
Sparse representations and quadratic approximations

in path integral techniques for stochastic response

analysis of diverse systems/structures

Apostolos Psaros Andriopoulos

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

Columbia University
2019



c© 2019
Apostolos Psaros Andriopoulos

All rights reserved



Abstract

Sparse representations and quadratic approximations in path integral
techniques for stochastic response analysis of diverse systems/structures

Apostolos Psaros Andriopoulos

Uncertainty propagation in engineering mechanics and dynamics is a highly challenging

problem that requires development of analytical/numerical techniques for determining the

stochastic response of complex engineering systems. In this regard, although Monte Carlo

simulation (MCS) has been the most versatile technique for addressing the above problem,

it can become computationally daunting when faced with high-dimensional systems or with

computing very low probability events. Thus, there is a demand for pursuing more compu-

tationally efficient methodologies.

Recently, a Wiener path integral (WPI) technique, whose origins can be found in the-

oretical physics, has been developed in the field of engineering dynamics for determining

the response transition probability density function (PDF) of nonlinear oscillators subject

to non-white, non-Gaussian and non-stationary excitation processes. In the present work,

the Wiener path integral technique is enhanced, extended and generalized with respect to

three main aspects; namely, versatility, computational efficiency and accuracy.

Specifically, the need for increasingly sophisticated modeling of excitations has led re-

cently to the utilization of fractional calculus, which can be construed as a generalization

of classical calculus. Motivated by the above developments, the WPI technique is extended

herein to account for stochastic excitations modeled via fractional-order filters. To this aim,

relying on a variational formulation and on the most probable path approximation yields a

deterministic fractional boundary value problem to be solved numerically for obtaining the

oscillator joint response PDF.

Further, appropriate multi-dimensional bases are constructed for approximating, in a

computationally efficient manner, the non-stationary joint response PDF. In this regard,

two distinct approaches are pursued. The first employs expansions based on Kronecker



products of bases (e.g., wavelets), while the second utilizes representations based on positive

definite functions. Next, the localization capabilities of the WPI technique are exploited

for determining PDF points in the joint space-time domain to be used for evaluating the

expansion coefficients at a relatively low computational cost.

Subsequently, compressive sampling procedures are employed in conjunction with group

sparsity concepts and appropriate optimization algorithms for decreasing even further the as-

sociated computational cost. It is shown that the herein developed enhancement renders the

technique capable of treating readily relatively high-dimensional stochastic systems. More

importantly, it is shown that this enhancement in computational efficiency becomes more

prevalent as the number of stochastic dimensions increases; thus, rendering the herein pro-

posed sparse representation approach indispensable, especially for high-dimensional systems.

Next, a quadratic approximation of the WPI is developed for enhancing the accuracy

degree of the technique. Concisely, following a functional series expansion, higher-order

terms are accounted for, which is equivalent to considering not only the most probable path

but also fluctuations around it. These fluctuations are incorporated into a state-dependent

factor by which the exponential part of each PDF value is multiplied. This localization

of the state-dependent factor yields superior accuracy as compared to the standard most

probable path WPI approximation where the factor is constant and state-invariant. An

additional advantage relates to efficient structural reliability assessment, and in particular,

to direct estimation of low probability events (e.g., failure probabilities), without possessing

the complete transition PDF.

Overall, the developments in this thesis render the WPI technique a potent tool for

determining, in a reliable manner and with a minimal computational cost, the stochastic

response of nonlinear oscillators subject to an extended range of excitation processes. Several

numerical examples, pertaining to both nonlinear dynamical systems subject to external

excitations and to a special class of engineering mechanics problems with stochastic media

properties, are considered for demonstrating the reliability of the developed techniques. In



all cases, the degree of accuracy and the computational efficiency exhibited are assessed by

comparisons with pertinent MCS data.
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system subject to time-modulated Gaussian white noise, as obtained via the

WPI technique (a and c); comparisons with MCS data - 50,000 realizations

(b and d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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Chapter 1

Introduction

1.1 Stochastic engineering dynamics

1.1.1 Persistent and current challenges due to increasingly complex model-

ing

Addressing the challenge of uncertainty propagation in engineering dynamics relates to the

development of analytical and numerical methodologies for determining response and relia-

bility statistics of complex systems, i.e., for solving stochastic (partial) differential equations

of the form

F [x] = f (1.1)

where F [·] is an operator (nonlinear, differential, etc.); f is the external excitation; and x is

the system response to be determined. Note that ever-increasing computational capabilities,

novel signal processing techniques, advanced experimental setups, as well as progress in

emerging and transformative technologies (e.g., nano-mechanics, energy harvesting, etc.)

have contributed to a highly sophisticated mathematical modeling of Eq. (1.1). Irrespective

of the scale of the problem (nano- to macro-), common challenges include:

A) Stochastic environment and media properties: Uncertainty modeling precedes the chal-

1



Chapter 1. Introduction

lenge of uncertainty propagation and relates to the development of methodologies (e.g.,

spectral analysis techniques) for analyzing available measured data (e.g., time-histories), and

subsequently, for estimating pertinent stochastic models. In real-life situations, measured

data most often exhibit a time- and space-varying behavior. For instance, most environ-

mental excitations (e.g., earthquakes, winds, etc.) exhibit statistics that vary with time.

Similarly, considering the example of functionally graded materials, properties such as the

elasticity modulus may exhibit statistics that vary with space. Further, most often there are

limited and incomplete data due to several reasons, such as cost (e.g., expensive sensor main-

tenance in harsh conditions and remote areas), data loss or corruption (e.g., sensor failures,

power outages, etc), as well as limited bandwidth and storage capacities. Thus, development

of potent joint time/space-frequency analysis techniques, which can account for incomplete

data as well, is necessary for more accurate excitation/system modeling. Indicatively, statis-

tical estimators based on wavelets in conjunction with compressive sampling concepts and

tools have been developed recently for uncertainty modeling based on available realizations

with missing data (e.g., [27, 201]). Furthermore, with the recent advent of multi-scale com-

putational analyses, researchers and engineers are faced with the challenge of interpreting

and translating measured data at multiple scales into pertinent stochastic models (e.g., [76]).

In this regard, there is a need for developing robust multi-scale statistical descriptors and

stochastic models capable of capturing complex uncertainty relationships. Also, the recent

exploitation of diverse sensor technologies, and the availability of massive amounts of mea-

sured data, facilitates a higher-order modeling and representation of stochastic processes,

which would be unfeasible a few years ago due to lack of sufficient data (e.g., [162]). As

a result, modern statistical estimators necessitate, in general, the realistic modeling of the

system parameters in the operator F [·] (e.g., media / material properties), and of the exci-

tation f in Eq. (1.1), as non-Gaussian, non-white, and non-stationary stochastic processes.

This reflects a significantly more complex uncertainty modeling, especially in comparison

to early developments in the field of stochastic engineering dynamics where the “Gaussian

2



Chapter 1. Introduction

white noise process” assumption used to be routinely employed. Of course, although this

assumption facilitated significantly the solution of the governing equations, it also yielded

an oversimplification of the model.

B) System complexity & high dimensionality: Classical continuum (or discretized) mechanics

theories have been traditionally used for modeling the operator F [·] in Eq. (1.1). Neverthe-

less, the need for more accurate media behavior modeling has led recently to advanced

mathematical tools such as fractional calculus (e.g., [139, 155, 156]). Besides the fact that

fractional calculus can be construed as a generalization of classical calculus (and as such

provides with enhanced modeling flexibility), it has been successfully employed in theoreti-

cal and applied mechanics for developing non-local continuum mechanics theories (e.g., [40,

184]), as well as for viscoelastic material modeling (e.g., [39]). Note that the fractional

derivative operator Dβ [x] has also a clear and intuitive physical interpretation in the field

of viscoelasticity. For β = 0, Dβ [x] degenerates to Dβ [x] = x, modeling a purely elastic

restoring force in engineering dynamics. For β = 1, Dβ [x] degenerates to Dβ [x] = ẋ, mod-

eling a purely viscous restoring force. What if the material has a visco-elastic behavior? Is

it possible that this is captured by a fractional order (0 ≤ β < 1) derivative? Indeed, exper-

imental viscoelastic response data obtained via creep and relaxation tests agree extremely

well with such kind of modeling [39, 72, 137]. Finally, the above unconventional modeling

is also typically coupled with complex nonlinearities and hysteresis (e.g., [122]), and with

high-dimensional multi-degree-of-freedom system modeling.

Overall, from a mathematics perspective, Eq. (1.1) takes the form of a high-dimensional

system of coupled nonlinear stochastic (fractional/partial) differential equations. In many

cases, even the deterministic solution of such equations is an open issue and an active research

topic. Clearly, solving the stochastic counterparts of these equations becomes significantly

more challenging. In this regard, “partially” solving Eq. (1.1) and obtaining the first few

response moments only (e.g., mean and standard deviation) is often inadequate for properly

3



Chapter 1. Introduction

analyzing, designing and optimizing engineering systems and structures. Instead, a complete

stochastic characterization of the system response requires (the significantly more difficult

task of) determining the joint response transition probability density function (PDF). This

would allow for an optimal and robust design methodology based, for instance, on low

probability events (e.g., failures), and/or on other alternative constraints and requirements

related to extreme/peak response statistics.

1.1.2 State-of-the-art solution techniques and limitations

Available techniques for solving the governing equations and determining the stochastic

response of dynamical systems modeled via Eq. (1.1) can be broadly divided into two cate-

gories: a) those that can determine accurately low probability events, but can handle a very

small number of stochastic dimensions/degrees-of-freedom due to prohibitive computational

cost ; and b) those that can readily treat high-dimensional systems, but provide reliable es-

timates for low-order response statistics only (e.g., mean and standard deviation). This is

often inadequate for proper system analysis, design and optimization. To elaborate further,

in stochastic engineering dynamics Eq. (1.1) takes typically the following form of stochastic

differential equations (SDEs); that is,

Mẍ+Cẋ+Kx+ g
(
x, ẋ,Dβ [x]

)
= f(t) (1.2)

where M , C, K denote the mass, damping and stiffness matrices, respectively, and g (·) is a

general nonlinear function which can account for hysteretic as well as for fractional derivative

modeling.

Although Monte Carlo simulation (MCS) (e.g., [9, 47, 77, 163, 173, 188]) has been the

most versatile tool for solving the stochastic Eq. (1.2), there are many cases where MCS can

be computationally prohibitive. This is especially true when either high-dimensional complex

systems are considered (thus, even only one deterministic analysis is time-consuming), or the
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system response quantity of interest has a very low probability of occurrence (thus, millions

of deterministic analyses are required to acquire a reasonably accurate estimate). During

the past years significant progress has been made in enhancing the computational efficiency

of MCS by developing various “smart” MCS schemes such as importance sampling, subset

simulation, and sequential methods (e.g., [9, 47]). These schemes have been coupled with

surrogate models (e.g., Kriging), and order reduction methodologies (e.g., [80]) to further

decrease the computational cost. However, in many cases the cost still remains prohibitive.

In addition, the above “hybrid” schemes may impose significant approximations, which can

reduce effectively the accuracy and reliability of the simulations, especially when the goal is

to determine low probability events (e.g., failures).

Thus, there is a need for developing alternative analytical and/or numerical techniques for

determining the response of stochastic dynamical systems. Indicative techniques include mo-

ments equations, statistical linearization, stochastic averaging, perturbation approaches, dis-

crete Chapman-Kolmogorov equation schemes, Fokker-Planck equation solution techniques,

probability density evolution methods, (generalized) polynomial chaos expansions, and dy-

namically orthogonal field equations (e.g., [53, 63, 73, 79, 88, 105, 112, 114, 118, 135, 154,

158, 167, 171, 182]).

Historically, perturbation approaches were among the first ones to be employed for solving

random vibration problems (e.g., [29]). However, they exhibit satisfactory accuracy only for

low nonlinearity magnitudes ; thus, rendering them inadequate for a wide range of strongly

nonlinear engineering systems. Further, statistical linearization (and related moments equa-

tions approaches) has been one of the most versatile and popular approximate methodologies

for determining the stochastic response of nonlinear systems in a computationally efficient

manner (e.g., [154]). The main objective of the methodology relates to the replacement of

the original nonlinear system with an “equivalent linear” one by appropriately minimizing

the error vector corresponding to the difference between the two systems. According to the

standard implementation of the methodology, the minimization criterion typically relates to

5
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the mean square error, while the Gaussian assumption for the system response PDFs is com-

monly adopted (e.g., [154]). Although there exist more sophisticated implementations of the

statistical linearization, which relax the aforementioned assumptions and/or employ various

other minimization criteria (e.g., [167]), these versions typically lack versatility. In fact, one

of the reasons for the wide utilization of the standard statistical linearization methodology

has been, undoubtedly, its versatility in addressing a wide range of nonlinear behaviors un-

der the same mathematical framework. In particular, the Gaussian response assumption in

conjunction with the mean square error minimization criterion facilitates the derivation of

closed form expressions for the equivalent linear elements (e.g., mass, stiffness, and damp-

ing coefficients, etc.) as functions of the response statistics. Nevertheless, primarily due to

the Gaussian response assumption, the standard methodology is generally restricted to the

determination of first- and second-order response statistics only. The interested reader may

find a detailed presentation of the methodology in the two dedicated books on the topic by

[154] and by [167], and in various review papers (e.g., [31, 54, 166, 172]).

Furthermore, relying on preliminary work in the field of theoretical physics (e.g., [189]),

Naess and co-workers pioneered in stochastic engineering dynamics a numerical solution

scheme by utilizing a discrete version of the Chapman-Kolmogorov equation, and by prop-

agating the response PDF in short time steps (e.g., [23, 128]). Nevertheless, although the

scheme exhibits excellent accuracy in predicting even the tails of the system response PDF,

its performance is hindered eventually by excessive computational cost with increasing di-

mensionality (e.g., [5]). This is due to the fact that a multi-convolution integral needs to

be computed for each and every time step, while the time increment is required to be short.

Due to other different reasons, alternative probability density evolution schemes (e.g., [112])

and Fokker-Planck equation solution strategies (e.g., [152, 169]), as well as approaches based

on polynomial chaos and other expansions [63, 73, 182], also become eventually inefficient

computationally with an increasing number of dimensions. In this regard, various order re-

duction approaches have been employed routinely over the last few decades for decreasing
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the dimensionality of the original system of equations. Indicatively, stochastic averaging

has been a potent dimension reduction tool, used for obtaining approximate solutions to

problems involving the vibration response of lightly damped systems to broad-band random

excitation (e.g., [153, 202]). The main aspects of the technique relate to a Markovian ap-

proximation of an appropriately chosen amplitude of the system response, as well as to a

dimension reduction of the original 2m-dimensional problem to an m-dimensional problem.

Nevertheless, the price to pay for reducing the complexity of the original problem is the

introduction of various approximations, which unavoidably limit the range of applicability

of the approach.

Overall, it becomes clear that the development of versatile solution techniques, which

exhibit both high accuracy and low computational cost (and thus, can treat high-dimensional

problems), is paramount for advancing the field of stochastic engineering dynamics. In the

following section, the mathematical tool of path integral with its major impact on theoretical

physics is briefly introduced.

1.2 The path integral technique

From a mathematics point of view, the path integral concept refers to the generalization of

integral calculus to functionals. It was first introduced by Wiener [192] (see also preliminary

work by Daniell [32]), and was reinvented in a different form by Feynman [61] leading to a

reformulation of quantum mechanics. Notwithstanding the obvious similarities between the

Wiener and the Feynman integrals, the Wiener path integral relates to stochastic processes

and is real-valued, whereas the Feynman path integral is complex-valued as a consequence of

a fundamental quantity in quantum mechanics, i.e., the probability amplitude. Interestingly,

although the development by Wiener preceded that by Feynman, the applications of the

Feynman integral in most branches of modern physics have proven extremely fruitful as a

guide for the formulation and development of new ideas and approaches in the description
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of physical phenomena. Indicative application areas include the theories of superfluidity, of

unified electromagnetic and weak interactions, and of quantum chromodynamics. Clearly,

the importance of path integral in theoretical physics as a conceptual and computational

tool can hardly be disputed, while a number of books provide the fundamentals and details

on the machinery of Feynman path integrals (e.g., [21, 62, 98, 161]).

Note, however, that very few of the aforementioned developments relate to the field of en-

gineering mechanics and dynamics. To address this issue, Kougioumtzoglou and co-workers

have recently adapted, extended, and applied the Wiener path integral (WPI) methodol-

ogy for the stochastic response analysis and reliability assessment of complex dynamical

systems of engineering interest. Indicatively, the developed WPI techniques are capable

of determining the joint response transition PDF of multi-degree-of-freedom (MDOF) non-

linear/hysteretic systems, even when endowed with fractional derivative terms (e.g., [37,

100, 103]). Furthermore, they can address certain one-dimensional mechanics problems with

random material/media properties [101], systems subject to non-white and non-Gaussian

stochastic processes [146], as well as a class of nonlinear electromechanical energy harvesters

[143].

1.3 Objectives and organization of thesis

Despite the aforementioned developments, the WPI technique is limited to systems subject

to excitation processes modeled via filters involving integer-order derivatives only. In this

regard, the need for increasingly sophisticated modeling of excitations has led recently to the

use of fractional-order filters for describing stochastic loads acting on structural systems. For

instance, the widely used in earthquake engineering Kanai-Tajimi power spectrum has been

recently enhanced by utilizing a fractional-order filter for circumventing certain limitations of

the original standard model [6, 93, 183]. Further, from a computational efficiency perspective,

since a WPI-based analytical determination of the PDF is a highly challenging task, a
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numerical implementation of the technique is typically required. To this aim, although

recent work in [104] reduced the computational complexity by, potentially, several orders

of magnitude as compared to the original formulation and numerical implementation of

the technique, the related computational cost, which follows a power-law function of the

number of stochastic dimensions, restricts the applicability of the methodology to relatively

low-dimensional systems. Finally, according to the standard WPI solution approach (e.g.,

[100]) the path integral is approximated by utilizing only the “most probable path”. Even

though such an approach has proven to be reliable for the stochastic response determination

of a wide class of problems (e.g., [100, 103, 146]) an enhancement in terms of accuracy is

potentially feasible by utilizing functional series expansions and higher-order approximations.

In this regard, the objective of the present work is to address the above limitations and thus,

improve and extend the WPI technique in terms of versatility, computational efficiency, and

accuracy.

First, the current state-of-the-art of the technique is presented in Chapter 2. Specif-

ically, by employing the WPI methodology an exact closed-form expression for the joint

response PDF of MDOF systems subject to white noise excitation processes and governed

by first-order SDEs is derived. As the analytical evaluation of such an expression is a highly

challenging task, an approximate WPI technique based on the most probable path is devel-

oped and the determination of the PDF reduces to the solution of a deterministic boundary

value problem (BVP). Next, the corresponding exact and approximate expressions, as well

as the related BVPs for addressing MDOF systems subject to white and non-white/non-

Gaussian excitation processes and governed by second-order SDEs are derived. For both

first- and second-order systems, since for a linear version of the governing SDE the solu-

tion of the related BVP is amenable to a closed-form analytical solution, the PDF is also

given in closed-form. However, for general nonlinear systems this is not the case and, in

this regard, it is shown that the solution of one BVP is required for the determination of

a single point of the PDF; i.e., for obtaining a single PDF measurement. Further, adopt-
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ing a brute-force numerical solution approach, for each time instant an effective domain of

values is considered for the joint response PDF and one BVP is solved for each and every

point of the PDF. Clearly, the computational cost of such a numerical implementation of the

technique is prohibitive especially for high-dimensional systems and the necessity for a more

computationally efficient implementation is highlighted. Note that a first attempt towards

this direction has been proposed in [104].

In Chapter 3 the WPI technique is extended to account for stochastic excitations modeled

via fractional-order filters. To this aim, considering two general classes for the form of the

excitation process, the governing second-order SDE that is coupled with a fractional-order

filter is either written as a fourth-order SDE (as is the case for non-white/non-Gaussian ex-

citation processes modeled via integer-order filters) or as a second-order SDE that is coupled

with a set of constraints to be satisfied at all times. In both cases, the original stochastic

problem reduces to a set of deterministic problems to be solved for the determination of the

joint response PDF. Specifically, considering that the system is written as a fourth-order

SDE the PDF is obtained by solving a set of fractional-order BVPs (see e.g., [1, 8, 11, 95,

116]). For the case where a set of constraints is introduced in order to account for the filter

equation, the original stochastic problem reduces to a set of fractional-order optimal control

problems (e.g., [2, 3, 117]).

In Chapter 4 the problem of obtaining in a computationally efficient manner the joint

response PDF of stochastically excited nonlinear oscillators is addressed. Specifically, by em-

ploying appropriate time-dependent expansion bases (e.g., wavelets), the task of determining

the PDF is formulated as a multivariate approximation problem. As a result, the solution of

the problem amounts to acquiring a number of PDF measurements equal to the number of

the expansion coefficients and solving a linear system of equations for the determination of

the expansion coefficients. Therefore, the WPI technique is generalized to account explicitly

for the time dimension in its formulation and implementation. It is shown that the gain

in terms of computational cost is notable, measured even at several orders of magnitude
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for some cases. In addition, for enhancing the WPI technique in terms of computational

efficiency even further, the case of collecting a number of measurements smaller than the

number of the expansion coefficients is considered next. By following such a compressive

sampling approach, the approximation problem takes the form of an underdetermined linear

system, which has either no solution, or an infinite number of solutions. However, it is shown

that if the coefficients vector is known to be sparse in the selected basis, i.e., only a few of

its components are non-zero, a unique solution can be obtained. Overall, it is shown that a

compressive sampling treatment in conjunction with an appropriate optimization algorithm

can reduce drastically the required number of PDF measurements.

In Chapter 5 a novel WPI-based stochastic response determination technique is developed

for diverse dynamical systems/structures. The developed technique, which can construed as

an enhancement of the standard most probable path approach described in Chapter 2, relies

on functional series expansions and quadratic approximations for accounting for fluctuations

around the most probable path. As a result, by introducing a “localized” and state dependent

fluctuation factor yields an increased accuracy degree. An additional significant advantage of

this enhancement as compared to earlier developments relates to the fact that low probability

events (e.g., failure probabilities) can be estimated directly in a computationally efficient

manner by determining only a few points of the joint response PDF. In other words, the

normalization step in the standard approach, which required the evaluation of the joint

response PDF over its entire effective domain, is circumvented.

Finally, Chapter 6 provides a summary of the main research findings and conclusions of

this work. Indicative future research directions are also provided.
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Chapter 2

Wiener path integral formalism

2.1 Markov processes and stochastic differential equations

This section serves as a brief background on Markov processes, the associated Chapman-

Kolmogorov and Fokker-Planck equations, as well as their relation to a corresponding stochas-

tic differential equation governing the dynamics of the system. Consider a Markov stochastic

vector process, α(t), where α = [αj]n×1, for which the Chapman-Kolmogorov equation is

satisfied (e.g., [171]) for any three distinct time instants tl−1 ≤ tl ≤ tl+1, i.e.,

p(αl+1, tl+1|αl−1, tl−1) =

∞∫
−∞

p(αl+1, tl+1|αl, tl)p(αl, tl|αl−1, tl−1)dαl (2.1)

The sample paths are continuous functions of t with probability one, if for any δ > 0 the

Lindeberg condition (e.g., [74])

lim
ε→0

1

ε

∫
|αl+1−αl|>δ

p(αl+1, tl+1|αl, tl)dαl+1 = 0 (2.2)

holds true, where ε = tl+1−tl. Next, the process α is termed diffusion process (e.g., [67, 171]),

if the drift vector A(α, t) = [Aj(α, t)]n×1 and the diffusion matrix B(α, t) = [Bjk(α, t)]n×n
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can be defined, respectively, as

Aj(αl, tl) = lim
ε→0

E [αjl+1 − αjl]
ε

(2.3)

and

B2
jk(αl, tl) = lim

ε→0

E [(αjl+1 − αjl)(αkl+1 − αkl)]
ε

(2.4)

Further, employing the Chapman-Kolmogorov Eq. (2.1) leads to the well-known Fokker-

Planck equation (e.g., [7, 78])

∂p

∂t
= −

∑
j

∂

∂αj
(Aj(α, t)p) +

1

2

∑
j,k

∂

∂αj

∂

∂αk

(
B̃jk(α, t)p

)
(2.5)

where p = p(αl+1, tl+1|αl, tl) and B̃(α, t) = B(α, t)BT (α, t). The Fokker-Planck Eq. (2.5)

is related to a first-order stochastic differential equation of the form

dα = A(α, t)dt+B(α, t)dW (2.6)

whereW represents the Wiener process (also known as Brownian motion), which is a Markov

process with independent increments; i.e., W (tl+1) = W (tl) + ∆W (tl, tl+1), ∀ l ≥ 0, with

∆W (tl, tl+1) being statistically independent from any other increment ∆W . Also, W has

continuous, nowhere differentiable, sample paths and is a Gaussian stochastic process; see

also [171]. Notwithstanding some loss of mathematical rigor (e.g., [67, 138]), Eq. (2.6) is

often written, alternatively, as

α̇ = A(α, t) +B(α, t)η(t) (2.7)

where the dot above a variable denotes differentiation with respect to time t and η denotes a

zero-mean and delta-correlated Gaussian white noise stochastic process of intensity one; i.e.,

E [ηj(t)] = 0 and E [ηj(tl)ηk(tl+1)] = δjkδ(tl − tl+1), for any j, k ∈ {1, . . . , n}, where δjk is the
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Kronecker delta, and δ(t) is the Dirac delta function. Regarding the relation between the

Wiener and white noise processes, η(t) can be defined as an infinitesimal jump of the Wiener

process, i.e., ηdt = dW ; and, thus, it is often (informally) written as the time derivative of

the Wiener process in the form η = dW
dt

; see also [67] and [138] for a more detailed discussion

on the topic.

In the short-time limit the transition PDF has been shown to admit a Gaussian distri-

bution (e.g., [67, 152]) of the form

p(αl+1, tl+1|αl, tl) =

[√
(2πε)n det

[
B̃(αl, tl)

]]−1

× exp

−1

2

[αl+1 −αl − εA(αl, tl)]
T
[
B̃(αl, tl)

]−1
[αl+1 −αl − εA(αl, tl)]

ε

 (2.8)

Note that the expression in Eq. (2.8) as a candidate for the short-time transition PDF is not

restrictive, and other alternative non-Gaussian forms can be used (e.g., [109, 152]).

2.2 Functional integral over the space of paths

In this section, the solution of the general stochastic differential Eq. (2.7) is obtained in

closed-form by expressing the joint transition PDF of the process α as a Wiener path integral

over the space of all possible paths that the process can follow. To this aim, the short-time

transition PDF representation of Eq. (2.8) is employed to evaluate the probability that

α follows a specific sample path. In passing, note that, for notation simplicity, both the

stochastic process and a sample path of the process are denoted by α. Nevertheless, when α

is used appropriate comments are provided for clarifying whether it refers to the stochastic

process or a sample path. Next, consider the probability of the process α propagating

through some infinitesimally thin tube surrounding a path α(t), ∀ t ∈ [ti, tf ], with fixed

initial and final states {ti,αi} and {tf ,αf}, respectively. This can be construed as the
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probability of a compound event and is expressed (e.g., [21, 152]) as a product of probabilities

of the form of Eq. (2.8), i.e.,

P [α(t)] = lim
ε→0
L→∞


 L∏
l=0

[√(2πε)n det
[
B̃(αl, tl)

]]−1[ L∏
l=1

n∏
j=1

dαjl

]

× exp

− L∑
l=0

1

2

[αl+1 −αl − εA(αl, tl)]
T
[
B̃(αl, tl)

]−1
[αl+1 −αl − εA(αl, tl)]

ε


 (2.9)

where the time domain is discretized into L+ 2 points, ε apart, as

ti = t0 < t1 < · · · < tL+1 = tf (2.10)

and the path α(t) is represented by its values αl at the discrete time points tl, for l ∈

{0, . . . , L + 1}. Also, dαjl denote the (infinite in number) infinitesimal “gates” through

which the path propagates. Note that the number of probabilities multiplied in Eq. (2.9) is

equal to L + 1, while the number of “gates” is L, since the final point αf is fixed. In the

continuous limit, Eq. (2.9) can be written as

P [α(t)] = exp

− tf∫
ti

L [α, α̇] dt

 n∏
j=1

D[αj(t)] (2.11)

where L [α, α̇] denotes the Lagrangian functional of the system expressed as

L [α, α̇] =
1

2
[α̇−A(α, t)]T

[
B̃(α, t)

]−1
[α̇−A(α, t)] (2.12)
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and D[αj(t)], for j ∈ {1, . . . , n}, is a functional measure (a rigorous generalization of the

notion of volume; see [71] for more details) given by

D[αj(t)] =

tf∏
t=ti

dαj(t)√
2π
(

det
[
B̃(α, t)

])1/n
dt

≡
L∏
l=0

1√
2π
(

det
[
B̃(αl, tl)

])1/n
ε

L∏
l=1

dαjl

(2.13)

For the special case where the diffusion matrix B(α, t) is diagonal, Eqs. (2.12) and (2.13)

degenerate to

L [α, α̇] =
1

2

n∑
j=1

[α̇j − Aj(α, t)]2

B̃jj(α, t)
(2.14)

and

D[αj(t)] =

tf∏
t=ti

dαj(t)√
2πB̃jj(α, t)dt

(2.15)

respectively.

It is noted that although the mathematically rigorous term for P [α(t)] is probability

density functional, in this thesis the terms “probability density functional” and “probability

of each path” are used interchangeably for convenience. Further, it is rather intuitive to

argue that the respective probabilities of each and every path need to be accounted for, and

loosely speaking, “summed up” in order to evaluate the total probability of α starting from

αi at time ti and ending up at αf at time tf (e.g., [62]). In this regard, by utilizing Eq. (2.9)

in conjunction with Eqs. (2.11)-(2.13), the joint transition PDF is expressed as the limit of

an L-dimensional integral with L→∞ in the form

p(αf , tf |αi, ti) = lim
ε→0
L→∞

∫ ∞
−∞

. . .

∫ ∞
−∞

exp

(
−

L∑
l=0

L [αj, α̇j] ε

)

×
n∏
j=1

L∏
l=0

1√
2π
(

det
[
B̃(αl, tl)

])1/n
ε

L∏
l=1

dαjl (2.16)

Next, it can be shown, based on a Trotter product formula treatment (e.g., [161]), that
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the discrete approximation of the transition PDF in Eq. (2.16) converges in the continuous

limit to a functional integral over the space of paths that satisfy certain properties (e.g.,

[21]). Specifically, denoting the set of all paths with initial state αi at time ti and final state

αf at time tf by C{αi, ti;αf , tf}, the joint transition PDF takes the form

p(αf , tf |αi, ti) =

∫
C{αi,ti;αf ,tf}

exp

− tf∫
ti

L [α, α̇] dt

D[α(t)] (2.17)

where

D[α(t)] =
n∏
j=1

D[αj(t)] (2.18)

or, alternatively,

p(αf , tf |αi, ti) =

∫
C{αi,ti;αf ,tf}

exp (−S [α, α̇])D[α(t)] (2.19)

where S [α, α̇] is typically referred to in the theoretical physics literature as stochastic action

and is given by

S [α, α̇] =

tf∫
ti

L [α, α̇] dt (2.20)

To elaborate further, the functional integral of Eqs. (2.17)-(2.19) is also known as Wiener

path integral, which for a process α can be generally written as [21]

∫
C{αi,ti;αf ,tf}

F [α(t)]G[α(t)]D[α(t)] (2.21)

In Eq. (2.21) G[α(t)] is a functional distribution providing the probability of occurrence of

some function within the infinitesimal vicinity of α(t); F [α(t)] is an arbitrary functional of

α(t); and D[α(t)] is a functional measure generalizing the measure of Eq. (2.13). For the

special case of a Wiener process, i.e, α = W , the product G[α(t)]D[α(t)], also referred to as

Wiener measure (e.g., [21, 161, 192]) represents the probability density functional of W (t)
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given by

P [W (t)] = G[W (t)]D[W (t)] = exp

− tf∫
ti

1

2

n∑
j=1

Ẇ 2
j dt

 n∏
j=1

tf∏
t=ti

dWj(t)√
2πdt

(2.22)

The notation in Eq. (2.22) is somewhat misleading since, as mentioned earlier, the sample

paths of the Wiener process are nowhere differentiable. Nevertheless, the general Wiener

path integral of Eq. (2.21) can be construed as a shorthand notation for the continuous limit

(i.e., L → ∞) of an L-dimensional integral similar to the one of Eq. (2.16). In this regard,

a Volterra approach for handling functionals can be employed, according to which P [W (t)]

can be represented as the limit, for L→∞, of a function of L variables. Note that although

there are more mathematically elegant definitions of the Wiener path integral, based for

instance on probabilistic measure theory (see also [21]), the Volterra approach appears to be

a convenient tool for numerical implementation and approximation purposes. Further, for

the general case where a process α is expressed as an arbitrary function of the Wiener process

W , it is clear that an appropriate “change of variables” treatment is required for evaluating

the probability density functional P [α(t)] (e.g., [21, 71]). For instance, if the relationship

between α and W takes the form of a stochastic differential equation such as in Eq. (2.6),

the functional change of variables involves a stochastic integral, and thus, a discretization

rule (also known as prescription) needs to be selected. Typical choices include the Itô

(prepoint) and the Stratonovich (midpoint) discretization rules [67, 78]. Note that different

discretization schemes lead to different Jacobian transformation matrices in the functional

change of variables, yielding eventually different probabilities P [α(t)] in Eqs. (2.9) and (2.11)

[21, 193]. However, within the context of path integration and under certain conditions such

discretization rules are called equivalent classes of discretization and for L→∞ converge to

identical final results for determining the joint transition PDF [21, 109, 110]. In the present

thesis, without loss of generality, the Itô discretization rule is utilized.
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2.3 Functional series expansion and most probable path approxi-

mation

The analytical evaluation of the Wiener path integral of Eq. (2.19) for determining the joint

transition PDF of the process α is, clearly, a rather challenging task. Although an analytical

solution treatment may be feasible for relatively simple forms of the stochastic differential

Eq. (2.7), approximate solution techniques are required for the general case. In this regard,

an indicative approximate approach pertains to employing a perturbation expansion for the

expression of Eq. (2.19) and approximating p(αf , tf |αi, ti) by truncating the resulting series

[75, 96]. An alternative rather popular in theoretical physics solution approach is adopted in

this thesis. This relates to utilizing a functional Taylor-kind series expansion of the stochastic

action S in Eq. (2.19). In particular, α(t) is expressed as

α(t) = αc(t) + Â(t) (2.23)

and the stochastic action S as

S [α] = S
[
αc + Â

]
= S [αc] + δS

[
αc, Â

]
+

1

2!
δ2S

[
αc, Â

]
+ . . . (2.24)

where αc(t) is the path associated with the maximum probability of occurrence P [αc(t)]

and Â(t) denotes the fluctuations around αc(t). It is worth noting that the above definition

generalizes, loosely speaking, the PDF mode concept to the case of paths and probability

density functionals. Thus, it is not surprising that αc(t) is referred to in the literature ex-

tensively as the most probable path. In Eq. (2.24) S [α, α̇] is denoted as S [α] for simplicity,

and δS
[
αc, Â

]
represents the functional differential (or variation) of S evaluated on αc.
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This takes the form

δS
[
αc, Â

]
=

∫ tf

ti

n∑
j=1

(
∂L
∂αj

∣∣∣∣
α=αc

Âj(t) +
∂L
∂α̇j

∣∣∣∣
α=αc

d

dt
Âj(t)

)
dt (2.25)

Further, since maximum probability P [α(t)] in Eq. (2.11) (see also Eq. (2.20)) corresponds

to minimum S [α, α̇], αc(t) is associated with an extremum of the functional S [α, α̇] in

Eq. (2.19); i.e., it is the solution of the variational problem

minimize S [αc], subject to αc ∈ C{αi, ti;αf , tf} (2.26)

In this context, calculus of variations dictates that the first variation of S [α, α̇] vanishes for

α(t) = αc(t) [56, 70], i.e.,

δS
[
αc, Â

]
= 0 (2.27)

Therefore, Eq. (2.24) becomes

S [α] = S [αc] +
1

2!
δ2S

[
αc, Â

]
+ . . . (2.28)

Next, combining Eq. (2.25) and the extremality condition of Eq. (2.27) yields [70] the

system of Euler-Lagrange (EL) equations (e.g., [56])

∂L
∂αc,j

− d

dt

∂L
∂α̇c,j

= 0, for j = 1, . . . , n (2.29)

in conjunction with 2× n boundary conditions

αc,j(ti) = αi,j

αc,j(tf ) = αf,j

 for j = 1, . . . , n (2.30)

where the most probable path is written as αc(t) = [αc,j(t)]n×1, and the boundary conditions

(at initial and final time instants) are written as αi = [αi,j]n×1 and αf = [αf,j]n×1. The
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system of Eqs. (2.29)-(2.30) represents a rather standard deterministic BVP, which can

be solved analytically for relatively simple forms of the Lagrangian functional L [α, α̇]. For

instance, a linear version of the governing stochastic differential Eq. (2.7) yields a Lagrangian

functional of quadratic form, for which Eqs. (2.29)-(2.30) are amenable to an analytical

solution treatment. Nevertheless, for the general case, the deterministic BVP of Eqs. (2.29)-

(2.30) can be solved via standard numerical approaches (e.g., via a classical variational finite

element solution methodology). Next, it is readily seen that obtaining the most probable

path enables the approximation of the stochastic action S [α, α̇] by retaining only the first

term in Eq. (2.28) and collectively treating the rest of the terms in the expansion as a

constant. In this regard, the series expansion of Eq. (2.28) takes the form

S [α, α̇] = S [αc, α̇c] + log
(
C−1

)
(2.31)

where C is a constant, and thus, the transition PDF of Eq. (2.19) becomes

p(αf , tf |αi, ti) = C exp (−S [αc, α̇c]) (2.32)

Finally, the constant C can be evaluated by the normalization condition

∞∫
−∞

p(αf , tf |αi, ti)dαf = 1 (2.33)

It is worth mentioning that functional series expansions of the form of Eq. (2.24) have

been widely used in quantum mechanics for calculating quantum-mechanical probability

amplitudes (e.g., [19, 161]). In this regard, depending on the number of terms retained in

the series expansion various approximation schemes have been proposed, typically referred

to as semiclassical or Wentzel-Kramers-Brillouin approximations (e.g., [21, 161]).

21



Chapter 2. Wiener path integral formalism

2.4 Nonlinear multi-degree-of-freedom systems subject to stochastic

excitation

2.4.1 Gaussian white noise stochastic excitation

Consider an m-degree-of-freedom (m-DOF) nonlinear dynamical system with stochastic ex-

ternal excitation

Mẍ+Cẋ+Kx+ g(x, ẋ) = w(t) (2.34)

where x is the displacement vector process (x = [x1 . . . xm]T ); M , C, K correspond to

the m×m mass, damping and stiffness matrices, respectively; g(x, ẋ) denotes an arbitrary

nonlinear vector function; and w(t) is a white noise stochastic vector process with E[w(tl)] =

0 and E[w(tl)w
T (tl − tl+1)] = Swδ(tl − tl+1), where Sw ∈ Rm×m is a real, symmetric, non-

negative and non-singular deterministic parameter matrix, and tl, tl+1 are two arbitrary time

instants (see also [154]). Eq. (2.34) can be cast in a state variable formulation (e.g., [152]),

and take the form of Eq. (2.7), where

α =

x
ẋ

 =

α1

α2

 (2.35)

A(α, t) =

 α2

M−1 (−Cα2 −Kα1 − g(α1,α2))

 =

A1

A2

 (2.36)

and

B(α, t) =

0m×m 0m×m

0m×m M−1√Sw

 (2.37)

where the square root of matrix Sw is given by
√
Sw
√
Sw

T
= Sw. In this regard, the m-

dimensional second-order SDE of Eq. (2.34) becomes a 2m-dimensional first-order SDE for
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the process α = [x, ẋ]T = [α1,α2]
T .

Note, however, that the diffusion matrix B(α, t) (as well as B̃ = BBT ) in Eq. (2.37) is

singular, and thus, Eq. (2.17) cannot be used directly. In fact, the challenge of accounting

for singular diffusion matrices in conjunction with path integral formulations has received

considerable attention in the literature (see [26, 45, 48, 51, 83, 119, 123, 134, 144, 194]). The

singularity of matrix B can be bypassed by expressing it as

B = lim
δ→0

√δIm×m 0m×m

0m×m M−1√Sw

 (2.38)

and thus,

B̃ = lim
δ→0

δIm×m 0m×m

0m×m B̃ns

 (2.39)

where δ is an arbitrary number that goes to 0, Im×m denotes the m×m identity matrix and

B̃ns is the non-singular part of B̃ given by

B̃ns = M−1
√
Sw

[
M−1

√
Sw

]T
= M−1Sw

[
MT

]−1
(2.40)

Therefore, Eqs. (2.12)-(2.13) can be readily utilized and the transition PDF of α is written

in the form of Eq. (2.17) as

p(αf , tf |αi, ti) =

∫
C{αi,ti;αf ,tf}

exp

− tf∫
ti

L [α, α̇] dt

D[α1(t)]D[α2(t)] (2.41)

with

L [α, α̇] = lim
δ→0

1

2

[
1

δ
[α̇1 −α2]

T [α̇1 −α2] + [α̇2 −A2]
T
[
B̃ns

]−1
[α̇2 −A2]

]
(2.42)
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and

D[α1(t)] = lim
δ→0

m∏
j=1

tf∏
t=ti

dα1,j(t)√
2πδdt

(2.43)

and

D[α2(t)] =
m∏
j=1

tf∏
t=ti

dα2,j(t)√
2π
(

det
[
B̃ns

])1/m
dt

(2.44)

where the expressions

B̃
−1

= lim
δ→0

1
δ
Im×m 0m×m

0m×m B̃
−1
ns

 (2.45)

with

B̃
−1
ns = MTSw

−1M (2.46)

and det B̃ = lim
δ→0

det [δI] det
[
B̃ns

]
= lim

δ→0
δm det

[
B̃ns

]
have been used for expressing the

inverse and the determinant of B̃, respectively. Further, by combining Eqs. (2.16) and

(2.42), and by employing the delta function identity

lim
δ→0

1√
2πδε

exp

(
− 1

2δ
(α̇1,jl − α2,jl)

2ε

)
=

1

ε
δ(α̇1,jl − α2,jl) (2.47)

for every j ∈ {1, . . . ,m} and for every l ∈ {0, . . . , L}, and by denoting the delta functionals

as

δ [α̇1,j − α2,j] =
L∏
l=0

δ(α̇1,jl − α2,jl) (2.48)

and

δ [α̇1 −α2] =
m∏
j=1

δ [α̇1,j − α2,j] (2.49)

the transition PDF of α takes the form

p(αf , tf |αi, ti) =

∫
C{αi,ti;αf ,tf}

exp

− tf∫
ti

L [α, α̇] dt

 δ[α̇1 −α2]D̃[α1(t)]D̃[α2(t)] (2.50)
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where

D̃[α1(t)] =
m∏
j=1

tf∏
t=ti

dα1,j(t)√
2π
(

det
[
B̃ns

])1/m
(dt)3

(2.51)

and

D̃[α2(t)] =
m∏
j=1

tf∏
t=ti

dα2,j(t) (2.52)

For simplicity, in Eq. (2.50) the modified Lagrangian is again denoted by L [α, α̇] and is

given as

L [α, α̇] =
1

2
[α̇2 −A2]

T
[
B̃ns

]−1
[α̇2 −A2] (2.53)

or by using Eq. (2.46) as

L [α, α̇] =
1

2
[Mα̇2 +Cα2 +Kα1 + g(α1,α2)]

T Sw
−1

× [Mα̇2 +Cα2 +Kα1 + g(α1,α2)] (2.54)

Following integration over paths α2(t) by using the delta functional δ[α̇1 − α2] and the

functional measure D̃[α2(t)] [193], Eq. (2.50) becomes

p (xf , ẋf , tf |xi, ẋi, ti)

=

∫
C{xi,ẋi,ti;xf ,ẋf ,tf}

exp

− tf∫
ti

L [x, ẋ, ẍ] dt

 m∏
j=1

δ(ẋj(ti)− ẋi,j)D̃[x(t)] (2.55)

or

p (xf , ẋf , tf |xi, ẋi, ti)

=

∫
C{xi,ẋi,ti;xf ,ẋf ,tf}

exp (−S [x, ẋ, ẍ])
m∏
j=1

δ(ẋj(ti)− ẋi,j)D̃[x(t)] (2.56)
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where the Lagrangian with respect to the process x is given by

L [x, ẋ, ẍ] =
1

2
[Mẍ+Cẋ+Kx+ g(x, ẋ)]T Sw

−1

× [Mẍ+Cẋ+Kx+ g(x, ẋ)] (2.57)

and the functional measure D̃[x(t)] is given by

D̃[x(t)] =
m∏
j=1

tf∏
t=ti

dxj(t)√
2π
(

det
[
B̃ns

])1/m
(dt)3

(2.58)

In passing, it is noted that
∏m

j=1 δ(ẋj(ti)− ẋi,j) in Eqs. (2.55)-(2.56) ensures that in a discrete

approximation of the path integral (as in Eq. (2.16)) the first-order derivative of x for every

degree of freedom j is equal to the initial conditions ẋi.

Further, the extremality condition of Eq. (2.27) is written as

δS [xc,X] = 0 (2.59)

where the first variation of the functional S [x, ẋ, ẍ] given by [70]

δS [xc,X] =

∫ tf

ti

m∑
j=1

(
∂L
∂xj

∣∣∣∣
x=xc

Xj +
∂L
∂ẋj

∣∣∣∣
x=xc

d

dt
Xj +

∂L
∂ẍj

∣∣∣∣
x=xc

d2

dt2
Xj

)
dt (2.60)

yields the EL equations

∂L
∂xc,j

− d

dt

∂L
∂ẋc,j

+
d2

dt2
∂L
∂ẍc,j

= 0, for j = 1, . . . ,m (2.61)
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in conjunction with 4×m boundary conditions

xc,j(ti) = xi,j

xc,j(tf ) = xf,j

ẋc,j(ti) = ẋi,j

ẋc,j(tf ) = ẋf,j


for j = 1, . . . ,m (2.62)

where the most probable path is written as xc(t) = [xc,j(t)]m×1,X(t) denotes the fluctuations

around xc(t), and the boundary conditions (at initial and final time instants) are written as

xi = [xi,j]m×1, xf = [xf,j]m×1, ẋi = [ẋi,j]m×1, and ẋf = [ẋf,j]m×1. Finally, the most probable

path approximation of the PDF given by Eq. (2.32) becomes

p(xf , ẋf , tf |xi, ẋi, ti) = C exp (−S [xc, ẋc, ẍc]) (2.63)

where

S [x, ẋ, ẍ] =

tf∫
ti

L [x, ẋ, ẍ] dt (2.64)

and C is given by the normalization condition of Eq. (2.33) which for the system of Eq. (2.34)

is written as ∞∫
−∞

p(xf , ẋf , tf |xi, ẋi, ti)dxfdẋf = 1 (2.65)

2.4.2 Non-white, non-Gaussian, and non-stationary stochastic excitation

Consider the m-DOF nonlinear dynamical system of Eq. (2.34) subject to a non-white and

non-Gaussian, in general, excitation stochastic process. In this regard, the equation govern-

ing the dynamics of the system is given as

Mẍ+Cẋ+Kx+ g(x, ẋ) = f(t) (2.66)
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f(t) is a non-stationary, non-white, and non-Gaussian vector process expressed as [112, 154]

f(t) = Γ(t)ξ(t) (2.67)

where Γ(t) is a diagonal matrix of deterministic time-modulating functions γj(t), j ∈

{1, . . . ,m}, and ξ(t) is given as the response of the nonlinear “filter” equation (e.g., [154])

P ξ̈ +Qξ̇ +Rξ + s(ξ, ξ̇) = w(t) (2.68)

where P , Q, R denote coefficient matrices; s(ξ, ξ̇) is an arbitrary nonlinear vector function;

and w(t) = [w1, . . . , wm]T is a white noise stochastic vector process with E[w(tl)] = 0 and

E[w(tl)w
T (tl − tl+1)] = Swδ(tl − tl+1), where Sw ∈ Rm×m is a deterministic parameter

matrix and tl, tl+1 are two arbitrary time instants (see also [154]). Note that various non-

white excitation processes, commonly utilized in engineering dynamics (e.g., the Kanai-

Tajimi excitation process in earthquake engineering [93, 183]), can be described by the

filter Eq. (2.68). In fact, Eq. (2.68) can be construed as the time-domain representation

of such excitation processes that are typically described in the frequency domain via power

spectra [112]. In addition, even in cases where the excitation power spectrum cannot be

represented in the time domain as the response of a filter, it has been shown [20, 174] that

a filter approximation of the form of Eq. (2.68) exhibits, in general, satisfactory accuracy

for practical applications. Further, Eq. (2.68) can also account for non-Gaussian excitation

modeling via the nonlinear function s(ξ, ξ̇).

Next, differentiating Eq. (2.66) and substituting into Eqs. (2.67)-(2.68) yields the 4th-

order SDE

Λ4x
(4) + Λ3x

(3) + Λ2ẍ+ Λ1ẋ+ Λ0x+ κ(x, ẋ, ẍ,x(3)) = w(t) (2.69)
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where

Λ4 = PΓ−1M

Λ3 = PΓ−1
[
−2Γ̇Γ−1M +C

]
+QΓ−1M

Λ2 = PΓ−1
[(

2Γ̇Γ−1Γ̇Γ−1 − Γ̈Γ−1
)
M − 2Γ̇Γ−1C +K

]
+QΓ−1

(
−Γ̇Γ−1M +C

)
+RΓ−1M

Λ1 = PΓ−1
[(

2Γ̇Γ−1Γ̇Γ−1 − Γ̈Γ−1
)
C − 2Γ̇Γ−1K

]
+QΓ−1

(
−Γ̇Γ−1C +K

)
+RΓ−1C

Λ0 = PΓ−1
(

2Γ̇Γ−1Γ̇Γ−1 − Γ̈Γ−1
)
K

−QΓ−1Γ̇Γ−1K +RΓ−1K



(2.70)

and

κ(x, ẋ, ẍ,x(3)) = PΓ−1g̈(x, ẋ)

+
(
−2PΓ−1Γ̇Γ−1 +QΓ−1

)
ġ(x, ẋ)

+
[
PΓ−1

(
2Γ̇Γ−1Γ̇Γ−1 − Γ̈Γ−1

)
− QΓ−1Γ̇Γ−1 +RΓ−1

]
g(x, ẋ) + s(x, ẋ, ẍ,x(3))

(2.71)

Notice that the differentiation of Eq. (2.66) yields time derivatives of order higher than 2 in

Eqs. (2.69)-(2.71); i.e., x(3) and x(4) denoting the 3rd- and 4th-order derivatives of of x(t),

respectively. As in Section 2.4.1, Eq. (2.69) can be cast in a state variable formulation (e.g.,

[152]), and take the form of Eq. (2.7), where

α =



x

ẋ

ẍ

x(3)


=



α1

α2

α3

α4


(2.72)
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A(α, t) =



α2

α3

α4

Λ−14 (−Λ3α4 −Λ2α3 −Λ1α2 −Λ0α1 − κ(α1,α2,α3,α4))


=



A1

A2

A3

A4


(2.73)

and

B(α, t) =

03m×3m 03m×m

0m×3m Λ−14

√
Sw

 (2.74)

Therefore, the m-dimensional fourth-order SDE of Eq. (2.69) becomes a 4m-dimensional

first-order SDE for the process α = [x, ẋ, ẍ,x(3)]T = [α1,α2,α3,α4]
T .

As in Section 2.4.1 the diffusion matrix B(α, t) (as well as B̃(α, t) = B(α, t)BT (α, t))

in Eq. (2.74) is singular, and thus, the singularity is bypassed by employing delta-functionals

in the path integral formulation, which enforce the compatibility equations (α̇1 = α2; α̇2 =

α3; α̇3 = α4). In this respect, the transition PDF of α can be written in the form of

Eq. (2.17) with

L [α, α̇] =
1

2
[α̇4 −A4]

T
[
B̃ns

]−1
[α̇4 −A4] (2.75)

where B̃ns is the non-singular part of B̃ given by

B̃ns = Λ−14

√
Sw

[
Λ−14

√
Sw

]T
= Λ−14 Sw

[
ΛT

4

]−1
(2.76)

Eq. (2.75) can be simplified as

L [α, α̇] =
1

2
[Λ4α̇4 + Λ3α4 + Λ2α3 + Λ1α2 + Λ0α1 + κ(α1,α2,α3,α4)]

T Sw
−1

× [Λ4α̇4 + Λ3α4 + Λ2α3 + Λ1α2 + Λ0α1 + κ(α1,α2,α3,α4)] (2.77)

Following integration over paths α2(t),α3(t), and α4(t) by using the delta functionals [193],
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the transition PDF of α is given by Eq. (2.56), which for the case of non-white and non-

Gaussian excitation is written as

p
(
xf , ẋf , ẍf ,x

(3)
f , tf |xi, ẋi, ẍi,x(3)

i , ti

)
=

∫
C{xi,ẋi,ẍi,x

(3)
i ,ti;xf ,ẋf ,ẍf ,x

(3)
f ,tf}

exp
(
−S

[
x, ẋ, ẍ,x(3),x(4)

])
×

m∏
j=1

δ(ẋj(ti)− ẋi,j)
m∏
j=1

δ(ẍj(ti)− ẍi,j)
m∏
j=1

δ(x
(3)
j (ti)− x(3)i,j )D̃[x(t)] (2.78)

where

S
[
x, ẋ, ẍ,x(3),x(4)

]
=

tf∫
ti

L
[
x, ẋ, ẍ,x(3),x(4)

]
dt (2.79)

the Lagrangian with respect to the process x is given by

L
[
x, ẋ, ẍ,x(3),x(4)

]
=

1

2

[
Λ4x

(4) + Λ3x
(3) + Λ2ẍ+ Λ1ẋ+ Λ0x+ κ(x, ẋ, ẍ,x(3))

]T
Sw
−1

×
[
Λ4x

(4) + Λ3x
(3) + Λ2ẍ+ Λ1ẋ+ Λ0x+ κ(x, ẋ, ẍ,x(3))

]
(2.80)

and

D̃[x(t)] =
m∏
j=1

tf∏
t=ti

dxj(t)√
2π
(

det
[
B̃ns

])1/m
(dt)7

(2.81)

Further, the extremality condition of Eq. (2.27) yields the EL equations

∂L
∂xc,j

− d

dt

∂L
∂ẋc,j

+
d2

dt2
∂L
∂ẍc,j

− d3

dt3
∂L
∂x

(3)
c,j

+
d4

dt4
∂L
∂x

(4)
c,j

= 0, for j = 1, . . . ,m (2.82)
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together with 8×m boundary conditions

xc,j(ti) = xi,j

ẋc,j(ti) = ẋi,j

ẍc,j(ti) = ẍi,j

x
(3)
c,j (ti) = x

(3)
i,j

xc,j(tf ) = xf,j

ẋc,j(tf ) = ẋf,j

ẍc,j(tf ) = ẍf,j

x
(3)
c,j (tf ) = x

(3)
f,j



for j = 1, . . . ,m (2.83)

Next, solving the BVP of Eqs. (2.82) and (2.83) yields the most probable path xc(t) (m-

dimensional), and the transition PDF from the initial state {xi, ẋi, ẍi,x(3)
i , ti} to the final

state {xf , ẋf , ẍf ,x(3)
f , tf} is determined as

p
(
xf , ẋf , ẍf ,x

(3)
f , tf |xi, ẋi, ẍi,x(3)

i , ti

)
= C exp

(
−S

[
xc, ẋc, ẍc,x

(3)
c ,x(4)

c

])
(2.84)

where the normalization constant C is evaluated based on the condition

∞∫
−∞

· · ·
∞∫

−∞

p
(
xf , ẋf , ẍf ,x

(3)
f , tf |xi, ẋi, ẍi,x(3)

i , ti

)
dxf . . . dx

(3)
f = 1 (2.85)

2.4.3 Numerical implementation aspects

Although the BVP of Eqs. (2.61)-(2.62) is amenable to a closed-form analytical solution

for a linear dynamical system, i.e., g(x, ẋ) = 0, unfortunately this is not the case, in gen-

eral, for nonlinear systems. Similarly, for systems subject to non-stationary, non-white and

non-Gaussian excitation processes, analytical solutions to the BVP of Eqs. (2.82)-(2.83)

can only be obtained for cases when κ(x, ẋ, ẍ,x(3)) given by Eq. (2.71) is zero. There-
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fore, a numerical solution scheme needs to be implemented. In this regard, without loss

of generality and considering fixed initial conditions, the only variables describing the PDF

p(xf , ẋf , tf |xi, ẋi, ti) at a time instant tf are xf and ẋf (or xf , ẋf , ẍf , and x
(3)
f for de-

scribing p(xf , ẋf , ẍf ,x
(3)
f , tf |xi, ẋi, ẍi,x(3)

i , ti) for the case of non-stationary, non-white and

non-Gaussian excitation processes). Next, adopting a brute force numerical solution ap-

proach, for each time instant tf an effective domain of values is considered for the joint

response PDF and following the discretization of the effective domain using Ns points in

each dimension, the joint response PDF values corresponding to the points of the mesh are

obtained by solving the BVP of Eqs. (2.61)-(2.62) (or of Eqs. (2.82)-(2.83)). Specifically,

for a given tf and for an m-DOF system subject to Gaussian white noise excitation the

resulting number of BVPs to be solved is Nbf = N2m
s , where 2m is the number of stochastic

dimensions (m displacements and m velocities). Accordingly, for an m-DOF system subject

to non-stationary, non-white, and non-Gaussian excitation with Eqs. (2.66)-(2.68) governing

its dynamics, Nbf = N4m
s BVPs are solved, where 4m is the number of stochastic dimensions.

Further, in cases where the determination of the complete time-dependent non-stationary re-

sponse PDF is of interest, the procedure should be applied for each and every time instant.

Specifically, employing a brute-force discretization of the time domain (temporal dimen-

sion) into Nt points, the required number of BVPs to be solved becomes Nbf = NtN
2m
s and

Nbf = NtN
4m
s for m-DOF systems subject to white and non-white noise excitation processes,

respectively. Clearly, this demonstrates the high computational cost related to a brute force

solution scheme implementation, especially for high-dimensional systems.

To address the above computational limitations, Kougioumtzoglou et al. [104] employed a

polynomial expansion for the joint response PDF at specific time instants (i.e., Nt = 1); thus,

yielding the required number of PDF measurements equal to the number of the expansion

coefficients. Further, it was shown that the computational cost follows a power-law function

of the form ∼ (2m)ls /ls! (where ls is the degree of the polynomial), which can be orders

of magnitude smaller than Nbf = N2m
s . Indicatively, the joint response PDF of a 10-DOF
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nonlinear dynamical system can be obtained with only 10,626 measurements by utilizing the

polynomial approximation, whereas a brute force PDF domain discretization scheme would

require 3020 measurements (for Ns = 30). However, even with the enhancement in compu-

tational efficiency proposed in [104], the related computational cost as a power-law function

of the number of stochastic dimensions still restricts the applicability of the methodology to

relatively low-dimensional systems. Further, the enhancement in [104] relates to determin-

ing the joint response PDF at a specific fixed final time instant tf . In other words, in cases

where the determination of the complete time-dependent non-stationary response PDF is of

interest, the procedure should be applied for each and every time instant. Indicatively, for

the determination of the joint response PDF of a 10-DOF system a brute-force discretiza-

tion of the time domain (temporal dimension) into Nt = 1,000 points, for instance, would

still require 3.2 × 106 PDF measurements. Nevertheless, in Chapter 4, motivated by the

aforementioned challenge, the computational efficiency of the WPI is further increased by

resorting to expansions based on Kronecker products of basis matrices (Section 4.2.1) and

on positive definite functions (Section 4.2.2). In addition, further enhancement in the com-

putational efficiency of the WPI technique is achieved by employing sparse representations

for the response PDF in conjunction with appropriate optimization algorithms.
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Chapter 3

Extension of the Wiener path integral

technique to account for excitations

modeled via fractional-order filters

3.1 Introduction

Classical continuum mechanics theories have been traditionally used in engineering dynam-

ics for modeling the governing equations of motion of the oscillator under consideration.

Nevertheless, the need for more accurate media behavior modeling has led recently to ad-

vanced mathematical tools such as fractional calculus (e.g., [139, 155, 156]). Besides the

fact that fractional calculus can be construed as a generalization of classical calculus (and

thus, provides with enhanced modeling flexibility), it has been successfully employed in the-

oretical and applied mechanics for developing non-local continuum mechanics theories (e.g.,

[40, 184]), as well as for viscoelastic material modeling. Indeed, experimental viscoelastic

response data obtained via creep and relaxation tests agree extremely well with such kind

of modeling (e.g., [39]). Indicative applications in structural engineering, where theoreti-

cal developments are in agreement with experimental data, include modeling of viscoelastic
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dampers used for vibration control, or for seismic isolation purposes (e.g., [99, 111]).

From a mathematics perspective, the equation of motion typically takes the form of a

fractional differential equation to be solved for the oscillator response. In many cases, the

above modeling is also coupled with complex nonlinearities and hysteresis; thus, rendering

even the deterministic solution of such equations an open issue and an active research topic.

Clearly, solving the stochastic counterparts of these equations becomes significantly more

challenging. Therefore, there is a need for developing efficient solution schemes for deter-

mining the stochastic response and assessing the reliability of dynamic systems endowed with

fractional derivative terms. Indicative solution techniques for linear and nonlinear (continu-

ous or discretized) oscillators with fractional derivative terms can be found in [3, 4, 22, 36,

37, 41, 57, 87, 113, 164, 175, 176, 178, 180].

Moreover, the need for increasingly sophisticated modeling of excitations has led recently

to the use of fractional-order filters for describing stochastic loads acting on structural sys-

tems. For instance, the widely used in earthquake engineering Kanai-Tajimi power spectrum

has been recently enhanced by utilizing a fractional-order filter for circumventing certain limi-

tations of the original standard model [6, 93, 183]. In this regard, the recently developed WPI

technique that is presented in Chapter 2 is extended in this chapter to account for stochas-

tic excitations modeled via fractional-order filters. Overall, the herein developed technique

increases significantly the versatility of the WPI and renders the approach a powerful tool

for determining the stochastic response of nonlinear oscillators subject to an extended range

of excitation processes. An indicative numerical example is considered, while comparisons

with relevant MCS data demonstrate the reliability of the technique.
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3.2 WPI technique generalization: excitations modeled via fractional-

order filters

In this chapter the WPI technique is generalized for addressing dynamical systems subject to

stochastic excitations modeled via fractional-order filters; i.e, filters that involve fractional-

order derivative terms of the form

Dβ[x(t)] =
1

Γ(1− β)

∫ t

ti

ẋ(τ)

(t− τ)β
dτ (3.1)

Eq. (3.1) represents a Caputo fractional derivative of order 0 < β < 1 (see also [139] for

alternative fractional derivative definitions). In this regard, consider a more general version

of the system governing Eq. (2.34) given as

Mẍ+ g(x, Dβ1x, ẋ) = f [w, ξ] (3.2)

where f [·, ·] is an arbitrary nonlinear operator; Dβ1 is a differential operator of fractional

orders β1; and ξ is modeled as the output of the filter

P ξ̈ + s(ξ, Dβ2ξ, ξ̇) = w (3.3)

where P is a deterministic parameters matrix; s is an arbitrary function; and β2 is another

set of fractional orders for the differential operator Dβ2 . Eqs. (3.2) and (3.3) are generally

called multi-term fractional SDEs, whose analytical or numerical solution (depending on the

modeling parameters and operators g, s,β1,β2, and f [·, ·]) has been a rather challenging

task and an active area of research [156]. In this paper two broad classes of problems are

addressed; namely, Case 1 where f [w, ξ] = ξ (i.e., the output of the filter Eq. (3.3) is

the input to the system Eq. (3.2)) and Case 2 where f [w, ξ] = w + f̂ [ξ], where f̂ [·] is an

arbitrary operator acting on ξ.
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Considering f [w, ξ] = ξ, differentiating Eq. (3.2) and substituting into Eq. (3.3) yields

the 4th-order fractional SDE

Λ4x
(4) + κ

(
x, Dβ3x, . . . ,x(3)

)
= w

}
Case 1 (3.4)

where Λ4 = PM ; κ is a function that depends on the functions g and s; and β3 is another

set of fractional orders that arise from the differentiation and substitution of Eq. (3.2) into

Eq. (3.3) and the fact that Dβ1Dβ2x(t) = Dβ1+β2x(t) for two arbitrary derivative orders β1

and β2. Next, extending the formulation of Section 2.4.2, the joint transition PDF of the

process α =
[
x, ẋ, ẍ,x(3)

]T
takes the form of Eq. (2.78) with S

[
x, Dβ3x, . . . ,x(4)

]
given by

Eq. (2.79) with

S
[
x, Dβ3x, . . . ,x(4)

]
=

tf∫
ti

L
[
x, Dβ3x, . . . ,x(4)

]
dt (3.5)

and

L
[
x, Dβ3x, . . . ,x(4)

]
=

1

2

[
Λ4x

(4) + κ
(
x, Dβ3x, . . . ,x(3)

)]T
× Sw−1

[
Λ4x

(4) + κ
(
x, Dβ3x, . . . ,x(3)

)]
(3.6)

Further, the extremality condition of Eq. (2.27) becomes

δS
[
x, Dβ3x, . . . ,x(4)

]
= 0 (3.7)

which yields a fractional variational problem and leads to the respective fractional EL equa-

tions (see also [1, 37])

∂L
∂xc,j

+ RL
tD

β ∂L
∂Dβxc,j

+ · · ·+ d4

dt4
∂L
∂x

(4)
c,j

= 0, j = 1, ...,m (3.8)
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The fractional EL Eq. (3.8) accompanied by the initial and final conditions of Eq. (2.83)

defines a nonlinear fractional BVP to be solved for the determination of the most probable

path xc(t). In a similar manner as for the standard BVP of Eqs. (2.82)-(2.83), analytical

solutions of the fractional BVP of Eqs. (3.8) and (2.83) exist only for rather simple forms of

functions κ in Eq. (3.4). In this regard, a numerical solution technique can be employed (e.g.,

[42]), which can be readily coupled with the brute-force numerical implementation delineated

in Section 2.4.3 or the efficient implementations proposed in Chapter 4 for obtaining the joint

transition PDF p (αf , tf |αi, ti).

For the case where f [w, ξ] = w + f̂ [ξ] in Eq. (3.2), Eqs. (3.2)-(3.3) are written as

Mẍ+ g(x, Dβ1x, ẋ)− f̂ [ξ] = w

P ξ̈ + s(ξ, Dβ2ξ, ξ̇) = w

 Case 2 (3.9)

which is a system of fractional SDEs with a singular diffusion matrix (see also [144] for

a system with standard integer-order derivatives with the same right-hand side excitation

terms). Although this generally poses a challenge for the WPI technique [144] Eq. (3.9) can

be multiplied by the non-singular block matrix

J =

 Im×m 0m×m

−Im×m Im×m

 (3.10)

and become

Mẍ+ g(x, Dβ1x, ẋ)− f̂ [ξ] = w (3.11a)

P ξ̈ + s(ξ, Dβ2ξ, ξ̇)−Mẍ− g(x, Dβ1x, ẋ) + f̂ [ξ] = 0 (3.11b)

Therefore, Eq. (3.11a) takes the form of Eq. (2.34) with the difference that it also involves

the process ξ (and its derivatives) and that the condition of Eq. (3.11b) needs to be satisfied

at all times. Next, the joint transition PDF of the augmented process α =
[
x, ξ, ẋ, ξ̇

]T
is
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given by Eq. (2.56) which for this case is written as

p (αf , tf |αi, ti) =

∫
C{αi,ti;αf ,tf |φ=0}

exp
(
−S

[
x, ξ, . . . , ξ̈

])
D̃[x(t)]D̃[ξ(t)] (3.12)

where S
[
x, ξ, . . . , ξ̈

]
is given by Eq. (2.20) with

L
[
x, ξ, . . . , ξ̈

]
=

1

2

[
Mẍ+ g(x, Dβ1x, ẋ)− f̂ [ξ]

]T
× Sw−1

[
Mẍ+ g(x, Dβ1x, ẋ)− f̂ [ξ]

]
(3.13)

In Eq. (3.12) C{αi, ti;αf , tf |φ = 0} represents the set of all paths that satisfy the initial

and final conditions αi =
[
xi, ξi, ẋi, ξ̇i

]T
at time ti and αf =

[
xf , ξf , ẋf , ξ̇f

]T
at time tf ,

respectively, as well as the condition φ = 0 that corresponds to Eq. (3.11b).

Further, the variational problem of Eq. (2.26) for the determination of αc = [xc, ξc]
T

becomes

minimize S [αc] , subject to αc ∈ C{αi, ti;αf , tf |φ = 0} (3.14)

Eq. (3.14) can be construed also as a fractional-order optimal control problem (e.g., [3,

117]), where the most probable path (i.e., the optimal solution) αc = [xc, ξc]
T that min-

imizes S
[
x, ξ, . . . , ξ̈

]
(i.e., the performance index) is required to satisfy the constraints

φ = 0 of Eq. (3.11b) that involve fractional derivative terms. In this regard, the standard

Rayleigh-Ritz solution technique (e.g., [116]) is combined herein with an algorithm for solving

constrained optimization problems (e.g., of the type of Sequential Quadratic Programming;

see [144] for more details). Following the determination of the most probable path [xc, ξc]
T ,

the joint transition PDF p (αf , tf |αi, ti) is approximated by Eqs. (2.63)-(2.65). Similarly to

Case 1, the problem of solving the fractional SDEs of Eq. (3.9) has been reduced to a set

of deterministic problems given by Eq. (3.14), which can be combined with the brute-force

implementation of Section 2.4.3 or more computationally efficient implementations that are

proposed in Chapter 4.
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3.3 Numerical example

A widely utilized earthquake excitation model relates to the Kanai-Tajimi power spectrum

introduced in [93, 183] and further generalized and enhanced in [6] by exploiting the mod-

eling capabilities of fractional derivatives. In this regard, the bedrock acceleration can be

approximated as a white noise process filtered through the soil deposit, which is modeled as

a single-degree-of-freedom oscillator (SDOF) with a fractional derivative term, i.e.,

ξ̈ + 2ζ̄gωgD
βξ + ω2

gξ = −w(t) (3.15)

where ξ is the ground displacement relative to the bedrock; and w(t) is a scalar white noise

process with Sw = 2πS0 (see Section 2.4.1). Note that the order of the fractional derivative

β, as well as the damping ζ̄g [6] and the natural frequency ωg coefficients in Eq. (3.15) can

be obtained by experimental shear creep tests on ground samples. Next, by expressing the

absolute ground acceleration as

ẍg(t) = ξ̈(t) + w(t) (3.16)

(see [6] for the corresponding power spectrum) the equation of motion of a nonlinear Duffing

SDOF oscillator with mass, damping, and stiffness coefficients m0, c0, and k0, respectively,

takes the form

ẍ+
c0
m0

ẋ+
k0
m0

x+ ε0x
3 = −ẍg(t) (3.17)

where ε0 is the magnitude of the nonlinearity. By combining Eqs. (3.15)-(3.17) it is clear

that this example corresponds to Case 2 defined by Eq. (3.9) and thus, Eqs. (3.11a)-(3.11b)
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become

−ẍ− c0
m0

ẋ− k0
m0

x− ε0x3 − ξ̈ = w (3.18a)

2ζ̄gωgD
βξ + ω2

gξ − ẍ−
c0
m0

ẋ− k0
m0

x− ε0x3 = 0 (3.18b)

and the Lagrangian of the system of Eq. (3.18a) is given by Eq. (3.13) as

L
[
x, ξ, . . . , ξ̈

]
=

1

4πS0

[
ẍ+

c0
m0

ẋ+
k0
m0

x+ ε0x
3 + ξ̈

]2
(3.19)

Figure 3.1: Non-stationary joint response PDF of an SDOF Duffing oscillator governed
by Eq. (3.17) subject to external excitation modeled by Eqs. (3.15)-(3.16), with parameter
values (m0 = 1, c0 = 0.2, k0 = 1, ε0 = 1, ζ̄g = 0.6, β = 0.5,ωg = 5π, and S0 = 0.5), as
obtained via the WPI technique (a); comparisons with MSC data - 10,000 realizations (b).

Finally, for obtaining the joint transition PDF of the augmented process α =
[
x, ξ, ẋ, ξ̇

]T
the efficient numerical implementation of [147] is employed and thus, only a few fractional-

order optimal control problems of the form of Eq. (3.14) are solved for various values of final

conditions tf and αf (see also Section 2.4.3 and Chapter 4). In Figs. 3.1-3.2 the joint response

PDF p(x, ẋ, t) and the marginal PDFs p(x, t) and p(ẋ, t) obtained by the herein generalized

WPI technique are plotted for parameter values (m0 = 1, c0 = 0.2, k0 = 1, ε0 = 1, ζ̄g = 0.6,

β = 0.5, ωg = 5π, and S0 = 0.5) and for several time instants. Comparisons with pertinent
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MCS data (10,000 realizations) demonstrate a relatively high accuracy degree.

Figure 3.2: Marginal PDFs of the displacement (a) and the velocity (b) of an SDOF Duffing
oscillator with equation of motion given by Eq. (3.17) subject to external excitation modeled
by Eqs. (3.15)-(3.16), with parameter values (m0 = 1, c0 = 0.2, k0 = 1, ε0 = 1, ζ̄g = 0.6,
β = 0.5, ωg = 5π, and S0 = 0.5); comparisons with MSC data - 10,000 realizations.

3.4 Concluding remarks

A generalization of the WPI technique has been developed in this chapter to account for

a broad class of excitation processes modeled via (nonlinear) fractional filters. It has been

shown that by utilizing the herein proposed generalization the original problem of solving a

system of multi-term fractional SDEs degenerates either to a set of deterministic fractional

BVPs (Case 1 ) or to a set of deterministic fractional-order optimal control problems (Case

2 ). Regarding the computational cost, it has been shown that the technique can be readily

coupled with recently developed computationally efficient implementations (e.g., [147]) for

obtaining the joint transition PDF by solving a minimal number of deterministic problems.

Overall, the developments in this chapter increase significantly the versatility of the WPI

technique and render it a potent tool for determining, in a computationally efficient manner,

the stochastic response of nonlinear oscillators subject to an extended range of excitation
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processes. Finally, via a numerical example involving a fractional-order Kanai-Tajimi filter,

it has been shown that the herein generalized WPI technique exhibits satisfactory accuracy

in determining the joint transition PDF as compared with pertinent MCS data.
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Chapter 4

Sparse representations and

multi-dimensional global bases for

enhancing the computational

efficiency of the Wiener path integral

technique

4.1 Introduction

In Section 2.4.3 the high computational cost of a brute-force implementation of the WPI

technique, especially for high-dimensional systems, has been highlighted. Further, it has

been argued that even with the enhancement in computational efficiency proposed by Kou-

gioumtzoglou et al. [104], the related computational cost as a power law function of the

number of stochastic dimensions still limits the applicability of the methodology to rel-

atively low-dimensional systems. In this regard, the objective of this chapter relates to

generalizing the WPI technique and further enhancing its computational efficiency by con-
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structing time-dependent bases for determining the non-stationary response PDF directly,

based on knowledge of relatively few PDF points in the joint space-time domain. In addition,

compressive sampling procedures are employed in conjunction with group sparsity concepts

and appropriate optimization algorithms for decreasing even further the computational cost

associated with determining the system response PDF.

Evaluating the PDF of a stochastic process given partial information is a typical problem

in a wide range of research fields [69, 91]. In stochastic dynamics, PDF expansions have been

utilized for solving the Fokker-Planck and the Backward Kolmogorov equations [50, 169], or

other alternative equations governing the stochastic response of a dynamical system [157].

Indicatively, PDF expansions have been coupled with weighted residual methodologies [38,

85, 124, 127], where the approximate PDF is substituted into the Fokker-Planck equation and

the residual error is minimized; with moment closure schemes [30, 55, 81, 92, 115], which

yield a finite set of moment equations to be solved for approximating the response PDF;

with finite element method direct numerical solution schemes [106, 130]; with discretized

Chapman-Kolmogorov equation schemes propagating the response PDF in short time steps

[128, 129, 131, 196]; and with solution schemes based on the maximum entropy principle [12,

165].

Typical PDF expansions and approximation schemes utilize truncated Gram-Charlier or

Edgeworth series [30, 50, 85, 115, 127], Hermite or other polynomials [38, 55, 81, 106, 131,

200], Gaussian distributions with varying mean and variance [84], kernel density functions

[157] and B-splines or piecewise linear functions [128, 196]. Further, [124] employed Shannon

wavelets for approximating the PDF within the context of the weighted residual method.

Moreover, radial basis functions (RBFs) demonstrated accurate results in the context of

numerically solving the Fokker-Planck equation [35, 94].

In this chapter an approximation scheme based on the WPI technique is developed for ef-

ficiently determining the non-stationary joint response PDF of stochastically excited MDOF

dynamical systems. To this aim, two distinct expansions are proposed for the PDF; the first
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is based on Kronecker products of bases such as wavelets, and the second is based on positive

definite functions, which is a more general class of functions than RBFs. As a result, the

WPI technique is generalized herein to account explicitly for the time dimension in its for-

mulation and implementation. An additional objective of this chapter is to further enhance

the computational efficiency of the WPI technique by exploiting recent developments in the

area of sparse representations. Indicatively, sparse expansions of multivariate polynomials

have been recently used for numerically solving stochastic (partial) differential equations [25,

46, 197]. It is shown that the herein developed enhancement renders the technique capable

of treating readily relatively high-dimensional stochastic systems.

4.2 Non-stationary joint response PDF approximation

As explained in Chapter 2 the WPI technique can be utilized for treating MDOF nonlin-

ear oscillators subject to external non-stationary, non-Gaussian, and non-white excitation

processes. Further, as Kougioumtzoglou [101] has recently shown, the WPI technique can

address not only problems subject to stochastic excitation w(t), but also a certain class of

one-dimensional mechanics problems with stochastic media properties; that is, stochasticity

is embedded in the operator F [.] of Eq. (1.1). However, for the purpose of this chapter,

and without loss of generality, the m-DOF nonlinear dynamical system with stochastic ex-

ternal excitation of Eq. (2.34) is considered hereinafter. In this regard, without loss of

generality and considering fixed initial conditions, the only variables describing the PDF

p(xf , ẋf , tf |xi, ẋi, ti) at a time instant tf are xf and ẋf ; thus, it can be written as p(x, ẋ, t).

Further, determining a single point of the joint response PDF p(x, ẋ, t) amounts to solving

a deterministic variational problem of the form of Eqs. (2.61)-(2.62). In the ensuing anal-

ysis, adopting a data analysis perspective, this procedure will be referred to as obtaining a

measurement of the joint response PDF.

47



Chapter 4. Sparse representations and multi-dimensional global bases for enhancing the
computational efficiency of the Wiener path integral technique

Next, p(x, ẋ, t) can be approximated as

p(x, ẋ, t) ≈ exp (µ (x, ẋ, t)) (4.1)

or, alternatively, as

p(x, ẋ, t) ≈ ν (x, ẋ, t) (4.2)

where µ (x, ẋ, t) and ν (x, ẋ, t) are approximating functions. Therefore, depending on whether

Eq. (4.1) or Eq. (4.2) is used, a measurement of the response PDF at a specific location

(x, ẋ, t) via the WPI technique refers to either the exponent or the exponential function of

Eq. (2.63), respectively.

Further, following the selection of N locations to perform the approximation, Eqs. (4.1)-

(4.2) take the form of a linear system of N equations, i.e.,

y0 = Dc (4.3)

where y0 ∈ RN×1 is a vector of N measurements of log (p(x, ẋ, t)) (or of p(x, ẋ, t) if Eq. (4.2)

is used), D ∈ RN×N is the basis matrix and c = [c1, . . . , cN ]T ∈ RN×1 is the expansion

coefficient vector. A WPI solution approach coupled with Eq. (4.3) has proven to drastically

increase the computational efficiency of the WPI technique [104], as only N � Nbf BVPs of

the form of Eqs. (2.61)-(2.62) need to be solved for determining the joint response PDF for

a fixed value of t.

Nevertheless, it is demonstrated herein that further significant decrease in the compu-

tational cost is possible, if the response PDF is considered as a function of time explicitly.

Moreover, if only R� N measurements (or, in other words, deterministic variational prob-

lems to be solved) are utilized in Eq. (4.3) the computational cost can be reduced even

further.

First, in Section 4.2.1, a separable basis is constructed for approximating the non-
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stationary PDF by combining the bases/structures selected for each dimension [49]. Such

a basis proves, in general, capable of handling the anisotropic features of multivariate func-

tions and appears a natural choice for approximating the response PDF. Next, an alternative

approach is followed in Section 4.2.2, where the approximation takes the form of a scattered

data fitting problem [60]. The non-stationary PDF is sampled at various locations in the

spatio-temporal domain and a fit to the dataset based on positive definite functions (which

can be construed as a generalization of the widely used RBFs [60]) is sought for. Also, it is

noted that positive definite functions have been deliberately selected over RBFs for better

coping with the potentially anisotropic features of the non-stationary PDF [60]. Finally, in

Section 4.2.4, R � N measurements are utilized in Eq. (4.3), which yields an underdeter-

mined system of equations that can be solved by relying on potent sparse representation

concepts and tools [148].

4.2.1 Kronecker product approach

4.2.1.1 Kronecker product bases

Various multivariate bases have been developed based on Kronecker products [16]. Re-

markably, the applications of Kronecker structure range from image/video processing [28]

and distributed sensing [49] to pre-conditioning for linear system solution [187] and matrix

approximation [108].

Specifically, the Kronecker product H ⊗J of two matrices H ∈ RH1×H2 and J ∈ RJ1×J2

is a matrix of size H1J1 ×H2J2 defined by (e.g., [16])

H ⊗ J =


h11J . . . h1H2J

...
. . .

...

hH11J . . . hH1H2J

 (4.4)

Further, given the basis matrices D1 ∈ Rn1×n1 and D2 ∈ Rn2×n2 , consider a transform
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applied to a data matrix Y 0 ∈ Rn1×n2 by using the separable basis constructed by their

Kronecker product. Vectorizing matrix Y 0, i.e., concatenating its columns vertically, so that

y0 = vec(Y 0) ∈ Rn1n2 , the data vector can be written as (e.g., [16])

y0 = (D2 ⊗D1) c (4.5)

where c denotes the coefficient matrix in vectorized form. Generalizing, consider P dimen-

sions in total and n1n2 . . . nP measurements taken from a multivariate function y0(q), where

q ∈ RP . The measurement tensor Y 0 ∈ Rn1×n2×···×nP admits a Kronecker expansion of the

form of Eq. (4.5) expressed as

y0 = (DP ⊗ · · · ⊗D2 ⊗D1) c (4.6)

where y0, c ∈ Rn1n2...nP . Therefore, after collecting N = n1n2 . . . nP measurements from the

P -dimensional space and selecting a basis in each dimension (D1, . . . ,DP ) the coefficients

of the Kronecker expansion can be obtained by solving the linear system of Eq. (4.6). It is

noted that the columns of the basis matrices D1, . . . ,DP in Eq. (4.6) are the basis functions

selected for each dimension discretized into n1, . . . , nP points, respectively.

4.2.1.2 Multi-dimensional basis construction for approximating the non-stationary

joint response PDF

Following the procedure outlined in Section 4.2.1.1 it is rather straightforward to construct

a multi-dimensional basis for approximating the non-stationary response PDF by employing

Eqs. (4.2) and (4.6). Specifically, the response PDF is a function of (x, ẋ, t), which is of

size P = 2m + 1; that is, 2m spatial dimensions and 1 temporal dimension. In this regard,

various (potentially different) bases can be chosen for the approximation in each dimension

in conjunction with the numbers np, where p ∈ {1, . . . , 2m + 1}. Next, the expansion

coefficients vector c is determined by solving the linear system of Eq. (4.6), where y0 is the
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vector containing n1 . . . n2m+1 measurements of p(x, ẋ, t) determined via WPI and employing

a uniform mesh. In the following, and without loss of generality, two distinct approaches are

pursued in choosing the bases to be utilized in Eq. (4.6).

First, the same one-dimensional wavelet basis is used for each and every dimension. In

particular, an arbitrary function f(t) can be expressed as

f(t) =
∞∑

h=−∞

∞∑
r=−∞

chrψhr(t) (4.7)

where c are the expansion coefficients to be determined, h and r denote the different scales

and translation levels, respectively, and ψhr(t) = 1
2h
ψ( t

2h
− r), with ψ(t) the wavelet family

to be chosen. Alternatively, Eq. (4.7) can be expressed via the associated scaling function

φ(t) as

fN(t) =
N−1∑
r=0

crφHr(t) (4.8)

where fN(t) denotes the N -term approximation of the function f(t) with only N = 2−H

scaling functions, given as φHr(t) = 1
2H
φ( t

2H
− r), and H denotes the selected scale, or

equivalently the approximation level. A detailed presentation of wavelet theory can be

found in several books, such as [120]. Obviously, the efficacy of the chosen wavelet family

is application-dependent. Thus, various both discrete and continuous wavelets have been

developed over the past decades [120], as well as generalizations with additional parameters

such as harmonic wavelets (e.g., [102, 133, 179]) and chirplets (e.g., [121]); see also the review

paper by Spanos & Failla [177] for diverse wavelet applications in engineering dynamics. In

the ensuing analysis, the Meyer wavelet (e.g., [120]) is used in the related expansions.

Second, an alternative approach is pursued, which exploits the flexibility of the herein

proposed framework to use different bases. In this regard, and considering Eq. (4.1), a

multivariate polynomial can be employed for the spatial dimensions, as in [104], and a

wavelet basis for the temporal dimension. Therefore, the linear system of Eq. (4.5) becomes
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y0 = (Dw ⊗Ds) c (4.9)

where y0 contains the measurements of log (p(x, ẋ, t)) determined via the WPI, Dw denotes

the one-dimensional wavelet basis, Ds the monomial basis (e.g., [140]) and c the coefficient

vector. Specifically, Ds is an ns × ns matrix, where ns =
(
ls+2m
2m

)
for a polynomial of degree

ls, and Dw is an nt × nt matrix. Therefore, N = nsnt measurements of the joint response

PDF via the WPI technique are required.

Overall, it is readily seen that utilizing a Kronecker product formulation is a concep-

tually simple approach for higher-dimensional approximations by combining several lower-

dimensional approximations in a straightforward manner. This yields enhanced flexibility

in the implementation of the approach as various, potentially different, bases can be used,

which have already proven to be well-suited for the respective lower-dimensional problems.

For instance, the monomial basis has exhibited significant accuracy in approximating the

spatial dimensions of a class of problems in [104] and in [145]. Thus, under the Kronecker

product formulation, it can be directly used in conjunction with an additional basis related

to the temporal dimension. Nevertheless, the lower-dimensional bases and the respective

number of measurements need to be selected a priori, while as noted in [145], the monomial

basis is prone to ill-conditioning, and, hence, the points of the mesh should be selected based

on certain optimality criteria for enhanced robustness and accuracy of the approximation

(see for instance [186]). If, alternatively, only one-dimensional wavelet bases are used for

constructing the multi-dimensional basis via Eq. (4.6), the associated computational cost

increases exponentially with increasing number of dimensions and becomes eventually pro-

hibitive for relatively high-dimensional problems.

To address the above points, a mesh-free approximation scheme is developed in Sec-

tion 4.2.2 by utilizing positive definite functions. The advantages of such an approach per-

tain mainly to the fact that the basis functions depend on the measurement locations, and

thus, are not selected a priori. Therefore, as explained in detail in Section 4.2.2, the result-
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ing interpolation matrix is well-conditioned yielding a robust and accurate approximation.

Overall, positive definite functions appear more general and suitable for higher-dimensional

systems, whereas Kronecker product bases perform better for lower-dimensional systems,

especially when there is some available information regarding the response PDF.

4.2.2 Positive definite functions approach

4.2.2.1 Positive definite functions aspects

In this section, the multivariate (P -dimensional) approximation problem is formulated as a

scattered data fitting problem, which is a fundamental problem in approximation theory and

is summarized in the following [60]: Given a set of measurements (qr, y0,r) from a function

y0(q), where r ∈ {1, . . . , N}; q, qr ∈ RP ; and y0,r ∈ R, determine a function µ(q) such that

µ(qr) = y0,r (4.10)

∀ r ∈ {1, . . . , N}. Even though in the univariate case (i.e., P = 1) this meshfree problem

has a unique solution using N distinct measurements and a polynomial of order N − 1,

the multivariate case is more complex leading to ill-conditioned interpolation matrices [59].

According to the Mairhuber-Curtis theorem (e.g., [13]), for the problem to be well-posed,

i.e., for a solution to exist and be unique, the basis functions cannot be fixed a priori.

The above challenge has led mathematicians to introduce data-dependent bases, which

are bases created following the selection of the sampling locations. In this direction, positive

definite functions (or kernels more generally) have been commonly used in approximation

theory [58, 60]. Following [59], a complex-valued continuous function d : RP → C is called

positive definite on RP if
N∑
h=1

N∑
r=1

chc̄rd(qh − qr) ≥ 0 (4.11)

for any N pairwise different points q1, . . . , qN ∈ RP and c = [c1, . . . , cN ]T ∈ CN . Among the
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most widely used positive definite functions is the Gaussian function, i.e., d(q) = e−ε
2
1‖q‖22 ,

with q ∈ RP and a shape parameter ε1 > 0. The widespread utilization of positive definite

functions in the approximation field can be attributed, at least partly, to their connection

with the scattered data fitting problem of Eq. (4.10), and to the existence of well-behaved

(i.e., non-singular) interpolation matrices (e.g., [125]). Further, there are constantly new

classes of positive definite functions being introduced in conjunction with related theoretical

work on error bounds [59]. Finally, it is worth noting that the numerical implementation

of positive definite functions is amenable to high-performance computing [198], while their

applications range from meshfree interpolation and solution of partial differential equations

[64] to simulation of stochastic processes [136] and machine learning [159].

4.2.2.2 Multi-dimensional basis construction for approximating the non-stationary

joint response PDF

As mentioned in Section 4.2.2.1, given the measurements (qr, y0,r) the objective is to deter-

mine an interpolating function µ(q), expressed as

µ(q) =
N∑
r=1

crdr(q) (4.12)

where the basis functions dr, for r ∈ {1, . . . , N}, are positive definite and c = [c1, . . . , cN ]T ∈

RN denotes the expansion coefficient vector. Clearly, the choice of the specific basis functions

is problem-dependent, with RBFs being among the most popular choices [15]. RBFs are

rotationally and translationally invariant and are commonly used in engineering problems.

For RBF interpolation the basis functions are expressed as a function of ‖q−qr‖, where qr,

for r ∈ {1, . . . , N}, corresponds to the sampling locations.

Alternative choices include, but are not limited to, multiscale kernels [141], which are

defined as linear combinations of shifted and scaled versions of a single function and exhibit

properties similar to wavelets, and translationally invariant functions [60]. The latter are
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constructed by relaxing the rotational invariance property of RBFs and have been found to

provide further flexibility in the interpolation and to improve the condition number of the

interpolation matrix [60]. A typical example that is also adopted in the ensuing analysis is

the anisotropic multivariate Gaussian function

dr(q) = exp

(
−

P∑
p=1

ε2p (qp − qr,p)2
)

(4.13)

where εp, for p ∈ {1, . . . , P}, denotes the shape parameter for the p-th dimension, while qp

and qr,p denote the p-th component of q and qr, respectively. The basis then becomes a

collection of functions of the form of Eq. (4.13), i.e.,

{d1(q), . . . , dN(q)} (4.14)

Next, considering q = (x, ẋ, t) yields P = 2m+1 dimensions, while the same shape parameter

value εs is used for all the spatial dimensions and the value εt for the temporal dimension.

In this regard, by employing anisotropic Gaussian functions, Eq. (4.1) becomes

p(x, ẋ, t) ≈ exp

[
N∑
r=1

cr exp

(
−

m∑
j=1

ε2s (xj − xr,j)2 −
m∑
j=1

ε2s (ẋj − ẋr,j)2 − ε2t (t− tr)2
)]
(4.15)

Note that the N sampling locations need to be well-distributed in the (2m+1)-space. To

this aim, the Halton sequence is used [82], which is also frequently employed in quasi-Monte

Carlo methods for multi-dimensional integration; see also the papers by Bratley et al. [14]

and by De Marchi et al. [34] for some alternative sampling strategies. Further, it is desirable

in many cases to have an interpolant that exactly reconstructs a polynomial of a given order;

see, for instance, the “patch test” in finite elements (e.g., [203]). To this aim, the basis of

Eq. (4.14) can be augmented by including monomials to a given order; that is

{d1(q), . . . , dN(q), 1, q1, q2, . . . , q
2
1, 2q1q2, . . . } (4.16)
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Therefore, the size of the basis of Eq. (4.16) becomes N + ns, where N is the number of

measurements, and ns =
(
ls+2m+1
2m+1

)
is the number of monomials ds,u(q), u ∈ {1, . . . , ns},

for a polynomial of degree ls. In the following, a 4th-degree polynomial is considered in

the augmented basis of Eq. (4.16). The rationale for selecting the above basis relates to

the fact that for problems of the form of Eq. (2.34), the joint response PDF is Gaussian

for g(x, ẋ) = 0; thus, it is represented exactly by a 2nd-degree polynomial. The nonlinear

system joint response PDF can be construed as a perturbation (not necessarily small) from

the Gaussian, and it can be approximated by higher-order polynomials. In several examples,

including rather challenging cases of bimodal response PDFs [145], it has been demonstrated

that the choice of a 4th-degree polynomial reflects a reasonable compromise between accuracy

and efficiency. In this regard, enforcing the N interpolation conditions of Eq. (4.12) and

adding ns conditions of the form

N∑
r=1

crds,u(qr) = 0, for u ∈ {1, . . . , ns} (4.17)

leads to the augmented linear system of equations [59]

D Ds

DT
s 0


 c
cs

 =

y0

0

 (4.18)

where D = [d1(qr), . . . , dn(qr)]N×N , Ds = [ds,u(qr)]N×ns , c denotes the expansion coeffi-

cients vector, cs the polynomial coefficients vector, and y0 the measurement vector. It is

noted that the conditions of Eq. (4.17) are arbitrary and have been added for obtaining a

non-singular interpolation matrix [59]. Once the system of Eq. (4.18) is solved, the coef-

ficient vector [c ; cs] is determined; see also [190] for more details on the conditions to be

satisfied for the well-posedness of Eq. (4.18). Note that although the augmented coefficient

vector of Eq. (4.18) is of length N + ns > N , the number of measurements required for the

approximation remains the same and equal to N . Further, Eq. (4.15) is modified to account
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for the augmented basis, and the non-stationary joint response PDF can be approximated

as

p (x, ẋ, t) ≈ exp

{(
N∑
r=1

crdr(x, ẋ, t) +
ns∑
u=1

cs,uds,u(x, ẋ, t)

)}
(4.19)

4.2.2.3 Selection of shape parameters

Positive definite functions have been criticized for producing ill-conditioned interpolation

matrices D, and thus, causing numerical instability issues [33]. Note, however, that a care-

ful examination of the matter [59] reveals that there is a trade-off between accuracy and

stability. Theoretical bounds pertaining to several positive definite functions indicate that

by decreasing the values of the shape parameters εp in Eq. (4.13), or the separation distance

between the sampling locations (i.e., by increasing N), the accuracy of the interpolation

is improved. Nevertheless, this theoretically attainable accuracy is hard to be reached in

practice. This is due to numerical stability issues related to the rapid increase of the inter-

polation matrix condition number. This trade-off has led researchers to seek for “optimal”

shape parameters, which provide high accuracy without compromising numerical stability

[126].

The approach adopted in the ensuing analysis was developed in [150] and is based on

leave-one-out cross validation. Specifically, for fixed shape parameters εs and εt, fitting an

interpolant of the form of Eqs. (4.12) and (4.18) to N − 1 measurements N times (one is

left out each time) yields an interpolation error Er, for r ∈ {1, . . . , N}, by comparing the

interpolant with the measurement left out. The error, E, associated with the pair (εs, εt) is

then selected to be the maximum of all the errors Er. Therefore, the error associated with

the pair (εs, εt) becomes the cost function in an optimization algorithm that searches for

the pair (εs, εt) with the minimum error E. Finally, as stated in Section 4.2.2.2, introduc-

ing the anisotropic Gaussian function of Eq. (4.13) also improves the condition number of

the interpolation matrix as a “side-effect”. Of course, alternative approaches such as pre-

conditioning [59], or exploration of other bases [142], can always be used for addressing cases
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of ill-conditioned matrices.

4.2.3 Mechanization of the technique

The mechanization of the Kronecker product approach of Section 4.2.1 involves the following

steps:

(a) Select P lower dimensional bases D1, . . . ,DP .

(b) Create the interpolation matrix D = DP ⊗ · · · ⊗D2 ⊗D1.

(c) Obtain N = n1n2 . . . nP measurements of the PDF via the WPI by utilizing Eq. (2.63).

(d) Determine the coefficient vector c by solving the linear system of Eq. (4.6).

(e) The complete non-stationary joint response PDF is evaluated by employing the Kro-

necker product basis and the coefficient vector via Eqs. (4.2) and (4.6).

Further, the mechanization of the positive definite functions approach of Section 4.2.2

involves the following steps:

(a) Select the N basis functions of Eq. (4.16), in conjunction with Eq. (4.13).

(b) Obtain N measurements of the PDF via the WPI by utilizing Eq. (2.63) and by

employing the Halton sequence for selecting the locations of the measurements [82].

(c) Determine the coefficient vector c by solving the linear system of Eq. (4.18).

(d) The complete non-stationary joint response PDF is approximated via Eq. (4.19).

4.2.4 Sparse representations and compressive sampling

Compressive sampling (or compressive sensing) procedures are currently revolutionizing the

signal processing field [65, 151]. In this section it is shown that by relying on compressive
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sampling concepts, and by exploiting additional information regarding p(x, ẋ, t), the approx-

imation scheme of Eq. (4.1) can become even more efficient computationally. The rationale

of the herein proposed enhancement relates to using the least amount of joint response PDF

measurements (i.e., R� N measurements obtained using the WPI technique) for computing

the coefficient vector c.

If onlyR < N measurements are obtained, Eq. (4.1) takes the form of an underdetermined

linear system, which can be written as

y = Φy0 = ΦDc = V c (4.20)

In Eq. (4.20) Φ is an R × N matrix, also known as compressive sampling matrix [18] as

it randomly deletes rows of y0 and D. The underdetermined system of Eq. (4.20) has

either no solution, or an infinite number of solutions. Nevertheless, in many cases there is

additional information available concerning the coefficient vector c. For instance, if only

a small number of its components, say K out of N components, are nonzero, then the

problem can be regularized and there has been extensive research during the past decade on

solution procedures [52]. In particular, the sufficiently sparse (K � N) coefficient vector

c is typically referred to as K-sparse. For such cases, searching for the vector ĉ with the

least amount of elements that satisfies the condition y = V ĉ constitutes a non-convex

optimization problem. Although this problem has a unique solution if V has certain desired

properties and the number of measurements, R, is sufficiently large (e.g., [151]), it is known

to be NP-hard (where NP stands for nondeterministic polynomial time), or in other words,

there is no known algorithm for solving it efficiently (e.g., [132]).

To address the above challenge, greedy algorithms can be used to find an approximate

solution of the original non-convex problem [52]. Alternatively, the regularization constraint

can be relaxed. For example, instead of seeking for the solution with the least amount of

elements (or in other words, with the minimum `0-norm), the solution with the minimum
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`1-norm is sought for, alternatively. The problem becomes, therefore, convex and can be

readily solved via standard numerical algorithms. However, the price to be paid for such

a relaxation approach relates to increasing the number of measurements, R, required for a

unique solution [151]; see also [27, 201].

The main question in such problems relates to the properties that V should have in order

for the aforementioned minimization problem to have a unique solution. Also, depending on

the type of V selected, knowledge of the number of measurements for nearly exact recovery

of the coefficient vector c is required in an a priori manner. The latter is known in the sparse

representations literature as measurement bound, as a lower bound of R measurements

guaranteeing nearly exact recovery of c is sought for; see, e.g., [17] for an introduction to

the topic. In this regard, theoretical measurement bounds exist only for certain classes of

matrices, e.g., for Gaussian matrices V , or random submatrices of bounded orthonormal

systems, such as Fourier, Wavelet and Legendre bases (see [65, 148, 181]). These bounds

typically show how the order of magnitude of the required number of measurements R

changes with increasing dimension N , and sparsity K. Therefore, they are mainly useful for

comparing the performances of various optimization algorithms and for providing with an

indicative number of measurements. In Section 4.2.7, a more general approach is described,

which is often used in practical applications.

4.2.5 Sparse polynomial approximation and group sparsity

As explained in the beginning of Section 4.2 approximating the time-dependent response

PDF p(x, ẋ, t) leads to the linear system Eq. (4.3). Further, if only R < N measurements

are collected the expansion coefficients vector c is obtained by solving the underdetermined

system of Eq. (4.20). However, note that approximating the response PDF of any system

the form of Eqs. (2.34), (2.66), or even (3.2) would lead to Eq. (4.3) or Eq. (4.20) if N or

R < N measurements were collected, respectively. In this regard, without loss of generality,

the case of determining the response PDF p(x, ẋ, t) of Eq. (4.1) at given time instants is

60



Chapter 4. Sparse representations and multi-dimensional global bases for enhancing the
computational efficiency of the Wiener path integral technique

considered in this section. Thus, the only variables in the approximation are x and ẋ and

the PDF at a given time instant can be written as p(x, ẋ).

Although approximation strategies based on univariate functions are considered a well-

developed topic, there is still active research in approximation schemes utilizing multivariate

polynomials (see for example [68]). In the ensuing analysis and in accordance with the

rationale presented in Section 4.2.2.2, the monomial basis (e.g., [140]) is adopted for approx-

imating the exponent of the joint response PDF in Eq. (4.1), and therefore a polynomial

approximation is constructed.

Further, to determine the polynomial approximation coefficients, N =
(
ls+2m
2m

)
points

from R2m need to be chosen, for an ls-degree polynomial. These are the points at which

the joint response PDF is sampled using the WPI technique and can be selected either

randomly, or based on some kind of optimality criterion to enhance the robustness and

accuracy of the approximation (see, e.g., [186]). As noted by Sommariva & Vianello [170],

choosing “optimal” approximation points can, also, overcome certain numerical issues that

typically accompany the monomial basis, such as the handling of resulting ill-conditioned

Vandermonde matrices.

Next, the monomials are ordered based on the graded lexicographical order, which for a

10-DOF dynamical system, for instance, would take the form

1 ≺ x1 ≺ · · · ≺ ẋ10 ≺ x21 ≺ 2x1x2 ≺ x22 ≺ 2x1x3 ≺ 2x2x3 ≺ x23 · · · ≺ ẋ210︸ ︷︷ ︸
monomials of order 2

≺ . . . (4.21)

Interestingly, this ordering scheme becomes important in the context of sparse polynomial

approximation. Numerical examples involving arbitrary nonlinear systems of the form of

Eq. (2.34) have demonstrated that the coefficients corresponding to the Gaussian part of

the exponent, i.e., monomials of order 2, are always nonzero, whereas only few of the higher

order coefficients are nonzero. In particular, the fact that Gaussian coefficients form a group,

which is always active, serves as an additional piece of information that can be exploited. In
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the framework of sparse representations, this corresponds to group (or structured) sparsity,

which is a term describing any kind of structure that the coefficient vector is known to

have [90]. For the group sparsity to be considered and exploited, the standard compressive

sampling algorithms need to be modified as delineated in the following section. In this regard

there are both convex (e.g., [10]) and non-convex approaches (e.g., [86]).

4.2.6 Optimization algorithm

In the ensuing analysis, the StructOMP greedy algorithm proposed by Huang et al. [86] is

adopted for addressing the original non-convex problem. It can be construed as a gener-

alization of the widely used Orthogonal Matching Pursuit (OMP) algorithm [185] and is

preferred in the ensuing numerical examples over alternative convex approaches, such as

Group-LASSO [199]. In fact, for various typical stochastic dynamics problems of the form

of Eq. (2.34), StructOMP has exhibited superior performance, both in terms of convergence

rate and of approximation accuracy.

Specifically, the input to StructOMP is the R-length measurement vector y, the R ×N

matrix V and the group structure (in the form of blocks) that the coefficient vector is

anticipated to exhibit. In the herein considered applications the coefficient vector is separated

into blocks, with every block corresponding to a single monomial, except for the second-order

monomials that are grouped together. In standard sparse vectors, each component of the

coefficient vector is considered to have complexity 1. This means that if this coefficient is

active, then the coefficient vector will be less sparse by 1. In group sparse vectors each block

is assigned a value that describes its complexity, which depends on its coding length (see the

original paper by Huang et al. [86] for more details). Obviously, all the single monomials

are assigned the same complexity value, whereas the grouped monomials are assigned higher

complexity values than the single ones. Additionally, the total complexity of the coefficient

vector, S, is the sum of the individual complexities of the blocks used to construct it.

As in Section 4.2.4, c denotes the original coefficient vector that solves the system of
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Eq. (4.3) and ĉ the estimated one that solves the system of Eq. (4.20) using StructOMP.

The algorithm selects which block reduces the approximation error

err = ‖y − V ĉ‖2 (4.22)

per unit increase of complexity the most (this block is considered to provide the maximum

progress to the algorithm), and then assigns values to the coefficients of the selected block via

least squares regression. Subsequently, the algorithm finds the next block with the maximum

progress and terminates either when err becomes smaller than a prescribed threshold or when

the complexity of ĉ becomes larger than a prescribed value. For the Performance Analysis in

Section 4.2.7 the latter is used, because the recovery error is measured for fixed complexity

S. On the contrary, in the numerical examples in Section 4.3 the former is used, since the

goal is to minimize the recovery error even if a less sparse (or more complex) coefficient

vector is used in the expansion.

4.2.7 Performance analysis

As noted in Section 4.2.6, the input to the StructOMP algorithm is the R-length measure-

ment vector y, the R × N matrix V (where V = ΦD) and the group structure that the

coefficient vector c is anticipated to have. Thus, a decision has to be made a priori regarding

the number R of measurements, the degree of the multivariate polynomial to be used and

the group structure provided as input to StructOMP. First, the degree of the polynomial

expansion is selected and the basis matrix D, and thus, V is constructed. Next, the group

structure is formed using the group of second-order monomials, while the remaining mono-

mials are considered separately as single monomials. Based on the rationale explained in

Sections 4.2.5 and 4.2.6, since the group of second-order monomials is always active, the

complexity of the coefficient vector is directly related only to the number of single mono-

mials (NSM). In addition, given that the more complex the coefficient vector is the more
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measurements are needed for its accurate recovery, the number of measurements R depends

solely on NSM. Therefore, the anticipated NSM has to be decided a priori and a tool is

needed to find the corresponding required number of joint response PDF measurements R.

In the absence of theoretical results, novel algorithms are typically tested with the aid of

synthetic data before being used in practical applications [43, 44, 89, 185]. In this regard,

based on the experimental set-up described below, empirical measurement bounds are de-

termined, guaranteeing coefficient vector estimates with bounded error. In particular, for a

monomial basis, coefficient vectors with synthetic data are created, with varying numbers

of single monomials, and hence, with varying total complexity, S. Next, a value is assigned

randomly (e.g., from a Gaussian distribution; see [185]) to each nonzero component, and

recovery of these vectors is attempted using StructOMP with only R < N measurements

and coefficient vector complexity S. Finally, the average recovery error

‖c− ĉ‖2
‖c‖2

(4.23)

is measured over 100 independent runs of the algorithm for each pair (R/N , S/R), and the

result is shown in Fig. 4.1. It is observed that for every R/N there is a value of S/R above

which sparse approximation becomes relatively inaccurate, or in other words, it changes

phase (e.g., [44]). This is the reason why the plot in Fig. 4.1, illustrating the transition from

highly accurate recovery (blue) to recovery with significant error (red), is commonly called

Phase Diagram (e.g., [44]).
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Figure 4.1: Phase Diagram for StructOMP using the Monomial Basis. The z-axis corresponds
to the average normalized `2 recovery error, ‖c−ĉ‖2‖c‖2 , over 100 runs; the x-axis corresponds to
the ratio showing how much underdetermined the problem is, whereas the y-axis corresponds
to the ratio showing the level of complexity of the coefficient vector.

The quantities R/N and S/R in Fig. 4.1 are non-dimensional. Therefore, to use Fig. 4.1

for creating a measurement bounds plot for an m-DOF system, the actual dimension of the

coefficient vector, N , is substituted into R/N . In this regard, the x-axis corresponds to

the required number of measurements R, while the y-axis corresponds to the NSM of the

coefficient vector. Specifically, for a 10-DOF dynamical system of the form of Eq. (2.34)

with 20 stochastic dimensions and considering a fourth-order polynomial expansion, N be-

comes 10,626. Fig. 4.2 shows the estimated measurement bounds for N = 10,626 with the

complexity S represented by the NSM of the coefficient vector. Indicatively, for a 10-DOF

linear dynamical system of the form of Eq. (2.34), only the group of second-order monomi-

als is active, because the joint response PDF is Gaussian, and thus, NSM is equal to zero.

Therefore, as shown in Fig. 4.2 the coefficient vector for such a system can be recovered with

less than R = 3,000 measurements of the joint response PDF using the WPI technique and

with average normalized error less than 3%. For a 10-DOF nonlinear dynamical system of

the form of Eq. (2.34), with a non-Gaussian response PDF, NSM is nonzero and as shown

in Fig. 4.2 the number of measurements R has to increase accordingly. Further, a significant

additional advantage of employing a sparse approximation treatment relates to the a priori
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knowledge about the sensitivity of the technique. As shown in Fig. 4.2 an estimate of the

expected increase of the error is readily available in case the coefficient vector sparsity is not

predicted accurately.

Figure 4.2: Measurement bounds for N = 10,626, corresponding to m = 10 and a fourth-
order polynomial approximation using StructOMP. The z-axis corresponds to the average
normalized `2 recovery error, ‖c−ĉ‖2‖c‖2 , over 100 runs; the x-axis corresponds to the ratio
showing how much underdetermined the problem is, whereas the y-axis corresponds to the
ratio showing the level of complexity of the coefficient vector. The white solid line indicates
the required number of measurements for the error to be smaller than 3%, while the white
dashed lines show the deviation of the error by ±1%.

4.2.8 Wiener path integral computational efficiency enhancement

For any m-DOF system of the form of Eq. (2.34), the joint response PDF can be described

by Eq. (4.1) with a length N coefficient vector. Therefore, plots similar to Fig. 4.2 can

be constructed for any dimension m. Such plots are useful for deciding on the number of

required measurements and for providing an estimate for the coefficient vector complexity.

For instance, for an error less than 3% and selecting the number of single monomials to be

10% of the Gaussian coefficients (see Fig. 4.2) the required number of measurements can be

found for an arbitrary system of m DOFs. In this regard, Fig. 4.3 shows how the required

number of measurements grows with increasing dimension of the system, m. This number is

compared with the respective one required for cases where the formulation does not yield an
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underdetermined problem; that is, the number of measurements is equal to the number of

coefficients in the expansion yielding a power law function of the form ∼(2m)ls /ls! (see [104]).

Further, the number of coefficients corresponding to a linear system response multivariate

Gaussian PDF is included as well. It can be readily seen that the proposed approach can be

orders of magnitude more efficient than both a brute-force numerical implementation of the

WPI [103], and the approximate technique developed by Kougioumtzoglou et al. [104]. Most

importantly, as shown in Fig. 4.3, this enhancement in efficiency becomes even more prevalent

as the number of DOFs (or equivalently the number of stochastic dimensions) increases; thus,

rendering the herein proposed sparse representation approach indispensable, especially for

high-dimensional systems. Of course, it is noted that Fig. 4.3 shows an indicative rate of

growth of R. Systems with complex nonlinearities may require a larger number R. Thus, it is

suggested to terminate the StructOMP algorithm only after the addition of a new block does

not cause any further reduction of the approximation error in Eq. (4.22) (see Section 4.2.6

for more details).

Figure 4.3: Required measurements estimate for a general m-DOF system by utilizing the
developed sparse approximation technique, and compared with the technique in [104]; the
number of measurements required for a multivariate Gaussian PDF is included for complete-
ness.
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4.2.9 Mechanization of the sparse polynomial approximation technique

The mechanization of the developed technique involves the following steps:

(a) Select the polynomial degree ls and N =
(
ls+2m
2m

)
points of R2m, either randomly (e.g.,

uniformly distributed), or by employing optimal point selection methodologies (see,

e.g., [186]).

(b) Create the basis matrix D.

(c) Relying on Fig. 4.3, select only R out of these N points randomly (e.g., uniformly

distributed).

(d) Evaluate log (p(x, ẋ)) at these R points using the WPI technique (Eq. (2.63)).

(e) Estimate the coefficient vector c using StructOMP (or an alternative appropriate op-

timization algorithm).

(f) The joint response PDF is given by Eq. (4.1).

4.3 Numerical examples

To assess the performance and demonstrate the efficacy of the developed approximation

schemes, four examples with distinct features are considered. In Section 4.3.1, two SDOF

Duffing nonlinear oscillators subject to Gaussian white noise are considered: one with a

standard hardening restoring force (Section 4.3.1.1), and another exhibiting a bimodal re-

sponse PDF (Section 4.3.1.2). In Section 4.3.1.1 the Kronecker product approach with a

4th-degree polynomial for the spatial dimensions and an one-dimensional wavelet basis for

the temporal dimension is used, whereas in Section 4.3.1.2 a basis constructed via a Kro-

necker product of three one-dimensional wavelet bases is employed. Further, in the example

of Section 4.3.1.2 the sparse approximation scheme developed in Section 4.2.4 is utilized
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and the obtained results are compared with the analytical exact solution for the stationary

response PDF. Next, in Section 4.3.2 a 2-DOF nonlinear oscillator subject to non-stationary

time-modulated Gaussian white noise is considered, and the positive definite functions ap-

proach of Section 4.2.2 is employed. Moreover, the positive definite functions approach is

also employed in Section 4.3.3, where a statically determinate Euler-Bernoulli beam is con-

sidered with Young’s modulus modeled as a non-Gaussian, non-white and non-homogeneous

stochastic field. Finally, in Section 4.3.4 the 20-variate joint response transition PDF of a

10-DOF nonlinear structural system under stochastic excitation is determined by utilizing

the sparse approximation scheme of Section 4.2.4.

4.3.1 SDOF Duffing nonlinear oscillator

4.3.1.1 SDOF Duffing oscillator with a hardening restoring force

Consider an SDOF Duffing oscillator, whose equation of motion is given by Eq. (2.34) with

parameter values (M = 1; C = 0.1; K = 1; g = x3; and S0 = 0.0637). Assuming

quiescent initial conditions, its transition PDF, written as p(x, ẋ, t), is a function of the

two spatial dimensions, i.e., x and ẋ, and of the temporal dimension t. In implementing

the approximate WPI technique developed herein, the monomial basis is used for the two

spatial dimensions, while the wavelet basis is used for the temporal dimension as discussed

in Section 4.2.1.2. In particular, utilizing a 4th-degree polynomial, the joint response PDF

is sampled at N = nsnt = 15 × 32 = 480 locations in the spatio-temporal domain and

the expansion coefficient vector c is determined by solving Eq. (4.9). Finally, p(x, ẋ, t) is

approximated by utilizing the constructed basis and the coefficient vector via Eq. (4.6). The

non-stationary marginal PDFs of x(t) and ẋ(t) are shown in Fig. 4.4, where it is seen that

the oscillator response PDF does not experience any significant changes after about t = 6s;

that is, the system has reached stationarity effectively. Moreover, the marginal PDFs of x(t)

and ẋ(t) for two arbitrary time instants are shown in Fig. 4.5. Although the accuracy of the
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technique depends, in general, on the choice of the polynomial degree and the number of

points in the temporal dimension, it is shown in this example that a 4th-degree polynomial

and nt = 32 points are adequate in determining the non-stationary PDF of this Duffing

oscillator with high accuracy as compared to pertinent MCS data (50,000 realizations).

To provide a rough comparison and highlight the gain of the proposed technique in terms

of computational efficiency, it is worth noting that a brute-force numerical implementation

of the WPI technique as described in Section 2.4.3 would require a number of PDF measure-

ments of the order of ∼106 (assuming that the temporal dimension is, indicatively, discretized

into 1,000 points). Further, the approximation based on polynomials and wavelets employed

in this example also requires a smaller number of measurements as compared to the efficient

implementation of [104]. Specifically, by utilizing the approximate technique developed in

[104] the response PDF needs to be separately determined at every time instant, which (for

an indicative discretization of the time domain into 1,000 points) yields approximately 35,000

required PDF measurements via the WPI technique.

Figure 4.4: Non-stationary marginal PDF of x(t) and ẋ(t) for an SDOF hardening Duffing
oscillator under Gaussian white noise excitation, as obtained via the WPI technique (a and
c); comparisons with MCS data - 50,000 realizations (b and d).
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Figure 4.5: Marginal PDFs of x(t) (a) and ẋ(t) (b) at time instants t = 1s and t = 12s for
an SDOF hardening Duffing oscillator under Gaussian white noise excitation, as obtained
via the WPI technique; comparisons with MCS data (50,000 realizations).

4.3.1.2 SDOF Duffing oscillator with a bimodal response PDF

Although example 4.3.1.1 has shown that utilizing a Kronecker product of a polynomial and

a wavelet bases can be adequate for a certain class of problems, the resulting interpolation

matrix may often be ill-conditioned. Such is the case of the SDOF oscillator, whose equation

of motion is given by Eq. (2.34) with parameter values (M = 1; C = 1; K = −0.3; g = x3)

and external excitation as in example 4.3.1.1. In fact, attempting to use the same basis as

in 4.3.1.1 has led to ill-conditioning. To bypass this limitation, a multi-dimensional wavelet

basis is instead utilized for this case, as discussed in Section 4.2.1.2. In this regard, a mesh is

employed for discretizing the three-dimensional spatio-temporal domain characterizing the

transition PDF. Specifically, following the procedure delineated in Section 4.2.1.2 the two

spatial dimensions are discretized into n1 = n2 = 16 points and the temporal dimension into

nt = 32 points; thus, yielding N = 8, 192 required measurements via the WPI technique.

To put it into perspective, note that a brute-force implementation of the technique would

require a number of PDF measurements of the order of ∼106, while applying the efficient
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implementation of [104] for each and every time instant would yield approximately 35, 000

required measurements (assuming that the temporal dimension is, indicatively, discretized

into 1,000 points). Following the determination of the expansion coefficient vector c by solv-

ing Eq. (4.6), where all basis matrices correspond to the wavelet basis in each dimension,

p(x, ẋ, t) is approximated based on Eq. (4.1). In this regard, p(x, ẋ, t) can be approximated

at any location by utilizing the constructed basis and the coefficient vector. In Fig. 4.6 the

joint response PDF p(x, ẋ, t) is shown at three arbitrary time instants t = 1, 2 and 6s. Com-

parisons with corresponding MCS based results demonstrate the relatively high accuracy of

the technique for addressing dynamical systems even with relatively complex PDF shapes,

such as the bimodal. Finally, in Figs. 4.7 and 4.8 the marginal PDFs of x(t) and ẋ(t) are

shown for various time instants, as obtained by utilizing the herein developed technique. Per-

tinent MCS based results (50,000 realizations) are included as well for comparison purposes.

Overall, it is seen that for this specific numerical example the gain of the proposed technique

in terms of computational efficiency, as compared both to the standard [103] (see also Sec-

tion 2.4.3) and to the enhanced [104] implementations, is drastic. It is worth noting that the

herein developed technique based on global bases can be potentially coupled with sparsity

concepts and compressive sampling for further reducing the associated computational cost

(see 4.2.4).
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Figure 4.6: Non-stationary joint PDF of x(t) and ẋ(t) at time instants t = 1, 2 and 6s for an
SDOF Duffing oscillator with bimodal response PDF under Gaussian white noise excitation,
as obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations
(b).
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Figure 4.7: Non-stationary marginal PDF of x(t) and ẋ(t) for an SDOF Duffing oscillator
with bimodal response PDF under Gaussian white noise excitation, as obtained via the WPI
technique (a and c); comparisons with MCS data - 50,000 realizations (b and d).
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Figure 4.8: Marginal PDFs of x(t) (a) and ẋ(t) (b) at time instants t = 1s and t = 12s for an
SDOF Duffing oscillator with bimodal response PDF under Gaussian white noise excitation,
as obtained via the WPI technique; comparisons with MCS data (50,000 realizations).

In addition, focusing on the case of determining the response PDF at a given time instant,
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as shown in Fig. 4.3 the advantage of the sparse approximation technique of Section 4.2.4

as compared to the implementation of [104] becomes more significant for relatively high-

dimensional problems. However, to demonstrate the efficacy of the technique in determining

accurately even relatively complex response PDF shapes, the herein considered SDOF Duff-

ing nonlinear oscillator that exhibits a bimodal response PDF is also addressed by utilizing

the sparse approximation technique. It is noted that an exact analytical expression exists

for the stationary joint response PDF of this oscillator, given by [114]

p(x, ẋ) = C exp

(
−1

0.0637π

[
−0.3x2

2
+
x4

4
+
ẋ2

2

])
(4.24)

where C is a normalization constant. Thus, in addition to utilizing pertinent MCS data, the

accuracy degree of the WPI technique can be assessed by direct comparisons with Eq. (4.24)

as well. Next, in implementing the WPI technique summarized in Section 4.2.9, a 4-th degree

polynomial is employed for approximating the response transition PDF p(xf , ẋf , tf |xi, ẋi, ti).

The number of the expansion coefficients is N = 15, however, resorting to the sparse ap-

proximation technique only R = 9 PDF measurements obtained by the WPI are used for

determining the joint response PDF of the displacement x and the velocity ẋ at a given time

instant.

In Fig. 4.9 the marginal PDFs of x and ẋ referring to time instants t = 1s and t = 12s are

shown. For the time instant t = 1s, which corresponds to the transient phase of the oscillator

dynamics, the high accuracy degree of the technique is demonstrated by comparisons with

MCS data (50,000 realizations). For the time instant t = 12s, which corresponds to the

stationary phase of the oscillator dynamics, the high accuracy degree is demonstrated by

comparisons with the exact analytical expression given by Eq. (4.24). Although the accuracy

of the technique depends, in general, on the choice of the polynomial degree, it has been

shown in this example that a 4-th degree polynomial is adequate in capturing even relatively

complex PDF shapes, such as the bimodal.
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Figure 4.9: Marginal PDFs of x(t) and ẋ(t) at time instants t = 1s and t = 12s for a Duffing
oscillator with a bimodal response PDF, as obtained via the WPI technique; comparisons
with MCS data (50,000 realizations) and the exact stationary PDF of Eq. (4.24).

4.3.2 MDOF nonlinear oscillator subject to non-stationary time-modulated

Gaussian white noise

In this section the efficacy of the mesh-free approximate WPI technique presented in Sec-

tion 4.2.2 is assessed, in conjunction with a 2-DOF nonlinear dynamical system whose equa-

tion of motion is given by Eq. (2.66) with

M =

m0 0

0 m0

 , (4.25)

C =

2c0 −c0

−c0 2c0

 , (4.26)

K =

2k0 −k0

−k0 2k0

 , (4.27)
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and

g(x, ẋ) =

ε1k0x31
0

 (4.28)

and parameter values (m0 = 1; c0 = 0.35; k0 = 0.5; ε1 = 0.2; and S0 = 0.1). The matrix

Γ(t) of Eq. (2.67) containing the time-modulating functions γ1(t) and γ2(t) is diagonal with

γ1(t) = γ2(t) = θ1 + θ2(e
−θ3t − e−θ4t) (4.29)

and parameters values (θ1 = 10−3; θ2 = 5; θ3 = 0.4; and θ4 = 1.6). The non-stationary

excitation power spectrum is, thus, given as

PSw =

PSw(t) 0

0 PSw(t)

 , (4.30)

where PSw(t) = S0γ
2
1(t) = S0γ

2
2(t) is shown in Fig. 4.10.
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Figure 4.10: Non-stationary Gaussian white noise excitation power spectrum, given by
Eq. (4.30), where PSw(t) = S0γ

2
1(t) = S0γ

2
2(t) and γ1(t) = γ2(t) = θ1 + θ2(e

−θ3t − e−θ4t)
with parameter values (S0 = 0.1; θ1 = 10−3; θ2 = 5; θ3 = 0.4; and θ4 = 1.6).

Considering the system initially at rest, the joint response PDF p (x, ẋ, t) is sampled at

N = 60,000 Halton points (see Section 4.2.2 for more details). Note that this is a rather
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challenging example from an approximation theory perspective due to the fact that the

response PDF is non-stationary. As a result, the bounds of the effective PDF domain may

vary continuously with time in an arbitrary manner. In this regard, if the bounds are pre-

specified and fixed, there are measurements of the PDF whose values are effectively zero;

thus, causing numerical instabilities in the approximation. This challenge can be addressed

by considering “adaptive” bounds, whose time-varying values can be estimated, for instance,

via a preliminary MCS analysis with very few realizations (e.g., of the order of 102). Next, the

leave-one-out cross validation follows and the set of optimal parameters (εs, εt) is determined.

It is noted that, as discussed in Section 4.2.2.2, a 4th-degree polynomial is also added in the

approximation scheme, and thus, the joint response PDF is approximated via Eq. (4.19)

with the augmented coefficient vector determined via Eq. (4.18).

In Figs. 4.11 and 4.12 the joint PDFs p(x1, ẋ1, t) and p(ẋ1, x2, t) obtained by the approx-

imate WPI technique based on positive definite functions are plotted, respectively. Compar-

isons with pertinent MCS data (50,000 realizations) demonstrate a relatively high accuracy

degree. Further, as shown in Figs. 4.13 and 4.14 for the non-stationary marginal PDFs of

x1(t) and x2(t), respectively, and based on comparisons with MCS data, the herein devel-

oped technique is capable of capturing accurately the evolution in time of the PDF shape and

features. Furthermore, in Fig. 4.15 the marginal PDFs of x2(t) and ẋ2(t) for two arbitrary

time instants are shown and compared with respective MCS-based results. In passing, note

that an alternative brute-force implementation (see Section 2.4.3) and employing an expan-

sion basis for each and every time instant independently [104] would require approximately

109 and 70,000 PDF measurements, respectively (assuming that the temporal dimension is,

indicatively, discretized into 1,000 points).
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Figure 4.11: Non-stationary joint PDF of x1(t) and ẋ1(t) at time instants t = 1, 2 and 6s for
a 2-DOF nonlinear system subject to time-modulated Gaussian white noise, as obtained via
the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Figure 4.12: Non-stationary joint PDF of ẋ1(t) and x2(t) at time instants t = 1, 4 and 6s for
a 2-DOF nonlinear system subject to time-modulated Gaussian white noise, as obtained via
the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Figure 4.13: Non-stationary marginal PDF of x1(t) and ẋ1(t) for a 2-DOF nonlinear system
subject to time-modulated Gaussian white noise, as obtained via the WPI technique (a and
c); comparisons with MCS data - 50,000 realizations (b and d).

Figure 4.14: Non-stationary marginal PDF of x2(t) and ẋ2(t) for a 2-DOF nonlinear system
subject to time-modulated Gaussian white noise, as obtained via the WPI technique (a and
c); comparisons with MCS data - 50,000 realizations (b and d).
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Figure 4.15: Marginal PDFs of x2(t) (a) and ẋ2(t) (b) at time instants t = 1s and t = 6s for
a 2-DOF nonlinear system subject to time-modulated Gaussian white noise, as obtained via
the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).

4.3.3 Beam bending problem with a non-Gaussian and non-homogeneous

stochastic Young’s modulus

The example considered in this section serves to demonstrate that the WPI formalism de-

lineated in Chapter 2 (see [146] for more details) can account not only for stochastically

excited dynamical systems governed by Eq. (2.34) or (2.66), but also for certain engineering

mechanics problems with stochastic media properties. In this regard, it has been shown [101,

146] that a class of one-dimensional mechanics problems with stochastic system parameters,

such as the herein considered Euler-Bernoulli beam with stochastic Young’s modulus, can

be cast equivalently in the form of Eq. (2.69). Thus, the left hand-side of Eq. (2.69) can be

used for defining an auxiliary Lagrangian function, and the WPI solution technique can be

applied in a rather straightforward manner.

In this regard, a statically determinate Euler-Bernoulli beam is considered next whose
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response is governed by the differential equation

d2

dz2
[E(z)Iq̈(z)] = l(z) (4.31)

where E(z) is the Young’s modulus; I is the constant cross-sectional moment of inertia; q(z)

is the deflection of the beam; and l(z) denotes a deterministic distributed force. In this static

problem the dot above a variable denotes differentiation with respect to the space variable

z. Further, as explained in [101] and [146], Eq. (4.31) can be integrated twice and cast in

the form

−M(z)

Iq̈(z)
= E(z) (4.32)

where the Young’s modulus is modeled as a non-Gaussian, non-white and non-homogeneous

stochastic field as

Ė(z)

E(z)
= w(z) (4.33)

with E(0) = EM , and w(z) is the white noise process as defined in Eq. (2.68). It can be

readily seen that Eq. (4.33) represents a standard geometric Brownian motion SDE, whose

space-dependent response PDF is log-normal (e.g., [138]). Combining Eq. (4.32) and (4.33)

yields an equation in the form of Eq. (2.69); that is,

Ṁ(z)

M(z)
− q(3)(z)

q̈(z)
= w(z) (4.34)

Next, the case of a cantilever beam subject to a single point moment at its free end is

considered (Fig. 4.16). Thus, taking into account that M(z) is constant along the length of

the beam, i.e., M(z) = M0, Eq. (4.34) becomes

−q
(3)(z)

q̈(z)
= w(z) (4.35)
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while based on Eq. (2.80) the expression

L
[
q, q̇, q̈, q(3)

]
=

(q(3)(z))2

4πS0(q̈(z))2
(4.36)

can be construed as the corresponding Lagrangian function. In this regard, the EL equation

becomes

∂L
∂qc
− ∂

∂z

∂L
∂q̇c

+
∂2

∂z2
∂L
∂q̈c
− ∂3

∂z3
∂L
∂q

(3)
c

= 0 (4.37)

together with the initial conditions for zi = 0, qc(zi) = qi = 0, q̇c(zi) = q̇i = 0 and q̈c(zi) =

− M0

EM I
.

L

z M

Figure 4.16: Cantilever beam subject to a single-point moment.

Subsequently, the joint response PDF p (q, q̇, q̈, z) is sampled at N = 20,000 Halton

points with bounds that vary with z. Specifically, the bounds of the response PDF space-

varying effective domain are determined via a preliminary MCS with only a few realizations

(see Example 4.3.2 for details). Next, following the evaluation of the augmented coeffi-

cient vector via Eq. (4.18), Eq. (4.19) is utilized in conjunction with an 8th-degree polyno-

mial, and p (q, q̇, q̈, z) is determined. In Figs. 4.17 and 4.18 the WPI-based non-stationary

(space-dependent) marginal PDFs of q(z) and q̇(z) are shown, respectively, while MCS-based

data (50,000 realizations) are also provided for comparison. Moreover, Fig. 4.19 shows the

marginal PDFs of q(z) and q̇(z) at z = 0.6, z = 0.8 and z = 1, as obtained via the herein

developed technique, and includes comparisons with pertinent MCS data. It is worth men-

tioning that the considered beam bending problem is significantly challenging from a global

approximation point of view, since the response mean varies considerably in the spatial do-
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main; thus, rendering necessary the utilization of an adaptive with z effective PDF domain.

Nevertheless, it has been shown that the WPI technique in conjunction with positive definite

functions for approximating the joint response PDF yields accurate results at a relatively

low computational cost. In this regard, note for comparison purposes that alternative im-

plementations, such as the brute-force scheme delineated in Section 2.4.3, would require a

several orders of magnitude higher number of PDF measurements. Further, a direct com-

parison in terms of cost with the enhanced implementation in [104] is not possible as the

4th-order polynomial employed in [104] would be, most likely, an inappropriate choice for

approximating the joint response p (q, q̇, q̈, z).

Figure 4.17: Non-stationary (space-dependent) marginal PDF of q(z) for a statically deter-
minate beam with a non-Gaussian and non-homogeneous stochastic Young’s modulus, as
obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Figure 4.18: Non-stationary (space-dependent) marginal PDF of q̇(z) for a statically deter-
minate beam with a non-Gaussian and non-homogeneous stochastic Young’s modulus, as
obtained via the WPI technique (a); comparisons with MCS data - 50,000 realizations (b).
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Figure 4.19: Marginal PDFs of q(z) (a) and q̇(z) (b) at z = 0.6, z = 0.8 and z = 1
for a statically determinate beam with a non-Gaussian and non-homogeneous stochastic
Young’s modulus, as obtained via the WPI technique; comparisons with MCS data (50,000
realizations).

4.3.4 10-DOF oscillator with damping and stiffness nonlinearities

To demonstrate the accuracy and efficiency of the sparse approximation technique developed

in Section 4.2.4 in handling relatively high-dimensional problems, a 10-DOF system of the

form of Eq. (2.34) with cubic damping and stiffness nonlinearites is considered, where

M =


m0 . . . 0

...
. . .

...

0 . . . m0

 , (4.38)

C =



2c0 −c0 . . . 0

−c0
. . . . . .

...

...
. . . . . . −c0

0 . . . −c0 2c0


, (4.39)
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K =



2k0 −k0 . . . 0

−k0
. . . . . .

...

...
. . . . . . −k0

0 . . . −k0 2k0


, (4.40)

and

g(x, ẋ) =



ε1k0x
3
1 + ε2c0ẋ

3
1

0

...

0


(4.41)

The system is excited by a white noise vector process, whose power spectrum matrix is given

by

PSw =


S0 . . . 0

...
. . .

...

0 . . . S0

 (4.42)

while the parameters values are (m0 = 1; c0 = 0.2; k0 = 1; ε1 = 1; ε2 = 1; and S0 = 0.5). In

Figs. 4.20 and 4.21, the joint response PDFs for the displacement x1(t) and velocity ẋ1(t)

corresponding to the first DOF obtained by the herein developed efficient WPI technique are

plotted for two time instants t = 1s and t = 2s, respectively. These arbitrarily chosen time

instants refer to the non-stationary (transient) phase of the system dynamics. Comparisons

with MCS based PDF estimates are included as well. Fig. 4.22 shows the marginal displace-

ment and velocity PDFs at the above time instants. Figs. 4.23-4.25 show the respective

results for x10(t) and ẋ10(t). In all cases, comparisons with pertinent MCS data demonstrate

a high degree of accuracy for the sparse representation based WPI technique.
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Figure 4.20: Joint PDF of x1(t) and ẋ1(t) at time t = 1s, as obtained via the WPI technique
(a - b); comparisons with MCS data - 50,000 realizations (c - d).

Figure 4.21: Joint PDF of x1(t) and ẋ1(t) at time t = 2s, as obtained via the WPI technique
(a - b); comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.22: Marginal PDF of x1(t) (a) and ẋ1(t) (b) at time instants t = 1s and t = 2s, as
obtained via the WPI technique; comparisons with MCS data (50,000 realizations).

Figure 4.23: Joint PDF of x10(t) and ẋ10(t) at time t = 1s, as obtained via the WPI technique
(a - b); comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.24: Joint PDF of x10(t) and ẋ10(t) at time t = 2s, as obtained via the WPI technique
(a - b); comparisons with MCS data - 50,000 realizations (c - d).

Figure 4.25: Marginal PDF of x10(t) (a) and ẋ10(t) (b) at time instants t = 1s and t = 2s,
as obtained via the WPI technique; comparisons with MCS data (50,000 realizations).

Regarding computational efficiency, for such a system with 10 DOFs (or in other words,

20 stochastic dimensions), a brute-force WPI numerical implementation requires ∼3020 func-
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tional minimization problems of the form of Eqs. (2.61)-(2.62) to be solved. Fig. 4.3 indicates

that the polynomial approximation implementation by Kougioumtzoglou et al. [104] requires

the solution of only 10,626 functional minimization problems (i.e., measurements of the joint

response PDF), whereas resorting to compressive sampling in conjunction with a sparse poly-

nomial approximation technique as developed herein the number of optimization problems to

be solved decreases to 3,200. As an indicative order of magnitude, and utilizing a standard

PC with up-to-date configurations, the joint response transition PDF of this 10-DOF system

is determined in less than an hour by utilizing the herein developed technique. Further, it is

noted that according to Fig. 4.3, the technique becomes even more efficient as compared to

the one in [104] for increasing number of DOFs m. In other words, the computational effi-

ciency enhancement becomes even more significant for high-dimensional systems. Of course,

note that a relatively accurate MCS based response PDF estimate would require the solu-

tion of ∼106 deterministic problems; thus, rendering the herein developed WPI technique a

significantly more efficient alternative.

4.4 Concluding remarks

In this chapter, the WPI technique has been generalized and enhanced for determining

directly, and in a computationally efficient manner, the complete time-dependent non-

stationary response PDF of stochastically excited nonlinear multi-degree-of-freedom dynam-

ical systems. This has been done, first, by constructing multi-dimensional (time-dependent)

global bases for approximating the non-stationary joint response PDF, and second, by ex-

ploiting the localization capabilities of the WPI technique for determining PDF points in

the joint space-time domain. These points have been used for evaluating the expansion co-

efficients at a relatively low computational cost. Specifically, two distinct expansions have

been constructed: the first is based on Kronecker products of bases (e.g., wavelets), while

the second employs positive definite functions. Although the performance of the expansions

92



Chapter 4. Sparse representations and multi-dimensional global bases for enhancing the
computational efficiency of the Wiener path integral technique

in approximating the response PDF is, in general, problem-dependent, it can be argued that

positive definite functions appear more versatile and suitable for handling higher-dimensional

problems, whereas Kronecker products perform better for lower-dimensional problems, es-

pecially when some information regarding the PDF is available a priori.

Further, extending the work by Kougioumtzoglou et al. [104] who developed an efficient

formulation of the WPI technique for determining the joint response PDF at specific time

instants, in this chapter an enhanced formulation based on sparse representations and com-

pressive sampling has been proposed. Specifically, by utilizing an appropriate sparse basis

for expanding the system joint response PDF, resorting to the WPI localization features,

and employing compressive sampling procedures in conjunction with group sparsity con-

cepts, the computational cost for obtaining the response PDF expansion coefficients can

be reduced by potentially several orders of magnitude. It is worth noting that in compari-

son to the formulation by Kougioumtzoglou et al. [104], the enhancement in computational

efficiency becomes more prevalent as the number of stochastic dimensions increases; thus,

rendering the herein proposed sparse representation approach indispensable, especially for

high-dimensional systems.

Several numerical examples pertaining to both single- and multi-degree-of-freedom non-

linear dynamical systems subject to non-stationary excitations have been considered for

assessing the reliability of the approximation schemes. Further, to illustrate that the WPI

technique can account also for certain engineering mechanics problems with stochastic media

properties, a bending beam with a non-Gaussian and non-homogeneous Young’s modulus

has been included in the numerical examples as well. The latter example has also been found

to be significantly challenging from a global approximation perspective, since the response

PDF effective domain varies considerably along the spatial dimension. Nevertheless, this

challenge can be addressed by utilizing adaptive PDF domain bounds. In the last example,

the 20-variate joint response transition PDF of a 10-DOF nonlinear structural system under

stochastic excitation has been determined by using the sparse aproximation technique. The
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high degree of accuracy exhibited has been corroborated by comparisons with pertinent MCS

data for all the considered examples.
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Chapter 5

Functional series expansions and

quadratic approximations for

enhancing the accuracy of the Wiener

path integral technique

5.1 Introduction

A WPI-based stochastic response determination technique for diverse dynamical systems

/structures is developed in this chapter by resorting to functional series expansions in con-

junction with quadratic approximations. The technique can be construed as an extension

and enhancement in terms of accuracy of the standard WPI solution approach developed

in Chapter 2. Specifically, in comparison to the standard approach, where only the most

probable path connecting initial and final states is considered in determining the joint re-

sponse PDF, the herein developed technique accounts also for fluctuations around it; thus,

yielding an increased accuracy degree. An additional significant advantage of the proposed

enhancement as compared to earlier developments relates to the fact that low probability
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events (e.g., failure probabilities) can be estimated directly in a computationally efficient

manner by determining only a few points of the joint response PDF. In other words, the

normalization step in the standard approach, which requires the evaluation of the joint re-

sponse PDF over its entire effective domain, is circumvented. It is worth mentioning that

similar approximations have also been employed in other various theoretical physics-related

fields (e.g., [21, 66, 97, 107]). The efficiency and accuracy of the technique are assessed in a

numerical example, where analytical results are set vis-à-vis pertinent MCS data.

5.2 Functional series expansion and quadratic approximation for

non-stationary joint response PDF determination

In this section a novel WPI solution technique is developed based on the functional series

expansion discussed in Section 2.3 and on a quadratic approximation. This can construed

as an enhancement of the standard most probable path approach (e.g., [37, 103, 146]) to

increase the accuracy degree of the determined nonlinear oscillator joint response PDF.

Consider next the one-dimensional integral of the form

F (λ) =

∫ ∞
−∞

exp [iλf(τ)] dτ (5.1)

which can provide insight regarding both the multi-dimensional integral of Eq. (2.16) and

the functional series expansion of Eq. (2.24). In this context, for λ � f(τ) even small

changes in f(τ) cause rapid variations to the phase term λf(τ), which, in turn, produce

oscillations to the integrand exp [iλf(τ)]. Consequently, except for regions where the deriva-

tive of the function f(τ) vanishes, constructive and destructive additions of the oscillatory

part exp [iλf(τ)] at different τ values lead, eventually, to cancellation of the various added

terms within the integral. A rigorous proof of the above heuristic explanation is given by the

Riemann-Lebesgue lemma (e.g., [149]) for the case of λ→∞. In this regard, since for large
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(but not infinite) λ values the integral is dominated by contributions related to the regions

of τ where f ′ vanishes, the evaluation of F (λ) in Eq. (5.1) can be performed by neglecting

regions for which f ′ takes non-zero values. This is typically referred to in the literature as

stationary phase approximation and the points for which f ′ becomes zero are termed station-

ary or critical points [161]. Next, considering for simplicity that f has only one stationary

point at τ0, and resorting to the stationary phase approximation, only contributions from

points in the vicinity of τ0 are accounted for in the evaluation of Eq. (5.1). In particular,

employing a Taylor series expansion of f inserted in F yields

F (λ) =

∫ ∞
−∞

exp

[
iλf(τ0) +

1

2
iλ(τ − τ0)2f ′′(τ0) + . . .

]
dτ (5.2)

Further, the contributions of terms of order higher than 2 in the expansion of Eq. (5.2) are

regarded relatively small compared to the lower-order terms for large λ and small τ − τ0

[161], and thus can be neglected. Note that the aforementioned expansion is also known as

Laplace approximation for the case of real-valued functions.

Loosely speaking, the same rationale can be adopted when considering multi-dimensional

integrals such as in Eq. (2.16) [160, 195]. In this regard, consider a stochastically excited

nonlinear SDOF oscillator, whose equation of motion takes the form of Eq. (2.34) with

parameters (M = m0, C = c0, K = k0, g = g, Sw = 2πS0). Its joint transition PDF is

expressed as the limit of an L-dimensional integral with L → ∞ in the form of Eq. (2.16),

which for the case of an SDOF oscillator becomes

p(xf , ẋf , tf |xi, ẋi, ti)

= lim
ε→0
L→∞

∫ ∞
−∞

. . .

∫ ∞
−∞

{
exp

(
−

L∑
l=0

1

4πS0

[m0ẍl + c0ẋl + k0xl + g(xl, ẋl)]
2

)

× δ(ẋ0 − ẋi)

[
L∏
l=0

m0√
4π2S0ε3

]}
dx1 . . . dxL (5.3)

97



Chapter 5. Functional series expansions and quadratic approximations for enhancing the
accuracy of the Wiener path integral technique

or, alternatively,

p(xf , ẋf , tf |xi, ẋi, ti)

= lim
ε→0
N→∞

∫ ∞
−∞

. . .

∫ ∞
−∞

{
exp

(
− 1

4πS0

f0(x0)

)
exp

(
− 1

4πS0

f1(x1)

)

× · · · × exp

(
− 1

4πS0

fN(xN)

)
δ(ẋ0 − ẋi)

[
L∏
j=0

m0√
4π2S0ε3

]}
dx1 . . . dxL (5.4)

where

fl(xl) = [m0ẍl + c0ẋl + k0xl + g(xl, ẋl)]
2 , for l = 0, . . . , L (5.5)

and xl is the value of the response process x(t) at time tl ∈ [ti, tf ]. Examining next an

arbitrarily chosen exponential term in the multi-dimensional integral of Eq. (5.4), and com-

paring with Eq. (5.1), it is seen that the parameter λ and function f of Eq. (5.1) correspond

to the constant 1
4πS0

and to Eq. (5.5), respectively. Therefore, it can be argued in a qualita-

tive manner that the dominant contribution to the path integral of Eq. (2.56), which is the

continuous limit of the multi-dimensional integral approximation of Eq. (5.3), is associated

with the path xc(t) for which the extremality condition of Eq. (2.59) is satisfied. In other

words, xc(t) can be construed as the path for which the stochastic action is stationary with

respect to path fluctuations; see also Eq. (2.60). Therefore, according to the representation

of Eq. (2.23) a Taylor functional series expansion of the stochastic action takes the form of

Eq. (2.24), which for an SDOF oscillator can be written as

S [x] = S [xc +X] = S [xc] + δS [xc, X] +
1

2!
δ2S [xc, X] + . . . (5.6)

where X(t) denotes the fluctuations around the most probable path xc(t).

It is noted that for quadratic Lagrangian functionals, i.e., functionals with terms whose

highest power is less or equal to two, the terms in the expansion of Eq. (5.6) of order

higher than two become zero. In the ensuing analysis, although for arbitrary nonlinearity
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functions g(x, ẋ) these higher order terms do not vanish (e.g., [161, 191]), by resorting to the

aforementioned stationary phase arguments and assumptions Eq. (5.6) is approximated as

S [x] = S [xc] +
1

2
δ2S [xc, X] (5.7)

where

δ2S (xc, X) =

tf∫
ti

(
∂2L
∂x2

∣∣∣∣
x=xc

X2(t) + 2
∂2L
∂x∂ẋ

∣∣∣∣
x=xc

X(t)Ẋ(t) + 2
∂2L
∂x∂ẍ

∣∣∣∣
x=xc

X(t)Ẍ(t)

+
∂2L
∂ẋ2

∣∣∣∣
x=xc

Ẋ2(t) + 2
∂2L
∂ẋ∂ẍ

∣∣∣∣
x=xc

Ẋ(t)Ẍ(t) +
∂2L
∂ẍ2

∣∣∣∣
x=xc

Ẍ2(t)

)
dt (5.8)

Further, it is worth noting that, according to the rationale of the stationary phase approxi-

mation, the truncated expansion of Eq. (5.7) is anticipated to be more accurate for smaller

magnitude of the fluctuations X(t) around the most probable path xc(t).

In Section 5.3, it is shown that the second-order term in Eq. (5.7), which is in general

different for each {xf , ẋf}, can be explicitly calculated. Clearly, it is seen that in comparison

to the standard most probable path approximation of Eq. (2.31), where the additional terms

in the expansion of Eq. (5.8) are treated as a single constant independent of the final states

{xf , ẋf}, the herein developed technique is expected to exhibit enhanced accuracy.

Next, considering the nonlinear oscillator Lagrangian functional of Eq. (2.57), substi-

tuting into Eq. (5.8) and manipulating, the joint response transition PDF of Eq. (2.56) is

approximated as

p(xf , ẋf , tf |xi, ẋi, ti) = θ(0, 0, tf |0, 0, ti) exp(−S [xc, ẋc, ẍc]) (5.9)
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where the fluctuation factor θ(0, 0, tf |0, 0, ti) is given as

θ(0, 0, tf |0, 0, ti) =

∫
C{0,0,ti;0,0,tf}

exp

(
−

tf∫
ti

p21

{
Ẍ2(t) + p2(t)ẊẌ(t) + p3(t)Ẋ

2(t)

+ p4(t)X(t)Ẍ(t) + p5(t)X(t)Ẋ(t) + p6(t)X
2(t)

}
dt

)
δ(Ẋ(ti))

tf∏
t=ti

p1 dX(t)√
πdt3

(5.10)

where

p1 =

√
m2

0

4πS0

(5.11a)

p2(t) =
1

m0

[2 (c0 + gẋ)]

∣∣∣∣
x=xc

(5.11b)

p3(t) =
1

m2
0

[
(c0 + gẋ)

2 + gẋẋ (m0ẍ+ c0ẋ+ k0x+ g)
]∣∣∣∣
x=xc

(5.11c)

p4(t) =
1

m0

[2 (k0 + gx)]

∣∣∣∣
x=xc

(5.11d)

p5(t) =
1

m2
0

[2 (c0 + gẋ) (k0 + gx) + 2gxẋ (m0ẍ+ c0ẋ+ k0x+ g)]

∣∣∣∣
x=xc

(5.11e)

p6(t) =
1

m2
0

[
(k0 + gx)

2 + gxx (m0ẍ+ c0ẋ+ k0x+ g)
]∣∣∣∣
x=xc

(5.11f)

In Eq. (5.11) g
∣∣
x=xc

denotes g(xc(t)); gx and gẋ represent first order partial derivatives of

g(x, ẋ) with respect to x and ẋ, respectively; and gxx,gxẋ, and gẋẋ denote the respective

second order partial derivatives of g(x, ẋ). It is important to note that the fluctuation factor

θ(0, 0, tf |0, 0, ti) of Eq. (5.10) is treated under the most probable path approximation as a

single constant C (see Eq. (2.31)). In other words, it is considered independent of the final

states {xf , ẋf}. On the contrary, based on the herein proposed quadratic approximation,

θ(0, 0, tf |0, 0, ti) is expressed as a path integral defined by Eq. (5.10). This path integral

depends on the final state {xf , ẋf} through the most probable path xc(t). Although the

calculation of an arbitrary path integral is typically a highly challenging task [21], it is shown

in the following Section 5.3 that this is generally possible for the case of θ(0, 0, tf |0, 0, ti),
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where the fluctuation paths X(t) satisfy the conditions X(ti) = X(tf ) = Ẋ(ti) = Ẋ(tf ) = 0.

5.3 Explicit calculation of the fluctuation factor

Consider a discrete approximation of the fluctuation factor in Eq. (5.10) given by

θ(0, 0, tf |0, 0, ti) = lim
ε→0
L→∞

∫ ∞
−∞

. . .

∫ ∞
−∞

{
exp

(
− p21

L∑
l=0

[(Xl+2 − 2Xl+1 +Xl)
2

ε3

+p2(tl)
(Xl+2 − 2Xl+1 +Xl)

ε2
(Xl+1−Xl)+p3(tl)

(Xl+1 −Xl)
2

ε
+p4(tl)

(Xl+2 − 2Xl+1 +Xl)

ε
Xl

+ p5(tl)Xl(Xl+1 −Xl) + p6(tl)X
2
l ε
])
δ

(
X1 −X0

ε

) L∏
l=0

p1√
πε3

}
dX1 . . . dXL (5.12)

Taking into account that X0 = XL+1 = 0, and also that X1 = 0 due to the forward

difference definition of the first-order derivative at t = ti, utilizing the property δ
(
X1−X0

ε

)
=

εδ (X1 −X0), and manipulating yields

φ(0, 0, tf |0, 0, ti)

= lim
ε→0
N→∞

∫ ∞
−∞

. . .

∫ ∞
−∞

exp

(
−p

2
1

ε3

L∑
l1=2

L∑
l2=2

Xl1Al1,l2Xl2

)
ε

(
p1√
πε3

)L+1

dX2 . . . dXL (5.13)

where

A = B + C + D + E + F + G (5.14)
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and for each l ∈ {0, . . . , L}

B corresponds to the term (Xl+2 − 2Xl+1 +Xl)
2 (5.15a)

C to the term p2(tl)(Xl+2 − 2Xl+1 +Xl)(Xl+1 −Xl)ε (5.15b)

D to the term p3(tl)(Xl+1 −Xl)
2ε2 (5.15c)

E to the term p4(tl)(Xl+2 − 2Xl+1 +Xl)Xlε
2 (5.15d)

F to the term p5(tl)Xl(Xl+1 −Xl)ε
3 (5.15e)

G to the term p6(tl)X
2
l ε

4 (5.15f)

Specifically, it is straightforward to construct an algorithm that counts for each matrix

B, . . . ,G how many X2
l , XlXl+1, and XlXl+2 exist for each l ∈ {0, . . . , L} and place the

corresponding values in its main, first and second diagonals, respectively. Note that every

matrix in Eq. (5.15) is at most pentadiagonal, i.e., a matrix whose only nonzero elements

belong to the main diagonal and the first two diagonals above and below it. Further, due

to the form of the product Xl1Al1,l2Xl2 the integral of Eq. (5.13) is a multi-dimensional

Gaussian integral [21]. By resorting to the multi-dimensional Gaussian integral formula [21]

the fluctuation factor θ(0, 0, tf |0, 0, ti) can be calculated explicitly as

θ(0, 0, tf |0, 0, ti) = lim
ε→0
L→∞

p21
πε2

[det(A)]−1/2 (5.16)

5.4 Numerical aspects

This section highlights certain aspects of the numerical implementation of the quadratic

approximation of the WPI technique as developed in Sections 5.2 and 5.3. In this regard,

note that one point of the transition PDF at a given time instant tf is obtained by Eq. (5.9),

where the fluctuation factor θ(0, 0, tf |0, 0, ti) is determined via Eq. (5.16). Following a brute-

force implementation and assuming fixed initial conditions {xi, ẋi}, an effective domain of
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final states {xf , ẋf} is considered for the PDF and is discretized into Ns×Ns points. These

Nbf = N2
s points are the final states {xf , ẋf} at which the transition PDF is determined via

the quadratic approximation of the WPI technique. Next, for each {xf , ẋf} the most prob-

able path xc(t) is obtained either by solving a BVP of the form of Eqs. (2.61)-(2.62) or by

direct minimization of the stochastic action of Eq. (2.64). Further, following determination

of xc(t), the time domain is discretized into L+2 points as in Eq. (2.10) (e.g., L = 1,000) and

the parameter matrices B, . . . ,G are evaluated on xc(t) at these L+ 2 points via Eq. (5.15).

Finally, the determinant of the sum A = B + · · · + G is computed and the L-point approx-

imation of the fluctuation factor θ(0, 0, tf |0, 0, ti) is obtained by utilizing Eq. (5.16). In the

numerical example in Section 5.7, the determinant det(A) is computed by utilizing the det

built-in function of MATLAB, which calculates the determinant by factorizing the original

matrix into lower and upper triangular factors. Note, however, that according to the defini-

tion of the matrices B, . . . ,G in Eq. (5.15) the sum A = B+ · · ·+G is a pentadiagonal matrix

(see Section 5.3). Therefore, a more computationally efficient calculation of the determinant

is potentially feasible by exploiting this special property of A (e.g., [24, 168]).

Clearly, compared with the most probable approximation, the enhanced accuracy of the

quadratic approximation comes at the expense of some added modest computational cost

due to the calculation of the det(A) in the definition of the fluctuation factor. Note, how-

ever, that the herein developed technique can be readily coupled with efficient numerical

implementations such as in Chapter 4 (see also [104, 145, 147]). In this regard, sparse repre-

sentations and efficacious expansion bases for the joint response PDF can be utilized, which

require only few points of the PDF to be determined. Thus, the associated computational

cost is kept at a minimal level.
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5.5 Advantages of the quadratic WPI approximation for reliability

assessment applications

According to the most probable path approximation, a given point of the joint response PDF

is obtained by Eq. (2.63). Clearly, in Eq. (2.63) the exponential term depends on the specific

final state {xf , ẋf} associated with the specific PDF point, whereas the constant C is the

result of normalization (see Eq. (2.65)) following calculation of all the PDF values. In other

words, the exponential term in Eq. (2.63) is unique for each final state {xf , ẋf}, whereas

the constant C is common among all {xf , ẋf}, and, thus, among all points of the transition

PDF effective domain.

On the contrary, in the quadratic approximation the path integral of Eq. (2.56) is approx-

imated by Eq. (5.9). Although, the exponential term in Eq. (5.9) is exactly the same as the

respective one in Eq. (2.63), the fluctuation factor θ(0, 0, tf |0, 0, ti) is different for each final

state {xf , ẋf}, and is determined via Eqs. (5.10) and (5.11) in the continuous limit or via

Eq. (5.16) as the limit of an L-dimensional integral with L → ∞. In this regard, note that

the dependence of θ(0, 0, tf |0, 0, ti) on the final state {xf , ẋf} is through the most probable

path xc(t) as shown in Eqs. (5.10) and (5.11). Thus, by exchanging a common across states

constant C used in the most probable approximation for a “localized” and state-dependent

fluctuation factor θ(0, 0, tf |0, 0, ti) in the quadratic approximation, it is anticipated that the

WPI technique accuracy is enhanced. This is also demonstrated in the numerical example

in Section 5.7.

Further, the fact that θ(0, 0, tf |0, 0, ti) can be separately calculated for each final state

{xf , ẋf} via Eq. (5.16) allows for reliability assessment of the oscillator without possessing

the complete transition PDF. Specifically, the probability of specific events can be calculated

via Eqs. (5.9) and (5.16) without the need of determining all the points of the transition

PDF and then normalizing by utilizing Eq. (2.65). The latter is an additional advantage of

the quadratic approximation over the most probable path approach.
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5.6 Mechanization of the quadratic WPI approximation technique

The mechanization of a brute-force implementation of the quadratic approximation as de-

veloped in Sections 5.2-5.4 involves the following steps:

(a) For a given time instant tf , consider an effective domain of final states {xf , ẋf} and

discretize it into Ns ×Ns points.

(b) For each final state {xf , ẋf} determine the most probable path xc(t) by solving the

BVP problem of Eqs. (2.61)-(2.62).

(c) Evaluate the matrices B, . . . ,G based on Eq. (5.15).

(d) Compute the determinant of A = B + · · ·+ G.

(e) Obtain each point of the PDF by utilizing Eqs. (5.9) and (5.16).

5.7 Numerical example

Consider an SDOF oscillator, whose equation of motion is given by Eq. (2.34) with parameter

values (M = 1, C = 0.2, K = 1, g = 0.5x2, Sw = 0.1π). Following a brute-force numerical

implementation of the technique developed in Sections 5.2-5.4 for each time instant tf an

effective domain of {xf , ẋf} final states is considered and discretized into Nbf = 302 points.

Next, for each and every final state {xf , ẋf} the most probable path xc(t) is determined by

solving the BVP problem of Eqs. (2.61)-(2.62) and the fluctuation factor θ(0, 0, tf |0, 0, ti)

is calculated by utilizing Eq. (5.16) with L = 1,000. Finally, for the most probable path

approximation the joint response PDF at each time instant tf is determined via Eq. (2.63),

whereas for the quadratic approximation it is determined via Eq. (5.9).

In this regard, Fig. 5.1 demonstrates the accuracy enhancement achieved by using the

quadratic approximation for various time instants tf . Specifically, with blue color the normal-

ized average difference (measured by the `2-norm) between the most probable path approach
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and MCS data (50,000) is shown, while the respective difference for the case of the quadratic

approximation is shown with red color. Finally, indicative results for the marginal PDF of

x(t) and ẋ(t) obtained by the most probable path approach and the quadratic approxima-

tion are shown in Fig. 5.2. Comparisons with MCS data in Fig. 5.2 elucidate the accuracy

enhancement obtained with the quadratic approximation for the case of the considered non-

linear SDOF oscillator.

1 1.5 2 2.5 3 3.5 4
0.02

0.04

0.06

0.08

0.1

0.12

Figure 5.1: Normalized average difference (measured by the `2-norm) of the marginal PDF
of x(t) at various time instants between the most probable path approach of the WPI (MPP)
and MCS data (50,000 realizations) - blue line; and between the quadratic approximation of
the WPI and MCS data (50,000 realizations) - red line.
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Figure 5.2: Marginal PDF of x(t) (a) and ẋ(t) (b) at time instant t = 4s, as obtained via
the most probable path of the WPI technique (MPP) and the quadratic approximation of
the WPI technique; comparisons with MCS data (50,000 realizations).

5.8 Concluding remarks

A novel WPI-based technique has been developed in this chapter for determining the response

of a diverse class of stochastically excited nonlinear oscillators by resorting to functional

series expansions and a quadratic approximation. Specifically, following a functional series

expansion of the stochastic action of Eq. (2.64) a stationary phase argument is developed

according to which the contributions of terms of order higher than 2 in the expansion can be

regarded as negligible compared to the lower-order terms. As a result, the joint response PDF

is approximated by Eq. (5.9) where the exponential term is exactly the same as the respective

one in the most probable path approximation of Eq. (2.63), whereas the common across states

constant C used in the most probable approximation is exchanged for a “localized” and state-

dependent fluctuation factor θ(0, 0, tf |0, 0, ti) in the quadratic approximation. Therefore,
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the developed technique can construed as an enhancement of the standard most probable

path approach to increase the accuracy degree of the determined nonlinear oscillator joint

response PDF. Further, the fact that θ(0, 0, tf |0, 0, ti) can be separately calculated for each

final state {xf , ẋf} via Eqs. (5.10) and (5.11) allows for reliability assessment of the oscillator

without possessing the complete transition PDF. The latter is an additional advantage of

the quadratic approximation over the most probable path approach.
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6.1 Summary and major developments

Path integral techniques have proven to be potent tools in theoretical physics. Indicative

application areas include the theories of superfluidity, of unified electromagnetic and weak

interactions, and of quantum chromodynamics. However, in the field of engineering mechan-

ics and dynamics path integral techniques have been proposed only recently. Specifically,

Kougioumtzoglou and co-workers have adapted, extended, and applied the path integral

methodology for determining the joint response transition PDF of complex dynamical sys-

tems of engineering interest. The developed WPI techniques can address MDOF systems

subject to non-white, non-Gaussian and non-stationary excitation processes, whose governing

dynamics equations involve complex nonlinearities (e.g., hysteretic) and fractional derivative

terms.

As described in Chapter 2, since the analytical evaluation of the path integral is a chal-

lenging task for most problems of interest, the standard solution approach (e.g., [100, 103])

resorts to the most probable path approximation. According to this approximation, among

all the possible paths that are considered in the path integral expression only the most prob-

able path is taken into account for determining the joint response PDF (see Sections 2.3
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and 2.4). Further, the determination of the most probable path requires the solution of a

deterministic variational problem, which can either be solved directly or be expressed as

a BVP. From a numerical implementation perspective, since the analytical solution of the

aforementioned deterministic problem for all final states is also a rather challenging task,

the most probable path needs to be separately determined for each and every set of final

states (see Section 2.4.3). In this context, for determining all the values of the response PDF,

although a brute-force numerical implementation typically yields a prohibitively large num-

ber of deterministic problems to be solved (i.e., measurements of the PDF to be collected),

Kougioumtzoglou et al. [104] showed that by utilizing an expansion basis the response PDF

can be approximated with satisfactory accuracy.

In the present thesis, substantial developments have been made concerning the range

of problems that the WPI technique can address, its computational efficiency, as well as

the related accuracy for determining in a reliable manner the response statistics of complex

stochastic dynamical systems.

As explained in Chapters 1 and 3 the need for increasingly sophisticated modeling of

excitations has led recently to the use of fractional-order filters for describing stochastic loads

acting on structural systems. To enhance the versatility of the technique and address the need

for response determination of nonlinear oscillators subject to stochastic excitations modeled

via fractional-order filters, an extended WPI technique has been proposed in Chapter 3.

In this regard, the original problem of solving a system of coupled multi-term fractional

SDEs degenerates either to a set of deterministic fractional BVPs or to a set of deterministic

fractional-order optimal control problems.

Further, as explained in Section 2.4.3, even with the enhancement in computational

efficiency proposed by Kougioumtzoglou et al. [104], the computational cost of the tech-

nique is given as a power-law function of the number of stochastic dimensions and thus,

restricts the applicability of the methodology to relatively low dimensional systems. To

address this issue, several enhancements have been proposed in Chapter 4 that render the
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WPI technique a powerful tool for determining efficiently the time-dependent joint response

PDF of high-dimensional systems. Concisely, by combining the localization properties of

the WPI technique with appropriately chosen global multi-dimensional expansion bases the

problem of obtaining the response PDF has been formulated as an approximation problem.

Therefore, following the collection of the required number of measurements, the expansion

coefficients have been determined by solving a linear system of equations; thus, yielding an

analytical expression for the joint response PDF at any point. Moreover, it has been shown

that by employing compressive sampling procedures in conjunction with group sparsity con-

cepts, the expansion coefficients can be determined by solving an optimization problem (see

Section 4.2.6), and the number of required measurements of the PDF can be reduced by

potentially several orders of magnitude. More importantly, it has been shown that this en-

hancement in computational efficiency becomes more prevalent as the number of stochastic

dimensions increases; thus, rendering the herein proposed sparse representation approach

indispensable, especially for high-dimensional systems.

Next, a novel WPI-based technique has been developed in Chapter 5 by resorting to

functional series expansions and a quadratic approximation. In this regard, following a

functional series expansion of the stochastic action (see Sections 2.3 and 5.2) higher-order

terms are accounted for, which is equivalent to considering not only the most probable

path but also for fluctuations around it. These fluctuations are incorporated into a state-

dependent factor by which the exponential part of each PDF value is multiplied; a factor that

is considered common across states and is obtained by the normalization condition of the

PDF within the most probable path context. As a consequence, the accuracy exhibited by

the developed technique is superior to that exhibited by the most probable path approach.

Further, the fact that the fluctuation factor can be separately calculated for each state (i.e.,

for each PDF point) allows for reliability assessment of the oscillator without possessing the

complete transition PDF (see Section 5.5).

Overall, the developments in this thesis have increased significantly the versatility, com-
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putational efficiency and accuracy of the WPI technique, and have rendered it a potent tool

for determining, with a minimal computational cost, the stochastic response of nonlinear

oscillators subject to an extended range of excitation processes. Several numerical examples

relating to both nonlinear dynamical systems subject to external excitations and a special

class of engineering mechanics problems with stochastic media properties have been con-

sidered for assessing the reliability of the developed techniques. In all cases, the degree of

accuracy and the computational efficiency exhibited has been compared with pertinent MCS

data.

6.2 Suggestions for future research

As explained in Chapter 1 a wide range of problems (e.g., in engineering mechanics) are

governed by SDEs with stochasticity embedded in the mathematical operator describing

the system properties. Further, in other problems, the external excitation is modeled via

operators whose input is a combination of stochastic processes and responses of filters subject

to stochastic excitations (see also Chapter 3). In this context, a significant extension to

the class of problems that the WPI technique can address relates to considering cases for

which the stochasticity cannot be uncoupled by the response of the system. Based also

on the computational efficiency and accuracy enhancements presented in this thesis, such

an extension is anticipated to further increase the range of application areas of the WPI

technique.

In terms of rendering the approximation schemes of Chapter 4 even more reliable, indica-

tive future work pertains to exploring alternative sparse expansion bases for representing the

time-dependent response PDF of nonlinear systems. Clearly, the performance of expansions

in approximating the response PDF is, in general, problem-dependent, and thus, it can be

argued that a thorough study regarding the suitability of the various expansion bases for

addressing each distinct problem is required. Moreover, by exploring alternative sparse bases
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the associated computational cost can be potentially reduced even further as compared to

the developments of Chapter 4. In this regard, the recently developed and promising tool of

dictionary learning, which given a set of measurements of the function to be approximated

determines the optimal basis for representing that function, may be coupled with the WPI

technique and the approximation schemes of Chapter 4.

Further, pertaining to the accuracy enhancement proposed in Chapter 5 by utilizing a

quadratic approximation, a potential future development relates to exploring higher-order

approximations in the functional series expansion. Although, as described in Section 5.2, the

contributions of these higher-order terms are significantly smaller than the most probable

path and the quadratic terms, such an enhancement is anticipated to improve significantly the

accuracy of the technique for addressing stochastic systems with rather complex PDF shapes.

Finally, indicative future work with important practical implications relates to developing

a WPI-based technique for determining the PDF of the first time that the response of an

oscillator reaches, and possibly crosses, a predetermined level; i.e., for determining the first-

passage time PDF.
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