOIse - 2.56rnd( I) 
!-.i 

noise_percent = 30 

noisy_picture Co picture 1- noise_percent ·noise 

noisy _pict_ wav =- wavelet_anal! noisy_picture. Haar. 3) 

The variance of noise and signal + noise at all levels are calculated in a similar way as 

in the 1 Dease. 

lcv_l_ var = 824.637 

lev _2_ var = 304.404 

lev _3_ var = 301.051 

au_lev_I -.2 

lev I var 
lev 2 var - ---=-=--

4 

16 

atUev 2 = 0.323 atUcv 3 = 0.829 

Although the attenuation level at level 1 should be put to 0 (i.e. noise between fJ4 

_ f/2) a more empirical approach is to keep some information of level 1 in the picture 

to fill in the details without too much emphasis on the noise. The attenuation levels 

suggest a low pass action: 82.9% of amplitude of wavelet coefficients in band f/16-

fsl8 ; 32.3% of amplitude of wavelets in band fsl8-fJ4 and 20% in level 1 band. 
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Fig.4.22. Noisy Leila and its 3 level Haar wavelet tramformed picture. The different 
levels are already 'Wiener attelll/ared '. 

This Wiener filte red wavelet transformed picture has to be transformed back with 

an inverse wave let transform: 

The result is shown in Fig.4.23 . Fig.4 .23a shows the ori ginal Lena: F ig.4 .23b is the 

'denoised' version of Lena. Note lhat some detail is lost but that the no ise is certainly 

min imal. The result is much better than with the autocorrelation based Wiener filter. 

The technique is rather si mple and certainly more sophisticated algorithms than 

imple attenuation 's are possible at the different levels. However because of the 

combination of it relative h igh quality and simplicity it w ill be implemented on a 

video processor system (VSPI from Philips) 
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Fig.4.23. Original Lena and its Wiener waveletJiltered picture. 
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4.6. Conclusions 

The results of the combination of Wiener filtering and wavelet analysis are rather 

promising. Therefore the forthcoming chapter on wavelets describes in detail the 

different discrete fast wavelet transforms studied. In Chapter 7 they are implemented 

on different video processors : VSPI from Philips and TMSC80 from Texas 

Instruments. 
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CHAPTER 5 

Wavelet Transform 

5.1 Introduction 

Transfonn techniques, once presented under different names like time-frequency 

analysis, multiresolution analysis, subband coding, pyramid algorithms are now unified 

in one framework called wavelet analysis. It is in fact a multi-disciplinary activity 

which uses mathematics, computer sciences and signal processing. Its goal is to reveal 

more relevant infonnation than with classical techniques and provide efficient 

algorithms for non-stationary problems in the field of signal and image processing. 

In this chapter we investigate the shortcomings of classical Fourier analysis and 

present some solutions by using short-time Fourier transform (STFT) . The choice 

of Gauss windows leads to the Gabor transform. Then we define to the wavelet 

transform (WT). Basic difference is the use of a single window for STFT and a 

mUltiple window condition (short windows at high frequencies and long windows at 

low frequencies) for WT analysis. Most useful in numerical analysis is the discrete 

wavelet transfonn, as it is derived from the continuous wavelet transform. The 

evolution from one to the other is explained. Before looking to orthogonality we 

consider frames for STFT and WT. Under the wavelets we introduce some simple 

wavelets like the Haar wavelet. Orthonormal bases of wavelets and multiresolution 

analysis are also investigated then. Compactly supported wavelets are very useful 

for numerical analysis, Daubechies wavelets and others are presented. Finally we 

investigate the symmetry problem and introduce the biorthogonal wavelets ( more 

details in Chapter 6). Fast wavelet transforms (FWT) eliminate redundancy in the 

calculations. We follow Mallat's scheme to realise the FWT. 

We restrict ourselves to real-valued, measurable and square integrable functions 

of 1 and 2-D variables. 
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5.2 Short Time Fourier Transform (STFT) 

Signals x(t) whose statistical properties do not evolve in time, also called 

stationary signals, find a 'natural' transform in the classical Fourier transform . 

.. 
XC!) = J x(t)e- j27rftdt (5.1) 

As shown in Eq. (5.1) the Fourier coefficients are computed as inner products of 

the signal with sine/cosine wave basis functions of infinite duration (stationary 

signals). So it is not surprising that Fourier analysis only works well if x(t) is built up 

out of stationary components. Any abrupt change in x(t) ( non stationary behaviour) is 

spread out in the analysis allover the frequency axis in X(f). Therefore, an appropriate 

analysis for non stationary signals is required. 

The first idea is to create a local Fourier transform by looking at the signal through an 

in time sliding window. The signal looks as though composed of approximately 

stationary time segments. 

The Fourier transform Eq.(5.l) was first adapted by Gabor to define the STFT('t,cI» as 

follows. Consider a window get) of limited extent and centred at time location 'to The 

Fourier transform of the windowed signal x(t)g(t-'t) yields the short-time Fourier 

transform (STFf) : 

.. 
STFTIC(-r,tP) = J x(t)g(t--r)e- j2R4tdt (5.2) 
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The signal x(t) is mapped into a 2-dimensional function in a time-frequency plane 

(t,<I». The analysis looks very similar to the classical Fourier transform, however the 

choice of g(t) will influence the analysis considerably . 

Frequency (f) 

2.6 f 

Time(t) 

Fig. 5.1. Analysis domains with time and frequency windows sliding over data 
functions in time and frequency domain. The resolution rectangle has an area of 
4. 4f. ilt. 

Figure 5.1 shows the time frequency plane with vertically, around 'to, a windowed 

version of x(t) with all its frequency contents calculated at 'to. Alternatively one could 

consider g(t)e-n21tC1>t as the impulse response of a bandpass filter centred at frequency 

cI>o. The STFf acts in this case as a convolution operation and produces a bandpass 

filtered version of x(t). Around the frequencies cI>o one can horizontally see the 

modulated filter banks able to detect the time contents in x(t) at <Po. 

5.2.1 Resolution 

An immediate drawback must be made to the time and frequency resolution. How 

accurately are the time and frequency components known, or what is the ability of the 

STFf to distinguish 2 close sine waves? For a window function g(t) and its Fourier 

transform G(f) we define the bandwidth M of the window in a rms sense as 
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.. 
f f 2 c1G(f)b 2 df 

!!if 2 = -'-00"'-00----- (5.3) 

f (IG(f)b 2 df 

Considering Parseval's theorem, the denominator stands for the energy in get). So, 

discrimination between 2 sine waves will only be possible if they are more than M 

apart. In a similar manner, the spread in time noted by ~t can de defined . 

.. 
f t 2 dg(t)b 2 dt 

/)J2 = --00-' .. ---- (5.4) 

f (lg(t)b
2 dt 

The denominator stands again for the energy in get). Note that the time-window sizes 

in Eq. (5.3) and (5.4) are radii about their centre. Therefore, when referring to the 

window width, one traditionally doubles the radius. (See Fig 5.1.). 

Resolution in time and frequency cannot be arbitrarily small. Similar to physics 

there is an uncertainty principle for waves, stating that there is a lower bound on their 

product. 

(5.5) 

It is also referred to as the Heisenberg uncertainty principle. As ~t.M has the 

dimension of an area and the shape of a rectangle it is called the Heisenberg box. 

Apparently there is a trade off between better time resolution and worse frequency 

resolution or vice versa. Inappropriate choice of the window can have far-reaching 

consequences ; some important considerations are : 

• The area can be arbitrarily large resulting in unnecessary overlapping and a 

huge amount of redundancy in the analysis. 
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• Gaussian windows meet the lower bound of equality and were therefore 

chosen by Gabor (Eq. (5.7)). The STFf is in this case called the Gabor 

Transform. 

5.2.2 Gabor Transform 

Equation (5.6) and Fig. 5.2 show how a Gaussian time-window is transformed in 

a Gaussian frequency-window. It is calculated using fft on N=121 samples with 

sampling time ts=O.05sec. <r is put to 1 and f t and f2 are respectively 1 and 2 Hz. The 

time-axis is in seconds, the frequency axis in Hz. 

g(t) = ~21UJ Fourier Transform 7 

The resolutions for Gaussian windows are 

0.5 r------,------, 

I \ 

o 

\ 
!t) tt) 

1 
M4{=-

41r 

(5.6) 

(5.7) 

o.s .-----,.----.. 

o 
g(t)·exp(-j ·2·II:·fH) g( t)·cxP(- j ·2·It·UI) 

""1l.s:L.------L----I 
~ 0 5 

""1l.s:'------L---...J 
~ o s 
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2 

Enl 
.Enl 

0 
0 2 4 

n --
N·t 5 

Fig. 5.2 Modulated Gaussian windows (jig. a&b) and their spectra (fig. c) ,with,' 

(~=O.112Hz,J.it=O.75sec). 

Varying a can change the resolution in time domain , however as a is present in 

the denominator of M and the numerator of At, their product is a independent and the 

Heisenberg inequality stays fulfilled. Fig. 5.3 shows the consequences in frequency 

domain. (a : 1 ~O.5) Remark that if the 2 peaks in frequency domain would come as 

close as At one couldn't distinguish 4>1 from cI>J any more. (Fig. 5.3.d) For the same 4>1 

and «1»2 as in Fig. 5.3 the resolutions now become : 2.M=O.450Hz, 2.At=0750sec. 

(between dotted lines in fig. c and fig. a ) 

fig. a fig. b 
1 1 

0.5 
I(t) c(t) 

c(t)UP(-j ·2·.il-t) 0 c(t)'dp(-j ·2·.fH) 0 

-0.5 , , , , , , , , 
-1 -1 

-:S 0 S -5 0 5 

t t 
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~~~----~------~ 

4 

Fig.5.3 Modulated Gaussian windows and their spectra. ( a = .5) 

5.3 Frames 

When coming to practical realisations also for wavelets, some not yet answered 

questions, arise : 

• In which way does the analysis cover the whole signal? Or, what is the 

maximum allowable step size ('to) compared with the size (read: resolution 

6t) of a sliding window to avoid gaps on the time axis? 

• With a certain ~t there is a M. How to choose the frequency spacing (</)0) 

relative to M to loose no frequency information? 

For numerical use the Eq. (5.2), standing for the continuous version of the STFT, 

should be adapted in a first discretization by only considering the STFT at discrete 

time (p.'to) and frequency points (q.</)o) equi-spaced in a time-frequency plane. Spacing 

in time is called 'to, spacing in frequency is called </)0 . The discretized STFf can 

therefore be seen as a function of 2 integers variables (p,q) . This is defined in Eq.(5.8) . 

.. 
S]t(p,q) = J x(t)g(t - p'fo)e-j2trq~dt (5.8) 
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The discrete STFT can be seen as convolutions of the time signal x(t) with members 

of a family of functions gpq(t). 

(5.9) 

More compactly Eq. (5.8) becomes 

.. 
Sz(p,q) = J x(t)gpq (t)dt (5.10) 

Note that we are still working with continuous functions and integrals. A second step 

will be take place when we substitute n.ts -7 t. (ts : sampling time). 

Particularly useful in this circumstance is the use of scalar product notation. 

Sx(p,q) = ( x,gpq ) (5.11) 

This notation will be very useful when we will formulate severe constraints on 

gpq(t) so it could become a basis for decomposing and reconstructing x(t). 

Mathematically this is formulated as : For x(t) E L2(9t) (square integrable also called 

Lebesgue functions) we would like the set gqp(t) to constitute a basis in L2(9t) for 

decomposition by using S,,{p,q). We are heading for it, but for the moment we are a 

little less demanding and instead investigate non-independent vectors ,also called 

frames, which allows lossless analysis when calculating the STFT at the discrete 

lattice points (pto,qcjto). 

Let {'Vi } be a possible infinite collection of elements of a Hilbert space H . If {"'i 

} would constitute an orthonormal basis in H then : 
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(5.12) 

II X 112 , called the squared length of X, but also the energy in that signal . 

If {'IIj} doesn't establish an orthogonal basis maybe it can still act as a set of non

independent vectors? The equation (5.12) can then be a little relaxed and the 

expression can be rewritten as : 

(5.13) 

A and B are called the positive frame bounds, if they are finite, {Wi} constitutes 

a frame. The frame bounds can be calculated [57] and conclusions can be drawn from 

the ratio BfA about the quality of reconstructability of the signal x(t) : 

• B>A : This ratio is a degree of instability. Efforts should be made to 

minimise the ratio. Reconstruction is possible but can numerically become 

largely unstable. For details see [57]. 

• B=A: This is called a tight frame situation. A is a measure of the 

redundancy of the frame. 

• B=A= 1 : Redundancy is minimal and 'Vi forms an orthonormal basis. 

Next to these frame bounds there are of course the lattice spacings defined by to and cj)o. 

Common sense tells us that there should be overall density of the lattice to cover the 

whole signal. However, it is not so easy to formulate stringent conditions. The 

following conditions given now are necessary, but not sufficient for all window 

functions. [60] 

5.3.1 Practical considerations 

• It can be shown [60] that if 'to.cj)o < 1 then there is a chance to have a frame. This 

condition means that the period of cj)o must be larger than the time spacing to. 
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• The covering should be complete which means that if 'to is to large compared with 

the window width of get) there can be gaps on the time axis. Overlapping is 

necessary. (1.5 times seems to be a good overlapping coefficient). With the Gabor 

transform, the variance 0' plays an important role. 0' must be large enough (see Eq. 

(5.7» to make Dot sufficiently overlapping. This leads inevitable to smaller M with 

possible gaps in the frequency domain. Intuitively this leads us to considerations 

concerning Dotl'to and Dof/<I>o . Making them as equal as possible to each other will 

give the best results. This means that the shape of the resolution rectangles 

should be similar to the layout of the lattice points. 

• Optimal shape : make 't0l<1>0 = Dot! Dof and use the resolution identities for Gabor 

transforms (Dot = O'/...J2, Dof = 1I(2...J2.1tcr» . The optimal variance is : 

.fio 
a=--

2ntPo 
(5.14) 

• The window function get) must decay quickly as t -7 00 , at least as fast as (1 +ltlr3 

• In discrete analysis Shannon's sampling theorem should of course be respected as 

well. 

,. M .. 
Ture 

,DOD 
~ DDOlw 

DOD 
DOD ---2.61 

.. 1 • 
Ture 

2~t 

Fig 5.4. Relative good proportional spacing. A slight overlap would be better. (Left 
figure) The right figure illustrates a bad choice of t1tlt1f resulting in gaps in time 
domain and redundancy (overlapping) infrequency domain. 

It is not so surprising that it results in coercion's on 'to and <Po . The more closer we 

space the lattice, the more information we capture. 
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5.4 Continuous Wavelet Transform (CWT) 

5.4.1 From STFT to CWT The Morlet Wavelet 

To get around the resolution limitation while still respecting Heisenberg's 

inequality, one could imagine the gradual and proportional change to M and ~t while 

completing the analysis. 

This would lead us to a multiresolution analysis. How can this be realised? We 

saw that by varying (j in the Gaussian window the resolutions changed . Looking 

now at nature and wondering how for instance sound waves appear, one perceives 

very often 'long' low-frequency waves and 'short' high frequency waves. So, why 

not modify the Gabor transform into a multiresolutional analysis and put the 

frequency f into the quadrature exponential expression! This concept will lead us 

first to the Morlet wavelet [19] and later, after a generalisation of the concept of 

multiresolutional analysis to wavelets with orthogonal basis. 

(5.15) 

For flo f2' f4 respectively being 1, 2, 4 Hz and (j = I the multiresolutional windows look 

like in Fig. 5.5. Remark the equal number of oscillations in the 3 cases. They are in 

fact scaled versions of each other. 
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0.5 ...----~---..., 0.5...--------,-----, 005 r-----.---..., 
I \ 

I \ 

o o o 

-;).5'--------'----...J -oo5L-------L.---....l -;)o5L---------1.---...J 
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Fig. 5.5 Modulated multiresolutional windows : f = 1,2,4 Hz in Eg. (5.15). 

The associated filter bank representations , with scale modification, are drawn in Fig. 

5.6. 

2r-----,r-----,------,,-----,,------, 

IGlnl 

2- IG2nl l 

4-IG4nl 

o'---~-~~-~-~-=~--~L-------L------~ 
o 2 

n 

N-t s 

3 4 

Fig. 5.6. Spectrum division of wavelet-based bandpass filtering. (t1f/f=constant) 

5.4.2 Morlet Wavelet 

5 

The Morlet wavelet is really a step between the STFT and the WT (wavelet 

transfonn). The former uses local complex exponential functions to modulate the 

analysing function and to create an inner product with it. The latter instead uses very 

much impelled functions like for instance the block function ( Haar ) or spline 

functions to be translated, dilated to finally make the inner product with the analysing 

function. Fig. 5.7. shows the real and imaginary part of the Morlet wavelet at different 

scales. Remark that the Morlet as the Meyer one are in fact infinite length wavelets, 

compared with the Daubechies, Coifman, .. which are of a compact support form. The 

wavelet, constructed here, is build with a similar expression as Eq. (5.15). The basis 
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frequency at scale 1 is 1 Hz. The variance a is chosen in such a way that the Gaussian 

window almost completely attenuates the oscillatory signal after 6 time units (in this 

case 6 seconds) 

morlet wavelet morlet wavelet 
2 

1 

+ 
0 1: 

1: 
(0 

(0 c.. 
~O 0) 
(0 (0 

~ .§ -1 
-1 

-2 -2 
-5 0 5 -5 0 5 

time axis: scale 0.5 time axis: scale 0.5 

1 

0.5 

-i~-
1: 

0.5 
1: (0 

~ (0 c.. 

-1 c.. 0 0 
(ij 

0) 
(0 

~ .§ 
-0.5 -0.5 

-1 -1 
-20 0 20 -20 0 20 

time axis: scale 2 time axis: scale 2 

Fig.5.7 Real and imaginary part of Morlet wavelet at scales 0.5 and 2. 

In a few examples we consider first a square wave, sampled at a frequency of 4 Hz 

(ts=.25 sec) and with 1024 samples. We will use the dilation of the MorIet wavelet to 

detect the increasing accuracy (read : resolution) of the position of transients. As a 

second function we consider a chirped signal (frequency modulated signal) also 

sampled at 4 Hz with a total length of 256 seconds and a frequency changing between 

o and 2 Hz. In this case, the instantaneous frequency will be detected. Fig. 5.8. 
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Fig.5.8. Square wave and chirped signal as test signals for Morlet transform. 

The amplitude of the Morlet transformed square wave results in a 3D construction 

which is in a decreasing scale (narrower wavelet) with an increasing accuracy pointing 

to the transient points on the time axis. The square wave starts at t\ = 64 seconds and 

stops at t2 = 192 seconds. At scale .5 the wavelet is only 6 seconds wide and the result 

of the inner product operations shows clearly some peaking at t\ and t2. (Fig. 5.9 ) An 

even better impression is acquired with a 2D plot where the amplitude is presented by 

a grey scale. (Fig. 5.10) The amplitude of the Morlet transfonned chirped signal 

doesn't, at first glance, produce a clear picture. The 2D plot shows how the frequency 

changes with time. Remark the detection of the 1 Hz frequency at scale I in the middle 

of the time scale. 2 Hz is detected at the end of the signal at scale 0.5. 
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Fig. 5.9. 3D amplitude representation of square wave scalogram. High scale (=low 
frequencies) contains large but very inaccurate information about time events. Only at 
low scales (=high frequencies) the accurate time information when transients take 
place are revealed. 
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Fig. 5.10. 2D amplitude representation of square wave scalogram. Remark how well 
the transients events are detected at low scales (=highfrequencies). 
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Fig.5.ll. 3D amplitude representation of chirped signal. At high scales the wavelet 
detects only a few frequency. At low scales the wavelet is short and the inner product 
quickly increases, reaches a maximum and decreases as the frequency of the chirp 
signal changes. At scale 1 the frequency accuracy is at its lowest so the change of the 
inner product is at its slowest. It reaches its maximum value at the end frequency of 
the chirp signal when the maximum frequency in the chirp equals the frequency in the 
wavelet. 
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Fig.5.l2. 2D scalogram of a chirp signal. The signal analysis starts in the bottom left 
and ends in the upper corner at the right. 
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5.4.3 Some Conclusions 

• time resolution increases while incrementing the centre frequency of the analysis 

filters. 

• Mlf is a constant, so these filters are off constant relative bandwidth .(Fig. 5.6) 

• The main difference is that the STFf is linearly spaced in time and frequency 

domain and keeps the same window shape for all analysis. The Morlet wavelet , 

however changes the window shape at different scales, it still is linearly spaced in 

time and frequency (see Fig.5. 11,12) but will in the future be modified to a 

logarithmically scaled frequency axis . This gives great advantages for fast analysis 

and comes very close to natural phenomena like the human hearing system which 

works with octaves. Heisenberg inequality will still be satisfied, but now it will be 

possible to make time resolution arbitrarily good at high frequencies (~tJ,M i) 

and frequency resolution arbitrarily good at low frequencies (~t i M J.). 

• Finally we conclude that a time frequency plane can be drawn with boxes of 

constant area, also called Heisenberg boxes. The surface area stays the same for 

the STFT (Fig. 5.4.a) but modifies at different frequencies for the wavelet 

oriented window . (Fig. 5.13.). In our examples there was a lot of overlapping 

which resulted in redundant operations. In the future we will try to reduce or even 

eliminate that redundancy. 
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Frequency (f) 

Time(t ) 

Fig. 5.13. Multiresolutional representation of Heisenberg boxes. With the 
orthogonality requirements fulfilled the boxes would stick together and realise a 
perfect overlapping of the time-frequency plane. 

5.4.3 Wavelets 

Generalising the concept of changing resolution at different frequencies leads us to 

the continuous wavelet transform (CWT) where all the impulse responses for the 

filter banks are defined as scaled versions of the same prototype \V(t) , called basic 

wavelet. 

(5.16) 

a E 9t is the scale factor and acts in a similar way as the scale factor on geographical 

maps. With a > 1 the function is expanded, with O<a< I the function is contracted. 

Translated into map tenns: the larger the scale factor the more global the view, the 

smaller the scale factor the more the detail in a small area is disclosed . The constant 

lI..JlaI stands for energy nonnalisation. The scale factor is the inverse of frequency. The 

Eq. (5.16) would indeed look very much similar to expression (5.15) if we would have 

put lIa in stead off f in it. This modification to the Gabor transfonn lead us to the 

Morlet wavelet used in last paragraph. For wavelets, in general, the impulse response 

is not restricted to a modulated Gaussian window therefore the use of a general 
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expression vet). Considering all this we can come to a definition of the continuous 

wavelet transform (CWT) : 

1 .os t-b 
CWTx (a,b) = r x(t)l/f(-)dt 

va _00 a 
(5.17) 

Note that the window sliding parameter 1: has changed into b.( a and be 9t) 

Up till now, we proclaimed the engineer's viewpoint. It allowed us to intuitively 

understand how filter banks could be described and used for, not an ideal but an 'as 

lossless as possible' analysis. 

To create wavelets for a specific task like orthogonal decomposition, severe 

constraints will have to be put on 'IIa,b(t) and a more accurate mathematical approach 

will be necessary. 

First some definitions: Eq. (5.17) can be seen as an inner product which measures 

the 'similarity' between the signal x(t) and the wavelet function ",(t). 

CWT x(a,b) = ( X,"'a,b > (5.18) 

Similar as in the STFT where the continuing basis functions (ei21tft
) from the 

Fourier transform are replaced by local oscillatory basis functions shifted in time and 

frequency with the parameters 1: and <I> the CWT will use b and a as parameters for 

the respectively time shift and scaling (= the inverse of frequency) . The analysis 

results in a set of coefficients which indicate how close parts of the signal are to 

the dilated (with parameter a) and translated (with parameter b) version of the 

wavelet basis function. 

It would be very convenient if these dilated and translated versions of the wavelet 

form an orthogonal basis so that the wavelet transform, as the classical Fourier 

transform, results in an orthogonal decomposition. 
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Very interesting is the investigation of what is going to happen with the resolution 

boxes now that we are going to work with a multiresolutional analysis. Considering the 

possibility that 'l'a,b could have an asymmetric shape, the expression (3) and (4) should 

be generalised and next to the resolution (~t) the centre (to) of the wavelet should be 

defined. ( to = 0 for symmetric basic functions) 

.. 
J t(IV'(t)j)2 dt 

to =--:---- (5.19) 

J dV'(t)j) 2 dt 

.. 
J (t - to)2 (1V'(t)j) 2 dt 

~2 = _-00"'--_00 ____ _ (5.20) 

J dV'(t)I) 2 
dt 

The same goes for the frequency domain where fo will stand for the centre of 

FT('I') and M stays of course the frequency resolution. They can be calculated with 

similar Eq. as (5.12) and (5.13). The resulting intervals where data is collected are : 

• for the time domain: [b + a.(to - ~t) , b + a·(to + ~t)] 

• for the frequency domain [(fo - M)/a , (fo + M)/a] 

Their product results, as for the STFf (already shown in Fig. 5.1), in resolution 

rectangles with constant area = 4.~t.~f. Their position, width and height are however 

determined by a and b which must take discrete values. A perfect matching of the 

Heisenberg boxes in the time- frequency plane is our goal. This will be realised with 

orthogonal wavelets. 
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Time (t) 

Fig. 5.14. The perfect match: multiresolutional analysis with orthogonal wavelets. In 
this case a and b are already discretized at powers of 2. With arbitrary values of a &b 
there will be redundancy. 

It would be nice to have a reconstruction scheme complementary to the 

decomposition one. The condition for the existence of the inverse transform is : 

C'I' = j (IFT(vr)I)2 df < 00 

_00 f 
(5.21) 

Remark that e", < 00 implies ( FT(\jf) at f = 0) = 0 = Loo 00 \jf(t)d(t) . Or, \jf(t) has 

zero mean and it has to oscillate. This, together with the final existence property has 

given \jf the name of 'small wave' ( in French: ondelette ) or in English: wavelet. 

The inverse transform, taking into account that a > 0 , is given by 

1 .... 
xU) = ~ J J X(a,b)vra.b (t)dbda 

a C 'Y'-oo--

(5.22) 

Without special constraints, {\jfa.b(t)} are certainly not orthogonal since a and b 

are still considered as real values and the analysis is very much redundant. Frames and 
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BI A ratios for specific values of a,b are now to be considered to achieve information 

on good reproducibility. [57] 

An at first glance contradictory comment on whether or not striving to 

orthogonality comes from J. MorIet : He states that it can be interesting to pursue 

redundancy ! It allows the wavelet coefficients to be stored at low-bit resolution (2 

bits) while still being able to reconstruct the signal with comparatively much higher 

precision. 

5.4.4 Multiresolutional Analysis 

It seems that just observing and studying the resolutions in the time-frequency 

plane cannot guide us to a perfect lossless analysis. Maybe a more abstract study 

could lead us to a deeper understanding and a wider approach of the principle of 

mutiresolutional analysis. Instead of just trying to split up the content of signals into 

well defined frequency band components covering the whole signal why not examine 

signals in a hierarchical set of subspaces and then putting very specific constraints on 

them so they would become exclusive and consequently contain unique information 

about the signal. A compact way of describing multiresolution analysis is by defining a 

sequence of subspaces Vj of L2(9t), je Z, with the following properties: 

1. Vj C Vj+1 ... c L2(9t) 

2. x(t) e Vj ~ x(2t) e Vj+1 

3. x(t) e Yo ~ [( x(t - k) Ik e Z] e Vo 

4. u Vj I V'j = L2(9t) and (\ Vj I V'j = to} 

5. There is a function <pet) with /00-00 <pet) d(t) * 0 such that {<p(t-k) I keZ} is a Rietz 

basis for Vo. 

A Rietz basis means that for x(t) e Vo there exist a unique sequence {<Xic 1 e 12(Z) such 

that x(t) = LakqJ(t - k). 
keZ 

Since <p E Yo C VI , there is a sequence {hkl E 12(Z) such that <pet), called the scaling 

function satisfies : qJ(t) =2Lhk qJ(2t-k) (5.23) 
k 
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This equation also written as an inner product : <p(t) = 2(hk , <p(2t -k) 

It is known as the dilation equation for the scaling function. Other names are the 

refinement equation or also the two-scale relation (TSR). Fig. 5.15. illustrates the 

scaling operation with the block function. 

+ 

Fig. 5.15. Illustration of the dilation equationform.(16) for scaling function with the 
block function X[o.rlt) = {J I O~t<r , 0 lelse}. hk ={J/2,1/2} 

By normalising to oo<p(t).dt = 1 and integrating both sides of eq. (16) we obtain: 

(5.24) 

Mostly no explicit expression for <p is available. Solving the dilation equation for 

some choice of the coefficients hk results in an expression where dilation and 

translation properties are incorporated : 

(5.25) 

If necessary there are fast algorithms to evaluate the scaling function q> at dyadic 

points t=2j ·1.k, j,k E Z. Most of the time however it is , only theoretically interesting 

know the scaling function. hk, however will frequently be used to go from one scale 

to another one. 
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This seems very abstract and far away from the resolution defined up till now. 

With property 5 we stated that <pet) and its translates are a basis for Vo . We def"me 

now the reciprocal of the translation distance as the (time) resolution of the basis. 

The resolution must now be understood as the number of basis functions per unit 

length. Normalising the resolution to be 1 in Vo , it will accordingly be 2j in Vj . Let us 

consider as an example the set of subspaces described as the 'sample and hold 

functions' in L2(9i). For a specific function x(t) eL2(9i) ( Fig. 5.S.) ,we can imagine 

that the piece wise linear function Xj(t) in fig.b is E Vj , in fact it is a projection of xCt) 

on <pj . The other functions in fig.c and fig.d are also projection but in higher subspaces. 

The basis function for all these projections is the block function and its dilated 

versions: <pet) = Xro;r)Ct) ={ 1 I ~t<'t , 0 I else) 

• with 't = 1 in fig.b : resolution 1 

• with 't = .5 in fig.c : resolution 2 

• with 't = .25 in fig. d.: resolution 4 

Remark the relation between the sample and hold time 't, and the resolution : The 

more samples taken ('t small) the more accurate the information about x(t) the larger 

(= better) the resolution. 

fig. a fig. b 
10 80 

60 60 

40 40 

20 20 

0 0 
0 10 0 10 

fig. c fig.d 
10 10 
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40 40 

20 20 

0 
10 

0 
0 0 10 

Fig. 5.16. Thefunction infig.a could standfor an arbitrary function x(t) € L2(9t). The 
others infig .b,c,d are members of subs paces of L2(9t). In fact they are projections of 
x(t) on the bases of the subspaces. The one in fig.b is from a 'lower' subspace of 
L2(9C), the one infig.d comes from a 'higher' subspace. 



Wavelet Transform 128 

As cp(t) is a basis and all its dilated versions are also bases, the dilation equation 

can not only be used to construct the scaling function in lower subspaces it is also 

applicable to construct arbitrary functions Xj_l(t) E Vj_1 C Vj C L2(9i) as a linear 

construction with a basis in a higher subspace. The function Xj-l contains only half the 

number of coefficients per unit length as Xj (it is a blurred version) 

)(;.1--

2 3 4 5 6 7 4 6 

Fig. 5.17 . xj-it) at the left is constructed with the block function XIO.l}(t) as basis and 
at the right with a combination of XIO .. 5lt) and a delayed version of itself. It visualises 
how bases from higher subspaces can de used in a linear combination to represent 
functions out off lower subspaces Remark that this operation is possible at all 
subspace levels. 

5.4.5 Orthogonal Wavelets 

Let us now call Wj the complementary component of Vj in Vj+l such that: 

(5.26) 

where the symbol ffi stands for direct sum. Wj is in fact the 'detail' to be added to Vj 

to obtain Vj+1 • Remark that Wj is not unique and that there may be different ways to 

go from Vj to Vj+1• Iterating Eq .(5.26) results in : 

(5.27) 

Finally we must come to : 
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(5.28) 

A function,!, is a wavelet if { '!'(t-k) I kE Z } is a Rietz basis of Woo As on page 

125 for the scaling function we rewrite the definition of the Rietz basis now for the 

wavelet as : for x(t) E Vo there exist a unique sequence {<Xk} E 12(Z) such that 

x(t) = L,at 1l'(t - k) . 
keZ 

If so then consequently {'!'j.k I j,k E Z } is also a Rietz basis of L2(9\). Note that there 

is much similarity in the definitions of q> and '!'. Without proofs we state by use of an 

inner product that 

1I'(t) = 2 < gk ,cp(2t - k) > or also 

1I'(t) = 2L, gkCP(2t - k) (5.29) 
k 

with similar operations as in Eq. (5.18): 

(5.30) 

Fig. 5.18. Illustration of the dilation equation with the block function for wavelets. 
gk = {l/2,-1/2} 

As long as there is no orthogonality, frames are to be considered with wavelets 

as it was the case with the STFf. It could be that wavelet frames are just intennediate 

states in the research to orthogonality. However, as already said, redundancy can have 

his merits and frame investigation (BI A) based on specific choices of a,b and '!'a.b(t) 

can tell us about the redundancy in the analysis and the quality of reproduction. For 
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our applications they are only slightly more then of theoretical interest and we further 

restrict ourselves to referring to chapter 3 in a standard work on this field : "Ten 

Lectures on Wavelets" by Ingrid Daubechies. [57] . 

An orthogonal multiresolution is defined when Wj is the orthogonal component 

of Vj in Vj+l. So, all spaces Wj are mutually orthogonal. This leads to some very 

interesting properties for scaling function, wavelet and filter coefficients hk and gk . 

Equivalent to noting that Vj 1. Vj -m (m=k-k') one can compactly write : 

(cp j,k ,CPj,k') = &e,k' k, k', j E Z &ex = 1 if k=k', 
o else (5.31) 

Similar to the former expression one can formulate for Vj 1. Wj and Wj 1. Wj' 

with j ~ j' that: 

(\jIj,k , 'lff.k' ) = OJ,j' ,&ex k, k',j,j' E Z (5.32) 

(5.31) and (5.32) together with the dilation equations (5.23) and (5.29) leads us to 

solutions for the filter coefficients hk and gk : 

hk.2m = (cp(t-m) , cp(2t-k) ) and gk.2m = ('If(t-m) , cp(2t-k) ) (5.33) 

These are very general solutions for the shifted scaling function cp(t-m). To 

calculate hk and gk just make m = 0 in eq. (5.33) , One can also find that deriving an 

orthogonal wavelet from an orthogonal scaling function results in the following 

relation between hk and gk : 

(5.34) 

For the block function this results in : 

• for hk : {112, 1I2} 

• for ~ : {112,-II2} 
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inner product operation to determine h. 

- = 

Fig. 5.19. Illustration of the determination of the coefficients hk and gk. 

To complete the operation one needs a reconstruction fonnula as well. In particular for 

<p(2x - k) E VI the reconstruction is produced with <p(x) E Vo and 'V(x) E Wo : 

(5.35) 
m m 

Sweldens [11] goes very much into detail on the mathematical background of all 

these expressions. It is advisable as a basis article and a future vision on wavelets and 

multiresolutional analysis. 

The block function presented up till now as the scaling function was transformed 

into a wavelet with Eg. (5.29). One can find out now that this function, called the 

Haar wavelet has a lot of fascinating properties extensively described in literature. 

[66] We will use it in the future as our most primitive basis for analysis. Of course, 

L2(9{) can be subdivided in different subspaces Vn with their details Wn . The work of 

Daubechies , Coifman and so many others [65] has lead us to a collection of wavelets 

that were investigated on their usability in digital signal processing. 
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5.4.6 Dyadic Sampling 

As we are interested in a numerical analysis, let us find out, about the possible 

relation between the discretization of the time-scale parameters b,a and true orthogonal 

bases. A natural way to do so is to choose a = 8()j and b = k.aits with j,k E Z and ts = 
sampling time. This results in a dyadic sampling grid in the time scale plane . (Fig. 

5.10). With 8() close to 1 and ts sufficiently small the wavelet will be over complete and 

the reconstruction we still be very close to (15) With the computation performed in 

octaves (30=2) a true orthogonal basis will show up for very special choices of 

~ The Haar wavelet is one of them . 

••••••••••••••••• 

• • • • • • • • • 
• • • • • 

• • • 
• • 
log (scale a) discrete titre (b) 

Fig. 5.20. Dyadic sampling grid in the time-scale plane. Each node represents a 
couple (k,j) . They are respectively used.as integer multiples for the time shift aJ.ts 
and the exponent of the discrete scale ad . For practical purpose we choose ao = 2, 
this leads to very simple decimation operations 

5.4.7 Discretizing the Discrete Wavelet Transform 

For a good choice of 'II we can now evolve from the CWT to the Discrete 

Wavelet Transform (DCT) with integer parameters j and k instead of the real values 

a and b: 
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with (5.36) 

DWT xG,k) = < x(t) , '!'j,k (t» (5.37) 

With a short hand notation one writes the wavelet coefficients of a function x(t) as 

dj,k = DWT x(j,k). These are called the detail in the different spaces. 

An arbitrary signal can now be represented as a weighted sum of the orthogonal 

basis functions : 

(5.38) 

This was a result never reached with STFf. Daubechies even proved that it was 

impossible to have orthogonal bases with well localised functions as the ones used 

in the STFf. [57] . 

A next step in the discretization of the wavelet transform is the sampling of the 

analysing signal with sampling frequency Fs (IIts) . In fact, we want to come now to an 

algorithm for wavelet decomposition and reconstruction with discrete signals. Let Xj E 

Vj . Then because of Vj = Vj_1 E9 WH ,Xj can be decomposed as : 

Xj = Xj-l + Yj-l with Xj-l E Vj-1 and Yj_1 E Wj_1 (5.39) 

Iterating this process by use of form. (20) we obtain: 

Xj = Yj_1 + Yj-2 + ... + Yj-m + Xj-m with mEN (5.40) 

with : and Y j (t) = L r j,k'l'j,k (t) (5.41) 
Ie 

The functions Xj(t) and Yj(t) are now respectively projected on CPj,k(t) and '!'j,k(t) 

and the projection coefficients Aj,k and ~,Ic are kept for further analysis. To go from 
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one scale another one has to cede along Mallat's decomposition and reconstruction 

scheme as in Fig. 5.12 and apply the dilation formulas on A.j.k and 'Y.i.k. 

For decomposition: 

(5.42) 
m m 

For reconstruction: 

(5.43) 
m m 

y~ S ----.~ 
Fig. 5.21. Decomposition and reconstruction scheme for discrete values An and 'Yn. 
This is also called Mallat's Fast Wavelet algorithm. 

Skipping the mathematical proofs [4] one can finally sample the continuous 

functions x(t) now becoming x(n·ts) or shortly written x(n) and apply the 

decomposition and reconstruction formulas on discrete data vectors. In fact we start 

with the values CO.k as the discrete values of a signal . If for instance <poet) was the 

sample and hold function one could easily understand that a continuous function x(t) E 

L2(9t) is scaled to a piece wise constant function E Yo by a projection on the basis (<po) 

of that space. We continue now our analysis with the discretized values = the sample 

values. Generalising this idea could comes from Eq. (5.35). 

Substituting now Ao.k as the Oth level of analysis by Xk ,Eq. (5.35) becomes 



Wavelet Transform 135 

(5.44) 
m m 

The final reconstruction is realised with 

(5.45) 
m m 

Further properties like the spectral behaviour of wavelets will be investigated later. We 

will apply now Eq. (5.37) and (5.38) in Mallat's scheme. 

5.4.8 The Haar transform 

We will investigate the Haar transform with the following set of functions: 

(pi"3/4) + 2(pi'"3/B) + 3(pi'"3116) + 4 (pi"3132) + 5(pi"3l64) 

~ 
-200 50 100 150 200 250 

non-stationary signal composed of: pi'"3/4 and pi"3116 

-~~'~j~'~'~ 
o 50 1ClO 150 200 250 

-~P\/ 
o 50 100 150 200 250 

square wave of pi'"3132 

;:~ f \ I \ I: I I I I \ I \ I I: I I I I [ \ J \ 1:1 
o 50 100 150 200 250 

1 
300 

1 
300 

1 
300 

j 
300 

Fig. 5. 22. Four functions are considered to investigate the Baar wavelet: Signal 1 is a 
stationary signal composed of different sine waves proportionally decreasing in 
amplitude with increasing frequency and all well situated in the middle of the 
bandpass filters ( 3Tr14 , 37r18 , 3Tr116, 3Tr132 , 3Tr164 ) . Signal 2 is non-stationary and 
changes abruptly the amplitude from 1 to 2 for the frequency 3Tr14 in the first part of 
the signal, in the second part of the signal the amplitude changes from 4 to 3 at a 
frequency of 3Tr116. Signal 3 is a chirped signal, in fact a frequency modulated signal 
gradually changing between 0 and 1r. Signal 4 is a square wave at frequency Trl16. 

In the following analysis signal 1-4 will be wavelet transfonned until level 3. This 

means implementing the operation explained in Fig. 5.21. At every level the detail 

(band pass filtering) and approximation (low pass filtering) coefficients are calculated 
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then decimation is performed. The next level starts with another splitting up of the 

former approximation coefficients in new details and approximation. The analysis goes 

on until level 3 where detail (picture 3) and approximation (picture 4) are finally kept. 

Remark that at the different levels a sample and hold action took place to artificially 

stabilise the results of the analysis at he same length and eliminate the decimation 

effect on the pictures (present the picture with its original frequencies). Although 

signal 1 was specially constructed to contain only 1 frequency / band pass , in fact per 

level (at 31t14, 31t18, 31t116, 31t132, 31T/64) the analyses show combinations of different 

frequencies. This comes from the fact that, due to the very small amount of filter 

coefficients (for Haar : 2) , the roll off of the filter banks is very slow and frequencies 

from different bands, although attenuated, are also part of other bands. Remark the low 

frequency approximation in the last picture. 

Fig.5.24 shows the absolute value of the FFf for the analyses shown in Fig. 

5.23. Remark indeed the presence of different alias frequencies in the analysis. 31T/4 is 

present at spectral line 96 in the first picture. The others are coming from frequencies 

out of other bands and of course distortion due to sample and hold operation disguises 

the analysis as well. In the second picture one can detect 31t18 at spectral line 48. An 

interesting experiment will be the use of higher order filter which will be the case 

when using Daubechies wavelets.(see 5.4.9) 

muftir •• olutional time analysis: 3 bandpa •• 1 lowp •• s 

~~1 
.sO 50 100 150 200 250 300 

1~~j 
.100 50 100 150 200 250 300 

1~ j 
.100 50 100 150 200 250 300 

1~~?:StS:J ~ 1 
.100 50 100 150 200 250 300 

Fig.5.23. Signal i is respectively Baar band pass filtered between trl4 - TrI2 , trl8 _ 
trl4 and trli 6 - trl8 . The results are called the detail coefficients at the levels 1, 2 and 
3. Finally, the forth picture show the result of low pass filtering, they are called 
approximation coefficients. 
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~~~ : ~ il ~ ~ U ~~ ~ 
00 20 40 60 80 100 120 140 

~~t ~A :~ ~A fl'u j ~:A il A : a 
00 20 40 60 80 100 120 140 

~~f AflAA~~6 t.~tJ : ~: H~ Q :.00 : ~ A 
00 20 40 60 80 100 120 140 

multiresolutional frequency analysis: 3 bandpass 1 lowpass 
1000 - -

5°~t~l ~. ~ A. .: . . : j 
o 20 40 60 80 100 120 140 

Fig.5.24. FFT of results in fig. 5. 23. The amplitude of the analyses are shown until 1r or 
spectral line 128. As the transition bands are very wide a lot of 'neighbouring 
frequencies' show up in the spectra of the different levels. 

original signal 

JS0;;zrv;rs;r; 1 
200 50 100 150 200 250 300 

reconstructed signal 

_:rv.~f~J'~~~ 1 
200 50 100 150 200 250 300 

_~~l 
o 50 HID 150 200 250 300 

Fig.S.2S. The original signal and the reconstructed one are compared and the error is 
calculated and shown. 
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multiresolutional time analysis. 3 bandpass 1 lowpass 

~ 1 
-20 50 100 150 200 250 300 

~I 
= 
~ -50 50 100 150 200 250 300 

~t : ~ -5 
50 100 150 200 250 0 300 

~I rsA2S2i -2 50 100 150 200 250 0 300 

Fig. 5.26. Two frequencies in different time slots are identifiable but not very well 
separated at the different levels. 

l:f :~~Lb.: : h m : j 
00 20 40 60 80 100 120 140 

'~[ ~1LlL : :.A. :~ : j 
0 20 40 60 80 100 120 140 

~:f ~~:A~~ : ~ ",:6 : j 
00 20 40 60 80 100 120 140 

multiresolutional frequency analysis: 3 bandpass 1 lowpass 

'~EA :6 : ~~ ~: = 
j 

o 20 40 60 80 100 120 140 

Fig.5.27. The frequency analysis shows that the 2 frequencies are not very separated. 
Wavelet analysis with more coefficients would result in a better separation of the 
signals at the different levels. 
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~~ 
o 50 100 150 200 250 

1 
300 

reconstructed signal 
5r------r------r------r------~----~------

o ~""~.'I:r·;WimJ:'J'll1LJ,I.~\wl\l\~\I\/\A/VVV\Pv 
.50~-----5~0-----1-0~0------15~0-----2-0~0------25~0-----3~00 

x 10·'s error signal 

01 ==J~ 1 
o 50 100 150 200 250 300 

Fig.5.28. Error analysis of test function 2. 

multiresolutional time analysis: 3 bandpass 1 lowpass 

.H"~ 1 
o 50 100 150 200 250 300 

_~ 1 
o 50 100 150 200 250 300 

-~~ ~ 
0 50 100 150 200 250 300 

-~~ :-
== 0 50 100 150 200 250 300 

Fig. 5. 29. Haar wavelet analysis of chirp signal. As the frequency changes from the 
beginning until the end one can once again remark how big the transition regions in 
the filters really are. 
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~~f j 
00 20 40 60 80 100 120 140 

~H~~~ce j 
o 20 40 60 80 100 120 140 

~ [:JJ\I;;;;;:.J\n: = =. OJ. : j 
00 20 40 60 80 100 120 140 

multiresolutional frequency analysis: 3 bandpass 1 lowpass 

~~;s;;: =:: : j 
00 20 40 60 80 100 120 140 

Fig.5.30. The spectral analysis extensively shows how slow the roll off of the Haar 
frequency acts. 

original signal 

f~l 
.10 50 100 150 200 250 300 

reconstructed signal 
2~----r-----.-----.------.----~-----' 

-20~----~----~----~----~----~25O~--~ 
50 100 150 200 m 

:~l 
.1 0 50 100 150 200 250 3D 

Fig.5.31. Error signal after Haar analysis and synthesis of chirp signal 
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multiresolutional time analysis: 3 bandpass 1 lowpass 

~L 'r l " l , l J , /' ~ ] r r ~ 1 r ': r, r: rT'I~~ 1 _1L-____ ~ ____ ~ ____ ~ ______ L_ ____ ~ __ ~ 

o 50 100 150 200 250 300 

_::~ i 
o 50 100 150 200 250 300 

-::~ j o 50 100 150 200 250 300 

-~ j 
o 50 100 150 200 250 300 

Fig.5.32. Hoor wavelet analysis of square wave signal. Square waves are very similar 
to the Hoor wavelet and thus can very efficiently be represented by it. 

~f : ~ ~ ~: A : ~ :~ ~ j 
°0 20 40 60 Ell 100 120 140 

~f ~: to :.A ~ ~ : ~ : 6 : 1 
°0 20 40 60 Ell 100 120 140 

~f 
A :A ~ . : 0 : A : 1 

00 20 40 60 Ell 100 120 140 
multiresolutional frequency analysis: 3 bandpass 1 lowpass 

l:f ~ :4 : 6: ~ : : . : j 
0
0 20 40 60 Ell 100 120 140 

Fig.5.33. Spectral analysis of Haar transformed square wave. At index 8 the 
fundamental frequency is shown. The odd harmonics 3rd 5th 1h etc. can be seen at 
indexes 24, 40, 48, ... 
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original signal 

] \ I \ I \ I: 111:1 \ !:II \: 
. 0 50 100 150 200 250 

1 
300 

reconstructed signal 

1 
.1 0 50 100 150 200 250 300 

x 10·1S error signal 

o~ 1 
o 50 100 150 200 250 300 

Fig.4.34. Error signal of Haar analysed and synthesised square wave. 

5.4.9. Regularity 

The Haar function, being a block function, shows some discontinuities which are 

mostly not present in the functions to be projected on the wavelet bases. This means 

that it is rather difficult to reconstruct the original signal with a limited number of 

Haar coefficients. Only 'edgy' functions or in fact edges in functions will be 

efficiently represented by Haar wavelets. 

Intuitively one could feel that smoother wavelets would form 'better' bases to 

represent the majority of the functions. Better means : less coefficients to represent the 

function and smaller errors. We will look for more regularity (read differentiability) 

in the wavelet to more efficiently represent a function. 

Regularity of a function can also be seen as a kind of smoothness. In fig.5.35 the 

daub4 and 16 scaling and wavelet functions iteration process is shown. Although they 

are both continuous, daub4 shows less regularity then the Daub 16. Asking now for a 

smooth basis function, ",(t) will ensure us that no artificial discontinuities will appear 

in the transform coefficients or that every discontinuity in the transform coefficients is 

caused by the signal itself. Also, quantisation errors at a certain level in computing 

will after reconstruction, produce errors which are proportional to the basis functions 
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of that level. In image processing coding applications for instance, smooth error 

signals are less annoying to the eye than discontinuous ones. 

Daub4 h Daub4 9 . 
<i> ( 

· 0.5 · 0.5 ------ ------~------ ----- -'- - - - - - ------· · · t · 
0 0 

( ~ 
-0.5

1 
-0.5 

2 3 4 1 2 3 4 

Daub16 h Daub16 g 
1 1 

I 0.5 
0.5 

. 
-----'---------I 

I 
I 

0 I 

0 
-0.5 

-0.5
0 

-1 
10 20 0 10 20 

Figure 5.35. Daubechies scaling (h) and wavelet (g) filter coefficients. 

Daub4:iteration to scaling function Daub4:iteration to wavelet function 
1~--------~--------------~ 2r-------------~--------~ 

0.5 

5 10 
-1~----------~----~ o 5 10 

Daub16:iteration to scaling function Daub16:iteration to wavelet function 
1 1 r--------,~------r--------__, 

0.5 
_ __ , ______ .L ____ _ 

I I 
I I 
I I 
• I 
I 
I o ~~iIIII-__ ---1 

20 40 60 

0.5 

O_~~H-----i 

-0.5 

-1'--------~--------~--------~ 
o 20 40 60 

Figure 5.36. First iteration stepsfromfilter coefficients to basis functions. 
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Daub4 scaling function Daub4 wavelet function 
1r---~--'-------~ 2r-------~------~ 

-0.5 
0 100 200 100 200 

Daub16 scaling function Daub16 wavelet function 

, , 
0.5 

, , , , ------, ----.,-----
0.5 - __ __ 1 ______ .L. _____ , , , , , , , 

0 
, 

0 
-0.5 - - - - --'- -----'-----, , 

-0.5 -1 
0 50 100 150 0 50 100 150 

Figure 5.37. The iteration process on the filter coefficients must finally terminate in 
the scaling and wavelet functions. 

Mathematically one can proof that there is a relation between: 

dp",/dtP = continuous function ~-7 '1'( co) has zeros at CO = 0 

or for the transfer function of the of the wavelet filter coefficients: 

G( ein) has poles at n=o 

One can even go a step further and state that the pth derivatives of 'I' and G are 

zero at ro=O respectively n =0. This results for 'I' in : 

- -
dP'¥ldtPI =d P IdtpJVI(t)e-jfIXdtl_ =(-j)pJtPVlU)dt=O 

Q)=O w-o (5.46) 

This implies that the function ",(t) has P zero moments if G(ei°) has P zeros at 

0=0. Analog to this deduction one comes to a condition for the wavelet filter 

coefficients: 
N-\ 

I,n P gil = 0 for p = 0,1, .... P-l (5.47) 
11=0 
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This condition will be used in a condition set to generate Daubechies and other 

wavelets. (See appendix 5B) 

5.4.10. Daubechies wavelets 

The Haar wavelet is now seen as the first in a series of compactly supported 

wavelets designed by Ingrid Daubechies. The Haar wavelet is now also referenced as 

Daubechies2. 

n :=0 .. 511 t610 := 1 t 6
S11 

:=0 w 6:= idwavelet(t 6) 

t 5
20 

:= 1 t 5
S11 

=0 W 5:= idwavelet(t 5) 

t4 := 1 t 4S11 
:=0 W 4: = idwavelet( t 4) 

40 

t 3
80 

:= 1 t 3
S11 

:=0 W 3:= idwavelet(t 3) 

t2
160 

:= 1 
t 2SI1 

:=0 W 2 : = idwavelet( t 2) 

t 1
320 

:= 1 
t ISI1 

:=0 wI :=idwavelet(t 1) 

6r-------~------------------------------------------_, 

5r-------~:~----------~~--------------------------__; 

Wln+5 ~ 
4~--------------------~~~··r----------------------------1 

w~+4 A 
W 3

n 
+3 31------:-----..... '-..1 vl-------------t 

w4 +2 I 
n 2 ~-------<---------------"" .. '_J .... ··V·· 

w'n +1 

o~------~----------------------~ 

_IL-______ ~ ________________________ ~ ________________ ~ 

o 50 100 150 200 250 300 

n 

Fig.5.38. The Daub4 wavelet is reproduced from 6 different levels. They all start at 
index 128 but the higher the level the longer the wavelet: In a multiresolutional 
analysis one needs long wavelets for the low frequencies and short ones for the high 
frequencies. 
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multirasolutional time analysis: 3 bandpass 1 lowpass 

~t~~~*¥~ j 
-50 50 100 150 200 250 3CIO 

~ j 
-50 50 100 150 200 250 3CIO 

1~ ~ 
-100 50 100 150 200 250 3CIO 

~ j 
-200 50 100 150 200 250 300 

Fig.5.39. Daubechies8 analysis of 5 frequency signal. Remark how the different 
frequencies are better separated at the different levels 

:f 6 ~ A: j 
00 20 AD 60 80 100 120 140 

:f : :~ : A j 
00 20 AD 60 80 100 120 140 

~~f 
• o~ : . j 

00 20 AD 60 80 100 120 140 
multiresolutional frequency analysis: 3 bandpass 1 lowpass 

1~fM tJ : j 
o 20 AD 60 80 100 120 1AO 

Fig.5.40. Spectral analysis of the Daubechies8 analysed test function 1. The spectral 
separation is much better than with the Haar transform. 
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original signal 

.~~l 
o 50 100 150 200 250 300 

reconstructed signal 

-~~----~----~----~----~----~----~ o 50 100 150 200 250 300 
x 10-u error signal 

o~~l 
o 50 100 150 200 250 300 

Fig. 5.41. Error signal of Daubechies8 forwards and backwards transformed test 
function 1. 

multiresolutional time analysis: 3 bandpass 1 lowpass 

_~fM~~~~ :. 1 
o 50 100 150 200 250 300 

_~f : ~ 
0 50 100 150 200 250 300 

~I -~~~ 
-5 

0 50 100 150 200 250 300 

~I : ~ -2 
0 50 100 150 200 250 300 

Fig.5.42. Daubechies8 analysis of 2 sine waves. As the signal is composed of the 
frequencies 31f14 and 31f116 Levell contains information about the former part of 
the signal at the frequency 31f14. Level 3 contains information about the latter part of 
the signal at frequency 31f116. 
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1~~~ 
'"" : L j 

00 20 40 60 80 100 120 140 

1~~f Ao. :6- : ~ 
j 

00 20 40 60 80 100 120 140 

200 

A~o~ 1O~t 
"" 

j 
0 20 40 60 80 100 120 140 

multiresolutional frequency analysis: 3 bandpass 1 lowpass 

~r~ j 
00 20 40 60 80 100 120 140 

Fig. 5.43. Spectral analysis of the 4 levels of a Baubechies8 analysed signal with 2 
sine waves. (Test function 2}.Remark the alias frequencies in the level 4. 

original signal 

:~l 
-50 50 100 150 200 250 300 

reconstructed signal 
5~----'-----~-----'-----''-----T---~ 

o~NWVWIM 
-50 50 100 150 200 250 300 

x 1O-u error signal 
2~~--.-----~----'-----~----~----~ 

o ~-~~~I.V~~\JA,AA ('Jv\N\/\J'I, 
~ V 

-20L-----50~----1·00-----1~50~---2~0~0----~25~0----~ 

Fig. 5.44. Error signal of Daubechies8 forwards and backwards transformed test 
junction 2. 
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multiresolutional time analysis: 3 bandpass 1 lowpass 

~I .~ j 
-2 

0 50 100 150 200 250 300 

~I ~ : j 
-2 

0 50 100 150 200 250 300 

~~: j 
-2 o 50 100 150 200 250 300 

-~~: j 
o 50 100 150 200 250 300 

Fig. 5.45. Daubechies8 analysis at 4 levels of test function 3. Remark the temporary 
character of the sine wave in the chirp signal : Level 1 shows the high frequencies at 
the end of the signal. Level 4 shows the low frequencies at the beginning of the signal 

~f ~ ~ j 
0 20 40 60 80 100 120 140 

~f : j 
0
0 20 40 60 80 100 120 140 

~t ~~ : - j 
00 20 40 60 80 100 120 140 

multiresolutional frequency analysis: 3 bandpass 1 lowpass 

~r~ j 
00 20 40 60 80 100 120 140 

Fig. 5.46. Spectral analysis of Daubechies8 analysed test function 3. 3 band pass 
levels and 1 low pass. As the chirp signal contains all frequencies, the low pass and 
the band pass filtering at different levels can very clearly be identified. 
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original signal 

f\_ 
.1 0 50 100 150 200 250 

1 
300 

reconstructed signal 
2r-----~----~------r-----~----~----__, 

x 10·'5 error signal 

°hJ~ 1 o 50 100 150 200 250 300 

Fig. 5.47. Error signal of Daubechies8 forwards and backwards transformed test 
function 3. 

multiresolutional time analysis: 3 bandpass 1 lowpass 

o.~ 1 
-0.20 50 100 150 200 250 300 

o.~ 1 
-0.50 50 100 150 200 250 300 

o.~ 1 
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~ 1 
-1 0 50 100 150 200 250 300 

Fig. 5.48. Daubechies8 analysis at 4 levels of test function 4. Remark at level 1 that 
only the transients of the square wave are shown. Level 4 shows a low pass filtering of 
the square wave : Only the fundamental wave (sine) is left. 
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1~ f : A: f), ~ :~ ~ j 
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~f : a A A: t. : A j 
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~f :~ : j 
0
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multiresolutional frequency analysis: 3 bandpass 1 lowpass 

1~f ~ : A 

j 
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Fig.5.49. Spectral analysis of Daubechies8 analysed test function 4. 3 band pass 
levels and 1 low pass. 
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reconstructed signal 

.:~l 
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.:tfvw\Mnr 1 
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Fig. 5. 50. Error signal of Daubechies8 forwards and backwards transformed test 
function 4. 
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5.4.11. Symmetry 

Compactly supported orthogonal wavelet bases all have a asymmetrical structure. 

This in contrast with the infinitely supported wavelet bases like for instance the Meyer 

one. In many applications, asymmetry can be a nuisance. In image coding for instance 

we are confronted with our visual system which is very sensible to phase linearity. 

Phase linear filters have symmetrical impulse responses. Wavelets with symmetrical 

filters coefficients are studied in the next chapter where we consider the new 

generation of wavelets among which are the biorthogonal wavelets. 
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CHAPTER 6 

2D and Second Generation Wavelets. 

6.1 Introduction 

In Chapter 5 the evolution from classical Fourier to ID wavelet transform was 

investigated. We now explore some new application fields like for instance the lifting 

scheme for biorthogonal wavelets. This leads us to the use of splines; the start of a 

new generation of wavelets which do not use the classical dilation-translation 

techniques anymore. Although not investigated here, they are a guide to, for instance 

non-uniform sampling and wavelets on spheres. 

In this Chapter we consider 3 items : 

• 2D wavelet algorithms, as an extension of the ID case, will be studied. In 

chapter 7 the algorithms will be applied in some image compression and noise 

reduction items. 

• Biorthogonal wavelets can be seen as a first attempt to relax the stringent 

conditions put on orthogonal wavelets. Daubechies proved that asymmetry is a 

necessary condition for compactly supported orthogonal wavelets when 

analysis and synthesis coefficients are the same. By accepting complementary 

and not necessarily equal length sets for analysis and synthesis, symmetrical 

spline functions can for instance be considered to construct new kind of 

wavelets. This not only broadens the field it also opens new opportunities for 

faster and more efficient algorithms. In this context we will consider the 

biorthogonal splines . 
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• The lifting scheme is a new technique for implementing wavelets. It does not 

utilise the convolution techniques anymore but make use of 'predict' and 

'update' techniques to construct and implement biorthogonal wavelets based 

on splines. 

6.2. The Two Dimensional Wavelet Transform 

For two dimensional signals, e.g., images, the transform consists in double 

application of the one dimensional DWT , once for the rows and a second time for the 

columns of an image. When using a scale factor two in both directions (commonly 

used) , it will be called the dyadic two dimensional DWT. 

The splitting of the wavelet transform in two individual directions is a 

consequence of the fact that the transform is separable, because the basis functions 

<XXI), <XX2), 'I'(xd and 'I'(X2) are orthonormal. 

In figure 6.1. we can see how the data of the image is split up after one stage of the 

2D WT . One such small square will be called a subband. 

LL LH 

HL HH 

Figure 6.1. First stage of a 2-dimensional wavelet decomposition 

The subbands contain: 
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• LL : all the low pass information : The result of 

decimation/convolution with the low pass filters hI and h2. 

155 

• HH : all the high pass information : The result of convolution 

Idecimation operation with the high pass filters gl and g2· 

• LH : horizontal high pass and vertical low pass information : the result 

of convolution Idecimation operation with the high pass filter gl and 

the low pass filter h2. 

• HL : horizontal low pass and vertical high pass information : The result 

of convolution Idecimation operation with the low pass filter hI and the 

high pass filter g2. 

In subsequent stages only LL is further transformed in a wavelet decomposition 

There is another alternative in which all 4 subbands are transformed in a wavelet 

packets decomposition. The practical wavelet decomposition and reconstruction of an 

image is illustrated in Fig.6.2. .t stands for down sampling (decimation) by 2; r 
stands for up sampling (interpolation) by 2. 

rows columns 

Figure 6.2. Two-dimensional wavelet decomposition. 
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columns rows 

D 

Figure 6.3. Two-dimensional wavelet reconstruction 

The following part of the text shows a Mathcad program for 2D wavelet analysis 

and synthesis. Each part consists of 2 functions : the wavelet transfonn and the use of 

the wavelet transform at different levels. Haar and Daub4 are the easiest to implement 

and take the smallest amount of CPU time. This programming was intended to 

investigate Mallet's schema for 2D wavelet implementation. Chapter 7 investigates 

these algorithms on a video processor like the TMS320C80. 

Note how, because of the separability of the 2D wavelet into ID wavelets, the 1D 

transform can easily be implemented on the rows and the columns to result in a 2D 

decomposition and reconstruction. In Chapter 4 this algorithm was implemented in a 

first experiment to remove noise from a picture using Wiener filter techniques in a 

wavelet space. 
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2D WAVELET ANALYSIS 

The Haar and Daubechies4 are available for 2D wavelet analysis. The analysis is 

composed out of two functions. One level analysis function called 

wav_anaClevel(f,wavelet) and a global analysis function 

waveleCanal(f, wavelet, w _level). 

a :=[2 
2 

Haaclow := (:) 

Haar : = augment ( Haar_Iow, Haar_high) 

Daub4_high : = 

1- ;3 
(4.[2) 
3-;3 

-1·--
4.[2 

3+;3 
(4-[2) 

_1.1+;3 
4.[2 

Daub4 : = augment ( Daub4_low ,Daub4_high ) 
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wav _anaUevel (f, wavelet) rows_f<- rows( f) 

T 
trans_f<- f 

for i E 000 rows_f - 1 

,0> (<i> <0> ) fl 0 <- response trans_f , wavelet , rows_f 

<i> (<i> <I> ) fIl <- response trans_f , wavelet , rows_f 

I: 01 0 rowsj - 1 lor 1 E 00 --=--
2 

o ( )<2o il+l> 
f20"01><- fIOT 

o ( )<2o il+l> 
f2I<1I><- flIT 

f 01 0 _ro_w_s=-f -_1 or I E 00 
2 

,01> ( ,01> <0> ) f30 <- response f20 , wavelet , rows_f 

<il> (,01> <I> ) f3I <- response f20 , wavelet , rows_f 

,01> (<il> <0> ) f32 <- response f21 , wavelet , rows_f 

,01> (<il> <I> ) f33 <- response f21 , wavelet , rows_f 

f30_T<- f30
T 

f31_T<-f31
T 

f32_T<- f32
T 

f33_T<- f33T 

I: 01 0 _ro_w_s=_:....f -_I lor 1 E 00 
2 

f40<i1> <-f30_-ra°il + l> 

f4 l<i I > <- f31_-ra° il + I > 

f42<il > <- f32_-ra° i1 + 1 > 

f43<il > <- f33_-ra°i\ + J > 

Caugl <- augment (f40T,f41 T) 

Caug2<- augment (f42
T

, f43
T

) 

stack ( Caugl, Caug2) 

158 
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wavelecanal(f, wavelet, w_Ievel):= col_f+- cols(f) 

wav _lev +- wav _anal_level (f, wavelet) if w _level= 1 

otherwise 

wav _lev +- wav _anal_level (f, wavelet) 

2D WAVELET SYNTHESIS 

f2+- wav _lev 

count +-1 

while count <w _level 

col f 
length_lev <----

2count 

f1 +- submatrix( f2, a, length_lev - I, a, length_lev - 1) 

f2<- wav _anal_level ( f1 , wavelet) 

for ie a .. length_lev - 1 

for j e a .. length_lev - 1 

wav _lev. . +- f2. . 
I,J I,J 

count +- count + 1 

wav_Iev 

159 

The Haar and Daubechies 4 are available for 2D wavelet synthesis.Te inverse 

coefficients are used. The synthesis is composed of two functions. One level synthesis 

function called wav _synClevel(f,rev _wavelet) and the global function wavelet 

_synt(f,rev _wavelet, w _level). 

a :=J2 
2 

Daub4_low .-

HaaUow= (:) 

1 +Ji 
(4.-12) 
3+Ji 
k-12) 

Oaub4_high 
3 -,J3 
(4.-12) 
1 -,J3 
(4.-12) 

Daub4_lev 

1 -.[j 
kJ2) 

3 -,J3 -1·--

4.-12 
.-

3 +.[j 
(4.-12) 

_1.I+Ji 

4.-12 

:= augment ( reverse ( Daub4_low ), reverse ( Daub4_higb » 
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gO ..... submatrill(f.O.row_f- 1.0.row_f- I) T 

gl ..... submatrill(f.O.rowj - I. row_f. 2·rowj - I) T 

g2 ..... submatrill(f.row_f.2·rowj- 1.0.row_f- I)T 

g3 ..... submatrill(f.rowj.2·row_f- l.rowj.2·rowj- l)T 

for ieO .. rowj-1 

for je 0 .. 2·row_f - 1 

zero!. ...... 0 
I,) 

zero2 ..... stack ( zero I. zero I ) 

g40-zerol 

g41 ..... zerol 

g42 ..... zerol 

g43 ..... zerol 

for jle 0 .. row_f- 1 

g40<2·j l > _ gO<;j1 > 

g41<2 j l > <- gl<;jl > 

g42<2'j l > _ g2<i1 > 

g43<2'jl > ..... g3<i1 > 

g40_T ..... g40T 

g41_T ..... g4I T 

g42_T_g42T 

g43_T_g43T 

for jle O .. row_f- 1 

g30<;j1 > -response (g40_-r<iI> .rev_wavelet<D> .2.row3) 

<;jl> (-<'1> <I> ) g31 _ response g41_1 J • rev_wavelet .2·row_f 

g32<;j1> -response (g42_-r<iI> .rev_wavelet<D> • 2· row_f) 

g33<i1 > <-response (g43_rjl > • rev_wavelet<1 > • 2· row_f) 

g20-g30+g31 

g2J<.-g32+ g33 

glOo-zero2 

gll<-zero2 

for jle 0 .. row_f- 1 

!
gIO<2 j l> <-g20<i1> 

g 11<2'jl > ..... g21<jl > 

glO_T ..... gIOT 

glI_T ..... gIIT 

for j2e 0 .. 2·row3 - 1 

I gO<i2> ..... response (gI0_-r<i2> .rev_wavelet<D> • 2· row_f) 

gl<i2> .... response (gll_-r<i2> • rev_wavelet<1 > .2·rowj) 

g_gOT+g1T 
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wavelecsynt (f,rev_wavelet, w_Ievel):= col_f+- cols(f) 

wav_Iev+-wav_synUevel (f,rev_wavelet) if w_Ievel-1 

otherwise 

wav_Iev+-f 

count +- w _level - I 

while count ~O 

fl +- submatrix( way _lev, O,length_Iev - 1,0, length_lev - I) 

f2+- wav_synclevel (fl,rev_wavelet) 

for i EO .. length_lev - I 

for jE 0 .. length_lev - I 

way lev .. +-£2. . 
- I.) I.J 

count +- count - J 

wav_Iev 

6.3 Biorthogonal Wavelets 

The orthogonality property causes strong limitations for the construction of 

wavelets. The Haar is the only real-valued wavelet, using the same scaling and 

wavelet function for analysis and synthesis, that is 0 compactly supported, symmetric 

and orthogonal. All the others are non-symmetric have non-linear phase and thus 

producing distortion while processing images . 

Constraints has to be relaxed for instance on the uniqueness of the basis functions 

for forward and backward WT. Dual scaling function ip and dual wavelets iii are 

to be considered .They generate a dual multiresolution analysis with subspaces 

~ and ~ , so that: 

(6.1) 

and, consequently, 

Wi 1.~. for j * j'. 

(6.2) 

The dual basis is constructed with dual wavelets Vii,k which are orthogonal to the 

wavelets 'l'j,k, 
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/ lI' k' Vi, k') = Ok k·O . .. \ J. J. . j.) 

{h,li,g,g }is a set o(biorthogonal filters. h and g are defined by 

lik_2m = (iP (t - m), lp(2t - k») 

gk-2m = (tJiCt - m),lp(2t - k») 
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(6.3) 

(6.4) 

The resulting scaling functions, wavelets, dual scaling functions and dual wavelets are 

biorthogonal in the way that : 

(iPj.k ,lpj.k') = 0k.k· 

(tJij.k,lI'j.k') = 0k.k· 

(fPj.k' lI'j.k) = 0 

(tJij.k ,lpj.k) = o. 

(6.5) 

The dual multiresolution analysis is not necessarily the same as the one generated 

by the original basis functions. In signal processing terms this means that the filters 

used in the forward transform are different from those in the inverse transform. 

However, the inverse filters are symmetric variants of the forward filters. 

Experimentally we found out (Appendix 5a) but Daubechies also proves [57] 

that filters for two-band splitting schemes, like the wavelet filters h and g, cannot be 

orthogonal and linear phase simultaneously when the filters have a length greater than 

2. The Haar filters are the only ones that comply. Though, linear phase can be 

introduced in the filters by accepting biorthogonality. 

In sound coding, linear phase is not important, because the human hearing system 

is not phase-sensitive. This is however not the case for images. Thus, 2D filters for 

images should have neither amplitude distortion, nor phase distortion. 

The idea of multiresolution can be extended to describe the biorthogonal case as 

well. Biorthogonal filters are different for decomposition and reconstruction, as seen 
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in (Fig. 6.4.). This is because the orthogonality requirement is replaced by the weaker 

requirement of biorthogonality. Mostly, the number of filter coefficients are not the 

same. They can be designed with the same techniques in mind as with the Daubechies 

wavelets: 

• Put the biorthogonal forward and inverse transform in a matrix form and deduce 

some equation for orthogonality out of it. 

• Formulate some extra constraints of vanishing moments. 

• Construct a set of non-linear equations and solve. (Appendix 6a) 

-
'" '" 
G C G 

H 
A 
N 
N 
E 

H L H 

cp iii 

Figure 6.4. Schematic filter-bank scheme for the biorthogonal wavelet transform. 
Mallat's scheme can be used unmodified for different levels. Only the filter 
coefficients will change in the reconstruction phase. 

In the following table a simple comparison is made between former 

transformations and the biorthogonal one. Note, that the Gabor transform, explained 

in Chapter 4, had no variable resolution windows. 
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Property Gabor Nonnal Biorthogonal 

Wavelet Wavelet 

Reconstruction not perfect perfect perfect 

Basis functions not orthogonal orthogonal biorthogonal 

Phase linear non-linear linear 

Filter length relatively long relatively short relatively short 

Table 6.1 : Comparison of some properties o/transformations 

Figure 6.5. shows the biorthogonal cdf17-1S (Cohen, Daubechies & Feauveau) filter, 

with: 

(a) 

(b) 

(c) 

(d, e) : 

(f, g) : 

The magnitude-frequency response 

The magnitude-frequency response in dB 

The phase-frequency response 

The scaling functions 

The wavelet functions 

Note in Fig. 6.S.a. the 'non-mirror' shape of the frequency responses and in Fig.c the 

linear phase response. Note also that the figures d-g form the scaling wavelet set for 

analysis and that the figures e-f fonn the set for synthesis 
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1.2 0 --- ... --
I 

a:l -20 / 
! 

<> s I -g 0.8 <> 
-40 

'2 0.6 
'C -60 

00 .a 

j ~ 0.4 
'c -80 00 

0.2 
~ -100 

-120 
0 

0 7tl4 7tl2 37t14 1t 
0 7tl4 7tl2 37t14 1t 

(a) (b) 

0 7tl4 7tl2 37t14 1t 

(c) 

1.2 1.2 

0.8 0.8 

0.4 0.4 

0 0 

-4 -3 -2 -I 0 2 3 4 -4 -3 -2 -I 0 2 3 4 
(d) (e) 

1.4 1.4 

0.7 0.7 

0 0 

-0.7 -0.7 

----
-4 -3 -2 -1 0 2 3 4 -4 -3 -2 -} 0 2 3 4 

(f) (g) 

Figure 6.5. Cdf17-15 characteristics 
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6.4. The Lifting Scheme 

6.4.1. Introduction 

The lifting scheme is a new method for constructing biorthogonal wavelets. The 

construction takes place entirely in the spatial domain since it does not rely on 

convolution and Fourier theory as the classical WT algorithms do. 

There are three major steps in the construction of wavelets using lifting. The first 

step or Lazy wavelet splits the samples into even and odd subsets. The second one 

calculates the high pass wavelet coefficients (n as the failure to predict the odd set 

based upon the even set. The third step updates the odd set using scaling functions 

formed by the calculated high pass wavelet coefficients in order to find the low 

frequency values (A. coefficients). As in classical wavelets we want to come to the 

expression for a general function f 

'¥i.1.k 

J,.k 

}---.... J,.l.k 

Fig. 6. 6. The lifting scheme. 

Wim Sweldens et al. [11] are very active in this research area. In this chapter we 

will use Sweldens' notation ( A. and y) for the respectively low pass and high pass 

filtered wavelet coefficients. Because of this new approach to wavelet design and the 

opportunity to head for new application fields we will call them 2nd generation 

wavelets. 
The basic idea behind the name lifting scheme is to start with a trivial wavelet, 

the Lazy wavelet which essentially doesn't calculate anything of the formal 
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properties of a wavelet. Although, by splitting the even from the odd samples it 

performs a first step in the direction of decorrelating the signal in a broad sense. The 

lifting scheme which comes after the Lazy decomposition, gradually builds a new 

wavelet with improved properties. 

A;.k 

Figure 6.7. Classical fast wavelet transform (Mallat's algorithm). 

Figure 6.7. shows the classical fast wavelet transform. In this algorithm, the input 

is filtered by both the high pass filter g as the low pass filter h and the two results are 

subsampled. 

In the fast lifted wavelet transform, low pass coefficients will be calculated with 

the help of earlier calculated high pass coefficients. This will avoid subsampling of 

the results. We will also prove that, by using the lifting scheme, the amount of FLOPs 

can be reduced by a factor of two. 

6.4.2. Split Step 

If we have a sampled signal, we denote the original samples as Ao,k = f(k) for k E Z. 

The number of coefficients can now be reduced by subs amp ling the even samples of 

the original signal : Ao,2k. 

A.l,k = Ao.2k for k E Z (6.6) 

The wavelet coefficients 'Y-u are used to encode the lost information, so we can 

reconstruct the original set Ao.k from the set A.l,k. In the case of the Lazy wavelet we 

say that the lost information is contained in the odd coefficients. Of course, this does 

not ideally decorrelate the signal. 
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Y-l,k = Ao,2k+l for k E Z (6.7) 

'Y-l,k = Ao.2k+1 

A.-l.k = Ao.2k 

Figure6.8. Split step. 

Note that there is no restriction on the way how the data should be split, nor on 

the size of the subsets. Splitting between even and odd points in the Lazy wavelet is a 

good choice to start with. Remember that we are looking for a decorrelation and 

because the correlation between neighbouring points is generally good, splitting them 

up into an even and an odd set is a first primitive step towards decorrelation. 

6.4.3. Predict Step 

The Lazy wavelet only subsamples the data in even and odd samples and will not 

help to efficiently decorrelate the signal. 

A.1.A: = Ao.2k 

Figure 6.9. Split and predict step. 
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The odd samples Ao.2k+l can be predicted on basis of the even samples A_l.k found by 

the Lazy wavelet. For example an odd sample Ao.2k+l can be predicted as the average 

of it's two even neighbours A..l.k and A..l.k+l (Fig. 6.10). This will not be altogether 

exact but it will be close to the original odd sample if there is correlation between 

subsequent samples in the signal. As we are interested in the 'detail' in a signal we 

define the wavelet coefficient as the difference between the original sample and the 

predicted value. 

'Y-l.k = "-<>.2k+l - P(A..l.k) ( P: Predict) 

'Y-l.k = "-<>.2k+l - Y2(A..l.k + A..l.k+l) 

A.u = Ao.2k 

Figure 6.10. Wavelet coefficients as the difference between sample value and 
prediction (linear interpolation case) 

(6.8) 

If there exists correlation between subsequent samples, most of the wavelet 

coefficients will be rather small. If the signal is piecewise linear between the even 

samples, all wavelet coefficients are zero. The wavelet coefficients are in fact a 

measure of the strength of the signal's non-linearity. In terms of frequency 

content, they capture the higher harmonics of the signal in fact the high frequencies 

while the A..l,k capture the low frequencies. 

Instead of using a linear prediction, the failure to be quadratic, cubic (or an higher 

order) can be computed. This leads to the concept of interpolating subdivision 

which is discussed further. 
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6.4.4. Update Step 

The earlier mentioned steps of splitting and prediction can now be iterated until 

the original data is replaced with the wavelet representation. However, the choice of 

A-l.k with Lazy is not the best one. These coefficients are found by a simply 

subsampling of the original signal, so their frequency content stretches out over the 

whole band of the original signal. By subsampling the signal, the sampling frequency 

is halved hence aliasing is possible when for instance the frequency components of 

the A.l,k exceed half the new sampling frequency. 

If there are 2n samples, the split and prediction steps can be applied n times 

resulting in the coefficients A,;,k (-n'.5;,j'.5;,-I, 0~2n -I) and two remaining (low pass) 

coefficients A-n,O and A.n,l. These two coefficients are respectively the first (~,o) and 

the last (Ao,2n_J) of the original samples. 

It is desirable to keep some of the global properties of the original data set in the 

new higher level set : For instance that lower scale images should have the same 

brightness or average pixel value as higher scale ones. This implies that the last value 

should be the average of all pixel values in the original image. This last value is 

always the low pass remaining A coefficient. Since the high pass wavelet coefficients 

iJ,k always have an average equals to zero there is only the DC value left for the last 

'approximation' coefficient .. 

The average value of theAj,k should be the same for each scale. With the decrease 

by 2 of the amount of samples we can write: 

L Aj_I,k = 72 L Aj,k (6.9) 
k k 

The low pass coefficients A-l,k will be lifted with the calculated neighbouring 

wavelet coefficients iJ-l,k : 

Aj-l,k = Aj-l,k + U ("f.j-l,k) (U : Update) 

Aj-l,k = Aj-l.k + A(}j-l,k-l + }j-u) (6.10) 
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}----r----+ 1-I.k= Ao.2k+I-P(A.-1.0 

~.k 

1---+ A._I.k = Ao.2k + U(1-1.0 

Figure 6.11. Split, predict and update step for the first level. 

A can be found by calculating the average : 

(6.11) 

To maintain the average A = lA .Then (6.10) becomes : 

Aj-l.k := Aj-l,k + 114 (')1-1,k-l + 'Y-j-l,k) (6.12) 

6.4.5. One Level in the Wavelet Decomposition 

The split, predict and update steps can be iterated until the original data is 

replaced by wavelet coefficients 'Y-j,k and one low pass coefficient A-n.o. One level of 

the wavelet decomposition is depicted in figure 6.12. 

}----T'-'---+ Y.i-l,lc = ~.2k+l - -P(~-1.0 

1---+ A,-I.k = A,.2k + u(Y.i-1.0 

Figure 6.12 One level in the wavelet decomposition with use of the lifting scheme. 
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The split, predict and update steps can be combined into two steps. When the notation 

of figure 6.15 is used, one level of the wavelet decomposition of the above explained 

example is given by Algorithm 6.1 

Each level of the wavelet transform consists of two stages : 

• calculate wavelet coefficients as the failure to be linear, from (6.8) 

'¥i-I.k := Aj.2k+1 - 'I2(Aj.2k + Aj.2k+2) 

• lift the subsampled coefficients (6.7) with these wavelet coefficients, 

from (6.12) 

A:;.2k A:;.2k+1 A:;.2k+2 

7.~V.~ 
»-~r 7/ll~r~ 

~ . ~ 
Aj-!,k Aa-l,k A..;-I.k+1 

Figure 6.13. Lifting scheme with prediction and update (1 scale) 

The inverse transform simply undoes the steps, done in the forward transform: 

• undo the lifting 

Aj.2k := Aj-I.k - 1A (/J-I.k-I + /J-u) 

• restore the data from the prediction 

A.;.2k+l := /J-l.k + Y2(A;.2k + A;.2k+2) 

Algorithm 6.1 : One scale in the lifted wavelet decomposition aruJ reconstruction applied to an 

example. 
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6.4.6. Other Prediction Functions : Interpolating Subdivision 

As mentioned before, other (non-linear) prediction methods are possible. This 

leads us to the interpolation subdivision. We use the value N+l to denote the order 

of the subdivision scheme. The piecewise linear approximation as seen in the earlier 

section, uses N = 1. For a cubic interpolation N should be three. N determines the 

smoothness of the interpolation function used in the lifting scheme process to find the 

wavelet coefficients. 

Cubic interpolation is now explained by an example. When two neighbouring 

points on either side of a central point are used to predict it, a cubic polynomial pet) 

can be designed which interpolates those four values 

A;,k-l = P(tj,k-l) 

A;,k = p(tj,k) (6.13) 

A;,k+l = P(tj,k+l) 

A;,k+2 = P(tj,k+2) 

The predicted sample value (even sample with odd index) will be the value that 

the polynomial takes on at the midpoint, leaving the odd samples (with even index) 

preserved 

A;+l,2k+l = P(Xj+l,2k+l) 

A.j+l,2k= A;,k 

(6.14) 

Fig. 6.14 shows one iteration step in the process of cubic interpolation. 

Considering the fact that all the values are coming from piecewise polynomials, the 

limit function, resulting from an infinite interpolation process could be of particular 

interest. Remember the scaling function and the wavelet function which resulted from 

an interpolation process ( in fact the inverse wavelet transform; see Fig.5.35,36,37) 

The limit function is not a polynomial anymore but Unser [20,21] showed that spline 

polynomials result in very useful new scaling functions. Orthogonality is a too 

coercive demand but if biorthogonality is acceptable one can come to very simple 

wavelet filter coefficients. The basic splines ~N(t) for example are constructed by a 

N+ 1 times repeated convolution of a B-spline of order ° , where ~o(t) is the 

characteristic function in the interval [0,1). The relation between successive scales is 

determined by 
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P V)= ~n ~K)P ~~r-K) 

k=-

where hN is the binomial kernel of order N, 

DfT 

= ° otherwise 

Note that for N=O, this is the spectrum initially used in Appendix SA which 

resulted in the 'rediscovery' the Haar wavelet. Broadening this design idea for N>O 

and considering orthogonality result in a rational numbered sets of filter coefficients. 

(Table 6.3). 

Another intriguing idea is the fact that by using these polynomials the samples 

shouldn't necessary be located at integers. Sweldens [12] describes in this context 

how irregularly sampled wavelets could be constructed. 

Proceeding with the analysis and stating that N+ 1 samples are used and 

polynomials of degree N are build. We call N+l the order of the subdivision scheme. 

Figure 6.14. Interpolation subdivision with cubic polynomial. 

The prediction function P now uses a polynomial interpolation of order N to find 

the predicted values. The higher the order of this function, the better the 

approximation of the r coefficients based on the A. coefficients. This is very useful if 



2D and Second Generation Wavelets 175 

the original data evolves like some polynomial of order N. (Order of images: 2-3). 

Then, the predicted set of wavelet coefficients 'Y.;,k tends to be zero because there is 

almost no difference between original and predicted values. 

The interesting point of interpolation subdivision is that there is only one routine 

needed to construct an interpolating polynomial, given the sample values and their 

locations. The new sample value is then given by the evaluation of the polynomial at 

the new location. Neville's algorithm [55] is a suitable method for this purpose. 

When finite sequences are processed, boundaries have to be taken into account. 

With N=4, there are four possible cases. Note that due to splitting there is always a A 

in the first position. 

• Near left boundary : more II.. coefficients on the right side of the r 

coefficient 

o A'S on the left, 4 A's on the right (does never occur) 

1 A on the left, 3 A'S on the right 

• Middle: enough coefficients on either side of the rcoefficient 

2 A's on the left, 211..'s on the right 

• Near right boundary : more II.. coefficients on the left side of the r 

coefficient 

3 lI..'s on the left, 1 II.. on the right 

4 11..' s on the left, 0 11..' s on the right 

With the interpolation scheme and Neville's algorithm, a set of coefficients is 

generated. They are used to find the correct approximation, using a function of order 

N. With N = 1 , there are two coefficients for the two possible cases (one A on the left 

and one A on the right or 2 A's on the left and none on the right). For N = 3, there are 

the four cases mentioned above. 

Results for the linear and the cubic polynomial interpolation can be found in the 

tables 6.1 and 6.2. Note that the first case never occurs because of the splitting 

method. Note also the symmetry. 

Cases Coefficients 

# A'S on the left # .:t's on the right k-3 k-l k+l k+3 

0 2 -¥2 3h 

1 1 ¥2 ¥2 

2 0 % -¥2 

Tab1e6.1 : Filter coefficients for N = 1 (linear subdivision) 
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Cases Coefficients 

# A'S on the left # A'S on the right k-7 k-5 k-3 k-l k+l k+3 k+5 

0 4 35/
16 

_35/
16 

21/
16 

1 3 5/
16 

15/
16 -5h6 1/16 

2 2 _1/16 9/
16 

9
h6 _1/16 

3 1 1/16 )h6 
15

h6 Sh6 

4 0 _5/
16 

21/
16 

_35
h6 35h6 

Table6.2. Filter coefficients for N = 3 (cubic subdivision). 

6.4.7. Interpolating Subdivision in the Update Step 

In the update step (6.6.4) the A.l,k values are lifted with the help of the 

neighbouring wavelet coefficients. The goal is to find a new set of A-U values with 

preserved mean . IT necessary higher moments can also be considered. They would 

result in longer update algorithms. This would be the same as considering longer 

filter coefficients in the classical DWT. 

The final updated coefficients can be calculated with a new operator extracting 

A-l,k directly from Ao,k' However, this creates a scheme that is hardly to invert and it 0 

does not reuse the work already done. For this reason, we will rather use the 

previously calculated set of wavelet coefficients 'Y-u to update A.u in such a way that, 

at least, the mean is preserved. This decision is incorporated in the already given 

formula (6.10) 

A.j-l.k = A.j-l,k + U (/J-u) (6.16) 

The associated scaling function can now be found. The method was used in 

Chapter 5 and evolves as follows: set all Ao,k values to zero except for Ao.o which is 

set to one and run the interpolating subdivision ad infmitum 

The resulting function is the scaling function fpCt), which is used to create a real 

wavelet that will maintain some desired properties from the original signal. This 

function will have an order fJ ,which is not necessarily equal to N. 

Considering higher moments in wavelet design showed to be very useful in the 

design of wavelet filter coefficients (Appendix 5B). We requested 

f l/f(t)dt = 0, f tl/f(t)dt = 0, J t 2
l/f(t)dt = 0, ... , f t N 

l/f(t)dt = 0, (6.17) 

k+7 

_5/
16 
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iii moments of the A values has to be preserved at every level. This information 

is then used to see how much of a r coefficient is needed to update a A. These update 

coefficients are named the lifting coefficients. 

In [54] an algorithm is presented to calculate these lifting coefficients. fu this 

algorithm one has to solve a linear system of iii x N variables. The algorithm 

delivers coefficients for the different possibilities at the boundaries. However, for 

signals with larger duration, the boundaries do not affect most of the A. coefficients. 

Then, if N = iii = 1, the lifting coefficients are going to be (lA, 1A) for every A 

unaffected by the boundaries. This was already suggested in (6 .12) 

~-u= ~-l.k + IA (')j-I,k-I + ')j-u) (6.18) 

6.4.8. Fast Lifted Wavelet Transform 

Forward Fast Lifted Wavelet transform 

for j = -1 down to -n 

{ Aj , r}:= Split( Aj+l ) 

r j -= p(rj) 

Aj += U (rJ 

Inverse Fast Lifted Wavelet Transform 

for j = -n to -1 

Aj - = u (rj ) 

rj += p(Aj) 

Aj+l .- Join(Aj,rJ 

Algorithm6.2 : Forward and in,erse fast Ufted wa,elet transform. 
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6.4.10. Implementation of the Fast Lifted Wavelet Transform with B-Spline 
Filters 

In the case of linear subdivision, the filter coefficients associated to ~l(t) are : 

h = {Y2 1 Yz}. 

The associated scaling function is the well known linear B-spline hat or Franklin 

function. In the case of cubic interpolation the filter coefficients are : 

h={(O -1 1 8 8 1 -1)/16}. 

The even numbered coefficients are h2k = Ok,Q thus they are one only if the indexes 

mach the processed points (n, otherwise they are zero. 

In Table 6.3, some filters are depicted which originate from Cohen-Daubechies

Feauveau (CDF-filters). 

Type high pass filter coefficients (h) low pass filter coefficients (h ) 

[1 11 0 ~ ~ 0 Y2 ~ 

[1 31 0 ~ ~ (0 -I 1 8 8 1 -1)/16 

[1 51 0 Y2 ~ (0 3 -3 -22 -22 128 128 22 -22 -3 3) / 256 

[2 21 lA ~ 1,4 -118 1,4 * lA -118 

. '(24) 
; ". ::.; . .Jet < "~,(~.';·"\~~;\.~;:lL~;~:~:~~;;<;i; -lA "1h lA (3 .,(;;:t6·~;9038,;~~6·;':~\;:·,i~~ ~~~ .'.' [1.~ .. ." 

[2 61 lA ~ 1,4 (-5 10 34 -78 -123 324 700 324 -123 -78 34 10 -5) 11024 

[3 11 0 1/8 3/8 3/8 118 0 _1,4 3A 3A -1,4 

[3 21 0 1/8 3/8 3/8 118 (0 3 -9 -7 45 45 -7 -9 3 0)/64 

[3 31 0 118 318 3/8 118 (0 -5 15 19 -97 -26 350 350 -26 -97 19 15 5) 11024 

Table6.3. Classical B-spline filter and lifting coefficients. 

Some of the associated filter and lifting coefficients used in the lifting scheme are 
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[N N I filter coefficients lifting coefficients 

[2 21 1h 
",/ .,'. '-

.(Z~ 

Table 6.4. B.$pline filter and lifting coefficients. 

Table 6.4 should be interpreted as this : the coefficients with value 1 in the middle 

are the coefficients that need to be approximated (y) or updated CA). In those cases the 

zero-valued coefficients are the neighbouring values that need to be filtered or lifted. 

The relation between Tables 6.3 and 6.4 are as follows : 

• the odd new filter coefficients are the double of the high pass filter coefficients 

• the odd lifting coefficients are the same as the low pass filter coefficients 

• the even filter or lifting coefficients are zero, except in "the middle". 

Note that for certain filters all coefficients have values equal to the inverse of a 

power of two. This is interesting for implementation in the VSP (Video Signal 

Processor) where only bit shifts, thus powers of two, are allowed. 

The two shaded types of filter and lifting coefficients are the most appropriate for 

our goal. For the second one, the lifting coefficients are not longer an inverse power 

of two but they are at least a multiple of powers of two. 

It must be mentioned that Table 6.3 only applies for points not affected by 

boundaries; otherwise we have to calculate the values with a linear equation or use 

tables like 6.1 and 6.2. 
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6.4.11. Example and In-Place Calculation 

The same example is used as in the classical calculation of the biorthogonal 

wavelet transform (appendix 6.1). B-spline biorthogonal filters are used with N 

=N=l. 
In the explanation of the interpolation subdivision, boundary effects were 

minimised by choosing more coefficients to filter or update on one side (tables 6.1 and 

6.2). But to obtain exactly the same values as the classical biorthogonal wavelet 

coefficients computed by Wavelab ®, the algorithm has to be simplified. Instead of 

choosing more values at one side of the predicted or updated coefficient, coefficients 

at the other end are used. This is not so good as the interpolating subdivision solution 

because the correlation between those points will normally be minimal. For example, 

a pixel on the left side of an image will normally have no relation with one on the 

right side. However, when dealing with large datasets, the boundary impact is 

minimal. In real-time situations there are maybe even no boundaries. 

1. The original samples Ao,k 
2. Then, the wavelet coefficients YI,k are calculated with (6.8) 

3. Finally, the odd samples (even index) are lifted with these coefficients using (6.12) 

1~ "-0,0 Ao.l Ao,3 Ao,4 Ao,6 Ao,7 Ao,o 

2~ Y·l,3 Y·l,O Y·l,l Y·l,2 Y·l,3 

3.75 -0.5 1.5 -1.5 3.75 

~ ~~ ~\ ~\ ~ 
3 ~ 1..,1,0 1...),1 1...1,2 1...1,3 

1,75 4,25 3 4,5 

Figure6.15 : Example of the fast lifted wavelet transform with N=l, N =1. 
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There is now one scale calculated, there are 8 samples, hence a maximum of three 

scales can be calculated (8 = 23
) on an identical way as before. The amount of 

wavelet coefficients is divided by two for every subsequent scale, and the last value is 

the low pass rest A3.1 which is the mean of the original signal. If the signal has not a 

dyadic length (i.e. a power of two), there will be more low pass coefficients. 

The calculated low pass coefficient and the wavelet coefficients can be represented in 

the order as follows, this representation corresponds with the bode plot: 

A-3.0 I 1-3.0 I 1-2.0 'Y-2.1 I 'Y-1,0 'Y-l.l 1-1.2 'Y-l.3 

This is the classical organisation of wavelet coefficients. When there is a signal 

length of 2n 
, a wavelet coefficient 'iJ,k is stored in a memory location 2n

-
j + k. With a 

different organisation, in-place calculation is possible with the lifting scheme. The 

wavelet coefficient /j.k is now stored in location 2-j•1 + 2-jk. This results in the storing 

of the values, which are in the same column in figure 6.8, on the same location: 

A-3,O 1-1,0 'Y-2.0 'Y-l.l 'Y-3.0 'Y-l.2 1-2.1 'Y-1.3 

6.4.11. Software Realisation 

Within the Matlab package m-files were created to apply lifting with spline-filters 

from which N=l, N =1 or N=I, N =3. The calculated coefficients were compared 

with the results of the Wavelab® routines which uses classical methods. The lifting 

sheme was programmed on a VSP image processing system. Results see Chapter 7. 

6.4.12. Conclusions 

It may be clear that the lifting scheme is much easier and faster to calculate than the 

classical fast wavelet transform. In fact, the computed wavelet transform in the 

example is the same as the N = N = 1 biorthogonal wavelet transform of Cohen

Daubechies-Feauveau [54). The coefficients as found in the example are the same as 

calculated by convolution of the Ao,k coefficients with the filter h ={ -lIs lA ~ 1A -lIs}. 

This convolution needs six operations for one coefficient while lifting with h ={lA 1 
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1A} only needs three operations, a reduction by a factor of two. The reason is that the 

lifting scheme uses the similarities between the high and low pass filters. 

In every step of the traditional transform, the entire signal is low pass and high pass 

filtered and then subsampled, hence recursion occurs. 

Also the in-place calculation can be an important factor when dealing with big 

data sets. 

The inverse transform is very easily put into an algorithm to find by undoing the 

calculations by changing + into - and vice versa. There are even no other filters 

necessary in the inverse transform, even this rather is a typical property for 

biorthogonal wavelets. By comparison, in the classical orthogonal transform it is not 

so easy to see that the inverse wavelet transform is the inverse of the forward 

transform. 

These improvements make the lifting scheme ideal for time sensitive and memory 

demanding applications, and in this case for the real-time processing of video signals 

with the VSP (chapter 7). 
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CHAPTER 7 

Real Time Video Signal Processors 

7.1 Introduction 

The final goal of numerical algorithms is the implementation on computers and 

the evaluation of their speed . An important question here is whether or not they can 

be run in real time. Up till now only software solutions were considered , in this 

chapter we will evaluate how wavelet algorithms for image processing can be 

implemented on some very fast processors like the Video Signal Processor (VSP) 

from Philips and the Multimedia Video Processor (TMS320C80) from Texas 

Instruments. The architectures will be studied and compared with each other. 

On the VSP a noise reduction algorithm with Wiener filtering and based on the 

lifting scheme will be implemented and evaluated. 

On the TMS32OC80 a compression based on wavelets and wavelet packets were 

considered. Variance and maximum entropy were one of the criteria to decide upon 

the compression rate. 

Finally with the possibilities of the VSP in mind, some considerations were made 

how real time video algorithms could efficiently be implemented in an ASIC 

(Application Specified Integrated Circuit). 
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7.2 The Philips Video Signal Processor (VSP) 

7.2.1. Introduction 

The VSP or Video Signal Processor is a programmable parallel processor 

designed for real-time processing of video signals. A VSP chip contains a number of 

processing elements which are able to operate in parallel. It is possible to build a 

complete video processing system with a set of these multiprocessors. For example, 

the VSP system used in our application contains a set of 24 VSPI chips. Vendor 

Philips currently sells two generations of video processors, the VSPI and the VSP2. 

To program a VSP system, some tools are available which support the design 

trajectory from video algorithm to code for the VSP's. The algorithms are 

programmed in a graphical way by schematic entry, there are tools for simulation and 

the algorithm is mapped on the hardware by interactive and automatic tools. 

Programmable hardware has its own advantages when evaluating algorithms. 

Many different algorithms can be tested and fine-tuned without any hardware 

modification. Previously developed algorithms can be reused on the same or on 

similar systems. Algorithms can also be used as building blocks to obtain complex 

algorithms. However, the greatest advantage is an important reduction in 

development time. A major disadvantage is the VSP-system's high initial 

cost.(30000£) . 

For future developments, Phideo will come available. This will be a silicon 

compiler, especially developed for the VSP architecture. Then it will be possible to 

synthesise the VHDL (Very High Description Language) translation of the algorithm 

and to place and route the result with Phideo to obtain an ASIC solution. 

7.2.2. Architecture of the VSPI and the VSP2 

Real-time video processing is investigated on two different systems : one is 

developed as a multimedia processor (MVP) by Texas Instruments (TMS32OC80) and 

is available on a PCI board in a Windows NT environment . The other one comes 
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from Philips (VSPI and VSP2) and is a parallel construction of VME boards in a rack 

which communicates with a UNIX workstation. 

Texas choose a small number of very powerful parallel processors with 1 master 

and 4 slaves. (See next paragraph). Philips developed a processor with a much larger 

amount , but simpler, high-speed parallel processors. The processing is then 

performed on sample streams and this is the basis for the VSP architecture. 

Comparative conclusions will be made at the end of next paragraph. 

The sample rates for video signals are in the order of a few to tens of MHz. The 

handling of these signals requires the integration of high speed communication and 

sufficient power in a single chip. Each processor executes a small part of the 

algorithm for all pixels, and therefore each processor has its own, short program. The 

execution time of a program may not exceed the sampling interval. This can be 

achieved by compile-time scheduling of the algorithms. The accompanying software 

tools helped us to do this job. 

In the VSP architecture the video signals are processed with a limited resolution 

of 12 bits. The characteristics of both generations VSP chips are shown in table 7.1 

VSPI VSP2 

technology 1.2 i CMOS iCMOS 

chip size 90mm2 156mm2 

transistors 206000 1150000 

package QFP 160, PGA 176 qfp 208 

dissipation lW <5W 

clock 27 MHz. 54 MHz 

word size 12 bit 12 bit 

ALEs 3 12 

MEs 2 4 

size ME 512 x 12 2kx 12 

memory style single port dual port 

BEs 6 
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inputs 

outputs (=OEs) 

5 

5 

6 

6 

Table 7.1 : Characteristics of the VSP chips. 
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The VSP architecture consists of a number of processing elements (PE) connected 

to a switch matrix. A processing element can be an arithmetic and logic element 

(ALE), a memory element (ME), a buffer element (BE, only in the VSP2), or an 

output element (OE). All of these processing elements are pipelined and work active 

in parallel. The switch matrix realises the programmable communication between all 

elements in a single cycle. 

For each PE the instructions are stored in a local program memory (P). Initially 

the program memories are loaded with instructions via a serial download. After 

initialisation, the PEs execute their instructions cyclically. During every clock cycle 

each PE can take one or more values from the switch matrix. After a few clock cycles 

the PE will produce a result that is available to all PEs. 

tilinpUtS: _....--.~ = switch 

F = ~m 

// = 
/ r r T T 

I I I I 
: ALEs: MEs : BEs : OEs 

: : rl=~ L'r-
HI-II- r 1-110 H i!;.-.I .. n-~I-- silo 
I I I I 
I ALE I 'M'e I I 
~ i-core I I 

Il £o.!! Id., ~~ I~ I~ 
I~ - ILJ;J - I~ - l~ -
r I : I I : T I ! T "1 l t. L" i' I l t. 
-:;~'-~f----- -... '--... ----.. ~-- ---- .!.- --.program 

~ ./ 
outputs 

Figure 7.1 : Architecture ofVSPs 
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The silos in a PE are programmable delay elements that are used to store 

intermediate values. A silo consists of a two-port dynamic RAM and address 

calculation logic. The storage capacity of a silo is 32 words of 12 bits. 

Data from the switch matrix is written cyclically into the RAM. The read address 

is calculated by subtracting the required delay length from the write address. Due to 

the cyclic nature and the limited storage capacity of the silo, the maximum lifetime of 

a value in a silo is 31 clock cycles. The silos are used for the interleaving of a number 

of data streams in multi-rate processing, and to avoid conflicts on the inputs of PEs. 

The arithmetic and logic element (ALE) contains silos, a program memory and an 

ALE core (figure 7.2). The ALE core contains barrel shifters, multiplexers and an 

arithmetic and logic unit (ALU). The instruction set of the ALU is given in table 7.2. 

Multiplication is implemented by booth encoded multiplication steps, avoiding a 

costly fully parallel multiplier. The instruction set depends on the data. For instance 

an addl will either implement the addition of the first two inputs (P+Q) , the data 

inputs or produce a zero (clear), depending on the last bit (rO) of the third input R of 

the ALU. The instruction set contains a so-called swap bit. Setting this bit makes that 

the two data inputs P and Q will be swapped after they have been collected from the 

silo. Consequently, for all instructions a symmetric variant is available. 
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Figure 7.2: Arithmetic and logic element (left) and memory element (right) 

The ALU insuuct:ion set. 
NaJDe 4 ... 0 r2 r l ro - 0 ro - 1 CoI1llnellt 
addO 0 xx P+Q P+Q+l 
add! 1 xx P+Q clear 
add2 2 xx P+Q Q 
add3 3 xx P+I Q 
add4 4 x x P+Q P-Q 

subO 5 x x P-Q-l P-Q 
subl 6 xx P-Q clear 
sub2 7 xx Q P-Q abs(Q) 
sub3 8 xx Q -P+Q 
suM 9 xx Q P-l 
subS 10 xx P-Q set seta=-l 

logO 11 xx PI\Q PI\Q 
10g1 12 xx pVQ PVQ 
log2 13 x x PeQ PE&Q 
log3 14 xx P Q switch 
log4 IS x x clear set signeR) 

cmpO 16 x x P~Q uuc 
cmpl 17 x x P>Q true uu--2048 
cmp2 18 xx P=Q P"'Q false=() 

19 00 P P+Q 2-bil Booth 
19 o 1 P+Q P+2Q cell 

bJD 19 1 0 P-2Q P-Q 
19 1 1 P-Q P. 

20 00 clear Q 3-bit 1IDSianed 
20 o 1 P-2Q P-Q multiply (0:7) 

um 20 I 0 P P+Q 
20 I 1 2P-2Q 2P-Q 

21 00 -P+2Q Q 3-bit siped 
21 o 1 P P+Q multiply (-4:3) 

sm 21 1 0 -2P -2P+Q 
21 1 1 -2.P+2Q -P+Q 

Table 7.2 : The ALU instruction set a/the VSP 
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The memory element (figure 7.2) contains silos, program memory, data memory 

and logic for the address calculations. The ME of the VSP 1 can implements the 

storage of parts of video lines, the ME of the VSP2 can store about three video lines. 

The memory elements can be filled with initial values during program download. 

This facilitates the usage of memory as look up table (LUT). 

The buffer element contains a silo that can be used for the storage of intermediate 

results. These elements are only available in the VSP2. 

The output element provides buffering and the output of the chip. An OE 

contains only a silo. 

To implement complex video algorithms, an arbitrary number of video signal 

processors can be used in parallel. Field memories are added to the network of 

processors when required. These memories have to be very fast to meet the speed 

requirements of the VSP chips running at 27 or 54 MHz. 

In the test set-up, three VSP1-flexboards are used (figure 4.3). The VSP1-

flexboard is a standard board for the VME bus with 8 VSP1 chips, 4 inputs and 4 

outputs. Each square in the hardware-plot below represents a VSPI with five inputs 

at the left and five outputs at the right. The connections between inputs, VSPls and 

outputs are 12 bits wide. 

~ ~ .. .. .. .. ~ 
::~5tfrs :: 
Figure 7.3 : Hardware with inputs, outputs and three interconnected VSP i-boards. 

The VSP2 has at least the processing power of eight individual VSPls. The 

instruction set is the same in both cases but the VSP2 contains four times the number 

of ALEs in a VSPl. The VSP2 runs at 54 MHz which is twice the speed of a VSPI. 

The amount of memory is multiplied by eight in comparison with its predecessor and 

it also provides for dual ported RAM, enabling a read and a write in one clock cycle. 

The VSP2 also has 6 buffer elements where the VSPI has none. 
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The VSPI and VSP2 are incompatible at the instruction level but compatibility is 

provided in the ALU instruction sets and in the programming tools, allowing the 

designed algorithms to be used on both the VSP1 and VSP2, without the concern for 

low level compatibility. 

7.2.3. Programming of the VSP System 

Signal flow graphs are used in order to program the VSPs in a graphical way. 

These signal flow graphs are inherently parallel : connecting two operations to the 

same input will cause the execution of the operations to take place at the same time. 

This is not so easy to program in an existing programming language, such as C. The 

parallel structure in the signal flow graphs is called fine grain parallelism (for 

comparison: the TMS320C80 uses coarse grain parallelism). This structure can 

easily be exploited in the mapping onto a number of parallel processors to achieve the 

required high level parallelism for real time execution. 

Figure 7.6 shows an example of a flow graph with references to the different 

elements. 

The signal flow graphs consist of operations and the arcs (lines) between them are 

called operands. The operations are elementary operations, selected from the 

instruction repertoire of the PEs. There are different types of operations : input, 

output, ALU, read, write, const, offset, shift, delay and pass operations. 

• ALU operations are arithmetic or logical operations chosen from the ALU 

instruction set in table 7.2 and they are executed on ALEs. Thus these building 

blocks perform addition, subtraction, logical AND/OR and so on. 

• Read and write operations read from or write into data memory of MEs. These 

memory element operations can be used to implement functions such as line 

delays and look-up tables. 

• Input and output operations refer to inputs and outputs of the signal flow graph. 

• Const operations specify constant values that can be used as input for other 

operations. 
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• Offset operations specify constant values that are added to the sample values in 

the data stream passing through. They are useful for the addressing of the memory 

elements. 

• Shift operations are logical and arithmetic shifts of the binary sample value. 

They can be used to perform multiplication or division by powers of two. 

• Delay operations specify delays of sample streams. 

• Pass operations can be either buffer elements (only on the VSP2) or output 

elements. A signal flow graph does not contain the specified pass operations, 

since these operations play no role at the algorithmic level. However, when the 

signal flow graph is mapped on a network of VSPs, we usually have to insert a 

number of these pass operations into the signal flow graph to satisfy the timing 

and communications constraints. This job is normally performed by automatic 

tools. 

The periodic behaviour of a signal flow graph is specified by the period of the 

operations. This period indicates how often an operation is executed in relation to the 

clock frequency. For example, a period of four denotes that an operation needs to be 

executed once in every four clock cycles. This is for instance at an execution rate of 

6.75 if the clock rate is 27 MHz. The operations have different periods in a multi-rate 

signal flow graph such as in the wavelet decomposition where every lower scale is at 

half the sampling rate of the preceding scale. 

Signal flow graphs can be grouped. This property makes it possible to use them 

as building blocks to construct more complex hierarchical algorithms. 

The programming of a VSP chip requires a number of steps. The automatic 

mapper supports all steps in the programming trajectory. 
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idea 

Simulate 

Mapping 

Simulate 

vSP system 

Figure 7.4 : The VSP programming trajectory. 

The program part sfg is used for schematic entry of the video algorithm. The 

algorithm can be simulated with softsim to analyse the functional aspects of the signal 

flow graph at the level of basic operations. The simulation input and results can be 

viewed with an oscilloscope-like tool that gives a graphical representation of sample 

files. The input sample file can be created with a text editor or a UNIX script whereas 

the output file is generated by the simulator. These files deliver the opportunity to do 

calculations on them or to compare them with the expected results. 

The program part hardware (see Fig. 7.3 ) is used for schematic entry of the VSP 

network: The VSP chips, inputs/outputs and the interconnections. However, since 

VSP-boards are used, a supplied VSP-network can be loaded from a file. 

When the simulation results are satisfying, the signal flow graph can be mapped 

onto the VSP hardware. The program part timemap can be used for the partitioning of 

the signal flow graph over the VSPs and for the scheduling of the operations in time 

and over the program memories. Timemap verifies continuously all possible 

hardware constraints with a direct and interactive feedback, using different colours to 

indicate violations of constraints. In the timemap window, elements can be changed, 

added and removed. However, the timemap concept is difficult to understand, time-
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consuming and not so interesting since for every small change in the algorithm, the 

work has be done allover again. A better technique is to use the automatic mapper 

and to make use of the available options. The mapper likely performs delay 

management, partitioning and scheduling. Yet mapping is still far from trivial. 

There exists no set of general solutions and experience is needed to have some 

feeling with the control parameters. 

The last step is performed by the code generation command: the translation of the 

design into the binary format is loaded in the VSP system. 

Figure 7.5 depicts the test set-up with the VSP system. The VSP system itself 

contains three VSPI-flexboards and an ADIDA converter with RGB in- and outputs. 

Input sources are a COl player and a VCR with cable TV or antenna input. The VCR 

makes it possible to supply a noisy video signal. There is a conversion box for the 

conversion from scart to RGB (BNC connectors) and vice versa. TV 1 is used to view 

the unprocessed image while TV2 shows the processed image. 

G 1 scartlRGB COl-player I RGB/scart 

1 video recorder 0 0 
RGB 

I before processing 

'II] crv or antenna 

G I EEPROM unit 

T " 0 0 

HP workstation VSPI- system after processing 

Figure 7.5: The test set-up. 

To make an algorithm working, the appropriate signals (coming from the 

hardware terminals) has to be supplied to the inputs of the algorithm and its outputs 

must be connected with the appropriate hardware outputs. Figure 7.3 shows the signal 

flow graph from the ''upper level". The block SFG is a grouped signal flow graph of 
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an algorithm we want to test. The signal Y _in2 is the luminance signal that 

determines the brightness of a pixel, thus the information for the black and white 

image. The luminance signal has an integer range between 0 and 255 (8 bits) 

representing a scale of . The luminance signal is the most important one since the 

human eye is most sensitive for this signal, even more than for the colour signal. 

SYNC_in 1 is the video synchronisation signal and does not give any information 

about the image itself. These two signals has to be combined into one word when 

they are redirected to the ADIDA board. To obtain this, first of all the luminance 

signal is clipped into an 8 bits signal by aluO. This ALU performs a bitwise AND 

operation of the luminance input with the bitwise representation of 255. The 

synchronisation signal is shifted to the left with 8 bits with the shift operation Is18. 

These two signals are added by alu2 and the mixer mixO performs a demultiplexing, 

in order to obtain a period of one, needed by the ADIDA board. 

There is also the UV _input which is the combined R-B signal. This is thus the 

encoded and multiplexed colour signal. If necessary this, signal can be changed into 

an RGB signal. The colour signal is less important for us since the human eye is not 

so sensitive for colours and the bandwidth of the colour signal is only about half of 

that of the luminance signal. The colour signal can be set to zero to see the results 

better. 

SfG 
Igrouped s:igDal flow graph I ---lname I IALU operation I ALU function I ~ 

.. 11£2 I .. lu3 p.!"l..="o~...:..,1 

Figure 7.6. Upper level with inputs and outputs. SFG is the processed algorithm. 
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Remark that, depending on the ADIDA board the input and output signals can be 

combined in a different signal format. The signals Y, U, V and Sync are mostly 

multiplexed in the UYVS format, i.e. one U sample by an Y sample, a V sample and 

an S sample. 

7.2.4. Implementation of the Lifting Scheme 

Wavelet Decomposition 

The signal flow graph is a translation of the algorithm depicted in figure 7.13. 

There are two highpass outputs; the term outHPx2 was chosen only because the result 

was twice the one resulting from a Wavelab® analysis. The output outHP may be 

omitted when mapping. 

Figure 7.6. 1 stage in the wavelet decomposition 

Notice the "lsI2" at the input, this means a logical shift left with two, thus 

multiplying with four. This give us an extra precision of 2 bits or, translated into real 

numbers, steps of 0,25. These shifts has to be omitted at the second level when doing 

multiresolution analysis. This is necessary because otherwise the signal becomes too 

large after subsequent decompositions. There are 11 bits available (+ 1 sign bit), 8 of 

them are used for the signal, two shift are performed in the first stage, so there is only 

one bit left over. The extra precision is needed since in the algorithm shifts of two are 



Real Time Video Signal Processors 196 

used, thus the smallest fraction possible after one stage is lA. However, two shifts to 

the left can be to big since the signal grows by maximally lA in every step (the worst 

case input is 0 255 225 255 0). In this case, at black! white edges overflow is 

possible, resulting in black pixels in the white regions This seldom occurs in practice. 

The subsequent steps eliminate the worst case possibility. Nevertheless, it will be 

explained further that clipping is necessary for some other reasons. It has to be said 

that when a shift of only one to the left is used, results are as good as with two shifts, 

despite the fact that there is some information lost. This shows one of the nicest and 

therefore most used applications of wavelet decomposition : compression or denoising 

by thresholding the coefficients. 

Special attention is needed when using the mixer. Normally, a multiplexer 

switches over every other sample. VSP-software however, the outputs come available 

at the same time. 

For example, an input sequence 

1 2 3 4 

results traditionally in 

output 1 : 1 1 3 3 

output 2: x 2 2 4 

In the VSP-software however the result is 

output 1 : 1 " 
output 2: 2 " 

3 

4 

" 
" 

5 

5 

4 

5 

6 

6 

5 x 

6 6 

" 
" 

The sign "" .. denote that there is no signal available (the sample frequency is 

halved). In fact, it is necessary that the two samples are available at the same time, 

otherwise the samples cannot be subtracted or added to each other. It is easy to 
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understand that a problem may occur : yet there is a sample at output two before there 

is a second input sample. In practice, the sequence will be delayed by one sample. 

To make it easier to control the algorithm with softsim, it is sometimes 

preferable to add a delay of one sample before the multiplexer (the "I" at the front 

side of the mixer). When the algorithm is mapped onto the hardware, the delay can 

be better left out. 

Wavelet Reconstruction 

As mentioned before, (chapter 6) while discussing the lifting scheme theory, the 

inverse transform means simply undoing the steps of the forward transform. One 

should keep in mind however that, despite we are dealing with biorthogonal filters, 

the same filters can be used as in the forward transform. Here the negative delay at the 

end must be omitted if there is no delay at the input of the forward transform. 

Figure 7.8. 1 stage in the reconstruction 
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Double Precision Decomposition and Reconstruction 

To obtain a perfect reconstruction, even when mUltiple scales are used, the 12 bit 

representation of the wavelet coefficients would provide not sufficient precision. For 

this reason double precision was applied to the wavelet decomposition and 

reconstruction algorithm. To perform double precision algorithms, a whole set of 

double precision functions are created, which are also useful in other algorithms. 

Among these functions we find double precision addition, subtraction, division, and 

multiplication (by powers of two). They won't be discusssed any further and are 

made available in a special function library on the VSP system. The forward and 

inverse wavelet transforms now become: 

Figure 7.9: Double precision wavelet decomposition (forward WT). 

Figure 7.10: Double precision wavelet reconstruction (inverse WT) 
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A disadvantage of the double precision solution is that it consumes about three 

times the amount of ALU's in comparison with the single precision solution. The loss 

of information in the single precision solution does not give a visible degradation of 

the image quality when three or less scales are used. Hence, the double precision 

solution is not further used. 

7.2.5 Fixed Attenuation of the Subbands 

The following set-up was constructed to investigate the effect of the suppression of 

the different subbands . No investigation or consideration in the algorithm was, at that 

moment, made about the SIN (signal to noise ratio) : 

Figure 7.11: Signal flow graph of wavelet decomposition and reconstruction with 
fixed attenuation of the subbands. 
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This accords to the following subband scheme: 

Amplitude 
~...;;LL=-__ un.. LHH HLL HLH HHL HHH 

~ ____ ~I~I~_~I·_···_···_I_>_···_··/~ ... _ ... ~.f\~~ .. ~ ... ~ ... ~F~ 
o f.I8 fJ4 

Figure 7.12: Subband filtering scheme according to fig. 7.11 

The thick lines denotes the wavelet decomposition following a dyadic scheme. In 

the test it turned out that it has no sense to perform the decomposition further than two 

levels deep. When deeper scales (lower frequencies) are suppressed, too much 

infonnation is lost, resulting in a extremely low-pass characteristic, with the used 

filters we obtain jaggy images. The vertical fine and dashed lines denotes further 

decomposition of the higher subbands. This method is being referred to as wavelet 

packets decomposition. The filter tree is given by figure 7.13 : 

lIP ~ ............. HHH 

.-----: 
LP ~ ............. HHL 

HP.....----+ 
lIP ~ ............. HLH 

LP L ............ HLL 

HP LHH 
HP.....-----l 

LP un. 
LP 

LP LL 

Figure 713: Filter tree according to figure 7.12 
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The horizontal dashed lines in figure 7.12 denotes the fixed suppression in that 

particular subband. For the suppression in the higher frequencies, right shifts on the 

grey level data are used. This results in a dyadic suppression. 

Despite the rather rough suppression, the resulting image is as good as the 

original image in case of a good video signal (COl-player). Performing the algorithm 

on noisy video signals (VCR) results in a slight improvement in picture quality (better 

SIN), depending on the kind of the images. This leads to the conclusion that, as 

expected, there is more noise than useful infonnation in the higher frequency bands. 

So, why not considering a Wiener filtering in wavelet space ? In Chapter 4 some 

experiments on PC were perfonned which proved the usefulness of the technique. 

Simulation results for VSP can be found in Fig. 7.14. 

Note that the suppression on the highest band is perfonned by 5 arithmetic shifts 

to the right. However, the highest frequency bands will contain only small numbers 

due to noise. In fact this results in a complete rejection of the highest frequency 

bands. 

Extensive research should be done on what the "typical" frequency content of a video 

signal might be considering SIN : 

• Is it necessary to subdivide the subbands with wavelet packets? There is a lot of 

calculating effort in it and maybe the result is not visible ( No significant SIN 

improvement). Scales without important information might maybe omitted totally. 

In the tests it turned out that the four highest frequency bands could be dropped 

without significant loss in the picture quality 

• VSP1 runs at 27 MHz sampling frequency. This means that 13.5 MHz is the 

frequency. For video recorders and COl players this is to high! A subsampling is 

first necessary so that the Nyquist frequency drops to 6.75 MHz otherwise wavelet 

decomposition would take place for frequency domains which are not foreseen in 

the standard of the signal! There are of course other sources with more detail in 

the picture where the full frequency band is necessary. This is subject to further 

investigation. 
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a) the input signal is a block, followed by a peak and a chirp 
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Figure 7.14 a and b (next page): This is a simulation performed on a VSP station 

with software developed for VSP 1. It is the first stage in a design process before the 

software is loaded on the VSP boards and run in real time. Figure a does a filtering 

according to the scheme in fig· 7.12. The high frequencies are filtered out as can be 

seen in the output signal. 

Figure b shows a grey scale pattern with noise at the different levels. The output 

signal shows a reduction in noise after Wiener filtering in wavelet space using the 

lifting scheme on a VSP system. 
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b) The input is an EBU pattern with added noise which amplitude is 10 (on the left) or 40 (on 
the right) 
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Notice the clipping at the end of the algorithm. When frequency bands are 

suppressed or omitted, we get negative and positive peaks after reconstruction. This 

is because subtraction and addition occur between changed signals. In case of white 

or black regions with sharp edges in the image, annoying black ripples in white (and 

vice versa) will be visible. Hence, clipping is necessary. It has however no sense to 

perform clipping in underlying levels. Remember that the wavelet coefficients in 

every frequency band have an average of zero, with exception of the lowest frequency 

band, which wavelet coefficients are the average of the original signal. These 

frequency bands have an "AC" character with positive and negative values. 

The clipping algorithm is depicted in figure 7 .15 
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Figure 7.15: Clipping between 0 and 255. 

7.2.6. Wiener Filtering 

Chapter 4 explored already the problem of Wiener filtering in wavelet space by 

using Daubechies 4 wavelets. Now we implement the lifting scheme on a VSPI 

system. 

Detennination of the variance of a signal in a subband 

The variance of a discrete signal is given by following formula: 

(7.1) 

With m being the mean of the signal xi and N the number of processed samples. 

From the wavelet theory we know that all frequency bands have a zero mean, except 

the lowest band (which is not processed). 

Then formula (7.1) becomes (7.2) 
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Only the summation of the square of the signal is left. The division by the length 

of the signal may be omitted if the number of samples used in the determination of the 

variance would be the same in the different subbands. However, due to subsampling, 

this is not the case. Decimation halves the number of samples after every step to a new 

level in the wavelet transfonn. A right shift ( : 2) of the result of form. (7.2) can solve 

that problem. 

Other important questions are : 

• How much samples must be processed ? A video line seems to be an appropriate 

interval for calculations. One should consider that in a real-time process there is a 

continuous stream of data, so decomposition I reconstruction must take place 

between successive line windowed samples. Remark that the result of the variance 

calculation only becomes available at the end of the line. A consequence of this is 

that the available SIN ratio used to suppress the subbands of an interval in the 

video signal is in fact the SIN ratio of the preceding interval. 

Concerning this variance calculation two alternatives can be considered: 

• Determine the variance of a short set of samples, and expect the difference in 

variance with the following set to be small. This will cause problems in the 

regions on the left of the image, due to line blanking. Extra hardware is needed 

for this solution. 

• Determine the variance of a whole line. Variance change for subsequent lines 

are rather small and 'delayed' variances could be used. Nevertheless it requires a 

lot of memory and there is even extra hardware needed to reject the line blanking 

parts in the signal. Happily this last requirement is not so badly needed because 

the 'line blanking error' of the variance is the same at each line and an fixed 

offset can be subtracted from the variance to get rid of that line blanking error . 

• Another problem with the limited set of instructions arises on how to calculate the 

square in the fonnula of the variance. There exist a signal flow graph in the library 

that accompanies the software package which can perform 12 bit multiplication 
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using six ALUs. Mention that the input value have to be smaller or equal than 45 

to avoid overflow (452 = 2025d = 7E9h, 462 = 2116, 211 -1 = 2047, twelfth bit is 

sign bit). The signals are however not so small, so a double precision 

multiplication is needed, requiring more than twenty ALU's, what is very 

uneconomical. 

The idea is now to divide the input by 16 (4 arithmetic shifts to the right) if the signal 

is bigger than 32 (or 45 as the max), otherwise we let the input stream unchanged. 

Then the maximum input is 735 since 735116 = 45,9375 (which is truncated by the 

shifts to 45). Afterwards, the sample stream is divided by 256 with eight arithmetic 

shifts to the right (162 = 256) if the sample was divided before. 

Alu 

SFG3 varlsb 

4 

~ ____ --------~4~ 

Figure 7.16 : Determination of the variance. 

From the formula (7.2) there is still left the summation and the division by the number 

of processed samples (minus one). This is the same as determining the mean of a 

signal. At the end of the signal flow graph of figure 7.1 we find the block mean256 

that takes the mean of 256 samples in the data stream. The signal flow graph can be 

found in figure 7.17. 
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Figure 7.17: Signaljlow graph of the determination of the mean of a data stream. 

The amount of processed samples can be chosen by the constant c_alu 1, in the 

comer beneath at the left side of the figure. 256 is chosen as constant , less than a 

whole line. Considering that the wavelet coefficients of the highest frequency band 

are at half the sampling frequency of the input signal, there are 512 samples 

processed. This is yet * of whole line (720 pixels contain information, the other 144 

samples are line blanking). Then why not processing a whole line? The answer lies 

in the fact that we can only divide by a power of two, and 720 and 864 lie between 

512 and 1024. We can choose to take the 512 samples in the middle of the screen. 

Then the rest of the line does not contribute to the determination of the variance. 

The summation of the incoming data stream is performed by a double precision 

addition because otherwise overflow will occur. The output is connected with the 

second input of the addition with a delay of one. Every 256 samples, the (double 

precision) result is stored into the memories at the second address (address 1) and the 

ALU's are reset. 
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Simple Wiener Based Wavelet Noise Filter 

In figure 7.18 a total set-up of the algorithm is depicted. There are two stages in 

the wavelet decomposition (three frequency bands). The upper frequency band has 

been totally omitted, hence clipping was necessary. Before determining the variance 

of the subbands, the mean value of the line is calculated since the mean of the wavelet 

coefficients in a subband are zero. The variance from the upper subband is subtracted 

from the variance in the middle subband. Note that the extension _s in subl_s, which 

means that the swap bit of the ALU operation is set. The result is compared with the 

variance of the noise. If the difference is smaller than the variance of the noise, the 

total signal is omitted, otherwise it will be suppressed in accordance with the SIN 

ratio. 

Figure 7.18: Simple Wiener based wavelet noise filter. 

In this set-up, clipping is not included and the logic to calculate the variance 

somewhere in the middle of a video line is also not depicted. 

Despite the fact that this is the most simple set-up, it could not be mapped onto 

the available VSP system. The factors used in the attenuation part needed to be 

adapted. More practical experiments are needed to fine tune for better results. We 
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think however a VSP2 system is necessary to map these algorithms and let them run 

in real time. 

3-Scale Wiener Based Wavelet Noise Filter 

To simplify the signal flow graph, the ALUs used to determine the ratio between 

signal and noise as well as the ALUs used to suppress wavelet coefficients are 

grouped. 

Figure 7.19: 3-scale Wiener based wavelet noise filter 

In figure 7.14b you can find simulation results with a noisy EBU pattern as input. 

The result can be improved by stronger suppressing the lower frequency bands. 

However, as already mentioned in paragraph 7.5, suppressing these lower frequency 

bands will result in a blocky effect on the screen. 

In the simulation result, there can be seen that there is still much (low frequency) 

noise in the low frequency band. Wiener filtering is only a primitive way of working 

in wavelet space, maybe it should be combined with other techniques like wavelet 

transform maxima and multi-scale edges described by Mallat [65]. 
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7.2.7 Other Methods 

The following techniques were partially examined or realised. 

Thresholding of Wavelet Coefficients 

Thresholding wavelet coefficients is a method often used to denoise images. 

Hard thresholding is easily implemented. The difficulty is to find a 'good' threshold 

because it depends on the content of the image. Wiener filtering can be used in 

combination with a thresholding dependant on the SIN . The results were not 

satisfactory (see Par. 7.4) 

Median Filter 

The median of a sequence is the middle value of the sorted sequence. A median 

filter is useful to eliminate impulsive noise and has the property to maintain the sharp 

edges. Good results can be obtained when applied to images deteriorated with speckle 

noise. But as the video signal is more contaminated by Gaussian noise, the results are 

not so good. 

Local Maxima in Wavelet Coefficients 

Mallat [65] proposes to represent a signal by its wavelet local maxima at all 

levels. He says :" Look at the wavelet where something interesting is happening." 

This technique gives good results for denoising and encoding. 

7.2.S. Comparison and Conclusions 

The algorithms for the wavelet decomposition and reconstruction while using 

the lifting scheme proved to work very well. 
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The fixed attenuation of the subbands gave us a first glance of the result of the 

suppression of certain frequency bands. Note that the quality of the filtering is rather 

subjective and depends strongly on the content of the image. 

The variance can efficiently be detennined with a minimum amount of ALUs. 

The complete Wiener based wavelet filtering could only be simulated with the 

available VSP system. Contacts were made with NATLAB Eindhoven (Philips 

Headquarters) to continue the experiments on a more powerful system (VME rack 

with VSP2 boards in stead of VSPl). 

Some research is also done by one of my MSc students on how to implement VSP 

algorithms into an ASIC. Phideo is the name of the silicon compiler to do so. I won't 

further report on these research fields because this is in fact no more directly related to 

non-stationary signal processing but more on how to implement it in silicon. 

Finally, we must confonn that it is difficult to find objective criteria to measure 

image improvements .Signal-to-noise ratio improvements can be made impressive 

but, as already mentioned in chapter 4 they very often confinn nor deny of what you 

really see! 
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7.3 The Texas Instrument TMS320C80 

7.3.1. Introduction 

The TMS320CSO is a single-chip parallel multimedia video processor (MVP) 

developed by Texas Instruments. It is the flagship of the TMS320 family of digital 

signal processors (DSPs) and the first in the series that has multi-processing 

possibilities. It can be used for applications such as image-processing, virtual-reality 

graphics, audio/video digital compression, image recognition, ... 

The TMS32OCSO integrates onto a single integrated circuit; five fully programmable 

processors, a direct memory access controller with a DRAM, SRAM and VRAM 

external memory interface, 50KBytes of SRAM and a video timing controller. Five of 

the four processors are identical advanced digital signal processors (ADSPs) 

supporting fixed point operations. The fifth processor, the master processor, is a 32-bit 

RISC CPU that includes an IEEE-754-compatible floating point unit. All processors 

are both programmable in assembler and C. The transfer controller is an intelligent 

DMA controller that manages all memory traffic. Packet transfer can be performed 

between on- and off-chip memory. This includes instruction- and data-cache services 

as well as byte-aligned array transfer. The TMS320CSO is capable of performing two 

billion RISC-like operations per second. During each second of processing it can 

move 2.4 Gbytes of data and I.S Gbytes of instructions within the chip, plus 

400Mbytes of data to off-chip memory. 

The TMS320CSO is sometimes referred to as the MVP (Multimedia Video Processor) 

or abbreviated to CSO. 

7.3.2. Some Key Features 

I. More than two billion operations per second 

2. Four parallel processors (32-bit ADSPs with fixed point unit) 
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One master processor (32-bit RlSC with IEEE-754 floating point unit) 

3. 50K of on-chip RAM 

4. Memory capabilities: 

• Five instruction fetches per cycle (1.8 Gbytes/s) 

• Ten parallel data accesses per cycle (2.4 Gbytes/s) 

• The 64-bit transfer controller is capable of up to 400Mbytes/s on- and off

chip memory transfers. 

6. Dynamic bus sizing for 64, 32, 16 or 8 bit-access to VRAM, DRAM and SRAM. 

7. A video controller with dual frame timers for simultaneous image capture and 

display. 

8. Four external interrupts, edge- and level-triggered. 

9. Full-scan design (Plus a boundary scan) testing via an IEEE-1149.1 Test Access 

port . 

10. Operating voltage: 3.3 V. 

11. TI EPIC 0.5/0.6-mm CMOS technology. 

12. Approximately four million transistors. 

13. 305-pin ceramic PGA package. 
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7.3.3. System Architecture 

An overview of the C80 system architecture can be seen in figure 7.20. 
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Figure 7.20 Block diagram o/the TMS320C80 

7.3.3.1. The Master Processor (MP) 

The master processor is a 32-bit RISC processor with an integrated IEEE-754 

floating point unit. The MP is structurally designed for efficient execution of C code. 

The floating point instructions are pipelined; therefore, you can start a single-precision 

multiply or any floating-point add instruction on each clock cycle. Floating-point unit 

operations use the same register file as the integer and logic unit. A scoreboard 

ensures that correct register-access sequences are maintained. MP instructions and 

data are fetched from on-chip caches, each of which is 4Kbytes in size. The control 

for these caches is an integral part of the MP design. The MP is able to access the on-
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chip memories by using the crossbar network. 

There are three active low edge-triggered interrupts, EINTI - EINT3 (EINTI 

having the highest priority), that allow external devices to interrupt the master 

processor. The EINT3 also serves as an unhalted signal that causes the MP to fetch its 

reset vector. The e80 also contains an active low level triggered interrupt LINT4. 
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Figure 7.21 General floating-point flow 
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The Floating Point Unit 

This unit is capable of performing lEEE-754 floating point operations in 32-bit 

single-precision (type float in C) or 64-bit double precision (type double in C). 

Conversion between different formats is also supported. It also provides vector 

floating point operations to improve program efficiency. These vector operations are 

pipelined, so you can start both a floating point multiply and a floating point add on 

every cycle. 

Hardware support for the floating point unit consists of a full double precision 

floating point add unit and a 32-bit single precision multiply unit: 

1. The add unit handles additions, subtractions, compares and conversions through 

the following stages: 

• compare exponents and shift smaller number right to align binary 

point 

• add/subtract two numbers (two's complement notation) 

• normalise an output value 

• round an output value 

2. The multiply unit handles multiplies. divides and square roots through the 

following stages: 

• double or single precision floating point multiplication 

• normalisation and round of the output value 

Floating point operands are read from the register file when an instruction is 

dispatched. Execution typically takes more than one cycle. The result is stored back 

into the register file when the instruction completes. A register scoreboard maintains 

correct access sequences. 

MP Instructions 

The MP has three basic instruction formats: short immediate, three-register and long 

immediate. Following types of instructions are provided: 
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1. Arithmetic, logical and compare instructions 

• integer add and subtract 

• logical instructions 

• compare instructions 

2. Floating point and vector instructions 

• floating point arithmetic and conversion instructions 

• vector floating point arithmetic, multiply, add/subtract and conversion 

instructions 

• double precision floating point accumulations in vector instructions 

3. Program-control and context-switching instructions 

• branch unconditionally 

• branch conditionally, compare to zero 

• branch conditionally, branch on bit 

• call functions, subroutines and return 

4. Control register instructions 

5. Leftmost and rightmost one instructions 

6. Load and store instructions 

7. Shift instructions 

7.3.3.2. The Four Parallel Processors (PPs) 

The Advanced DSPs 

The four advanced digital signal processors (ADSPs) operate under the command 
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of the master processor. Each ADSP can perform digital signal processing, along with 

bit-field and multiple-pixel manipulations. These processors can perform in excess of 

ten RISe-like operations in each cycle. 

In figure 7.22 the block diagram of an ADSP is shown. The diagram shows three 

large blocks: the data unit, the address unit and the program control unit. Each of 

these blocks will be elaborated in the paragraph below. 
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Figure 7.22 The ADSP block diagram 

The data unit is composed of three major elements: the data unit register, the 

multiplier data path and the ALU data path. Figure 7.23 shows the data unit's block 

diagram (not including the data unit registers). 
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Figure 7.23 Multiplier and ALU data paths 

In addition to the ten registers, the unit has two functional independent data paths; 

the multiplier data path and the ALU data path. The multiplier data path includes a 16-
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by-16-bit multiplier, a half word swapper, and scaling and rounding hardware. The 

ALU data path includes a 32-bit three-input ALU, a barrel rotator, a mask generator, a 

multiple flags expander, and logic to detect the bit number of the leftmost-one, 

rightmost-one, left-most-bit-change, or right-most-bit-change in a register. 

The ten registers on the unit are eight data registers (dO-d7), a status register (sr), and a 

multiple flags register (rnf). 
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The Address Unit 

Each ADSP has two address units; a global address unit and a local address unit. 

An instruction can specify up to two independent memory accesses, one by each unit. 

The address units can perform register-to-memory stores and memory-to-register 

loads. They can also perform general-purpose data computations referred to as address 

unit arithmetic. This capability, along with conditional loads of the program counter 

register, speeds up functions that are computation- or jump-bound rather than 

memory-access limited. 

The Program Flow Control Unit 

The program flow control unit controls the ADSP instruction pipeline, fetches and 

decodes instructions, performs any necessary handshaking with the transfer controller, 

and handles interrupt response and prioritisation. 

The major hardware elements of the program flow control unit are: 

1. The Instruction Controller 

It takes 64-bit instructions that the cache controller fetches and generates the 

control signals that drive the ADSP. Instructions are processed by a pipeline that 

consists of three stages: an instruction fetch, address unit computations, and data 

unit execution. 

2. The Program Counter Registers 

Consists of: 

• The program counter (pc); points to the next instruction to be fetched 

• The address-stage instruction pointer (ipa); track the program counter 

• The execute-stage instruction pointer (ipe); track the program counter 

• The retum-from-subroutine instruction pointer (iprs); saves the retum

address for a call operation 

3. The Cache Controller 

This controller compares the instruction address as given by the pc and determines 
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if the instruction is in the ADSP's cache. If the instruction is already in cache, the 

controller translates the address into the location in the ADSP's cache RAM and 

issues the translated address over the instruction address port (lAP). If the cache 

controller determines that the instruction is not in cache, it issues a request to the 

transfer controller and stalls instruction pipeline until the cache has been loaded 

with the new instruction. 

4. The Three Zero-Overhead Loop Controllers 

Support up to three simultaneous hardware controlled loops. Since each ADSP 

instruction performs so much in parallel, key loops often require very few 

instructions, as such this allows for even nested loops to have zero loop-control 

overhead. 

7.3.3.3. The Transfer Controller (TC) 

The transfer controller (TC) is a combined DMA (direct memory access) machine 

and memory interface that intelligently queues, prioritises, and services the data 

requests and cache misses of the five programmable processors in the C80. Through 

the transfer controller all of the processors can access the system external to the chip. 

In addition, data-cache or instruction-cache misses are automatically handled by the 

transfer controller. In figure 7.24 you can see an overview of the transfer controller: 

1. The independent source controller and destination controller process the source and 

destination addressing. 

2. The PT FIFO (packet transfer first-in first-out) supports DRAM page and burst 

modes and buffers between byte-misaligned accesses to access memory more 

efficiently. 
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Figure 7.24 Transfer controller block diagram 

3. A separate .. cache controller can preempt program-controlled packet transfers to 

service cache misses. This controller uses the cache buffer to buffer incoming data 

4. The request queuing and prioritisation logic prioritises the active requests and 

starts transfers. The transfer controller automatically suspends and later resumes 

lower-priority requests when a higher-priority request occurs. 

The transfer controller facilitates access to the off-chip memory interface. This 

interface supports dynamic RAM, video RAM, static RAM, and ROM. 

Data transfers are specifically requested by the ADSPs or the MP in the form of linked 

list packet transfers, which are handled by the transfer controller. These requests allow 

multidimensional blocks of information to be transferred between a source and a 

destination, either of which can be on-chip or off-chip. Transformations from XIY 

arrays to linear arrays can be done autonomously, which improves the efficiency of 

processing by the ADSPs or the MP. The transfer controller supports a number of 
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packet transfers (moving blocks of data form source memory to destination memory) 

which includes: 

• Dimensioned transfers can be used to copy blocks of data and to manage 

algorithms that process data by rows, columns, or MxN blocks. 

• Fixed-patch guided transfers are those in which the sequence of 

dimension addresses is guided from an on-chip memory-table, rather than 

calculated solely from values within the packet transfer parameters. Fixed

patch guided transfers (using an on-chip guide table) come in three types: 

delta-guided, offset-guided, and offset-guided look-up table (LUT). 

Variable-patch guided transfers (not using packet transfer parameters) can 

be either delta-guided or offset-guided. 

The TC also supports a host-interface mechanism that allows a host processor (in 

this case a Pentium 133) to gain access to the C80 system, through direct access to all 

the memory control signals. 

Dynamic bus sizing in configurable on a page-by-page memory basis enabling the 

selection of 64-,32-, 16-, and 8-bit memory transfers. 

7.3.3.4. The Video Controller (VC) 

The video controller is the interface between the e80 and the image capture and 

display systems. The video controller provides simultaneous control over two 

independent frame systems and two frame memories. The frame systems provide 

screen resolution and data capture. The two frame memories are memory region 

coordinated with the systems as either frame grabber of frame buffer image storage. A 

block diagram of the VC is shown below. 
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Figure 7.25 Video controller block diagram 

The video controller has following features: 

• Two identical frame timers provide video timing control 
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• A serial register transfer controller (SRT) generates SRT cycle requests to 

the transfer controller to transfer data into and out of VRAM. 

• A register interface is accessed by instructions from the master processor 

• The multiplexer allows synchronisation of the two frame timers to FCLKO. 
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7.3.4. The TMS320C8x Software Development Board 

The Software Development Board (SOB) is a PC/AT plug-in card that allows you 

to develop software for the TMS320C8x. The board is connected to the PC using the 

PCI bus (Rev. 2.0 or 2.1). It integrates video capture, processing, video display along 

with audio capture and playback. 

7.3.4.1.~rc~tecture 

Figure 7.26 illustrates the SOB system architecture, the physical interface 

between the host CPU and the TMS32OC80 is the PCI FIFO and PCI controller, 

which is represented as one block called the host interface. The SOB memory 

controller provides the interface between the 32-bit PCI FIFO, the 64-bit TMS32OC80 

data bus and the 16-bit I/O bus. It also controls the peripheral data transfers (PDT) 

between the PCI FIFO and either DRAM or VRAM memory and it controls reads and 

writes to devices connected to the I/O bus. The memory consists of 8 MBytes of 

DRAM for code and data storage and 2 MBytes of VRAM for video display to an 

RGB monitor. The video capture function is implemented on a daughtercard that is 

responsible for capturing, decoding and scaling the video signal. An audio CODEC 

supports capture and playback of CD quality audio. 

To develop software in a practical environment, processing tools are supplied. 

The tools run under Window NT and communicate with the SDB through a specially 

made device driver. 
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Figure 7.26 Block diagram of the software development board 

The Functional Blocks 

The SDB has six major functional blocks (as seen on figure 7.26). 

The functional blocks include: 

• MHz TMS32OC80 

• Host interface block 

• Memory controller and DRAMlVRAM 

• Video capture block 

• Video display block 

• Audio capture and playback block 

226 



Real Time Video Signal Processors 227 

TMS320C80 Processor 

The TMS32OC80 chip was developed by Texas Instruments as one of the most 

efficient and highest performance digital signal processors available on the market 

today. For a description of this chip see chapter 1. 

Host Interface 

The host interface is the interface between the host computer, a PC/AT, and the SOB. 

The access is processed through a PCI bus (Specifications Revs. 2.0 & 2.1). The 

maximum peak rate is 132 Mbytes per second. All communications between the SOB 

and the PCI bus is routed through a 32-bit wide by 64-word deep FIFO (first in, first 

out register). The FIFO also contains mailboxes that are used for single data transfers 

in both directions. 

Five communication methods are implemented: 

• Host access to the internal PCI interface registers 

• Host access to the SOB register space without using the TMS320C80 

• Host access to the SOB through block transfers (BLTs) 

• Bus mastering from the SOB to the PCI 

• Host access to the entire SOB address space 

Memory Controller 

The memory controller allows the connection between the TMS32OC80 and the 

external memory and the other system resources in an efficient and easy-ta-use 

manner. It uses pipelining to ensure that the C80 spends little time waiting. The 

memory controller supports the programmers need to emulate interrupts in hardware 

and to detect the current condition of the interrupt pins, as well as the status of 

exceptions. 

Thus, the two main responsibilities of the memory controller are: 

• Interfacing the C80 and the other external system resources 

• Taking care of interrupts and interrupt conditions 
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Video Capture 

The video capture block, illustrated in figure 7.27 uses the following components: 

1. The Philips chip set video digitizer/decoder: 

• TDA8708A analogue-digital input interface 

• TDA8709A analogue-digital input interface 

• SAA 7196 digital decoder/scaler/clock generator 

2. A 512x64-bit video FIFO 

3. A 64-bit register buffer 

4. An interface EPLD 

5. The PCF8584 parallel-serial PC-bus controller 

1 
VIDEO IN 

. i .. 
',,--------_._---' 

Figure 7.27 The video capture block 

The process for capturing, storing, and processing video input always begins when a 

NTSC or PAL video signal is sent from an external source such as a VCR or a camera 

in either composite or S-VHS format. The incoming video signal is digitised by the 

TDA8708A and the TDA8709A 8-bit AID input interfaces. The video signal is 

digitised into an 8-bit Y/C (luminance/chrominance) format or into an 8-bit CVBS 

format. depending upon the video input type. The digitised video signal is then 

decoded and scaled by the SAA7196. The supported scaled output formats are: 

• 16-bit 4:2:2 YUV 

• 24-bit 8:8:8 RGB 

The scaled video data are buffered in a 16 x 32-bit output FIFO register onboard the 
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SAA7196. 

The SAA7196 FIFO outputs are directly connected to the 512 x 64-bit video FIFO and 

the 64-bit register buffer. The video FIFO's input is controlled by the interface EPLD. 

If one line of video data is captured, one line of data is output to the SDB data bus, 

under the control of the TMS32OC80 and the memory controller. 
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Fig. 7.28. The video display block 

Video Display 

The video display block, illustrated in figure 7.28, uses the following components: 

• A TVP3020 video interface palette 

• A QS3257 analogue multiplexer 

• Mbytes of VRAM 

• An Altera 44-QFP sync EPLD EPM7032 

• A ICS 1574 user programmable oscillator pixel clock generator 
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The display circuitry supports resolutions up to 1600 x 1200 x 8 bits per pixel and 

a 60Hz refresh rate. The timing for a given resolution and refresh rate is established 

using the programmable pixel clock generator (85 MHz) and the RAMDAC (170 

MHz). The pixel clock drives the RAMDAC, which then generates the serial clock 

(SCLK) for the VRAM ,the C80 and the frame clock of the C80. The frame buffer 

stores RGB pixel data that is converted to analogue signals by the TVP3020 video 

interface palette. The display memory provides a single 2-MByte frame buffer of 256 

x lK x 64 bits using four 4-Mbit VRAMs each with an internal organisation of 512 x 

512 x 16 bits. The analogue MUX and sync EPLD allow the display to be 

synchronised to an external VGA signal. 

The supported resolutions are: 

• 640 x 480 x 8 bpp 75 Hz 

• 640 x 480 x 24 bpp 75 Hz 

• 1024 x 768 x 8 bpp 75 Hz 

• 1024 x 768 x 16 bpp 75 Hz 

• 1280 x 1024 x 8 bpp 75 Hz 

• 1600 x 1200 x 8 bpp 60 Hz 

Audio capture and playback 

The audio capture and playback portion of the SDB consists of a bidirectional audio 

FIFO, a DMA interface and an AD1848 audio CODEC. The FIFO size is 1024x16 bit 

and the capture and playback implements 16-bit stereo. 

7.3.4.2. Code Generation Tools 

Generating Code 

To generate code to run on the SDB, a memory map file must first be defined for the 

linker. This file contains the addresses of all the available resources. The SDB has five 

memory areas: DRAM, VRAM, capture FIFO, 110, and PCI FIFO. 

Then, the assembler or c-code for the program is written. Using the C80 at full use, a 



Real Time Video Signal Processors 231 

minimum of five code-files has to exist: a master processor source code file and four 

parallel processor source code files (one for each PP). The shell programs 'ppel' (for 

the PPs) & 'mpcl' (for the MP) compile, assemble and optionally link in one step. The 

format is: 

ppcl (-options) (filenames) (-z (link options) (object files» 

mpcl (-options) (filenames) (-z (link options) (object files» 

The compiler includes a parser, an optimiser and a code generator. If the COFF object 

is generated, everything is linked to form an executable object file. 

File name extensions determine the file type : 

• .asm or .s* : assembly language source file 

• .c or no extension : C source file 

• .0* : object file 

• .out : executable file 

Loading and executing code 

The output files from the C80 code generation tools are in common object file format 

(COFF). The e80 COFF files always contain the following four sections: 

• MP code section (text) 

• PP code section (ptext) 

• Predefined constants (const) 

• Initialised data section (data) 

• Uninitialised data section (bss) 

To load a COFF file into SDB memory, it must be parsed to identify the individual 

sections and the addresses in which they are to be loaded. The SDB provides two 

methods of loading and executing code: using the emulator and its associated 

debuggers or using the SDBshell, which is a Windows NT application. 
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The Shell and Debugger 

The SDBshell is started through the command 'sdbshell'. Programs are executed by 

typing the command 'exec' followed by the name of the executable file ( a .out file). 

If e.g. the memory map is incorrect a 'COFF' file error is generated. For more 

infonnation about such an error the debugger has to be started. The debugger is shown 

on the screen as five separate windows, one for each processor. Programs can be trace 

trough c code and assembler, to find the bugs. 

7.4. Wavelet Compression 

7.4.1. Dermition 

Compression is a technique for reducing the size of a block of data that represents 

a signal/image, while keeping as much valuable information about that signal/image 

as possible It in fact decorrelates the data of all redundant information so that only the 

essence of the signaVimage stays. The reasons for this can be : 

• storing more infonnation in a certain memory. 

• transmitting more information in the same amount of time. 

Major question of course is how to decorrelate valuable from worthless data 

There are two kinds of compression techniques: 

1. Lossless Compression 

The reconstruction of the information results in the original information 

2. Lossy Compression 

When the information is reconstructed the resulting information in not the same. 

It is obvious that lossless compression can be used everywhere. Lossy 

compression can only be used in certain domains. E.g., performing a lossy 

compression on a computer program source or execution code, would result in a 

useless file. Lossy compressed images or sound, on the contrary, could still result in 
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subjective good reconstructions. 

An example of lossless compression is coding the most frequent number with less 

bits and coding less frequent numbers with more bits. The result will very likely be a 

compressed series. Nevertheless, a header containing the information about which 

number is coded with which bit series must also be included. The inclusion of an 

information header is always necessary and reduces the compression ratio. 

Examples of lossy compression techniques are JPEG, MPEG , fractal compression, .. 

. The subject of this paragraph, wavelet compression, is also an example of lossy 

compression. 

The compression ratio is defined as the ratio between the size of the original 

information and the size of the compressed information. If N is the number of samples 

in the original series and M is the number of samples in the compressed series, the 

compression ratio (CR) is: 

CR = SIZE origiMl N 
SIZE compressed M (7.3) 

The compression ratio is sometimes expressed as a percentage. 

7.4.2. Cost Functions 

If an image is transformed by the wavelet transform, it results is a group of 

subbands. These subbands contain information of different parts of the spectrum. 

Some subbands will contain more information than others. It is thus logical to 

conclude that some subbands are more important than others. So, neglecting the less 

'important' subbands will result in a lossy compression. Still, an information header 

will have to be included containing the information about which subbands are, 

whether or not, included in the compressed image. With wavelet compression, a 

distinction will have to be made on using wavelet packets or normal wavelets. 

A big problem in this reasoning is the word 'important'. That is, which subband 

contains information valuable enough to keep and which contains neglectable one. A 

very subjective question of course! Nevertheless, computers have to use objective 

criteria. Some of the criteria are discussed in following paragraphs. 



Real Time Video Signal Processors 234 

7.4.3. Thresholding 

A primitive reasoning could be that a subband contains important infonnation about 

an image if the coefficients in that subband are large. Two methods could be 

considered : 

• Take the sum off all samples in all the subband and discard those with the smallest 

sums. 

• Look for the large numbers in all subband and discard all those smaller then a 

certain level. 

Both methods were examined ,and both showed rather poor results. The second 

method seemed a bit better than the first, because edges in high frequent subbands 

result in spikes and not necessarily in a large sum. 

7.4.4. Variance 

When a signal contains a lot of change , one could say that it contains a lot of 

important information. The amount of change can be expressed through the variance 

N-I 

cr;=I(xn-x/ 
n .. O (7.4) 

of a signal. 

This criteria is used in noise reduction. The use of this cost function resulted in 

much better results than thresholding. 

7.4.5. Entropy 

Entropy stands for the amount of chaos in a signal. In some literature the entropy 

is defined by using the probability densities. We prefer not to use the probability 

densities and take the simpler expression : 

(7.5) 
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This cost function gave approximately the same resulrs as the variance cost funclion. 

7.4.6. Results 

(a) 

(c) (e) 
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Fig. 7.29. The leopard's head is compressed and reconstructed using wavelets. The 
cost function are: for (c) the variance andfor (e) the entropy. Figures (b) and (d) 
indicates in black 'vvhich parts of the wavelet analysis LL part (see Fig.4.21) are 
sign(flcLlnf enough (based on variance in h and on entropy in d) to be synthesised. 
The nOll-significant coefficients are made zero. 

In figure 7.29, you can see the difference obtained with the variance and the entropy 

cost function. Remark that only one subband is different. The compression method 

used was: 2D wavelet packets with Daub 12 on 16x 16 pixels and a fixed compression 

ratio of 8. 

( a ) Original image 256x256 

( b) Wavelet Packets used in the reconstruction ( c ) (Variance) 

( d ) Wavelet Packets uses in the reconstruction ( e ) (Entropy) 

7.4.7. The Ripple-Effect 

As can be seen in figures 7.29 ( c ) and ( e ), there is an annoying ripple in the 

background. This is the result of too much neglects in certain subband. The reason for 

the ripple-effect is illustrated clearly in figure 7.30. If a heavy edge is sent through a 

wavelet highpass and lowpass filter, overshoots and undershoots can be noticed. 

When the highpass spikes are neglected the resulting image has an annoying ripple. 

This manifests itself in pictures where the black:white transient is rather abrupt. 

Black. having the value zero, is changes to a negative value just before and after the 

transitions. But. when a negative value is converted to a byte (the images are 8 bpp) 

this number is truncated to a very high positive value resulting in a white line. This 

can be seen in figure 7.31. The multiple lines occur when the wavelet transform is 
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performed until a certain level. This white li nes problem was solved by changing 

negative numbers to zero, in the last level. 

Nevertheless , these ripples can be unp leasant to the eye, but certainly much less 

annoying than the squares occuring when an image is compressed using j PEG. 

There are some methods to reduce these ripples. Mostly they includ iterative 

procedures with a lot of iteration (10 to 30). So, not very interesting In real-time 

appl icati ons. 
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Fig. 7. 31. Origin of ripple effect 

Fig. 7.32. White ripples caused by discontinuous black to grey transition 
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7.4.8. Parameters in Wavelet Compression 

Quality of wavelet compression is dependant on many different parameters, all 

contributing to a better or worse compression of the image. Some of these parameters 

are: 

• wavelets or wavelet packets. 

• number of stages. 

• kind of filter (Daubechies, Biorthogonal, ... ). 

• order of the filters (Haar, Daub6,12, .. ). 

• cost function (Thresholding, Variance, Entropy, ... ). 

• level of transform. 

A few of these will now be investigated. 

7.4.9. \Vavelets vs. Wavelet Packets 

In figure 7.33 wavelets are compared to wavelet packets. With wavelets there are 

Jess calculation involved. wavelet packets however have the advantage of having 

more subbands to select coefficients from. 

A disadvantage of wavelet packets is that the ripples are more pronounced. On the 

other hand they lead to the construction of 'best' bases based on cost functions [67] 

It is generally accepted that wavelet packets give better results. 

(a) (c) 
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7.4.10. Filters 

(b) (c) 

Figure 7.33. Wavelets versus Wavelets packets 

( a) & (b) Use wavelets , (c) & (d) use wavelet packets , 

both have a compression ratio of 8. 

239 

All kinds of filters have a certain maximized or minimized criteria. Depending 

on that criteria other results are achieved. As for the order of the filter, it is obvious 

that larger order have better results but longer calculation time. 

In figure 7.34 (a) a Daub4 is used and in (b) a Daub 12 is used. 
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(a) (b) 

Fig. 7.34. DaubJ2 (b ) gives Inore detailed results than Daub4 (aJ 

7.4.11. Further Research 

The intention of this part of my research was to program some principal 

applications with wavelet transforms on the C80. Only the basic wavelet compression 

algori thms were realised to find out about the possibilities of the system. More 

fundamental problems will have to be considered in the future: 

• Instead of totally discarding subbands, they could be coded using less bits per 

pixel. In our experiments we stayed at 8 bpp. Using 4 bpp instead of nothing , 

would mean a compression ratio of only 2 for certain subbands. The total would be 

less compressed, but the image would contain more information and would 

approximate the original image in a better way. This would, of course, include 

longer information headers. 

• The most annoying aspect of wavelet-compressed images are the ripples. Software 

solutions must be made available to solve it. 

• To implement real-time compression, a lot of the C-code can be optimized. E.g. 

using statements like 'Matrix++' instead of 'Matrix[row][col)', the latter uses more 
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pointer arithmetic. Also, memory management can be improved by using in-matrix 

operations. 

• The algorithms should be generalised to work with arbitrary image sizes in stead of 

to powers of two. [68] suggests a method for this. 

7.5. General Conclusions 

The examined hardware (VSP and C80) doesn't really suffice the high demands 

of real time video processing. 

• As the ALUs in the VSPs are rather primitive constructions, a lot of them arc 

needed to perform for instance Wiener filtering in wavelet space.(par 7.2.6) 

VSP2 is about 4 times as powerful as VSPI (see fig.7.1) but doesn't solve 

the problem that one needs a large amount of ALUs and other building blocks 

to realise the algorithm in real time. Although the components can be virtually 

present it becomes very difficult to control their individual efficiency with 

software tools. 

• Philips Research Lab (NATLAB) suggest to solve the problem by considering 

an ASIC solution with VSP building blocks. It gives of course so more 

freedom but one stays confronted with huge amounts of primitive ALUs 

which has to be efficiently mapped on a chip. 

• With the TMS320C80 we are confronted with more complex slave processors 

than the ALUs in the VSP. They can address all the pixels in the picture while 

the VSP only works on the lines. It is also programmable in C . This should 

make it easier to program and to simulate the results. However this is a 

relative expression: The Texas Instruments' 'hot line' in Paris was not able to 

provide us with sufficient support to let the slave processors work 

harmoniously together. We are however confident that this problem will be 

solved very soon. 

• The experiments we were able to perform told us that the C80 was not 

effective enough to realise for instance real time Wiener filtering in wavelet 

space. New boards with 5 C80s are now coming on the market. Question 
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arises again, as with the YSPs, how efficiently their slave processors could be 

programmed! 
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CHAPTER 8 

General Conclusions 

When this thesis started the goal was threefold 

• Explore some advanced mathematical fields which were applicable In new electronic 

devices. 

• Study and solve the mathematical problem with computer software tools. 

• Implement the results on advanced DSP chips and investigate the architecture for new 

custom made chip design. 

These action points harmonise with the intention of three research groups wanting to 

collaborate in an ESPRIT project. 

• The Computing Sciences department of the De Montfort Uni versity is a well established 

school of mathematicians and Prof. Blackledge's Research Cnit is a centre of excellence 

for image processing. 

• The micro-electronics and DSP group from the Katholieke Hogeschool Brugge Oostende 

which have experience in building chips and boards for DSP and image processing. 

• The DSP group from IMEC ( Inter university Micro-Electronic Centre) Leuven -Belgium 

which is involved with the implementation of new schemes and technologies for semi

conductor manufacturers all over the world. 

The covered area for the thesis was about the same as the ESPRIT proposal and went 

from wavelet mathematics to new DSP chip concepts. Partners in industry were found to 

collaborate in the project if the proposal wali accepted .. 

Summary of the research 

An extensive literature study revealed the vast application field of wavelets. Noise 

reduction and compression techniques were studied and implemented in software. 

• For noise reduction the Wiener filtering in wavelet space gave the best results (Chapter 4). 

Normal Wiener filtering is ideal, granted the original signal or image (without noise) is 



General Conclusions 244 

known.[59] This is rather unrealistic, therefore working in wavelet space (it provides an 

elegant way to investigate the variance of the noise at the first level of the wavelet analysis) 

is preferred. Different publications in Astronomy and Astrophysics [24]-[29] prove that, 

compared with for instance thresholding. wavelet filtering is a superior technique. 

• For the implementation on microprocessors research on the most efficient FVv'T algorithm 

was performed.(Chapter 6). Biorthogonal wavelets with the lifting scheme and based on 

spline functions proved to be excellent for hardware implementations because: 

J. The filter coefficients are rational numbers with denominators being powers of 2. (for 

example 1/8). The multiplication with these kind of filter coefficients (l/8) can be 

reduced to a simple "3 shift right' operation on the data which is of course much quicker 

implemented than a floating point multiplication. 

'") The lifting scheme provides, with the predict and update steps, the possibility to 

integrate the 'low pass and high pass filtering' in one operation. This resulted In 

algorithms twice as fast as Mallar's FWT. 

• The microprocessors chosen (Chapter 7) for the implementation were selected on the 

following criterion : They should be parallel processors and capable of real time image 

processing and they should also show an interesting architecture for further implementation 

in full custom design. Both the VSP from Philips and the MVP from Texas Instruments 

were thought to fulfil these needs. 

The most promising algorithms were realised on those processors : the VSP was 

programmed with the Wiener filter in a wavelet-lifting scheme space. The MVP wa~ 

programmed with Haar and Daubechies wavelet packets for data compression. The 

selected criterion was maximum entropy or variance. 

For the VSP the results were moderate positive: the algorithm functioned in real time. 

However, though a huge amount of parallel processors involved, the possible number of 

levels in the wavelet transform stayed limited to 2. To create state of the art technology for 

wavelet filtering the YSP architecture had to be changed in at least 4 aspects: 

1. More accuracy: 12 bits, even in double accuracy is not good enough for wavelet analysis 

at more than 2 levels .. 

2. More powerful YSPs, not like YSP2 but with more elabrated ALUs. An Harvard 

architecture, like on most DSP processors, would be appropriate. 

3. Better software to assist in the equal distribution of the tasks over the involved 

processors; now it runs too quickly into chaos. 
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4. Larger memory capacity to memorise the whole screen. Now only screen lines can be 

memorised and processed. 

These remarks were passed to Philips. After some time we were informed that the VSP 

project was cancelled. Other labs like IMEC for instance wrote also negative reports and we 

think that together with some financial problems in the company this negative decision was 

taken. 

The results with the MVP were also not completely positive. The architecture was, 

contrary to the VSP, appropriate for the job. Though images could successfully be 

compressed and decompressed, the maximal speed was not reached because the 4 parallel 

processors refused to 'collaborate' optimally. The TI advice centre in Paris had to admit that 

in some applications there were still some software bugs in the parallel operation of the 

slave processors. Other universities contacted in France and in the CK had the same 

problems. 

Considering this temporary problem and with the limited information of only 1 slave 

processor running, we suspect that the MVP, in 'optimal' condition, is capable of 

performing data compression with wavelet packages ( 2 levels) on 1-4 pictures per second, 

depending on the size of the image (256x256 or 512x512). 

Future semi-custom and full-custom design for MPEG4 will incorporate wavelet 

compression. Properties for the core processor for this application could be deduced from 

the former results: 

1. A versatile core processor should be build with multiply/accumulate/decimate facilities. 

The MVP is a good architecture, although a slightly simpler architecture could also 

satisfy. 

2. The ideal scheme should be a compromise between the versatility of the VSP (many 

ALUs) and the complexity of the MVP (full capacity DSPs ). 

To conclude, future development and investigation on real time processing will surely 

need more powerful systems. New PCI boards, with 5 MVPs on it, are becoming available. 

With some ESPRIT funding, I hope we will be able to continue this collaborative research 

and complete it. 
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Mathcad's short reference guide 

Mathcad ® 6.0 was chosen because of its ability to write and execute formulae 

10 real mathematical notation . Mathcad calls it the ' Live Document Interface'. 

Variables and formulae are combined into a program and the outcome can be 

graphically displayed. 

Only the instructions to understand the programs in the text will be briefly 

reviewed. 

1. Counters and Variables 

A counter of N=20 integer values starting from 0 is edited as follows: 

K ~20 n ~(l..:\~ I 

Note the: = expression to define a local constant or a counter. Sometimes the == is 

used to make the variables or functions global. ( Not dependant on the position on 

the page). 

When the incremental value is different from 1 the variable can also be defined like 

r.: 
t' 1!, 1t +- ¥_- •• 1r 

N 

The variable t is now defined between -7t and 7t with increments of 1tI20. (N=20 as 

defined above). 

2. Vectors, Matrices and Functions 

Counters and variables can be used to produce vectors, matrices and functional 

results. As an example we generate a decaying function and a sine wave. 
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N :::: 20 a = .9 

TC 
[ '::':- il , - Tr ~- . . it 

N 

n = 0 .. N - 1 

co ;;; 5 

o ~----------------~ 
o 10 20 

n 
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xC t ) sinl (!J ·t ) 

Vectors start from index zero (or one: programmable in Mathcad menu bar) . 

Functions can take positive and negative arguments. The resul ts can be displayed 

discretely , interconnected or a combination of both. 

Matrices are programmed as two-dimensional vectors and generated as : 

N 1 ' =4 N 2 = 5 a ::: .5 ~ "' 2 = I..N I 

4 9 16 25 

_ .n .~ 1.414 5.657 12.728 22.627 35.355 
M. •• 1 'J M= !.j 1.732 6.928 15 .588 27 .713 43 .301 

2 8 18 32 50 

Remark the notation of the variables N I and N:! and the matrix M i.j . I and 2 are 

just indices of N to indicate the difference between variables; i and j are the column 

and row counters for the matrix M. Note also that = is used to evaluate the matrix. 

Submatrices can be defined using the following instructions : 

M 2313 ::; submatrix(M,2,3. 1,3) 
1.414 5.657 12.728\ 

M 2313= i 
1.732 6.928 15 .588} 
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Only the columns out of matrices can be defined directly as vectors. The transpose 

operation T is however available to indirectly. define row vectors as well. 

<2> 
M C2 - M 

<.;> 
tv! C4 -;- :VI 

248 

T M C2 = i 4 5.657 6.928 8 ) 
T 

M C2 = ( -+ 5.657 6.928 8 ) M R/ = ( 2 8 18 32 50 ) 

The parallel calculation with vectors is coerced by a --', above the operation, the 
sum of the vector elements is defined by a L before the vector variable . 

. , 
M C24 " ,M C2·M C4; T 

M C24 = ( 64 128 192 256 ) I M C24=640 

3. The if Statement and Defining Piecewise Continuous Functions 

i f ( cOlld, tval, i vai) 

Some examples: 

Returns tval if cond is nonzero (true) 

Returns fval if cond is zero (false) 

For integers m and n the Kronecker delta function is equivalent to 

N " 10 m .=O .. N - J n ·:: O .. N ·· 8 = if(m=n, 1.0) 
m , Il 

The equal sign in m=n is used in a conditional statement. 

A pulse equal to I in the interval -.5..5 and elsewhere 0 is defined by 

h ( t ) :::: ill .SSt s .S, 1.0) 

I I 

J r- n -

I 
h( tl L_ 

oI-
I I 

' 4 --'2 0 :2 4 

'.. D.S .--.: •• 
! • 

0.6 - - , •• 

0. 4 ---- ••• 

O_ i/~/2 . 
'·-~'-'·~~6 -' 

,.~ .. ~ ... :~ ..•. ~~ l\-fiI'! •• -••••••• • ••••••• ! •.. 
• ........ eI'! ........ ..-

1 - . ....... .. 

L. ___ _ 
o 



Mathcad's short reference guide 249 

The Kronecker delta function is drawn as a 3D bar chart \\lith maxlmun1 spacmg 

specifications between bars. 

4. Symbolic Calculations 

In the symbolic mathematics another equal sign ( ~ ) is used: 

T I 

a 

2 2 a I · a a 

0 3 
a 

0 4 
a 

Note that the first vector is transposed to make a correct matrix multiplication. 

5. Programming 

New functions can be defined by programming Mathcad instructions In a 

sequential order. The ~ is typical for partial results in the program. As an example, 

we consider Ne\vton's iteration process to calculate the intersection of 2 curves and 

then compare the result with the given-find technique from Mathcad. 

f I( x) 
:x ..:; e 

TOL = 10-6 

x 5 define : f(x) = fJ (x) - f2(x) 

d :x e . x 5 
dx ' 

eX + 1 will be defined as difJ(x) 

new_value · first_new_value 

old value · start value - -

f( start __ value ) 

diCflstart _value ) 

while new value old value >TOL 

new_value ( old_value 

old value · .. new value 

new value 

f( old_value) 

dif_fl old_value) 

f\old_value ) 

diCfl old_value) 
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N_iteration( f. difJ 1) = 1.30655864 

zoom on crossing point 
10 ,.--------, 

1.3 1.3.065 .... 

f i xl 
f 2( x) 

0 '-----------' 
o 2 14 

given 

xl: starting point x_crossing find( x) x_crossing = 1.30655864 

6. Digital Signal Processing 

The FFT and IFFT algorithm is implemented with fft(x) and ifft(x) for x having 

N=2L elements. (L E Z). \Vben N ::;:: 2L cfft(x) and icfft(x) are used. (See examples 

section 2.13). In the forward and backward transform a constant 1I'\''N before the I 

sign in the FFT formula is used this in apparent contradiction with the definition in 

Eq. 2.l4. Both definitions are however correct.[56l[63] 

A DSP toolkit is used to perform expressions like: 

response(x,A,N) : Response of a filter A to an input signal x over a N element 

interval.(See example section 4.5.5) 

resamplc(x,m,n) : Decimation ofx by m. (See example section 4.5.5) 

corr(x,y) : Returns the correlation coeffici ent between x and y. 

gaussn(N) : Returns N random numbers with mean = 0 and variance = 1. 

For wavelets only dwavelet(x) and idwavelet(x) are available for Daubechies 4 on 21. 

elements. (See example section 4.55) 
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APPENDIX5A 

Introduction 

I would like to report in this appendix on how I became acquainted with 

wavelets. The idea of the existence of oscillatory signals which could be used in inner 

products to produce sets of orthogonal coefficients intrigued me. Being an engineer I 

became very much interested in the filter bank idea. So I designed a FIR filter whose 

impulse response was almost of a compact support (died out very quickly). 

I then wrote the forward and inverse wavelet transform and started my 

experiments. All these preliminary assays. although afterwards of not so much use. 

taught me the essence of wavelets. I quickly became aware of the difficulty to produce 

errorless forward and backward transforms. Only very special sets of filter coefficients 

did the job perfectly! The Haar filter coefficients were the first I rediscovered! While I 

was searching for other coefficients I fine tuned my software for the transforms. 

Finding new wavelets by using filter banks proved to be a hard job and I had to admit 

that a more abstract approach was necessary. Just like Morlet who went to Grossmann 

I had to consult Daubechies [57] to fully understand how it should be done. In 

Wickerhausen's book [67] I found the filter coefficients and gradually I became 

aware how to design them (Appendix 5B,6A). Later on my interest diverged more in 

the direction of application than on the design of new wavelets. 

FIR filter design 

The following lowpass characteristic delivers, after IFFf, a very short impulse 

response. A closed fonn solution resulted in : 

1 . fa + fp I, 
h(n) = f2 sm(nn f )cos(nn-

f
) 

nn( 1 - 4;r2 [,2) , ,\' " 
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fn and fp are the frequencies where the roll off starts and ends. In our example we 

choose: fp = rr/6 and f, = S.rJ6. 

N ~ 100 

n :;; 0.2--'-' .. 2-;: 
]00 

H( !2 ) (l.S 

o 

o 

H( n ) 

2 

fs = sampling frequency. 

if o ::::n ::: ~ 
6 

: . 1 3-ln - ~ 
6 

if 5·'::'<n :(,7·1t.. 
6 6 

r 3· (n -. -~~ \ 
I' 6 ! 

] -- cos I . 
__ l .................... ~._j 

2 

if J 1·~d2 ::;2-71: 
6 

4 

_ 1t A , _ It 
If - <H ',) .-

6 6 

'f 11: A / IT 
1 7· - <" .:::: 11--

6 6 

5 

Fig.5ap.i. Spectrum of low pass prototype FIR filter. 

6 
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Fig .5ap.2. The corresponding impulse response very quickly decays to zero. WiThin 
20 filter coefficients the amplitude is decremented by 60 dB. 

These filter coefficients are used for the low pass prototype. The accompanying 

high pass filter has coefficients defined by : 

n ·=0 .. 20 

h = h prototype n ~- 4 0 
11 I ' n t 

g prototype .: ( . J' 1 prototype 
.. n n 

0. 5 .-------------, 0.5 .--------..--------, 

h protot YIXn 0 iHTt;HH;HH;L..JiJ 
-e-

O. 5L-- ----------J 
o 10 20 

-o.5LO-----I-O---~20 

n 

Fig.5ap.3. Low pass and accompanyin.g high pass FIR filter coefficients. 

The spectral amplitude of the FIR filters shows good resemblance with the 

original prototype (fig.Sap 1.) 



Appendix 5a 
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\ 

\ 
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I 
\ f' . \ 

1' ,0 :; L-________________________ ----J 

() 

k·2--" 
100 

5 6 
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Fig_5ap.4, Logarithmic characteristic of amplitude spectrU7n of lowpass and highpass 
prototypes. 

\-Vavelet design 

Two way were considered to improve the performances of the filters: 

• Change the amplitude spectrum in such a way that the impulse response obtained 

via IFFT is even more compact support. 

• Change the filter from linear phase to minimal phase. 

The first approach resulted in the rediscovery of the Haar wavelet. 



Appendix Sa 

N co 101 

it o =0.2·- .. 2·)1 
i ~ 

H( 0 ) = I I if 0 ::;0 ~_~.)1 
100 12 

r, 3·rr l 
,. n --

I - , 12 i 
1 . cos 

I - rr 
!O if 11 ·':':' d 2S 13·---
! 12 12 
I ~ 

, cos 
IT r 1l 

if I } < 0 :,21 ·---
I :: 12 

H( i1 )O :; 

o 

o 2 4 6 

Fig. 5ap. 5. The pass band of the low pass prototype has been changed, compared with 
[he first attempt the attenuation at rrl2 is now only 3dB. 
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.- 0 ,<-------------' 
·'· 0 10 

n 

FiE;.5ap.6. The impulse response for the low pass and high pass filter characteristic 
offig.5a.7. 

IOr----------------------------, ., ... 

t-----____ .... ---..:;:;------:-~~ ... -. - -- ··~-···;;;;.-----:::.------l 

/ 
/ 

I 
0.1 ·-················ T · 

} 

/ 
I 
I 

./. 
/ 

...", . . -_.,. ... :.·07 

~-- . 
. '\ 

'\ 
\ 

\ 
_ ..... __ :: .. .. _ .. :y .. ::::: ..... . 

0.01 
I ........ _ .. _. _____ ._. ___ . _ __ _ 
1 
1 
I 
1 
1 

0.00 I -1\1---
\ II 
J 

-...,-1-----····-·····--···-···········--···· 

r ··· 
L · 
\ 
\ 

-4 1' 10 L-____________________ ---' _____ --' 

o 

k.2. 1': _ 

100 

4 5 6 

Fig.5ap.7. The matching of the characteristics is perfect but the attenuation not yet 
Good enoueh. o " 
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The solution with an even number of filter coeffic ients fi nall y resulted in an almost 

perfect wavelet. Fig.5 ap.8. shows the Haar fi lter coefficients as a result of ilwerse 

Fouler transforming~ 

0.6 ....----- -------, 

0.4 

h prototYPCn 0. 2 
-e--

o 

- 0.2'-------------' 
o 5 

n 

0.5 ,-----,.-------, 

g protOty pcn 0 ~---i!! 
-e-

- 0.5'---------"'-------' 
o 

Fig. 5ap. 8. A good approach of th e Haar waveler fi lrer coeffic ienTs 

lOr------- ------ - --------------, 

/ 
I 

/ 
/ 

/" 

...,...,-

2 

o.l-r - - ----- - --------\-------I'---- .. -.-..... ........ -.. . 

/ 
I 
I 
I 
I 

0.01 1-'-1 ____ _ 

I 
I 
I 
I 
I
I 

.70 

O.OO I ~------------~~------------~ 
o 

rr 
1;-2._. 

100 

4 5 6 

Fig. 5ap. 9. Remark the almost similar spectral characteristic then the aile from fig · 

5a.7. The attenuation at n goes however much deeper. 
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We nov,/ analyse the 'almost ' Haar wavelet and discover that the smallest errors result 

in rather big changes in the reconstructed signal. 

05 

0 

-0 .5 

50 

12 

11 j\'-
I 

'10 

9 I 

<> 
I 

0 50 

inputSI gna! 

:( 
" !i . 

: , I ·1:,' 
'! 1. 

,P 

100 150 200 250 

spectrum of :nputs!gnal 

............ -... _~I\ 

\ 
100 150 200 250 

2.00 

J 
I 
J 
! 

.; 

300 

Fig.5ap.ID. The ch irp signal and its spectrum as in.put. 
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Fig.5ap.11. The waveletfilter coefficients 
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Fig.5ap.12. Zeros of wavelet filler 
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Fig5ap. 13. The analysed and reconsTructed chirp signal. 
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Spectra of origi nal and back transformed s:gr: 81 
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Fig.5ap. ]4. Remark the error in the spectrum of the reconstructed signal. 
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To conclude, wavelet filter coefficients must be very precisely defined otherwise 

the errors increase dramatically. I refer to Daubechies' 10 Lectures on Wavelets' for a 

more detailed study on smoothness and differentiability of wavelets. 

At the beginning of the experiments the importance of vanishing moments was 

not very clear therefore the phase of the filter responses was wrongly blamed for the 

error. So. phase modifications were investigated to modify the filters in a phase 

minimal sense. This resulted in asymmetrical impulse responses .. It was accomplished 

by moving the position of the zeros of the filters in the z-plane. Phase linear systems 

have zeros which are not only complex conjugate, they also appear in couples with the 

same angle but with reciprocal amplitudes compared with the unit circle. (Fig Sap. I8) . 

A phase minimal system was made of it by removing the reciprocity and putting all 

the poles inside the unit circle. CFig5ap.lS. ). 

This resulted in some nicely shaped asymmetric filter coefficients but the results 

in the transform were, as later understood, disappointing. The following figures report 

about this design evolution . Compared with real wavelets it became rather close but 

not good enough. Wickerhausen reports [67] in this context about a wavelet designed 

by Vaidyanathan on an experimental basis. Daubechies said also that Meyer's first 

wavelet originated almost in a miraculous way! However once the algorithms were 
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understood and the filter coeffic ients known. the application of exiting wavelets 

became more important than the design new ones. So this was left behind . 

VvaV_1 INav_9 
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0.5 ~~ l' 0 - -- - c l _) - -.. ~ ~ 
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- 1 
0 10 20 

VVav - :-g 
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I 90._ 0 

-0 5 
~c 1 

- 05-----------------~ - 1 
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Fig. 5ap.15. The impulse responses : wav_h and wav~ for the ./onvard transfonl1 
and wav _rh and wav _rg for the backward tran!>iorm. 
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Fig.5ap. /6. The spectra show excellent attenuation at halfsampling frequency. 
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Fig.Sap.l8. The roots (zeros) of the z-tramfonn of the different impulse responses can 
be visualized in the z plane. These are all phase linear filters because their zero pairs 
are reciprocal against the unit circle. 
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Fig5ap.21. Amplitude components of the spectra of the asymmetrical low and high 
pass filrer coefficients. 
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Fig5ap.22. Phase components of the spectra of the asymmetrical low and high pass 
.filter coefficients. 
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Fig5ap.23. Transfer function zeros of the asvmmetrical low and high pass fi ller 
coefficients. 
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Fig5ap.24. Forward and backward transform using minimal phase filters resulting in 
rather significant errors at higher levels in the transform. 
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Coifman Wavelets 

Compared with Coifman ] 8 the wavelet filter coefficients look rather similar to 

the ones designed above but van ishing moments were considered. By doing so, it 

results in errorless analysis/synthesis. (Appendix 5b) 
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Fig5ap.25. CoifmCl1l 18filter coefficient set. 
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FigSap.27. Phase components of the spectra of the C / 8 low and high pass filter 
coefficients. 
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Fig5ap.29. For~vard and back'ward tran5jorm using C 18 resulting in almost zero 
error ~vhen the transformed signal is subtracted from the original one .. 
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APPENDIX5B 

Designing Daubechies wavelets 

Daubechies wavelet filter coefficients can be generated by putting some 

constraints on the scaling and wavelet filter coefficient matrix and on the smoothness 

of its wavelet filter coefficients [68] : 

M 
T 

Orthogonality condition results in : ·M n.n n,n 

The analysis matrix is defined by: 
hO h] h2 h3 0 0 0 0 

0 0 hO h] h.., h3 0 0 

0 0 0 0 ho h] h2 h ... 
.) 

h2 h3 0 0 0 0 hO hI 
M 

n,n h3 h2 h 1 hO 0 0 0 0 

0 0 h3 h2 h I hO 0 0 

0 0 0 0 h ... 
.) h2 h ] ho 

h I hO 0 0 0 0 h~ 
.) h2 

The upper part of the matrix contains the scaling filter coefficients, the lower part 

contains the wavelet filter coefficients, deduced from their scaling version. 

The smoothness of the wavelet result in : 

N I 
\' p 
i....; n 'gn o 

n=O with p 0 .. P I 

To deduce Daubechies4 we need 4 conditions: 2 are coming from the matrix 

product, the other 2 from the moments. As starting condition we choose an 'extension' 

of the Haar scaling coefficients. 
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hi 

Given 

4 

h «( h 12 . h :::
2 

• h 3
2
=.5 

i: Oh::: h rh }=o 

h O· h I h 2 . h ~=O 

3·h O ' 2·h I h,.,=() 

v Daub4 FinJ h o· h I' h 2' h 3 " 2,v Daub4 = 

0.483 

0.837 

0.224 

0.129 

4 

Daub4 

8 

1- 3 

8 

Daub4 = 

270 

0.483 1

1 
0.837 

0.224
1 

0. 1291 

For Daubechies8 8 equations are needed: 4 are coming from the identity matrix 

conditions. The other 4 are coming from the moments. 

Given 

1 

~ 
h 1 

1 

~ 

h O·h 6 ~ h ]'h TO 
- h 0 - h 1 - h 2 - h r h 4 -'- h 5 - h 6 h TO 

j. h 0 - 6· h 1" 5· h 2 - 4· h 3 - 3- h 4";" 2· h 5 - h ?O 

8 

l·h 0 f 6
2
·h I 5

2
.h:2' 4

2
,h 3 3

2
·h 4+ :22'h 5 - h?O 

3 6~ h -3 h 3 33 h:1 -j' . h 0'" " 1 ... ). :2 - 4 . h 3- , 4..,...:2· h 5 - h 00 
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<2·y DaubS = 

0.23 

0.715 

0.631 

0.Q28 

-0.IS7 

0.031 

0.033 

-0.0] ] 

271 

Deduction of the wavelet filter coefficients out of the scaling ones: 

n 4=0 .. 3 

minus 4 
- n4 

n4 
:c ( I) 

v wDaub4 ,,( minus_ 4 ·reverse : v Daub4 \' 
., \!/ 

h Daub4 := -J2·v Daub4 

g Daub4 \j2·y wDaub4 

n s-O .. 7 

ns 
minus S :. ( 1) 

- ng 

Y wDaubS= (minus_8·reverse (v DaubS';': 
, \ 

h DaubS :: ',j 2· v Daub8 

g Daub8,j2'v wDaub8 

h Daub4t 0.5 ~ 
4 

-0-

\ 
o.~----------... 

o 2 3 

"4 

Daub4 : h and g filter coefficients 

·1'-------------' 
o 2 4 6 

n 8 

Daub8 : hand g filter coefficients 
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For all the other Daubechies wavelets the same procedure can be followed. 

Coifman wavelets 

Coifman wavelet filter coefficients are generated in an almost similar way than 

the Daubechies ones. They are designed so that both the scaling function and the 

wavelet will have vanishing moments. For Coifman6, for the last equation of the 

Daub6 system with the highest vanishing moment for the wavelet is interchanged with 

the 'highest vanishing moment' for the scaling function. 

6 

Given 

h I h'1 
I 

6 

h O ' h] h 2 ··h r h 4 -h)-O 

-5·h O-4·h j -3·h 2 ·2·h 3 h 4=O 

S·hS" 4·h 4 +3·h 3 -2·h 2-h 1=1 

1 

6 6 

0.227 

0.746 

0.607 

6 

'J2·v Coif6 =0.077 

-0.127 

0.039, 

Compared with the Daub6 this Coif6 has one wavelet vanishing moment Jess. This 

results also in 1 zero less at Q = 11:. (2 instead of 3 roots at -1). 

. 'T 
polyroots :,v Coif6) = (-I -10.546 2.918- l.5i 2.918+ L5i 
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APPENDIX6A 

From binomial to B-spline fIlters 

The frequency spectrum of the Haar scaling function has a cosine shape 

(Appendix Sa). The Haar scaling function has exactly the same characteristics as the 

B-spline of oth order. B-splines of the nth order are constructed by n+ 1 repeated 

convolutions of the Haar wavelet with itself. 

~n(t) = ~()(t)* ~o(t)* ...... *~(\t) (n+ 1 times) 

The low pass filter coefficients associated with these B-splines are generated by a 

binomial serie development. 

hn(k) = 1/2nCn'
l 

·th en - '/( _.)'.' .. - 0 WI 1 - n. n 1 .1. ,1 - ... n 

The roots of the z transfonn of these binomial filter coefficients are all located at 

z = -1. They are of particular interest because zeros at z = -1 are related to vanishing 

moments. So a binomial filter allied to a B-spline of the 2nd order has 2 vanishing 

moments. Next step will be to find the dual set of filter coefficients (h n), with the 

same amount of vanishing moments but of a higher order for the dual filter 

coefficients. Cohen Daubechies and Fauveau [57] designed a trigonometrical 

polynomial whose coefficients could be used in a convolution operation with hO to 

produce h n. The zeros of these particular coefficients are located near z= 1 and 

produce a linear phase high pass filter. Fig. 6A 1 shows the position of the zeros of the 

transfer function of this trigonometrical polynomial for 4 zeros (3rd order) added to the 

4 zeros from the transfer function of the binomial set of filter coefficients. 

As an example, we will design a dual set of filter coefficients for B-spline 

biorthogonal wavelets with 3 vanishing moments. This will be done by using 

specially created functions for Matlab. 
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Fig. 6ap.l. Zeros of transfer fi-ulction of 3rd order trigonometric polynomial 

.A.mplitude of spectrum of trigonometric polynomial (ordeF3) 
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Fig.6ap.2 The above figures show respectively the amplitude and the phase of the 
filter whose transfer function will be multiplied with the transfer function of the low 
pass filter with the 3 vanishing moment. 

Multiplying in the frequency domain results in convolution in the time domain. With 

some wavelet toolbox functions for Matlab we become: 

p_3=trigpol(3 ) 
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p_3 = 0.3750 -2.2500 4.7500 -2.2500 0.3750 

binomial = 1I2"3*(binewton(3)) 

binomial = 0.1250 0.3750 0.3750 0.1250 

h_dual=conv(p_3,binomial) 

h_dual= 0.0469 -0.1406 -0.1094 0.7031 0.7031 -0.1094 -0.1406 0.0469 

= 3/64 -9/64 -7/64 45/64 45/64 -7/64 -9/64 3164 

The accompanying high pass filters can be very easily designed by mUltiplying the elements 

of h_dual with C-1)k (k=1.. .length(h_dual». Wickerhausen [ ] built his tables of coefficient 

by using this concept. 

Matrix-based design of biorthogonaJ filters 

We will design a biorthogonal filter with Matlab tools and compare the results 

with the solution of a set of filter coefficient equations ensued from orthogonality and 

vanishing moment constraints. 

The generation of the binomial filter coefficients, the coefficients of the trigonometric 

polynomial , the final convolution operation and the generation of high pass filter 

coefficients is assembled in one m-file : wspline.m 

[h2_dual,g2_dual,h2,g21=wspline(2,2) 

-0.1768 0.3536 1.0607 0.3536 -0.1768 

= ..J2 ( -118 -118 ) 

g2_dual= -0.3536 0.7071 -0.3536 

= ..J2 ( _1,4 1(2 _1,4 ) 

h2 = 0.3536 0.7071 0.3536 
, 

= "./2 ( % Vz % ) 
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g2 = -0.1768 -0.3536 1.0607 -0.3536 -0.1768 

-1;4 -1;4 -1/8 ) 

Just like for normal orthogonal wavelets (see appendix 5b) the matrix method of 

describing wavelet transforms leads to an elegant way to design wavelet coefficients 

[68]. The products of the wavelet coefficients matrices for forward and backward 

transfonn must result in the unity matrix. To demonstrate this technique the simplest 

symmetric set with 3-5 coefficients lowpass: [(ho,hl.ho ),(gO,gl,g2,gl,gO)] and highpass: 

[(-ho,hj.-ho),(gO,-ghgyg],go)] is implemented in matrix M. Remark that the matrix 

construction is slightly different to the nonnal wavelet matrix. For instance, it starts 

from the centre wavelet coefficient value and the inverse matrix is not just the 

transpose of the original one. ( For Mathcad notation sake we use g instead off h) 

hI ho 0 0 0 0 0 hO g2 go 0 go - h 0 - h 0 0 0 

0 hO hI hO 0 0 0 0 g I g 1 0 0 0 hI 0 0 

0 0 0 hO h) hO 0 0 go g2 go 0 0 hO -h 0 0 

0 0 0 0 0 hO hi hO 0 g I g I 0 0 0 hI 0 

:'1-1 ~ M inv =2·' 
g I go 0 0 0 go g) £2 0 go g2 go 0 0 - h 0 - h 0 

-g 1 g 2 - g J go 0 0 0 go 0 0 g I g I 0 0 0 h I 

0 go - g I g 2 -g 1 go 0 0 i g 0 0 go g2 hO 0 0 - h 0 

0 0 0 go g 1 g2 g I go : g I 0 0 g I h 1 0 0 0 

2gzh 1- 4hO£ I 0 2g0h It 2hog 1 0 0 0 2~h j t 2!Jog I 0 

0 2gZh) 4hc~1 0 2£Oh l- 2hOg i 0 0 0 2~hlt2h~1 

I 2:g0h r 2t1(Jg I 0 2gZh 1+ 4hOg 1 0 3~hl+2hogl 0 0 0 

0 3gohr 2hogl 0 2gzhr 4hogl 0 2~hlt2h08:1 0 0 , 
~n.f't'>; 

0 0 2g0hli3h~1 0 3gZhl-4hOg) 0 2g0hl+211(%1 0 
i 

I 0 0 0 2~hr2hogl 0 2gzh 1+ 4hogl 0 2~hlt 2hogl: 
I 
12£oh 1+ 2hog I 0 0 0 2~hl,2hogl 0 2g2hl+4h~1 0 

0 2g0h ! + 2h~ I 0 0 0 2~hl+2hogl 0 19zhl+4hag j 

By setting this matrix equal to the unity matrix 2 equation result. At least 3 other 

equations are needed to produce a solution. We add 2 equations requiring the sum of 

the high pass filter coefficients to be equal to 1. Another set of 2 equations comes 
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from the vanishing moments (oth and 1st order) of the wavelet. With some starting 

values the solution converges to a very elegant solution! The filter coefficients are 

rational numbers and at least the multiplication of the denominator value can be 

realised with shift operations_ Combined with the lifting scheme on a VSP (see 

chapter 7), this must be very beneficial in real time video processing_ 

Given 

1 

3 

2-g 0- 2-g 1 - g 2=0 

2-g 0 +2-g 1-g2=1 

1 

0 

0 

0 
M inv -M = 

0 

0 

0 
, 0 

0 0 

1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

1 0.., --
'" - 5 

0.25 

0.5 

v_biorthogonal_35 == -1).125 

0.25 

0.75 

o o· 
o 0 

o 0 

o 0 

o 0 

o 0 

1 0 

o 1 

The matrix multiplication of Minv and M proves the biorthogonality . Comparing this 

result with the Cohen Daubechies Feauveau technique, we come to an identical 

solution_ 
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