344 research outputs found

    A survey on fractional variational calculus

    Full text link
    Main results and techniques of the fractional calculus of variations are surveyed. We consider variational problems containing Caputo derivatives and study them using both indirect and direct methods. In particular, we provide necessary optimality conditions of Euler-Lagrange type for the fundamental, higher-order, and isoperimetric problems, and compute approximated solutions based on truncated Gr\"{u}nwald--Letnikov approximations of Caputo derivatives.Comment: This is a preprint of a paper whose final and definite form is in 'Handbook of Fractional Calculus with Applications. Vol 1: Basic Theory', De Gruyter. Submitted 29-March-2018; accepted, after a revision, 13-June-201

    Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels

    Get PDF
    In this work we study necessary and sufficient optimality conditions for variational problems dealing with a new fractional derivative. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with arbitrary kernels. After proving a fractional integration by parts formula, we obtain the Euler–Lagrange equation and natural boundary conditions for the fundamental variational problem. Also, fractional variational problems with integral and holonomic constraints are considered. We end with some examples to exemplify our results.publishe

    Herglotz variational problems involving distributed-order fractional derivatives with arbitrary smooth kernels

    Get PDF
    In this paper, we consider Herglotz-type variational problems dealing with fractional derivatives of distributed-order with respect to another function. We prove necessary optimality conditions for the Herglotz fractional variational problem with and without time delay, with higher-order derivatives, and with several independent variables. Since the Herglotz-type variational problem is a generalization of the classical variational problem, our main results generalize several results from the fractional calculus of variations. To illustrate the theoretical developments included in this paper, we provide some examplepublishe

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    Controlo ótimo fracionário e aplicações biológicas

    Get PDF
    In this PhD thesis, we derive a Pontryagin Maximum Principle (PMP) for fractional optimal control problems and analyze a fractional mathematical model of COVID– 19 transmission dynamics. Fractional optimal control problems consist on optimizing a performance index functional subject to a fractional control system. One of the most important results in optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. First, we study properties of optimality for a dynamical system described by distributed-order non-local derivatives associated to a Lagrangian cost functional. We start by proving continuity and differentiability of solutions due to control perturbations. For smooth and unconstrained data, we obtain a weak version of Pontryagin's Maximum principle and a sufficient optimality condition under appropriate convexity. However, for controls taking values on a closed set, we use needle like variations to prove a strong version of Pontryagin's maximum principle. In the second part of the thesis, optimal control problems for fractional operators involving general analytic kernels are studied. We prove an integration by parts formula and a Gronwall inequality for fractional derivatives with a general analytic kernel. Based on these results, we show continuity and differentiability of solutions due to control perturbations leading to a weak version of the maximum principle. In addition, a wide class of combined fractional operators with general analytic kernels is considered. For this later problem, the control set is a closed convex subset of L2. Thus, using techniques from variational analysis, optimality conditions of Pontryagin type are obtained. Lastly, a fractional model for the COVID--19 pandemic, describing the realities of Portugal, Spain and Galicia, is studied. We show that the model is mathematically and biologically well posed. Then, we obtain a result on the global stability of the disease free equilibrium point. At the end we perform numerical simulations in order to illustrate the stability and convergence to the equilibrium point. For the data of Wuhan, Galicia, Spain, and Portugal, the order of the Caputo fractional derivative in consideration takes different values, characteristic of each region, which are not close to one, showing the relevance of the considered fractional models. 2020 Mathematics Subject Classification: 26A33, 49K15, 34A08, 34D23, 92D30.Nesta tese, derivamos o Princípio do Máximo de Pontryagin (PMP) para problemas de controlo ótimo fracionário e analisamos um modelo matemático fracionário para a dinâmica de transmissão da COVID-19. Os problemas de controlo ótimo fracionário consistem em otimizar uma funcional de índice de desempenho sujeita a um sistema de controlo fracionário. Um dos resultados mais importantes no controlo ótimo é o Princípio do Máximo de Pontryagin, que fornece uma condição de otimalidade necessária que toda a solução para o problema de otimização deve verificar. Primeiramente, estudamos propriedades de otimalidade para sistemas dinâmicos descritos por derivadas não-locais de ordem distribuída associadas a uma funcional de custo Lagrangiana. Começamos demonstrando a continuidade e a diferenciabilidade das soluções usando perturbações do controlo. Para dados suaves e sem restrições, obtemos uma versão fraca do princípio do Máximo de Pontryagin e uma condição de otimalidade suficiente sob convexidade apropriada. No entanto, para controlos que tomam valores num conjunto fechado, usamos variações do tipo agulha para provar uma versão forte do princípio do máximo de Pontryagin. Na segunda parte da tese, estudamos problemas de controlo ótimo para operadores fracionários envolvendo um núcleo analítico geral. Demonstramos uma fórmula de integração por partes e uma desigualdade Gronwall para derivadas fracionárias com um núcleo analítico geral. Com base nesses resultados, mostramos a continuidade e a diferenciabilidade das soluções por perturbações do controlo, levando a uma formulação de uma versão fraca do princípio do máximo de Pontryagin. Além disso, consideramos uma classe ampla de operadores fracionários combinados com núcleo analítico geral. Para este último problema, o conjunto de controlos é um subconjunto convexo fechado de L2. Assim, usando técnicas da análise variacional, obtemos condições de otimalidade do tipo de Pontryagin. Finalmente, estudamos um modelo fracionário da pandemia de COVID-19, descrevendo as realidades de Portugal, Espanha e Galiza. Mostramos que o modelo proposto é matematicamente e biologicamente bem colocado. Então, obtemos um resultado sobre a estabilidade global do ponto de equilíbrio livre de doença. No final, realizamos simulações numéricas para ilustrar a estabilidade e convergência do ponto de equilíbrio. Para os dados de Wuhan, Galiza, Espanha e Portugal, a ordem da derivada fracionária de Caputo em consideração toma valores diferentes característicos de cada região, e não próximos de um, mostrando a relevância de se considerarem modelos fracionários.Programa Doutoral em Matemática Aplicad

    An optimal polynomial approximation of Brownian motion

    Get PDF
    In this paper, we will present a strong (or pathwise) approximation of standard Brownian motion by a class of orthogonal polynomials. The coefficients that are obtained from the expansion of Brownian motion in this polynomial basis are independent Gaussian random variables. Therefore it is practical (requires NN independent Gaussian coefficients) to generate an approximate sample path of Brownian motion that respects integration of polynomials with degree less than NN. Moreover, since these orthogonal polynomials appear naturally as eigenfunctions of an integral operator defined by the Brownian bridge covariance function, the proposed approximation is optimal in a certain weighted L2(P)L^{2}(\mathbb{P}) sense. In addition, discretizing Brownian paths as piecewise parabolas gives a locally higher order numerical method for stochastic differential equations (SDEs) when compared to the standard piecewise linear approach. We shall demonstrate these ideas by simulating Inhomogeneous Geometric Brownian Motion (IGBM). This numerical example will also illustrate the deficiencies of the piecewise parabola approximation when compared to a new version of the asymptotically efficient log-ODE (or Castell-Gaines) method.Comment: 27 pages, 8 figure

    Functional Calculus

    Get PDF
    The aim of this book is to present a broad overview of the theory and applications related to functional calculus. The book is based on two main subject areas: matrix calculus and applications of Hilbert spaces. Determinantal representations of the core inverse and its generalizations, new series formulas for matrix exponential series, results on fixed point theory, and chaotic graph operations and their fundamental group are contained under the umbrella of matrix calculus. In addition, numerical analysis of boundary value problems of fractional differential equations are also considered here. In addition, reproducing kernel Hilbert spaces, spectral theory as an application of Hilbert spaces, and an analysis of PM10 fluctuations and optimal control are all contained in the applications of Hilbert spaces. The concept of this book covers topics that will be of interest not only for students but also for researchers and professors in this field of mathematics. The authors of each chapter convey a strong emphasis on theoretical foundations in this book
    corecore