18,185 research outputs found

    Time-ordered data simulation and map-making for the PIXIE Fourier transform spectrometer

    Get PDF
    We develop a time-ordered data simulator and map-maker for the proposed PIXIE Fourier transform spectrometer and use them to investigate the impact of polarization leakage, imperfect collimation, elliptical beams, sub-pixel effects, correlated noise and spectrometer mirror jitter on the PIXIE data analysis. We find that PIXIE is robust to all of these effects, with the exception of mirror jitter which could become the dominant source of noise in the experiment if the jitter is not kept significantly below 0.1μms0.1\mu m\sqrt{s}. Source code is available at https://github.com/amaurea/pixie.Comment: 27 pages, 15 figures. Accepted for publication in JCA

    Dichroism for orbital angular momentum using parametric amplification

    Get PDF
    We theoretically analyze parametric amplification as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field

    Measurement of Thermo-Elastic Deformation of an Optic using a Polarization Based Shearing Interferometer

    Full text link
    A shearing interferometer is presented which uses polarization control to shear the wavefront and to modulate the interference pattern. The shear is generated by spatial walk-off in a birefringent crystal. By adjusting the orientation of the birefringent crystal, the components of the wavefront gradient can be independently measured to allow determination of the full wavefront vector gradient as well as reconstruction of the wavefront. Further, the monolithic nature of the crystal used for shearing allows the interferometer to be setup without need for precise alignment of any components. An algorithm incorporating homodyne detection is presented which analyzes the modulated interferograms to determine the components of the wavefront gradient, from which the wavefront is reconstructed. The thermal deformation of a mirror subject to heating from absorption of a Gaussian pump beam was accurately observed with a sensitivity better than \lambda/160. We show that this sensitivity is scale invariant, and present a method to account for the non-uniform spatial frequency response of the interferometer

    Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions

    Full text link
    The generation of continuous-variable multipartite entangled states is important for several protocols of quantum information processing and communication, such as one-way quantum computation or controlled dense coding. In this article we theoretically show that multimode optical parametric oscillators can produce a great variety of such states by an appropriate control of the parametric interaction, what we accomplish by tailoring either the spatio-temporal shape of the pump, or the geometry of the nonlinear medium. Specific examples involving currently available optical parametric oscillators are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure

    Transverse angular momentum of photons

    Full text link
    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasi-paraxial photon beams in vacuum, and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.Comment: 10 pages, 2 figure

    The Standard Quantum Limit of Coherent Beam Combining

    Full text link
    Coherent beam combining refers to the process of generating a bright output beam by merging independent input beams with locked relative phases. We report the first quantum mechanical noise limit calculations for coherent beam combining and compare our results to quantum-limited amplification. Our coherent beam combining scheme is based on an optical Fourier transformation which renders the scheme compatible with integrated optics. The scheme can be layed out for an arbitrary number of input beams and approaches the shot noise limit for a large number of inputs
    • …
    corecore