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Preface

The aim of this book is to present a broad overview of the theory and applications
related to functional calculus. The book is based on two main subject areas: matrix
calculus and applications of Hilbert spaces.

Functional analysis is the most important branch of mathematics, whose founda-
tion was laid by the great Persian polymath Muhammad ibn Mūsā al-Khwārizmī,
also known as Algorithmi, during 973–1048. He named this branch the “Theory of
Functions.” Later, Newton and  Leibnitz enriched this branch by introducing the
concept of derivatives  and integrals during 1665–1742 and thus gave birth to another
name: calculus. This branch of mathematics has been recently divided into several
subbranches, including differential calculus, integral calculus, stochastic calculus,
etc. In mathematics, a functional calculus is a theory that permits someone to apply
mathematical functions to mathematical operators. Now, functional calculus is a
branch that connects operator theory, classical calculus, algebra, and functional
analysis. In daily life, functionals are increasingly used to  model real-world situ-
ations, for example if f: R→R is real valued functional from  real to real number
system. If we apply f on some function x∈R, then f(x) makes no sense but if we write
it in equation form, then it makes sense, e.g. f(x)= x, which represents a physical
process between two quantities such that there is direct proportionality. Similar
problems occur daily in our surroundings. Therefore, it is necessary to understand
what criteria should be satisfied by concerned functionals and operators used in
modeling or in the description of daily life problems. It is functional calculus that
guides and provides us with the path to how, when, and where particular functionals
and operators may be used. Mostly, integral and differential equations are used when
we wish to solve a technique or procedure that converts the mentioned equations
into algebraic equations of known and unknown functions and functionals.  Keeping
these needs in mind, the editor of this book has been motivated to welcome interna-
tional mathematicians and researchers to contribute various topics that address the
areas of functional calculus and its applications in both pure and applied analysis.
The editor has incorporated contributions from a diverse group of leading
researchers in the field of functional calculus. This book aims to provide an overview
of the present knowledge that addresses applications and results related to functional
calculus. The main topics covered in this book are determinantal representations of
the core inverse and its generalizations, which provides a foundation to solve matrix
equations. Furthermore, new series formulae for matrix exponential series have been
developed, which are used in solving algebraic equations. Also covered are results on
fixed point theory, which is used for mapping the satisfying condition (DA) in Banach
space. Results that address folding on chaotic graph operations and their fundamental
groups are also introduced. Such  algebraic structures are largely used in biology
and chemistry. Elsewhere in the book,  a brief review is considered of Hilbert space
with its fundamental features and features of reproducing kernels in correspond-
ing spaces. Spectral theory is an important area that is most applicable in quantum
mechanics. Therefore, a number of fundamental concepts have been investigated
regarding analytical applications and observations of PM10 fluctuations. Optimal
control is a very important procedure, which is increasingly used in the study of
mathematical models of real-world problems. It is helpful in developing future
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predictions and control strategies of infectious diseases. Analytic and numerical 
results of the Euler–Bernoulli beam model with a two-parameter family of boundary 
conditions are also presented, where Chebyshev polynomial approximation has been 
used to approximate the solution.  In recent times, fractional calculus has attracted 
great attention. Results on fractional integral inequalities are investigated. By using 
the principle of functional calculus, numerical analysis for boundary value problems 
of fractional differential equations are studied in the final chapter.

The theory of Hilbert spaces is the center around which functional analysis has 
developed. Hilbert spaces have a rich geometric nature as they are endowed with an 
inner product that permits the concept of orthogonality of vectors. Hilbert space 
methods are applied to several science and engineering areas such as optimization, 
variational and control problems, and to problems in approximation theory, nonlin-
ear stability, and bifurcation as well as spectral theory and quantum mechanics. That 
is why a part of the book is devoted to a brief presentation and applications of Hilbert 
spaces. For the reader who has no previous experience in the theory of normed spaces 
with enough background for comprehending the theory of Hilbert spaces, there two 
chapters based on these topics in the book. An important application of the theory of 
Hilbert spaces to the reproducing kernels is also analyzed in this part. Spectral theory 
is an important area which is most applicable in quantum mechanics. In this content, 
a real-life application of Hilbert space where an investigation of the pollution and 
air quality in Caribbean region by the help of theoretical Hilbert frame aspect is also 
provided. Here some observations of PM10 fluctuations are analyzed by scaling and 
time-frequency properties of PM10 data in Hilbert frame and compared the func-
tioning obtained in Hilbert space. Optimal control is also very important procedure 
which is increasingly used in study of mathematical models of real world problems. It 
is helpful in developing future predictions and control strategies of infectious disease. 
In this issue, analytic and numerical results of the Euler-Bernoulli beam model with a 
two-parameter family of boundary conditions have been presented where Chebyshev 
polynomial approximation has been used to approximate the solution.

We hope that this book will be of benefit to mathematicians, computational 
mathematicians, applied mathematicians, and researchers in the field of pure 
mathematics as well as in analysis. The book is written basically for those who have 
some knowledge of classical calculus and mathematical analysis. The authors of 
each section convey a strong emphasis on theoretical foundations.
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Chapter 1

Determinantal Representations
of the Core Inverse and Its
Generalizations
Ivan I. Kyrchei

Abstract

Generalized inverse matrices are important objects in matrix theory. In particu-
lar, they are useful tools in solving matrix equations. The most famous generalized
inverses are the Moore-Penrose inverse and the Drazin inverse. Recently, it was
introduced new generalized inverse matrix, namely the core inverse, which was late
extended to the core-EP inverse, the BT, DMP, and CMP inverses. In contrast to
the inverse matrix that has a definitely determinantal representation in terms of
cofactors, even for basic generalized inverses, there exist different determinantal
representations as a result of the search of their more applicable explicit expres-
sions. In this chapter, we give new and exclusive determinantal representations of
the core inverse and its generalizations by using determinantal representations
of the Moore-Penrose and Drazin inverses previously obtained by the author.

Keywords: Moore-Penrose inverse, Drazin inverse, core inverse, core-EP inverse,
2000 AMS subject classifications: 15A15, 16W10

1. Introduction

In the whole chapter, the notations  and  are reserved for fields of the real and
complex numbers, respectively. m�n stands for the set of all m� n matrices over
. m�n

r determines its subset of matrices with a rank r. For A∈m�n, the symbols
A ∗ and rk Að Þ specify the conjugate transpose and the rank of A, respectively, ∣A∣ or
detA stands for its determinant. A matrix A∈n�n is Hermitian if A ∗ ¼ A.

A† means the Moore-Penrose inverse of A∈n�m, i.e., the exclusive matrix X
satisfying the following four equations:

AXA ¼ A (1)

XAX ¼ X (2)

AXð Þ ∗ ¼ AX (3)

XAð Þ ∗ ¼ XA (4)

For A∈n�n with index IndA ¼ k, i.e., the smallest positive number such that

rk Akþ1
� �

¼ rk Ak
� �

, the Drazin inverse of A, denoted by Ad, is called the unique

matrix X that satisfies Eq. (2) and the following equations,

1



Chapter 1

Determinantal Representations
of the Core Inverse and Its
Generalizations
Ivan I. Kyrchei

Abstract

Generalized inverse matrices are important objects in matrix theory. In particu-
lar, they are useful tools in solving matrix equations. The most famous generalized
inverses are the Moore-Penrose inverse and the Drazin inverse. Recently, it was
introduced new generalized inverse matrix, namely the core inverse, which was late
extended to the core-EP inverse, the BT, DMP, and CMP inverses. In contrast to
the inverse matrix that has a definitely determinantal representation in terms of
cofactors, even for basic generalized inverses, there exist different determinantal
representations as a result of the search of their more applicable explicit expres-
sions. In this chapter, we give new and exclusive determinantal representations of
the core inverse and its generalizations by using determinantal representations
of the Moore-Penrose and Drazin inverses previously obtained by the author.

Keywords: Moore-Penrose inverse, Drazin inverse, core inverse, core-EP inverse,
2000 AMS subject classifications: 15A15, 16W10

1. Introduction

In the whole chapter, the notations  and  are reserved for fields of the real and
complex numbers, respectively. m�n stands for the set of all m� n matrices over
. m�n

r determines its subset of matrices with a rank r. For A∈m�n, the symbols
A ∗ and rk Að Þ specify the conjugate transpose and the rank of A, respectively, ∣A∣ or
detA stands for its determinant. A matrix A∈n�n is Hermitian if A ∗ ¼ A.

A† means the Moore-Penrose inverse of A∈n�m, i.e., the exclusive matrix X
satisfying the following four equations:

AXA ¼ A (1)

XAX ¼ X (2)

AXð Þ ∗ ¼ AX (3)

XAð Þ ∗ ¼ XA (4)

For A∈n�n with index IndA ¼ k, i.e., the smallest positive number such that

rk Akþ1
� �

¼ rk Ak
� �

, the Drazin inverse of A, denoted by Ad, is called the unique

matrix X that satisfies Eq. (2) and the following equations,

1



AX ¼ XA; (5)

XAkþ1 ¼ Ak (6)

Akþ1X ¼ Ak: (7)

In particular, if IndA ¼ 1, then the matrix X is called the group inverse, and
it is denoted by X ¼ A#. If IndA ¼ 0, then A is nonsingular and Ad ¼ A† ¼ A�1.

It is evident that if the condition (5) is fulfilled, then (6) and (7) are equivalent.
We put both these conditions because they will be used below independently of
each other and without the obligatory fulfillment of (5).

A matrix A satisfying the conditions ið Þ, jð Þ,… is called an i, j,…f g-inverse of A,
and is denoted by A i, j,…ð Þ. The set of matrices A i, j,…ð Þ is denoted A i, j,…f g. In
particular, A 1ð Þ is called the inner inverse, A 2ð Þ is called the outer inverse, A 1,2ð Þ is
called the reflexive inverse, A 1,2,3,4ð Þ is the Moore-Penrose inverse, etc.

For an arbitrary matrix A∈m�n, we denote by

• N Að Þ ¼ x∈n�1 : Ax ¼ 0
� �

, the kernel (or the null space) of A;

• C Að Þ ¼ y∈m�1 : y ¼ Ax,x∈n�1� �
, the column space (or the range space)

of A; and

• R Að Þ ¼ y∈1�n : y ¼ xA,x∈1�m� �
, the row space of A.

PA ≔AA† and QA ≔A†A are the orthogonal projectors onto the range of A and
the range of A ∗, respectively.

The core inverse was introduced by Baksalary and Trenkler in [1]. Later, it
was investigated by S. Malik in [2] and S.Z. Xu et al. in [3], among others.

Definition 1.1. [1] A matrix X∈n�n is called the core inverse of A∈n�n if it
satisfies the conditions

AX ¼ PA, and C Xð Þ ¼ C Að Þ:

When such matrix X exists, it is denoted as A○#.
In 2014, the core inverse was extended to the core-EP inverse defined by K.

Manjunatha Prasad and K.S. Mohana [4]. Other generalizations of the core inverse
were recently introduced for n� n complex matrices, namely BT inverses [5], DMP
inverses [2], CMP inverses [6], etc. The characterizations, computing methods,
and some applications of the core inverse and its generalizations were recently
investigated in complex matrices and rings (see, e.g., [7–18]).

In contrast to the inverse matrix that has a definitely determinantal
representation in terms of cofactors, for generalized inverse matrices, there exist
different determinantal representations as a result of the search of their more
applicable explicit expressions (see, e.g. [19–25]). In this chapter, we get new
determinantal representations of the core inverse and its generalizations using
recently obtained by the author determinantal representations of the Moore-
Penrose inverse and the Drazin inverse over the quaternion skew field, and over the
field of complex numbers as a special case [26–34]. Note that a determinantal
representation of the core-EP generalized inverse in complex matrices has been
derived in [4], based on the determinantal representation of an reflexive inverse
obtained in [19, 20].

The chapter is organized as follows: in Section 2, we start with preliminary
introduction of determinantal representations of the Moore-Penrose inverse and the

2
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Drazin inverse. In Section 3, we give determinantal representations of the core
inverse and its generalizations, namely the right and left core inverses are
established in Section 3.1, the core-EP inverses in Section 3.2, the core DMP inverse
and its dual in Section 3.3, and finally the CMP inverse in Section 3.4. A numerical
example to illustrate the main results is considered in Section 4. Finally, in Section 5,
the conclusions are drawn.

2. Preliminaries

Let α≔ α1,…, αkf g⊆ 1,…,mf g and β≔ β1,…, βkf g⊆ 1,…, nf g be subsets with
1≤ k≤ min m, nf g. By Aα

β, we denote a submatrix of A∈m�n with rows and
columns indexed by α and β, respectively. Then, Aα

α is a principal submatrix of A
with rows and columns indexed by α, and Aj jαα is the corresponding principal minor
of the determinant ∣A∣. Suppose that

Lk,n ≔ α : α ¼ α1,…, αkð Þ, 1≤ α1 <⋯< αk ≤ nf g

stands for the collection of strictly increasing sequences of 1≤ k≤ n integers
chosen from 1,…, nf g. For fixed i∈ α and j∈ β, put Ir,m if g≔ α : α∈Lr,m, i∈ αf g and
Jr,n jf g≔ β : β∈Lr,n, j∈ βf g.

The jth columns and the ith rows of A and A ∗ denote a: j and a ∗
: j and ai: and a ∗

i:,
respectively. By Ai: bð Þ and A: j cð Þ, we denote the matrices obtained from A by
replacing its ith row with the row b, and its jth column with the column c.

Theorem 2.1. [28] If A∈m�n
r , then the Moore-Penrose inverse A† ¼ a†ij

� �
∈n�m

possesses the determinantal representations

a†ij ¼
P

β∈ Jr,n if g A ∗Að Þ:i a ∗
: j

� ����
���
β

βP
β∈ Jr,n

A ∗Aj jββ
¼ (8)

¼
P

α∈ Ir,m jf g AA ∗ð Þ j: a ∗
i:

� ����
���
α

αP
α∈ Ir,m AA ∗j jαα

: (9)

Remark 2.2. For an arbitrary full-rank matrix A∈m�n
r , a row vector b∈1�m,

and a column-vector c∈n�1, we put, respectively,

AA ∗ð Þi: bð Þ�� �� ¼
X

α∈ Im,m if g
AA ∗ð Þi: bð Þ�� ��α

α
, i ¼ 1,…,m,

AA ∗j j ¼
X

α∈ Im,m

AA ∗j jαα, when r ¼ m;

A ∗Að Þ: j cð Þ
���

��� ¼
X

β∈ Jn,n jf g
A ∗Að Þ: j cð Þ
���

���
β

β
, j ¼ 1,…, n,

A ∗Aj j ¼
X
β∈ Jn,n

A ∗Aj jββ, when r ¼ n:

Corollary 2.3. [21] LetA∈m�n
r . Then, the following determinantal representations

can be obtained

3
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the range of A ∗, respectively.

The core inverse was introduced by Baksalary and Trenkler in [1]. Later, it
was investigated by S. Malik in [2] and S.Z. Xu et al. in [3], among others.

Definition 1.1. [1] A matrix X∈n�n is called the core inverse of A∈n�n if it
satisfies the conditions

AX ¼ PA, and C Xð Þ ¼ C Að Þ:

When such matrix X exists, it is denoted as A○#.
In 2014, the core inverse was extended to the core-EP inverse defined by K.

Manjunatha Prasad and K.S. Mohana [4]. Other generalizations of the core inverse
were recently introduced for n� n complex matrices, namely BT inverses [5], DMP
inverses [2], CMP inverses [6], etc. The characterizations, computing methods,
and some applications of the core inverse and its generalizations were recently
investigated in complex matrices and rings (see, e.g., [7–18]).

In contrast to the inverse matrix that has a definitely determinantal
representation in terms of cofactors, for generalized inverse matrices, there exist
different determinantal representations as a result of the search of their more
applicable explicit expressions (see, e.g. [19–25]). In this chapter, we get new
determinantal representations of the core inverse and its generalizations using
recently obtained by the author determinantal representations of the Moore-
Penrose inverse and the Drazin inverse over the quaternion skew field, and over the
field of complex numbers as a special case [26–34]. Note that a determinantal
representation of the core-EP generalized inverse in complex matrices has been
derived in [4], based on the determinantal representation of an reflexive inverse
obtained in [19, 20].

The chapter is organized as follows: in Section 2, we start with preliminary
introduction of determinantal representations of the Moore-Penrose inverse and the
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Drazin inverse. In Section 3, we give determinantal representations of the core
inverse and its generalizations, namely the right and left core inverses are
established in Section 3.1, the core-EP inverses in Section 3.2, the core DMP inverse
and its dual in Section 3.3, and finally the CMP inverse in Section 3.4. A numerical
example to illustrate the main results is considered in Section 4. Finally, in Section 5,
the conclusions are drawn.

2. Preliminaries

Let α≔ α1,…, αkf g⊆ 1,…,mf g and β≔ β1,…, βkf g⊆ 1,…, nf g be subsets with
1≤ k≤ min m, nf g. By Aα

β, we denote a submatrix of A∈m�n with rows and
columns indexed by α and β, respectively. Then, Aα

α is a principal submatrix of A
with rows and columns indexed by α, and Aj jαα is the corresponding principal minor
of the determinant ∣A∣. Suppose that

Lk,n ≔ α : α ¼ α1,…, αkð Þ, 1≤ α1 <⋯< αk ≤ nf g

stands for the collection of strictly increasing sequences of 1≤ k≤ n integers
chosen from 1,…, nf g. For fixed i∈ α and j∈ β, put Ir,m if g≔ α : α∈Lr,m, i∈ αf g and
Jr,n jf g≔ β : β∈Lr,n, j∈ βf g.

The jth columns and the ith rows of A and A ∗ denote a: j and a ∗
: j and ai: and a ∗

i:,
respectively. By Ai: bð Þ and A: j cð Þ, we denote the matrices obtained from A by
replacing its ith row with the row b, and its jth column with the column c.

Theorem 2.1. [28] If A∈m�n
r , then the Moore-Penrose inverse A† ¼ a†ij

� �
∈n�m

possesses the determinantal representations

a†ij ¼
P

β∈ Jr,n if g A ∗Að Þ:i a ∗
: j

� ����
���
β

βP
β∈ Jr,n

A ∗Aj jββ
¼ (8)

¼
P

α∈ Ir,m jf g AA ∗ð Þ j: a ∗
i:

� ����
���
α

αP
α∈ Ir,m AA ∗j jαα

: (9)

Remark 2.2. For an arbitrary full-rank matrix A∈m�n
r , a row vector b∈1�m,

and a column-vector c∈n�1, we put, respectively,

AA ∗ð Þi: bð Þ�� �� ¼
X

α∈ Im,m if g
AA ∗ð Þi: bð Þ�� ��α

α
, i ¼ 1,…,m,

AA ∗j j ¼
X

α∈ Im,m

AA ∗j jαα, when r ¼ m;

A ∗Að Þ: j cð Þ
���

��� ¼
X

β∈ Jn,n jf g
A ∗Að Þ: j cð Þ
���

���
β

β
, j ¼ 1,…, n,

A ∗Aj j ¼
X
β∈ Jn,n

A ∗Aj jββ, when r ¼ n:

Corollary 2.3. [21] LetA∈m�n
r . Then, the following determinantal representations

can be obtained
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i. for the projector QA ¼ qij
� �

n�n
,

qij ¼
P

β∈ Jr,n if g A ∗Að Þ:i _a: j
� ��� ��β

βP
β∈ Jr,n

A ∗Aj jββ
¼
P

α∈ Ir,n jf g A ∗Að Þ j: _ai:ð Þ
���

���
α

αP
α∈ Ir,n A

∗Aj jαα
, (10)

where _a: j is the jth column and _ai: is the ith row of A ∗A; and

ii. for the projector PA ¼ pij
� �

m�m
,

pij ¼
P

α∈ Ir,m jf g AA ∗ð Þ j: €ai:ð Þ
���

���
α

αP
α∈ Ir,m AA ∗j jαα

¼
P

β∈ Jr,m if g AA ∗ð Þ:i €a: j
� ��� ��β

βP
β∈ Jr,m

AA ∗j jββ
, (11)

where €ai: is the ith row and €a: j is the jth column of AA ∗ .
The following lemma gives determinantal representations of the Drazin inverse

in complex matrices.
Lemma 2.4. [21] Let A∈n�n with IndA ¼ k and rkAkþ1 ¼ rkAk ¼ r. Then, the

determinantal representations of the Drazin inverse Ad ¼ adij
� �

∈n�n are

adij ¼
P

β∈ Jr,n if g Akþ1
� �

:i
a kð Þ
: j

� ����
���
β

βP
β∈ Jr,n

Akþ1
�� ��β

β

¼ (12)

¼
P

α∈ Ir,n jf g Akþ1
� �

j:
a kð Þ
i:

� �����
����
α

αP
α∈ Ir,n Akþ1

�� ��α
α

, (13)

where a kð Þ
i: is the ith row and a kð Þ

: j is the jth column of Ak.

Corollary 2.5. [21] Let A∈n�n with IndA ¼ 1 and rkA2 ¼ rkA ¼ r. Then, the

determinantal representations of the group inverse A# ¼ a#ij
� �

∈n�n are

a#ij ¼
P

β∈ Jr,n if g A2� �
:i a: j
� ��� ��β

βP
β∈ Jr,n

A2
�� ��β

β

¼
P

α∈ Ir,n jf g A2� �
j: ai:ð Þ

���
���
α

αP
α∈ Ir,n A2

�� ��α
α

: (14)

3. Determinantal representations of the core inverse and its
generalizations

3.1 Determinantal representations of the core inverses

Together with the core inverse in [35], the dual core inverse was to be intro-
duced. Since the both these core inverses are equipollent and they are different only
in the position relative to the inducting matrix A, we propose called them as the
right and left core inverses regarding to their positions. So, from [1], we have the
following definition that is equivalent to Definition 1.1.
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Definition 3.1. A matrix X∈n�n is said to be the right core inverse of A∈n�n

if it satisfies the conditions

AX ¼ PA, and C Xð Þ ¼ C Að Þ:

When such matrix X exists, it is denoted as A○#.
The following definition of the left core inverse can be given that is equivalent to

the introduced dual core inverse [35].
Definition 3.2 A matrix X∈n�n is said to be the left core inverse of A∈n�n if

it satisfies the conditions

XA ¼ QA, and R Xð Þ ¼ R Að Þ: (15)

When such matrix X exists, it is denoted as A○#.
Remark 3.3. In [35], the conditions of the dual core inverse are given as follows:

A○#A ¼ PA ∗ , and C A○#ð Þ⊆C A ∗ð Þ:

Since PA ∗ ¼ A ∗ A ∗ð Þ† ¼ A†A
� � ∗ ¼ A†A ¼ QA, and R Að Þ ¼ C A ∗ð Þ, then these

conditions and (15) are analogous.
Due to [1], we introduce the following sets of quaternion matrices

CM
n ¼ A∈n�n : rkA2 ¼ rkA

� �
,

EP
n ¼ A∈n�n : A†A ¼ AA†

� � ¼ C Að Þ ¼ C A ∗ð Þf g:

The matrices from CM
n are called group matrices or core matrices. If A∈EP

n ,
then clearly A† ¼ A#. It is known that the core inverses of A∈n�n exist if and only
if A∈CM

n or IndA ¼ 1. Moreover, if A is nonsingular, IndA ¼ 0, then its core
inverses are the usual inverse. Due to [1], we have the following representations of
the right and left core inverses.

Lemma 3.4. [1] Let A∈CM
n . Then,

A○# ¼ A#AA†, (16)

A○# ¼ A†AA# (17)

Remark 3.5. In Theorems 3.6 and 3.7, we will suppose that A∈CM
n but

A ∉ EP
n . Because, ifA∈CM

n andA∈EP
n (in particular,A is Hermitian), then from

Lemma 3.4 and the definitions of the Moore-Penrose and group inverses, it follows
that A○# ¼ A○# ¼ A# ¼ A†.

Theorem 3.6. Let A∈CM
n and rkA2 ¼ rkA ¼ s. Then, its right core inverse has the

following determinantal representations

a○#,rij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

αP
β∈ Js,n

A2
�� ��β

β

P
α∈ Is,n AA ∗j jαα

¼ (18)

¼
P

β∈ Js,n if g A2� �
:i u 2ð Þ

: j

� ����
���
β

βP
β∈ Js,n

A2
�� ��β

β

P
α∈ Is,n AA ∗j jαα

, (19)

5

Determinantal Representations of the Core Inverse and Its Generalizations
DOI: http://dx.doi.org/10.5772/intechopen.89341



i. for the projector QA ¼ qij
� �

n�n
,

qij ¼
P

β∈ Jr,n if g A ∗Að Þ:i _a: j
� ��� ��β

βP
β∈ Jr,n

A ∗Aj jββ
¼
P

α∈ Ir,n jf g A ∗Að Þ j: _ai:ð Þ
���

���
α

αP
α∈ Ir,n A

∗Aj jαα
, (10)

where _a: j is the jth column and _ai: is the ith row of A ∗A; and

ii. for the projector PA ¼ pij
� �

m�m
,

pij ¼
P

α∈ Ir,m jf g AA ∗ð Þ j: €ai:ð Þ
���

���
α

αP
α∈ Ir,m AA ∗j jαα

¼
P

β∈ Jr,m if g AA ∗ð Þ:i €a: j
� ��� ��β

βP
β∈ Jr,m

AA ∗j jββ
, (11)

where €ai: is the ith row and €a: j is the jth column of AA ∗ .
The following lemma gives determinantal representations of the Drazin inverse

in complex matrices.
Lemma 2.4. [21] Let A∈n�n with IndA ¼ k and rkAkþ1 ¼ rkAk ¼ r. Then, the

determinantal representations of the Drazin inverse Ad ¼ adij
� �

∈n�n are

adij ¼
P

β∈ Jr,n if g Akþ1
� �

:i
a kð Þ
: j

� ����
���
β

βP
β∈ Jr,n

Akþ1
�� ��β

β

¼ (12)

¼
P

α∈ Ir,n jf g Akþ1
� �

j:
a kð Þ
i:

� �����
����
α

αP
α∈ Ir,n Akþ1

�� ��α
α

, (13)

where a kð Þ
i: is the ith row and a kð Þ

: j is the jth column of Ak.

Corollary 2.5. [21] Let A∈n�n with IndA ¼ 1 and rkA2 ¼ rkA ¼ r. Then, the

determinantal representations of the group inverse A# ¼ a#ij
� �

∈n�n are

a#ij ¼
P

β∈ Jr,n if g A2� �
:i a: j
� ��� ��β

βP
β∈ Jr,n

A2
�� ��β

β

¼
P

α∈ Ir,n jf g A2� �
j: ai:ð Þ

���
���
α

αP
α∈ Ir,n A2

�� ��α
α

: (14)

3. Determinantal representations of the core inverse and its
generalizations

3.1 Determinantal representations of the core inverses

Together with the core inverse in [35], the dual core inverse was to be intro-
duced. Since the both these core inverses are equipollent and they are different only
in the position relative to the inducting matrix A, we propose called them as the
right and left core inverses regarding to their positions. So, from [1], we have the
following definition that is equivalent to Definition 1.1.
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Definition 3.1. A matrix X∈n�n is said to be the right core inverse of A∈n�n

if it satisfies the conditions

AX ¼ PA, and C Xð Þ ¼ C Að Þ:

When such matrix X exists, it is denoted as A○#.
The following definition of the left core inverse can be given that is equivalent to

the introduced dual core inverse [35].
Definition 3.2 A matrix X∈n�n is said to be the left core inverse of A∈n�n if

it satisfies the conditions

XA ¼ QA, and R Xð Þ ¼ R Að Þ: (15)

When such matrix X exists, it is denoted as A○#.
Remark 3.3. In [35], the conditions of the dual core inverse are given as follows:

A○#A ¼ PA ∗ , and C A○#ð Þ⊆C A ∗ð Þ:

Since PA ∗ ¼ A ∗ A ∗ð Þ† ¼ A†A
� � ∗ ¼ A†A ¼ QA, and R Að Þ ¼ C A ∗ð Þ, then these

conditions and (15) are analogous.
Due to [1], we introduce the following sets of quaternion matrices

CM
n ¼ A∈n�n : rkA2 ¼ rkA

� �
,

EP
n ¼ A∈n�n : A†A ¼ AA†

� � ¼ C Að Þ ¼ C A ∗ð Þf g:

The matrices from CM
n are called group matrices or core matrices. If A∈EP

n ,
then clearly A† ¼ A#. It is known that the core inverses of A∈n�n exist if and only
if A∈CM

n or IndA ¼ 1. Moreover, if A is nonsingular, IndA ¼ 0, then its core
inverses are the usual inverse. Due to [1], we have the following representations of
the right and left core inverses.

Lemma 3.4. [1] Let A∈CM
n . Then,

A○# ¼ A#AA†, (16)

A○# ¼ A†AA# (17)

Remark 3.5. In Theorems 3.6 and 3.7, we will suppose that A∈CM
n but

A ∉ EP
n . Because, ifA∈CM

n andA∈EP
n (in particular,A is Hermitian), then from

Lemma 3.4 and the definitions of the Moore-Penrose and group inverses, it follows
that A○# ¼ A○# ¼ A# ¼ A†.

Theorem 3.6. Let A∈CM
n and rkA2 ¼ rkA ¼ s. Then, its right core inverse has the

following determinantal representations

a○#,rij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

αP
β∈ Js,n

A2
�� ��β

β

P
α∈ Is,n AA ∗j jαα

¼ (18)

¼
P

β∈ Js,n if g A2� �
:i u 2ð Þ

: j

� ����
���
β

βP
β∈ Js,n

A2
�� ��β

β

P
α∈ Is,n AA ∗j jαα

, (19)
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where

u 1ð Þ
i: ¼

X
β∈ Js,n if g

A2� �
:i ~a:f
� ��� ��β

β

2
4

3
5∈1�n, f ¼ 1,…, n

u 2ð Þ
: j ¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
���

���
α

α

2
4

3
5∈n�1, l ¼ 1,…, n:

are the row and column vectors, respectively. Here ~a:f and ~al: are the fth column

and lth row of ~A≔A2A ∗ .
Proof. Taking into account (16), we have for #A,

a#,rij ¼
Xn

l¼1

Xn

f¼1

a#ilalf a
†
fj: (20)

By substituting (14) and (15) in (20), we obtain

a#,rij ¼
Xn

l¼1

Pn
f¼1
P

β∈ Js,n if g A2� �
:i a:f
� ��� ��β

β
afl

P
β∈ Js,n

A2
�� ��β

β

P
α∈ Is,n jf g AA ∗ð Þ j: a ∗

l:

� ����
���
α

αP
α∈ Is,n AA ∗j jαα

¼

Pn
f¼1
Pn

l¼1
P

β∈ Js,n jf g A2� �
: j e:f
� ����

���
β

β
~afl
P

α∈ Is,n jf g AA ∗ð Þ j: el:ð Þ
���

���
α

αP
β∈ Js,n

A2
�� ��β

β

P
α∈ Is,n AA ∗j jαα

,

where e:l and el: are the unit column and row vectors, respectively, such that all
their components are 0, except the lth components which are 1; ~alf is the (lf)th
element of the matrix ~A≔A2A ∗ .

Let

u 1ð Þ
il ≔

Xn

f¼1

X
β∈ Js,n if g

A2� �
:i e:f
� ��� ��β

β
~afl ¼

X
β∈ Js,n if g

A2� �
:i ~a:lð Þ�� ��β

β
, i, l ¼ 1,…, n:

Construct the matrix U1 ¼ u 1ð Þ
il

� �
∈n�n. It follows that

X
l

u 1ð Þ
il

X
α∈ Is,n jf g

AA ∗ð Þ j: el:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

α
,

where u 1ð Þ
i: is the ith row of U1. So, we get (18). If we first consider

u 2ð Þ
if ≔

X
l

~afl
X

α∈ Is,n jf g
AA ∗ð Þ j: el:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~af :
� ����

���
α

α
, f , j ¼ 1,…, n:

and construct the matrix U2 ¼ u 2ð Þ
if

� �
∈n�n, then from

Xn

f¼1

X
β∈ Js,n if g

A2� �
:i e:f
� ��� ��β

β
u 2ð Þ
if ¼

X
β∈ Js,n if g

A2� �
:i u 2ð Þ

:f

� ����
���
β

β
,

it follows (19). □

6

Functional Calculus

Taking into account (17), the following theorem on the determinantal represen-
tation of the left core inverse can be proved similarly.

Theorem 3.7. Let A∈CM
n and rkA2 ¼ rkA ¼ s. Then for its left core inverse

#Að Þ ¼ a#,lij

� �
, we have

a#,lij ¼
P

α∈ Is,n jf g A2� �
j: v 1ð Þ

i:

� ����
���
α

αP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is,n A2
�� ��α

α

¼
P

β∈ Js,n if g A ∗Að Þ:i v 2ð Þ
: j

� ����
���
β

βP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is,n A2
�� ��α

α

,

where

v 1ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i a:f
� ��� ��β

β

2
4

3
5∈1�n, f ¼ 1,…, n

v 2ð Þ
: j ¼

X
α∈ Is,n jf g

A2� �
j: al:ð Þ

���
���
α

α

2
4

3
5∈n�1, l ¼ 1,…, n:

Here a:f and al: are the fth column and lth row of A≔A ∗A2.

3.2 Determinantal representations of the core-EP inverses

Similar as in [4], we introduce two core-EP inverses.
Definition 3.8. A matrix X∈n�n is said to be the right core-EP inverse of

A∈n�n if it satisfies the conditions

XAX ¼ A, and C Xð Þ ¼ C X ∗ð Þ ¼ C Ad
� �

:

It is denoted as A○†.
Definition 3.9. A matrix X∈n�n is said to be the left core-EP inverse of

A∈n�n if it satisfies the conditions

XAX ¼ A, and R Xð Þ ¼ R X ∗ð Þ ¼ R Ad
� �

:

It is denoted as A○†.

Remark 3.10. Since C A ∗ð Þd
� �

¼ R Ad
� �

, then the left core inverse A○† of

A∈n�n is similar to the ∗ core inverse introduced in [4], and the dual core-EP
inverse introduced in [35].

Due to [4], we have the following representations the core-EP inverses of
A∈n�n,

A○† ¼ A 2,3,6af g and C A○†� �
⊆ C Ak
� �

,

A○† ¼ A 2,4,6bf g and R A○†
� �

⊆R Ak
� �

:

Thanks to [35], the following representations of the core-EP inverses will be
used for their determinantal representations.
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where
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4
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and lth row of ~A≔A2A ∗ .
Proof. Taking into account (16), we have for #A,
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α
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β
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α
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,

where e:l and el: are the unit column and row vectors, respectively, such that all
their components are 0, except the lth components which are 1; ~alf is the (lf)th
element of the matrix ~A≔A2A ∗ .

Let

u 1ð Þ
il ≔

Xn

f¼1

X
β∈ Js,n if g

A2� �
:i e:f
� ��� ��β

β
~afl ¼

X
β∈ Js,n if g

A2� �
:i ~a:lð Þ�� ��β

β
, i, l ¼ 1,…, n:

Construct the matrix U1 ¼ u 1ð Þ
il

� �
∈n�n. It follows that

X
l

u 1ð Þ
il

X
α∈ Is,n jf g

AA ∗ð Þ j: el:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

α
,

where u 1ð Þ
i: is the ith row of U1. So, we get (18). If we first consider

u 2ð Þ
if ≔

X
l

~afl
X

α∈ Is,n jf g
AA ∗ð Þ j: el:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~af :
� ����

���
α

α
, f , j ¼ 1,…, n:

and construct the matrix U2 ¼ u 2ð Þ
if

� �
∈n�n, then from

Xn

f¼1

X
β∈ Js,n if g

A2� �
:i e:f
� ��� ��β

β
u 2ð Þ
if ¼

X
β∈ Js,n if g

A2� �
:i u 2ð Þ

:f

� ����
���
β

β
,

it follows (19). □
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Taking into account (17), the following theorem on the determinantal represen-
tation of the left core inverse can be proved similarly.

Theorem 3.7. Let A∈CM
n and rkA2 ¼ rkA ¼ s. Then for its left core inverse

#Að Þ ¼ a#,lij

� �
, we have

a#,lij ¼
P

α∈ Is,n jf g A2� �
j: v 1ð Þ

i:

� ����
���
α

αP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is,n A2
�� ��α

α

¼
P

β∈ Js,n if g A ∗Að Þ:i v 2ð Þ
: j

� ����
���
β

βP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is,n A2
�� ��α

α

,

where

v 1ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i a:f
� ��� ��β

β

2
4

3
5∈1�n, f ¼ 1,…, n

v 2ð Þ
: j ¼

X
α∈ Is,n jf g

A2� �
j: al:ð Þ

���
���
α

α

2
4

3
5∈n�1, l ¼ 1,…, n:

Here a:f and al: are the fth column and lth row of A≔A ∗A2.

3.2 Determinantal representations of the core-EP inverses

Similar as in [4], we introduce two core-EP inverses.
Definition 3.8. A matrix X∈n�n is said to be the right core-EP inverse of

A∈n�n if it satisfies the conditions

XAX ¼ A, and C Xð Þ ¼ C X ∗ð Þ ¼ C Ad
� �

:

It is denoted as A○†.
Definition 3.9. A matrix X∈n�n is said to be the left core-EP inverse of

A∈n�n if it satisfies the conditions

XAX ¼ A, and R Xð Þ ¼ R X ∗ð Þ ¼ R Ad
� �

:

It is denoted as A○†.

Remark 3.10. Since C A ∗ð Þd
� �

¼ R Ad
� �

, then the left core inverse A○† of

A∈n�n is similar to the ∗ core inverse introduced in [4], and the dual core-EP
inverse introduced in [35].

Due to [4], we have the following representations the core-EP inverses of
A∈n�n,

A○† ¼ A 2,3,6af g and C A○†� �
⊆ C Ak
� �

,

A○† ¼ A 2,4,6bf g and R A○†
� �

⊆R Ak
� �

:

Thanks to [35], the following representations of the core-EP inverses will be
used for their determinantal representations.
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Lemma 3.11. Let A∈n�n and IndA ¼ k. Then

A○† ¼ Ak Akþ1
� �†

, (21)

A○† ¼ Akþ1
� �†

Ak: (22)

Moreover, if IndA ¼ 1, then we have the following representations of the right
and left core inverses

A○# ¼ A A2� �†
, (23)

A○# ¼ A2� �†
A: (24)

Theorem 3.12. SupposeA∈n�n, IndA ¼ k, rkAk ¼ s, and there existA○† andA○†.

ThenA○† ¼ a○† ,rij

� �
andA○† ¼ a○† , lij

� �
possess the determinantal representations, respectively,

a○† ,rij ¼
P

α∈ Is,n jf g Akþ1 Akþ1
� � ∗� �

j:
âi:ð Þ

����
����
α

αP
α∈ Is,n Akþ1 Akþ1

� � ∗���
���
α

α

, (25)

a○† ,lij ¼
P

β∈ Js,n if g Akþ1
� � ∗

Akþ1
� �

:i
�a: j
� ����

���
β

β

P
β∈ Js,n

Akþ1
� � ∗

Akþ1
���

���
β

β

, (26)

where âi: is the ith row of Â ¼ Ak Akþ1
� � ∗

and �a: j is the jth column of

�A ¼ Akþ1
� � ∗

Ak.

Proof. Consider Akþ1
� �†

¼ a kþ1,†ð Þ
ij

� �
and Ak ¼ a kð Þ

ij

� �
. By (21),

a○† ,rij ¼
Xn
t¼1

a kð Þ
it a kþ1,†ð Þ

tj :

Taking into account (9) for the determinantal representation of Akþ1
� �†

, we get

a○† ,rij ¼
Xn
t¼1

a kð Þ
it

P
α∈ Is,n jf g Akþ1 Akþ1

� � ∗� �
j:

a kþ1, ∗ð Þ
t:

� �����
����
α

αP
α∈ Ir,m Akþ1 Akþ1

� � ∗���
���
α

α

,

where a kþ1, ∗ð Þ
t: is the tth row of Akþ1

� � ∗
. Since

Pn
t¼1a

kð Þ
it a kþ1, ∗ð Þ

t: ¼ âi:, then it

follows (25).
The determinantal representation (26) can be obtained similarly by integrating

(8) for the determinantal representation of Akþ1
� �†

in (22). □
Taking into account the representations (23)-(24), we obtain the determinantal

representations of the right and left core inverses that have more simpler expres-
sions than they are obtained in Theorems 3.6 and 3.7.
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Corollary 3.13. Let A∈n�n
s , IndA ¼ 1, and there exist A○# and A○#. Then A○# ¼

a○# ,r
ij

� �
and A○# ¼ a○# ,l

ij

� �
can be expressed as follows

a○# ,r
ij ¼

P
α∈ Is,n jf g A2 A2� � ∗� �

j:
âi:ð Þ

����
����
α

αP
α∈ Is,n A2 A2� � ∗���

���
α

α

,

a○# ,l
ij ¼

P
β∈ Js,n if g A2� � ∗

A2
� �

:i
�a: j
� ����

���
β

β

P
β∈ Js,n

A2� � ∗
A2

���
���
β

β

,

where âi: is the ith row of Â ¼ A A2� � ∗
and �a: j is the jth column of �A ¼ A2� � ∗

A.

3.3 Determinantal representations of the DMP and MPD inverses

The concept of the DMP inverse in complex matrices was introduced in [2] by S.
Malik and N. Thome.

Definition 3.14. [2] Suppose A∈n�n and IndA ¼ k. A matrix X∈n�n is said
to be the DMP inverse of A if it satisfies the conditions

XAX ¼ X,XA ¼ AdA, and AkX ¼ AkA†: (27)

It is denoted as Ad,†.
Due to [2], if an arbitrary matrix satisfies the system of Eq. (27), then it is unique

and has the following representation

Ad,† ¼ AdAA†: (28)

Theorem 3.15. Let A∈n�n
s , IndA ¼ k, and rk Ak

� �
¼ s1. Then, its DMP inverse

Ad,† ¼ ad,†ij

� �
has the following determinantal representations.

ad,†ij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

αP
β∈ Js1,n

Akþ1
�� ��β

β

P
α∈ Is,n AA ∗j jαα

¼ (29)

¼
P

β∈ Js1,n if g Akþ1
� �

:i
u 2ð Þ
: j

� ����
���
β

βP
β∈ Js1,n

Akþ1
�� ��β

β

P
β∈ Js,n

AA ∗j jββ
, (30)

where

u 1ð Þ
i: ¼

X
β∈ Js1,n if g

Akþ1
� �

:i
~a:f
� ����

���
β

β

2
4

3
5∈1�n, f ¼ 1,…, n,

u 2ð Þ
: j ¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
���

���
α

α

2
4

3
5∈n�1, l ¼ 1,…, n:

Here, ~a:f and âl: are the f th column and the lth row of ~A≔Akþ1A ∗ .

9

Determinantal Representations of the Core Inverse and Its Generalizations
DOI: http://dx.doi.org/10.5772/intechopen.89341



Lemma 3.11. Let A∈n�n and IndA ¼ k. Then

A○† ¼ Ak Akþ1
� �†

, (21)

A○† ¼ Akþ1
� �†

Ak: (22)

Moreover, if IndA ¼ 1, then we have the following representations of the right
and left core inverses

A○# ¼ A A2� �†
, (23)

A○# ¼ A2� �†
A: (24)

Theorem 3.12. SupposeA∈n�n, IndA ¼ k, rkAk ¼ s, and there existA○† andA○†.

ThenA○† ¼ a○† ,rij

� �
andA○† ¼ a○† , lij

� �
possess the determinantal representations, respectively,

a○† ,rij ¼
P

α∈ Is,n jf g Akþ1 Akþ1
� � ∗� �

j:
âi:ð Þ

����
����
α

αP
α∈ Is,n Akþ1 Akþ1

� � ∗���
���
α

α

, (25)

a○† ,lij ¼
P

β∈ Js,n if g Akþ1
� � ∗

Akþ1
� �

:i
�a: j
� ����

���
β

β

P
β∈ Js,n

Akþ1
� � ∗

Akþ1
���

���
β

β

, (26)

where âi: is the ith row of Â ¼ Ak Akþ1
� � ∗

and �a: j is the jth column of

�A ¼ Akþ1
� � ∗

Ak.

Proof. Consider Akþ1
� �†

¼ a kþ1,†ð Þ
ij

� �
and Ak ¼ a kð Þ

ij

� �
. By (21),

a○† ,rij ¼
Xn
t¼1

a kð Þ
it a kþ1,†ð Þ

tj :

Taking into account (9) for the determinantal representation of Akþ1
� �†

, we get

a○† ,rij ¼
Xn
t¼1

a kð Þ
it

P
α∈ Is,n jf g Akþ1 Akþ1

� � ∗� �
j:

a kþ1, ∗ð Þ
t:

� �����
����
α

αP
α∈ Ir,m Akþ1 Akþ1

� � ∗���
���
α

α

,

where a kþ1, ∗ð Þ
t: is the tth row of Akþ1

� � ∗
. Since

Pn
t¼1a

kð Þ
it a kþ1, ∗ð Þ

t: ¼ âi:, then it

follows (25).
The determinantal representation (26) can be obtained similarly by integrating

(8) for the determinantal representation of Akþ1
� �†

in (22). □
Taking into account the representations (23)-(24), we obtain the determinantal

representations of the right and left core inverses that have more simpler expres-
sions than they are obtained in Theorems 3.6 and 3.7.
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Corollary 3.13. Let A∈n�n
s , IndA ¼ 1, and there exist A○# and A○#. Then A○# ¼

a○# ,r
ij

� �
and A○# ¼ a○# ,l

ij

� �
can be expressed as follows

a○# ,r
ij ¼

P
α∈ Is,n jf g A2 A2� � ∗� �

j:
âi:ð Þ

����
����
α

αP
α∈ Is,n A2 A2� � ∗���

���
α

α

,

a○# ,l
ij ¼

P
β∈ Js,n if g A2� � ∗

A2
� �

:i
�a: j
� ����

���
β

β

P
β∈ Js,n

A2� � ∗
A2

���
���
β

β

,

where âi: is the ith row of Â ¼ A A2� � ∗
and �a: j is the jth column of �A ¼ A2� � ∗

A.

3.3 Determinantal representations of the DMP and MPD inverses

The concept of the DMP inverse in complex matrices was introduced in [2] by S.
Malik and N. Thome.

Definition 3.14. [2] Suppose A∈n�n and IndA ¼ k. A matrix X∈n�n is said
to be the DMP inverse of A if it satisfies the conditions

XAX ¼ X,XA ¼ AdA, and AkX ¼ AkA†: (27)

It is denoted as Ad,†.
Due to [2], if an arbitrary matrix satisfies the system of Eq. (27), then it is unique

and has the following representation

Ad,† ¼ AdAA†: (28)

Theorem 3.15. Let A∈n�n
s , IndA ¼ k, and rk Ak

� �
¼ s1. Then, its DMP inverse

Ad,† ¼ ad,†ij

� �
has the following determinantal representations.

ad,†ij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

αP
β∈ Js1,n

Akþ1
�� ��β

β

P
α∈ Is,n AA ∗j jαα

¼ (29)

¼
P

β∈ Js1,n if g Akþ1
� �

:i
u 2ð Þ
: j

� ����
���
β

βP
β∈ Js1,n

Akþ1
�� ��β

β

P
β∈ Js,n

AA ∗j jββ
, (30)

where

u 1ð Þ
i: ¼

X
β∈ Js1,n if g

Akþ1
� �

:i
~a:f
� ����

���
β

β

2
4

3
5∈1�n, f ¼ 1,…, n,

u 2ð Þ
: j ¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
���

���
α

α

2
4

3
5∈n�1, l ¼ 1,…, n:

Here, ~a:f and âl: are the f th column and the lth row of ~A≔Akþ1A ∗ .
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Proof. Taking into account (28) for Ad,†, we get

ad,†ij ¼
Xn

l¼1

Xn

f¼1

adilalf a
†
fj: (31)

By substituting (12) and (9) for the determinantal representations of Ad and A†

in (31), we get

ad,†ij ¼

Xn

l¼1

Xn

f¼1

P
β∈ Js1,n if g Akþ1

� �
:i

a kð Þ
:l

� ����
���
β

βP
β∈ Js1,n

Akþ1
�� ��β

β

alf

P
α∈ Is,n jf g AA ∗ð Þ j: a ∗

f :

� ����
���
α

αP
α∈ Is,n AA ∗j jαα

¼

Xn

l¼1

Xn

f¼1

P
β∈ Js1,n if g Akþ1

� �
:i
e:lð Þ

���
���
β

βP
β∈ Js1,n

Akþ1
�� ��β

β

~alf

P
α∈ Is,n jf g AA ∗ð Þ j: ef :

� �� ���
α

αP
α∈ Is,n AA ∗j jαα

,

(32)

where e:l and el: are the lth unit column and row vectors, and ~alf is the lfð Þth
element of the matrix ~A ¼ Akþ1A ∗ . If we put

u 1ð Þ
if ≔

Xn

l¼1

X
β∈ Js1,n if g

Akþ1
� �

:i
e:lð Þ

���
���
β

β
~alf ¼

X
β∈ Js1,n if g

Akþ1
� �

:i
~a:f
� ����

���
β

β
,

as the fth component of the row vector u 1ð Þ
i: ¼ u 1ð Þ

i1 ,…, u 1ð Þ
in

h i
, then from

Xn

f¼1

u 1ð Þ
if

X
α∈ Is,n jf g

AA ∗ð Þ j: ef :
� ����

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

α
,

it follows (29). If we initially obtain

u 2ð Þ
lj ≔

Xn

f¼1

~alf
X

α∈ Is,n jf g
AA ∗ð Þ j: ef :

� ����
���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
���

���
α

α
,

as the lth component of the column vector u 2ð Þ
: j ¼ u 2ð Þ

1 j ,…, u 2ð Þ
nj

h i
, then from

Xn

l¼1

X
β∈ Js1,n if g

Akþ1
� �

:i
e:lð Þ

���
���
β

β
u 2ð Þ
lj ¼

X
β∈ Js1,n if g

Akþ1
� �

:i
u 2ð Þ
: j

� ����
���
β

β
,

it follows (30). □
The name of the DMP inverse is in accordance with the order of using the Drazin

inverse (D) and the Moore-Penrose (MP) inverse. In that connection, it would be
logical to consider the following definition.

Definition 3.16. Suppose A∈n�n and IndA ¼ k. A matrix X∈n�n is said to
be the MPD inverse of A if it satisfies the conditions

XAX ¼ X,AX ¼ AAd, and XAk ¼ A†Ak:

It is denoted as A†,d.
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The matrix A†,d is unique, and it can be represented as

A†,d ¼ A†AAd: (33)

Theorem 3.17. Let A∈n�n
s , IndA ¼ k, and rkAk ¼ s1. Then, its MPD inverse

A†,d ¼ a†,dij

� �
has the following determinantal representations

a†,dij ¼
P

β∈ Js,n if g A ∗Að Þ:i v 1ð Þ
: j

� ����
���
β

βP
β∈ Js,n

A ∗Aj jββ
P

β∈ Is1,n
Akþ1
�� ��α

α

¼
P

α∈ Is1,n jf g Akþ1
� �

j:
v 2ð Þ
i:

� �����
����
α

αP
α∈ Is1,n

A ∗Aj jββ
P

α∈ Is,n Akþ1
�� ��α

α

,

where

v 1ð Þ
: j ¼

X
α∈ Is1,n jf g

Akþ1
� �

j:
âl:ð Þ

����
����
α

α

2
4

3
5∈n�1, l ¼ 1,…, n

v 2ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i â:f
� ��� ��β

β

2
4

3
5∈1�n, l ¼ 1,…, n:

Here, âl: and â:f are the lth row and the fth column of Â≔A ∗Akþ1.
Proof. The proof is similar to the proof of Theorem 3.15. □

3.4 Determinantal representations of the CMP inverse

Definition 3.18. [6] Suppose A∈n�n has the core-nilpotent decomposition
A ¼ A1 þA2, where IndA1 ¼ IndA, A2 is nilpotent, and A1A2 ¼ A2A1 ¼ 0. The
CMP inverse of A is called the matrix Ac,†≔A†A1A†.

Lemma 3.19. [6] Let A∈n�n. The matrix X ¼ Ac,† is the unique matrix that
satisfies the following system of equations:

XAX ¼ X,AXA ¼ A1,AX ¼ A1A†, and XA ¼ A†A1:

Moreover,

Ac,† ¼ QAA
dPA: (34)

Taking into account (34), it follows the next theorem about determinantal
representations of the quaternion CMP inverse.

Theorem 3.20. Let A∈n�n
s , IndA ¼ m, and rk Amð Þ ¼ s1. Then, the determinan-

tal representations of its CMP inverse Ac,† ¼ ac,†ij
� �

can be expressed as

ac,†ij ¼
P

β∈ Js,n if g A ∗Að Þ:i v lð Þ
: j

� ����
���
β

β

P
β∈ Js,n

A ∗Aj jββ
� �2P

β∈ Js1,n
Amþ1
�� ��β

β

(35)
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Proof. Taking into account (28) for Ad,†, we get

ad,†ij ¼
Xn

l¼1

Xn

f¼1

adilalf a
†
fj: (31)

By substituting (12) and (9) for the determinantal representations of Ad and A†

in (31), we get

ad,†ij ¼

Xn

l¼1

Xn

f¼1

P
β∈ Js1,n if g Akþ1

� �
:i

a kð Þ
:l

� ����
���
β

βP
β∈ Js1,n

Akþ1
�� ��β

β

alf

P
α∈ Is,n jf g AA ∗ð Þ j: a ∗

f :

� ����
���
α

αP
α∈ Is,n AA ∗j jαα

¼

Xn

l¼1

Xn

f¼1

P
β∈ Js1,n if g Akþ1

� �
:i
e:lð Þ

���
���
β

βP
β∈ Js1,n

Akþ1
�� ��β

β

~alf

P
α∈ Is,n jf g AA ∗ð Þ j: ef :

� �� ���
α

αP
α∈ Is,n AA ∗j jαα

,

(32)

where e:l and el: are the lth unit column and row vectors, and ~alf is the lfð Þth
element of the matrix ~A ¼ Akþ1A ∗ . If we put

u 1ð Þ
if ≔

Xn

l¼1

X
β∈ Js1,n if g

Akþ1
� �

:i
e:lð Þ

���
���
β

β
~alf ¼

X
β∈ Js1,n if g

Akþ1
� �

:i
~a:f
� ����

���
β

β
,

as the fth component of the row vector u 1ð Þ
i: ¼ u 1ð Þ

i1 ,…, u 1ð Þ
in

h i
, then from

Xn

f¼1

u 1ð Þ
if

X
α∈ Is,n jf g

AA ∗ð Þ j: ef :
� ����

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: u 1ð Þ
i:

� ����
���
α

α
,

it follows (29). If we initially obtain

u 2ð Þ
lj ≔

Xn

f¼1

~alf
X

α∈ Is,n jf g
AA ∗ð Þ j: ef :

� ����
���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~al:ð Þ
���

���
α

α
,

as the lth component of the column vector u 2ð Þ
: j ¼ u 2ð Þ

1 j ,…, u 2ð Þ
nj

h i
, then from

Xn

l¼1

X
β∈ Js1,n if g

Akþ1
� �

:i
e:lð Þ

���
���
β

β
u 2ð Þ
lj ¼

X
β∈ Js1,n if g

Akþ1
� �

:i
u 2ð Þ
: j

� ����
���
β

β
,

it follows (30). □
The name of the DMP inverse is in accordance with the order of using the Drazin

inverse (D) and the Moore-Penrose (MP) inverse. In that connection, it would be
logical to consider the following definition.

Definition 3.16. Suppose A∈n�n and IndA ¼ k. A matrix X∈n�n is said to
be the MPD inverse of A if it satisfies the conditions

XAX ¼ X,AX ¼ AAd, and XAk ¼ A†Ak:

It is denoted as A†,d.
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The matrix A†,d is unique, and it can be represented as

A†,d ¼ A†AAd: (33)

Theorem 3.17. Let A∈n�n
s , IndA ¼ k, and rkAk ¼ s1. Then, its MPD inverse

A†,d ¼ a†,dij

� �
has the following determinantal representations

a†,dij ¼
P

β∈ Js,n if g A ∗Að Þ:i v 1ð Þ
: j

� ����
���
β

βP
β∈ Js,n

A ∗Aj jββ
P

β∈ Is1,n
Akþ1
�� ��α

α

¼
P

α∈ Is1,n jf g Akþ1
� �

j:
v 2ð Þ
i:

� �����
����
α

αP
α∈ Is1,n

A ∗Aj jββ
P

α∈ Is,n Akþ1
�� ��α

α

,

where

v 1ð Þ
: j ¼

X
α∈ Is1,n jf g

Akþ1
� �

j:
âl:ð Þ

����
����
α

α

2
4

3
5∈n�1, l ¼ 1,…, n

v 2ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i â:f
� ��� ��β

β

2
4

3
5∈1�n, l ¼ 1,…, n:

Here, âl: and â:f are the lth row and the fth column of Â≔A ∗Akþ1.
Proof. The proof is similar to the proof of Theorem 3.15. □

3.4 Determinantal representations of the CMP inverse

Definition 3.18. [6] Suppose A∈n�n has the core-nilpotent decomposition
A ¼ A1 þA2, where IndA1 ¼ IndA, A2 is nilpotent, and A1A2 ¼ A2A1 ¼ 0. The
CMP inverse of A is called the matrix Ac,†≔A†A1A†.

Lemma 3.19. [6] Let A∈n�n. The matrix X ¼ Ac,† is the unique matrix that
satisfies the following system of equations:

XAX ¼ X,AXA ¼ A1,AX ¼ A1A†, and XA ¼ A†A1:

Moreover,

Ac,† ¼ QAA
dPA: (34)

Taking into account (34), it follows the next theorem about determinantal
representations of the quaternion CMP inverse.

Theorem 3.20. Let A∈n�n
s , IndA ¼ m, and rk Amð Þ ¼ s1. Then, the determinan-

tal representations of its CMP inverse Ac,† ¼ ac,†ij
� �

can be expressed as

ac,†ij ¼
P

β∈ Js,n if g A ∗Að Þ:i v lð Þ
: j

� ����
���
β

β

P
β∈ Js,n

A ∗Aj jββ
� �2P

β∈ Js1,n
Amþ1
�� ��β

β

(35)
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ac,†ij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: w lð Þ
i:

� ����
���
α

αP
α∈ Is,n AA ∗j jαα

� �2P
β∈ Js1,n

Amþ1
�� ��β

β

(36)

for all l ¼ 1, 2, where

v 1ð Þ
: j ¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ût:ð Þ
���

���
α

α

2
4

3
5∈n�1, t ¼ 1,…, n, (37)

w 1ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i û:kð Þ�� ��β
β

2
4

3
5∈1�n, k ¼ 1,…, n, (38)

v 2ð Þ
: j ¼

X
α∈ Is,n jf g

A ∗Að Þ j: ~gt:
� ����

���
α

α

2
4

3
5∈n�1, t ¼ 1,…, n, (39)

w 2ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i ~g:k
� ��� ��β

β

2
4

3
5∈1�n, k ¼ 1,…, n: (40)

Here, ût: is the tth row and û:k is the kth column of Û≔UAA ∗ , ~gt: is the tth row

and ~g:k is the kth column of ~G≔A ∗AG, and the matrices U ¼ uij
� �

∈n�n and G ¼
gij
� �

∈n�n are such that

uij ¼
X

α∈ Is1,n jf g
Amþ1� �

j: âi:ð Þ
���

���
α

α
, gij ¼

X
β∈ Js1,n if g

Amþ1� �
:i ~a: j
� ��� ��β

β
,

where âi: is the ith row of Â≔A ∗Amþ1 and ~a: j is the jth column of ~A≔Amþ1A ∗ .
Proof. Taking into account (34), we get

ac,†ij ¼
Xn

l¼1

Xn

k¼1

qAil a
d
lkp

A
kj, (41)

where QA ¼ qAil
� �

, Ad ¼ adil
� �

, and PA ¼ pAil
� �

.

a. Taking into account the expressions (13), (10), and (11) for the determinantal
representations of Ad, QA, and PA, respectively, we have

ac,†ij ¼
X
l

X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ�� ��β

βP
β∈ Js,n

A ∗Aj jββ

P
α∈ Is1,n lf g Amþ1� �

l: a mð Þ
t:

� ����
���
α

αP
α∈ Is1,n

Amþ1
�� ��α

α

P
α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ

���
���
α

αP
α∈ Is,n AA ∗j jαα

,

where _a:t is the tth column of A ∗A, €al: is the lth row of AA ∗ , and a mð Þ
t: is the tth

row of Am. So, it is clear that

ac,†ij ¼
X
l

X
t

X
k

P
β∈ Js,n if g A ∗Að Þ:i e:tð Þ�� ��β

β
âtk
P

α∈ Is1,n lf g Amþ1� �
l: ek:ð Þ�� ��α

αP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is1,n
Amþ1
�� ��α

α

P
α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ

���
���
α

αP
α∈ Is,n

AA ∗j jαα
,
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where e:t is the tth unit column vector, ek: is the kth row vector, and âtk is the
tkð Þth element of Â ¼ A ∗Amþ1.

Denote

utl ≔
X
k

âtk
X

α∈ Is1,n jf g
Amþ1� �

l: ek:ð Þ�� ��α
α
¼

X
α∈ Is1,n jf g

Amþ1� �
l: ât:ð Þ�� ��α

α
(42)

as the tth component of a column vector u:l ¼ u1l,…, unl½ �. Then from

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
utl ¼

X
β∈ Js,n if g

A ∗Að Þ:i u:lð Þ�� ��β
β
,

we have

ac,†ij ¼
X
l

P
β∈ Js,n if g A ∗Að Þ:i u:lð Þ�� ��β

β

P
α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ

���
���
α

αP
β∈ Jr,n

A ∗Aj jββ
P

α∈ Is1,n
Amþ1
�� ��α

α

P
α∈ Is,n AA ∗j jαα

:

Construct the matrix U ¼ utlð Þ∈n�n, where utl is given by (42), and denote
Û≔UAA ∗ . Then, taking into account that A ∗Aj jββ ¼ AA ∗j jαα, we have

ac,†ij ¼
P

t
P

k
P

β∈ Js,n if g A ∗Að Þ:i e:tð Þ�� ��β
β
ûtk
P

α∈ Is,n jf g AA ∗ð Þ j: ek:ð Þ
���

���
α

αP
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Amþ1
�� ��α

α

:

If we put that

v 1ð Þ
tj ≔

X
k

ûtk
X

α∈ Is,n jf g
AA ∗ð Þ j: ek:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ût:ð Þ
���

���
α

α

is the tth component of a column vector v 1ð Þ
: j ¼ v 1ð Þ

1 j ,…, v 1ð Þ
nj

h i
, then from

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
v 1ð Þ
tj ¼

X
β∈ Js,n if g

A ∗Að Þ:i v 1ð Þ
: j

� ����
���
β

β
,

it follows (35) with v 1ð Þ
: j given by (37). If we initially put

w 1ð Þ
ik ≔

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
ûtk ¼

X
β∈ Js,n if g

A ∗Að Þ:i û:kð Þ�� ��β
β

as the kth component of the row vector w 1ð Þ
i: ¼ w 1ð Þ

i1 ,…,w 1ð Þ
in

h i
, then from

X
k

w 1ð Þ
ik

X
α∈ Is,n jf g

A2� �
j: ek:ð Þ

���
���
α

α
¼

X
α∈ Is,n jf g

A2� �
j: w 1ð Þ

i:

� ����
���
α

α
,
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ac,†ij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: w lð Þ
i:

� ����
���
α

αP
α∈ Is,n AA ∗j jαα

� �2P
β∈ Js1,n

Amþ1
�� ��β

β

(36)

for all l ¼ 1, 2, where

v 1ð Þ
: j ¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ût:ð Þ
���

���
α

α

2
4

3
5∈n�1, t ¼ 1,…, n, (37)

w 1ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i û:kð Þ�� ��β
β

2
4

3
5∈1�n, k ¼ 1,…, n, (38)

v 2ð Þ
: j ¼

X
α∈ Is,n jf g

A ∗Að Þ j: ~gt:
� ����

���
α

α

2
4

3
5∈n�1, t ¼ 1,…, n, (39)

w 2ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i ~g:k
� ��� ��β

β

2
4

3
5∈1�n, k ¼ 1,…, n: (40)

Here, ût: is the tth row and û:k is the kth column of Û≔UAA ∗ , ~gt: is the tth row

and ~g:k is the kth column of ~G≔A ∗AG, and the matrices U ¼ uij
� �

∈n�n and G ¼
gij
� �

∈n�n are such that

uij ¼
X

α∈ Is1,n jf g
Amþ1� �

j: âi:ð Þ
���

���
α

α
, gij ¼

X
β∈ Js1,n if g

Amþ1� �
:i ~a: j
� ��� ��β

β
,

where âi: is the ith row of Â≔A ∗Amþ1 and ~a: j is the jth column of ~A≔Amþ1A ∗ .
Proof. Taking into account (34), we get

ac,†ij ¼
Xn

l¼1

Xn

k¼1

qAil a
d
lkp

A
kj, (41)

where QA ¼ qAil
� �

, Ad ¼ adil
� �

, and PA ¼ pAil
� �

.

a. Taking into account the expressions (13), (10), and (11) for the determinantal
representations of Ad, QA, and PA, respectively, we have

ac,†ij ¼
X
l

X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ�� ��β

βP
β∈ Js,n

A ∗Aj jββ

P
α∈ Is1,n lf g Amþ1� �

l: a mð Þ
t:

� ����
���
α

αP
α∈ Is1,n

Amþ1
�� ��α

α

P
α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ

���
���
α

αP
α∈ Is,n AA ∗j jαα

,

where _a:t is the tth column of A ∗A, €al: is the lth row of AA ∗ , and a mð Þ
t: is the tth

row of Am. So, it is clear that

ac,†ij ¼
X
l

X
t

X
k

P
β∈ Js,n if g A ∗Að Þ:i e:tð Þ�� ��β

β
âtk
P

α∈ Is1,n lf g Amþ1� �
l: ek:ð Þ�� ��α

αP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is1,n
Amþ1
�� ��α

α

P
α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ

���
���
α

αP
α∈ Is,n

AA ∗j jαα
,
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where e:t is the tth unit column vector, ek: is the kth row vector, and âtk is the
tkð Þth element of Â ¼ A ∗Amþ1.

Denote

utl ≔
X
k

âtk
X

α∈ Is1,n jf g
Amþ1� �

l: ek:ð Þ�� ��α
α
¼

X
α∈ Is1,n jf g

Amþ1� �
l: ât:ð Þ�� ��α

α
(42)

as the tth component of a column vector u:l ¼ u1l,…, unl½ �. Then from

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
utl ¼

X
β∈ Js,n if g

A ∗Að Þ:i u:lð Þ�� ��β
β
,

we have

ac,†ij ¼
X
l

P
β∈ Js,n if g A ∗Að Þ:i u:lð Þ�� ��β

β

P
α∈ Is,n jf g AA ∗ð Þ j: €al:ð Þ

���
���
α

αP
β∈ Jr,n

A ∗Aj jββ
P

α∈ Is1,n
Amþ1
�� ��α

α

P
α∈ Is,n AA ∗j jαα

:

Construct the matrix U ¼ utlð Þ∈n�n, where utl is given by (42), and denote
Û≔UAA ∗ . Then, taking into account that A ∗Aj jββ ¼ AA ∗j jαα, we have

ac,†ij ¼
P

t
P

k
P

β∈ Js,n if g A ∗Að Þ:i e:tð Þ�� ��β
β
ûtk
P

α∈ Is,n jf g AA ∗ð Þ j: ek:ð Þ
���

���
α

αP
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Amþ1
�� ��α

α

:

If we put that

v 1ð Þ
tj ≔

X
k

ûtk
X

α∈ Is,n jf g
AA ∗ð Þ j: ek:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ût:ð Þ
���

���
α

α

is the tth component of a column vector v 1ð Þ
: j ¼ v 1ð Þ

1 j ,…, v 1ð Þ
nj

h i
, then from

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
v 1ð Þ
tj ¼

X
β∈ Js,n if g

A ∗Að Þ:i v 1ð Þ
: j

� ����
���
β

β
,

it follows (35) with v 1ð Þ
: j given by (37). If we initially put

w 1ð Þ
ik ≔

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
ûtk ¼

X
β∈ Js,n if g

A ∗Að Þ:i û:kð Þ�� ��β
β

as the kth component of the row vector w 1ð Þ
i: ¼ w 1ð Þ

i1 ,…,w 1ð Þ
in

h i
, then from

X
k

w 1ð Þ
ik

X
α∈ Is,n jf g

A2� �
j: ek:ð Þ

���
���
α

α
¼

X
α∈ Is,n jf g

A2� �
j: w 1ð Þ

i:

� ����
���
α

α
,
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it follows (36) with w 1ð Þ
i: given by (38).

b. By using the determinantal representation (12) for Ad in (41), we have

ac,†ij ¼
X
k

X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ�� ��β

βP
β∈ Js,n

A ∗Aj jββ

P
β∈ Js1,n tf g Amþ1� �

:t a mð Þ
:k

� ����
���
β

βP
β∈ Js,n

Amþ1
�� ��β

β

P
α∈ Is,n jf g AA ∗ð Þ j: €ak:ð Þ

���
���
α

αP
α∈ Is,n AA ∗j jαα

:

Therefore,

ac,†ij ¼
X
l

X
k

X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ� �β

βP
β∈ Js,n

A ∗Aj jββ
�

P
β∈ Js1,n tf g Amþ1� �

:t e:kð Þ�� ��β
βP

β∈ Js1,n
Amþ1
�� ��β

β

~akl

P
α∈ Is,n jf g AA ∗ð Þ j: el:ð Þ

���
���
α

αP
α∈ Is,n AA ∗j jαα

:

where e:k is the kth unit column vector, el: is the lth unit row vector, and ~akl is
the klð Þth element of ~A ¼ Amþ1A ∗ .

If we denote

gtl ≔
X
l

X
β∈ Js1,n tf g

Amþ1� �
:t e:kð Þ�� ��β

β
~akl ¼

X
β∈ Js1,n tf g

Amþ1� �
:t ~a:lð Þ�� ��β

β
(43)

as the lth component of a row vector gt: ¼ gt1,…, gtn
� �

, then

X
l

gtl
X

α∈ Is,n jf g
AA ∗ð Þ j: el:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: gt:
� ����

���
α

α
:

From this, it follows that

ac,†ij ¼
X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ�� ��β

β

P
α∈ Is,n jf g ðAA ∗j j j: gt:

� �ÞααP
β∈ Jr,n

A ∗Aj jββ
P

α∈ Is1,n
Amþ1
�� ��α

α

P
α∈ Is,n AA ∗j jαα

:

Construct the matrix G ¼ gtl
� �

∈n�n, where gtl is given by (43). Denote
~G≔A ∗AG. Then,

ac,†ij ¼
P

t
P

k
P

β∈ Js,n if g A ∗Að Þ:i e:tð Þ�� ��β
β
~gtk
P

α∈ Is,n jf g AA ∗ð Þ j: ek:ð Þ
���

���
α

αP
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Amþ1
�� ��α

α

:

If we denote

v 2ð Þ
tj ≔

X
k

~gtk
X

α∈ Is,n jf g
AA ∗ð Þ j: ek:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~gt:
� ����

���
α

α
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as the tth component of a column vector v 2ð Þ
: j ¼ v 2ð Þ

1 j ,…, v 2ð Þ
nj

h i
, then

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
v 2ð Þ
tj ¼

X
β∈ Js,n if g

A ∗Að Þ:i v 2ð Þ
: j

� ����
���
β

β
:

Thus, we have (35) with v 2ð Þ
: j given by (39).

If, now, we denote

w 2ð Þ
ik ≔

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
~gtk ¼

X
β∈ Js,n if g

A ∗Að Þ:i ~g:k
� ��� ��β

β

as the kth component of a row vector w 2ð Þ
i: ¼ w 2ð Þ

i1 ,…,w 2ð Þ
in

h i
, then

X
k

w 2ð Þ
ik

X
α∈ Is,n jf g

AA ∗ð Þ j: ek:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: w 2ð Þ
i:

� ����
���
α

α
:

So, finally, we have (36) with w 2ð Þ
i: given by (40).

4. An example

Given the matrix

A ¼
2 0 0

�i i i
�i �i �i

2
64

3
75:

Since

AA ∗ ¼
4 2i 2i
�2i 3 �1

�2i �1 3

2
64

3
75, A2 ¼

4 0 0

2� 2i 0 0

�2� 2i 0 0

2
64

3
75, A3 ¼

8 0 0

4� 4i 0 0

�4� 4i 0 0

2
64

3
75,

then rkA ¼ 2 and rkA2 ¼ rkA3 ¼ 1, and k ¼ IndA ¼ 2 and r1 ¼ 1. So, we shall
find A○† and A○† by (25) and (26), respectively.

Since

Â ¼ A2 A3� � ∗ ¼ 16

2 1þ i �1þ i
1� i 1 i
�1� i i 1

2
64

3
75,

then by (25),

a○† ,r11 ¼
P

α∈ I1,3 1f g A3 A3� � ∗� �
1:
â1:ð Þ

���
���
α

αP
α∈ I1,3 A

3 A3� � ∗���
���
α

α

¼ 1
4
:
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it follows (36) with w 1ð Þ
i: given by (38).

b. By using the determinantal representation (12) for Ad in (41), we have

ac,†ij ¼
X
k

X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ�� ��β

βP
β∈ Js,n

A ∗Aj jββ

P
β∈ Js1,n tf g Amþ1� �

:t a mð Þ
:k

� ����
���
β

βP
β∈ Js,n

Amþ1
�� ��β

β

P
α∈ Is,n jf g AA ∗ð Þ j: €ak:ð Þ

���
���
α

αP
α∈ Is,n AA ∗j jαα

:

Therefore,

ac,†ij ¼
X
l

X
k

X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ� �β

βP
β∈ Js,n

A ∗Aj jββ
�

P
β∈ Js1,n tf g Amþ1� �

:t e:kð Þ�� ��β
βP

β∈ Js1,n
Amþ1
�� ��β

β

~akl

P
α∈ Is,n jf g AA ∗ð Þ j: el:ð Þ

���
���
α

αP
α∈ Is,n AA ∗j jαα

:

where e:k is the kth unit column vector, el: is the lth unit row vector, and ~akl is
the klð Þth element of ~A ¼ Amþ1A ∗ .

If we denote

gtl ≔
X
l

X
β∈ Js1,n tf g

Amþ1� �
:t e:kð Þ�� ��β

β
~akl ¼

X
β∈ Js1,n tf g

Amþ1� �
:t ~a:lð Þ�� ��β

β
(43)

as the lth component of a row vector gt: ¼ gt1,…, gtn
� �

, then

X
l

gtl
X

α∈ Is,n jf g
AA ∗ð Þ j: el:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: gt:
� ����

���
α

α
:

From this, it follows that

ac,†ij ¼
X
t

P
β∈ Js,n if g A ∗Að Þ:i _a:tð Þ�� ��β

β

P
α∈ Is,n jf g ðAA ∗j j j: gt:

� �ÞααP
β∈ Jr,n

A ∗Aj jββ
P

α∈ Is1,n
Amþ1
�� ��α

α

P
α∈ Is,n AA ∗j jαα

:

Construct the matrix G ¼ gtl
� �

∈n�n, where gtl is given by (43). Denote
~G≔A ∗AG. Then,

ac,†ij ¼
P

t
P

k
P

β∈ Js,n if g A ∗Að Þ:i e:tð Þ�� ��β
β
~gtk
P

α∈ Is,n jf g AA ∗ð Þ j: ek:ð Þ
���

���
α

αP
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Amþ1
�� ��α

α

:

If we denote

v 2ð Þ
tj ≔

X
k

~gtk
X

α∈ Is,n jf g
AA ∗ð Þ j: ek:ð Þ
���

���
α

α
¼

X
α∈ Is,n jf g

AA ∗ð Þ j: ~gt:
� ����

���
α

α
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as the tth component of a column vector v 2ð Þ
: j ¼ v 2ð Þ

1 j ,…, v 2ð Þ
nj

h i
, then

X
t

X
β∈ Js,n if g

A ∗Að Þ:i e:tð Þ�� ��β
β
v 2ð Þ
tj ¼

X
β∈ Js,n if g

A ∗Að Þ:i v 2ð Þ
: j

� ����
���
β

β
:
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���

���
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���
α

α
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3
75,
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By similarly continuing, we get

A○† ¼ 1
8

2 1þ i �1þ i

1� i 1 i

�1� i i 1

2
664

3
775:

By analogy, due to (26), we have

A○† ¼ 1
2

1 0 0

0 0 0

0 0 0

2
664

3
775:

The DMP inverse Ad,† can be found by Theorem 3.15. Since

~A ¼ A3A ∗ ¼ 4

4 2i 2i

2� 2i 1þ i 1þ i

�2� 2i 1� i 1� i

2
664

3
775:

and rk A3� � ¼ 1, then

u 1ð Þ
1 ¼ ~a1:, u 1ð Þ

2 ¼ ~a2:, u 1ð Þ
3 ¼ ~a3::

Furthermore, by (29),

ad,†11 ¼
P

α∈ I2,3 1f g AA ∗ð Þ1: u 1ð Þ
1:

� ����
���
α

αP
β∈ J1,3

A3
�� ��β

β

P
α∈ I2,3 AA ∗j jαα

¼ 1
192

det
16 8i
�2i 3

� �
þ det

16 8i
�2i 3

� �� �
¼ 1

3
:

By similarly continuing, we get

Ad,† ¼ 1
12

4 2i 2i

2� 2i 1þ i 1þ i

�2� 2i 1� i 1� i

2
664

3
775:

Similarly by Theorem 3.17, we get

A†,d ¼ 1
4

2 0 0

�i 0 0

�i 0 0

2
64

3
75:

Finally, by theorem, we find the CMP inverse Ac,† ¼ ac,†ij
� �

. Since rkA3 ¼ 1,

then G ¼ ~A and
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~G ¼ A ∗A~A ¼ 16

6 3i 3i
�2i 1 1

�2i 1 1

2
64

3
75:

Furthermore, by (40),

w 2ð Þ
11 ¼

X
β∈ J2,3 1f g

A ∗Að Þ:1 ~g:1
� ��� ��β

β
¼ det

6 0

�2i 2

� �
þ det

6 0

�2i 2

� �� �
¼ 24:

By similar calculations, we get

w 2ð Þ
1: ¼ 384, 96i, 96i½ �, w 2ð Þ

2: ¼ �192i, 96, 96½ �, w 2ð Þ
3: ¼ �192i, 96, 06½ �:

So, by (36), we get

ac,†11 ¼
P

α∈ I2,3 1f g AA ∗ð Þ1: w 2ð Þ
1:

� ����
���
α

αP
α∈ I2,3 AA ∗j jαα

� �2P
β∈ J1,3

A3
�� ��β

β

¼ 1
4608

det
384 192i
�2i 3

� �
þ det

384 192i
�2i 3

� �� �
¼ 1

3
:

By similarly continuing, we derive

Ac,† ¼ 1
12

4 2i 2i
�2i 1 1

�2i 1 1

2
64

3
75:

5. Conclusions

In this chapter, we get the direct method to find the core inverse and its gener-
alizations that are based on their determinantal representations. New determinantal
representations of the right and left core inverses, the right and left core-EP
inverses, the DMP, MPD, and CMP inverses are derived.
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Furthermore, by (40),
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Chapter 2

New Matrix Series Formulae for
Matrix Exponentials and for the
Solution of Linear Systems of
Algebraic Equations
Ioan R. Ciric

Abstract

The solution of certain differential equations is expressed using a special type of
matrix series and is directly related to the solution of general systems of algebraic
equations. Efficient formulae for matrix exponentials are derived in terms of rap-
idly convergent series of the same type. They are essential for two new solution
methods, especially beneficial for large linear systems, namely an iterative method
and a method based on an exact matrix product formula. The computational com-
plexity of these two methods is analysed, and for both of them, the number of
matrix exponential-vector multiplications required for an imposed accuracy can be
predetermined in terms of the system condition. The total number of arithmetic
operations involved is roughly proportional to n2, where n is the matrix dimension.
The common feature of all the series in the results presented is that starting with a
first term that is already well-conditioned, each subsequent term is computed by
multiplication with an even better conditioned matrix, tending quickly to the iden-
tity matrix. This contributes substantially to the stability of the numerical compu-
tation. A very efficient method based on the numerical integration of a special kind
of differential equations, applicable to even ill-conditioned systems, is also
presented.
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1. Introduction

New matrix series expressions were recently derived by the author [1] for the
solution of simple first order differential equations associated with general systems
of linear algebraic equations. These differential equations describe the orthogonal
trajectories of a family of hypersurfaces that represent a quadratic functional
related to the linear algebraic system. The solution of the latter can be obtained by
minimizing the functional along an orthogonal trajectory instead of applying vari-
ous techniques based on minimization along conjugate gradient directions or based
on minimized iterations [2]. Since the solutions of the differential equations con-
sidered are simply related to the solutions of the corresponding algebraic systems
through matrix exponentials, there is the possibility to develop efficient solution
methods if only the matrix exponentials could be used in numerical calculations
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Chapter 2

New Matrix Series Formulae for
Matrix Exponentials and for the
Solution of Linear Systems of
Algebraic Equations
Ioan R. Ciric

Abstract

The solution of certain differential equations is expressed using a special type of
matrix series and is directly related to the solution of general systems of algebraic
equations. Efficient formulae for matrix exponentials are derived in terms of rap-
idly convergent series of the same type. They are essential for two new solution
methods, especially beneficial for large linear systems, namely an iterative method
and a method based on an exact matrix product formula. The computational com-
plexity of these two methods is analysed, and for both of them, the number of
matrix exponential-vector multiplications required for an imposed accuracy can be
predetermined in terms of the system condition. The total number of arithmetic
operations involved is roughly proportional to n2, where n is the matrix dimension.
The common feature of all the series in the results presented is that starting with a
first term that is already well-conditioned, each subsequent term is computed by
multiplication with an even better conditioned matrix, tending quickly to the iden-
tity matrix. This contributes substantially to the stability of the numerical compu-
tation. A very efficient method based on the numerical integration of a special kind
of differential equations, applicable to even ill-conditioned systems, is also
presented.
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1. Introduction

New matrix series expressions were recently derived by the author [1] for the
solution of simple first order differential equations associated with general systems
of linear algebraic equations. These differential equations describe the orthogonal
trajectories of a family of hypersurfaces that represent a quadratic functional
related to the linear algebraic system. The solution of the latter can be obtained by
minimizing the functional along an orthogonal trajectory instead of applying vari-
ous techniques based on minimization along conjugate gradient directions or based
on minimized iterations [2]. Since the solutions of the differential equations con-
sidered are simply related to the solutions of the corresponding algebraic systems
through matrix exponentials, there is the possibility to develop efficient solution
methods if only the matrix exponentials could be used in numerical calculations

21



accurately and with a small computational effort. A survey of various existent
algorithms for computing matrix exponentials and a useful discussion of the diffi-
culties involved are presented in [3].

In the present work, we use new formulae for arbitrary matrix exponentials that
contain highly convergent infinite series which allow accurate and stable numerical
computations. Employing these formulae, two new solution methods are proposed
which are particularly efficient for large-scale general linear algebraic systems.

2. Differential equations associated with linear systems of algebraic
equations

We start with simple vector differential equations whose solutions are related to
the solution of general systems of linear algebraic equations. Later, in Section 5 we
construct differential equations that allow an efficient numerical integration in
order to obtain the solution of these systems.

2.1 Matrix series solution of some vector differential equations

Consider a first order vector differential equation of the form

ð1Þ

where A∈Rn�n is a general nonsingular matrix, b∈Rn is a given n-dimensional
vector, x ¼ x1, x2,…, xnð ÞT is the unknown n-dimensional vector,T indicates the
transpose, and f vð Þ is a continuous function over some interval of the real variable v.
With the condition

ð2Þ

xo being a given vector, (1) has a unique solution over the interval considered
[4]. Integrating both sides of (1) from vo to v yields

ð3Þ

where

ð4Þ

is a primitive for f vð Þ, i.e., f vð Þ ¼ dg=dv. Thus, (1) can be written in the form

ð5Þ

Integrating again both sides from vo to v gives

ð6Þ

Two particular cases are presented.
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If f vð Þ is chosen to be f vð Þ ¼ �1 then g vð Þ ¼ �v. Choosing vo ¼ 0 gives g voð Þ ¼ 0
and (6) becomes

ð7Þ

If f vð Þ ¼ 1=v then g vð Þ ¼ ln v. With vo ¼ 1 and g voð Þ ¼ 0 (6) becomes now

ð8Þ

The solution of (1) with f vð Þ ¼ 1=v can also be obtained by employing a Taylor
series expansion about xo ¼ 1. Indeed,

ð9Þ

and evaluating the derivatives yields

ð10Þ

where I is the identity matrix. The series in (10) is convergent for v∈ 0, 2ð Þ but
its rate of convergence is, in general, very small for v very close to zero.

2.2 Relationship with linear systems of algebraic equations

Consider now a system of equations written in matrix form as

ð11Þ

and assume that x is a continuous function of the real variable v over a certain
interval. The solution of (11) can be obtained from (3) for a v � vS for which

ð12Þ

To satisfy this condition g vð Þ in (3) must be chosen such that

ð13Þ

For positive definite matrices A and a finite g voð Þ this is achieved if g vð Þ ! �∞
for v ! vS. Thus, the solution of (11) cannot be computed directly from (6). On the
other hand, in the particular case of f vð Þ ¼ 1=v, g vð Þ ¼ ln v the solution of (11) can
be obtained from (10) with v ¼ vS ¼ 0,

ð14Þ

The expression in the brackets is just the inverse of A,
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ð15Þ

The rate of convergence of the series in (14) and (15) is very small and they
cannot be practically used in numerical computation for arbitrary matrices.

We note that the solution of (11) can be formally expressed from (6) as

ð16Þ

which is valid for any v 6¼ vo in the interval considered. To compute xs with (16)

would require the computation of eAg voð Þ � eAg vð Þ� ��1
. Equation (16) will be used in

Subsection 4.1.
Note. The matrix product in the terms of the series in (10), (14) and (15) can be

expressed as a matrix polynomial using the relationship with the Stirling numbers
of the first kind S mð Þ

kþ1 [5]

ð17Þ

While each new term in such series as those in (10), (14) and (15) is calculated
through a multiplication with a matrix that becomes more andmore well-conditioned
as k increases, the computation with the expression in (17) would require successive
multiplications with the same original matrix and, for each k, a new polynomial is to
be constructed and new Stirling numbers have to be generated. The formulae derived
in the next two sections contain the same type of series and, therefore, are simpler
and more efficient to be used for numerical computations.

3. New formulae for computing matrix exponentials

In this section, we derive matrix exponential expressions which contain highly
convergent infinite series that allow accurate and stable numerical computations in
numerous applications. They shall also be used in the next section.

3.1 Series expressions for matrix exponentials

Consider the matrix function vA � eA ln v where v is a positive real variable and A
a general square matrix with real number entries. By integration,

ð18Þ

For v∈ 0, 2ð Þ the integrand can be expanded in a power series as

ð19Þ

24

Functional Calculus

that can be integrated term by term. From (18) and (19)

ð20Þ

which is valid for any A, positive definite or not, of arbitrary condition. One can
see that, for a positive definite A and for v ! 0, the expression in the brackets of
(20) gives a series expansion for the inverse A�1 (see (14) and (15)). Various
expressions for the matrix exponential are obtained by giving particular values to v
in (20). For example, for any v ¼ e�q, q>� ln 2, we have

ð21Þ

the series becoming less convergent as q increases above q = 0. On the other hand,
with v ¼ 1=e in (20) and then A replaced with qA we obtain for any real number q

ð22Þ

this series being more convergent than that in (21) for greater values of q.
For any v∈ 1, 2ð Þ, the terms in the series expressions derived from (20) have

coefficients that are alternately positive and negative. With v ¼ e1=2 = 1.64872127,
e.g., and then replacing A with 2A we have

ð23Þ

As well, by replacing A by � qA in (23) one obtains instead of (22) an expression
with alternating in sign series coefficients.

3.2 Rapidly convergent series formulae

From the basic Eq. (20) we derive now formulae which contain series that have
a higher rate of convergence than those presented in the previous subsection.

Firstly, it is obvious that for values of v close to 1 the series in (20) has a high rate
of convergence. For instance, with v ¼ 1þ 10�q, 10�q ≪ 1, and replacing
A ln 1þ 10�qð Þ by A we obtain

ð24Þ

where cq � 1= ln 1þ 10�qð Þ. This series is rapidly convergent.
Secondly, the convergence of the series in the expressions derived from (20) can

further be improved by successive integrations. Indeed, integrating both sides of
(20) from 1 to v, we have

ð25Þ
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Integrating repeatedly we obtain the identity

ð26Þ

Same result is obtained by replacing A with pI þ A in (20). This identity con-
tains an infinite series whose coefficients decrease rapidly as p increases. Obviously,
for a given A and v, (26) generates more efficient computational formulae than
those in the previous subsection. As before, for v∈ 1, 2ð Þ the infinite series have
coefficients that alternate in sign. For example, with v ¼ e1=2 in (26) and then
replacing A by 2A and p by 2p we have instead of (23)

ð27Þ

Taking v ¼ 1þ 10�q, with q>0 and cq � 1= ln 1þ 10�qð Þ, (26) gives (compare
with (24))

ð28Þ

Notice that, in the new formulae derived from (26) the infinite series are
very rapidly convergent, with their rate of convergence increasing when the
parameter p increases. Highly accurate numerical results can be generated with
only a small number of terms retained in the infinite series of these formulae (see
Section 4).

Note. All the formulae presented in this section remain valid if A is changed
in �A. Obviously, in all these expressions A can be replaced by a real number and
the identity matrix I by 1, yielding a few novel identities and summation formulae
for series of real numbers. Also, the expression in the brackets of (26) for v ! 0
is just I þ A=pð Þ�1=p if I þ A=p is positive definite and, thus, we obtain another
identity, i.e.,
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ð29Þ

which reduces for A ¼ 0 to an elementary binomial sum.

4. Solution of general linear systems

In what follows, we apply the matrix exponential formulae from the previous
section and present a new iteration procedure and a matrix product formula for the
solution of large systems of linear algebraic equations.

4.1 An iterative method

Equation (16) can be written in the form

ð30Þ

where xS ¼ x vSð Þ is the solution of (11), xo ¼ x voð Þ, A is a positive definite
matrix and g vð Þ is a function of the real variable v such that g vð Þ ! �∞ for v ! vs
(see Subsection 2.2). To get x vð Þ for values of v very close to vS we choose an
adequate g vð Þ and a formula for the matrix exponential from Section 3. When
g voð Þ ¼ 0, applying (22) for instance gives

ð31Þ

If g vð Þ � ln v, with vo ¼ 1 and vs ¼ 0, we compute x e�N
� �

for N≫ 1 which is
closer to the solution xS,

ð32Þ

where x 0ð Þ
S � xo. This equation is applied iteratively by replacing x 1ð Þ

S and x 0ð Þ
S ,

respectively, with x ið Þ
S and x i�1ð Þ

S , i ¼ 2, 3, …, until x ið Þ
S satisfies (11) with a desired

accuracy.
To evaluate the amount of computation necessary to obtain the solution of (11)

with a certain accuracy, let us take N such that N Ak k ¼ 10 when one needs about
30 terms in the infinite series, i.e., 30 matrix-vector multiplications. The number of
iterations increases with the condition number of A. To see this and to determine
the corresponding number of iterations, consider (11) with b ¼ 0 and A replaced
with a diagonal matrix whose entries are positive numbers, the greatest of these
being 1, and whose condition is the same as that of A. The solution of this system is
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xS ¼ 0 and the components of the solution of (1), with f vð Þ ¼ 1=v, are xokvλk where
λk, k ¼ 1, 2,…, n, are the entries in the diagonal matrix. In order to make the mag-
nitudes of all these components at least 1%, e.g., of the corresponding magnitudes
of the initial components, one needs no iteration if the condition number is less
than 2, but 5 and, respectively, 46 iterations are needed if the condition number is
10 and 100.

What is remarkable in the iterative method based on (32) is that, for matri-
ces with same condition number and same norm, the number of iterations
required is the same, independently of the size of the matrices. Considering
approximately 2n2 arithmetic operations for one matrix-vector multiplication,
where n is the number of equations and unknowns in (11), the total number of
arithmetic operations required is, thus, proportional to only n2. In the examples
given above one has to perform, respectively, 60n2, 300n2 and 2760n2 arith-
metic operations. Assuming only 2n3=3 arithmetic operations for the Gaussian
elimination procedure, the method presented in this subsection requires less
computation for the same examples if, respectively, n>90, n>450 and n>4140.
One can also notice that the application of Eq. (32) leads to the actual solution of
(11) independently of the small error introduced in the computation at each
iteration.

4.2 A matrix product formula

The original general system (11) is replaced with an equivalent system such that
its solution is obtained in terms of matrix exponentials for which highly convergent
and accurate series formulae have been derived in Section 3.

Namely, instead of (11) we use the system

ð33Þ

where α is a real scalar to be chosen, α 6¼ 0, and

ð34Þ

Assuming A to be positive definite, α is taken positive. Then, since e�αA
�� ��< 1 for

a normal matrix, the solution can be expressed as

ð35Þ

with the norm of the matrix exponentials decreasing when k increases [6]

ð36Þ

where λ is the smallest eigenvalue of A. bα can be accurately computed by using
instead of (34) an equivalent expression, for instance (see (22))

ð37Þ
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If the infinite series in (35) is truncated to k ¼ NS the rest of the series has a norm

ð38Þ

Much less numerical computation (see below) is needed if the infinite series in
(35) is transformed into an infinite product using the identity [5]

ð39Þ

which is also valid for matrices whose norm is less than 1. Thus, (35) becomes

ð40Þ

with the norm of the exponentials e�2kαA decreasing very rapidly when k
increases. Truncating the infinite product to k ¼ NP, i.e., NP þ 1 factors, leaves a
remaining factor

ð41Þ

whose norm is

ð42Þ

Let us compare the maximum value of the norm of the truncated matrix in the
brackets of (35) and (40) with that of the corresponding untruncated matrix in
order to get a rough estimate of the numbers NS and NP of matrix exponentials
involved in the numerical computation to achieve a certain accuracy. This will also
allow to estimate the total number of matrix-vector multiplications necessary to
obtain the solution. The ratio of the maximum norm of the truncated matrix to the
maximum norm of the untruncated matrix in the brackets of (35) and (40) is,
respectively, (see (38) and (42))

ð43Þ

and

ð44Þ

To illustrate the computation complexity when using (35) or (40), assume that
Ak k ¼ 1 and α ¼ 20. If ρ is imposed to be ≈0:99, for example, one needs NS ¼ 2, i.e.,

three terms in (35) and NP ¼ 1, i.e., two factors in (40) if λ ¼ 10�1. If λ ¼ 10�2 these
numbers increase toNS ¼ 23 and NP ¼ 4, and when λ ¼ 10�3 one getsNS ¼ 230, but
NP only increases to NP ¼ 7. It is clear that applying the formula (40) the number of
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xS ¼ 0 and the components of the solution of (1), with f vð Þ ¼ 1=v, are xokvλk where
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exponentials needed in the numerical computation is much smaller than that if for-
mula (35) would be applied. For all the matrix exponentials involved in the numerical
computation we use the formula (28) containing a highly convergent series, such that

ð45Þ

where q>o and cq � 1= ln 1þ 10�qð Þ. With α Ak k ¼ 20 and choosing q ¼ 1 and
p ¼ 10, for instance, e�αA is determined accurately by retaining 50 terms in the
infinite series and, thus, to multiply e�αA with a vector one needs 71 matrix-vector
multiplications. To compute xs from (40) one has to use repeatedly the multiplica-
tion of e�20A with a vector. For a matrix A with λ ¼ 10�1 one has to retain two
factors in (40) and, thus, to multiply e�20A and e�2�20A with a vector. This means to
use repeatedly 3 times the multiplication of e�20A with a vector which requires,
therefore, 3� 71 ¼ 213 matrix-vector multiplications. When λ ¼ 10�2 the infinite
product in (40) is truncated at k ¼ NP ¼ 4 and this requires the multiplication of
e�2k�20A, k ¼ 0, 1, 2, 3, 4, with a vector, i.e., to use repeatedly 31 times the multipli-
cation of e�20A with a vector, for a total of 31� 71 ¼ 2201 matrix-vector multipli-
cations. We also have to add the matrix-vector multiplications required to compute
bα in (37). A very accurate result for bα when α ¼ 20 can be achieved by applying
four times the series in the brackets of (37) for α ¼ 5, each time retaining 30 terms.
This requires a total of about 120 multiplications of a matrix I � 5A=k with a vector.
In all the matrix-vector multiplications involved when applying (45), the matrices
are in the form I � cqαA=k and become better and better conditioned as k increases.

Adding up the number of arithmetic operations involved shows that, with
respect to the classical Gaussian elimination method, the procedure presented in
this subsection is advantageous for very large systems (11). Namely, assuming same
accuracy and only 2n3=3 arithmetic operations for the Gaussian elimination, with
the data given above, one has to have n>3� 213þ 120ð Þ ¼ 999 equations and
unknowns if λ ¼ 10�1 and n>3� 2201þ 120ð Þ ¼ 6963 equations and unknowns if
λ ¼ 10�2 for the proposed method to be more advantageous. For a given α Ak k, one
application of e�αA requires a determined finite number of matrix-vector multipli-
cations, independently of the size of A. It is remarkable, as for the iterative method
in the previous subsection, that for a given condition of A, one has to apply e�αA a
well-determined number of times and, thus, the total number of arithmetic opera-
tions necessary to compute the solution with an imposed accuracy is proportional to
only n2.

It should be noted that, since the infinite series in the expression (45) is trun-
cated and thus determined with a finite accuracy, the accuracy of the solution xS
becomes compromised after a too big a number of matrix exponential-vector mul-
tiplications. This is why, the worse conditioned systems (11) should be
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appropriately preconditioned. Practically, the computation with (40) is continued
factor by factor and the accuracy of x is checked after each step.

5. Solution of general linear systems by numerical integration of
differential equations

In this section, we introduce first order differential equations whose numerical
integration allows to efficiently find the solution of linear systems of algebraic
equations. Differential equations of the type of those in (1), with f vð Þ ¼ �1 or
f vð Þ ¼ 1=v, cannot be used for this purpose due to the fact that the first and higher
order derivatives of x vð Þ tend to infinite values as x tends to the solution xS of (11)
(see Section 2).

Here below, we construct ordinary differential equations for x vð Þ which satisfy
the condition that the first few derivatives are finite when x vð Þ tends to xS and,
therefore, are particularly useful for an accurate computation of xS. Let us consider
the system (11) with a symmetric positive definite matrix. A quadratic functional

ð46Þ

is associated with (11) [6] whose minimum value is F xSð Þ ¼ 0. Define now a real
variable v, v≥0, such that

ð47Þ

where r is a real number to be chosen, r>0, with v ¼ 0 corresponding to the
solution x ¼ xS and v ¼ vo to an initial point xo, F xoð Þ ¼ vro. Then,

ð48Þ

and, thus,

ð49Þ

This is the differential equation to be integrated from v ¼ vo to v ¼ vS ¼ 0. The
second derivative of x is obtained in the form

ð50Þ

Higher order derivatives can be worked out if needed.
In order to see the behaviour of the derivatives close to the solution xS, Eqs. (49)

and (50) are rewritten as
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ð51Þ

and

ð52Þ

with F xð Þ in (46) put in the form

ð53Þ

Notice that as x tends to xs, when Ax� bk k � ε tends to zero,

ð54Þ

where K1 vð Þ and K2 vð Þ are finite when v ! 0. Therefore, as
x ! xS, dx=dvk k ! 0 if r>2 and d2x=dv2

�� �� ! 0 if r>4.
Another differential equation we present here is

ð55Þ

with the second derivative

ð56Þ

In this case, always

ð57Þ

even for x ! xS, but the second derivative tends to an infinite value
when x ! xS

ð58Þ

where K sð Þ is finite and ε � Ax� bk k. The relationship between the differentials
of the variables v and s in (49) and (55) is
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ð59Þ

and for x ! xS we have (see (54))

ð60Þ

The differential Eqs. (49) in v and (55) in s require practically the same amount
of computation for their right-hand sides, i.e., one matrix-vector multiplication.
The first derivatives dx=dv for r ¼ 2 and dx=ds remain finite when x tends to xS,
while the second derivatives increase to infinite values as in (54) and (58). For r ¼ 4
the second derivative in (52) remains finite when x tends to xS (see (54)), while the
first derivative and the ratio ds=dv tend to zero as in (54) and (60), respectively. If
r>4 even d2x=dv2

�� �� tends to zero as in (54).
Equations (49) and (55) can be integrated by classical numerical methods. Since

we are not looking for an accurate solution of these equations all along from xo to xS
but for finding accurately the final value x ¼ xS, we can use a lower order method,
for instance, even Euler’s method [7]. This yields an approximate value of xS which
is to be used as initial point for repeating the numerical integration procedure. As
we get closer to the solution xS, we decrease the step size in order to reduce the
error. In the case of Euler’s method the error is determined in terms of the norm of
the second derivative. Higher order numerical integration methods can also be used
in order to increase the computation efficiency.

To find a starting point for the integration procedure which is reasonably close
to the solution point, one can minimize F xð Þ in (46) along the normal direction,
followed by a minimization of the distance to the solution point xS along the
direction of the normal to F [8]. These two preliminary steps are repeated a few
times as needed.

Numerical experiments have been performed applying Euler’s method to (49)
for r ¼ 2, r ¼ 4 and r ¼ 8, and to (55). Systems (11) of various sizes have been
automatically generated and the differential Eqs. (49) for r ¼ 2 and r ¼ 4, and (55)
have produced results with the least amount of computation when imposing an
accuracy of 1%.

For matrices which are not symmetric positive definite, (46) is replaced with
F xð Þ ¼ 1=2 Ax� bð ÞT Ax� bð Þ:

6. Conclusions

A special type of matrix series are used in Section 2 to express the relationship
between some first order ordinary differential equations and systems of linear
algebraic equations and, also, in Section 3 to derive efficient formulae for matrix
exponentials that allow accurate and stable numerical computations in various
applications. The main feature of these series consists in the fact that, starting with
their first term which is already a matrix substantially better conditioned than the
original problem matrix, each of the subsequent terms is obtained through a multi-
plication with a better and better conditioned matrix that tends to the identity
matrix. The new matrix exponential formulae contain very rapidly convergent
series and can be applied to general, arbitrarily conditioned, positive definite or not
matrices. They are used in Section 4 for two new methods of solution for general
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linear algebraic systems. One is an iterative method which corresponds to the
solution of the differential Eq. (1) with f vð Þ ¼ 1=v: It is based on the exact analytical
expressions (30)–(32) that always yield results converging finally to the exact
solution of the system (11). In a second method, the original algebraic system (11) is
replaced with an equivalent system containing a matrix exponential e�αA such that
instead of inverting the system matrix A we have now to invert I � e�αA. The exact
analytical solution is obtained in the form of a series of matrix exponentials which is
transformed into an infinite matrix product in order to reduce substantially the
necessary amount of computation. It should be remarked that, since the number of
matrix-vector multiplications required for the application of one matrix
exponential-vector multiplication only depends on the norm of the matrix while the
number of matrix exponential-vector multiplications depends on the condition of
the system matrix, the total number of arithmetic operations needed to achieve an
imposed accuracy when applying each of the two methods is practically propor-
tional to n2, where n is the dimension of the matrix. The two methods require a
comparable total amount of computation. It is also remarkable that for both
methods the necessary amount of computation can be roughly predicted before-
hand in terms of the system size, the system condition and the desired accuracy.

In Section 5, a powerful method is presented based on the numerical integration
of specially constructed ordinary differential equations.
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Chapter 3

Fixed Point Theorems of a New
Generalized Nonexpansive
Mapping
Shi Jie

Abstract

This paper introduces a T � Dað Þ mapping that is weaker than the nonexpansive
mapping. It introduces several iterations for the fixed point of the T � Dað Þ map-
ping. It gives fixed point theorems and convergence theorems for the T � Dað Þ
mapping in Banach space, instead of uniformly convex Banach space. This paper
gives some basic properties on the T � Dað Þmapping and gives the example to show
the existence of T � Dað Þ mapping. The results of this paper are obtained in general
Banach spaces. It considers some sufficient conditions for convergence of fixed
points of mappings in general Banach spaces under higher iterations.

Keywords: iteration, convergence theorems, nonexpansive mapping, fixed point

2010 MSC: 47H09, 47H10

1. Introduction

In this paper, E is a Banach space, C is a nonempty closed convex subset of E,
and Fix Tð Þ ¼ x∈C : Tx ¼ x.

Definition 1. T is contraction mapping if there is r∈ 0; 1½ Þ
∥Tx� Ty∥ ≤ r∥x� y∥ for all x y∈C:

Definition 2. T is nonexpansive mapping if

∥Tx� Ty∥ ≤ ∥x� y∥ for all x y∈C:

Definition 3. T is quasinonexpansive mapping if

∥Tx� Ty∥ ≤ ∥x� y∥ for all x∈C, y∈F Tð Þ:

Definition 4. T : C ! C is a T � Dað Þ mapping on a subset C, if there is
a∈ 1

2 ; 1
� �

, ∥Tx� Ty∥ ≤ ∥x� y∥ for all α∈ a; 1½ �, x∈C, y∈C T; x; αð Þ, where
C T; x; αð Þ ¼ y∈Cjy ¼ 1� αð Þpþ αTp; p∈C; ∥Tp� p∥ ≤ ∥Tx� x∥f g.

In 2008 Suzuki [1] defined a mapping T in Banach space: 12 ∥Tx� Ty∥ ≤ ∥x� y∥
implies ∥Tx� Ty∥ ≤ ∥x� y∥. And T is said to satisfy condition (C). Suzuki [1]
showed that the mapping satisfying condition (C) is weaker than nonexpansive
mapping and stronger than quasinonexpansive mapping.
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Suzuki [1] proved the theorem T is a mapping in Banach space,T satisfies
condition (C), and {xn} is the sequence defined by the iteration process:

x1 ¼ x∈C,
xnþ1 ¼ 1� αnð Þxn þ αnTxn,

�
(1)

then {xn} converges to a fixed point of T.
Suzuki [1] gave this convergence theorem in an ordinary Banach space, and the

mapping satisfying condition (C) is weaker than nonexpansive mapping.
In 2016, Thakur [2] proved the theorem T is a mapping in uniformly convex

Banach space,T satisfies condition (C), and xnf g is the sequence defined by
iteration process:

x1 ¼ x∈C,

xnþ1 ¼ Tyn,

yn ¼ Tzn,

zn ¼ 1� αnð Þxn þ αnTxn,

8>>>>><
>>>>>:

(2)

then {xn} converges to a fixed point of T.
Thakur [2] claimed that the rate of iteration is fastest of known iterations.

However, the disadvantage is that their results must be in uniformly convex Banach
space, instead of the ordinary Banach space.

The aim of this article is there exists a generalized nonexpansive mapping, which
makes the sequence generated by Thakur’s iteration converge to a fixed point in a
general Banach space.

The following propositions are obvious:
Proposition 1. If T is nonexpansive, then T satisfies condition (Da).
Proposition 2. If T is T � Dað Þ mapping, then T is quasinonexpansive.
Proposition 3. Suppose T : C ! C is a T � Dað Þ mapping. Then, for x, y∈C:
(1) ∥T2x� Tx∥ ≤ ∥Tx� x∥ for all x∈C:
(2) ∥T2x� Ty∥ ≤ ∥Tx� y∥ or ∥T2y� Tx∥ ≤ ∥Ty� x∥ for all x, y∈C:

Proof:
(1) Since ∥Tx� x∥ ≤ ∥Tx� x∥, Tx∈C T; x; 1ð Þ, we have ∥T2x� Tx∥ ≤ ∥Tx� x∥.
(2) For all x, y∈C, ∥Tx� x∥ ≤ ∥Ty� y∥ or ∥Ty� y∥ ≤ ∥Tx� x∥.

Then Tx∈C T; y; αð Þ or Ty∈C T; x; αð Þ.
It follows that ∥T2x� Ty∥ ≤ ∥Tx� y∥ or ∥T2y� Tx∥ ≤ ∥Ty� x∥.
Example 1

Tx ¼

1:1 x2

x3 x4

 !
, x1 ¼ 3,

0 x2

x3 x4

 !
, x1 6¼ 3,

8>>>>><
>>>>>:

where

x ¼ x1 x2
x3 x4

� �
, x1 ∈ 0; 3½ �, x2 ∈ 0;0:01½ �, x3 ∈ 0;0:01½ �, x4 ∈ 0;0:01½ �:
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∥x∥1 ¼ max jx1j þ jx3j; jx2j þ jx4jf g

Set

x ¼ 3 0

0 0

� �

and

y ¼ 2:5 0

0 0

� �

We see that

∥Tx� Ty∥1 ¼ 1:1> ∥x� y∥1:

Hence,T is not a nonexpansive mapping.
To verify that T is a T � Dað Þ mapping, consider the following cases:
Case 1:

α∈
11
19

; 1
� �

, x ¼
x1 x2

x3 x4

 !
, x1 6¼ 3:

y ¼
y1 y2
y3 y4

 !
∈C T; x; αð Þ,

then y1 6¼ 3. We have

∥Ty� Tx∥ ¼ ∥
0 y2 � x2

y3 � x3 y4 � x4

� �
∥ ≤ ∥

y1 � x1 y2 � x2
y3 � x3 y4 � x4

� �
∥ ¼ ∥y� x∥

Case 2:

α∈
11
19

; 1
� �

, x ¼
x1 x2

x3 x4

 !
, x1 ¼ 3:

y ¼
y1 y2
y3 y4

 !
∈C T; x; αð Þ,

then y1 ∈ 0; 1:9½ �. We have

∥Ty� Tx∥ ¼ ∥
1:1 y2 � x2

y3 � x3 y4 � x4

� �
∥ ≤ 1:11 ≤ ∥y� x∥

Hence,T is a T � Dað Þ mapping, and T is not nonexpansive.

2. Fixed point

In this section, we prove convergence theorems for fixed point of the T � Dað Þ
mapping in Banach space.
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Lemma 1. Let C be bounded convex subset of a Banach space B. Assume that
T : C ! C is T � Dað Þ mapping and xnf g, yn

� �
, znf g are sequences generated by

iteration:

x1 ¼ x∈C,
xnþ1 ¼ Tyn,
yn ¼ Tzn,
zn ¼ 1� αnð Þxn þ αnTxn,

8>>><
>>>:

(3)

where 1
2 < a ≤ αn ≤ b< 1. Then

(1) ∥Txnþ1 � xnþ1∥ ≤ ∥Tyn � yn∥ ≤ ∥Tzn � zn∥ ≤ ∥Txn � xn∥.
(2) limn!∞ ∥Txn � xn∥ ¼ limn!∞ ∥Tyn � yn∥ ¼ limn!∞ ∥Tzn � zn∥ ¼ r≥0.

Proof: (1) From Proposition 3 and zn ¼ 1� αnð Þxn þ αnTxn, we have

∥Txnþ1 � xnþ1∥ ≤ ∥T2yn � Tyn∥

≤ ∥Tyn � yn∥ ¼ ∥T2zn � Tzn∥

≤ ∥Tzn � zn∥

¼ ∥Tzn � Txn þ 1� αnð Þ Txn � xnð Þ∥
≤ ∥zn � xn∥þ 1� αnð Þ∥Txn � xn∥

¼ ∥Txn � xn∥:

(2) From (1), we have 0 ≤ ∥Txnþ1 � xnþ1∥ ≤ ∥Txn � xn∥. So limn!∞ ∥Txn�
xn∥ ¼ r≥0. Now, we have limn!∞ ∥Txn � xn∥ ¼ limn!∞ ∥Tyn � yn∥ ¼
limn!∞ ∥Tzn � zn∥ ¼ r≥0.

Lemma 2. Assume that T : C ! C is a T � Dað Þ mapping and xnf g, yn
� �

, znf g
are sequences generated by iteration (3). 12 < a ≤ αn ≤ b< 1. Let umf g satisfy
u3n�2 ¼ xn, u3n�1 ¼ zn, u3n ¼ yn. Then, for all n≥ 1, p≥ 1

1þ
X3nþp�3

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥ ≤ ∥Tu3n�2þp � u3n�2∥

þ
Ynþp�1

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3n�2þ3p � u3n�2þ3p∥
� �

,

(4)

where

βk ¼
αn k ¼ 3n� 2

1 k 6¼ 3n� 2

�

Proof: From Lemma 1, we have

∥Txnþ1 � xnþ1∥
≤ ∥Tzn � zn∥
¼ ∥Tzn � 1� αnð Þxn � αnTxn∥
≤ 1� αnð Þ∥Tzn � xn∥þ αn∥Tzn � Txn∥
≤ 1� αnð Þ∥Tzn � xn∥þ αn∥zn � xn∥
¼ 1� αnð Þ∥Tzn � xn∥þ α2n∥Txn � xn∥:

40
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So, for p ¼ 1 and all n≥ 1

1þ β3n�2ð Þ∥Tu3n�2 � u3n�2∥
¼ 1þ αnð Þ∥Txn � xn∥

≤ ∥Txn � xn∥þ 1
1� αn

� �
∥Txn � xn∥� ∥Txnþ1 � xnþ1∥ð Þ

¼ ∥Tu3n�1 � u3n�2∥þ 1
1� αn

� �
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1 � u3nþ1∥ð Þ

≤ ∥Tu3n�1 � u3n�2∥þ 2
1� αn

� �
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1 � u3nþ1∥ð Þ:

(4) holds.
We make the inductive assumption that (4) holds for a given p> 1 and all n>0

and obtain, upon replacing n with nþ 1

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3nþ1 � u3nþ1∥ ≤ ∥Tu3nþ1þp � u3nþ1∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3nþ1 � u3nþ1∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

(5)

And obviously

k≥ 3n� 2, ∥Tukþ1 � Tuk∥ ≤ βk∥Tu3n�2 � u3n�2∥, (6)

k> t, ∥Tuk � Tut∥ ≤ ∥uk � ut∥: (7)

Case 1: p ¼ 3m,m≥ 1. From (6) and (7)

∥Tu3nþ1þp � u3nþ1∥
¼ ∥Txnþmþ1 � xnþ1∥
¼ ∥Txnþmþ1 � Tyn∥
≤ ∥xnþmþ1 � yn∥
¼ ∥Tynþm � Tzn∥
≤ ∥ynþm � zn∥
¼ ∥Tznþm � 1� αnð Þxn � αnTxn∥
≤ 1� αnð Þ∥Tznþm � xn∥þ αn∥Tznþm � Txn∥
≤ 1� αnð Þ∥Tznþm � xn∥
þαn ∥Tznþm � Txnþm∥þ ∥Txnþm � Tynþm�1∥þ⋯þ ∥Tyn � Tzn∥þ ∥Tzn � Txn∥

� �

¼ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

∥Tukþ1 � Tuk∥

≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥:

It follows that

∥Tu3nþ1þp � u3nþ1∥ ≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

(8)
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k≥ 3n� 2, ∥Tukþ1 � Tuk∥ ≤ βk∥Tu3n�2 � u3n�2∥, (6)

k> t, ∥Tuk � Tut∥ ≤ ∥uk � ut∥: (7)

Case 1: p ¼ 3m,m≥ 1. From (6) and (7)

∥Tu3nþ1þp � u3nþ1∥
¼ ∥Txnþmþ1 � xnþ1∥
¼ ∥Txnþmþ1 � Tyn∥
≤ ∥xnþmþ1 � yn∥
¼ ∥Tynþm � Tzn∥
≤ ∥ynþm � zn∥
¼ ∥Tznþm � 1� αnð Þxn � αnTxn∥
≤ 1� αnð Þ∥Tznþm � xn∥þ αn∥Tznþm � Txn∥
≤ 1� αnð Þ∥Tznþm � xn∥
þαn ∥Tznþm � Txnþm∥þ ∥Txnþm � Tynþm�1∥þ⋯þ ∥Tyn � Tzn∥þ ∥Tzn � Txn∥

� �

¼ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

∥Tukþ1 � Tuk∥

≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥:

It follows that

∥Tu3nþ1þp � u3nþ1∥ ≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

(8)
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Using (5) and (8), we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3nþ1 � u3nþ1∥

≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3nþ1 � u3nþ1∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

From 1þ P3nþp

k¼3nþ1
βk

 !
≤

Qnþp

k¼nþ1

1
1�αk

 !
and ∥Tu3nþ1 � u3nþ1∥ ≤ ∥Tu3n�2 � u3n�2∥,

we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3n�2 � u3n�2∥

≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Then

1þP3nþp
k¼3nþ1 βk � αn

P3n�2þp
k¼3n�2 βk

� �

1� αn
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

It follows that

1þ
X3n�2þp

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Thus, for n, pþ 1, (4) holds.
Case 2: p ¼ 3mþ 1, m≥0. From (6) and (7), we have

∥Tu3nþ1þp � u3nþ1∥
¼ ∥Tznþmþ1 � xnþ1∥
¼ ∥Tznþmþ1 � Tyn∥
≤ ∥znþmþ1 � yn∥
¼ ∥ 1� αmþnþ1ð Þxmþnþ1 þ αmþnþ1Txmþnþ1 � Tzn∥
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≤ 1� αmþnþ1ð Þ∥xmþnþ1 � Tzn∥þ αmþnþ1∥Txmþnþ1 � Tzn∥
≤ 1� αmþnþ1ð Þ∥Tymþn � Tzn∥þ αmþnþ1∥xmþnþ1 � zn∥
≤ 1� αmþnþ1ð Þð∥Tymþn � Tzmþn∥þ ∥Tzmþn � Txnþm∥þ⋯þ ∥Txnþ1 � Tyn∥
þ∥Tyn � Tzn∥Þ þ αmþnþ1∥xmþnþ1 � zn∥

¼ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

∥Tukþ1 � Tuk∥þ αmþnþ1∥Tymþn � 1� αnð Þxn � αnTxn∥

≤ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥

þαmþnþ1 1� αnð Þ∥Tymþn � xn∥þ αn∥Tymþn � Txn∥
� �

≤ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tymþn � xn∥

þαmþnþ1αn ∥Tymþn � Tzmþn∥þ ∥Tzmþn � Txmþn∥þ⋯þ ∥Tyn � Tzn∥þ ∥Tzn � Txn∥
� �

¼ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tymþn � xn∥

þαmþnþ1αn
X3n�2þp

k¼3n�2

∥Tukþ1 � Tuk∥

≤ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tymþn � xn∥

þαmþnþ1αn
X3n�2þp

k¼3n�2

βk∥Tuk � uk∥

¼ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

þαmþnþ1αn
X3n�2þp

k¼3n�2

βk∥Tuk � uk∥

¼ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥:

It follows that

∥Tu3nþ1þp � u3nþ1∥

≤ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

(9)

Using (5) and (9), we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3nþ1 � u3nþ1∥

≤ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

43

Fixed Point Theorems of a New Generalized Nonexpansive Mapping
DOI: http://dx.doi.org/10.5772/intechopen.88421



Using (5) and (8), we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3nþ1 � u3nþ1∥

≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3nþ1 � u3nþ1∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

From 1þ P3nþp

k¼3nþ1
βk

 !
≤

Qnþp

k¼nþ1

1
1�αk

 !
and ∥Tu3nþ1 � u3nþ1∥ ≤ ∥Tu3n�2 � u3n�2∥,

we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3n�2 � u3n�2∥

≤ 1� αnð Þ∥Tu3n�1þp � u3n�2∥þ αn
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Then

1þP3nþp
k¼3nþ1 βk � αn

P3n�2þp
k¼3n�2 βk

� �

1� αn
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

It follows that

1þ
X3n�2þp

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Thus, for n, pþ 1, (4) holds.
Case 2: p ¼ 3mþ 1, m≥0. From (6) and (7), we have

∥Tu3nþ1þp � u3nþ1∥
¼ ∥Tznþmþ1 � xnþ1∥
¼ ∥Tznþmþ1 � Tyn∥
≤ ∥znþmþ1 � yn∥
¼ ∥ 1� αmþnþ1ð Þxmþnþ1 þ αmþnþ1Txmþnþ1 � Tzn∥
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≤ 1� αmþnþ1ð Þ∥xmþnþ1 � Tzn∥þ αmþnþ1∥Txmþnþ1 � Tzn∥
≤ 1� αmþnþ1ð Þ∥Tymþn � Tzn∥þ αmþnþ1∥xmþnþ1 � zn∥
≤ 1� αmþnþ1ð Þð∥Tymþn � Tzmþn∥þ ∥Tzmþn � Txnþm∥þ⋯þ ∥Txnþ1 � Tyn∥
þ∥Tyn � Tzn∥Þ þ αmþnþ1∥xmþnþ1 � zn∥

¼ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

∥Tukþ1 � Tuk∥þ αmþnþ1∥Tymþn � 1� αnð Þxn � αnTxn∥

≤ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥

þαmþnþ1 1� αnð Þ∥Tymþn � xn∥þ αn∥Tymþn � Txn∥
� �

≤ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tymþn � xn∥

þαmþnþ1αn ∥Tymþn � Tzmþn∥þ ∥Tzmþn � Txmþn∥þ⋯þ ∥Tyn � Tzn∥þ ∥Tzn � Txn∥
� �

¼ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tymþn � xn∥

þαmþnþ1αn
X3n�2þp

k¼3n�2

∥Tukþ1 � Tuk∥

≤ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tymþn � xn∥

þαmþnþ1αn
X3n�2þp

k¼3n�2

βk∥Tuk � uk∥

¼ 1� αmþnþ1ð Þ
X3n�2þp

k¼3n�1

βk∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

þαmþnþ1αn
X3n�2þp

k¼3n�2

βk∥Tuk � uk∥

¼ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥:

It follows that

∥Tu3nþ1þp � u3nþ1∥

≤ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

(9)

Using (5) and (9), we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3nþ1 � u3nþ1∥

≤ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥
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�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3nþ1 � u3nþ1∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

From 1þ P3nþp

k¼3nþ1
βk

 !
≤

Qnþp

k¼nþ1

1
1�αk

 !
and ∥Tu3nþ1 � u3nþ1∥ ≤ ∥Tu3n�2 � u3n�2∥,

we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3n�2 � u3n�2∥

≤ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Then

1þP3nþp
k¼3nþ1 βk þ αn 1� αmþnþ1ð Þ � 1� αmþnþ1 þ αmþnþ1αnð ÞP3n�2þp

k¼3n�2 βk

� �

αmþnþ1 1� αnð Þ
∥Tu3n�2 � u3n�2∥ ≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

It follows that

1þ
X3n�2þp

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Thus, for n, pþ 1, (4) holds.
Case 3: p ¼ 3mþ 2, m≥0. From (6) and (7), we have

∥Tu3nþ1þp � u3nþ1∥
¼ ∥Tynþmþ1 � Tyn∥
≤ ∥ynþmþ1 � yn∥
¼ ∥Tznþmþ1 � Tzn∥
≤ ∥znþmþ1 � zn∥
≤ ∥znþmþ1 � 1� αnð Þxn � αnTxn∥
≤ 1� αnð Þ∥znþmþ1 � xn∥þ αn∥znþmþ1 � Txn∥
¼ 1� αnð Þ∥ 1� αnþmþ1ð Þxnþmþ1 þ αnþmþ1Txnþmþ1 � xn∥
þαn∥ 1� αnþmþ1ð Þxnþmþ1 þ αnþmþ1Txnþmþ1 � Txn∥
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≤ 1� αnð Þ 1� αmþnþ1ð Þ∥xnþmþ1 � xn∥þ αmþnþ1∥Txnþmþ1 � xn∥ð Þ
þαn 1� αmþnþ1ð Þ∥xnþmþ1 � Txn∥þ αmþnþ1∥Txnþmþ1 � Txn∥ð Þ
≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ∥xnþmþ1 � xn∥

þαn 1� αmþnþ1ð Þ∥Tynþmþ1 � Txn∥

≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ ∥Tynþm � Tznþm∥þ⋯þ ∥Tzn � Txn∥þ ∥Txn � xn∥
� �

þαn 1� αmþnþ1ð Þ ∥Tynþmþ1 � Tznþmþ1∥þ⋯þ ∥Tyn � Tzn∥þ ∥Tzn � Txn∥
� �

≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ
X3n�3þp

k¼3n�2

∥Tukþ1 � Tuk∥þ ∥Tu3n�2 � x3n�2∥

 !

þ 1� αmþnþ1ð Þαn
X3n�3þp

k¼3n�2

∥Tukþ1 � Tuk∥

≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Txn � xn∥

þ 1� αmþnþ1ð Þαn
X3n�3þp

k¼3n�2

βk∥Txn � xn∥

≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥:

It follows that

∥Tu3nþ1þp � u3nþ1∥
≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥
(10)

Using (5) and (10), we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3nþ1 � u3nþ1∥

≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3nþ1 � u3nþ1∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

From 1þ P3nþp

k¼3nþ1
βk

 !
≤

Qnþp

k¼nþ1

2
1�αk

 !
and ∥Tu3nþ1 � u3nþ1∥ ≤ ∥Tu3n�2 � u3n�2∥,

we have
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�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3nþ1 � u3nþ1∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

From 1þ P3nþp

k¼3nþ1
βk

 !
≤

Qnþp

k¼nþ1

1
1�αk

 !
and ∥Tu3nþ1 � u3nþ1∥ ≤ ∥Tu3n�2 � u3n�2∥,

we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3n�2 � u3n�2∥

≤ 1� αmþnþ1 þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Tu3n�2 � u3n�2∥

�αn 1� αmþnþ1ð Þ∥Tu3n�2 � u3n�2∥þ αmþnþ1 1� αnð Þ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Then

1þP3nþp
k¼3nþ1 βk þ αn 1� αmþnþ1ð Þ � 1� αmþnþ1 þ αmþnþ1αnð ÞP3n�2þp

k¼3n�2 βk

� �

αmþnþ1 1� αnð Þ
∥Tu3n�2 � u3n�2∥ ≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

It follows that

1þ
X3n�2þp

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Thus, for n, pþ 1, (4) holds.
Case 3: p ¼ 3mþ 2, m≥0. From (6) and (7), we have

∥Tu3nþ1þp � u3nþ1∥
¼ ∥Tynþmþ1 � Tyn∥
≤ ∥ynþmþ1 � yn∥
¼ ∥Tznþmþ1 � Tzn∥
≤ ∥znþmþ1 � zn∥
≤ ∥znþmþ1 � 1� αnð Þxn � αnTxn∥
≤ 1� αnð Þ∥znþmþ1 � xn∥þ αn∥znþmþ1 � Txn∥
¼ 1� αnð Þ∥ 1� αnþmþ1ð Þxnþmþ1 þ αnþmþ1Txnþmþ1 � xn∥
þαn∥ 1� αnþmþ1ð Þxnþmþ1 þ αnþmþ1Txnþmþ1 � Txn∥
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≤ 1� αnð Þ 1� αmþnþ1ð Þ∥xnþmþ1 � xn∥þ αmþnþ1∥Txnþmþ1 � xn∥ð Þ
þαn 1� αmþnþ1ð Þ∥xnþmþ1 � Txn∥þ αmþnþ1∥Txnþmþ1 � Txn∥ð Þ
≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ∥xnþmþ1 � xn∥

þαn 1� αmþnþ1ð Þ∥Tynþmþ1 � Txn∥

≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ ∥Tynþm � Tznþm∥þ⋯þ ∥Tzn � Txn∥þ ∥Txn � xn∥
� �

þαn 1� αmþnþ1ð Þ ∥Tynþmþ1 � Tznþmþ1∥þ⋯þ ∥Tyn � Tzn∥þ ∥Tzn � Txn∥
� �

≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ
X3n�3þp

k¼3n�2

∥Tukþ1 � Tuk∥þ ∥Tu3n�2 � x3n�2∥

 !

þ 1� αmþnþ1ð Þαn
X3n�3þp

k¼3n�2

∥Tukþ1 � Tuk∥

≤ 1� αnð Þαmþnþ1∥Txnþmþ1 � xn∥

þ 1� αmþnþ1ð Þ 1� αnð Þ þ αmþnþ1αnð Þ
X3n�2þp

k¼3n�2

βk∥Txn � xn∥

þ 1� αmþnþ1ð Þαn
X3n�3þp

k¼3n�2

βk∥Txn � xn∥

≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥:

It follows that

∥Tu3nþ1þp � u3nþ1∥
≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥
(10)

Using (5) and (10), we have

1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3nþ1 � u3nþ1∥

≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3nþ1 � u3nþ1∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

From 1þ P3nþp

k¼3nþ1
βk

 !
≤

Qnþp

k¼nþ1

2
1�αk

 !
and ∥Tu3nþ1 � u3nþ1∥ ≤ ∥Tu3n�2 � u3n�2∥,

we have
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1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3n�2 � u3n�2∥

≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Then

ð1þP3nþp
k¼3nþ1 βk � 1� αmþnþ1 þ αnαmþnþ1ð ÞP3n�2þp

k¼3n�2 βk � αn 1� αmþnþ1ð Þ
� �

1� αnð Þαmþnþ1
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

It follows that

1þ
X3n�2þp

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Thus, for n, pþ 1, (4) holds. This completes the induction.
Lemma 3. T : C ! C is a T � Dað Þ mapping, ∥Tx� x∥ ≤ ∥Ty� y∥. Then

∥x� Ty∥ ≤ 3∥Tx� x∥þ ∥x� y∥:

Proof: Since ∥Tx� x∥ ≤ ∥Ty� y∥, we have Tx∈C T; y; αð Þ. Then

∥T2x� Ty∥ ≤ ∥Tx� y∥:

It follows that

∥x� Ty∥ ≤ ∥x� Tx∥þ ∥T2x� Tx∥þ ∥T2x� Ty∥:

From Proposition 3, we have

∥x� Ty∥ ≤ 2∥Tx� x∥þ ∥Tx� y∥ ≤ 2∥Tx� x∥þ ∥Tx� x∥þ ∥x� y∥ ¼ 3∥Tx� x∥þ ∥x� y∥:

Theorem 1. Assume that T : C ! C is a T � Dað Þ mapping and xnf g, yn
� �

, znf g
are sequences generated by iteration (3), 1

2 < a ≤ αn ≤ b< 1. Then
limn!∞ ∥Txn � xn∥ ¼ 0.

Proof: Since C is bounded, there must exists d>0, for every x∈C, ∥x∥ ≤ d. Let
umf g satisfy u3n�2 ¼ xn, u3n�1 ¼ zn, u3n ¼ yn. From Lemma 1,
limk!∞ ∥Tuk � uk∥ ¼ r≥0. Assume r>0. Let ε satisfy
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e
6

1�b
d
rþ1ð Þε< r

and choose n so that for every p>0

∥Tu3n�2 � u3n�2∥� ∥Tu3n�2þ3p � u3n�2þ3p∥< ε:

Now choose p so that r
P3nþp�4

k¼3n�2
βk

 !
≤ d ≤ r

P3nþp�3

k¼3n�2
βk

 !
.

Since 1
2 < a ≤ αn ≤ b< 1, for every k, t, we have 1þ αk < 3αk, αt < 2αk. From

Lemma 2 and r ≤ ∥Tu3n�2 � u3n�2∥, we have

dþ r ≤ r 1þ
X3nþp�3

k¼3n�2

βk

 !

≤ 1þ
X3nþp�3

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�2þp � u3n�2∥

þ
Ynþp�1

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3n�2þ3p � u3n�2þ3p∥
� �

< dþ
Ynþp�1

k¼n

2
1� αk

 !
ε

¼ dþ e
Σ

nþp�1

k¼n
ln 1þ1þαk

1�αk

� �
ε

≤ dþ e
Σ

nþp�1

k¼n

1þαk
1�αkε

≤ dþ e
3

1�b Σ
nþp�1

k¼n
αkε

≤ dþ e
6

1�b Σ
3nþp�3

k¼3n�2
βkε

≤ dþ e
6

1�b Σ
3nþp�4

k¼3n�2
βk þ 1

� �

ε

< dþ e
6

1�b
d
rþ1ð Þε< dþ r:

This is a contradiction. So limk!∞ ∥Tuk � uk∥ ¼ 0. That is to say,
limn!∞ ∥Txn � xn∥ ¼ 0. This completes the proof.

Theorem 2. Assume that T : C ! C is a T � Dað Þmapping and xnf g is generated
by iteration (3), 12 < a ≤ αn ≤ b< 1. Then the sequence xnf g converges to a fixed
point of T.

Proof: Since C is compact, there exists a subsequence xnk
� �

⊂ xnf g which con-
verges to some z∈C. By Lemma 3, we have
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1þ
X3nþp

k¼3nþ1

βk

 !
∥Tu3n�2 � u3n�2∥

≤ 1� αnð Þαmþnþ1∥Tu3n�1þp � u3n�2∥

þ 1� αmþnþ1 þ αnαmþnþ1ð Þ
X3n�2þp

k¼3n�2

βk � αn 1� αmþnþ1ð Þ
 !

∥Tu3n�2 � u3n�2∥

þ
Ynþp

k¼nþ1

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Then

ð1þP3nþp
k¼3nþ1 βk � 1� αmþnþ1 þ αnαmþnþ1ð ÞP3n�2þp

k¼3n�2 βk � αn 1� αmþnþ1ð Þ
� �

1� αnð Þαmþnþ1
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

It follows that

1þ
X3n�2þp

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�1þp � u3n�2∥

þ
Ynþp

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3nþ1þ3p � u3nþ1þ3p∥
� �

:

Thus, for n, pþ 1, (4) holds. This completes the induction.
Lemma 3. T : C ! C is a T � Dað Þ mapping, ∥Tx� x∥ ≤ ∥Ty� y∥. Then

∥x� Ty∥ ≤ 3∥Tx� x∥þ ∥x� y∥:

Proof: Since ∥Tx� x∥ ≤ ∥Ty� y∥, we have Tx∈C T; y; αð Þ. Then

∥T2x� Ty∥ ≤ ∥Tx� y∥:

It follows that

∥x� Ty∥ ≤ ∥x� Tx∥þ ∥T2x� Tx∥þ ∥T2x� Ty∥:

From Proposition 3, we have

∥x� Ty∥ ≤ 2∥Tx� x∥þ ∥Tx� y∥ ≤ 2∥Tx� x∥þ ∥Tx� x∥þ ∥x� y∥ ¼ 3∥Tx� x∥þ ∥x� y∥:

Theorem 1. Assume that T : C ! C is a T � Dað Þ mapping and xnf g, yn
� �

, znf g
are sequences generated by iteration (3), 1

2 < a ≤ αn ≤ b< 1. Then
limn!∞ ∥Txn � xn∥ ¼ 0.

Proof: Since C is bounded, there must exists d>0, for every x∈C, ∥x∥ ≤ d. Let
umf g satisfy u3n�2 ¼ xn, u3n�1 ¼ zn, u3n ¼ yn. From Lemma 1,
limk!∞ ∥Tuk � uk∥ ¼ r≥0. Assume r>0. Let ε satisfy
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e
6

1�b
d
rþ1ð Þε< r

and choose n so that for every p>0

∥Tu3n�2 � u3n�2∥� ∥Tu3n�2þ3p � u3n�2þ3p∥< ε:

Now choose p so that r
P3nþp�4

k¼3n�2
βk

 !
≤ d ≤ r

P3nþp�3

k¼3n�2
βk

 !
.

Since 1
2 < a ≤ αn ≤ b< 1, for every k, t, we have 1þ αk < 3αk, αt < 2αk. From

Lemma 2 and r ≤ ∥Tu3n�2 � u3n�2∥, we have

dþ r ≤ r 1þ
X3nþp�3

k¼3n�2

βk

 !

≤ 1þ
X3nþp�3

k¼3n�2

βk

 !
∥Tu3n�2 � u3n�2∥

≤ ∥Tu3n�2þp � u3n�2∥

þ
Ynþp�1

k¼n

2
1� αk

 !
∥Tu3n�2 � u3n�2∥� ∥Tu3n�2þ3p � u3n�2þ3p∥
� �

< dþ
Ynþp�1

k¼n

2
1� αk

 !
ε

¼ dþ e
Σ

nþp�1

k¼n
ln 1þ1þαk

1�αk

� �
ε

≤ dþ e
Σ

nþp�1

k¼n

1þαk
1�αkε

≤ dþ e
3

1�b Σ
nþp�1

k¼n
αkε

≤ dþ e
6

1�b Σ
3nþp�3

k¼3n�2
βkε

≤ dþ e
6

1�b Σ
3nþp�4

k¼3n�2
βk þ 1

� �

ε

< dþ e
6

1�b
d
rþ1ð Þε< dþ r:

This is a contradiction. So limk!∞ ∥Tuk � uk∥ ¼ 0. That is to say,
limn!∞ ∥Txn � xn∥ ¼ 0. This completes the proof.

Theorem 2. Assume that T : C ! C is a T � Dað Þmapping and xnf g is generated
by iteration (3), 12 < a ≤ αn ≤ b< 1. Then the sequence xnf g converges to a fixed
point of T.

Proof: Since C is compact, there exists a subsequence xnk
� �

⊂ xnf g which con-
verges to some z∈C. By Lemma 3, we have
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∥xnk � Tz∥ ≤ 3∥Txnk � xnk∥þ ∥xnk � z∥. Since limnk!∞ ∥Txnk � xnk∥ ¼ 0 and
limnk!∞ ∥xnk � z∥ ¼ 0, we have limnk!∞ ∥xnk � Tz∥ ¼ 0. This implies that z ¼ Tz.
On the other hand, from Proposition 3

∥xnþ1 � z∥ ≤ ∥yn � z∥ ≤ ∥zn � z∥

≤ αn∥Txn � z∥þ 1� αnð Þ∥xn � z∥

≤ ∥xn � z∥:

So, limn!∞ ∥xn � z∥ exists. Therefore, limn!∞ ∥xn � z∥ ¼ 0. This completes the
proof.
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Chapter 4

Folding on the Chaotic Graph
Operations and Their
Fundamental Group
Mohammed Abu Saleem

Abstract

Our aim in the present chapter is to introduce a new type of operations on the
chaotic graph, namely, chaotic connected edge graphs under the identification
topology. The concept of chaotic foldings on the chaotic edge graph will be
discussed from the viewpoint of algebra and geometry. The relation between the
chaotic homeomorphisms and chaotic foldings on the chaotic connected edge
graphs and their fundamental group is deduced. The fundamental group of the limit
chaotic chain of foldings on chaotic. Many types of chaotic foldings are achieved.
Theorems governing these relations are achieved. We also discuss some applications
in chemistry and biology.
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1. Introduction and definitions

During the past few decades, examinations of social, biological, and communi-
cation networks have taken on enhanced attention throughout these examinations;
graphical representations of those networks and systems have been evident to be
terribly helpful. Such representations are accustomed to confirm or demonstrate the
interconnections or relationships between parts of those networks [1, 2].

A graph is an ordered G = (V(G), E(G)) where V(G) 6¼ φ, E(G) is a set disjoint
from V(G), elements of V(G) are called the vertices of G, and elements of E(G) are
called the edges. The foundation stone of graph theory was laid by Euler in 1736 by
solving a puzzle called Königsberg seven-bridge problem as in Figure 1 [1, 3].

There are many graphs with which one can construct a new graph from a given
graph or set of graphs, such as the Cartesian product and the line graph. A graph G
is a finite non-empty set V of objects called vertices (the singular is vertex) together
with a set E of two-element subsets of V called edges. The number of vertices in a
graph G is the order of G, and the number of edges is the size of G. To indicate that a
graph G has vertex set V and edge set E, we sometimes write G = (V, E). To
emphasize that V is the vertex set of a graph G, we often write V as V(G). For the
same reason, we also write E as E(G). A graph H is said to be a subgraph of a graph
G if V(H) ⊆ V(G) and E(H) ⊆ E(G). The complete graph with n-vertices will be
denoted by Kn: A null graph is a graph containing no edges; the null graph with
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n-vertices is denoted by Nn: A cycle graph is a graph consisting of a single cycle, the
cycle graph with n-vertices is denoted by Cn: The path graph is a graph consisting of
a single path; the path graph with n-vertices is denoted by Pn [1–11]. Let G and H be
two graphs. A function φ : V Gð Þ ! V Hð Þ is a homomorphism from G to H if it
preserves edges, that is, if for every edge e∈E Gð Þ, f eð Þ∈E Hð Þ [12, 13]. A core is a
graph which does not retract to a proper subgraph. Any graph is homomorphically
equivalent to a unique core [7].

The folding is a continuous function f : G ! H such that for each
v∈V Gð Þ, f vð Þ∈V Hð Þ, and for each e∈E Gð Þ, f eð Þ∈E Hð Þ [14]. Let X be a space, and
let I be the unit interval [0,1] in R, a homotopy of paths in X is a family
gt : I ! X,0≤ t≤ 1such that (i) the endpoints gt 0ð Þ ¼ x0 and gt 1ð Þ ¼ x1 are inde-
pendent of t and (ii) the associated map G : I � I ! X defined by G(s,t) = gt(s) is
continuous [15]. Given spaces X and Y with chosen points x0 ∈X, and y0 ∈Y, the
wedge sum X∨Y is the quotient of the disjoint union X∪Y obtained identifying x0
and y0 to a single point [15]. Two spaces X and Y are of the “same homotopy type”
if there exist continuous maps f : X ! Y and g : Y ! X such that g ◦ f ffi IX :
X ! X and f ◦ g ffi IY : Y ! Y [16]. The fundamental group briefly consists of
equivalence classes of homotopic closed paths with the law of composition follow-
ing one path to another. However, the set of homotopy classes of loops based at the
point x0 with the product operation f½ � g½ � ¼ f � g½ � is called the fundamental group
and denoted by π1 X; x0ð Þ [4, 17–24]. Over many years, chaos has been shown to be
an interesting and even common phenomenon in nature. Chaos has been shown to
exist in a wide variety of settings: in fluid dynamics such as Raleigh-Bernard con-
vection, in chemistry such as the Belousov-Zhabotinsky reaction, in nonlinear
optics in certain lasers, in celestial mechanics, in electronics in the flutter of an
overdriven airplane wing, some models of population dynamics, and likely in
meteorology, physiological oscillations such as certain heart rhythms, as well as
brain patterns [17, 24–30]. AI algorithms related to adjacency matrices on the
operations of the graph are discussed in [31, 32].

Figure 1.
Königsberg seven-bridge problem.
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2. The main results

First, we will introduce the following:
Definition 1. The chaotic edge e is a geometric edge e1 that carries many other edges

e2; e3;…ð Þ, each one of them homotopic to the original one as in Figure 2. Also the chaotic
vertices of e are v ¼ v1; v2;…ð Þ and u ¼ u1; u2;…ð Þ. For chaotic edge e, we have two cases:

Case 1 (1) e1, e2, e3,… are of the same physical properties.
Case 2 (2) e1, e2, e3,… represent different physical properties; for example, e1 repre-

sents density, e2 represents hardness, e3 represents magnetic fields, and so on.
Definition 2. A chaotic graph G is a collection of finite non-empty set V of objects

called chaotic vertices together with a set E of two-element subsets of V called chaotic
edges. The number of chaotic edges is the size of G.

Definition 3. Given chaotic connected graphs G1 and G2 with given edges e1 ∈G1 and
e2 ∈G2, then the chaotic connected edge graph G1⊻ G2 is the quotient of disjoint union
G1 ∪G2 acquired by identifying two chaotic edges e1 and e2 to a single chaotic edge (up to
chaotic isomorphism) as in Figure 3.

Definition 4. A chaotic graph H is called a chaotic subgraph of a chaotic graph G if
V H
� �

⊆V G
� �

and E H
� �

⊆E G
� �

.
Definition 5. Let G and H be two chaotic graphs. A function φ : V G

� �! V H
� �

is
chaotic homomorphism from G to H if it preserves chaotic edges, that is, if for any chaotic
edge u; v½ � of G, φ uð Þ;φ vð Þ½ � is a chaotic edge of H.

Definition 6. A chaotic folding of a graph G is a chaotic subgraph H of G such that
there exists a chaotic homomorphism f : G ! H, called chaotic folding with f xð Þ ¼ x for
every chaotic vertex x of H.

Definition 7. A chaotic core is a chaotic graph which does not chaotic retract to
chaotic proper subgraph.

Theorem 1. Let G1 and G2 be two chaotic connected graphs. Then
π1 G1 ⊻ G2
� � ¼ π1 G1

� �
∗ π1 G2

� �
.

Proof. Let G1 and G2 be two chaotic connected graphs. Since G1 ⊻ G2 and G1 ∨
G2 are of same chaotic homotopy type, it follows that
π1 G1 ⊻ G2
� �

≈ π1 G1
� �

∗ π1 G2
� �

: Hence, π1 G1 ⊻ G2
� � ¼ π1 G1

� �
∗ π1 G2

� �
.

Figure 2.
Chaotic edge.
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Theorem 2. The chaotic graphs G1 and G2are chaotic subgraphs of G1 ⊻ G2. Also, for
any chaotic tree G1 and G2, G1 ⊻ G2 is also chaotic tree and π1 G1 ⊻ G2

� � ¼ 0.
Proof. The proof of this theorem is clear.
Theorem 3. If G1, G2,…, Gn are connected graphs, and f 1; f 2;…; f n

D E
is a sequence

of chaotic topological foldings of ⊻ n
i¼1Gi into itself, then there is an induced sequence

f 1; f 2;…; f n
D E

of non-trivial chaotic topological folding f j : ∗
n
i¼1π1 Gii

� �! ∗ n
i¼1π1 Gii

� �
,

j ¼ 1, 2,…, n such that f j ∗ n
i¼1π1 Gii

� �� �
reduces the rank of ∗ n

i¼1π1 Gii
� �

.

Proof. Consider the following sequence of topological foldings f 1; f 2;…; f n
D E

,

where f 1 : ⊻
n
i¼1Gi ! ⊻ n

i¼1Gi, is a topological folding from ∨n
i¼1Gi into itself such

that f 1 ⊻ n
i¼1Gi

� � ¼ G1 ⊻ G2 ⊻ …⊻ f 1 Gs
� �

⊻ …⊻ Gn for s ¼ 1, 2,…n:
Since size f 1 Gs

� �� �
≤ size Gs

� �
and f 1 π1 Gi

� �� � ¼ π1 f 1 Gi
� �� �

, it follows that

rank f 1 π1 Gs
� �� �� �

¼ rank π1 f 1 Gs
� �� �� �

≤ rank π1 Gs
� �� �

, and so f 1 reduces the rank

of ∗ n
i¼1π1 Gii

� �
: Also, if f 2 ⊻ n

i¼1Gi
� � ¼ G1 ⊻ G2 ⊻ …⊻ f 2 Gs

� �
⊻ …⊻ f 2 Gk

� �

⊻ …⊻ Gn for k ¼ 1, 2,…n and s< k and size f 2 Gs
� �� �

≤ size Gs
� �

and size f 2 Gk
� �� �

≤ size Gk
� �

, we haverank f 2 π1 Gs
� �� �� �

¼ rank π1 f 2 Gs
� �� �� �

≤ rank π1 Gs
� �� �

,

rank f 2 π1 Gk
� �� �� �

¼ rank π1 f 2 Gk
� �� �� �

≤ rank π1 Gk
� �� �

; thus f 2 reduces the rank

of ∗ n
i¼1π1 Gii

� �
: Moreover, by continuing with this procedure if

f n ⊻ n
i¼1Gi

� � ¼ ⊻ n
i¼1 f n Gi

� �� �
, then f n ∗ n

i¼1π1 Gii
� �� � ¼ π1 f n ⊻ n

i¼1Gi
� �� �

¼
π1 ⊻ n

i¼1f n Gi
� �� �

≈ ∗ n
i¼1π1 f n Gii

� �� �
. Hence, f n reduces the rank of ∗ n

i¼1π1 Gii
� �

.

Figure 3.
Chaotic connected edge.
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Theorem 4. Let G1 and G2 be two chaotic graphs; then there is a chaotic homomor-

phism f : G1 ! G2 which induces f : π1 G1
� �! π1 G2

� �
if π1 G2

� �
is a chaotic folding of

π1 G1 ⊻ G2
� �

:

Proof. Let f : G1 ! G2 be a chaotic homomorphism. Since G2 is chaotic sub-
graph of G1 ⊻ G2, then there exists a chaotic homomorphism f : G1 ⊻ G2 ! G2 with

f vð Þ ¼ v for any chaotic vertex v of G2 which induces f : π1 G1
� �! π1 G2

� �
: What

follows from G2 is a chaotic folding of G1 ⊻ G2 in that π1 G2
� �

is a chaotic folding of
π1 G1 ⊻ G2
� �

: Conversely, assume that G2 is a chaotic folding of G1 ⊻ G2; thus
f : G1 ⊻ G2 ! G2 is a chaotic homomorphism with f vð Þ ¼ v for any chaotic vertex v
of G2, and so there is a chaotic homomorphism f : G1 ! G2 which induce

f : π1 G1
� �! π1 G2

� �
.

Theorem 5. For any chaotic path graphs Pn, Pm, n,m≥ 2, there is a sequence of

topological foldings with variation curvature f i : i ¼ 1; 2;…k
n o

on Pn ⊻ Pm which

induce a sequence of topological foldings f i : i ¼ 1; 2;…k
n o

such that f k f k�1 … f 1
���

π1 Pn ⊻ Pm
� �

…g ¼ Z
�

and limk!∞ f k f k�1 … f 1 π1 Pn ⊻ Pm
� �

…
�� �

¼ 0
����

.

Proof. Consider the following sequence of chaotic topological foldings with
variation curvature, f 1 : Pn ⊻ Pm ! Pn ⊻ Pm

� �
1, where Pn ⊻ Pm

� �
1 is a chaotic sub-

graph with decreasing inner curvature between every two adjacent chaotic edges in

Pn ⊻ Pm and f 2 : f 1 Pn ⊻ P
� �

m ! f 1 Pn ⊻ Pm
� �

1

� �
where f 2 f 1 Pn ⊻ Pm

� �
1

� �� �
is a cha-

otic subgraph with decreasing inner curvature between every two adjacent chaotic

edges in f 1 Pn ⊻ Pm
� �

1

� �
, and so on, such that f k f k�1 f k�2 … f 1 Pn ⊻ Pm

� �
⋯

� �
¼

���

Cnþm�2 and limk!∞ f k f k�1 f k�2 … f 1 Pn ⊻ Pm
� �

…
� �

¼ N1,
����

thus f k f k�1 f k�2 …ð
��

f 1 π1 Pn ⊻ Pm
� �

…
� � ¼ π11 Cnþm�2

� � ¼ Z:
�

Also, limk!∞ f k f k�1 f k�2 … f 1 π1ð
�����

Pn ⊻ Pm
� �

…Þ ¼ π1 N1
� � ¼ 0:

Theorem 6. For every two chaotic connected graphs G1 and G2, the fundamental
group of the limit of chaotic topological folding of G1 ⊻ G2 ¼ 0:

Proof. Let G1 and G2 be two chaotic connected graphs; then we have two cases:
Case (1): If f 1 : G1 ⊻ G2 ! G1 ⊻ G2 is a chaotic topological folding such that

f 1 G1 ⊻ G2
� �

consists of chaotic cycles, so we can define a sequence of chaotic

topological folding f 2 : f 1 G1 ⊻ G2
� �! f 1 G1 ⊻ G2

� �
where f 2 f 1 G1 ⊻ G2

� �� �
is a

chaotic tree with nchaotic edges, f 3 : f 2 f 1 G1 ⊻ G2
� �� �

! f 2 f 1 G1 ⊻ G2
� �� �

, such that

f 3 f 2 f 1 G1 ⊻ G2
� �

…
� ��

is a chaotic tree with k< n chaotic edges, chaotic edges by

continuing this process we get f k : f k�1 f k�2 … f 1 G1 ⊻ G2
� �

⋯Þ !
���

f k�1 f k�2 … f 1 G1 ⊻ G2
� �

⋯
����
such that limk!∞ f k f k�1 f k�2 … f 1 G1 ⊻ G2

� �
…

� �����
is

a chaotic edge, and so π1 limk!∞ f k f k�1 f k�2 … f 1 G1 ⊻ G2
� �

…
� �� �

¼ 0:
����

Case (2): If g1 : G1 ⊻ G2 ! G1 ⊻ G2 is a chaotic topological folding such that.
g1 G1 ⊻ G2
� �

has no chaotic cycles, then clearly limk!∞ gk gk�1 gk�2 … g1
�����

G1 ⊻ G2
� �

…Þ is a chaotic edge and π1 limk!∞ gk gk�1 gk�2 … g1 G1 ⊻ G2
� �

…
� �� � ¼ 0

����
.

Theorem 7. If G1 and G2 are chaotic connected and not chaotic cores graphs, then

π1 limn!∞ f n G1 ⊻ G2
� �� �

= π1 limn!∞ f n G1
� �� �

∗ π1 limn!∞ f n G2
� �� �

.
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Theorem 4. Let G1 and G2 be two chaotic graphs; then there is a chaotic homomor-

phism f : G1 ! G2 which induces f : π1 G1
� �! π1 G2

� �
if π1 G2

� �
is a chaotic folding of

π1 G1 ⊻ G2
� �

:

Proof. Let f : G1 ! G2 be a chaotic homomorphism. Since G2 is chaotic sub-
graph of G1 ⊻ G2, then there exists a chaotic homomorphism f : G1 ⊻ G2 ! G2 with

f vð Þ ¼ v for any chaotic vertex v of G2 which induces f : π1 G1
� �! π1 G2

� �
: What

follows from G2 is a chaotic folding of G1 ⊻ G2 in that π1 G2
� �

is a chaotic folding of
π1 G1 ⊻ G2
� �

: Conversely, assume that G2 is a chaotic folding of G1 ⊻ G2; thus
f : G1 ⊻ G2 ! G2 is a chaotic homomorphism with f vð Þ ¼ v for any chaotic vertex v
of G2, and so there is a chaotic homomorphism f : G1 ! G2 which induce

f : π1 G1
� �! π1 G2

� �
.

Theorem 5. For any chaotic path graphs Pn, Pm, n,m≥ 2, there is a sequence of

topological foldings with variation curvature f i : i ¼ 1; 2;…k
n o

on Pn ⊻ Pm which

induce a sequence of topological foldings f i : i ¼ 1; 2;…k
n o

such that f k f k�1 … f 1
���

π1 Pn ⊻ Pm
� �

…g ¼ Z
�

and limk!∞ f k f k�1 … f 1 π1 Pn ⊻ Pm
� �

…
�� �

¼ 0
����

.

Proof. Consider the following sequence of chaotic topological foldings with
variation curvature, f 1 : Pn ⊻ Pm ! Pn ⊻ Pm

� �
1, where Pn ⊻ Pm

� �
1 is a chaotic sub-

graph with decreasing inner curvature between every two adjacent chaotic edges in

Pn ⊻ Pm and f 2 : f 1 Pn ⊻ P
� �

m ! f 1 Pn ⊻ Pm
� �

1

� �
where f 2 f 1 Pn ⊻ Pm

� �
1

� �� �
is a cha-

otic subgraph with decreasing inner curvature between every two adjacent chaotic

edges in f 1 Pn ⊻ Pm
� �

1

� �
, and so on, such that f k f k�1 f k�2 … f 1 Pn ⊻ Pm

� �
⋯

� �
¼

���

Cnþm�2 and limk!∞ f k f k�1 f k�2 … f 1 Pn ⊻ Pm
� �

…
� �

¼ N1,
����

thus f k f k�1 f k�2 …ð
��

f 1 π1 Pn ⊻ Pm
� �

…
� � ¼ π11 Cnþm�2

� � ¼ Z:
�

Also, limk!∞ f k f k�1 f k�2 … f 1 π1ð
�����

Pn ⊻ Pm
� �

…Þ ¼ π1 N1
� � ¼ 0:

Theorem 6. For every two chaotic connected graphs G1 and G2, the fundamental
group of the limit of chaotic topological folding of G1 ⊻ G2 ¼ 0:

Proof. Let G1 and G2 be two chaotic connected graphs; then we have two cases:
Case (1): If f 1 : G1 ⊻ G2 ! G1 ⊻ G2 is a chaotic topological folding such that

f 1 G1 ⊻ G2
� �

consists of chaotic cycles, so we can define a sequence of chaotic

topological folding f 2 : f 1 G1 ⊻ G2
� �! f 1 G1 ⊻ G2

� �
where f 2 f 1 G1 ⊻ G2

� �� �
is a

chaotic tree with nchaotic edges, f 3 : f 2 f 1 G1 ⊻ G2
� �� �

! f 2 f 1 G1 ⊻ G2
� �� �

, such that

f 3 f 2 f 1 G1 ⊻ G2
� �

…
� ��

is a chaotic tree with k< n chaotic edges, chaotic edges by

continuing this process we get f k : f k�1 f k�2 … f 1 G1 ⊻ G2
� �

⋯Þ !
���

f k�1 f k�2 … f 1 G1 ⊻ G2
� �

⋯
����
such that limk!∞ f k f k�1 f k�2 … f 1 G1 ⊻ G2

� �
…

� �����
is

a chaotic edge, and so π1 limk!∞ f k f k�1 f k�2 … f 1 G1 ⊻ G2
� �

…
� �� �

¼ 0:
����

Case (2): If g1 : G1 ⊻ G2 ! G1 ⊻ G2 is a chaotic topological folding such that.
g1 G1 ⊻ G2
� �

has no chaotic cycles, then clearly limk!∞ gk gk�1 gk�2 … g1
�����

G1 ⊻ G2
� �

…Þ is a chaotic edge and π1 limk!∞ gk gk�1 gk�2 … g1 G1 ⊻ G2
� �

…
� �� � ¼ 0

����
.

Theorem 7. If G1 and G2 are chaotic connected and not chaotic cores graphs, then

π1 limn!∞ f n G1 ⊻ G2
� �� �

= π1 limn!∞ f n G1
� �� �

∗ π1 limn!∞ f n G2
� �� �

.
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Proof. If G1 and G2 are chaotic connected and not chaotic cores graphs, then we
get the following chaotic induced graphs limn!∞ f n G1 ⊻ G2

� �
, limn!∞ f n G1

� �
,

limn!∞ f n G2
� �

, and each of them are isomorphic to k2. Since k2 ≈ k2 ⊻ k2 it follows
that limn!∞ f n G1 ⊻ G2

� � ¼ limn!∞ f n G1
� �

⊻ limn!∞ f n G2
� �

and

π1 limn!∞ f n G1 ⊻ G2
� �� �

= π1 limn!∞ f n G1
� �� �

∗ π1 limn!∞ f n G2
� �� �

:

3. Some applications

i. A polymer is composed of many repeating units called monomers. Starch,
cellulose, and proteins are natural polymers. Nylon and polyethylene are
synthetic polymers. Polymerization is the process of joining monomers.
Polymers may be formed by addition polymerization; furthermore, one
essential advance likewise polymerization is mix as in Figure 4, which
happens when the polymer’s development is halted by free electrons from two
developing chains that join and frame a solitary chain. The accompanying
chart portrays mix, with the image (R) speaking to whatever remains of the
chain.

ii. Chemical nature of enzymes, all known catalysts are proteins. They are high
atomic weight mixes made up primarily of chains of amino acids connected
together by peptide bonds as in Figure 5.

Figure 4.
Polymerization.

Figure 5.
Typical amino acids.
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iii. There are two types of the subunit structure of ribosomes as in Figure 6
which is represented by the different connected types of protein subunit and
rRNA to form a new type of ribosomes.

4. Conclusion

In this chapter, the fundamental group of the limit chaotic foldings on chaotic
connected edge graphs is deduced. Also, we can deduce some algorithms from a
new operation of a graph by using the adjacency matrices.
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Chapter 5

A Survey on Hilbert Spaces
and Reproducing Kernels
Baver Okutmuştur

Abstract

The main purpose of this chapter is to provide a brief review of Hilbert space
with its fundamental features and introduce reproducing kernels of the
corresponding spaces. We separate our analysis into two parts. In the first part, the
basic facts on the inner product spaces including the notion of norms, pre-Hilbert
spaces, and finally Hilbert spaces are presented. The second part is devoted to the
reproducing kernels and the related Hilbert spaces which is called the reproducing
kernel Hilbert spaces (RKHS) in the complex plane. The operations on reproducing
kernels with some important theorems on the Bergman kernel for different domains
are analyzed in this part.

Keywords: Hilbert spaces, norm spaces, reproducing kernels, reproducing kernel
Hilbert spaces (RKHS), operations on reproducing kernels, sesqui-analytic kernels,
analytic functions, Bergman kernel

1. Framework

This chapter consists of introductory concept on the Hilbert space theory and
reproducing kernels. We start by presenting basic definitions, propositions, and
theorems from functional analysis related to Hilbert spaces. The notion of linear
space, norm, inner product, and pre-Hilbert spaces are in the first part. The second
part is devoted to the fundamental properties of the reproducing kernels and the
related Hilbert spaces. The operations with reproducing kernels, inclusion property,
Bergman kernel, and further properties with examples of the reproducing kernels
are analyzed in the latter section.

2. Introduction to Hilbert spaces

We start by the definition of a vector space and related topics. Let  be the
complex field. The following preliminaries can be considered as fundamental
concepts of the Hilbert spaces.

2.1 Vector spaces and inner product spaces

Vector space. A vector space is a linear space that is closed under vector
addition and scalar multiplication. More precisely, if we denote our linear space by
H over the field , then it follows that
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i. if x, y, z∈H, then

xþ y ¼ yþ x∈H, xþ yþ zð Þ ¼ xþ yð Þ þ z∈H;

ii. if k is scalar, then kx∈H:

Inner product. Let H be a linear space over the complex field . An inner
product on H is a two variable function

�, �h i : H�H ! , satisfying

i. f , gh i ¼ g, fh i for f , g∈H:

ii. αf þ βg, hh i ¼ α f , hh i þ β g, hh i and f , αg þ βhh i ¼ α f , gh i þ
β f , hh i for α, β∈ and f , g, h∈H:

iii. f , fh i≥0 for f ∈H and f , fh i ¼ 0 ⇔ f ¼ 0:

Pre-Hilbert space. A pre-Hilbert space H is a linear space over the complex field
 with an inner product defined on it.

Norm space or inner product space. A norm on an inner product space H
denoted by ∥ � ∥ is defined by

∥ f∥ ¼ f , fh i1=2 or ∥ f∥H ¼ f , fh i1=2H

where f ∈H and �, �h i ¼ �, �h iH denote the inner product on H. The
corresponding space is called as the inner product space or the norm space.

Properties of norm. For all f , g∈H, and λ∈, we have

• ∥ f∥≥0. (Observe that the equality occurs only if f ¼ 0).

• ∥λf∥ ¼ ∣λ∣∥ f∥:

Schwarz inequality. For all f , g∈H, it follows that

∣ f , gh i∣ ≤ ∥ f∥∥g∥: (1)

In case if f and g are linearly dependent, then the inequality becomes equality.
Triangle inequality. For all f , g∈H, it follows that

∥ f þ g∥≤ ∥ f∥þ ∥g∥: (2)

In case if f and g are linearly dependent, then the inequality becomes equality.
Polarization identity. For all f , g∈H, it follows that

f , gh i ¼ 1
4

∥ f þ g∥2 � ∥ f � g∥2 þ i∥ f þ ig∥2 � ∥ f � ig∥2
� �

for f , g∈H: (3)

Parallelogram identity. For all f , g∈H, it follows that

∥ f þ g∥2 þ ∥ f � g∥2 ¼ 2∥ f∥2 þ 2∥g∥2: (4)

Metric. A metric on a set X is a function d: X � X !  satisfying the properties.
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• d x, yð Þ≥0 and d x, yð Þ ¼ 0 only if x ¼ y;

• d x, yð Þ ¼ d y, xð Þ;

• d x, yð Þ≤ d x, zð Þ þ d z, yð Þ;

for all x, y, z∈X. Moreover the space X, dð Þ is the associated metric space. If we
rearrange the metric with its properties for the inner product space H, then it
follows that for all f , g, h∈H and for all λ∈, where d satisfies all requirements to
be a metric, we have

• d f , gð Þ≥0 and equality occurs only if f ¼ g:

• d f , gð Þ ¼ d g, fð Þ:

• d f , gð Þ≤ d f , hð Þ þ d h, gð Þ:

• d f � h, g � hð Þ ¼ d f , gð Þ.

• d λf , λgð Þ ¼ ∣λ∣ � d f , gð Þ:

Note. The binary function d given in the metric definition above represents
the metric topology inH which is called strong topology or norm topology. As a result, a
sequence fð Þn≥0 in the pre-Hilbert spaceH converges strongly to f if the condition

∥f n � f∥ ! 0 whenever n ! ∞

is satisfied.

2.2 Introduction to linear operators

Linear operator. A map L from a linear space to another linear space is called
linear operator if

L αf þ βgð Þ ¼ αLf þ βLg

is satisfied for all α, β∈ and for all f , g∈H.
Continuous operator. An operator L is said to be continuous if it is continuous

at each point of its domain. Notice that the domain and range spaces must be
convenient for appropriate topologies.

Lipschitz constant of a linear operator. If L is a linear operator from H to G
where H and G are pre-Hilbert spaces, then the Lipschitz constant for L is its norm
∥L∥ and it is defined by

∥L∥ ¼ sup ∥Lf∥G=∥ f∥H : 0 6¼ f ∈H� �
: (5)

Theorem 1. Let L be a linear operator from the pre-Hilbert spaces H to G: Then
the followings are mutually equivalent:

i. L is continuous.

ii. L is bounded, that is,

sup ∥Lf∥G : ∥ f∥H ≤ kf g <∞

for 0≤ k<∞:
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i. if x, y, z∈H, then
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4
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� �
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iii. L is Lipschitz continuous, that is,

∥Lf � Lg∥G ≤ λ∥ f � g∥H,

where 0≤ λ<∞ and f , g∈H:
Some properties of linear operators. Let B H,Gð Þ be the collection of all con-

tinuous linear operators from the pre-Hilbert spaces H to G. Then

• B H,Gð Þ is a linear space with respect to the natural addition and scalar
multiplication satisfying

αLþ βMð Þf ¼ αLf þ βMf ,

where L and M are linear operators, f ∈H and α, β∈:

• Whenever H ¼ G, then B H,Gð Þ is denoted by B Hð Þ.

• If K is another pre-Hilbert space, L∈B H,Gð Þ and K ∈B G,Kð Þ. Then the product

KLð Þf ¼ K Lfð Þ for f ∈H∈B H,Kð Þ:

In addition,

i. K ξLþ ζMð Þ ¼ ξKLþ ζKM

ii. ∥ξL∥ ¼ ∣ξ∣ � ∥L∥

iii. ∥LþM∥≤∥L∥þ ∥M∥ and

iv. ∥KL∥≤ ∥K∥∥L∥.

are also satisfied.

2.3 Hilbert spaces and linear operators

Linear form (or linear functional). A linear operator from the pre-Hilbert
space H to the scalar field  is called a linear form (or linear functional).

Hilbert spaces. A pre-Hilbert spaceH is said to be aHilbert space if it is complete
in metric. In other words if f n is a Cauchy sequence in H, that is, if

∥f n � f m∥ ! 0 whenever n,m ! ∞,

then there is f ∈H such that

∥f n � f∥ ! 0 whenever n ! ∞:

Note. Every subspace of a pre-Hilbert space is also a pre-Hilbert space with
respect to the induced inner product. However, the reverse is not always true.
For a subspace of a Hilbert space to be also a Hilbert space, it must be closed.

Completion. The canonical method for which a pre-Hilbert space H is
embedded as a dense subspace of a Hilbert space ~H so that

f , gh i ~H ¼ f , gh iH for f , g∈H

is called completion.
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Note. If L is a continuous linear operator from a dense subspace M of a Hilbert
spaceH to a Hilbert space G, then it can be extended uniquely to a continuous linear
operator from H to G with preserving norm.

Theorem 2. Let M and N be dense subspaces of the Hilbert spaces H and G,
respectively. For f ∈H, g∈M and 0≤ λ<∞, if a linear operator L from M to G
satisfies

∣ Lf , gh iG∣ ≤ ∣λ∣∥ f∥H∥g∥G, (6)

then L is uniquely extended to a continuous linear operator from M to G with
norm ≤ λ where the norm coincides with the minimum of such λ.

Theorem 3. Let Ω, μð Þ denotes a measure space so that Ω is the union of subsets
of finite positive measure and L2 Ω, μð Þ consists of all measurable functions f ωð Þ on
Ω such that

ð

Ω
f ωð Þj j2dμ ωð Þ<∞: (7)

Then L2 Ω, μð Þ is a Hilbert space with respect to the inner product

f , gh i≔
ð

Ω
f ωð Þg ωð Þdμ ωð Þ: (8)

Theorem 4 (F. Riesz). For each continuous linear functional φ on a Hilbert
space H, there exists uniquely g∈H such that

φ fð Þ ¼ f , gh i for f ∈H: (9)

Theorem 5. LetM be a closed subspace of a Hilbert spaceH: Then the algebraic
direct sum relation

H ¼ M⊕M⊥

is satisfied. In other words, ∀f ∈H can be uniquely written by

f ¼ fM þ fM⊥ with fM ∈M, fM⊥ ∈M⊥: (10)

In addition, ∥fM∥ coincides with the distance from f to M⊥

∥fM∥ ¼ min ∥ f � g∥ : g∈M⊥� �
: (11)

Remark. In a Hilbert space, the closed linear span of any subset A of a Hilbert

space H coincides with A⊥� �⊥
:

Total subset of a Hilbert space. A subsetA of a Hilbert spaceH is called total in
H if 0 is the only element that is orthogonal to all elements of A. In other words,

A⊥ ¼ 0f g:

As a result, A is total if and only if every element of H can be approximated by
linear combinations of elements of A.

Orthogonal projection. If M is a closed subspace of H, the map f↦fM gives a
linear operator from H to M with norm ≤ 1. We call this operator as the orthogonal
projection to M and denote it by PM.
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Note. If I is the identity operator on H, then I � PM denotes the orthogonal
projection to M⊥, and the relation

∥ f∥2 ¼ ∥PMf∥2 þ ∥ I � PMð Þf∥2 (12)

is satisfied for all f ∈H.
Weak topology. The weakest topology that makes continuous all linear func-

tionals of the form f↦ f , gh i is called the weak topology of a Hilbert space H.
Note. If f ∈H, then with respect to the weak topology, a fundamental system of

neighborhoods of f is composed of subsets of the form

U f ;A, ϵð Þ ¼ h :j f , gh i � h, gh ij< ϵ for g∈Af g,

where A is a finite subset of H and ϵ>0. Then a directed net f λ
� �

converges
weakly to f if and only if

f λ, g
� �!λ f , gh i for all g∈H:

Operator weak topology. The weakest topology that makes continuous all
linear functionals of the form

L↦ Lf , gh i for f ∈H, g∈G

is called the operator weak topology in the space B H,Gð Þ of continuous linear
operators from H to G. In addition, a directed net Lλf g converges weakly to L if

Lλf , gh i !λ Lf , gh i:

Operator strong topology. The weakest topology that makes continuous all
linear operators of the form

L↦Lf for f ∈H

is called the operator strong topology. Moreover a directed net Lλf g converges
strongly to L if

∥Lλf � Lf∥ !λ 0 for all f ∈H:

Theorem 6. Let H and G be Hilbert spaces and B H,Gð Þ be a continuous linear
operator from H to G. Then

• the closed unit ball U≔ f : ∥ f∥≤ 1f g of H is weakly compact;

• the closed unit ball L : ∥L∥≤ 1f g of B H,Gð Þ is weakly compact.

Theorem 7. Let H be a Hilbert space and A⊆H: Then if A is weakly bounded in
the sense

sup
f ∈A

∣ f , gh i∣<∞ for g∈H, (13)

then it is strongly bounded, that is, sup f ∈A∥ f∥<∞:

66

Functional Calculus

Theorem 8. If H and G are Hilbert spaces and L is a linear operator from H to G,
then the strong continuity and weak continuity for L are equivalent.

Theorem 9. Let H and G be Hilbert spaces. Then the following statements for
L⊆B H,Gð Þ are mutually equivalent:

(i) L is weakly bounded; that is, for f ∈H, g∈G, we have

sup
L∈ L

∣ Lf , gh i∣<∞

(ii) L is strongly bounded; that is, for f ∈H, we have

sup
L∈ L

∥Lf∥<∞:

(iii) L is norm bounded (or uniformly bounded); that is,

sup
L∈ L

∥L∥<∞:

Theorem 10. A linear operator L from the Hilbert spaces H to G is said to be
closed if its graph

GL ≔ f ⊕Lf : f ∈Hf g (14)

is a closed subspace of the direct sum space H⊕G, that is, whenever n ! ∞,

∣f n � f∥ ! 0 in H and ∥Lf n � g∥ ! 0 in G ) g ¼ Lf :

Theorem 11. If L is a closed linear operator with a domain of a Hilbert spaceH to
another Hilbert space G, then it is continuous.

Sesqui-linear form. A function Φ : H� G !  is a sesqui-linear form (or sesqui-
linear function) if for f , h∈H, g, k∈G and α, β∈,

ið Þ Φ αf þ βh, gð Þ ¼ αΦ f , gð Þ þ βΦ h, gð Þ (15)

iið Þ Φ f , αg þ βkð Þ ¼ αΦ f , gð Þ þ βΦ f , kð Þ (16)

are satisfied where H and G are Hilbert spaces.
Remark. If L∈B H,Gð Þ, then the sesqui-linear form Φ defined by

Φ f , gð Þ ¼ Lf , gh iG (17)

is bounded in the sense that

∣Φ f , gð Þ∣ ≤ λ∥ f∥H∥g∥G for f ∈H, g∈G, (18)

where λ≥∥L∥:

Remark. If a sesqui-linear form Φ satisfies the condition (18), then for f ∈H,
the linear functional

g↦Φ f , gð Þ

is continuous on G: If we apply the Riesz theorem, then there exists uniquely
f 0 ∈G satisfying
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∥f 0∥G ≤ λ∥ f∥H and Φ f , gð Þ ¼ f 0, g
� �

G for g∈G:

Hence f↦f 0 becomes linear, and as a result we obtain

Φ f , gð Þ ¼ f 0, g
� �

G ¼ Lf , gh iG:

Adjoint operator. If L∈B H,Gð Þ, then the unique operator L ∗ ∈B G,Hð Þ
satisfying

Φ f , gð Þ ¼ f ,L ∗ gh iH for f ∈H, g∈G (19)

is called the adjoint of L.
Remark. By the definitions of L and L ∗ , it follows that

Lf , gh iG ¼ f ,L ∗ gh iH for f ∈H, g∈G: (20)

Isometric property. The adjoint operation is isometric if

∥L∥ ¼ ∥L ∗ ∥ is satisfied: (21)

Remark. Let H,G, and K be Hilbert spaces and K ∈B G,Kð Þ and L∈B H,Gð Þ be
given. Then

KL∈B H,Kð Þ and KLð Þ ∗ ¼ L ∗K ∗ (22)

Ker Lð Þ ¼ Ran L ∗ð Þð Þ⊥ and Ker Lð Þð Þ⊥ ¼ Clos Ran Lð Þ ∗f g (23)

where Ker Lð Þ is the kernel of L and Ran Lð Þ is the range of L.
Theorem 12. If L,M∈B H,Gð Þ, then the following statements are mutually

equivalent.

i. Ran Mð Þ⊆Ran Lð Þ.

ii. There exists K ∈B Hð Þ such that M ¼ LK:

iii. There exists 0≤ λ<∞ such that

∥M ∗ g∥≤ λ∥L ∗ g∥ for g∈G:

Quadric form. Let H be a Hilbert space. A function

φ : H ! 

is a quadratic form if for all f ∈H and ζ∈,

φ ζfð Þ ¼ ζj j2φ fð Þ (24)

and

φ f þ gð Þ þ φ f � gð Þ ¼ 2 φ fð Þ þ φ gð Þf g (25)

are satisfied.
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Note. If L∈B Hð Þ, the quadratic form φ on H is defined by

φ fð Þ ¼ Lf , fh i for f ∈H, (26)

and it is bounded

∣φ fð Þ∣ ≤ λ∥ f∥2 for f ∈H, (27)

where λ≥∥L∥:
Remark. The sesqui-linear form Φ associated with L can be recovered from the

quadratic form φ by the equation

Φ f , gð Þ ¼ 1
4

φ f þ gð Þ � φ f � gð Þf g þ φ f þ igð Þ � φ f � igð Þf g (28)

for all f , g∈H:
Self-adjoint operator. A continuous linear operator L on a Hilbert space H is

said to be self-adjoint if L ¼ L ∗ .
Remark. L is self-adjoint if and only if the associated sesqui-linear form Φ is

Hermitian.
Remark. If L is self-adjoint, then the norm of L coincides with the minimum of λ

given in (27) for the related quadratic form
Theorem 13. If L is a continuous self-adjoint operator, then

∥L∥ ¼ sup j Lf , fh ij: ∥ f∥≤ 1f g: (29)

Positive definite operator. A self-adjoint operator L∈B Hð Þ is said to be positive
(or positive definite) if

Lf , fh i≥0 for all f ∈H:

If Lf , fh i ¼ 0 only when f ¼ 0, then L is said to be strictly positive (or, strictly
positive definite).

Note. For any positive operator L∈B Hð Þ, the Schwarz inequality holds in the
following sense

Lf , gh ij j2 ≤ Lf , fh i � Lg, gh i: (30)

Theorem 14. Let L andM be continuous positive operators onH and G,
respectively. Then a continuous linear operator K fromH to G satisfies the inequality

Kf , gh iG
�� ��2 ≤ Lf , fh iH Mg, gh iG for f ∈H, ∈G (31)

if and only if the continuous linear operator

L K ∗

K M

� �

on the direct sum Hilbert space H⊕G with

f ⊕ g↦ Lf þ K ∗ gð Þ⊕ Kf þMgð Þ

is positive definite.
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� �
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� �
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are satisfied.
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Theorem 15. Let L be a continuous positive definite operator. Then there exists a
unique positive definite operator called the square root ofL, denoted byL1=2, such that

L1=2� �2 ¼ L:
Modulus operator. The square root of the positive definite operator L ∗L is

called the modulus (operator) of L if L is a continuous linear operator.
Isometry. A linear operator U between Hilbert spaces H and G is called isometric

or an isometry if

∥Uf∥G ¼ ∥ f∥H for f ∈H (32)

is satisfied, that is, it preserves the norm.
Note. Eq. (32) implies that a continuous linear operator U is isometric if and

only if U ∗U ¼ IH; in other words,

Uf ,Ugh iG ¼ f , gh iH for f , g∈H, (33)

that is, U preserves the inner product.
Unitary operator. A surjective isometry linear operator U : H ! H is called a

unitary (operator).
Note. Observe that if U ∈B Hð Þ is a unitary operator, then U ∗ ¼ U�1:
Partial isometry. A continuous linear operator U between Hilbert spaces H and

G is called a partial isometry if

f ∈ KerUð Þ⊥ ¼ Ran U ∗ð Þ ) ∥Uf∥ ¼ ∥ f∥:

The spaces KerUð Þ⊥ and Ran Uð Þ are called the initial space of U and the final
space of U, respectively.

Note. If U is a partial isometry, then its adjoint U ∗ is also a partial isometry.
Theorem 17. Every continuous linear operator L on H admits a unique

decomposition

L ¼ U~L, (34)

where ~L is a positive definite operator and U is a partial isometry with initial
space the closure of Ran ~L

� �
.

3. Reproducing kernels and RKHS

We continue our analysis on the abstract theory of reproducing kernels.

3.1 Definition and fundamental properties

Reproducing kernels. Let H be a Hilbert space of functions on a nonempty set
X with the inner product f , gh i and norm ∥ f∥ ¼ f , fh i1=2 for f and g∈H. Then the
complex valued function K y, xð Þ of y and x in X is called a reproducing kernel of H if

i. For all x∈X, it follows that Kx �ð Þ ¼ K �, xð Þ∈H,

ii. For all x∈X and all f ∈H,

f xð Þ ¼ f ,Kxh i, (35)

are satisfied.

70

Functional Calculus

Note. Let K be a reproducing kernel. Applying (35) to the function Kx at y,
we get

Kx yð Þ ¼ K y, xð Þ ¼ Ky,Kx
� �

, for x, y∈X: (36)

Then, for any x∈X, we obtain

∥Kx∥ ¼ Kx,Kxh i1=2 ¼ K x, xð Þ1=2: (37)

Note. Observe that the subset Kxf gx∈X is total inH, that is, its closed linear span
coincides with H. This follows from the fact that, if f ∈H and f⊥Kx for all x∈X,
then

f xð Þ ¼ f ,Kxh i ¼ 0 for all x∈X,

and hence f is the 0 element in H. As a result, 0f g⊥ ¼ H.
RKHS. A Hilbert spaceH of functions on a set X is called a RKHS if there exists a

reproducing kernel K of H.
Theorem 18. If a Hilbert space H of functions on a set X admits a reproducing

kernel K, then this reproducing kernel K is unique.
Theorem 19. There exists a reproducing kernel K for H for a Hilbert space H of

functions on X, if and only if for all x∈X, the linear functional H∍f↦f xð Þ of
evaluation at x is bounded on H:

Hermitian and positive definite kernel. Let X be an arbitrary set and K be a
kernel on X, that is, K : X � X ! . The kernel K is called Hermitian if for any finite
set of points y1, … , yn

� �
⊆X, we have

Xn
i, j¼1

ϵjϵiK yj, yi
� �

∈:

It is called positive definite, if for any complex numbers ϵ1, … , ϵn, we have

Xn
i, j¼1

ϵjϵiK yj, yi
� �

≥0:

Note. From the previous inequality, it follows that for any finitely supported
family of complex numbers ϵxf gx∈X, we have

X
x, y∈X

ϵyϵxK y, xð Þ≥0: (38)

Theorem 20. The reproducing kernel K of a reproducing kernel Hilbert space H
is a positive definite matrix in the sense of E.H. Moore.

Properties of RKHS. Given a reproducing kernel Hilbert space H and its kernel
K y, xð Þ on X, then for all x, y∈X, we have

i. K y, yð Þ≥0:

ii. K y, xð Þ ¼ K x, yð Þ:

iii. K y, xð Þj j2 ≤K y, yð ÞK x, xð Þ (Schwarz inequality).
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iv. Let x0 ∈X. Then the following statements are equivalent:

a. K x0, x0ð Þ ¼ 0.

b. K y, x0ð Þ ¼ 0 for all y∈X.

c. f x0ð Þ ¼ 0 for all f ∈H:

Theorem 21. For any positive definite kernel K on X, there exists a unique
Hilbert space HK of functions on X with reproducing kernel K.

Theorem 22. Every sequence of functions f n
� �

n≥ 1 that converges strongly to a
function f in HK Xð Þ converges also in the pointwise sense, i.e., for any point x∈X,

lim
n!∞

f n xð Þ ¼ f xð Þ:

In addition, this convergence is uniform on every subset of X on which
x↦K x, xð Þ is bounded.

Theorem 23. A complex valued function g on X belongs to the reproducing
kernel Hilbert space HK Xð Þ if and only if there exists 0≤ λ<∞ such that,

g yð Þg xð Þ
h i

≤ λ2 K y, xð Þ½ � on X: (39)

∥g∥ coincides with the minimum of all such λ.
Theorem 24. If K 1ð Þ y, xð Þ and K 2ð Þ y, xð Þ are two positive definite kernels on X,

then the following statements are mutually equivalent:

i. HK 1ð Þ Xð Þ⊆HK 2ð Þ Xð Þ.

ii. There exists 0≤ λ<∞ such that

K 1ð Þ y, xð Þ
h i

≤ λ2 K 2ð Þ y, xð Þ
h i

:

Note. For any map φ from a set X to a Hilbert space H, with the notation x↦φx,
a kernel K can be defined by

K y, xð Þ ¼ φx,φy

D E
for x, y∈X: (40)

Theorem 25. Let φ : X↦H be an arbitrary map and for x, y∈X let K be
defined as

K y, xð Þ ¼ φx,φy

D E
:

Then K is a positive definite kernel.
Theorem 26. Let T be the linear operator fromH to the space of functions on X,

defined by

Tfð Þ xð Þ ¼ f ,φxh i for x∈X, f ∈H:

Then Ran Tð Þ coincides with HK Xð Þ and
∥Tf∥K ¼ ∥PMf∥ for f ∈H,
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where M is the orthogonal complement of Ker Tð Þ, PM is the orthogonal
projection onto M, and ∥ � ∥K denotes the norm in HK Xð Þ:

Kolmogorov decomposition. LetK y, xð Þ be a positive definite kernel on an abstract
setX. Then there exists a Hilbert spaceH and a functionφ : X ! H such that

K y, xð Þ ¼ φx,φy

D E
for x, y∈X:

3.2 Operations with RKHSs

Theorem 27. Let K 0ð Þ be the restriction of the positive definite kernel K to a
nonempty subset X0 of X and letHK 0ð Þ Xð Þ andHK Xð Þ be the RKHS corresponding to
K 0ð Þ and K, respectively. Then

HK 0ð Þ X0ð Þ ¼ f f
��
X0

: f ∈HK Xð Þg (41)

and

∥h∥K 0ð Þ ¼ min ∥ f∥K : f jX0
¼ h

n o
for all h∈HK 0ð Þ X0ð Þ: (42)

Remark. If K 1ð Þ y, xð Þ and K 2ð Þ y, xð Þ are two positive definite kernels, then

K y, xð Þ ¼ K 1ð Þ y, xð Þ þ K 2ð Þ y, xð Þ

is also a positive definite kernel.
Remark. Let HK 1ð Þ ,HK 2ð Þ , and HK be RKHSs with reproducing kernels K 1ð Þ y, xð Þ,

K 2ð Þ y, xð Þ, and K y, xð Þ, respectively, and let K ¼ K 1ð Þ þ K 2ð Þ: Then

HK Xð Þ ¼ HK 1ð Þ Xð Þ þ HK 2ð Þ Xð Þ,

and for f ∈HK 1ð Þ Xð Þ and g∈HK 2ð Þ Xð Þ, it follows that

∥ f þ g∥2K ¼ min ∥ f þ h∥2K 1ð Þ þ ∥g � h∥2K 2ð Þ : h∈HK 1ð Þ Xð Þ∩HK 2ð Þ Xð Þ
n o

: (43)

Theorem 28. The intersection HK 1ð Þ Xð Þ∩HK 2ð Þ Xð Þ of Hilbert spaces HK 1ð Þ Xð Þ and
HK 2ð Þ Xð Þ is again a Hilbert space of functions on X with respect to the norm

∥ f∥2 ≔∥ f∥2K 1ð Þ þ ∥ f∥2K 2ð Þ :

In addition the intersection Hilbert space is a RKHS.
Theorem 29. The reproducing kernel of the space

HK Xð Þ ¼ HK 1ð Þ Xð Þ∩HK 2ð Þ Xð Þ

is determined, as a quadratic form, by

X
x, y

εyεxK y, xð Þ ¼ inf f
X
x, y

ηyηxK
1ð Þ y, xð Þ þ

X
x, y

ζyζxK
2ð Þ y, xð Þ : εx½ �

¼ ηx½ � þ ζx½ �g,

where ϵx½ �, ηx½ �, ζx½ � are an arbitrary complex valued function on X with finite
support.
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Theorem 30. The tensor product Hilbert space

HK 1ð Þ Xð Þ⊗HK 2ð Þ Xð Þ

is a RKHS on X � X.
Theorem 31. The RKHS HK Xð Þ of the kernel K y, xð Þ ¼ K 1ð Þ y, xð Þ � K 2ð Þ y, xð Þ

consists of all functions f on X for which there are sequences gn
� �

n≥0 of functions in
HK 1ð Þ Xð Þ and hnð Þn≥0 of functions in HK 2ð Þ Xð Þ so that

X∞
1

∥gn∥
2
K 1ð Þ∥hn∥2K 2ð Þ <∞,

X∞
1

gn xð Þhn xð Þ ¼ f xð Þ, x∈X, (44)

and the norm is given by

∥ f∥2K ¼ min
X∞
1

∥gn∥
2
K 1ð Þ∥hn∥2K 2ð Þ

( )
,

where the minimum is taken over the set of all sequences gn
� �

n≥0 and hnð Þ≥0

satisfying (44).

3.3 Examples of RKHS. Bergman and Hardy spaces

Bergman space. The space of all analytic functions f on Ω for which

ð ð

Ω
f zð Þj j2dxdy<∞, z ¼ xþ iyð Þ

is satisfied is called the Bergman space on Ω and denoted by A2 Ωð Þ.
Remark. A2 Ωð Þ is a RKHS with respect to the inner product

f , gh i � f , gh iΩ ≔
ð ð

Ω
f zð Þg zð Þdxdy,

and its kernel is called the Bergman kernel on Ω and denoted by B Ωð Þ w, zð Þ:
Bergman kernel for the unit disc. The Bergman kernel for the open unit disc 

is given by

B ð Þ w, zð Þ ¼ 1
π

1

1� wzð Þ2 for w, z∈: (45)

Bergman kernel of a simply connected domain. The Bergman kernel of a
simply connected domain Ω 6¼ ð Þ is given by

B Ωð Þ w, zð Þ ¼ 1
π

φ0 wð Þφ0 zð Þ
1� φ wð Þφ zð Þ
� �2 for w, z∈Ω, (46)

where φ is any conformal mapping function from Ω onto :
Theorem 32. A conformal mapping from Ω to  can be recovered from the

Bergman kernel of Ω:
Jordan curve. A Jordan curve is a continuous 1� 1 image of jξj¼ 1f g in .
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Green function. A Green function G w, zð Þ of Ω is a function harmonic in Ω
except at z, where it has logarithmic singularity, and continuous in the closure Ω,
with boundary values G w, zð Þ ¼ 0 for all w∈∂Ω, where Ω is a finitely connected
domain of the complex plane.

Theorem 33. Let Ω be a finitely connected domain bounded by analytic Jordan
curves, and let G w, zð Þ be the Green’s function of Ω: Then the Bergman kernel
function is

B Ωð Þ w, zð Þ ¼ � 2
π

∂
2G

∂w∂z
w, zð Þ, w 6¼ z: (47)

Hardy space. The closed linear span of φn : n ¼ 0, 1, …f g in L2 Tð Þð is called the
(Hilbert type) Hardy space on  and is denoted by H2 ð Þ: Here φn ξð Þ ¼ ξn.

Remark. f ∈L2 ð Þ belongs to the Hardy space H2 ð Þ if and only if it is ortho-
normal to all φn (n<0), that is, all Fourier coefficients of f with negative indices
vanish. Then we have

f , gh iL2 ¼
X∞
n¼0

anbn for f , g∈H2 ð Þ, (48)

where

an ¼ f ,φnh iL2 and bn ¼ g,φnh iL2 n ¼ 0, 1, …ð Þ:

Szegö kernel. The kernel S ξ, zð Þ≔ 1
1�ξz for ξ∈, z∈, or its analytic extension

~S w, zð Þ≔ 1
1�wz for w, z∈ is called the Szegö kernel.

Notes

This chapter intends to offer a sample survey for the fundamental concepts of
Hilbert spaces and provide an introductory theory of reproducing kernels. We
present the basic properties with important theorems and sometimes with punctual
notes and remarks to support the subject. However, due to the limit of content and
pages, we skipped the proofs of the theorems. The proofs of the first part can be
found in [1, 2] and in most of the basic functional analysis books. Besides, the proofs
of the second part (related with the reproducing kernels) can easily be found in [3].
The Hilbert space and functional analysis parts of this chapter are based on the
books by J.B. Conway [1] and R.G. Douglas [2]. On the other hand, the reproducing
kernel part is based on the lecture notes of T. Ando [4] and N. Aronszajn [5], the
book of S. Saitoh and Y. Sawano [6], and the book of B. Okutmustur and A.
Gheondea [3]. Moreover, the details of Bergman and Hardy spaces are widely
explained in the books [7–9].
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Chapter 6

Analytical Applications on Some
Hilbert Spaces
Fethi Soltani

Abstract

In this paper, we establish an uncertainty inequality for a Hilbert space H. The
minimizer function associated with a bounded linear operator from H into a Hilbert
space K is provided. We come up with some results regarding Hardy and Dirichlet
spaces on the unit disk .

Keywords: Hilbert space, Hardy space, Dirichlet space, uncertainty inequality,
minimizer function

1. Introduction

Hilbert spaces are the most important tools in the theories of partial differential
equations, quantum mechanics, Fourier analysis, and ergodicity. Apart from the
classical Euclidean spaces, examples of Hilbert spaces include spaces of square-
integrable functions, spaces of sequences, Sobolev spaces consisting of generalized
functions, and Hardy spaces of holomorphic functions. Saitoh et al. applied the
theory of Hilbert spaces to the Tikhonov regularization problems [1, 2]. Matsuura
et al. obtained the approximate solutions for bounded linear operator equations
with the viewpoint of numerical solutions by computers [3, 4]. During the last
years, the theory of Hilbert spaces has gained considerable interest in various fields
of mathematical sciences [5–9]. We expect that the results of this paper will be
useful when discussing (in Section 2) uncertainty inequality for Hilbert space H and
minimizer function associated with a bounded linear operator T from H into a
Hilbert space K. As applications, we consider Hardy and Dirichlet spaces as follows.

Let  be the complex plane and  ¼ z∈ :jzj< 1f g the open unit disk. The
Hardy space H ð Þ is the set of all analytic functions f in the unit disk  with the
finite integral:

ð2π
0

f eiθ
� ��� ��2 dθ: (1)

It is a Hilbert space when equipped with the inner product:

f , gh iH ð Þ ¼
1
2π

ð2π
0
f eiθ
� �

g eiθð Þdθ: (2)

Over the years, the applications of Hardy space H ð Þ play an important role in
various fields of mathematics [5, 10] and in certain parts of quantum mechanics
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[11, 12]. And this space is the background of some applications. For example, in
Section 3, we study on H ð Þ the following two operators:

∇f zð Þ ¼ f 0 zð Þ, Lf zð Þ ¼ z2 f 0 zð Þ þ zf zð Þ, (3)

and we deduce uncertainty inequality for this space. Next, we establish the
minimizer function associated with the difference operator:

T1f zð Þ ¼ 1
z

f zð Þ � f 0ð Þð Þ: (4)

In Section 4, we consider the Dirichlet space D ð Þ, which is the set of all analytic
functions f in the unit disk  with the finite Dirichlet integral:

ð


f 0 zð Þ�� ��2 dxdy

π
, z ¼ xþ iy: (5)

It is also a Hilbert space when equipped with the inner product:

f , gh iD ð Þ ¼ f 0ð Þg 0ð Þ þ
ð


f 0 zð Þg0 zð Þ dxdy

π
, z ¼ xþ iy: (6)

This space is the objective of many applicable works [5, 13–17] and plays a
background to our contribution. For example, we study on D ð Þ the following two
operators:

Λf zð Þ ¼ f 0 zð Þ � f 0 0ð Þ, Xf zð Þ ¼ z2 f 0 zð Þ, (7)

and we deduce the uncertainty inequality for this space D ð Þ. And we establish
the minimizer function associated with the difference operator:

T2f zð Þ ¼ 1
z

f zð Þ � z f 0 0ð Þ � f 0ð Þ� �
: (8)

2. Generalized results

Let H be a Hilbert space equipped with the inner product :, :h iH. And let A and B
be the two operators defined on H. We define the commutator A,B½ � by

A,B½ �≔AB� BA: (9)

The adjoint of A denoted by A ∗ is defined by

Af , gh iH ¼ f ,A ∗ gh iH, (10)

for f ∈Dom Að Þ and g∈Dom A ∗ð Þ.
Theorem 2.1. For f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ, one has

∥A ∗ f∥2H ¼ ∥Af∥2H þ A,A ∗½ � f , fh iH: (11)

Proof. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. Then AA ∗ f and A ∗Af belong to H.
Therefore A,A ∗½ � f ∈H. Hence one has

80

Functional Calculus

∥A ∗ f∥2H ¼ AA ∗ f , fh iH ¼ A ∗Af , fh iH þ A,A ∗½ �f , fh iH (12)

¼ ∥Af∥2H þ A,A ∗½ �f , fh iH: □ (13)

The following result is proved in [18, 19].
Theorem 2.2. Let A and B be the self-adjoint operators on a Hilbert space H.

Then

∥ A� að Þ f∥H∥ B� bð Þ f∥H ≥
1
2
∣ A,B½ � f , fh iH∣, (14)

for all f ∈Dom ABð Þ ∩ Dom BAð Þ, and all a, b∈.
Theorem 2.3. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. For all a, b∈, one has

∥ Aþ A ∗ � að Þ f∥H∥ A� A ∗ þ ibð Þ f∥H ≥ ∣∥Af∥2H � ∥A ∗ f∥2H∣, (15)

where i is the imaginary unit.
Proof. Let us consider the following two operators on Dom AA ∗ð Þ ∩

Dom A ∗Að Þ by

P ¼ Aþ A ∗ , Q ¼ i A� A ∗ð Þ: (16)

It follows that, for f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ, we have Pf ,Qf ∈H. The
operators P and Q are self-adjoint and P,Q½ � ¼ �2i A,A ∗½ �. Thus the inequality
(15) follows from Theorems 2.1 and 2.2. □

Theorem 2.4. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. Then

Δþ
H fð ÞΔ�

H fð Þ≥∥f∥4H ∥Af∥2H � ∥A ∗ f∥2H
� �2

, (17)

where

Δ�
H fð Þ ¼ ∥f∥2H∥ A� A ∗ð Þf∥2H � h A� A ∗ð Þf , f iHj j2: (18)

Proof. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. The operator P given by (16) is
self-adjoint; then for any real a, we have

∥ P� að Þf∥2H ¼ ∥Pf∥2H þ a2∥f∥2H � 2a Pf , fh iH: (19)

This shows that

min
a∈

∥ P� að Þf∥2H ¼ ∥Pf∥2H � Pf , fh iH
�� ��2

∥f∥2H
, (20)

and the minimum is attained when a ¼ Pf , fh iH
∥f∥2H

. In other words, we have

min
a∈

∥ Aþ A ∗ � að Þf∥2H ¼ ∥ Aþ A ∗ð Þf∥2H � h Aþ A ∗ð Þf , f iHj j2
∥f∥2H

: (21)

Similarly

min
b∈

∥ A� A ∗ þ ibð Þf∥2H ¼ ∥ A� A ∗ð Þf∥2H � h A� A ∗ð Þf , f iHj j2
∥f∥2H

: (22)
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H fð Þ ¼ ∥f∥2H∥ A� A ∗ð Þf∥2H � h A� A ∗ð Þf , f iHj j2: (18)

Proof. Let f ∈Dom AA ∗ð Þ ∩ Dom A ∗Að Þ. The operator P given by (16) is
self-adjoint; then for any real a, we have

∥ P� að Þf∥2H ¼ ∥Pf∥2H þ a2∥f∥2H � 2a Pf , fh iH: (19)

This shows that

min
a∈

∥ P� að Þf∥2H ¼ ∥Pf∥2H � Pf , fh iH
�� ��2

∥f∥2H
, (20)

and the minimum is attained when a ¼ Pf , fh iH
∥f∥2H

. In other words, we have

min
a∈

∥ Aþ A ∗ � að Þf∥2H ¼ ∥ Aþ A ∗ð Þf∥2H � h Aþ A ∗ð Þf , f iHj j2
∥f∥2H

: (21)

Similarly

min
b∈

∥ A� A ∗ þ ibð Þf∥2H ¼ ∥ A� A ∗ð Þf∥2H � h A� A ∗ð Þf , f iHj j2
∥f∥2H

: (22)
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Then by (15), (21), and (22), we deduce the inequality (17). □
Let λ>0 and let T : H ! K be a bounded linear operator from H into a Hilbert

space K. Building on the ideas of Saitoh [2], we examine the minimizer function
associated with the operator T.

Theorem 2.5. For any k∈K and for any λ>0, the problem

inf
f ∈H

λ∥f∥2H þ ∥Tf � k∥2K
� �

(23)

has a unique minimizer given by

f ∗
λ,k ¼ λI þ T ∗Tð Þ�1T ∗ k: (24)

Proof. The problem (23) is solved elementarily by finding the roots of the first
derivative DΦ of the quadratic and strictly convex function Φ fð Þ ¼ λ∥f∥2H þ ∥Tf �
k∥2K . Note that for convex functions, the equation DΦ fð Þ ¼ 0 is a necessary and
sufficient condition for the minimum at f . The calculation provides

DΦ fð Þ ¼ 2λf þ 2T ∗ Tf � kð Þ, (25)

and the assertion of the theorem follows at once. □
Theorem 2.6. If T : H ! K is an isometric isomorphism; then for any k∈K and

for any λ>0, the problem

inf
f ∈H

λ∥f∥2H þ ∥Tf � k∥2K
� �

(26)

has a unique minimizer given by

f ∗
λ,h ¼

1
λþ 1

T�1k: (27)

Proof. We have T ∗ ¼ T�1 and T ∗T ¼ I. Thus, by (24), we deduce the result. □

3. The Hardy space H ð Þ

Let  be the complex plane and  ¼ z∈ :jzj< 1f g the open unit disk. The
Hardy space H ð Þ is the set of all analytic functions f in the unit disk  with the
finite integral:

ð2π
0

f eiθ
� ��� ��2 dθ: (28)

It is a Hilbert space when equipped with the inner product:

f , gh iH ð Þ ¼
1
2π

ð2π
0
f eiθ
� �

g eiθð Þdθ: (29)

If f , g∈H ð Þ with f zð Þ ¼P∞
n¼0anz

n and g zð Þ ¼P∞
n¼0bnz

n, then

f , gh iH ð Þ ¼
X∞
n¼0

anbn: (30)
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The set znf g∞n¼0 forms an Hilbert’s basis for the space H ð Þ.
The Szegő kernel Sz given for z∈, by

Sz wð Þ ¼
X∞
n¼0

znwn ¼ 1
1� zw

, w∈, (31)

is a reproducing kernel for the Hardy space H ð Þ, meaning that Sz ∈H ð Þ, and
for all f ∈H ð Þ, we have f , Szh iH ð Þ ¼ f zð Þ.

For z∈, the function u zð Þ ¼ Sz wð Þ is the unique analytic solution on  of the
initial problem:

u0 zð Þ ¼ w zu0 zð Þ þ u zð Þð Þ, w∈, u 0ð Þ ¼ 1: (32)

In the next of this section, we define the operators ∇, ℜ, and L on H ð Þ by
∇f zð Þ ¼ f 0 zð Þ, ℜf zð Þ ¼ z f 0 zð Þ, Lf zð Þ ¼ z2 f 0 zð Þ þ zf zð Þ: (33)

These operators satisfy the commutation rule:

∇,L½ � ¼ ∇L� L∇ ¼ 2ℜþ I, (34)

where I is the identity operator.
We define the Hilbert space U ð Þ as the space of all analytic functions f in the

unit disk  such that

∥f∥2U ð Þ ¼
1
2π

ð2π
0

f 0 eiθ
� ��� ��2 dθ<∞: (35)

If f ∈U ð Þ with f zð Þ ¼P∞
n¼0anz

n, then

∥f∥2U ð Þ ¼
X∞
n¼1

n2 anj j2: (36)

Thus, the space U ð Þ is a subspace of the Hardy space H ð Þ.
Theorem 3.1.

i. For f ∈U ð Þ, then ∇f , ℜf and Lf belong to H ð Þ.

ii. ∇∗ ¼ L.

iii. For f ∈U ð Þ, one has
∥Lf∥2H ð Þ ¼ ∥∇f∥2H ð Þ þ ∥f∥2H ð Þ þ 2 ℜf , fh iH ð Þ: (37)

Proof.

i. Let f ∈U ð Þ with f zð Þ ¼P∞
n¼0anz

n. Then

∇f zð Þ ¼
X∞
n¼0

nþ 1ð Þanþ1zn, ℜf zð Þ ¼
X∞
n¼1

nanzn, (38)

and

Lf zð Þ ¼
X∞
n¼1

nan�1zn: (39)
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Therefore

∥∇f∥2H ð Þ ¼
X∞
n¼0

nþ 1ð Þ2 anþ1j j2 ¼ ∥f∥2U ð Þ, (40)

∥ℜf∥2H ð Þ ¼
X∞
n¼1

n2 anj j2 ¼ ∥f∥2U ð Þ, (41)

and

∥Lf∥2H ð Þ ¼
X∞
n¼0

nþ 1ð Þ2 anj j2 ≤ f 0ð Þj j2 þ 4∥f∥2U ð Þ: (42)

Consequently ∇f , ℜf , and Lf belong to H ð Þ.
ii. For f , g∈U ð Þ with f zð Þ ¼P∞

n¼0anz
n and g zð Þ ¼P∞

n¼0bnz
n, one has

∇f , gh iH ð Þ ¼
X∞
n¼0

nþ 1ð Þanþ1bn ¼
X∞
n¼1

nanbn�1 ¼ f ,Lgh iH ð Þ: (43)

Thus ∇∗ ¼ L.

iii. Let f ∈U ð Þ. By (ii) and (34), we deduce that

∥Lf∥2H ð Þ ¼ ∇Lf , fh iH ð Þ (44)

¼ L∇f , fh iH ð Þ þ ∇,L½ �f , fh iH ð Þ (45)

¼ ∥∇f∥2H ð Þ þ ∥f∥2H ð Þ þ 2 ℜf , fh iH ð Þ: □ (46)

Theorem 3.2. Let f ∈U ð Þ. For all a, b∈, one has

∥ ∇þ L� að Þf∥H ð Þ∥ ∇� Lþ ibð Þf∥H ð Þ ≥∥f∥2H ð Þ þ 2 ℜf , fh iH ð Þ: (47)

Theorem 3.3. Let T1 be the difference operator defined on H ð Þ by

T1f zð Þ ¼ 1
z

f zð Þ � f 0ð Þð Þ: (48)

i. The operator T1 maps continuously from H ð Þ to H ð Þ, and
∥T1f∥H ð Þ ≤∥f∥H ð Þ: (49)

ii. For f ∈H ð Þ and z∈, we have

T ∗
1 f zð Þ ¼ zf zð Þ, T ∗

1 T1f zð Þ ¼ f zð Þ � f 0ð Þ: (50)

iii. For any h∈H ð Þ and for any λ>0, the problem

inf
f ∈H ð Þ

λ∥f∥2H ð Þ þ ∥T1f � h∥2H ð Þ
n o

(51)

has a unique minimizer given by

f ∗
λ,h zð Þ ¼ 1

λþ 1
zh zð Þ, z∈: (52)
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Proof.

i. If f ∈H ð Þ with f zð Þ ¼P∞
n¼0anz

n, then T1f zð Þ ¼P∞
n¼0anþ1zn and

∥T1f∥2H ð Þ ¼
X∞
n¼1

anj j2 ≤∥f∥2H ð Þ: (53)

ii. If f , g∈H ð Þ with f zð Þ ¼P∞
n¼0anz

n and g zð Þ ¼P∞
n¼0bnz

n, then

T1f , gh iH ð Þ ¼
X∞
n¼0

anþ1bn ¼
X∞
n¼1

anbn�1 ¼ f ,T ∗
1 g

� �
H ð Þ, (54)

where T ∗
1 g zð Þ ¼ zg zð Þ, for z∈. And therefore

T ∗
1 T1f zð Þ ¼ zT1f zð Þ ¼ f zð Þ � f 0ð Þ: (55)

iii. From Theorem 2.5 we have

λI þ T ∗
1 T1

� �
f ∗
λ,h zð Þ ¼ T ∗

1 h zð Þ: (56)

By (ii) we deduce that

λþ 1ð Þf ∗
λ,h zð Þ � f ∗

λ,h 0ð Þ ¼ zh zð Þ: (57)

And from this equation, f ∗λ,h 0ð Þ ¼ 0. Hence

f ∗
λ,h zð Þ ¼ 1

λþ 1
zh zð Þ: □ (58)

4. The Dirichlet space D ð Þ

The Dirichlet space D ð Þ is the set of all analytic functions f in the unit disk 
with the finite Dirichlet integral:

ð


f 0 zð Þ�� ��2 dxdy

π
, z ¼ xþ iy: (59)

It is a Hilbert space when equipped with the inner product:

f , gh iD ð Þ ¼ f 0ð Þg 0ð Þ þ
ð


f 0 zð Þg0 zð Þ dxdy

π
, z ¼ xþ iy: (60)

If f , g∈D ð Þ with f zð Þ ¼P∞
n¼0anz

n and g zð Þ ¼P∞
n¼0bnz

n, then

f , gh iD ð Þ ¼ a0b0 þ
X∞
n¼1

nanbn: (61)

The set 1, znffiffi
n

p
n o∞

n¼1
forms an Hilbert’s basis for the space D ð Þ.

The function Kz given for z∈, by

Kz wð Þ ¼ 1þ log
1

1� zw

� �
, w∈, (62)
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1� zw
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is a reproducing kernel for the Dirichlet space D ð Þ, meaning that Kz ∈D ð Þ,
and for all f ∈D ð Þ, we have f ,Kzh iD ð Þ ¼ f zð Þ.

For z∈, the function u zð Þ ¼ Kz wð Þ is the unique analytic solution on  of the
initial problem:

u0 zð Þ � u0 0ð Þ
z

¼ wu0 zð Þ, w∈, u 0ð Þ ¼ 1: (63)

In the next of this section, we define the operators Λ, ℜ, and X on D ð Þ by

Λf zð Þ ¼ f 0 zð Þ � f 0 0ð Þ, ℜf zð Þ ¼ z f 0 zð Þ, Xf zð Þ ¼ z2 f 0 zð Þ: (64)

These operators satisfy the following commutation relation:

Λ,X½ � ¼ ΛX � XΛ ¼ 2ℜ: (65)

We define the Hilbert space V ð Þ as the space of all analytic functions f in the
unit disk  such that

∥f∥2V ð Þ ¼
ð


f 0 zð Þ�� ��2 zj j2 dxdy

π
<∞, z ¼ xþ iy: (66)

If f ∈V ð Þ with f zð Þ ¼P∞
n¼0anz

n, then

∥f∥2V ð Þ ¼
X∞
n¼1

n3 anj j2: (67)

Thus, the space V ð Þ is a subspace of the Dirichlet space D ð Þ.
Theorem 4.1.

i. For f ∈V ð Þ, then Λf , ℜf , and Xf belong to D ð Þ.

ii. Λ ∗ ¼ X.

iii. For f ∈V ð Þ, one has

∥Xf∥2D ð Þ ¼ ∥Λf∥2D ð Þ þ 2 ℜf , fh iD ð Þ: (68)

Proof.

i. Let f ∈V ð Þ with f zð Þ ¼P∞
n¼0anz

n. Then

Λf zð Þ ¼
X∞
n¼1

nþ 1ð Þanþ1zn, ℜf zð Þ ¼
X∞
n¼1

nanzn, (69)

and

Xf zð Þ ¼
X∞
n¼2

n� 1ð Þan�1zn: (70)

Therefore

∥Λf∥2D ð Þ ¼
X∞
n¼1

n nþ 1ð Þ2 anþ1j j2 ≤
X∞
n¼2

n3 anj j2 ≤∥f∥2V ð Þ, (71)
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∥ℜf∥2D ð Þ ¼
X∞
n¼1

n3 anj j2 ¼ ∥f∥2V ð Þ, (72)

and

∥Xf∥2D ð Þ ¼
X∞
n¼1

nþ 1ð Þn2 anj j2 ≤ 2∥f∥2V ð Þ: (73)

Consequently Λf , ℜf , and Xf belong to D ð Þ.

ii. For f , g∈V ð Þ with f zð Þ ¼P∞
n¼0anz

n and g zð Þ ¼P∞
n¼0bnz

n, one has

Λf , gh iD ð Þ ¼
X∞
n¼1

n nþ 1ð Þanþ1bn ¼
X∞
n¼2

n n� 1ð Þanbn�1 ¼ f ,Xgh iD ð Þ: (74)

iii. Let f ∈V ð Þ. By (ii) and (65), we deduce that

∥Xf∥2D ð Þ ¼ ΛXf , fh iD ð Þ (75)

¼ XΛf , fh iD ð Þ þ Λ,X½ �f , fh iD ð Þ (76)

¼ ∥Λf∥2D ð Þ þ 2 ℜf , fh iD ð Þ: □ (77)

Theorem 4.2. Let f ∈V ð Þ. For all a, b∈, one has

∥ Λþ X � að Þf∥D ð Þ∥ Λ� X þ ibð Þf∥D ð Þ ≥ 2 ℜf , fh iD ð Þ: (78)

Theorem 4.3. Let T2 be the difference operator defined on D ð Þ by

T2f zð Þ ¼ 1
z

f zð Þ � z f 0 0ð Þ � f 0ð Þ� �
: (79)

i. The operator T2 maps continuously from D ð Þ to D ð Þ, and

∥T2f∥D ð Þ ≤∥f∥D ð Þ: (80)

ii. For f ∈D ð Þ with f zð Þ ¼P∞
n¼0anz

n, we have

T ∗
2 f zð Þ ¼

X∞
n¼2

n� 1
n

an�1zn, T ∗
2 T2f zð Þ ¼

X∞
n¼2

n� 1
n

anzn: (81)

iii. For any d∈D ð Þ and for any λ>0, the problem

inf
f ∈D ð Þ

λ∥f∥2D ð Þ þ ∥T2f � d∥2D ð Þ
n o

(82)

has a unique minimizer given by

f ∗
λ,d zð Þ ¼ d,Ψzh iD ð Þ, z∈, (83)

Ψz wð Þ ¼
X∞
n¼1

znþ1

λ nþ 1ð Þ þ n
wn, w∈: (84)
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z
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Λ,X½ � ¼ ΛX � XΛ ¼ 2ℜ: (65)

We define the Hilbert space V ð Þ as the space of all analytic functions f in the
unit disk  such that

∥f∥2V ð Þ ¼
ð


f 0 zð Þ�� ��2 zj j2 dxdy

π
<∞, z ¼ xþ iy: (66)

If f ∈V ð Þ with f zð Þ ¼P∞
n¼0anz

n, then

∥f∥2V ð Þ ¼
X∞
n¼1

n3 anj j2: (67)

Thus, the space V ð Þ is a subspace of the Dirichlet space D ð Þ.
Theorem 4.1.

i. For f ∈V ð Þ, then Λf , ℜf , and Xf belong to D ð Þ.

ii. Λ ∗ ¼ X.

iii. For f ∈V ð Þ, one has

∥Xf∥2D ð Þ ¼ ∥Λf∥2D ð Þ þ 2 ℜf , fh iD ð Þ: (68)

Proof.

i. Let f ∈V ð Þ with f zð Þ ¼P∞
n¼0anz

n. Then

Λf zð Þ ¼
X∞
n¼1

nþ 1ð Þanþ1zn, ℜf zð Þ ¼
X∞
n¼1

nanzn, (69)

and

Xf zð Þ ¼
X∞
n¼2

n� 1ð Þan�1zn: (70)

Therefore

∥Λf∥2D ð Þ ¼
X∞
n¼1

n nþ 1ð Þ2 anþ1j j2 ≤
X∞
n¼2

n3 anj j2 ≤∥f∥2V ð Þ, (71)
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Proof.

i. If f ∈D ð Þ with f zð Þ ¼P∞
n¼0anz

n, then T2f zð Þ ¼P∞
n¼1anþ1zn and

∥T2f∥2D ð Þ ¼
X∞
n¼2

n� 1ð Þ anj j2 ≤
X∞
n¼2

n anj j2 ≤∥f∥2D ð Þ: (85)

ii. If f , g∈D ð Þ with f zð Þ ¼P∞
n¼0anz

n and g zð Þ ¼P∞
n¼0bnz

n, then

T2f , gh iD ð Þ ¼
X∞
n¼1

nanþ1bn ¼
X∞
n¼2

n� 1ð Þanbn�1 ¼ f ,T ∗
2 g

� �
D ð Þ, (86)

where

T ∗
2 g zð Þ ¼

X∞
n¼2

n� 1
n

bn�1zn, z∈: (87)

And therefore

T ∗
2 T2f zð Þ ¼

X∞
n¼2

n� 1
n

anzn: (88)

iii. We put d zð Þ ¼P∞
n¼0dnz

n and

f ∗
λ,d zð Þ ¼

X∞
n¼0

cnzn: (89)

From (ii) and the equation

λI þ T ∗
2 T2

� �
f ∗
λ,d zð Þ ¼ T ∗

2 d zð Þ, (90)

we deduce that

c1 ¼ c0 ¼ 0, cn ¼ n� 1
λnþ n� 1

dn�1, n≥ 2: (91)

Thus

f ∗
λ,d zð Þ ¼

X∞
n¼1

ndn
λ nþ 1ð Þ þ n

znþ1 ¼ d,Ψzh iD ð Þ, z∈: □ (92)
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Chapter 7

Spectral Observations of PM10
Fluctuations in the Hilbert Space
Thomas Plocoste and Rudy Calif

Abstract

During the last 20 years, many megacities have experienced air pollution leading
to negative impacts on human health. In the Caribbean region, air quality is widely
affected by African dust which causes several diseases, particularly, respiratory
diseases. This is why it is crucial to improve the understanding of PM10 fluctuations
in order to elaborate strategies and construct tools to predict dust events. A first
step consists to characterize the dynamical properties of PM10 fluctuations, for
instance, to highlight possible scaling in PM10 density power spectrum. For that,
the scale-invariant properties of PM10 daily time series during 6 years are investi-
gated through the theoretical Hilbert frame. Thereafter, the Hilbert spectrum in
time-frequency domain is considered. The choice of theoretical frame must be
relevant. A comparative analysis is also provided between the results achieved in
the Hilbert and Fourier spaces.

Keywords: PM10 data, empirical mode decomposition, Hilbert spectral analysis,
time-frequency representation, Fourier space

1. Introduction

Generally, the concentration of air pollutants varies and is impacted by the local
pollutant emission levels and meteorological and topographical conditions [1, 2].
Particulate matter (PM) is a complex mixture of elemental and organic carbon,
ammonium, nitrates, sulfates, mineral dust, trace elements, and water [3]. PM with
an aerodynamic diameter of <10 μm, i.e., PM10, are well known for their impact
on human health [4]. Many studies have highlighted that exposure to PM increases
the number of hospital admissions for cardiovascular disease, acute bronchitis,
asthma attacks, respiratory disease, and congestive heart failure [5–8]. In the
Caribbean area, one of the main emitters of PM10 is from large-scale sources, i.e.,
African dust [9]. Knowledge of the dynamics of PM10 process is crucial to elaborate
strategies and construct tools to predict dust events. The time-frequency distribu-
tion of a signal provides information about how the spectral content of a signal
evolves with time, thus providing an ideal tool to dissect, analyze, and interpret
nonstationary signals [10]. Contrary to classical methods, the need of a time-
frequency representation (TFR) is stemmed from the inadequacy of either time
domain or frequency domain analysis to fully describe the nature of nonstationary
signals [10]. In literature, there are numerous methods to obtain energy density as a
function of time and frequency simultaneously as the short-time Fourier transform
(STFT), Hilbert-Huang transform (HHT), and wavelet transform (WT) [10–12].
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During the last 20 years, many megacities have experienced air pollution leading
to negative impacts on human health. In the Caribbean region, air quality is widely
affected by African dust which causes several diseases, particularly, respiratory
diseases. This is why it is crucial to improve the understanding of PM10 fluctuations
in order to elaborate strategies and construct tools to predict dust events. A first
step consists to characterize the dynamical properties of PM10 fluctuations, for
instance, to highlight possible scaling in PM10 density power spectrum. For that,
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1. Introduction

Generally, the concentration of air pollutants varies and is impacted by the local
pollutant emission levels and meteorological and topographical conditions [1, 2].
Particulate matter (PM) is a complex mixture of elemental and organic carbon,
ammonium, nitrates, sulfates, mineral dust, trace elements, and water [3]. PM with
an aerodynamic diameter of <10 μm, i.e., PM10, are well known for their impact
on human health [4]. Many studies have highlighted that exposure to PM increases
the number of hospital admissions for cardiovascular disease, acute bronchitis,
asthma attacks, respiratory disease, and congestive heart failure [5–8]. In the
Caribbean area, one of the main emitters of PM10 is from large-scale sources, i.e.,
African dust [9]. Knowledge of the dynamics of PM10 process is crucial to elaborate
strategies and construct tools to predict dust events. The time-frequency distribu-
tion of a signal provides information about how the spectral content of a signal
evolves with time, thus providing an ideal tool to dissect, analyze, and interpret
nonstationary signals [10]. Contrary to classical methods, the need of a time-
frequency representation (TFR) is stemmed from the inadequacy of either time
domain or frequency domain analysis to fully describe the nature of nonstationary
signals [10]. In literature, there are numerous methods to obtain energy density as a
function of time and frequency simultaneously as the short-time Fourier transform
(STFT), Hilbert-Huang transform (HHT), and wavelet transform (WT) [10–12].
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In this study, the scaling properties of PM10 data are firstly analyzed, and then
the TFR is investigated. In order to highlight the performance of the Hilbert space,
an analysis of PM10 data was also performed in the Fourier space.

This chapter is organized as follows. Section 2 presents PM10 data analyzed in
this study. Section 3 describes the methods applied in order to investigate PM10
dynamics. Section 4 comments on the results obtained and then discusses them.

2. Experimental data

Guadeloupe archipelago is a French West Indies island located in the middle of
the Caribbean basin, i.e., 16.25°N latitude and 61.58°W longitude, which experi-
ences a tropical and humid climate [13, 14]. The time series analyzed here belong to
Guadeloupe air quality network which is managed by the Gwad’Air agency (http://
www.gwadair.fr/). PM10 concentrations are measured at Pointe-à-Pitre (16.2422°N
61.5414°W) using the Thermo Scientific tapered element oscillating microbalance
(TEOM) models 1400ab and 1400-FDMS. Hourly PM10 concentrations were sam-
pled during the period from 1 January 2005 to 31 December 2010. We processed
these data into daily average concentrations. In total, there are 2150 daily averaged
data points available continuously for 6 years. Figure 1 displays PM10 daily signal
illustrating huge fluctuations and thus indicating a strong variability. These strong
oscillations observed in the middle of each year are attributed to PM10 related to
dust outbreaks coming from the African coast from May to September [9]. For the
rest of the year, PM10 is mainly generated by anthropogenic pollution [15].

3. Methods

3.1 Scaling analysis (1D representation)

The description of natural phenomena by the study of statistical scale laws is not
recent [16]. Self-similarity of complex systems has been widely observed in nature
and is the simplest form of scale invariance. A scale invariance can be detected by
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Figure 1.
Illustration of PM10 daily average concentrations between 2005 and 2010, highlighting intermittent burst
events with huge fluctuations.
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computing of power spectral density (PSD). The PSD separates and measures the
amount of variability occurring in different frequency bands. In this study, PSD are
estimated through the Fourier and Hilbert spaces.

3.1.1 Fourier analysis

In order to investigate the scaling properties of PM10 data, classically the dis-
crete Fourier transform of the times series considered is computed. The expression
of Fourier transform X(f) for a process x(t) is recalled here. An N point-long
interval is used to construct the value at frequency domain point f, Xf [17]:

X fð Þ ¼
ðþT

�T
x tð Þe�2πiftdt (1)

Thus, the analytical expression of X(f) is [18]

∣X fð Þ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 X fð Þð Þ þ Im2 X fð Þð Þ

q
(2)

Consequently the power spectral density E(f) is estimated by computing the
following expression:

E fð Þ ¼ X fð Þj j2 (3)

3.1.2 Hilbert analysis

To determine the scale invariance of a given time series in a joint amplitude-
frequency space, the Hilbert-Huang transform [19, 20] is performed. HHT can be
summarized in two steps: (i) empirical mode decomposition (EMD) and (ii) Hilbert
spectral analysis (HSA). Empirical mode decomposition is a powerful tool to sepa-
rate a nonlinear and nonstationary time series into a sum of intrinsic mode func-
tions (IMF) without a priori basis as required by traditional Fourier-based method
[19–21]. An IMF must satisfy the following two conditions: (i) the difference
between the number of local extrema and the number of zero-crossings must be
zero or one, and (ii) the local maxima and the envelope defined by the local minima
are close to zero. Therefore, the original signal x(t) is decomposed into a sum of n1
IMF modes with the residual rn(t):

x tð Þ ¼
Xn�1

m¼1

Cm tð Þ þ rn tð Þ (4)

To obtain a physically significant IMF, this selection process must be stopped by
a certain criterion. For more details, EMD decomposition is widely described in the
literature [19–23].

To characterize the time-frequency energy distribution from the original signal x
(t), HSA is applied on each obtained IMF component Cm(t) to extract the instanta-
neous amplitude and frequency [19, 24]. The Hilbert transform is defined by:

~Cm tð Þ ¼ 1
π
P
ðþ∞

�∞

Cm t0ð Þ
t� t0

dt0 (5)

with P the Cauchy principal value [24, 25]. We can specify an analytical signal z
for each IMF mode Cm(t) with
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In this study, the scaling properties of PM10 data are firstly analyzed, and then
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Illustration of PM10 daily average concentrations between 2005 and 2010, highlighting intermittent burst
events with huge fluctuations.
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computing of power spectral density (PSD). The PSD separates and measures the
amount of variability occurring in different frequency bands. In this study, PSD are
estimated through the Fourier and Hilbert spaces.

3.1.1 Fourier analysis

In order to investigate the scaling properties of PM10 data, classically the dis-
crete Fourier transform of the times series considered is computed. The expression
of Fourier transform X(f) for a process x(t) is recalled here. An N point-long
interval is used to construct the value at frequency domain point f, Xf [17]:

X fð Þ ¼
ðþT

�T
x tð Þe�2πiftdt (1)

Thus, the analytical expression of X(f) is [18]

∣X fð Þ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 X fð Þð Þ þ Im2 X fð Þð Þ

q
(2)

Consequently the power spectral density E(f) is estimated by computing the
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E fð Þ ¼ X fð Þj j2 (3)
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a certain criterion. For more details, EMD decomposition is widely described in the
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To characterize the time-frequency energy distribution from the original signal x
(t), HSA is applied on each obtained IMF component Cm(t) to extract the instanta-
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ðþ∞
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Zm tð Þ ¼ Cm tð Þ þ j~Cm tð Þ ¼ Am tð Þejφm tð Þ (6)

where Am tð Þ ¼ ∣Zm tð Þ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cm tð Þ2 þ ~Cm tð Þ2

q
describes an amplitude and

φm tð Þ ¼ arg zð Þ ¼ arctan
~Cm tð Þ
Cm tð Þ�
h

represents the phase function of IMF modes. Conse-

quently, the instantaneous frequency ωm tð Þ is defined from the phase φm tð Þ by

ωm tð Þ ¼ 1
2π

dφm tð Þ
dt

(7)

Thus, the original signal x(t) can be expressed as

x tð Þ ¼ Re
XN
m¼1

Am tð Þejφm tð Þ ¼ Re
XN
m¼1

Am tð Þej
Ð t

�∞
ωm tð Þdt (8)

where Re is a part real [19, 20, 26].
Due to the simultaneous representation of frequency modulation and amplitude

modulation, the HHT can be considered as a generalization of the Fourier transform
[19, 20]. The energy in a time-frequency space is designated as the Hilbert spectrum
with H ω; tð Þ ¼ A2 ω; tð Þ. The Hilbert marginal spectrum h(ω) is defined by

h ωð Þ ¼ 1
T

ðT
0
H ω; tð Þdt (9)

where T is the total data length. The Hilbert spectrum H(ω,t) gives a measure of
amplitude from each frequency and time, while the marginal spectrum h(ω) gives a
measure of the total amplitude from each frequency [27]. As a result, the marginal
spectrum can be compared to the Fourier spectrum [19, 20].

In conclusion, for a scale-invariant process, the Fourier E(f) and the Hilbert h(ω)
spectral densities obtained follow a power law over a range of frequencies:

E fð Þ � f�βf (10)

h ωð Þ � ω�βh (11)

where f and ω are the frequencies and βf and βh are the spectral exponents,
respectively, in the Fourier and Hilbert spaces. It reveals the scale-free memory
effect as a power law dependence of the frequency distribution. Consequently, βf
and βh contain information about the degree of stationarity of the studied parameter
[16, 28, 29]:

• If βf or βh <1, the process is stationary.

• If βf or βh >1, the process is nonstationary.

• If 1< βf or βh <3, the process is nonstationary with increments stationary.

• Spectral analysis has been widely applied in various research fields [30–34].

3.2 Time-frequency representation (2D representation)

3.2.1 Spectrogram

The spectrogram (SPEC) of a signal x(t) is defined as the squared magnitudes of
the STFT as shown in Eq. (12) [12]:
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SPECx t; fð Þ ¼ Sx t; fð Þj j2 (12)

where Sx t; fð Þ ¼ Ðþ∞
�∞ x τð Þw τ � tð Þe�jf τdτ is the STFT of x(t), w(τ) is a window

(e.g., Hanning, rectangular, Hamming), t is time, and f is frequency.
As depicted in Eq. (13), SPEC roughly describes the energy density of the signal

at point (t,f) [12]:

ðþ∞

�∞

ðþ∞

�∞
SPECx t; fð Þdtdf ¼

ðþ∞

�∞
x tð Þj j2dt (13)

The SPEC has been applied successfully in various research fields [12, 35–37].
The main advantages of SPEC are an easily understanding interpretation, and it
allows a fast computation. However, the main drawback of SPEC is the same as
that of the STFT [12]. Indeed, there is a trade-off between time and frequency
resolution.

3.2.2 Hilbert spectrum

The Hilbert spectrum (HS) is a joint time-frequency representation introduced
by [19]. It is important to notice that the two important tools (i.e., EMD and HS) for
exploratory analysis of the data are provided by HSA method. This approach was
applied successfully in various research fields as fault diagnosis for rolling bearing
[11], turbulence [38], environment [34, 39], and geophysics [40], to cite a few.

4. Results

4.1 Scaling properties

In order to identify the presence of scaling in PM10 time series, the PSD is
estimated in the Hilbert and Fourier spaces. Figure 2 depicts the power spectral
density provided by the Hilbert transform and the Fourier transform. On this
figure, we try to detect a power law behavior of the form h ωð Þ � ω�βh and
E fð Þ � f�βf where βh and βf are, respectively, the spectral exponents in the Hilbert
and Fourier spaces. On the frequency range 2:09� 10�7⩽f⩽4:57 � 10�5 Hz which
corresponds to time scales 6:1 hours⩽T⩽55:4 days, a power law behavior is clearly
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Figure 2.
The spectrum of PM10 time series in the Hilbert space and the Fourier space. A power law behavior is
significant only in the Hilbert space.

95

Spectral Observations of PM10 Fluctuations in the Hilbert Space
DOI: http://dx.doi.org/10.5772/intechopen.88279



Zm tð Þ ¼ Cm tð Þ þ j~Cm tð Þ ¼ Am tð Þejφm tð Þ (6)

where Am tð Þ ¼ ∣Zm tð Þ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cm tð Þ2 þ ~Cm tð Þ2

q
describes an amplitude and

φm tð Þ ¼ arg zð Þ ¼ arctan
~Cm tð Þ
Cm tð Þ�
h

represents the phase function of IMF modes. Conse-

quently, the instantaneous frequency ωm tð Þ is defined from the phase φm tð Þ by

ωm tð Þ ¼ 1
2π

dφm tð Þ
dt

(7)

Thus, the original signal x(t) can be expressed as

x tð Þ ¼ Re
XN
m¼1

Am tð Þejφm tð Þ ¼ Re
XN
m¼1

Am tð Þej
Ð t

�∞
ωm tð Þdt (8)

where Re is a part real [19, 20, 26].
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amplitude from each frequency and time, while the marginal spectrum h(ω) gives a
measure of the total amplitude from each frequency [27]. As a result, the marginal
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In conclusion, for a scale-invariant process, the Fourier E(f) and the Hilbert h(ω)
spectral densities obtained follow a power law over a range of frequencies:
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where f and ω are the frequencies and βf and βh are the spectral exponents,
respectively, in the Fourier and Hilbert spaces. It reveals the scale-free memory
effect as a power law dependence of the frequency distribution. Consequently, βf
and βh contain information about the degree of stationarity of the studied parameter
[16, 28, 29]:

• If βf or βh <1, the process is stationary.

• If βf or βh >1, the process is nonstationary.

• If 1< βf or βh <3, the process is nonstationary with increments stationary.

• Spectral analysis has been widely applied in various research fields [30–34].

3.2 Time-frequency representation (2D representation)

3.2.1 Spectrogram

The spectrogram (SPEC) of a signal x(t) is defined as the squared magnitudes of
the STFT as shown in Eq. (12) [12]:
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The main advantages of SPEC are an easily understanding interpretation, and it
allows a fast computation. However, the main drawback of SPEC is the same as
that of the STFT [12]. Indeed, there is a trade-off between time and frequency
resolution.

3.2.2 Hilbert spectrum

The Hilbert spectrum (HS) is a joint time-frequency representation introduced
by [19]. It is important to notice that the two important tools (i.e., EMD and HS) for
exploratory analysis of the data are provided by HSA method. This approach was
applied successfully in various research fields as fault diagnosis for rolling bearing
[11], turbulence [38], environment [34, 39], and geophysics [40], to cite a few.

4. Results

4.1 Scaling properties

In order to identify the presence of scaling in PM10 time series, the PSD is
estimated in the Hilbert and Fourier spaces. Figure 2 depicts the power spectral
density provided by the Hilbert transform and the Fourier transform. On this
figure, we try to detect a power law behavior of the form h ωð Þ � ω�βh and
E fð Þ � f�βf where βh and βf are, respectively, the spectral exponents in the Hilbert
and Fourier spaces. On the frequency range 2:09� 10�7⩽f⩽4:57 � 10�5 Hz which
corresponds to time scales 6:1 hours⩽T⩽55:4 days, a power law behavior is clearly
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Figure 2.
The spectrum of PM10 time series in the Hilbert space and the Fourier space. A power law behavior is
significant only in the Hilbert space.
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noticed in the Hilbert space with an estimated spectral exponent βh = 1.02� 0.10. βh
is equal to 1 power law scaling observed in the mesoscale range [41]. In the Fourier
space, this power law is not significant. This is due to the existence of intermittent
dust events with huge fluctuations in PM10 data (see Figure 1). Indeed, the Fourier
transform is a linear asymptotic approach which requires high-order harmonic
components to mimic nonlinear and nonstationary process [42]. Thus, the high-
order harmonics may lead an artificial energy transfer flux from a large scale (low
frequency) to a small scale (high frequency) in the Fourier space. Consequently, the
Fourier-based spectrum may be contaminated by this artificial energy flux [42].
The artificial energy transfer may give a less steep power spectrum as we observed
in Figure 2. By contrast, combined with the EMD method, HSA has very local
abilities both in physical and spectral domains and does not require any higher-
order harmonic components to simulate the nonlinear and nonstationary events. As
a consequence, HSA method may provide a more accurate scaling exponent and
singularity spectrum [42].

According to [43], wind speed dominates the amount of pollutant dispersion in
the atmospheric boundary layer. In addition, this meteorological parameter could
also transport PM10 from large-scale sources, i.e., African dust [9]. To complete our
results, we used hourly wind speed measurements provided by the French weather
office (Météo France Guadeloupe) located at Abymes (16.2630°N 61.5147°W).
PM10 and wind speed measurements are very close, i.e., ≈8.1 km of distance, and
performed at the center of the island under the same atmospheric conditions [2].
Figure 3 illustrates the PSD provided by the Hilbert transform and the Fourier
transform for wind speed data. This time, a power law behavior is observed in both
spaces on the same frequency range 3:54� 10�7⩽f⩽1:36� 10�4 Hz which corre-
sponds to time scales 2:1 hours⩽T⩽32:7 days. Contrary to PM10 which is a passive
scalar, wind speed is a vector quantity. The estimated spectral exponents are iden-
tical with, respectively, 0.89 � 0.06 and 0.90 � 0.12 in the Hilbert and Fourier
spaces. As PM10, spectral exponent values are also close to �1. For wind speed, at
low frequencies, a spectrum close to the 1 power law is likely occurs close to a rough
surface, due to a strong interaction between the mean flow vorticity and the
fluctuating vorticity [44, 45].

4.2 Time-frequency domain

The TFR in the Fourier and Hilbert spaces are, respectively, illustrated in
Figures 4 and 5. Both figures show a color gradient from strong energy (in red) to
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The spectrum of wind speed in the Hilbert space and the Fourier space. A power law behavior is observed in
both spaces.
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weak energy (in blue). This highlights the energy activity related to PM10 concen-
trations during the study period. Such an approach gives the possibility of tracking
the evolution of PM10 data spectral content in time, which is typically represented
by variations of the amplitudes and frequencies of the components from which the
signal is composed [46].

On Figure 4, strong energies are observed throughout the years with slight fluc-
tuations on the frequency range 0⩽f⩽1� 10�6 Hz. For f>4� 10�6 Hz, strong ener-
gies are also noticed in the middle of each year and at the beginning of 2010 with more
fluctuations. In Figure 5, energy distributions are more localized. On the frequency
range 0⩽f⩽1� 10�6 Hz, we can observe the influence of small-scale event on energy
behavior. As noticed, this energy may be weak or null. As an example, the impact of a
general strike in early 2009 that paralyzed Guadeloupean archipelago at least 2 months
is highlighted by zero energy due to the lack of PM10 sources, i.e., industrial activity
and road traffic. For f>1� 10�6 Hz, one can see more precisely energy variation
related to dust events from mesoscale to large scale. Contrary to SPEC, HS clearly
illustrates localized energy fluctuations due to small-scale event. In fact, the STFT
makes an assumption that any signal as piecewise stationary and uses suitable window
function to produce the short-time spectral characteristics of the signal. However, in
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noticed in the Hilbert space with an estimated spectral exponent βh = 1.02� 0.10. βh
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abilities both in physical and spectral domains and does not require any higher-
order harmonic components to simulate the nonlinear and nonstationary events. As
a consequence, HSA method may provide a more accurate scaling exponent and
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According to [43], wind speed dominates the amount of pollutant dispersion in
the atmospheric boundary layer. In addition, this meteorological parameter could
also transport PM10 from large-scale sources, i.e., African dust [9]. To complete our
results, we used hourly wind speed measurements provided by the French weather
office (Météo France Guadeloupe) located at Abymes (16.2630°N 61.5147°W).
PM10 and wind speed measurements are very close, i.e., ≈8.1 km of distance, and
performed at the center of the island under the same atmospheric conditions [2].
Figure 3 illustrates the PSD provided by the Hilbert transform and the Fourier
transform for wind speed data. This time, a power law behavior is observed in both
spaces on the same frequency range 3:54� 10�7⩽f⩽1:36� 10�4 Hz which corre-
sponds to time scales 2:1 hours⩽T⩽32:7 days. Contrary to PM10 which is a passive
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tical with, respectively, 0.89 � 0.06 and 0.90 � 0.12 in the Hilbert and Fourier
spaces. As PM10, spectral exponent values are also close to �1. For wind speed, at
low frequencies, a spectrum close to the 1 power law is likely occurs close to a rough
surface, due to a strong interaction between the mean flow vorticity and the
fluctuating vorticity [44, 45].
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The TFR in the Fourier and Hilbert spaces are, respectively, illustrated in
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weak energy (in blue). This highlights the energy activity related to PM10 concen-
trations during the study period. Such an approach gives the possibility of tracking
the evolution of PM10 data spectral content in time, which is typically represented
by variations of the amplitudes and frequencies of the components from which the
signal is composed [46].

On Figure 4, strong energies are observed throughout the years with slight fluc-
tuations on the frequency range 0⩽f⩽1� 10�6 Hz. For f>4� 10�6 Hz, strong ener-
gies are also noticed in the middle of each year and at the beginning of 2010 with more
fluctuations. In Figure 5, energy distributions are more localized. On the frequency
range 0⩽f⩽1� 10�6 Hz, we can observe the influence of small-scale event on energy
behavior. As noticed, this energy may be weak or null. As an example, the impact of a
general strike in early 2009 that paralyzed Guadeloupean archipelago at least 2 months
is highlighted by zero energy due to the lack of PM10 sources, i.e., industrial activity
and road traffic. For f>1� 10�6 Hz, one can see more precisely energy variation
related to dust events from mesoscale to large scale. Contrary to SPEC, HS clearly
illustrates localized energy fluctuations due to small-scale event. In fact, the STFT
makes an assumption that any signal as piecewise stationary and uses suitable window
function to produce the short-time spectral characteristics of the signal. However, in
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reality, most of air pollution signals are usually nonstationary [9, 14, 47]. The Fourier
transform-based technique treats the signal as a sum of predefined basis functions. If
the analyzing signal is well matched with the bases, it performs better; otherwise the
performance is degraded [10]. Here, the SPEC highlight energy fluctuations linked to
PM10 coming from African dust between May and September (large-scale sources)
[9] and from the eruption of Soufrière on Montserrat in February 2010 (mesoscale
sources) [48]. However, the SPEC does not detect energy fluctuation related to
anthropogenic pollution, i.e., local sources. This shows HS is a robust method in time-
frequency domain. Indeed, based on the EMDmethod, this TFR is fully data adaptive,
and the signal decomposition is performed without any predefined basis functions.
These results confirm the superiority of HS over STFT in TFR.

5. Conclusion

In this paper, we investigated scaling and time-frequency properties of PM10 data
in Hilbert frame. The performances obtained in the Hilbert space are compared with
those achieved in the Fourier space. Firstly, with the Hilbert spectral analysis (HSA), a
power law behavior is clearly observed on the frequency range 2:09� 10�7⩽f⩽4:57
�10�5 Hz which corresponds to time scales 6:1 hours⩽T⩽55:4 days with an estimated
spectral exponent βh = 1.02 � 0.10. As HSA methodology has a very local ability in
both physical and spectral spaces, the influence of intermittent dust events with huge
fluctuations is included in the amplitude-frequency space which is not the case in
Fourier spectrum. Thereafter, PM10 data are illustrated in time-frequency representa-
tions with the Hilbert spectrum and spectrogram. The results provide the evidence that
HS-based TFR performs better than SPEC. The higher resolution in TFR offers better
fluctuations of PM10 energy for f < 1μHz. This is due to the fact that it is impossible to
increase the TF resolution at the desired level in SPEC. The major asset of HS is that the
time resolution can be as precise as the sampling period and the frequency resolution
depends on the choice up to the Nyquist limit. In addition, contrary to SPEC which
introduces a noticeable amount of cross-spectral energy terms during the use of win-
dow function with overlapping, HS is fully adaptive to datasets due to the decomposi-
tion of the signals. These first results suggest a substantial possibility to perform a
profound dynamical analysis of PM10 concentrations for the Caribbean area in order
to quantify the origin and the threshold pollution.
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reality, most of air pollution signals are usually nonstationary [9, 14, 47]. The Fourier
transform-based technique treats the signal as a sum of predefined basis functions. If
the analyzing signal is well matched with the bases, it performs better; otherwise the
performance is degraded [10]. Here, the SPEC highlight energy fluctuations linked to
PM10 coming from African dust between May and September (large-scale sources)
[9] and from the eruption of Soufrière on Montserrat in February 2010 (mesoscale
sources) [48]. However, the SPEC does not detect energy fluctuation related to
anthropogenic pollution, i.e., local sources. This shows HS is a robust method in time-
frequency domain. Indeed, based on the EMDmethod, this TFR is fully data adaptive,
and the signal decomposition is performed without any predefined basis functions.
These results confirm the superiority of HS over STFT in TFR.

5. Conclusion

In this paper, we investigated scaling and time-frequency properties of PM10 data
in Hilbert frame. The performances obtained in the Hilbert space are compared with
those achieved in the Fourier space. Firstly, with the Hilbert spectral analysis (HSA), a
power law behavior is clearly observed on the frequency range 2:09� 10�7⩽f⩽4:57
�10�5 Hz which corresponds to time scales 6:1 hours⩽T⩽55:4 days with an estimated
spectral exponent βh = 1.02 � 0.10. As HSA methodology has a very local ability in
both physical and spectral spaces, the influence of intermittent dust events with huge
fluctuations is included in the amplitude-frequency space which is not the case in
Fourier spectrum. Thereafter, PM10 data are illustrated in time-frequency representa-
tions with the Hilbert spectrum and spectrogram. The results provide the evidence that
HS-based TFR performs better than SPEC. The higher resolution in TFR offers better
fluctuations of PM10 energy for f < 1μHz. This is due to the fact that it is impossible to
increase the TF resolution at the desired level in SPEC. The major asset of HS is that the
time resolution can be as precise as the sampling period and the frequency resolution
depends on the choice up to the Nyquist limit. In addition, contrary to SPEC which
introduces a noticeable amount of cross-spectral energy terms during the use of win-
dow function with overlapping, HS is fully adaptive to datasets due to the decomposi-
tion of the signals. These first results suggest a substantial possibility to perform a
profound dynamical analysis of PM10 concentrations for the Caribbean area in order
to quantify the origin and the threshold pollution.
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Chapter 8

Optimal Control of Evolution
Differential Inclusions with
Polynomial Linear Differential
Operators
Elimhan N. Mahmudov

Abstract

In this chapter, we studied a new class of problems in the theory of optimal
control defined by polynomial linear differential operators. As a result, an interest-
ing Mayer problem arises with higher order differential inclusions. Thus, in terms
of the Euler-Lagrange and Hamiltonian type inclusions, sufficient optimality
conditions are formulated. In addition, the construction of transversality conditions
at the endpoints of the considered time interval plays an important role in future
studies. To this end, the apparatus of locally adjoint mappings is used, which plays
a key role in the main results of this chapter. The presented method is demonstrated
by the example of the linear optimal control problem, for which the Weierstrass-
Pontryagin maximum principle is derived.

Keywords: Euler-Lagrange, differential inclusion, set-valued mapping,
polynomial differential operators, linear problem, transversality,
Weierstrass-Pontryagin maximum principle

1. Introduction

This chapter concerns with the special kind of optimal control problem with
differential inclusions, where the left-hand side of the evolution inclusion is poly-
nomial linear differential operators with variable coefficients; in fact, the main
difficulty in the considered problems is to construct the Euler-Lagrange type higher
order adjoint inclusions and the transversality conditions. That is why in the whole
literature, only the qualitative properties of second-order differential inclusions are
investigated (see [1–3] and references therein).

The paper [1] gives necessary and sufficient conditions ensuring the existence
of a solution to the second-order differential inclusion with Cauchy initial value
problem. Furthermore, second-order interior tangent sets are introduced and stud-
ied to obtain such conditions. The paper [2] studies, in the context of Banach
spaces, the problem of three boundary conditions for both second-order differential
inclusions and second-order ordinary differential equations. The results are
obtained in several new settings of Sobolev type spaces involving Bochner and
Pettis integrals. In the paper [3], the existence of viable solutions to the Cauchy
problem x00 ∈F x, x0ð Þ, x 0ð Þ ¼ x0, x0 0ð Þ ¼ y0 is proved, where F is a set-valued map
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Chapter 8

Optimal Control of Evolution
Differential Inclusions with
Polynomial Linear Differential
Operators
Elimhan N. Mahmudov

Abstract

In this chapter, we studied a new class of problems in the theory of optimal
control defined by polynomial linear differential operators. As a result, an interest-
ing Mayer problem arises with higher order differential inclusions. Thus, in terms
of the Euler-Lagrange and Hamiltonian type inclusions, sufficient optimality
conditions are formulated. In addition, the construction of transversality conditions
at the endpoints of the considered time interval plays an important role in future
studies. To this end, the apparatus of locally adjoint mappings is used, which plays
a key role in the main results of this chapter. The presented method is demonstrated
by the example of the linear optimal control problem, for which the Weierstrass-
Pontryagin maximum principle is derived.

Keywords: Euler-Lagrange, differential inclusion, set-valued mapping,
polynomial differential operators, linear problem, transversality,
Weierstrass-Pontryagin maximum principle
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defined on a locally compact setM⊂2n, contained in the Frechet subdifferential of
a φ-convex function of order two.

Some qualitative properties and optimization of first-order discrete and contin-
uous time processes with lumped and distributed parameters have been expanding
in all directions at an astonishing rate during the last few decades (see [4–13] and
their references).

The optimization of higher order differential inclusions was first developed by
Mahmudov in [14–21]. Since then this problem has attracted many author’s atten-
tions (see [22] and their references). The paper [14] studies a new class of prob-
lems of optimal control theory with Sturm-Liouville type differential inclusions
involving second-order linear self-adjoint differential operators. By using the
discretization method guaranteeing transition to continuous problem, the discrete
and discrete-approximate inclusions are investigated. Necessary and sufficient
conditions, containing both the Euler-Lagrange and Hamiltonian type inclusions,
and “transversality” conditions are derived. The paper [15] deals with the optimi-
zation of the Bolza problem with third-order differential inclusions and arbitrary
higher order discrete inclusions. The work [16] is devoted to the Bolza problem of
optimal control theory given by second-order convex differential inclusions with
second-order state variable inequality constraints. According to the proposed
discretization method, problems with discrete-approximate inclusions and
inequalities are investigated. Necessary and sufficient conditions of optimality
including distinctive “transversality” condition are proved in the form of Euler-
Lagrange inclusions. The paper [17] is concerned with the necessary and sufficient
conditions of optimality for second-order polyhedral optimization described by
polyhedral discrete and differential inclusions. The paper [18] is devoted to the
study of optimal control theory with higher order differential inclusions and a
varying time interval. Essentially, under a more general setting of problems and
endpoint constraints, the main goal is to establish sufficient conditions of
optimality for higher order differential inclusions. Thus with the use of Euler-
Lagrange and Hamiltonian type of inclusions and transversal conditions on the
“initial” sets, the sufficient conditions are formulated. The paper [21] studies a
new class of problems of optimal control theory with state constraints and
second-order delay discrete and delay differential inclusions. Under the
“regularity” condition by using discrete approximations as a vehicle, in the forms
of Euler-Lagrange and Hamiltonian type inclusions, the sufficient conditions of
optimality for delay DFIs, including the peculiar transversality ones, are proved.

The present chapter is ordered in the following manner.
In Section 2 the necessary facts and supplementary results from the book of

Mahmudov are given [23]; Hamiltonian function and locally adjoint mapping are
introduced, and the problems with initial point constraints for polynomial linear
differential operators governed by time-dependent set-valued mapping are formu-
lated. In Section 3, we present the main results; on the basis of “transversality”
conditions at the endpoints of the considered time interval, the sufficient conditions
of optimality for differential inclusions with polynomial linear differential operators
and with initial point constraints are proved. In particular, it is shown that our
problems involve optimization of the so-called Sturm-Liouville type differential
inclusions. To the best of our knowledge, there is no paper which considers opti-
mality conditions for these problems in the literature, and we aim to fill this gap.
Therefore, the novelty of our formulation of the problem is justified. To establish
the Euler-Lagrange and Hamiltonian inclusions and the transversality conditions,
we use the construction of a suitable rewriting of the primal polynomial linear
differential operator and the rearrangement of its integration. The case of variable
coefficients of polynomial linear differential operators turns out to be more
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complicated, unless transversality assumptions at the endpoints of the considered
time interval are applied. It should be noted that the main proof can be easily
generalized to the nonconvex case. Then, using the new approach given in Section 4
of this chapter, we construct the Weierstrass-Pontryagin maximum condition [24]
for the linear optimal control problem. Consequently, in the particular case, the
maximum principle follows from the Euler-Lagrange inclusion.

In Section 5 the optimality conditions are given for convex problem with second-
order differential inclusions and endpoint constraints. By using second-order suit-
able Euler-Lagrange type adjoint inclusions and transversality conditions, Theorem
5.1 is proved.

The main results in this section can be extended to the case of Hilbert spaces
ℓ2,Ln

2 . We remind that a Hilbert space H is a real or complex inner product space
that is also a complete metric space with respect to the distance function induced
by the inner product [2]. By definition, every Hilbert space is also a Banach space.
Furthermore, in every Hilbert space, the following parallelogram identity

xþ yk k2 þ x� yk k2 ¼ 2 xk k2
�

þ yk k2
�
holds. Conversely, every Banach space in

which the parallelogram identity holds is a Hilbert space. Remember that ℓ2 is a
space of numerical sequences, such that if x ¼ xif g, thenP∞

i¼1x
2
i <∞. In fact ℓ2 is

an infinity dimensional coordinate-wise Hilbert space with the corresponding inner
product x, yh i ¼P∞

i¼1xiyi. Endowing a relevant norm, we have a Banach space.
Obviously, optimization of problem with PLDOs can be reduced to problem with
geometric constraints in such finite-dimensional Hilbert space. As is known with
all the pairs of elements of this space, a certain finite number is associated, i.e.,
inner product, existence of which is guaranteed by applying the familiar
Cauchy Schwarz-Bunyakovskii [25] inequality. We remark that in our case for x ¼
x0, x1, x2, …f g∈ℓ2 and x ∗ ¼ x ∗

0 , x
∗
1 , x

∗
2 , …

� �
∈ℓ ∗

2 , the inner product x, x ∗h i ¼P∞
i¼1xix

∗
i is finite numbers since this series is convergent. Besides it is known [25]

that ℓ2 is a self-adjoint space, i.e., ℓp ¼ ℓ ∗
q , and 1=pþ 1=q ¼ 1, and so ℓ2 ¼ ℓ ∗

2 for
p ¼ 2. Thus a dual cone constructed can be defined. The set of square integrable
functions Ln

2 0, 1½ �ð Þ is a Hilbert space with inner product x tð Þ, y tð Þh i ¼ Ð 10x tð Þy tð Þdt.

2. Preliminaries and problem statements

The basic concepts given in this section can be found in the book [23]; let n be a
n-dimensional Euclidean space, x, vh i be an inner product of elements x, v∈n, and
x, vð Þ be a pair of x, v. Let F : n⇉n be a set-valued mapping from n into the set
of subsets of n. Therefore F is a convex set-valued mapping, if its graph gph F ¼
x, vð Þ : v∈ F xð Þf g is a convex subset of 2n. A set-valued mapping F is called closed

if its gph F is a closed subset in 2n. The domain of a set-valued mapping F is
denoted by domF and is defined as domF ¼ x : F xð Þ 6¼ ∅f g. A set-valued mapping F
is convex-valued if F xð Þ is a convex set for each x∈ domF.

The Hamiltonian function and argmaximum set corresponding to a set-valued
mapping F are defined by the relations correspondingly:

HF x, v ∗ð Þ ¼ sup
v

v, v ∗h i : v∈F xð Þf g, v ∗ ∈n,

FA x, v ∗ð Þ ¼ v∈F xð Þ : v, v ∗h i ¼ HF x, v ∗ Þð gf

We set HF x, v ∗ð Þ ¼ �∞ if F xð Þ ¼ ∅: The interior and relative interior of a set
M⊂2n are denoted by intM and riM, respectively.
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generalized to the nonconvex case. Then, using the new approach given in Section 4
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for the linear optimal control problem. Consequently, in the particular case, the
maximum principle follows from the Euler-Lagrange inclusion.

In Section 5 the optimality conditions are given for convex problem with second-
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able Euler-Lagrange type adjoint inclusions and transversality conditions, Theorem
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by the inner product [2]. By definition, every Hilbert space is also a Banach space.
Furthermore, in every Hilbert space, the following parallelogram identity

xþ yk k2 þ x� yk k2 ¼ 2 xk k2
�

þ yk k2
�
holds. Conversely, every Banach space in

which the parallelogram identity holds is a Hilbert space. Remember that ℓ2 is a
space of numerical sequences, such that if x ¼ xif g, thenP∞

i¼1x
2
i <∞. In fact ℓ2 is

an infinity dimensional coordinate-wise Hilbert space with the corresponding inner
product x, yh i ¼P∞

i¼1xiyi. Endowing a relevant norm, we have a Banach space.
Obviously, optimization of problem with PLDOs can be reduced to problem with
geometric constraints in such finite-dimensional Hilbert space. As is known with
all the pairs of elements of this space, a certain finite number is associated, i.e.,
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denoted by domF and is defined as domF ¼ x : F xð Þ 6¼ ∅f g. A set-valued mapping F
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A convex cone KM z0ð Þ, z0 ∈M is a cone of tangent directions if from z ¼
x, vð Þ∈KM z0ð Þ it follows that z is a tangent vector to the setM at a point z0 ∈M, i.e.,
there exists such function q : 1 ! 2n that z0 þ αzþ q αð Þ∈M for sufficiently small
α>0 and α�1q αð Þ ! 0, as α↓0.

For a set-valued mapping F, the set-valued mapping F ∗ : n⇉n is defined by

F ∗ v ∗ ; x, vð Þð Þ≔ x ∗ : x ∗ ,�v ∗ð Þ∈K ∗
gph F x, vÞð g�

KgphF x, vð Þ ¼ cone gphF � x, vð Þ½ �,∀ x1, v1
� �

∈ gphF:

It is called the LAM to F at a point x, vð Þ∈ gphF, where K ∗ ¼ z ∗ :f z, z ∗h i≥0,
∀z∈Kg denotes the dual cone to the cone K, as usual. Below by using the
Hamiltonian function, associated to a set-valued mapping F, we will define another
LAM. Thus, the LAM to “nonconvex” mapping F is defined as follows:

F ∗ v ∗ ; x, vð Þð Þ≔ x ∗ : HF x1, v ∗� ��HFðx, v ∗ Þ≤ x ∗ , x1 � x
� ��

,∀x1 ∈n�,
x, vð Þ∈ gphF, v∈FA x, v ∗ð Þ:

Clearly, for the convex mapping F, the Hamiltonian function HF �, � , v ∗ð Þ is
concave, and the latter definition of LAM coincides with the previous definition of
LAM ([23], p. 62). Note that prior to the LAM, the notion of coderivative has been
introduced for set-valued mappings in terms of the basic normal cone to their
graphs by Mordukhovich [26] and for the smooth convex maps, the two notions are
equivalent.

The aim of Section 3 is to obtain the Euler-Lagrange type adjoint inclusion and
sufficient optimality conditions for a problem with polynomial linear differential
operators:

Minimize φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ
� �

, (1)

ðPVÞ Lx tð Þ∈F x tð Þ, tð Þ, a:e: t∈ 0, 1½ �, (2)

x 0ð Þ∈Q0, x
0 0ð Þ∈Q1x

00 0ð Þ∈Q2, … , x s�1ð Þ 0ð Þ∈Qs�1 (3)

where Lx ¼Ps
k¼1pk tð ÞDkx is a PLDO of degree s with variable coefficients pk :

0, 1½ � ! 1 and Dk, k ¼ 1, … , s is the operator of kth-order derivatives. In what
follows for each k, a scalar function pk is kth-order continuously differentiable
function, ps tð Þ 6¼ 0 on 0, 1½ � identically, F �, tð Þ : n⇉n is time-dependent set-
valued mapping, φ : nð Þs ! 1 is continuous function, Qj ⊆n, j ¼ 0, 1, … , s� 1
are nonempty subsets of n, and s s≥ 2ð Þ is an arbitrary fixed natural number. It is
required to find an arc ~x tð Þ of the problem Eqs. (1)–(3) for the sth-order
differential inclusions satisfying Eq. (2) almost everywhere (a.e.) on a considered
time interval and minimizing the functional φ x 1ð Þ, … , x s�1ð Þ 1ð Þ� �

. An arc x �ð Þ is
absolutely continuous and s� 1 order differentiable function, where x sð Þ �ð Þ �
dsx �ð Þ
dts ∈Ln

1 0, 1½ �ð Þ. Obviously, such class of functions is a Banach space, endowed with
the different equivalent norms.

Remark 2.1. Notice that to get sufficient condition of optimality for the
Mayer problem (PV) described by ordinary evolution differential inclusions with
PLDOs and with initial point constraints, using the discretized method, we
consider the following sth-order discrete-approximate problem instead of the
problem (PV):
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minimize φ x 1� s� 1ð Þhð Þ,Δx 1� s� 1ð Þhð Þ, … ,Δs�1x 1� s� 1ð Þhð Þ� �
,

Xs

k¼1

pk tð ÞΔkx tð Þ∈F x tð Þ, tð Þ, t ¼ 0, h, 2h, … , 1� sh;

Δkx 0ð Þ∈Qk, k ¼ 0, … , s� 1:

Here kth-order difference operator is defined as follows:

Δkx tð Þ ¼ 1

hk
Xk
s¼0

�1ð ÞsCs
kx tþ k� sð Þhð Þ, Cs

k ¼
k!

s! k� sð Þ! ,  t ¼ 0, h, … , 1� h:

Thus by using the method of approximation [23, 26, 27], we can establish
necessary and sufficient conditions for the rather complicated sth-order discrete-
approximate problem. Then by passing to the limit in necessary and sufficient
conditions of this problem as h ! 0, we can construct the optimality condition for
the Mayer problem (PV) described by higher order differential inclusions with
PLDOs and with initial point constraints. But in this chapter to avoid long
calculations, derivations of these conditions are omitted.

3. Optimization of evolution differential inclusions with PLDOs

In the present section, we study sufficient optimality conditions for the
problem (PV). Before all, we formulate the so-called sth-order Euler-Lagrange type
differential inclusion and the transversality conditions:

i. L ∗ x ∗ tð Þ∈F ∗ x ∗ tð Þ; ~x tð Þ,L~x tð Þð Þ, tð Þ, a.e. t∈ 0, 1½ �,

where L ∗ x ∗ tð Þ ¼Ps
k¼1 �1ð ÞkDk pk tð Þx ∗ tð Þ� �

is the adjoint PLDO of the primal
operator L.

ii.
Ps�1

k¼0 �1ð Þs�kDs�k�1 ps�k 0ð Þx ∗ 0ð Þ� �
∈K ∗

Q0
~x 0ð Þð Þ;

Ps�2
k¼0 �1ð Þs�k�1Ds�k�2 ps�k 0ð Þx ∗ 0ð Þ� �

∈K ∗
Q1

~x0 0ð Þð Þ;
D ps 0ð Þx ∗ 0ð Þ� �� ps�1 0ð Þx ∗ 0ð Þ∈K ∗

Qs�2
~x s�2ð Þ 0ð Þ
� �

;

�ps 0ð Þx ∗ 0ð Þ∈K ∗
Qs�1

~x s�1ð Þ 0ð Þ
� �

:

iii.
Ps�1

k¼0 �1ð Þs�kDs�k�1 ps�k 1ð Þx ∗ 1ð Þ� ��
,
Ps�2

k¼0 �1ð Þs�k�1Ds�k�2 ps�k 1ð Þx ∗ 1ð Þ� �
, … ,

D ps 1ð Þx ∗ 1ð Þ� �� ps�1 1ð Þx ∗ 1ð Þ, ps 1ð Þx ∗ 1ð Þ�∈ ∂φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

:

Later on we assume that x ∗ tð Þ, t∈ 0, 1½ � is absolutely a continuous function
with the higher order derivatives until s� 1 and x ∗ sð Þ �ð Þ∈Ln

1 0, 1½ �ð Þ. The following
condition ensures that the LAM F ∗ is nonempty:

iv. L~x tð Þ∈ FA ~x tð Þ, x ∗ tð Þ, tð Þ, a.e. t∈ 0, 1½ � or, equivalently,
L~x tð Þ, x ∗ tð Þh i ¼ HF ~x tð Þ, x ∗ tð Þð Þ, L~x tð Þ∈F ~x tð Þ, tð Þ.
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are nonempty subsets of n, and s s≥ 2ð Þ is an arbitrary fixed natural number. It is
required to find an arc ~x tð Þ of the problem Eqs. (1)–(3) for the sth-order
differential inclusions satisfying Eq. (2) almost everywhere (a.e.) on a considered
time interval and minimizing the functional φ x 1ð Þ, … , x s�1ð Þ 1ð Þ� �

. An arc x �ð Þ is
absolutely continuous and s� 1 order differentiable function, where x sð Þ �ð Þ �
dsx �ð Þ
dts ∈Ln

1 0, 1½ �ð Þ. Obviously, such class of functions is a Banach space, endowed with
the different equivalent norms.

Remark 2.1. Notice that to get sufficient condition of optimality for the
Mayer problem (PV) described by ordinary evolution differential inclusions with
PLDOs and with initial point constraints, using the discretized method, we
consider the following sth-order discrete-approximate problem instead of the
problem (PV):
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minimize φ x 1� s� 1ð Þhð Þ,Δx 1� s� 1ð Þhð Þ, … ,Δs�1x 1� s� 1ð Þhð Þ� �
,

Xs

k¼1

pk tð ÞΔkx tð Þ∈F x tð Þ, tð Þ, t ¼ 0, h, 2h, … , 1� sh;

Δkx 0ð Þ∈Qk, k ¼ 0, … , s� 1:

Here kth-order difference operator is defined as follows:

Δkx tð Þ ¼ 1

hk
Xk
s¼0

�1ð ÞsCs
kx tþ k� sð Þhð Þ, Cs

k ¼
k!

s! k� sð Þ! ,  t ¼ 0, h, … , 1� h:

Thus by using the method of approximation [23, 26, 27], we can establish
necessary and sufficient conditions for the rather complicated sth-order discrete-
approximate problem. Then by passing to the limit in necessary and sufficient
conditions of this problem as h ! 0, we can construct the optimality condition for
the Mayer problem (PV) described by higher order differential inclusions with
PLDOs and with initial point constraints. But in this chapter to avoid long
calculations, derivations of these conditions are omitted.

3. Optimization of evolution differential inclusions with PLDOs

In the present section, we study sufficient optimality conditions for the
problem (PV). Before all, we formulate the so-called sth-order Euler-Lagrange type
differential inclusion and the transversality conditions:

i. L ∗ x ∗ tð Þ∈F ∗ x ∗ tð Þ; ~x tð Þ,L~x tð Þð Þ, tð Þ, a.e. t∈ 0, 1½ �,

where L ∗ x ∗ tð Þ ¼Ps
k¼1 �1ð ÞkDk pk tð Þx ∗ tð Þ� �

is the adjoint PLDO of the primal
operator L.

ii.
Ps�1

k¼0 �1ð Þs�kDs�k�1 ps�k 0ð Þx ∗ 0ð Þ� �
∈K ∗

Q0
~x 0ð Þð Þ;

Ps�2
k¼0 �1ð Þs�k�1Ds�k�2 ps�k 0ð Þx ∗ 0ð Þ� �

∈K ∗
Q1

~x0 0ð Þð Þ;
D ps 0ð Þx ∗ 0ð Þ� �� ps�1 0ð Þx ∗ 0ð Þ∈K ∗

Qs�2
~x s�2ð Þ 0ð Þ
� �

;

�ps 0ð Þx ∗ 0ð Þ∈K ∗
Qs�1

~x s�1ð Þ 0ð Þ
� �

:

iii.
Ps�1

k¼0 �1ð Þs�kDs�k�1 ps�k 1ð Þx ∗ 1ð Þ� ��
,
Ps�2

k¼0 �1ð Þs�k�1Ds�k�2 ps�k 1ð Þx ∗ 1ð Þ� �
, … ,

D ps 1ð Þx ∗ 1ð Þ� �� ps�1 1ð Þx ∗ 1ð Þ, ps 1ð Þx ∗ 1ð Þ�∈ ∂φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

:

Later on we assume that x ∗ tð Þ, t∈ 0, 1½ � is absolutely a continuous function
with the higher order derivatives until s� 1 and x ∗ sð Þ �ð Þ∈Ln

1 0, 1½ �ð Þ. The following
condition ensures that the LAM F ∗ is nonempty:

iv. L~x tð Þ∈ FA ~x tð Þ, x ∗ tð Þ, tð Þ, a.e. t∈ 0, 1½ � or, equivalently,
L~x tð Þ, x ∗ tð Þh i ¼ HF ~x tð Þ, x ∗ tð Þð Þ, L~x tð Þ∈F ~x tð Þ, tð Þ.
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The following are sufficient optimality conditions for evolution differential
inclusions with PLDOs.

Theorem 3.1. Let φ be a continuous and convex function and F �, tð Þ a convex set-
valued mapping. Moreover, let

Q j, j ¼ 0, … , s� 1

be convex sets. Then for optimality of the trajectory ~x �ð Þ in the problem (PV)
with evolution differential inclusions and PLDOs, it is sufficient that there exists an
absolutely continuous function x ∗ �ð Þ with the higher order derivatives until s� 1,
satisfying a.e. the Euler-Lagrange type differential inclusion with PLDOs Eqs. (i)
and (iv) and transversality conditions Eqs. (ii) and (iii) at the endpoints t ¼ 0
and t ¼ 1.

Proof. Using Theorem 2.1 ([23], p. 62), the definition of the Hamiltonian func-
tion and condition Eq. (i), we obtain

HF x tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, x ∗ tð Þ, tð Þ≤ L ∗ x ∗ tð Þ, x tð Þ � ~x tð Þh i

which can be rewritten as follows

HF x tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, x ∗ tð Þ, tð Þ

≤
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +

: (4)

Further using the definition of the Hamiltonian function, Eq. (4) can be
converted to the inequality

0≥ Lx tð Þ � L~x tð Þ, x ∗ tð Þh i � L ∗ x ∗ tð Þ, x tð Þ � ~x tð Þh i

or

0≥
Xs

k¼1

pk tð Þ x tð Þ � ~x tð Þð Þ kð Þ, x ∗ tð Þ
* +

�
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +

:

(5)

Integrating Eq. (5) over the interval 0, 1½ �, we have

0≥
ð1

0

Xs

k¼1

pk tð Þ x tð Þ � ~x tð Þð Þ kð Þ, x ∗ tð Þ
* +"

�
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +#

dt (6)

Let us denote

B ¼
Xs

k¼1

x tð Þ � ~x tð Þð Þ kð Þ, pk tð Þx ∗ tð Þ
D E

�
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
D E
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In what follows our approach lies in reducing B in a relationship consisting of s
sums from k k ¼ 1, … , sð Þ to s of suitable derivatives of scalar products; thus, after
some transformations we can deduce an important representation for a first term
of B as follows:

Xs

k¼1

x tð Þ � ~x tð Þð Þ kð Þ, pk tð Þx ∗ tð Þ
D E

¼
Xs

k¼1

d
dt

x k�1ð Þ tð Þ � ~x k�1ð Þ tð Þ, pk tð Þx ∗ tð Þ
D E� �

�
Xs

k¼2

d
dt

x k�2ð Þ tð Þ � ~x k�2ð Þ tð Þ, pk tð Þx ∗ tð Þ� �0D E� �

þ
Xs

k¼3

d
dt

x k�3ð Þ tð Þ � ~x k�3ð Þ tð Þ, pk tð Þx ∗ tð Þ� �00D E� �

� �⋯þ
Xs

k¼s�2

d
dt

x k�sþ2ð Þ tð Þ � ~x k�sþ2ð Þ tð Þ, �1ð Þm�3 pk tð Þx ∗ tð Þ� � s�3ð ÞD E� �
(7)

þ
Xs

k¼s�1

d
dt

x k�sþ1ð Þ tð Þ � ~x k�sþ1ð Þ tð Þ, �1ð Þs�2 pk tð Þx ∗ tð Þ� � s�2ð ÞD E� �

þ d
dt

x tð Þ � ~x tð Þ, �1ð Þm�1 ps tð Þx ∗ tð Þ� � s�1ð ÞD E

þ
Xs

k¼1

x tð Þ � ~x tð Þ, �1ð Þk pk tð Þx ∗ tð Þ� � kð ÞD Eh i
:

Then in view of Eq. (7) in the definition of B, we have an efficient formula:

B ¼
Xs

k¼1

d
dt

x k�1ð Þ tð Þ � ~x k�1ð Þ tð Þ, pk tð Þx ∗ tð Þ
D E� �

�
Xs

k¼2

d
dt

x k�2ð Þ tð Þ � ~x k�2ð Þ tð Þ, pk tð Þx ∗ tð Þ� �0D E� �
(8)

þ
Xs

k¼3

d
dt

x k�3ð Þ tð Þ � ~x k�3ð Þ tð Þ, pk tð Þx ∗ tð Þ� �00D E� �

� �⋯þ
Xs

k¼s�2

d
dt

x k�sþ2ð Þ tð Þ � ~x k�sþ2ð Þ tð Þ, �1ð Þs�3 pk tð Þx ∗ tð Þ� � s�3ð ÞD E� �

þ
Xs

k¼s�1

d
dt

x k�sþ1ð Þ tð Þ � ~x k�sþ1ð Þ tð Þ, �1ð Þs�2 pk tð Þx ∗ tð Þ� � s�2ð ÞD E� �

þ d
dt

x tð Þ � ~x tð Þ, �1ð Þs�1 ps tð Þx ∗ tð Þ� � s�1ð ÞD E
:

Then taking into account the structure of B in Eq. (8), we can compute the
integral on the right-hand side of Eq. (6) as follows:

ð1

0

Bdt ¼
Xs

k¼1

ð1

0

d x k�1ð Þ tð Þ � ~x k�1ð Þ tð Þ, pk tð Þx ∗ tð Þ
D E2

4
3
5
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The following are sufficient optimality conditions for evolution differential
inclusions with PLDOs.

Theorem 3.1. Let φ be a continuous and convex function and F �, tð Þ a convex set-
valued mapping. Moreover, let

Q j, j ¼ 0, … , s� 1

be convex sets. Then for optimality of the trajectory ~x �ð Þ in the problem (PV)
with evolution differential inclusions and PLDOs, it is sufficient that there exists an
absolutely continuous function x ∗ �ð Þ with the higher order derivatives until s� 1,
satisfying a.e. the Euler-Lagrange type differential inclusion with PLDOs Eqs. (i)
and (iv) and transversality conditions Eqs. (ii) and (iii) at the endpoints t ¼ 0
and t ¼ 1.

Proof. Using Theorem 2.1 ([23], p. 62), the definition of the Hamiltonian func-
tion and condition Eq. (i), we obtain

HF x tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, x ∗ tð Þ, tð Þ≤ L ∗ x ∗ tð Þ, x tð Þ � ~x tð Þh i

which can be rewritten as follows

HF x tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, x ∗ tð Þ, tð Þ

≤
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +

: (4)

Further using the definition of the Hamiltonian function, Eq. (4) can be
converted to the inequality

0≥ Lx tð Þ � L~x tð Þ, x ∗ tð Þh i � L ∗ x ∗ tð Þ, x tð Þ � ~x tð Þh i

or

0≥
Xs

k¼1

pk tð Þ x tð Þ � ~x tð Þð Þ kð Þ, x ∗ tð Þ
* +

�
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +

:

(5)

Integrating Eq. (5) over the interval 0, 1½ �, we have

0≥
ð1

0

Xs

k¼1

pk tð Þ x tð Þ � ~x tð Þð Þ kð Þ, x ∗ tð Þ
* +"

�
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +#

dt (6)

Let us denote

B ¼
Xs

k¼1

x tð Þ � ~x tð Þð Þ kð Þ, pk tð Þx ∗ tð Þ
D E

�
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
D E
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In what follows our approach lies in reducing B in a relationship consisting of s
sums from k k ¼ 1, … , sð Þ to s of suitable derivatives of scalar products; thus, after
some transformations we can deduce an important representation for a first term
of B as follows:

Xs

k¼1

x tð Þ � ~x tð Þð Þ kð Þ, pk tð Þx ∗ tð Þ
D E

¼
Xs

k¼1

d
dt

x k�1ð Þ tð Þ � ~x k�1ð Þ tð Þ, pk tð Þx ∗ tð Þ
D E� �

�
Xs

k¼2

d
dt

x k�2ð Þ tð Þ � ~x k�2ð Þ tð Þ, pk tð Þx ∗ tð Þ� �0D E� �

þ
Xs

k¼3

d
dt

x k�3ð Þ tð Þ � ~x k�3ð Þ tð Þ, pk tð Þx ∗ tð Þ� �00D E� �

� �⋯þ
Xs

k¼s�2

d
dt

x k�sþ2ð Þ tð Þ � ~x k�sþ2ð Þ tð Þ, �1ð Þm�3 pk tð Þx ∗ tð Þ� � s�3ð ÞD E� �
(7)

þ
Xs

k¼s�1

d
dt

x k�sþ1ð Þ tð Þ � ~x k�sþ1ð Þ tð Þ, �1ð Þs�2 pk tð Þx ∗ tð Þ� � s�2ð ÞD E� �

þ d
dt

x tð Þ � ~x tð Þ, �1ð Þm�1 ps tð Þx ∗ tð Þ� � s�1ð ÞD E

þ
Xs

k¼1

x tð Þ � ~x tð Þ, �1ð Þk pk tð Þx ∗ tð Þ� � kð ÞD Eh i
:

Then in view of Eq. (7) in the definition of B, we have an efficient formula:

B ¼
Xs

k¼1

d
dt

x k�1ð Þ tð Þ � ~x k�1ð Þ tð Þ, pk tð Þx ∗ tð Þ
D E� �

�
Xs

k¼2

d
dt

x k�2ð Þ tð Þ � ~x k�2ð Þ tð Þ, pk tð Þx ∗ tð Þ� �0D E� �
(8)

þ
Xs

k¼3

d
dt

x k�3ð Þ tð Þ � ~x k�3ð Þ tð Þ, pk tð Þx ∗ tð Þ� �00D E� �

� �⋯þ
Xs

k¼s�2

d
dt

x k�sþ2ð Þ tð Þ � ~x k�sþ2ð Þ tð Þ, �1ð Þs�3 pk tð Þx ∗ tð Þ� � s�3ð ÞD E� �

þ
Xs

k¼s�1

d
dt

x k�sþ1ð Þ tð Þ � ~x k�sþ1ð Þ tð Þ, �1ð Þs�2 pk tð Þx ∗ tð Þ� � s�2ð ÞD E� �

þ d
dt

x tð Þ � ~x tð Þ, �1ð Þs�1 ps tð Þx ∗ tð Þ� � s�1ð ÞD E
:

Then taking into account the structure of B in Eq. (8), we can compute the
integral on the right-hand side of Eq. (6) as follows:

ð1

0

Bdt ¼
Xs

k¼1

ð1

0

d x k�1ð Þ tð Þ � ~x k�1ð Þ tð Þ, pk tð Þx ∗ tð Þ
D E2

4
3
5
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�
Xs

k¼2

ð1

0

d x k�2ð Þ tð Þ � ~x k�2ð Þ tð Þ, pk tð Þx ∗ tð Þ� �0D E2
4

3
5

þ
Xs

k¼3

ð1

0

d x k�3ð Þ tð Þ � ~x k�3ð Þ tð Þ, pk tð Þx ∗ tð Þ� �00D E2
4

3
5

� �⋯þ
Xs

k¼s�2

ð1

0

d x k�sþ2ð Þ tð Þ � ~x k�sþ2ð Þ tð Þ, �1ð Þs�3 pk tð Þx ∗ tð Þ� � s�3ð ÞD E2
4

3
5

þ
Xs

k¼s�1

ð1

0

d x k�sþ1ð Þ tð Þ � ~x k�sþ1ð Þ tð Þ, �1ð Þs�2 pk tð Þx ∗ tð Þ� � s�2ð ÞD E2
4

3
5

þ
ð1

0

d x tð Þ � ~x tð Þ, �1ð Þs�1 ps tð Þx ∗ tð Þ� � s�1ð ÞD E
:

Thus, integrating B, we can obtain

ð1

0

Bdt ¼
Xs

k¼1

x k�1ð Þ 1ð Þ � ~x k�1ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ
D Eh

� x k�1ð Þ 0ð Þ � ~x k�1ð Þ 0ð Þ, pk 0ð Þx ∗ 0ð Þ
D Ei

�
Xs

k¼2

x k�2ð Þ 1ð Þ � ~x k�2ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �0D E
� x k�2ð Þ 0ð Þ � ~x k�2ð Þ 0ð Þ, pk 0ð Þx ∗ 0ð Þ� �0D Eh i

þ
Xs

k¼3

x k�3ð Þ 1ð Þ � ~x k�3ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �00D Eh

� x k�3ð Þ 0ð Þ � ~x k�3ð Þ 0ð Þ, pk 0ð Þx ∗ 0ð Þ� �00D Ei

�⋯þ
Xs

k¼s�2

x k�sþ2ð Þ 1ð Þ � ~x k�sþ2ð Þ 1ð Þ, �1ð Þs�3 pk 1ð Þx ∗ 1ð Þ� � s�3ð ÞD Eh

� x k�sþ2ð Þ 0ð Þ � ~x k�sþ2ð Þ 0ð Þ, �1ð Þs�3 pk 0ð Þx ∗ 0ð Þ� � s�3ð ÞD Ei

þ
Xs

k¼s�1

x k�sþ1ð Þ 1ð Þ � ~x k�sþ1ð Þ 1ð Þ, �1ð Þs�2 pk 1ð Þx ∗ 1ð Þ� � s�2ð ÞD Eh

� x k�sþ1ð Þ 0ð Þ � ~x k�sþ1ð Þ 0ð Þ, �1ð Þs�2 pk 0ð Þx ∗ 0ð Þ� � s�2ð ÞD Ei

þ x 1ð Þ � ~x 1ð Þ, �1ð Þs�1 ps 1ð Þx ∗ 1ð Þ� � s�1ð ÞD E

� x 0ð Þ � ~x 0ð Þ, �1ð Þs�1 ps 0ð Þx ∗ 0ð Þ� � s�1ð ÞD E
:
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Here by suitable rearrangement and necessary simplification, we have

ð1

0

Bdt ¼
Xs

k¼1

x k�1ð Þ 1ð Þ � ~x k�1ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ
D Eh i

�
Xs

k¼2

x k�2ð Þ 1ð Þ � ~x k�2ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �0D Eh i

þ
Xs

k¼3

x k�3ð Þ 1ð Þ � ~x k�3ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �00D Eh i

�⋯þ
Xs

k¼s�2

x k�sþ2ð Þ 1ð Þ � ~x k�sþ2ð Þ 1ð Þ, �1ð Þs�3 pk 1ð Þx ∗ 1ð Þ� � s�3ð ÞD Eh i

þ
Xs

k¼s�1

x k�sþ1ð Þ 1ð Þ � ~x k�sþ1ð Þ 1ð Þ, �1ð Þs�2 pk 1ð Þx ∗ 1ð Þ� � s�2ð ÞD Eh i

(9)

þ x 1ð Þ � ~x 1ð Þ, �1ð Þs�1 ps 1ð Þx ∗ 1ð Þ� � s�1ð ÞD E

þ x 0ð Þ � ~x 0ð Þ,
Xs�1

k¼0

�1ð Þs�kDs�k�1 ps�k 0ð Þx ∗ 0ð Þ� �
* +

þ x0 0ð Þ � ~x0 0ð Þ,
Xs�2

k¼0

�1ð Þs�k�1Ds�k�2 ps�k 0ð Þx ∗ 0ð Þ� �
* +

þ x00 0ð Þ � ~x00 0ð Þ,
Xs�3

k¼0

�1ð Þs�k�2Ds�k�3 ps�k 0ð Þx ∗ 0ð Þ� �* +

þ �⋯� x s�2ð Þ 0ð Þ � ~x s�2ð Þ 0ð Þ,�D ps 0ð Þx ∗ 0ð Þ� �þ ps�1 0ð Þx ∗ 0ð Þ
D E

� x s�1ð Þ 0ð Þ � ~x s�1ð Þ 0ð Þ, ps 0ð Þx ∗ 0ð Þ
D E

:

In order to make use of the transversality condition Eq. (ii), we rewrite it in a
more relevant form:

x 0ð Þ � ~x 0ð Þ,
Xs�1

k¼0

�1ð Þs�kDs�k�1 ps�k 0ð Þx ∗ 0ð Þ� �* +

þ x0 0ð Þ � ~x0 0ð Þ,P
s�2

k¼0
�1ð Þs�k�1Ds�k�2 ps�k 0ð Þx ∗ 0ð Þ� �� �

þ x00 0ð Þ � ~x00 0ð Þ,P
s�3

k¼0
�1ð Þs�k�2Ds�k�3 ps�k 0ð Þx ∗ 0ð Þ� �� �

þ �⋯� x s�2ð Þ 0ð Þ � ~x s�2ð Þ 0ð Þ,�D ps 0ð Þx ∗ 0ð Þ� �þ ps�1 0ð Þx ∗ 0ð Þ
D E

� x s�1ð Þ 0ð Þ � ~x s�1ð Þ 0ð Þ, ps 0ð Þx ∗ 0ð Þ
D E

≥0; ∀x kð Þ 0ð Þ∈KQk
~x kð Þ 0ð Þ
� �

,

k ¼ 0, … , s� 1: Thus, from Eqs. (6) and (9), we have
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�
Xs

k¼2

ð1

0

d x k�2ð Þ tð Þ � ~x k�2ð Þ tð Þ, pk tð Þx ∗ tð Þ� �0D E2
4

3
5

þ
Xs

k¼3

ð1

0

d x k�3ð Þ tð Þ � ~x k�3ð Þ tð Þ, pk tð Þx ∗ tð Þ� �00D E2
4

3
5

� �⋯þ
Xs

k¼s�2

ð1

0

d x k�sþ2ð Þ tð Þ � ~x k�sþ2ð Þ tð Þ, �1ð Þs�3 pk tð Þx ∗ tð Þ� � s�3ð ÞD E2
4

3
5

þ
Xs

k¼s�1

ð1

0

d x k�sþ1ð Þ tð Þ � ~x k�sþ1ð Þ tð Þ, �1ð Þs�2 pk tð Þx ∗ tð Þ� � s�2ð ÞD E2
4

3
5

þ
ð1

0

d x tð Þ � ~x tð Þ, �1ð Þs�1 ps tð Þx ∗ tð Þ� � s�1ð ÞD E
:

Thus, integrating B, we can obtain

ð1

0

Bdt ¼
Xs

k¼1

x k�1ð Þ 1ð Þ � ~x k�1ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ
D Eh

� x k�1ð Þ 0ð Þ � ~x k�1ð Þ 0ð Þ, pk 0ð Þx ∗ 0ð Þ
D Ei

�
Xs

k¼2

x k�2ð Þ 1ð Þ � ~x k�2ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �0D E
� x k�2ð Þ 0ð Þ � ~x k�2ð Þ 0ð Þ, pk 0ð Þx ∗ 0ð Þ� �0D Eh i

þ
Xs

k¼3

x k�3ð Þ 1ð Þ � ~x k�3ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �00D Eh

� x k�3ð Þ 0ð Þ � ~x k�3ð Þ 0ð Þ, pk 0ð Þx ∗ 0ð Þ� �00D Ei

�⋯þ
Xs

k¼s�2

x k�sþ2ð Þ 1ð Þ � ~x k�sþ2ð Þ 1ð Þ, �1ð Þs�3 pk 1ð Þx ∗ 1ð Þ� � s�3ð ÞD Eh

� x k�sþ2ð Þ 0ð Þ � ~x k�sþ2ð Þ 0ð Þ, �1ð Þs�3 pk 0ð Þx ∗ 0ð Þ� � s�3ð ÞD Ei

þ
Xs

k¼s�1

x k�sþ1ð Þ 1ð Þ � ~x k�sþ1ð Þ 1ð Þ, �1ð Þs�2 pk 1ð Þx ∗ 1ð Þ� � s�2ð ÞD Eh

� x k�sþ1ð Þ 0ð Þ � ~x k�sþ1ð Þ 0ð Þ, �1ð Þs�2 pk 0ð Þx ∗ 0ð Þ� � s�2ð ÞD Ei

þ x 1ð Þ � ~x 1ð Þ, �1ð Þs�1 ps 1ð Þx ∗ 1ð Þ� � s�1ð ÞD E

� x 0ð Þ � ~x 0ð Þ, �1ð Þs�1 ps 0ð Þx ∗ 0ð Þ� � s�1ð ÞD E
:
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Here by suitable rearrangement and necessary simplification, we have

ð1

0

Bdt ¼
Xs

k¼1

x k�1ð Þ 1ð Þ � ~x k�1ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ
D Eh i

�
Xs

k¼2

x k�2ð Þ 1ð Þ � ~x k�2ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �0D Eh i

þ
Xs

k¼3

x k�3ð Þ 1ð Þ � ~x k�3ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ� �00D Eh i

�⋯þ
Xs

k¼s�2

x k�sþ2ð Þ 1ð Þ � ~x k�sþ2ð Þ 1ð Þ, �1ð Þs�3 pk 1ð Þx ∗ 1ð Þ� � s�3ð ÞD Eh i

þ
Xs

k¼s�1

x k�sþ1ð Þ 1ð Þ � ~x k�sþ1ð Þ 1ð Þ, �1ð Þs�2 pk 1ð Þx ∗ 1ð Þ� � s�2ð ÞD Eh i

(9)

þ x 1ð Þ � ~x 1ð Þ, �1ð Þs�1 ps 1ð Þx ∗ 1ð Þ� � s�1ð ÞD E

þ x 0ð Þ � ~x 0ð Þ,
Xs�1

k¼0

�1ð Þs�kDs�k�1 ps�k 0ð Þx ∗ 0ð Þ� �
* +

þ x0 0ð Þ � ~x0 0ð Þ,
Xs�2

k¼0

�1ð Þs�k�1Ds�k�2 ps�k 0ð Þx ∗ 0ð Þ� �
* +

þ x00 0ð Þ � ~x00 0ð Þ,
Xs�3

k¼0

�1ð Þs�k�2Ds�k�3 ps�k 0ð Þx ∗ 0ð Þ� �* +

þ �⋯� x s�2ð Þ 0ð Þ � ~x s�2ð Þ 0ð Þ,�D ps 0ð Þx ∗ 0ð Þ� �þ ps�1 0ð Þx ∗ 0ð Þ
D E

� x s�1ð Þ 0ð Þ � ~x s�1ð Þ 0ð Þ, ps 0ð Þx ∗ 0ð Þ
D E

:

In order to make use of the transversality condition Eq. (ii), we rewrite it in a
more relevant form:

x 0ð Þ � ~x 0ð Þ,
Xs�1

k¼0

�1ð Þs�kDs�k�1 ps�k 0ð Þx ∗ 0ð Þ� �* +

þ x0 0ð Þ � ~x0 0ð Þ,P
s�2

k¼0
�1ð Þs�k�1Ds�k�2 ps�k 0ð Þx ∗ 0ð Þ� �� �

þ x00 0ð Þ � ~x00 0ð Þ,P
s�3

k¼0
�1ð Þs�k�2Ds�k�3 ps�k 0ð Þx ∗ 0ð Þ� �� �

þ �⋯� x s�2ð Þ 0ð Þ � ~x s�2ð Þ 0ð Þ,�D ps 0ð Þx ∗ 0ð Þ� �þ ps�1 0ð Þx ∗ 0ð Þ
D E

� x s�1ð Þ 0ð Þ � ~x s�1ð Þ 0ð Þ, ps 0ð Þx ∗ 0ð Þ
D E

≥0; ∀x kð Þ 0ð Þ∈KQk
~x kð Þ 0ð Þ
� �

,

k ¼ 0, … , s� 1: Thus, from Eqs. (6) and (9), we have
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0≥
Xs

k¼1

x k�1ð Þ 1ð Þ � ~x k�1ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ
D Eh i

�
Xs

k¼2

x k�2ð Þ 1ð Þ � ~x k�2ð Þ 1ð Þ, d pk 1ð Þx ∗ 1ð Þ� �
dt

� �

þ
Xs

k¼3

x k�3ð Þ 1ð Þ � ~x k�3ð Þ 1ð Þ, d
2 pk 1ð Þx ∗ 1ð Þ� �

dt2

* +" #
� �⋯

þ
Xs

k¼s�2

x k�sþ2ð Þ 1ð Þ � ~x k�sþ2ð Þ 1ð Þ,
D

�1ð Þs�3 d
s�3 pk 1ð Þx ∗ 1ð Þ� �

dts�3

+#"

þ
Xs

k¼s�1

x k�sþ1ð Þ 1ð Þ � ~x k�sþ1ð Þ 1ð Þ, �1ð Þs�2 d
s�2 pk 1ð Þx ∗ 1ð Þ� �

dts�2

* +" #

þ x 1ð Þ � ~x 1ð Þ, �1ð Þs�1 d
s�1 ps 1ð Þx ∗ 1ð Þ� �

dts�1

* +
:

Using the derivative operator D, it is not hard to see that the relation described
above can be expressed in a more compact form:

0≥
Xs�1

k¼0

�1ð Þs�k�1Ds�k�1 ps�k 1ð Þx ∗ 1ð Þ� �
, x 1ð Þ � ~x 1ð Þ

* +

þ
Xs�2

k¼0

�1ð Þs�k�2Ds�k�2 ps�k 1ð Þx ∗ 1ð Þ� �
, x0 1ð Þ � ~x0 1ð Þ

* +
þ �⋯ (10)

� D ps 1ð Þx ∗ 1ð Þ� �� ps�1 1ð Þx ∗ 1ð Þ, x s�2ð Þ 1ð Þ � ~x s�2ð Þ 1ð Þ
D E

þ ps 1ð Þx ∗ 1ð Þ, x s�1ð Þ 1ð Þ � ~x s�1ð Þ 1ð Þ
D E

:

Furthermore, applying the definition of the transversality condition Eq. (iii) for
all feasible arc x �ð Þ, we have

φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ
� �

� φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

≥
Xs�1

k¼0

�1ð Þs�kDs�k�1 ps�k 1ð Þx ∗ 1ð Þ� �
, x 1ð Þ � ~x 1ð Þ

* +

þ
Xs�2

k¼0

�1ð Þs�k�1Ds�k�2 ps�k 1ð Þx ∗ 1ð Þ� �
, x0 1ð Þ � ~x0 1ð Þ

* +
þ �⋯

þ D ps 1ð Þx ∗ 1ð Þ� �� ps�1 1ð Þx ∗ 1ð Þ, x s�2ð Þ 1ð Þ � ~x s�2ð Þ 1ð Þ
D E

� ps 1ð Þx ∗ 1ð Þ, x s�1ð Þ 1ð Þ � ~x s�1ð Þ 1ð Þ
D E

(11)

Then from the last two inequalities Eqs. (10) and (11) for all feasible arc x �ð Þ, we

have immediately φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ� �
≥φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

, that is,

~x �ð Þ is an optimal trajectory. □
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Remark 3.1. It can be noted that in the particular case, if p2 tð Þ ¼ p tð Þ, p1 tð Þ ¼
p0 tð Þ, where p �ð Þ : 0, 1½ � ! 0,∞ð Þ, the second-order linear differential operator
Lx ¼ p2 tð Þx00 þ p1 tð Þx0 is a well-known self-adjoint Sturm-Liouville operator
Lx � px0ð Þ0.

Corollary 3.1. Let F �, tð Þ be a closed set-valued mapping. Then under the
assumptions of Theorem 3.1, the conditions Eqs. (i) and (iii) can be rewritten in
terms of Hamiltonian function as follows:

L ∗ x ∗ tð Þ∈ ∂xHF ~x tð Þ, x ∗ tð Þ, tð Þ; :L~x tð Þ∈ ∂v ∗H ~x tð Þ, x ∗ tð Þ, tð Þ, a:e:t∈ 0, 1½ �

Proof. Indeed, by Theorem 2.1 ([23], p. 62) and Lemma 5.1 [14], we can write.

F ∗ v ∗ ; x, vð Þ, tð Þ ¼ ∂xHF x, v ∗ , tð Þ, and FA x, v ∗ , tð Þ ¼ ∂v ∗HF x, v ∗ , tð Þ

respectively. Then it is easy to see that the result of corollary are equivalent with
the conditions Eqs. (i) and (iv) of Theorem 3.1. □

Below nonconvexity of a set-valued mapping F �, tð Þ means that its
Hamilton function in general is a nonconcave function satisfying the condition
Eq. (a).

Theorem 3.2. Suppose that we have the “nonconvex” problem (PV), that is,
φ : nð Þs ! 1 and F �, tð Þ : n⇉n in general are nonconvex function and set-

valued mapping, respectively. Moreover, suppose that KQj
~x jð Þ 0ð Þ
� �

, ~x jð Þ 0ð Þ∈Qj is

the cones of tangent directions to Qj, j ¼ 0, … , s� 1.
Then for optimality of the trajectory ~x �ð Þ, it is sufficient that there exists an

absolutely continuous function x ∗ �ð Þ, satisfying the following conditions:

a. L ∗ x ∗ tð Þ∈ F ∗ x ∗ tð Þ; ~x tð Þ,L~x tð Þð Þ, tð Þ, a.e. t∈ 0, 1½ �,

b.
Ps�1�j

k¼0
�1ð Þs�k�jDs�k�1�j ps�k 0ð Þx ∗ 0ð Þ� �

∈K ∗
Qj

~x jð Þ 0ð Þ
� �

, j ¼ 0, … , s� 1,

c. φ ν0, v1, … , vs�1ð Þ � φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

≥
Ps�1

j¼0

Ps�1�j

k¼0
�1ð Þs�k�jDs�k�1�j ps�k 1ð Þx ∗ 1ð Þ� �

, νj � ~x jð Þ 1ð Þ
* +

,

∀vj ∈n, j ¼ 0, … , s� 1,

d. L~x tð Þ, x ∗ tð Þh i ¼ HF ~x tð Þ, x ∗ tð Þ, tð Þ, a.e. t∈ 0, 1½ �.

Proof. In the proof of Theorem 3.1, we have used the following inequality:

HF x tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, x ∗ tð Þ, tð Þ

≤
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +

: (12)

Hence, from the inequality Eq. (12), immediately we have the inequality
Eq. (10). Moreover, setting νj ¼ ~x jð Þ 1ð Þ j ¼ 0, … , s� 1ð Þ for all feasible trajectories
x �ð Þ, it is not hard to see that for nonconvex φ the following inequality holds:
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0≥
Xs

k¼1

x k�1ð Þ 1ð Þ � ~x k�1ð Þ 1ð Þ, pk 1ð Þx ∗ 1ð Þ
D Eh i

�
Xs

k¼2

x k�2ð Þ 1ð Þ � ~x k�2ð Þ 1ð Þ, d pk 1ð Þx ∗ 1ð Þ� �
dt

� �

þ
Xs

k¼3

x k�3ð Þ 1ð Þ � ~x k�3ð Þ 1ð Þ, d
2 pk 1ð Þx ∗ 1ð Þ� �

dt2

* +" #
� �⋯

þ
Xs

k¼s�2

x k�sþ2ð Þ 1ð Þ � ~x k�sþ2ð Þ 1ð Þ,
D

�1ð Þs�3 d
s�3 pk 1ð Þx ∗ 1ð Þ� �

dts�3

+#"

þ
Xs

k¼s�1

x k�sþ1ð Þ 1ð Þ � ~x k�sþ1ð Þ 1ð Þ, �1ð Þs�2 d
s�2 pk 1ð Þx ∗ 1ð Þ� �

dts�2

* +" #

þ x 1ð Þ � ~x 1ð Þ, �1ð Þs�1 d
s�1 ps 1ð Þx ∗ 1ð Þ� �

dts�1

* +
:

Using the derivative operator D, it is not hard to see that the relation described
above can be expressed in a more compact form:

0≥
Xs�1

k¼0

�1ð Þs�k�1Ds�k�1 ps�k 1ð Þx ∗ 1ð Þ� �
, x 1ð Þ � ~x 1ð Þ

* +

þ
Xs�2

k¼0

�1ð Þs�k�2Ds�k�2 ps�k 1ð Þx ∗ 1ð Þ� �
, x0 1ð Þ � ~x0 1ð Þ

* +
þ �⋯ (10)

� D ps 1ð Þx ∗ 1ð Þ� �� ps�1 1ð Þx ∗ 1ð Þ, x s�2ð Þ 1ð Þ � ~x s�2ð Þ 1ð Þ
D E

þ ps 1ð Þx ∗ 1ð Þ, x s�1ð Þ 1ð Þ � ~x s�1ð Þ 1ð Þ
D E

:

Furthermore, applying the definition of the transversality condition Eq. (iii) for
all feasible arc x �ð Þ, we have

φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ
� �

� φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

≥
Xs�1

k¼0

�1ð Þs�kDs�k�1 ps�k 1ð Þx ∗ 1ð Þ� �
, x 1ð Þ � ~x 1ð Þ

* +

þ
Xs�2

k¼0

�1ð Þs�k�1Ds�k�2 ps�k 1ð Þx ∗ 1ð Þ� �
, x0 1ð Þ � ~x0 1ð Þ

* +
þ �⋯

þ D ps 1ð Þx ∗ 1ð Þ� �� ps�1 1ð Þx ∗ 1ð Þ, x s�2ð Þ 1ð Þ � ~x s�2ð Þ 1ð Þ
D E

� ps 1ð Þx ∗ 1ð Þ, x s�1ð Þ 1ð Þ � ~x s�1ð Þ 1ð Þ
D E

(11)

Then from the last two inequalities Eqs. (10) and (11) for all feasible arc x �ð Þ, we

have immediately φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ� �
≥φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

, that is,

~x �ð Þ is an optimal trajectory. □
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Remark 3.1. It can be noted that in the particular case, if p2 tð Þ ¼ p tð Þ, p1 tð Þ ¼
p0 tð Þ, where p �ð Þ : 0, 1½ � ! 0,∞ð Þ, the second-order linear differential operator
Lx ¼ p2 tð Þx00 þ p1 tð Þx0 is a well-known self-adjoint Sturm-Liouville operator
Lx � px0ð Þ0.

Corollary 3.1. Let F �, tð Þ be a closed set-valued mapping. Then under the
assumptions of Theorem 3.1, the conditions Eqs. (i) and (iii) can be rewritten in
terms of Hamiltonian function as follows:

L ∗ x ∗ tð Þ∈ ∂xHF ~x tð Þ, x ∗ tð Þ, tð Þ; :L~x tð Þ∈ ∂v ∗H ~x tð Þ, x ∗ tð Þ, tð Þ, a:e:t∈ 0, 1½ �

Proof. Indeed, by Theorem 2.1 ([23], p. 62) and Lemma 5.1 [14], we can write.

F ∗ v ∗ ; x, vð Þ, tð Þ ¼ ∂xHF x, v ∗ , tð Þ, and FA x, v ∗ , tð Þ ¼ ∂v ∗HF x, v ∗ , tð Þ

respectively. Then it is easy to see that the result of corollary are equivalent with
the conditions Eqs. (i) and (iv) of Theorem 3.1. □

Below nonconvexity of a set-valued mapping F �, tð Þ means that its
Hamilton function in general is a nonconcave function satisfying the condition
Eq. (a).

Theorem 3.2. Suppose that we have the “nonconvex” problem (PV), that is,
φ : nð Þs ! 1 and F �, tð Þ : n⇉n in general are nonconvex function and set-

valued mapping, respectively. Moreover, suppose that KQj
~x jð Þ 0ð Þ
� �

, ~x jð Þ 0ð Þ∈Qj is

the cones of tangent directions to Qj, j ¼ 0, … , s� 1.
Then for optimality of the trajectory ~x �ð Þ, it is sufficient that there exists an

absolutely continuous function x ∗ �ð Þ, satisfying the following conditions:

a. L ∗ x ∗ tð Þ∈ F ∗ x ∗ tð Þ; ~x tð Þ,L~x tð Þð Þ, tð Þ, a.e. t∈ 0, 1½ �,

b.
Ps�1�j

k¼0
�1ð Þs�k�jDs�k�1�j ps�k 0ð Þx ∗ 0ð Þ� �

∈K ∗
Qj

~x jð Þ 0ð Þ
� �

, j ¼ 0, … , s� 1,

c. φ ν0, v1, … , vs�1ð Þ � φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

≥
Ps�1

j¼0

Ps�1�j

k¼0
�1ð Þs�k�jDs�k�1�j ps�k 1ð Þx ∗ 1ð Þ� �

, νj � ~x jð Þ 1ð Þ
* +

,

∀vj ∈n, j ¼ 0, … , s� 1,

d. L~x tð Þ, x ∗ tð Þh i ¼ HF ~x tð Þ, x ∗ tð Þ, tð Þ, a.e. t∈ 0, 1½ �.

Proof. In the proof of Theorem 3.1, we have used the following inequality:

HF x tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, x ∗ tð Þ, tð Þ

≤
Xs

k¼1

�1ð Þk pk tð Þx ∗ tð Þ� � kð Þ, x tð Þ � ~x tð Þ
* +

: (12)

Hence, from the inequality Eq. (12), immediately we have the inequality
Eq. (10). Moreover, setting νj ¼ ~x jð Þ 1ð Þ j ¼ 0, … , s� 1ð Þ for all feasible trajectories
x �ð Þ, it is not hard to see that for nonconvex φ the following inequality holds:
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φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ
� �

� φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

≥
Xs�1

j¼0

Xs�1�j

k¼0

�1ð Þs�k�jDs�k�1�j ps�k 1ð Þx ∗ 1ð Þ� �
, x jð Þ 1ð Þ � ~x jð Þ 1ð Þ

* +
, j ¼ 0, 1, … , s� 1,

Then for the furthest proof, we proceed by analogy with the preceding deriva-
tion of Theorem 3.1. □

4. Some applications to optimal control problems with PLDOs

In this section we give two applications of our results. The first one is the
particular Mayer problem for differential inclusions involving PLDOs with constant
coefficients, and the second one concerns optimization of “linear” differential
inclusions with PLDOs and constant coefficients. Thus, suppose now we have the
following optimization problem (for simplicity we consider a convex problem) with
sth-order PLDO with constant coefficients:

Minimize φ0 x 1ð Þð Þ,
PCð Þ Lx tð Þ∈F x tð Þ, tð Þ, a:e: t∈ 0, 1½ �,Lx ¼ Dsxþ p1D

s�1xþ … þ ps�1Dx

x 0ð Þ ¼ α0, x0 0ð Þ ¼ α1, x00 0ð Þ ¼ α2, … , x s�1ð Þ 0ð Þ ¼ αs�1, : (13)

where L is the sth-order polynomial operator, pk, k ¼ 1, … , s� 1 are some real
constants, F �, tð Þ : n⇉n is a convex set-valued mapping, φ0 : n ! 1 is a con-
tinuous convex function, and αj ∈n, j ¼ 0, … , s� 1 are fixed n-dimensional vec-
tors. It is known that the multiplication operation is commutative for polynomial
linear differential operators with constant coefficients. On the other hand, the sth-
order adjoint operator is defined as follows:

L ∗ x ∗ ¼ �1ð ÞsDsx ∗ þ �1ð Þs�1p1D
s�1x ∗ þ⋯� ps�1Dx ∗ :

Corollary 4.1. Let φ0 and F �, tð Þ be a convex function and a set-valued mapping,
respectively. Then, for the trajectory ~x �ð Þ to be optimal in the problem (PC), it is
sufficient that there exists an absolutely continuous function x ∗ �ð Þ satisfying the
Euler-Lagrange type differential inclusion.

L ∗ x ∗ tð Þ∈F ∗ x ∗ tð Þ; ~x tð Þ,L~x tð ÞÞ, tð Þ; L~x tð Þ, x ∗ tð Þh i ¼ HF ~x tð Þ, x ∗ tð Þð Þ,ð
a:e: t∈ 0, 1½ �,L ∗ x ∗ ¼ �1ð Þsx ∗ sð Þ þ �1ð Þs�1p1x

∗ s�1ð Þ þ⋯� ps�1x
∗ 0

and transversality condition at the endpoint t ¼ 1.

�1ð Þsx ∗ s�1ð Þ 1ð Þ∈ ∂φ0 ~x 1ð Þð Þ, x ∗ jð Þ 1ð Þ ¼ 0, j ¼ 0, … ,m� 2:

Proof . We conclude this proof by returning to the conditions Eqs. (i)–(iii) of
Theorem 3.1. Clearly, a problem (PC) can be reduced to the problem of form (PV),
where

φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ
� �

� φ0 x 1ð Þð Þ:
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It follows that ∂φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ� � ¼ ∂xφ0 x 1ð Þð Þ � ð0, … , 0|fflfflfflffl{zfflfflfflffl}
s�1

Þ. On the

other hand, since ps tð Þ � 1, pj tð Þ ¼ ps�j, and j ¼ 1, … , s� 1 are constants, by
sequentially substitution in the transversality condition Eq. (iii), we derive that

Xs�1�j

k¼0

�1ð Þs�k�jDs�k�1�j ps�k 1ð Þx ∗ 1ð Þ� � ¼ x ∗ s�1�jð Þ 1ð Þ ¼ 0, j ¼ 1, … , s� 1,

and therefore for j ¼ 0.

Xs�1

k¼0

�1ð Þs�kDs�k�1 ps�k 1ð Þx ∗ 1ð Þ� � ¼ �1ð Þsx ∗ s�1ð Þ 1ð Þ∈ ∂φ0 ~x 1ð Þð Þ:□

Suppose now that we have the so-called linear Mayer problem with PLDOs:

Minimize φ0 x 1ð Þð Þ, (14)

Lx tð Þ∈ F x tð Þ, tð Þ, a:e: t∈ 0, 1½ �,
x jð Þ 0ð Þ ¼ αj, j ¼ 0, … , s� 1,F x, tð Þ ¼ A tð Þxþ B tð ÞU (15)

where φ0 differentiable convex function; A tð Þ and B tð Þ are n� n and n� r
continuous matrices, respectively; U is a convex compact of r; αj, j ¼ 0, … , s� 1
are constant vectors. It is required to find a control function ~u �ð Þ such that the
corresponding trajectory ~x �ð Þ minimizes the Mayer functional φ0 x 1ð Þð Þ.

In fact, this is optimization of Cauchy problem for “linear” differential inclu-
sions with PLDO. The controlling parameter u �ð Þ is called admissible if it only takes
values in the given control set U which is a nonempty, convex compact.

Theorem 4.1. The arc ~x tð Þ corresponding to the controlling parameter ~u tð Þ is a
solution to Eqs. (14) and (15) if there exists an absolutely continuous function x ∗ �ð Þ,
satisfying the Euler-Lagrange type differential equation, the transversality condi-
tion, and Weierstrass-Pontryagin maximum principle:

L ∗ x ∗ tð Þ ¼ A ∗ tð Þx ∗ tð Þ, a:e: t∈ 0, 1½ �,
�1ð Þsx ∗ s�1ð Þ 1ð Þ ¼ φ0

0 ~x 1ð Þð Þ, :x ∗ jð Þ 1ð Þ ¼ 0, j ¼ 0, … , s� 2

B tð Þ~u tð Þ, x ∗ tð Þh i ¼ max
u∈U

B tð Þu, x ∗ tð Þh i:

Proof. Obviously, the Hamiltonian is

HF x, v ∗ , tð Þ ¼ A tð Þx, v ∗h i þ max
u∈U

B tð Þu, v ∗h i:

Hence,

F ∗ v ∗ ; x,~vð Þ, tð Þ ¼ ∂xHF x, v ∗ , tð Þ ¼ A ∗ tð Þv ∗ ,~v∈FA x, v ∗ , tð Þ~v ¼ A tð Þxþ B tð Þ~u

where the argmaximum inclusion ~v∈FA x, v ∗ , tð Þ implies that B tð Þ~u, v ∗h i ¼
max u∈U B tð Þu, v ∗h i and F ∗ v ∗ ; x, ~vð Þ, tð Þ 6¼ ∅. Thus, applying Theorem 3.1, we obtain

L ∗ x ∗ tð Þ ¼ A ∗ tð Þx ∗ tð Þ, L~x tð Þ∈FA ~x tð Þ, x ∗ tð Þ, tð Þ ,
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φ x 1ð Þ, x0 1ð Þ, … , x s�1ð Þ 1ð Þ
� �

� φ ~x 1ð Þ, ~x0 1ð Þ, … , ~x s�1ð Þ 1ð Þ
� �

≥
Xs�1

j¼0

Xs�1�j

k¼0

�1ð Þs�k�jDs�k�1�j ps�k 1ð Þx ∗ 1ð Þ� �
, x jð Þ 1ð Þ � ~x jð Þ 1ð Þ

* +
, j ¼ 0, 1, … , s� 1,
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Hence,
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B tð Þ~u tð Þ, x ∗ tð Þh i ¼ max
u∈U

B tð Þu, x ∗ tð Þh i:

Consequently, the transversality condition Eq. (ii) of Theorem 3.1 is
unnecessary and by Corollary 4.1 �1ð ÞsDs�1x ∗ 1ð Þ ¼ φ0

0 ~x 1ð Þð Þ,
Djx ∗ 1ð Þ ¼ 0, j ¼ 0, … , s� 2. □

Remark 4.1. Suppose that in the definition of sth-order PLDO (see Eq. (13))
s ¼ 1, pi ¼ 0, i ¼ 1, ::, s� 1 and U is a convex closed polyhedron. Then we have
linear equations with variable coefficients x0 ¼ A tð Þxþ B tð Þu, u∈U in the finite
time interval t∈ 0, 1½ �. Obviously, for such problems an adjoint Euler-Lagrange type
differential equation and transversality condition at a point t ¼ 1 consist of the
following: x ∗ 0 tð Þ ¼ �A ∗ tð Þx ∗ tð Þ, x ∗ 1ð Þ ¼ �φ0

0 ~x 1ð Þð Þ. We remind that along with
Pontryagin’s maximum principle (see, e.g., [24]) under the condition for generality
of position for time-optimal problem, the existence results of optimal control are
proved.

Example 4.1. Let us consider the following Mayer problem with second-order
PLDO Lx ¼ D2x ¼ x00:

Infimum φ x 1ð Þ, x0 1ð Þð Þ is subject to x00 ¼ u, u∈ �1, 1½ �, x 0ð Þ∈Q0, x
0 0ð Þ∈Q1:

(16)

Here φ x 1ð Þ, x0 1ð Þð Þ ¼ x02 1ð Þ � x 1ð Þ and Q0 ¼ 0f g,Q1 ¼ 1f g.
It should be noted that substituting F tð Þ ¼ u tð Þ, x00 tð Þ ¼ a tð Þ,m ¼ 1 into Newton’s

second law F tð Þ ¼ ma tð Þ, we have x00 ¼ u.
Obviously, in this problem F x, tð Þ � F xð Þ ¼ u : uj j≤ 1f g, s ¼ 2.
Then Eq. (16) has the form:

Infimum φ x 1ð Þ, x0 1ð Þð Þ is subject to Lx∈ F xð Þ, t∈ 0, 1½ �, x 0ð Þ ¼ 0, x0 0ð Þ ¼ 1:

(17)

It can be easily seen that in the adjoint inclusion Eq. (i).
�D p1 tð Þx ∗ tð Þ� �þD2 p2 tð Þx ∗ tð Þ� �

∈F ∗ x ∗ tð Þ; ~x tð Þ,L~x tð Þð Þð Þ
of Corollary 3.1 p2 tð Þ � 0 and p2 tð Þ � 1, and so we have

x ∗ 00 tð Þ∈F ∗ x ∗ tð Þ; ~x tð Þ, ~x00 tð Þð Þð Þ:

Now, it is not hard to see that

HF x, v ∗ð Þ ¼ max
u

uv ∗ : uj j≤ 1f g ¼ v ∗j j (18)

and

F ∗ v ∗ ; x, vð Þð Þ ¼ ∂xHF x, v ∗ð Þ � 0, v∈FA x, v ∗ð Þ ¼ �1,þ1f g: (19)

Then taking into account Lx ∗ ¼ d2x ∗ =dt2, as a result of Theorem 3.1 (see also
Corollary 3.1) from Eq. (19), we deduce that

x ∗ 00 ¼ 0, t∈ 0, 1½ �,

for which the solution is a linear function of the form x ∗ tð Þ ¼ C1tþ C2, where
C1,C2 are arbitrary constants. Then Eq. (18) implies that ~u tð Þx ∗ tð Þ ¼ x ∗ tð Þj j or
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~u tð Þ ¼ sgn x ∗ tð Þ, if x ∗ tð Þ 6¼ 0,

∀u0 ∈ �1, 1½ �, if x ∗ tð Þ ¼ 0:

�
(20)

Further, from the linearity of x ∗ �ð Þ and from Eq. (20), we insure that each
optimal control function is a piecewise constant function.

In addition, by the transversality condition Eq. (iii) of Corollary 3.1, we can
write.

x ∗ 0 1ð Þ,�x ∗ 1ð Þð Þ∈ ∂φ ~x 1ð Þ, ~x0 1ð Þð Þ. On the other hand, it is not hard to see that
φ x, yð Þ ¼ y2 � x is a convex function; in fact, the 2� 2 Hessian matrix

φ00 x, yð Þ ¼
φ00
xx x, yð Þ φ00

xy x, yð Þ
φ00
yx x, yð Þ φ00

yy x, yð Þ

" #
¼ 0 0

0 2

� �

is a positive semidefinite, that is, all eigenvalues of φ00 x, yð Þ are nonnegative.
Indeed, denoting this matrix by A, we see that the characteristic equation
A� λEj j ¼ λ2 � 2λ ¼ 0 Eð is a 2� 2 unique square matrix) has two real nonnegative
eigenvalues λ1 ¼ 0, λ2 ¼ 2. Consequently, φ x, yð Þ is convex and ∂φ x, yð Þ ¼ �1, 2yð Þ.
It follows that ∂φ ~x 1ð Þ, ~x0 1ð Þð Þ ¼ �1, 2~x0 1ð Þð Þ. Comparing this relation with
x ∗ 0 1ð Þ,�x ∗ 1ð Þð Þ∈ ∂φ ~x 1ð Þ, ~x0 1ð Þð Þ, we immediately have x ∗ 0 1ð Þ ¼ �1, x ∗ 1ð Þ ¼
�2~x0 1ð Þ: Then from a general solution of the adjoint Euler-Lagrange type inclusion
(equation) x ∗ tð Þ ¼ C1tþ C2, we have �2~x0 1ð Þ ¼ x ∗ 1ð Þ ¼ C1 þ C2, � 1 ¼ x ∗ 0 1ð Þ ¼
C1 (C1,C2 are arbitrary constants), and so x ∗ tð Þ ¼ 1� t� 2~x0 1ð Þ, whence x ∗ tð Þ 6¼ 0,
if t 6¼ τ ¼ 1� 2~x0 1ð Þ. Therefore, Eq. (20) implies that for optimal control ~u �ð Þ, there
are four possibilities:

~u tð Þ ¼ 1, x ∗ tð Þ>0, t∈ 0, 1½ �: (21)

~u tð Þ ¼ �1, x ∗ tð Þ<0, t∈ 0, 1½ �: (22)

~u tð Þ ¼ 1, if 0≤ t< τ,

�1, if τ< t≤ 1:

�
(23)

~u tð Þ ¼ �1, if 0≤ t< τ,

1, if τ< t≤ 1:

�
(24)

(observe that τ is a point of discontinuity of ~u �ð Þ and the values of the control
functions ~u �ð Þ at a point of discontinuity τ are unessential). As a consequence, it
follows that either the sign of the linear function x ∗ tð Þ does not change for the
whole interval 0, 1½ � or x ∗ tð Þ>0, 0≤ t< τ; x ∗ tð Þ<0, τ< t≤ 1 for a some τ in the
interval 0< τ< 1 (the case Eq. (24) is excluded). Therefore, since ~u tð Þ is a piecewise
constant function, having not more than two intervals of constancy, we have
either the cases Eqs. (21) and (22) or the case Eq. (23). In general, using
Eqs. (21)–(23), by solving the Cauchy problem

x00 tð Þ ¼ u tð Þ, x 0ð Þ ¼ 0, x0 0ð Þ ¼ 1 (25)

we have a unique solution of the initial value problem Eq. (25). Thus for the time
interval on which u ¼ 1, we have x0 tð Þ ¼ tþ c1; x tð Þ ¼ t2=2þ c1tþ c2 c1, c2ð are con-
stants). From Eq. (25) we obtain.

x0 tð Þ ¼ tþ 1; x tð Þ ¼ t2=2þ t: (26)
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B tð Þ~u tð Þ, x ∗ tð Þh i ¼ max
u∈U

B tð Þu, x ∗ tð Þh i:
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�
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~u tð Þ ¼ �1, x ∗ tð Þ<0, t∈ 0, 1½ �: (22)

~u tð Þ ¼ 1, if 0≤ t< τ,

�1, if τ< t≤ 1:

�
(23)

~u tð Þ ¼ �1, if 0≤ t< τ,

1, if τ< t≤ 1:

�
(24)

(observe that τ is a point of discontinuity of ~u �ð Þ and the values of the control
functions ~u �ð Þ at a point of discontinuity τ are unessential). As a consequence, it
follows that either the sign of the linear function x ∗ tð Þ does not change for the
whole interval 0, 1½ � or x ∗ tð Þ>0, 0≤ t< τ; x ∗ tð Þ<0, τ< t≤ 1 for a some τ in the
interval 0< τ< 1 (the case Eq. (24) is excluded). Therefore, since ~u tð Þ is a piecewise
constant function, having not more than two intervals of constancy, we have
either the cases Eqs. (21) and (22) or the case Eq. (23). In general, using
Eqs. (21)–(23), by solving the Cauchy problem

x00 tð Þ ¼ u tð Þ, x 0ð Þ ¼ 0, x0 0ð Þ ¼ 1 (25)

we have a unique solution of the initial value problem Eq. (25). Thus for the time
interval on which u ¼ 1, we have x0 tð Þ ¼ tþ c1; x tð Þ ¼ t2=2þ c1tþ c2 c1, c2ð are con-
stants). From Eq. (25) we obtain.

x0 tð Þ ¼ tþ 1; x tð Þ ¼ t2=2þ t: (26)
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By analogy, for u ¼ �1 we have.

x0 tð Þ ¼ 1� t; x tð Þ ¼ �t2=2þ t: (27)

Now, let x1 tð Þ and x2 tð Þ be parabolas of Eqs. (26) and (27), respectively. Here,
in the case Eq. (21), ~u tð Þ ¼ 1, t∈ 0, 1½ �, and so from Eq. (26), we have ~x1 1ð Þ ¼
0:5þ 1 ¼ 1:5; ~x01 1ð Þ ¼ 2. Consequently, the value of problem Eq. (16) is
φ ~x1 1ð Þ, ~x01 1ð Þ� � ¼ ~x01

2 1ð Þ � ~x1 1ð Þ ¼ 22 � 1:5ð Þ ¼ 2:5, if ~u tð Þ ¼ 1, t∈ 0, 1½ �. By a similar
way, for a control function ~u tð Þ ¼ �1, t∈ 0, 1½ � from Eq. (27), we obtain that
~x2 1ð Þ ¼ �12=2þ 1 ¼ 0:5, ~x02 1ð Þ ¼ 0 and φ ~x2 1ð Þ, ~x02 1ð Þ� � ¼ 02 � 0:5ð Þ ¼ �0:5.

On the other hand, in the case Eq. (23), the control function ~u tð Þ first is equal to
þ1 and then equal to �1, and the trajectory ~x tð Þ consists of two pieces of parabolas
~x1 tð Þ and ~x2 tð Þ (~x tð Þ is continuous and piecewise smooth on the interval 0≤ t≤ 1).
Then the solution of the equation Eq. (25) on the interval 0≤ t≤ τ is given by
Eq. (26); at a point τ are satisfied x1 τð Þ ¼ τ2=2þ τ, x01 τð Þ ¼ 1þ τ. Consider now the
initial value problem:

x200 tð Þ ¼ �1, x2 τð Þ ¼ τ2=2þ τ, x02 τð Þ ¼ 1þ τ, t∈ τ, 1½ �: (28)

It is clear that τ2=2ð Þ þ τ ¼ x2 τð Þ ¼ � τ2=2ð Þ þ c1τ þ c2 and 1þ τ ¼ x02 τð Þ ¼
�τ þ c1 from which we obtain that the solution of the initial value problem Eq. (28)
is ~x2 tð Þ ¼ � t2=2ð Þ þ 1þ 2τð Þt� τ2: Substituting the value τ ¼ 1� 2~x0 1ð Þ into equa-
tion ~x02 tð Þ ¼ 1� tþ 2τ, we have 5~x02 1ð Þ ¼ 2, ~x02 1ð Þ ¼ ~x0 1ð Þ ¼ 0:4 (it follows that τ ¼
0:2). Moreover, ~x2 1ð Þ ¼ 2τ � τ2 þ 0:5ð Þ and ~x2 1ð Þ ¼ ~x 1ð Þ ¼ 3=2ð Þ � 4~x02 1ð Þ ¼ 0:86:
Thus, the value of our Mayer problem is φ ~x 1ð Þ, ~x0 1ð Þð Þ ¼ ~x02 1ð Þ � ~x 1ð Þ ¼
2=5ð Þ2 � 43=50ð Þ ¼ �0:7, where ~u tð Þ is defined as in Eq. (23). Comparing the values
2:5, � 0:5, � 0:7, we believe that the value of Mayer problem is �0:7:

5. Sufficient conditions of optimality for second-order evolution
differential inclusions with endpoint constraints

Note that in this section the optimality conditions are given for second-order
convex differential inclusions (PM) with convex endpoint constraints. These condi-
tions are more precise than any previously published ones since they involve useful
forms of the Weierstrass-Pontryagin condition and second-order Euler-Lagrange
type adjoint inclusions. In the reviewed results, this effort culminates in Theorem
5.1:

Minimize g x 1ð Þ, x0 1ð Þð Þ,
PMð Þ x00 tð Þ∈ F x tð Þ, x0 tð Þ, tð Þ, a:e: t∈ 0, 1½ �,

x 0ð Þ ¼ x0, x0 0ð Þ ¼ x1; x 1ð Þ∈M0, x0 1ð Þ∈M1,

where g is a convex continuous function, F �, tð Þ : 2n⇉n is convex set-valued
mapping, and M0,M1 ⊆n are convex sets.

The following adjoint inclusion is the second-order Euler-Lagrange type inclu-
sion for the problem (PM):

a1. x ∗ 00 tð Þ þ v ∗ 0 tð Þ, v ∗ tð Þð Þ∈F ∗ x ∗ tð Þ; ~x tð Þ, ~x0 tð Þ, ~x00 tð Þð Þ, tð Þ, a:e: t∈ 0, 1½ �,
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where

b1. ~x00 tð Þ∈FA ~x tð Þ, ~x0 tð Þ; x ∗ tð Þ, tð Þ, a.e. t∈ 0, 1½ �.

In what follows we assume that x ∗ tð Þ, t∈ 0, 1½ � is absolutely continuous function
together with the first-order derivatives for which x ∗ 00 �ð Þ∈Ln

1 0, 1½ �ð Þ. Besides the
auxiliary function v ∗ tð Þ, t∈ 0, 1½ � is absolutely continuous and v ∗ 0 �ð Þ∈Ln

1 0, 1½ �ð Þ.
The transversality conditions at the endpoint t ¼ 1 consist of the following:

c1. v ∗ 1ð Þ þ x ∗ 0 1ð Þ,�x ∗ 1ð Þð Þ∈ ∂ x,uð Þg ~x 1ð Þ, ~x0 1ð Þð Þ � K ∗
M0

~x 1ð Þð Þ � K ∗
M1

~x0 1ð Þð Þ.

Now we are ready to formulate the following theorem of optimality.
Theorem 5.1. Suppose that g is a continuous and convex function, F �, tð Þ is a

convex set-valued mapping, and M0,M1 are convex sets. Then for optimality of the
feasible trajectory ~x tð Þ in the problem (PM), it is sufficient that there exists a pair of
absolutely continuous functions:

x ∗ tð Þ, v ∗ tð Þf g, t∈ 0, 1½ �

satisfying a.e. the second-order Euler-Lagrange type inclusions Eqs. (a1) and
(b1) and the transversality condition Eq. (c1) at the endpoint t ¼ 1.

Proof. By the proof idea of Theorem 3.1 from Eqs. (a1) and (b1), we obtain the
adjoint differential inclusion of second order:

x ∗ 00 tð Þ þ v ∗ 0 tð Þ, v ∗ tð Þð Þ∈ ∂ x,uð ÞHF ~x tð Þ, ~x0 tð Þ, x ∗ tð Þ, tð Þ, t∈ 0, 1½ �:

On the definition of subdifferential set of the Hamiltonian function HF �, tð Þ for
all feasible trajectory x tð Þ, t∈ 0, 1½ �, we rewrite the last relation in the equivalent
form:

HF x tð Þ, x0 tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, ~x0 tð Þ, x ∗ tð Þ, tð Þ

≤ x ∗ 00 tð Þ þ v ∗ 0 tð Þ, x tð Þ � ~x tð Þh i þ v ∗ tð Þ, x0 tð Þ � ~x0 tð Þh i: (29)

Now by using definition of the Hamiltonian function, the inequality Eq. (29) can
be reduced to the inequality

0≥ x tð Þ � ~x tð Þð Þ00, x ∗ tð Þ� �� x ∗ 00 tð Þ, x tð Þ � ~x tð Þh i � d
dt

v ∗ tð Þ, x tð Þ � ~x tð Þh i: (30)

Integrating of the inequality Eq. (30) over the interval 0, 1½ �, we derive that

0≥
ð1

0

x tð Þ � ~x tð Þð Þ00, x ∗ tð Þ� �� � x ∗ 00 tð Þ, x tð Þ � ~x tð Þh i�dt

þ v ∗ 0ð Þ, x 0ð Þ � ~x 0ð Þh i � v ∗ 1ð Þ, x 1ð Þ � ~x 1ð Þh i: (31)

For convenience we transform the expression in the square parentheses on the
right-hand side of Eq. (31) as follows

x tð Þ � ~x tð Þð Þ00, x ∗ tð Þ� �� x ∗ 00 tð Þ, x tð Þ � ~x tð Þh i
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By analogy, for u ¼ �1 we have.

x0 tð Þ ¼ 1� t; x tð Þ ¼ �t2=2þ t: (27)
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0:5þ 1 ¼ 1:5; ~x01 1ð Þ ¼ 2. Consequently, the value of problem Eq. (16) is
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2 1ð Þ � ~x1 1ð Þ ¼ 22 � 1:5ð Þ ¼ 2:5, if ~u tð Þ ¼ 1, t∈ 0, 1½ �. By a similar
way, for a control function ~u tð Þ ¼ �1, t∈ 0, 1½ � from Eq. (27), we obtain that
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On the other hand, in the case Eq. (23), the control function ~u tð Þ first is equal to
þ1 and then equal to �1, and the trajectory ~x tð Þ consists of two pieces of parabolas
~x1 tð Þ and ~x2 tð Þ (~x tð Þ is continuous and piecewise smooth on the interval 0≤ t≤ 1).
Then the solution of the equation Eq. (25) on the interval 0≤ t≤ τ is given by
Eq. (26); at a point τ are satisfied x1 τð Þ ¼ τ2=2þ τ, x01 τð Þ ¼ 1þ τ. Consider now the
initial value problem:

x200 tð Þ ¼ �1, x2 τð Þ ¼ τ2=2þ τ, x02 τð Þ ¼ 1þ τ, t∈ τ, 1½ �: (28)

It is clear that τ2=2ð Þ þ τ ¼ x2 τð Þ ¼ � τ2=2ð Þ þ c1τ þ c2 and 1þ τ ¼ x02 τð Þ ¼
�τ þ c1 from which we obtain that the solution of the initial value problem Eq. (28)
is ~x2 tð Þ ¼ � t2=2ð Þ þ 1þ 2τð Þt� τ2: Substituting the value τ ¼ 1� 2~x0 1ð Þ into equa-
tion ~x02 tð Þ ¼ 1� tþ 2τ, we have 5~x02 1ð Þ ¼ 2, ~x02 1ð Þ ¼ ~x0 1ð Þ ¼ 0:4 (it follows that τ ¼
0:2). Moreover, ~x2 1ð Þ ¼ 2τ � τ2 þ 0:5ð Þ and ~x2 1ð Þ ¼ ~x 1ð Þ ¼ 3=2ð Þ � 4~x02 1ð Þ ¼ 0:86:
Thus, the value of our Mayer problem is φ ~x 1ð Þ, ~x0 1ð Þð Þ ¼ ~x02 1ð Þ � ~x 1ð Þ ¼
2=5ð Þ2 � 43=50ð Þ ¼ �0:7, where ~u tð Þ is defined as in Eq. (23). Comparing the values
2:5, � 0:5, � 0:7, we believe that the value of Mayer problem is �0:7:

5. Sufficient conditions of optimality for second-order evolution
differential inclusions with endpoint constraints

Note that in this section the optimality conditions are given for second-order
convex differential inclusions (PM) with convex endpoint constraints. These condi-
tions are more precise than any previously published ones since they involve useful
forms of the Weierstrass-Pontryagin condition and second-order Euler-Lagrange
type adjoint inclusions. In the reviewed results, this effort culminates in Theorem
5.1:

Minimize g x 1ð Þ, x0 1ð Þð Þ,
PMð Þ x00 tð Þ∈ F x tð Þ, x0 tð Þ, tð Þ, a:e: t∈ 0, 1½ �,

x 0ð Þ ¼ x0, x0 0ð Þ ¼ x1; x 1ð Þ∈M0, x0 1ð Þ∈M1,

where g is a convex continuous function, F �, tð Þ : 2n⇉n is convex set-valued
mapping, and M0,M1 ⊆n are convex sets.

The following adjoint inclusion is the second-order Euler-Lagrange type inclu-
sion for the problem (PM):

a1. x ∗ 00 tð Þ þ v ∗ 0 tð Þ, v ∗ tð Þð Þ∈F ∗ x ∗ tð Þ; ~x tð Þ, ~x0 tð Þ, ~x00 tð Þð Þ, tð Þ, a:e: t∈ 0, 1½ �,
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where

b1. ~x00 tð Þ∈FA ~x tð Þ, ~x0 tð Þ; x ∗ tð Þ, tð Þ, a.e. t∈ 0, 1½ �.

In what follows we assume that x ∗ tð Þ, t∈ 0, 1½ � is absolutely continuous function
together with the first-order derivatives for which x ∗ 00 �ð Þ∈Ln

1 0, 1½ �ð Þ. Besides the
auxiliary function v ∗ tð Þ, t∈ 0, 1½ � is absolutely continuous and v ∗ 0 �ð Þ∈Ln

1 0, 1½ �ð Þ.
The transversality conditions at the endpoint t ¼ 1 consist of the following:
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~x0 1ð Þð Þ.

Now we are ready to formulate the following theorem of optimality.
Theorem 5.1. Suppose that g is a continuous and convex function, F �, tð Þ is a

convex set-valued mapping, and M0,M1 are convex sets. Then for optimality of the
feasible trajectory ~x tð Þ in the problem (PM), it is sufficient that there exists a pair of
absolutely continuous functions:

x ∗ tð Þ, v ∗ tð Þf g, t∈ 0, 1½ �

satisfying a.e. the second-order Euler-Lagrange type inclusions Eqs. (a1) and
(b1) and the transversality condition Eq. (c1) at the endpoint t ¼ 1.

Proof. By the proof idea of Theorem 3.1 from Eqs. (a1) and (b1), we obtain the
adjoint differential inclusion of second order:

x ∗ 00 tð Þ þ v ∗ 0 tð Þ, v ∗ tð Þð Þ∈ ∂ x,uð ÞHF ~x tð Þ, ~x0 tð Þ, x ∗ tð Þ, tð Þ, t∈ 0, 1½ �:

On the definition of subdifferential set of the Hamiltonian function HF �, tð Þ for
all feasible trajectory x tð Þ, t∈ 0, 1½ �, we rewrite the last relation in the equivalent
form:

HF x tð Þ, x0 tð Þ, x ∗ tð Þ, tð Þ �HF ~x tð Þ, ~x0 tð Þ, x ∗ tð Þ, tð Þ

≤ x ∗ 00 tð Þ þ v ∗ 0 tð Þ, x tð Þ � ~x tð Þh i þ v ∗ tð Þ, x0 tð Þ � ~x0 tð Þh i: (29)

Now by using definition of the Hamiltonian function, the inequality Eq. (29) can
be reduced to the inequality

0≥ x tð Þ � ~x tð Þð Þ00, x ∗ tð Þ� �� x ∗ 00 tð Þ, x tð Þ � ~x tð Þh i � d
dt

v ∗ tð Þ, x tð Þ � ~x tð Þh i: (30)

Integrating of the inequality Eq. (30) over the interval 0, 1½ �, we derive that

0≥
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0

x tð Þ � ~x tð Þð Þ00, x ∗ tð Þ� �� � x ∗ 00 tð Þ, x tð Þ � ~x tð Þh i�dt

þ v ∗ 0ð Þ, x 0ð Þ � ~x 0ð Þh i � v ∗ 1ð Þ, x 1ð Þ � ~x 1ð Þh i: (31)

For convenience we transform the expression in the square parentheses on the
right-hand side of Eq. (31) as follows
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¼ d
dt

x tð Þ � ~x tð Þð Þ0, x ∗ tð Þ� �� d
dt

x ∗ 0 tð Þ, x tð Þ � ~x tð Þh i:

Thus by elementary property of the definite integrals, we can compute the
integral on the right-hand side of Eq. (31):

ð1

0

x tð Þ � ~x tð Þð Þ00, x ∗ tð Þ� �� x ∗ 00 tð Þ, x tð Þ � ~x tð Þh i� �
dt

¼ x0 1ð Þ � ~x0 1ð Þ, x ∗ 1ð Þh i � x0 0ð Þ � ~x0 0ð Þ, x ∗ 0ð Þh i
� x ∗ 0 1ð Þ, x 1ð Þ � ~x 1ð Þh i þ x ∗ 0 0ð Þ, x 0ð Þ � ~x 0ð Þh i: (32)

Then substituting Eq. (32) into Eq. (31), we have

0≥ x0 1ð Þ � ~x0 1ð Þ, x ∗ 1ð Þh i � x0 0ð Þ � ~x0 0ð Þ, x ∗ 0ð Þh i
� v ∗ 1ð Þ þ x ∗ 0 1ð Þ, x 1ð Þ � ~x 1ð Þh i þ v ∗ 0ð Þ þ x ∗ 0 0ð Þ, x 0ð Þ � ~x 0ð Þh i: (33)

Now, remember that x �ð Þ, ~x �ð Þ are feasible trajectories and x 0ð Þ ¼ ~x 0ð Þ ¼ x0 and
x0 0ð Þ ¼ ~x0 0ð Þ.

¼ x1 . Then it follows from Eq. (33) that

0≥ x0 1ð Þ � ~x0 1ð Þ, x ∗ 1ð Þh i � v ∗ 1ð Þ þ x ∗ 0 1ð Þ, x 1ð Þ � ~x 1ð Þh i: (34)

Now, thanking to the transversality conditions Eq. (c1) at the endpoint t ¼ 1, we
can rewrite

g x 1ð Þ, x0 1ð Þð Þ � g ~x 1ð Þ, ~x0 1ð Þð Þ≥ v ∗ 1ð Þ þ x ∗ 0 1ð Þ þ x ∗ 1ð Þ, x 1ð Þ � ~x 1ð Þh i
þ x ∗ 0 1ð Þ � x ∗ 1ð Þ, x0 1ð Þ � ~x0 1ð Þh i, x ∗ 1ð Þ∈K ∗

M0
~x 1ð Þð Þ, x ∗ 0 1ð Þ∈K ∗

M1
~x0 1ð Þð Þ

or, in other words

g x 1ð Þ, x0 1ð Þð Þ � g ~x 1ð Þ, ~x0 1ð Þð Þ
≥ v ∗ 1ð Þ þ x ∗ 0 1ð Þ, x 1ð Þ � ~x 1ð Þh i � x ∗ 1ð Þ, x0 1ð Þ � ~x0 1ð Þh i (35).

Thus, summing the inequalities Eqs. (34) and (35) for all feasible trajectories
x �ð Þ, satisfying the initial conditions x 0ð Þ ¼ x0 and x0 0ð Þ ¼ x1 and endpoint con-
straints x 1ð Þ∈M0, x0 1ð Þ∈M1, we have the needed inequality:

g x 1ð Þ, x0 1ð Þð Þ � g ~x 1ð Þ, ~x0 1ð Þð Þ≥0 or g x 1ð Þ, x0 1ð Þð Þ≥ g ~x 1ð Þ, ~x0 1ð Þð Þ. □

6. Conclusion

According to proposed method, the problem with the differential inclusions
described by polynomial linear differential operators is investigated. Obviously, this
problem is an important generalization of problems with first-order differential
inclusions. Thus, sufficient conditions of optimality for such problems are deduced.
Here the existence of nonfunctional initial point or endpoint constraints generates
different kinds of transversality conditions. Besides, there can be no doubt that
investigations of optimality conditions of problems with second- and fourth-order
Sturm-Liouville type differential inclusions can play an important role in the devel-
opment of modern optimization and there is every reason to believe that this role
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will be even more significant in the future. Thus, the suggested problem with linear
differential operators and variable coefficients can be used in various forms in
applied problems.
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¼ d
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integral on the right-hand side of Eq. (31):

ð1

0

x tð Þ � ~x tð Þð Þ00, x ∗ tð Þ� �� x ∗ 00 tð Þ, x tð Þ � ~x tð Þh i� �
dt

¼ x0 1ð Þ � ~x0 1ð Þ, x ∗ 1ð Þh i � x0 0ð Þ � ~x0 0ð Þ, x ∗ 0ð Þh i
� x ∗ 0 1ð Þ, x 1ð Þ � ~x 1ð Þh i þ x ∗ 0 0ð Þ, x 0ð Þ � ~x 0ð Þh i: (32)

Then substituting Eq. (32) into Eq. (31), we have

0≥ x0 1ð Þ � ~x0 1ð Þ, x ∗ 1ð Þh i � x0 0ð Þ � ~x0 0ð Þ, x ∗ 0ð Þh i
� v ∗ 1ð Þ þ x ∗ 0 1ð Þ, x 1ð Þ � ~x 1ð Þh i þ v ∗ 0ð Þ þ x ∗ 0 0ð Þ, x 0ð Þ � ~x 0ð Þh i: (33)

Now, remember that x �ð Þ, ~x �ð Þ are feasible trajectories and x 0ð Þ ¼ ~x 0ð Þ ¼ x0 and
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¼ x1 . Then it follows from Eq. (33) that
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According to proposed method, the problem with the differential inclusions
described by polynomial linear differential operators is investigated. Obviously, this
problem is an important generalization of problems with first-order differential
inclusions. Thus, sufficient conditions of optimality for such problems are deduced.
Here the existence of nonfunctional initial point or endpoint constraints generates
different kinds of transversality conditions. Besides, there can be no doubt that
investigations of optimality conditions of problems with second- and fourth-order
Sturm-Liouville type differential inclusions can play an important role in the devel-
opment of modern optimization and there is every reason to believe that this role
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will be even more significant in the future. Thus, the suggested problem with linear
differential operators and variable coefficients can be used in various forms in
applied problems.
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Chapter 9

Spectral Analysis and Numerical
Investigation of a Flexible
Structure with Nonconservative
Boundary Data
Marianna A. Shubov and Laszlo P. Kindrat

Abstract

Analytic and numerical results of the Euler-Bernoulli beam model with a two-
parameter family of boundary conditions have been presented. The co-diagonal
matrix depending on two control parameters (k1 and k2) relates a two-dimensional
input vector (the shear and the moment at the right end) and the observation
vector (the time derivatives of displacement and the slope at the right end). The
following results are contained in the paper. First, high accuracy numerical approx-
imations for the eigenvalues of the discretized differential operator (the dynamics
generator of the model) have been obtained. Second, the formula for the number
of the deadbeat modes has been derived for the case when one control parameter,
k1, is positive and another one, k2, is zero. It has been shown that the number of
the deadbeat modes tends to infinity, as k1 ! 1þ and k2 ¼ 0. Third, the existence of
double deadbeat modes and the asymptotic formula for such modes have been
proven. Fourth, numerical results corroborating all analytic findings have been
produced by using Chebyshev polynomial approximations for the continuous
problem.

Keywords: matrix differential operator, eigenvalues, Chebyshev polynomials,
numerical scheme, boundary control

1. Introduction

The present paper is concerned with the spectral analysis and numerical inves-
tigation of the eigenvalues of the Euler-Bernoulli beam model. The beam is
clamped at the left end and subject to linear feedback-type conditions with a non-
dissipative feedback matrix [1, 2]. Depending on the boundary parameters k1 and
k2, the model can be either conservative, dissipative, or completely non-dissipative.
We focus on the non-dissipative case, i.e., when the energy of a vibrating system
is not a decreasing (or nonincreasing) function of time. In our approach, the initial-
boundary value problem describing the beam dynamics is reduced to the first order
in time evolution equation in the state Hilbert space H. The evolution of the system
is completely determined by the dynamics generator Lk1, k2 , which is an unbounded
non-self-adjoint matrix differential operator (see Eqs. (2), (3), and (8)).
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The eigenmodes and the mode shapes of the flexible structure are defined as the
eigenvalues (up to a multiple i) and the generalized eigenvectors of Lk1, k2 .

Based on the results of [1, 2], the dynamics generator has a purely discrete
spectrum, whose location on the complex plane is determined by the controls k1 and
k2. Having in mind the practical applications of the asymptotic formulas [3–5], we
discuss the case of k1 ≥0 and k2 ≥0, such that ∣k1∣þ ∣k2∣.0 (see Proposition 2). As
shown in [2], even though the operator Lk1, k2 is non-dissipative, for the case k1 .0
and k2 ¼ 0 (or k1 ¼ 0 and k2 .0), the entire set of eigenvalues is located in the
closed upper half of the complex plane C, which means that all eigenmodes are
stable or neutrally stable. (We recall that to obtain an elastic mode from an
eigenvalues of Lk1, k2 , one should multiply the eigenvalue by a factor i).

In the paper we address the question of accuracy of the asymptotic formulas for
the eigenvalues. Namely, under what conditions the leading asymptotic terms in for-
mulas (20) and (21) can be used for practical estimation of the actual frequencies of the
flexible beam? Numerical simulations show that the accuracy of the asymptotic
formulas is really high; the leading asymptotic terms can be used by practitioners
almost immediately, i.e., almost from the first vibrational mode. The second
question is concerned with the role of the deadbeat modes. A deadbeat mode is a
purely negative elastic mode that generates a solution of the evolution equation
exponentially decaying in time. The deadbeat modes are important in engineering
applications. As we prove in the paper, when the boundary parameter k1 is close to 1
(while k2 ¼ 0), the number of the deadbeat modes is so large that the corresponding
mode shapes become important for the description of the beam dynamics. More
precisely, the number of deadbeat modes tends to infinity as k1 ! 1þ.

We have also shown that there exists a sequence of values of the parameter k1,

i.e., k nð Þ
1

n o∞

n¼1
, such that for each k1 ¼ k nð Þ

1 there exist a finite number of deadbeat

modes and each corresponds to a double eigenvalue of the dynamics generator Lk1, k2 .

For each value k nð Þ
1 , the operator Lk1, k2 has a two-dimensional root subspace spanned

by an eigenvector and an associate vector. This result means that for a double

deadbeat mode (corresponding to k nð Þ
1 ), there exists a mode shape and an associate

mode shape. This fact indicates that for some values of k1 and k2, there exists a
significant number of associate vectors of Lk1, k2 . Therefore, if one can prove that the
set of the generalized eigenvectors (eigenvectors and associate vectors together)
forms an unconditional basis for the state space, then construction of the
bi-orthogonal basis [6] would be a more complicated problem than for the case
when no associate vectors exist.

Finally, we mention that the feedback control of beams is a well-studied area
[6], with multiple applications to the control of robotic manipulators, long and
slender aircraft wings, propeller blades, large space structure [7, 8], and the
dynamics of carbon nanotubes [9]. The analysis of a classical beam model with
nonstandard feedback control law that originated in engineering literature
[4, 10–12] may be of interest for both analysts and practitioners.

This paper is organized as follows. In Section 1 we formulate the initial-
boundary value problem for the Euler-Bernoulli beam model. In Section 2, we
reformulate the problem as an evolution equation in the Hilbert space of Cauchy
data (the energy space). The dynamics generator Lk1,k2 , which is a non-self-adjoint
matrix differential operator depending on two parameters, k1 and k2, is the main object
of interest. The eigenvalues and the generalized eigenvectors of Lk1, k2 correspond to
the modes and the mode shapes of the beam. We also give numerical approxima-
tions and graphical representations of the eigenvalues of a discrete approximation
of the main operator (see Tables 1 and 2 and Figures 1 and 2). In Section 3,
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we study the deadbeat modes and derive the estimates for the number of the
deadbeat modes from below and above for different values of the boundary param-
eters (see Figure 5). Section 4 is concerned with the asymptotic approximation
for the set of double deadbeat modes (see Tables 3 and 4 and Figures 6 and 7).
In Section 5, we outline the numerical scheme used for the spectral analysis of the
finite-dimensional approximation of the dynamics generator.

1.1 The initial-boundary value problem for the Euler-Bernoulli beam model
of a unit length

The Lagrangian of the system is defined by [10, 11]

1
2

Z 1

0
ϱ xð ÞA xð Þh2t x; tð Þ � E xð ÞI xð Þh2xx x; tð Þ� �

dx, (1)

where h x; tð Þ is the transverse deflection, E xð Þ is the modulus of elasticity, I xð Þ is
the area moment of inertia, ϱ xð Þ is the linear density, and A xð Þ is the cross-sectional
area of the beam.

Assuming that the beam is clamped at the left end x ¼ 0ð Þ and free at the right
end x ¼ 1ð Þ, and applying Hamilton’s variational principle to the action functional
defined by (1), we obtain the equation of motion

ϱ xð ÞA xð Þhtt x; tð Þ þ E xð ÞI xð Þhxx x; tð Þð Þxx ¼ 0, 0≤ x≤ 1, t.0, (2)

k1 ¼ 0, k2 ¼ 0:5, EI ¼ 1, ρ ¼ 0:1, N ¼ 64, εf ¼ 10�20

No. Numerical Analytic No. Numerical Analytic

1. �7988:1þ 237:00i �7988:1þ 237:00i 18. 28:860þ 13:515i 29:453þ 14:812i

2. �7020:6þ 222:19i �7020:6þ 222:19i 19. 123:16þ 29:723i 123:08þ 29:625i

3. �6115:5þ 207:37i �6115:5þ 207:37i 20. 279:13þ 44:431i 279:14þ 44:437i

4. �5272:8þ 192:56i �5272:8þ 192:56i 21. 497:61þ 59:250i 497:61þ 59:250i

5. �4492:5þ 177:75i �4492:5þ 177:75i 22. 778:50þ 74:062i 778:50þ 74:062i

6. �3774:7 þ 162:94i �3774:7 þ 162:94i 23. 1121:8þ 88:875i 1121:8þ 88:875i

7. �3119:3þ 148:12i �3119:3þ 148:12i 24. 1527:6þ 103:69i 1527:6þ 103:69i

8. �2526:3þ 133:31i �2526:3þ 133:31i 25. 1995:7 þ 118:50i 1995:7 þ 118:50i

9. �1995:7 þ 118:50i �1995:7 þ 118:50i 26. 2526:3þ 133:31i 2526:3þ 133:31i

10. �1527:6þ 103:69i �1527:6þ 103:69i 27. 3119:3þ 148:12i 3119:3þ 148:12i

11. �1121:8þ 88:875i �1121:8þ 88:875i 28. 3774:7 þ 162:94i 3774:7 þ 162:94i

12. �778:5þ 74:062i �778:5þ 74:062i 29. 4492:5þ 177:75i 4492:5þ 177:75i

13. �497:61þ 59:250i �497:61þ 59:250i 30. 5272:8þ 192:56i 5272:8þ 192:56i

14. �279:13þ 44:431i �279:14þ 44:437i 31. 6115:5þ 207:37i 6115:5þ 207:37i

15. �123:16þ 29:723i �123:08þ 29:625i 32. 7020:6þ 222:19i 7020:6þ 222:19i

16. �28:860þ 13:515i �29:453þ 14:812i 33. 7988:1þ 237:00i 7988:1þ 237:00i

17. �2:2 � 10�17 þ 4:6007i

Table 1.
Approximations of the eigenvalues for the discrete and “continuous” operators (K. 1).
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The eigenmodes and the mode shapes of the flexible structure are defined as the
eigenvalues (up to a multiple i) and the generalized eigenvectors of Lk1, k2 .

Based on the results of [1, 2], the dynamics generator has a purely discrete
spectrum, whose location on the complex plane is determined by the controls k1 and
k2. Having in mind the practical applications of the asymptotic formulas [3–5], we
discuss the case of k1 ≥0 and k2 ≥0, such that ∣k1∣þ ∣k2∣.0 (see Proposition 2). As
shown in [2], even though the operator Lk1, k2 is non-dissipative, for the case k1 .0
and k2 ¼ 0 (or k1 ¼ 0 and k2 .0), the entire set of eigenvalues is located in the
closed upper half of the complex plane C, which means that all eigenmodes are
stable or neutrally stable. (We recall that to obtain an elastic mode from an
eigenvalues of Lk1, k2 , one should multiply the eigenvalue by a factor i).

In the paper we address the question of accuracy of the asymptotic formulas for
the eigenvalues. Namely, under what conditions the leading asymptotic terms in for-
mulas (20) and (21) can be used for practical estimation of the actual frequencies of the
flexible beam? Numerical simulations show that the accuracy of the asymptotic
formulas is really high; the leading asymptotic terms can be used by practitioners
almost immediately, i.e., almost from the first vibrational mode. The second
question is concerned with the role of the deadbeat modes. A deadbeat mode is a
purely negative elastic mode that generates a solution of the evolution equation
exponentially decaying in time. The deadbeat modes are important in engineering
applications. As we prove in the paper, when the boundary parameter k1 is close to 1
(while k2 ¼ 0), the number of the deadbeat modes is so large that the corresponding
mode shapes become important for the description of the beam dynamics. More
precisely, the number of deadbeat modes tends to infinity as k1 ! 1þ.

We have also shown that there exists a sequence of values of the parameter k1,

i.e., k nð Þ
1

n o∞

n¼1
, such that for each k1 ¼ k nð Þ

1 there exist a finite number of deadbeat

modes and each corresponds to a double eigenvalue of the dynamics generator Lk1, k2 .

For each value k nð Þ
1 , the operator Lk1, k2 has a two-dimensional root subspace spanned

by an eigenvector and an associate vector. This result means that for a double

deadbeat mode (corresponding to k nð Þ
1 ), there exists a mode shape and an associate

mode shape. This fact indicates that for some values of k1 and k2, there exists a
significant number of associate vectors of Lk1, k2 . Therefore, if one can prove that the
set of the generalized eigenvectors (eigenvectors and associate vectors together)
forms an unconditional basis for the state space, then construction of the
bi-orthogonal basis [6] would be a more complicated problem than for the case
when no associate vectors exist.

Finally, we mention that the feedback control of beams is a well-studied area
[6], with multiple applications to the control of robotic manipulators, long and
slender aircraft wings, propeller blades, large space structure [7, 8], and the
dynamics of carbon nanotubes [9]. The analysis of a classical beam model with
nonstandard feedback control law that originated in engineering literature
[4, 10–12] may be of interest for both analysts and practitioners.

This paper is organized as follows. In Section 1 we formulate the initial-
boundary value problem for the Euler-Bernoulli beam model. In Section 2, we
reformulate the problem as an evolution equation in the Hilbert space of Cauchy
data (the energy space). The dynamics generator Lk1,k2 , which is a non-self-adjoint
matrix differential operator depending on two parameters, k1 and k2, is the main object
of interest. The eigenvalues and the generalized eigenvectors of Lk1, k2 correspond to
the modes and the mode shapes of the beam. We also give numerical approxima-
tions and graphical representations of the eigenvalues of a discrete approximation
of the main operator (see Tables 1 and 2 and Figures 1 and 2). In Section 3,
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we study the deadbeat modes and derive the estimates for the number of the
deadbeat modes from below and above for different values of the boundary param-
eters (see Figure 5). Section 4 is concerned with the asymptotic approximation
for the set of double deadbeat modes (see Tables 3 and 4 and Figures 6 and 7).
In Section 5, we outline the numerical scheme used for the spectral analysis of the
finite-dimensional approximation of the dynamics generator.

1.1 The initial-boundary value problem for the Euler-Bernoulli beam model
of a unit length

The Lagrangian of the system is defined by [10, 11]

1
2

Z 1

0
ϱ xð ÞA xð Þh2t x; tð Þ � E xð ÞI xð Þh2xx x; tð Þ� �

dx, (1)

where h x; tð Þ is the transverse deflection, E xð Þ is the modulus of elasticity, I xð Þ is
the area moment of inertia, ϱ xð Þ is the linear density, and A xð Þ is the cross-sectional
area of the beam.
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end x ¼ 1ð Þ, and applying Hamilton’s variational principle to the action functional
defined by (1), we obtain the equation of motion

ϱ xð ÞA xð Þhtt x; tð Þ þ E xð ÞI xð Þhxx x; tð Þð Þxx ¼ 0, 0≤ x≤ 1, t.0, (2)

k1 ¼ 0, k2 ¼ 0:5, EI ¼ 1, ρ ¼ 0:1, N ¼ 64, εf ¼ 10�20

No. Numerical Analytic No. Numerical Analytic

1. �7988:1þ 237:00i �7988:1þ 237:00i 18. 28:860þ 13:515i 29:453þ 14:812i

2. �7020:6þ 222:19i �7020:6þ 222:19i 19. 123:16þ 29:723i 123:08þ 29:625i

3. �6115:5þ 207:37i �6115:5þ 207:37i 20. 279:13þ 44:431i 279:14þ 44:437i

4. �5272:8þ 192:56i �5272:8þ 192:56i 21. 497:61þ 59:250i 497:61þ 59:250i

5. �4492:5þ 177:75i �4492:5þ 177:75i 22. 778:50þ 74:062i 778:50þ 74:062i

6. �3774:7 þ 162:94i �3774:7 þ 162:94i 23. 1121:8þ 88:875i 1121:8þ 88:875i

7. �3119:3þ 148:12i �3119:3þ 148:12i 24. 1527:6þ 103:69i 1527:6þ 103:69i

8. �2526:3þ 133:31i �2526:3þ 133:31i 25. 1995:7 þ 118:50i 1995:7 þ 118:50i

9. �1995:7 þ 118:50i �1995:7 þ 118:50i 26. 2526:3þ 133:31i 2526:3þ 133:31i

10. �1527:6þ 103:69i �1527:6þ 103:69i 27. 3119:3þ 148:12i 3119:3þ 148:12i

11. �1121:8þ 88:875i �1121:8þ 88:875i 28. 3774:7 þ 162:94i 3774:7 þ 162:94i

12. �778:5þ 74:062i �778:5þ 74:062i 29. 4492:5þ 177:75i 4492:5þ 177:75i

13. �497:61þ 59:250i �497:61þ 59:250i 30. 5272:8þ 192:56i 5272:8þ 192:56i

14. �279:13þ 44:431i �279:14þ 44:437i 31. 6115:5þ 207:37i 6115:5þ 207:37i

15. �123:16þ 29:723i �123:08þ 29:625i 32. 7020:6þ 222:19i 7020:6þ 222:19i

16. �28:860þ 13:515i �29:453þ 14:812i 33. 7988:1þ 237:00i 7988:1þ 237:00i

17. �2:2 � 10�17 þ 4:6007i

Table 1.
Approximations of the eigenvalues for the discrete and “continuous” operators (K. 1).
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and the boundary conditions

h 0; tð Þ ¼ hx 0; tð Þ ¼ 0 and M 1; tð Þ ¼ Q 1; tð Þ ¼ 0, (3)

where M x; tð Þ and Q x; tð Þ are the moment and the shear, respectively [10]:

M x; tð Þ ¼ E xð ÞI xð Þhxx x; tð Þ and Q x; tð Þ ¼ Mx x; tð Þ: (4)

Figure 1.
Graphical representation of the eigenvalues of the discrete and “continuous” operators (K. 1).

k1 ¼ 1:3, k2 ¼ 1:2, EI ¼ 10, ρ ¼ 0:1, N ¼ 64, εf ¼ 10�20

No. Numerical Analytic No. Numerical Analytic

1. �25266� 229:07i �25266� 229:07i 18. 99:467 � 19:816i 98:177 � 14:317i

2. �22206� 214:76i �22206� 214:76i 19. 394:17 � 28:149i 394:26� 28:634i

3. �19344 � 200:44i �19344� 200:44i 20. 887:75� 42:983i 887:75� 42:951i

4. �16679� 186:12i �16679� 186:12i 21. 1578:6� 57:267i 1578:6� 57:268i

5. �14212� 171:81i �14212� 171:81i 22. 2466:9� 71:586i 2466:9� 71:585i

6. �11942� 157:49i �11942� 157:49i 23. 3552:5� 85:902i 3552:5� 85:903i

7. �9869:1� 143:17i �9869:1� 143:17i 24. 4835:6� 100:22i 4835:6� 100:22i

8. �7993:9� 128:85i �7993:9� 128:85i 25. 6316:0� 114:54i 6316:0� 114:54i

9. �6316:0� 114:54i �6316:0� 114:54i 26. 7993:9� 128:85i 7993:9� 128:85i

10. �4835:6� 100:22i �4835:6� 100:22i 27. 9869:1� 143:17i 9869:1� 143:17i

11. �3552:5� 85:902i �3552:5� 85:903i 28. 11942� 157:49i 11942� 157:49i

12. �2466:9� 71:586i �2466:9� 71:585i 29. 14212� 171:81i 14212� 171:81i

13. �1578:6� 57:267i �1578:6� 57:268i 30. 16679� 186:12i 16679� 186:12i

14. �887:75� 42:983i �887:75� 42:951i 31. 19344� 200:44i 19344� 200:44i

15. �394:17 � 28:149i �394:26� 28:634i 32. 22206� 214:76i 22206� 214:76i

16. �99:467 � 19:816i �98:177 � 14:317i 33. 25266� 229:07i 25266� 229:07i

17. 1:5 � 10�17 þ 7:7256i

Table 2.
Approximations of the eigenvalues for the discrete and “continuous” operators (K, � 1).
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Now we replace the free right-end conditions from Eq. (3) with the following
boundary feedback control law [2, 4]. Define the input and the output as

U tð Þ ¼ �Q 1; tð Þ; M 1; tð Þ½ �T and Y tð Þ ¼ ht 1; tð Þ; hxt 1; tð Þ½ �T, (5)

where T stands for transposition. The feedback control law is given by

U tð Þ ¼ KY tð Þ, (6)

where K is the 2� 2 feedback matrix. We select

K ¼ codiag �k2;�k1ð Þ, k1, k2 ≥0, (7)

Figure 2.
Graphical representation of the eigenvalues of the discrete and “continuous” operators (K, � 1).

k2 ¼ 0, EI ¼ 1, ρ ¼ 1, N ¼ 64, εf ¼ 10�30

No. k1 ¼ 1þ 10�4 k1 ¼ 1þ 10�7 k1 ¼ 1þ 10�10

1. �222:22þ 155:56i �176:06þ 264:07i �106:90þ 372:41i

2. �133:38þ 124:45i �87:723þ 211:27i �2:4378 � 10�16 þ 254:44i

3. �64:540þ 93:396i �3:9609 � 10�18 þ 162:37i �3:0717 � 10�17 þ 123:66i

4. �9:8081þ 58:559i �5:7977 � 10�19 þ 116:23i �1:3012 � 10�17 þ 4:9349i

5. �7:7725 � 10�21 þ 5:0488i �6:3661 � 10�20 þ 44:182i �8:9232 � 10�18 þ 44:421i

6. 4:9365 � 10�21 þ 38:994i �6:0066 � 10�20 þ 4:9383i 8:9143 � 10�18 þ 44:406i

7. 7:8007 � 10�21 þ 4:8257i 6:0114 � 10�20 þ 4:9313i 1:3012 � 10�17 þ 4:9347i

8. 9:8081þ 58:559i 6:6801 � 10�20 þ 44:651i 2:9907 � 10�17 þ 123:09i

9. 64:540þ 93:396i 2:9381 � 10�18 þ 139:20i 1:1286 � 10�16 þ 234:06i

10. 133:38þ 124:45i 87:723þ 211:27i 3:2280 � 10�16 þ 315:13i

11. 222:22þ 155:56i 176:06þ 264:07i 106:90þ 372:41i

Table 3.
Eigenvalues closest to the imaginary axis as k1 ! 1þ.
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with k1, k2 being the control parameters. The feedback (6) can be written as

E 1ð ÞI 1ð Þhxx 1; tð Þ ¼ �k1ht 1; tð Þ and E xð ÞI xð Þhxx x; tð Þð Þxjx¼1 ¼ k2hxt 1; tð Þ: (8)

Finally, we arrive to the following initial-boundary value problem: the equation
of motion (2), the boundary conditions (3), and the standard initial conditions
h x;0ð Þ ¼ h0 xð Þ, ht x;0ð Þ ¼ h1 xð Þ:

Notice that the choice of a feedback matrix K defines whether the system is
dissipative or not. Indeed, let E tð Þ be the energy of the system, defined by
representation (1). Evaluating E t tð Þ on the solutions of Eq. (2) satisfying the left-end
conditions from Eqs. (3), we obtain

E t tð Þ ¼
Z 1

0
ϱ xð ÞA xð Þht x; tð Þhtt x; tð Þ þ E xð ÞI xð Þhxx x; tð Þhxxt x; tð Þ½ �x

¼ �ðE xð ÞI xð ÞhxxðxtÞÞx htðxtÞ|x¼1 þ E 1ð ÞI 1ð Þhxx 1; tð Þhxt 1; tð Þ:
(9)

Taking into account Eqs. (4) and (6), we represent the right-hand side of Eq. (9)
as the dot product in R2:

E t tð Þ ¼ �Q 1; tð Þht 1; tð Þ þM 1; tð Þhxt 1; tð Þ ¼ U tð Þ � Y tð Þ ¼ KY tð Þ � Y tð Þ: (10)

With the choice of K as in Eq. (7), we have

E t tð Þ ¼
0 �k2

�k1 0

� �
2ht 1; tð Þ
hxt 1; tð Þ

� �
� 2ht 1; tð Þ

hxt 1; tð Þ

� �
¼ � k1 þ k2ð Þht 1; tð Þhxt 1; tð Þ: (11)

Thus the system is not dissipative for all nonnegative values of k1 and k2.

2. Operator form of the problem

In what follows, we incorporate the cross-sectional area A xð Þ into the density,
write ρ xð Þ instead of ϱ xð ÞA xð Þ, and also abbreviate EI xð Þ � E xð ÞI xð Þ. Let H be the

k2 ¼ 0, EI ¼ 1, ρ ¼ 1, N ¼ 64, εf ¼ 10�30

# k1 ¼ 1� 10�4 k1 ¼ 1� 10�7 k1 ¼ 1� 10�10

1. �175:34þ 140:01i �129:20þ 237:56i �60:143þ 338:80i

2. �96:394þ 108:84i �50:206þ 186:90i �8:6602þ 240:01i

3. �36:896þ 78:778i �8:0431þ 121:15i �0:28608þ 123:37i

4. �6:0769þ 42:171i �0:23455þ 44:410i �0:0074192þ 44:413i

5. �0:11141þ 4:9324i �0:0035253þ 4:9348i �0:00011148þ 4:9348i

6. 0:11141þ 4:9324i 0:0035253þ 4:9348i 0:00011148þ 4:9348i

7. 6:0769þ 42:171i 0:23455þ 44:410i 0:0074192þ 44:413i

8. 36:896þ 78:778i 8:0431þ 121:15i 0:28608þ 123:37i

9. 96:394þ 108:84i 50:206þ 186:90i 8:6602þ 240:01i

10. 175:34þ 140:01i 129:20þ 237:56i 60:143þ 338:80i

Table 4.
Eigenvalues closest to the imaginary axis as k1 ! 1�.
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Hilbert space of two-component vector functions U xð Þ ¼ u0 xð Þ; u1 xð Þ½ �T equipped
with the following norm:

Uk k2H ¼ 1
2

Z 1

0
EI xð Þ u0″ xð Þj j2 þ ρ xð Þ u1 xð Þj j2
h i

x: (12)

Assuming that EI, ρ∈ C2 0; 1ð Þ are positive functions, we obtain that the closure
of smooth functions U xð Þ ¼ u0 xð Þ; u1 xð Þ½ �T satisfying u0 0ð Þ ¼ u00 0ð Þ ¼ 0 will
produce the energy space H ¼ H2

0 0; 1ð Þ � L2 0; 1ð Þ. Here H2
0 0; 1ð Þ ¼ u∈H2 0; 1ð Þ :�

u 0ð Þ ¼ u0 0ð Þ ¼ 0g, and the equality of function spaces is understood in the sense of
a Hilbert-space isomorphism.

Problem (2) with conditions (3) can be represented as the time evolution problem:

Ut x; tð Þ ¼ i Lk1, k2Uð Þ x; tð Þ and U x;0ð Þ ¼ u0 xð Þ; u1 xð Þ½ �T, (13)

where 0≥ x≥ 1, t≥0. The dynamics generator Lk1, k2 is given by the following
matrix differential expression:

Lk1, k2 ¼ �i
0 1

� 1
ρ xð Þ

∂
2

∂x2
EI xð Þ ∂

2

∂x2

� �
0

2
4

3
5, (14)

defined on the domain

D Lk1, k2ð Þ ¼ fU ¼ u0; u1ð ÞT ∈H : u0 ∈H4 0; 1ð Þ, u1 ∈H2
0 0; 1ð Þ; u1 0ð Þ ¼ u01 0ð Þ ¼ 0;

EI 1ð Þu0″ 1ð Þ ¼ �k1u1 1ð Þ; EI xð Þu0″ xð Þð Þ0��x¼1 ¼ k2u10 1ð Þg: (15)

For any k1; k2ð Þ∈R2, the adjoint operator L ∗
k1, k2 [13] is given by

L ∗
k1, k2 ¼ L�k2,�k1 , (16)

i.e., L ∗
k1, k2 is defined by the same differential expression (14) on the domain

described in Eq. (15), where k1 and k2 are replaced by �k2ð Þ and �k1ð Þ,
respectively. It follows from Eq. (16) that L0,0 is self-adjoint in H and thus L0,0 is
the dynamics generator of the clamped-free beam model. For the reader’s conve-
nience, we summarize the properties of Lk1, k2 from [1, 2] needed for the
present work.

Proposition 1:

1.Lk1, k2 is an unbounded operator with compact resolvent, whose spectrum
consists of a countable set of normal eigenvalues (i.e., isolated eigenvalues,
each of finite algebraic multiplicity [6, 13]).

2. For each k1; k2ð Þ∈R2, ∣k1∣þ ∣k2∣.0, the operator Lk1, k2 is a rank-two
perturbation of the self-adjoint operator L0,0 in the sense that the operators
L�1
k1, k2 and L�1

0,0 exist and are related by the rule

L�1
k1, k2 ¼ L�1

0,0 þ T k1,k2 , (17)

where T k1, k2 is a rank-two operator. A similar decomposition is valid for the
adjoint operator, i.e.,
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with k1, k2 being the control parameters. The feedback (6) can be written as

E 1ð ÞI 1ð Þhxx 1; tð Þ ¼ �k1ht 1; tð Þ and E xð ÞI xð Þhxx x; tð Þð Þxjx¼1 ¼ k2hxt 1; tð Þ: (8)

Finally, we arrive to the following initial-boundary value problem: the equation
of motion (2), the boundary conditions (3), and the standard initial conditions
h x;0ð Þ ¼ h0 xð Þ, ht x;0ð Þ ¼ h1 xð Þ:

Notice that the choice of a feedback matrix K defines whether the system is
dissipative or not. Indeed, let E tð Þ be the energy of the system, defined by
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Hilbert space of two-component vector functions U xð Þ ¼ u0 xð Þ; u1 xð Þ½ �T equipped
with the following norm:

Uk k2H ¼ 1
2

Z 1

0
EI xð Þ u0″ xð Þj j2 þ ρ xð Þ u1 xð Þj j2
h i

x: (12)

Assuming that EI, ρ∈ C2 0; 1ð Þ are positive functions, we obtain that the closure
of smooth functions U xð Þ ¼ u0 xð Þ; u1 xð Þ½ �T satisfying u0 0ð Þ ¼ u00 0ð Þ ¼ 0 will
produce the energy space H ¼ H2

0 0; 1ð Þ � L2 0; 1ð Þ. Here H2
0 0; 1ð Þ ¼ u∈H2 0; 1ð Þ :�

u 0ð Þ ¼ u0 0ð Þ ¼ 0g, and the equality of function spaces is understood in the sense of
a Hilbert-space isomorphism.

Problem (2) with conditions (3) can be represented as the time evolution problem:

Ut x; tð Þ ¼ i Lk1, k2Uð Þ x; tð Þ and U x;0ð Þ ¼ u0 xð Þ; u1 xð Þ½ �T, (13)

where 0≥ x≥ 1, t≥0. The dynamics generator Lk1, k2 is given by the following
matrix differential expression:

Lk1, k2 ¼ �i
0 1

� 1
ρ xð Þ

∂
2

∂x2
EI xð Þ ∂

2

∂x2

� �
0

2
4

3
5, (14)

defined on the domain

D Lk1, k2ð Þ ¼ fU ¼ u0; u1ð ÞT ∈H : u0 ∈H4 0; 1ð Þ, u1 ∈H2
0 0; 1ð Þ; u1 0ð Þ ¼ u01 0ð Þ ¼ 0;

EI 1ð Þu0″ 1ð Þ ¼ �k1u1 1ð Þ; EI xð Þu0″ xð Þð Þ0��x¼1 ¼ k2u10 1ð Þg: (15)

For any k1; k2ð Þ∈R2, the adjoint operator L ∗
k1, k2 [13] is given by

L ∗
k1, k2 ¼ L�k2,�k1 , (16)

i.e., L ∗
k1, k2 is defined by the same differential expression (14) on the domain

described in Eq. (15), where k1 and k2 are replaced by �k2ð Þ and �k1ð Þ,
respectively. It follows from Eq. (16) that L0,0 is self-adjoint in H and thus L0,0 is
the dynamics generator of the clamped-free beam model. For the reader’s conve-
nience, we summarize the properties of Lk1, k2 from [1, 2] needed for the
present work.

Proposition 1:

1.Lk1, k2 is an unbounded operator with compact resolvent, whose spectrum
consists of a countable set of normal eigenvalues (i.e., isolated eigenvalues,
each of finite algebraic multiplicity [6, 13]).

2. For each k1; k2ð Þ∈R2, ∣k1∣þ ∣k2∣.0, the operator Lk1, k2 is a rank-two
perturbation of the self-adjoint operator L0,0 in the sense that the operators
L�1
k1, k2 and L�1

0,0 exist and are related by the rule

L�1
k1, k2 ¼ L�1

0,0 þ T k1,k2 , (17)

where T k1, k2 is a rank-two operator. A similar decomposition is valid for the
adjoint operator, i.e.,
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L�1
k1,k2

� � ∗
¼ L�1

0,0 þ T ∗
k1, k2 , T ∗

k1, k2 ¼ T �k2,�k1 : (18)

From now on, we assume that the structural parameters are constant. In the case
of variable parameters, the spectral asymptotics will have the same leading terms
and remainder terms depending on parameter smoothness.

Proposition 2: Assume that k1, k2 .0 and k1k2 6¼ EIρ. Let

K ¼ k1 þ k2
A� k1k2=A

, A ¼
ffiffiffiffiffiffiffiffi
EIρ

p
, and ∣K∣ 6¼ 1: (19)

The following asymptotic approximations for the eigenvalues λn (as ∣n∣ ! ∞) of
the operator Lk1, k2 hold:

1. If 1, ∣K∣,∞, then for ∣n∣ ! ∞ one has

λn ¼ sign Knð Þ
ffiffiffiffiffi
EI
ρ

s
πnð Þ2 � 1

4
ln 2 Kþ 1

K� 1

� �
þ iπnln

Kþ 1
K� 1

� �� �
þ O ne�π∣n∣� �

: (20)

2. If 0,K, 1, then for n ! ∞ one has

λn ¼ sign Knð Þ
ffiffiffiffiffi
EI
ρ

r
2nþ1
2 π

� �2 � 1
4
ln 2 Kþ 1

K� 1

� �
þ iπ

2nþ 1
2

� �
ln

Kþ 1
K� 1

� ��
þO ne�π∣n∣� �

:

�

(21)

First of all, we address the question of accuracy of the asymptotic formulas (20)
and (21). By its nature, formula (20) (as well as formula (21)) means that for any
small ε.0, one can find a positive integer N, such that all eigenvalues λn with
∣n∣ ≥N þ 1 satisfy the estimate

λn � sign Knð Þ
ffiffiffiffiffi
EI
ρ

s
πnð Þ2 � 1

4
ln 2 Kþ 1

K� 1

� �
þ iπnln

Kþ 1
K� 1

� �� ������

�����≤ ε (22)

for the case when 1, ∣K∣,∞ and

λn � sign Knð Þ
ffiffiffiffiffi
EI
ρ

s
2nþ 1

2
π

� �2

� 1
4
ln 2 Kþ 1

K� 1

� �
þ iπ

2nþ 1
2

� �
ln

Kþ 1
K� 1

� �" #�����

�����≤ ε

(23)

for the case when 0, ∣K∣, 1. The following important question holds: From
which index N can the eigenvalues be approximated by the leading asymptotic terms with
acceptable accuracy? In other words, can one claim that the asymptotic formulas
(20) and (21) are valuable to practitioners, or are they just important mathematical
results of the spectral analysis?

The results of numerical simulations (see Tables 1 and 2 and Figures 1 and 2)
show that the asymptotic formulas are indeed quite accurate. That is, if one places
on the complex plane the numerically produced sets of the eigenvalues, then the
theoretically predicted distribution of eigenvalues can be seen almost immediately.
To obtain these results, we used the numerical procedure based on Chebyshev
polynomial approximations [14–16], as outlined in Section 5.
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In Figures 1 and 2, we represent the graphical distribution of the eigenvalues
corresponding to the discretized operator (“numerical” eigenvalues) and the lead-
ing asymptotic terms from Eqs. (20) and (21) (“analytic” eigenvalues). In Tables 1
and 2, the numerical values of the corresponding graphical points on Figures 1 and
2 are listed. We have used the following notations: N ¼ 64 is the number of grid
points on 0; 1½ �, and εf is the filtering parameter as described in Eq. (69). It can be
easily seen from the graphs and tables that the two sets of data coincide almost
immediately, i.e., the leading asymptotic terms in the approximations are very close
to the numerically approximated eigenvalues.

Figure 3 shows the sub-domains of the k1, k2-plane, which correspond to differ-
ent intervals for the values of K defined by Eq. (19). On the sub-domain with dark
gray color K such that ∣K∣. 1, i.e., to evaluate the asymptotic approximation for the
eigenvalues, one needs formula (20), while on the complementary sub-domain, one
needs formula (21).

3. The deadbeat modes

An eigenvalue λn of the dynamics generator Lk1, k2 is called a deadbeat mode if
λn ¼ iβn, βn .0. If the corresponding eigenfunction is Φn xð Þ, then the evolution
problem (13) has a solution given in the form eiλntΦn xð Þ ¼ e�βntΦn xð Þ, which tends
to zero without any oscillation.

As shown in paper [2], for the case when one of the control parameters is zero
and the other one is positive, the entire set of the eigenvalues is located in the closed
upper half plane. This result is not obvious since the operator is not dissipative; in
fact, it requires a fairly nontrivial proof. However, due to this fact, we assume that
any deadbeat mode can be given in the form iβ, with β.0. To deal with the
deadbeat modes analytically, we rewrite the spectral equation Lk1, k2Φð Þ xð Þ ¼ λΦ xð Þ
in the form of an equivalent problem for an operator pencil [17] as

EIφ0000 xð Þ ¼ λ2ρφ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0,
EIφ00 1ð Þ ¼ �iλk1φ 1ð Þ, EIφ000 1ð Þ ¼ iλk2φ0 1ð Þ: (24)

Figure 3.
Regions of K on the k1, k2-plane, A ¼ ffiffiffiffiffiffiffiffi

EIρ
p ¼ 1.
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From now on, we assume that the structural parameters are constant. In the case
of variable parameters, the spectral asymptotics will have the same leading terms
and remainder terms depending on parameter smoothness.

Proposition 2: Assume that k1, k2 .0 and k1k2 6¼ EIρ. Let
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, A ¼
ffiffiffiffiffiffiffiffi
EIρ

p
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ρ

s
πnð Þ2 � 1

4
ln 2 Kþ 1
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� �
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� �
ln
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�
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First of all, we address the question of accuracy of the asymptotic formulas (20)
and (21). By its nature, formula (20) (as well as formula (21)) means that for any
small ε.0, one can find a positive integer N, such that all eigenvalues λn with
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� �� ������

�����≤ ε (22)
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λn � sign Knð Þ
ffiffiffiffiffi
EI
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2
π

� �2

� 1
4
ln 2 Kþ 1

K� 1

� �
þ iπ

2nþ 1
2

� �
ln

Kþ 1
K� 1

� �" #�����

�����≤ ε

(23)

for the case when 0, ∣K∣, 1. The following important question holds: From
which index N can the eigenvalues be approximated by the leading asymptotic terms with
acceptable accuracy? In other words, can one claim that the asymptotic formulas
(20) and (21) are valuable to practitioners, or are they just important mathematical
results of the spectral analysis?

The results of numerical simulations (see Tables 1 and 2 and Figures 1 and 2)
show that the asymptotic formulas are indeed quite accurate. That is, if one places
on the complex plane the numerically produced sets of the eigenvalues, then the
theoretically predicted distribution of eigenvalues can be seen almost immediately.
To obtain these results, we used the numerical procedure based on Chebyshev
polynomial approximations [14–16], as outlined in Section 5.
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In Figures 1 and 2, we represent the graphical distribution of the eigenvalues
corresponding to the discretized operator (“numerical” eigenvalues) and the lead-
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easily seen from the graphs and tables that the two sets of data coincide almost
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Figure 3 shows the sub-domains of the k1, k2-plane, which correspond to differ-
ent intervals for the values of K defined by Eq. (19). On the sub-domain with dark
gray color K such that ∣K∣. 1, i.e., to evaluate the asymptotic approximation for the
eigenvalues, one needs formula (20), while on the complementary sub-domain, one
needs formula (21).

3. The deadbeat modes

An eigenvalue λn of the dynamics generator Lk1, k2 is called a deadbeat mode if
λn ¼ iβn, βn .0. If the corresponding eigenfunction is Φn xð Þ, then the evolution
problem (13) has a solution given in the form eiλntΦn xð Þ ¼ e�βntΦn xð Þ, which tends
to zero without any oscillation.

As shown in paper [2], for the case when one of the control parameters is zero
and the other one is positive, the entire set of the eigenvalues is located in the closed
upper half plane. This result is not obvious since the operator is not dissipative; in
fact, it requires a fairly nontrivial proof. However, due to this fact, we assume that
any deadbeat mode can be given in the form iβ, with β.0. To deal with the
deadbeat modes analytically, we rewrite the spectral equation Lk1, k2Φð Þ xð Þ ¼ λΦ xð Þ
in the form of an equivalent problem for an operator pencil [17] as

EIφ0000 xð Þ ¼ λ2ρφ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0,
EIφ00 1ð Þ ¼ �iλk1φ 1ð Þ, EIφ000 1ð Þ ¼ iλk2φ0 1ð Þ: (24)
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If λn and φn xð Þ are an eigenvalue and eigenfunction of the pencil (24), then λn is

also an eigenvalue of Lk1, k2 with the eigenfunction Φn xð Þ ¼ 1
iλn

φn xð Þ;φn xð Þ
h iT

.

To solve problem (24), we first redefine the spectral and control parameters to
eliminate ρ and EI from Eq. (24). We define ~λ, ~k1, and ~k2 by λ ¼ ffiffiffiffiffiffiffiffiffiffi

EI=ρ
p

~λ and
~kj ¼

ffiffiffiffiffiffiffiffi
EIρ

p
kj, j ¼ 1, 2. Substituting these relations into Eq. (24) and eliminating the

“tilde,” we obtain the following Sturm-Liouville eigenvalue problem:

φ0000 xð Þ ¼ λ2φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ00 1ð Þ ¼ �iλk1φ 1ð Þ, φ000 1ð Þ ¼ iλk2φ0 1ð Þ:
(25)

The solution of Eq. (25) satisfying the left-end boundary conditions
φ 0ð Þ ¼ φ0 0ð Þ ¼ 0 can be written in the form

φ λ; xð Þ ¼ A λð Þ cosh
ffiffiffi
λ

p
x

� �
� cos

ffiffiffi
λ

p
x

� �h i
þ B λð Þ sinh

ffiffiffi
λ

p
x

� �
� sin

ffiffiffi
λ

p
x

� �h i
:

(26)

Substituting formula (26) into the right-end boundary conditions of Eq. (25),
one gets a system for the coefficients A λð Þ and B λð Þ:

A λð Þ 1þ ik1ð Þcosh ffiffiffi
λ

p � 1� ik1ð Þ cos ffiffiffi
λ

p� �þ
B λð Þ 1þ ik1ð Þsinh ffiffiffi

λ
p � 1� ik1ð Þ sin ffiffiffi

λ
p� � ¼ 0,

A λð Þ 1� ik2ð Þsinh ffiffiffi
λ

p � 1þ ik2ð Þ sin ffiffiffi
λ

p� �þ
B λð Þ 1� ik2ð Þcosh ffiffiffi

λ
p þ 1þ ik2ð Þ cos ffiffiffi

λ
p� � ¼ 0:

(27)

Let Δ λð Þ be the determinant of the matrix of coefficients for A λð Þ and B λð Þ in
Eqs. (27). System (27) has nontrivial solutions if and only if Δ λð Þ ¼ 0, i.e.,

1þ k1k2ð Þ þ 1� k1k2ð Þcosh
ffiffiffi
λ

p
cos

ffiffiffi
λ

p
þ i k1 þ k2ð Þsinh

ffiffiffi
λ

p
sin

ffiffiffi
λ

p
¼ 0: (28)

Theorem 1: The following results hold in the case when k1 .0 and k2 ¼ 0.
Similar results hold in the case when k1 ¼ 0 and k2 .0.

1. For 0, k1 , 1, the deadbeat modes do not exist.

2. For k1 ¼ 1, there exist infinitely many deadbeat modes given explicitly by

λn ¼ μ2n, μn ¼ xn 1þ ið Þ, xn ¼ π

2
2nþ 1ð Þ, n ¼ 0; 1; 2,…: (29)

3. For any k1 . 1, there exist a finite number N k1ð Þ of deadbeat modes. Each
mode has the form λ ¼ μ2, μ ¼ x 1þ ið Þ, where x is a root of the function

H x; k1ð Þ � 2þ 1þ k1ð Þ cos 2xþ 1� k1ð Þcosh 2x, x.0: (30)

Let X k1ð Þ ¼ 1
2π cosh

�1 1þ 4
k1�1

� �
, and then N k1ð Þ satisfies the estimate

2 X k1ð Þ½ � þ 1≤ N k1ð Þ≤ 2 X k1ð Þ½ � þ 3: (31)

HenceN k1ð Þ ! ∞ as k1 ! 1þ. (By X½ �we denote the greatest integer less than or
equal to X).
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Proof: Let μ ¼ ffiffiffi
λ

p ¼ x 1þ ið Þ, x.0. Taking into account the relations

2cosh μ cos μ ¼ cosh 1þ ið Þμþ cosh 1� ið Þμ,
2i sinh μ sin μ ¼ cosh 1þ ið Þμ� cosh 1� ið Þμ,

we reduce Eq. (28) to the following form:

2þ 1þ k1ð Þ cos 2xþ 1� k1ð Þcosh 2x ¼ 0, x.0: (32)

It can be readily seen that if 0, k1 , 1, then 2þ 1þ k1ð Þ cos 2x.0 and
1� k1ð Þcosh 2x.0, which means that Eq. (32) has no solutions. Statement (1) is
shown. Statement (2) follows immediately if one considers Eq. (32) for k1 ¼ 1.

To prove Statement (3), we rewrite Eq. (32) in the form

cosh 2x ¼ 2
k1 � 1

þ 1þ 2
k1 � 1

� �
cos 2x, x.0, k1 . 1: (33)

The left-hand side of Eq. (33) is monotonically increasing, while the right-hand

side is sinusoidal, with maximum 1þ 4
k1�1

� �
and minimum �1ð Þ, and period π. So

the graphs of the left- and right-hand side have intersections only on the interval

0; 12 cosh
�1 1þ 4

k1�1

� �h i
. There are two intersections for each full period of the

Figure 4.
Left- and right-hand side of Eq. (33) for different values of k1.

Figure 5.
Estimates and actual count of deadbeat modes based on numerical simulations.
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If λn and φn xð Þ are an eigenvalue and eigenfunction of the pencil (24), then λn is

also an eigenvalue of Lk1, k2 with the eigenfunction Φn xð Þ ¼ 1
iλn

φn xð Þ;φn xð Þ
h iT

.

To solve problem (24), we first redefine the spectral and control parameters to
eliminate ρ and EI from Eq. (24). We define ~λ, ~k1, and ~k2 by λ ¼ ffiffiffiffiffiffiffiffiffiffi

EI=ρ
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~λ and
~kj ¼

ffiffiffiffiffiffiffiffi
EIρ

p
kj, j ¼ 1, 2. Substituting these relations into Eq. (24) and eliminating the

“tilde,” we obtain the following Sturm-Liouville eigenvalue problem:

φ0000 xð Þ ¼ λ2φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ00 1ð Þ ¼ �iλk1φ 1ð Þ, φ000 1ð Þ ¼ iλk2φ0 1ð Þ:
(25)

The solution of Eq. (25) satisfying the left-end boundary conditions
φ 0ð Þ ¼ φ0 0ð Þ ¼ 0 can be written in the form
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ffiffiffi
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p
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Substituting formula (26) into the right-end boundary conditions of Eq. (25),
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Eqs. (27). System (27) has nontrivial solutions if and only if Δ λð Þ ¼ 0, i.e.,
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p
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¼ 0: (28)

Theorem 1: The following results hold in the case when k1 .0 and k2 ¼ 0.
Similar results hold in the case when k1 ¼ 0 and k2 .0.

1. For 0, k1 , 1, the deadbeat modes do not exist.

2. For k1 ¼ 1, there exist infinitely many deadbeat modes given explicitly by
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3. For any k1 . 1, there exist a finite number N k1ð Þ of deadbeat modes. Each
mode has the form λ ¼ μ2, μ ¼ x 1þ ið Þ, where x is a root of the function
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Let X k1ð Þ ¼ 1
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, and then N k1ð Þ satisfies the estimate
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It can be readily seen that if 0, k1 , 1, then 2þ 1þ k1ð Þ cos 2x.0 and
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right-hand side that fits into the above interval (Figure 4). As it can be seen in
Figure 4, one should add at least one more intersection for the first half-period after
the full periods. Depending on the value of k1, the two graphs can have two
intersections, one tangential intersection or no intersections on the second half-
period. This leads to estimate (31). ■

A graphical illustration of the result of Theorem 1 is shown in Figure 5.

4. Structure of the deadbeat mode set

The main result on the existence and distribution of double roots of the function
H x; k1ð Þ is presented in the statement below.

Theorem 2: For a given k1 . 1, the multiplicity of each root of H x; k1ð Þ does not
exceed 2. There exists a sequence k nð Þ

1 ; n ¼ 0; 1; 2;…
n o

, such that the function

H x; k1ð Þ has a double root if and only if k1 ¼ k nð Þ
1 for some n. So the original spectral

problem with k1 ¼ k nð Þ
1 , k2 ¼ 0 has a double deadbeat mode λn ¼ μ2n ¼ 2ix2n. The

following asymptotic formulas hold

xn ¼ 3π
4

þ πnþ P�1
n þO P�2

n

� �
, where Pn ¼ exp

3π
2
þ 2πn

� �
, (34)

and

k nð Þ
1 ¼ 1þ 4P�1

n þO P�2
n

� �
: (35)

Proof: If x is a double root of H, then H x; k1ð Þ ¼ H0 x; k1ð Þ ¼ 0, i.e., separating the
real and imaginary parts, we have

2þ k1 þ 1ð Þ cos 2x� k1 � 1ð Þcosh 2x ¼ 0, (36)

k1 þ 1ð Þ sin 2xþ k1 � 1ð Þsinh 2x ¼ 0: (37)

Eliminating k1 from system given by (36) and (37), we obtain that the following
equation has to be satisfied:

G xð Þ � 1þ cos 2xð Þsinh 2xþ 1þ cosh 2xð Þ sin 2x ¼ 0, x.0: (38)

Rewriting Eq. (37) in the form k1 þ 1ð Þ sin 2x ¼ � k1 � 1ð Þsinh 2x, and taking into
account that k1 . 1, we obtain that if x is the solution of Eq. (38), then sin 2x,0.

Now we show that when cos 2x,0 and sin 2x,0, i.e.,

π 2nþ 1ð Þ, 2x,
3π
2
þ 2πn, n∈ 0; 1; 2;…f g,

Eq. (38) does not have any solutions. Indeed, in the above range of x, we have
cos 2xþ sin 2x ¼ ffiffiffi

2
p

sin 2xþ π=4ð Þ, � 1 and ∣ sin 2x� cos 2x∣, 1. With such
estimates we obtain that

G xð Þ ¼ sin 2xþ sinh 2xþ 1
2
e2x cos 2xþ sin 2xð Þ þ 1

2
e�2x sin 2x� cos 2xð Þ, sin 2x,0,

(39)

which mean that Eq. (38) cannot be satisfied.
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Now we consider the case when cos 2x.0 and sin 2x,0, i.e.,

3π
2
þ 2πn, 2x, 2π nþ 1ð Þ, n∈ 0; 1; 2;…f g:

It is convenient to rewrite system given by (36) and (37) in the form
2x ¼ 3π=2þ 2πnþ s, where n∈ 0; 1; 2;…f g, 0, s, π=2. If g sð Þ � G 3π=4þ πnþ sð Þ,
then Eq. (38) generates the following equation for g:

g sð Þ � 1þ sin sð Þsinh 3π
2
þ 2πnþ s

� �
� 1þ cosh

3π
2
þ 2πnþ s

� �� �
cos s ¼ 0:

(40)

Let us show that for each n, Eq. (40) has a unique solution. For s ¼ 0 we have

g 0ð Þ ¼ sinh
3π
2
þ 2πn

� �
� 1� cosh

3π
2
þ 2πn

� �
,0,

and for s ¼ π=2 we have g π=2ð Þ ¼ 2sinh 2π nþ 1ð Þð Þ.0. Evaluating g0 we have

g0 sð Þ ¼ sin sþ 1þ 2 sin sð Þcosh 3π
2
þ 2πnþ s

� �
.0: (41)

Thus g sð Þ is a monotonically increasing function, such that g 0ð Þ,0, g π=2ð Þ,
which means that g has a unique root on 0; π=2½ �.

Finally we show that the multiplicity of a multiple root cannot exceed 2. Using a
contradiction argument, assume that there exists x0, such that in addition to
Eqs. (36) and (37), one has H00 x0; k1ð Þ ¼ 0, i.e., the multiplicity of x0 is at least 3.
The system H0 x0; k1ð Þ ¼ 0 and H00 x0; k1ð Þ ¼ 0 can be written as

k1 þ 1ð Þ sin 2x0 þ k1 � 1ð Þsinh 2x0 ¼ 0,
k1 þ 1ð Þ cos 2x0 þ k1 � 1ð Þcosh 2x0 ¼ 0:

(42)

Since k1 . 1, the second equation of (42) yields cos 2x0 ,0. Also, since x0 is a
multiple root, we must have sin 2x0 ,0. Then 2x0 is in the third quadrant, which
means that G x0ð Þ 6¼ 0, as we have seen above. This contradicts our assumption that
x0 is a root of Eqs. (36) and (37).

To derive asymptotic distribution of the roots of Eq. (40), we check that with Pn
from Eq. (34), the following approximations are valid:

sin 2P�1
n

� � ¼ 2P�1
n þO P�3

n

� �
, cos 2P�1

n

� � ¼ 1� 2P�2
n þO P�4

n

� �
,

2sinh
3π
2
þ 2πnþ 2P�1

n

� �
¼ Pn þ 2þ P�1

n þO P�2
n

� �
,

2cosh
3π
2
þ 2πnþ 2P�1

n

� �
¼ Pn þ 2þ 3P�1

n þO P�2
n

� �
:

(43)

Evaluating g sð Þ from Eq. (40) for s ¼ 2P�1
n and using Eq. (43), we get

g 2P�1
n

� � ¼ 1þ sin 2P�1
n

� �� �
sinh

3π
2
þ 2πnþ 2P�1

n

� �
�

1þ cosh
3π
2
þ 2πnþ 2P�1

n

� �� �
cos 2P�1

n

� � ¼ 2P�1
n þO P�2

n

� �
:

(44)
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right-hand side that fits into the above interval (Figure 4). As it can be seen in
Figure 4, one should add at least one more intersection for the first half-period after
the full periods. Depending on the value of k1, the two graphs can have two
intersections, one tangential intersection or no intersections on the second half-
period. This leads to estimate (31). ■

A graphical illustration of the result of Theorem 1 is shown in Figure 5.

4. Structure of the deadbeat mode set

The main result on the existence and distribution of double roots of the function
H x; k1ð Þ is presented in the statement below.

Theorem 2: For a given k1 . 1, the multiplicity of each root of H x; k1ð Þ does not
exceed 2. There exists a sequence k nð Þ

1 ; n ¼ 0; 1; 2;…
n o

, such that the function

H x; k1ð Þ has a double root if and only if k1 ¼ k nð Þ
1 for some n. So the original spectral

problem with k1 ¼ k nð Þ
1 , k2 ¼ 0 has a double deadbeat mode λn ¼ μ2n ¼ 2ix2n. The

following asymptotic formulas hold
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, where Pn ¼ exp
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, (34)

and
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n

� �
: (35)

Proof: If x is a double root of H, then H x; k1ð Þ ¼ H0 x; k1ð Þ ¼ 0, i.e., separating the
real and imaginary parts, we have

2þ k1 þ 1ð Þ cos 2x� k1 � 1ð Þcosh 2x ¼ 0, (36)

k1 þ 1ð Þ sin 2xþ k1 � 1ð Þsinh 2x ¼ 0: (37)

Eliminating k1 from system given by (36) and (37), we obtain that the following
equation has to be satisfied:

G xð Þ � 1þ cos 2xð Þsinh 2xþ 1þ cosh 2xð Þ sin 2x ¼ 0, x.0: (38)

Rewriting Eq. (37) in the form k1 þ 1ð Þ sin 2x ¼ � k1 � 1ð Þsinh 2x, and taking into
account that k1 . 1, we obtain that if x is the solution of Eq. (38), then sin 2x,0.

Now we show that when cos 2x,0 and sin 2x,0, i.e.,

π 2nþ 1ð Þ, 2x,
3π
2
þ 2πn, n∈ 0; 1; 2;…f g,

Eq. (38) does not have any solutions. Indeed, in the above range of x, we have
cos 2xþ sin 2x ¼ ffiffiffi

2
p

sin 2xþ π=4ð Þ, � 1 and ∣ sin 2x� cos 2x∣, 1. With such
estimates we obtain that

G xð Þ ¼ sin 2xþ sinh 2xþ 1
2
e2x cos 2xþ sin 2xð Þ þ 1

2
e�2x sin 2x� cos 2xð Þ, sin 2x,0,

(39)

which mean that Eq. (38) cannot be satisfied.
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Now we consider the case when cos 2x.0 and sin 2x,0, i.e.,

3π
2
þ 2πn, 2x, 2π nþ 1ð Þ, n∈ 0; 1; 2;…f g:

It is convenient to rewrite system given by (36) and (37) in the form
2x ¼ 3π=2þ 2πnþ s, where n∈ 0; 1; 2;…f g, 0, s, π=2. If g sð Þ � G 3π=4þ πnþ sð Þ,
then Eq. (38) generates the following equation for g:

g sð Þ � 1þ sin sð Þsinh 3π
2
þ 2πnþ s

� �
� 1þ cosh

3π
2
þ 2πnþ s

� �� �
cos s ¼ 0:

(40)

Let us show that for each n, Eq. (40) has a unique solution. For s ¼ 0 we have

g 0ð Þ ¼ sinh
3π
2
þ 2πn

� �
� 1� cosh

3π
2
þ 2πn

� �
,0,

and for s ¼ π=2 we have g π=2ð Þ ¼ 2sinh 2π nþ 1ð Þð Þ.0. Evaluating g0 we have

g0 sð Þ ¼ sin sþ 1þ 2 sin sð Þcosh 3π
2
þ 2πnþ s

� �
.0: (41)

Thus g sð Þ is a monotonically increasing function, such that g 0ð Þ,0, g π=2ð Þ,
which means that g has a unique root on 0; π=2½ �.

Finally we show that the multiplicity of a multiple root cannot exceed 2. Using a
contradiction argument, assume that there exists x0, such that in addition to
Eqs. (36) and (37), one has H00 x0; k1ð Þ ¼ 0, i.e., the multiplicity of x0 is at least 3.
The system H0 x0; k1ð Þ ¼ 0 and H00 x0; k1ð Þ ¼ 0 can be written as

k1 þ 1ð Þ sin 2x0 þ k1 � 1ð Þsinh 2x0 ¼ 0,
k1 þ 1ð Þ cos 2x0 þ k1 � 1ð Þcosh 2x0 ¼ 0:

(42)

Since k1 . 1, the second equation of (42) yields cos 2x0 ,0. Also, since x0 is a
multiple root, we must have sin 2x0 ,0. Then 2x0 is in the third quadrant, which
means that G x0ð Þ 6¼ 0, as we have seen above. This contradicts our assumption that
x0 is a root of Eqs. (36) and (37).

To derive asymptotic distribution of the roots of Eq. (40), we check that with Pn
from Eq. (34), the following approximations are valid:

sin 2P�1
n

� � ¼ 2P�1
n þO P�3

n

� �
, cos 2P�1

n

� � ¼ 1� 2P�2
n þO P�4

n

� �
,

2sinh
3π
2
þ 2πnþ 2P�1

n

� �
¼ Pn þ 2þ P�1

n þO P�2
n

� �
,

2cosh
3π
2
þ 2πnþ 2P�1

n

� �
¼ Pn þ 2þ 3P�1

n þO P�2
n

� �
:

(43)

Evaluating g sð Þ from Eq. (40) for s ¼ 2P�1
n and using Eq. (43), we get

g 2P�1
n

� � ¼ 1þ sin 2P�1
n

� �� �
sinh

3π
2
þ 2πnþ 2P�1

n

� �
�

1þ cosh
3π
2
þ 2πnþ 2P�1

n

� �� �
cos 2P�1

n

� � ¼ 2P�1
n þO P�2

n

� �
:

(44)
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Representation (44) implies that there exists n0, such that for all n≥ n0, we have
g 2P�1

n

� �
.0. Taking into account that g 0ð Þ,0, we obtain that the root sn, n≥ n0, of

the function g sð Þ is located on the interval 0; 2P�1
n

� �
. To find the location of this root

more precisely [18], we use linear interpolation. Namely, substituting Eq. (43) into
the expression for g0 sð Þ from Eq. (41) yields

g0 2P�1
n

� � ¼ Pn

2
þO 1ð Þ: (45)

Replacing g sð Þ by the linear function tangential to g sð Þ at the point
2P�1

n ; g 2P�1
n

� �� �
, and finding the root of this function, we get

sn ¼ 2P�1
n � g 2P�1

n

� �

g0 2P�1
n

� �þO P�2
n

� � ¼ 2P�1
n þO P�2

n

� �
: (46)

Having this approximation for sn, we immediately get

xn ¼ 3π
4

þ πnþ sn
2
¼ 3π

4
þ πnþ P�1

n þO P�2
n

� �
: (47)

From the equation H xn; k
nð Þ
1

� �
¼ 0, we obtain the formula for k nð Þ

1 as

k nð Þ
1 ¼ sinh 3π=2þ 2πnþ snð Þ þ cos sn

sinh 3π=2þ 2πnþ snð Þ � cos sn
: (48)

Substituting formulas (43) and (46) into formula (48), we obtain
representation (35). ■

Corollary 1: Let k1 ¼ k nð Þ
1 for some n∈ℕþ∪ 0f g, and let xn be the corresponding

double root of the function H x; k nð Þ
1

� �
. Then λ0 ¼ 2ix2n is an eigenvalue of the

operator Lk nð Þ
1 ,00 , such that the geometric multiplicity of λ0 is 1 and its algebraic

multiplicity is 2. Therefore there exists a unique eigenvector Φ and one associate
vector Ψ, such that

Lk nð Þ
1 ,0Φ ¼ λ0Φ, Lk nð Þ

1 ,0Ψ� λ0Ψ ¼ Φ: (49)

Proof: It suffices to show that problem (24) does not have two linearly
independent eigenvectors corresponding to λ0 [18, 19]. Using contradiction argument
we assume that for some λ0 the boundary-value problem (25) with k2 ¼ 0 has two
linearly independent solutions ψ and χ. Each function satisfies the problem

φ0000 xð Þ ¼ λ20φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ000 1ð Þ ¼ 0, φ00 1ð Þ ¼ iλ0k1φ 1ð Þ:
(50)

First we observe that ψ 1ð Þχ 1ð Þ 6¼ 0. Indeed, if ψ 1ð Þ ¼ 0, then we have

Z 1

0
ψ 00 σð Þj j2dσ ¼

Z 1

0
ψ 0000 σð Þψ σð Þdσ ¼ λ20

Z 1

0
ψ σð Þj j2dσ: (51)
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Since λ0 is purely imaginary, Eq. (51) is not valid. We define a new function:

g xð Þ ¼ ψ xð Þ � ψ 1ð Þ
χ 1ð Þ χ xð Þ: (52)

One can readily check that g satisfies the following boundary-value problem:

φ0000 xð Þ ¼ λ20φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ 1ð Þ ¼ φ00 1ð Þ ¼ 0, (53)

and therefore

Z 1

0
g00 σð Þ�� ��2dσ ¼

Z 1

0
g0000 σð Þg σð Þσ ¼ λ20

Z 1

0
g σð Þj j2dσ: (54)

Eq. (54) is valid if and only if λ20 .0; however, for a deadbeat mode, λ20 ,0. The
obtained contradiction means that for each double mode, there is one eigenfunction
and one associate function. ■

4.1 Deadbeat mode behavior as k1 ! 1

As k1 approaches 1, the spectral branches are moving upward and toward the
imaginary axis (Figures 6 and 7). As a result of this motion, eigenvalues approach
the imaginary axis at different rates depending on whether k1 approaches 1 from
above or below.

As follows from Table 3, the real parts of the eigenvalues decrease steadily as
k1 ! 1þ, to a point where the eigenvalue becomes a deadbeat mode. An increase in
the number of deadbeat modes can be seen as k1 ! 1þ, which is in agreement with
Statement (3) of Theorem 1. One can see from Table 3 that there are pairs of
modes such that the distance between them tends to zero as k1 ! 1þ. (Compare
modes no.5 and no.7 for ∣k1 � 1∣ ¼ 10�4, modes no.4 and no.7 for ∣k1 � 1∣ ¼ 10�6,
modes no.5 and no.8 for ∣k1 � 1∣ ¼ 10�8, and modes no.4 and no.7 for
∣k1 � 1∣ ¼ 10�10). Such behavior indicates convergence of the two simple deadbeat
modes to a double mode, which is consistent with Theorem 2.

Analyzing Table 4, one can see that the eigenvalues get closer to the imaginary
axis as k1 ! 1�. However the rate at which their real parts approach zero is

Figure 6.
Eigenvalues with ∣Reλ∣. 10 as k1 ! 1þ.
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Representation (44) implies that there exists n0, such that for all n≥ n0, we have
g 2P�1

n

� �
.0. Taking into account that g 0ð Þ,0, we obtain that the root sn, n≥ n0, of

the function g sð Þ is located on the interval 0; 2P�1
n

� �
. To find the location of this root

more precisely [18], we use linear interpolation. Namely, substituting Eq. (43) into
the expression for g0 sð Þ from Eq. (41) yields

g0 2P�1
n

� � ¼ Pn

2
þO 1ð Þ: (45)

Replacing g sð Þ by the linear function tangential to g sð Þ at the point
2P�1

n ; g 2P�1
n

� �� �
, and finding the root of this function, we get

sn ¼ 2P�1
n � g 2P�1

n

� �

g0 2P�1
n

� �þO P�2
n

� � ¼ 2P�1
n þO P�2

n

� �
: (46)

Having this approximation for sn, we immediately get

xn ¼ 3π
4

þ πnþ sn
2
¼ 3π

4
þ πnþ P�1

n þO P�2
n

� �
: (47)

From the equation H xn; k
nð Þ
1

� �
¼ 0, we obtain the formula for k nð Þ

1 as

k nð Þ
1 ¼ sinh 3π=2þ 2πnþ snð Þ þ cos sn

sinh 3π=2þ 2πnþ snð Þ � cos sn
: (48)

Substituting formulas (43) and (46) into formula (48), we obtain
representation (35). ■

Corollary 1: Let k1 ¼ k nð Þ
1 for some n∈ℕþ∪ 0f g, and let xn be the corresponding

double root of the function H x; k nð Þ
1

� �
. Then λ0 ¼ 2ix2n is an eigenvalue of the

operator Lk nð Þ
1 ,00 , such that the geometric multiplicity of λ0 is 1 and its algebraic

multiplicity is 2. Therefore there exists a unique eigenvector Φ and one associate
vector Ψ, such that

Lk nð Þ
1 ,0Φ ¼ λ0Φ, Lk nð Þ

1 ,0Ψ� λ0Ψ ¼ Φ: (49)

Proof: It suffices to show that problem (24) does not have two linearly
independent eigenvectors corresponding to λ0 [18, 19]. Using contradiction argument
we assume that for some λ0 the boundary-value problem (25) with k2 ¼ 0 has two
linearly independent solutions ψ and χ. Each function satisfies the problem

φ0000 xð Þ ¼ λ20φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ000 1ð Þ ¼ 0, φ00 1ð Þ ¼ iλ0k1φ 1ð Þ:
(50)

First we observe that ψ 1ð Þχ 1ð Þ 6¼ 0. Indeed, if ψ 1ð Þ ¼ 0, then we have

Z 1

0
ψ 00 σð Þj j2dσ ¼

Z 1

0
ψ 0000 σð Þψ σð Þdσ ¼ λ20

Z 1

0
ψ σð Þj j2dσ: (51)
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Since λ0 is purely imaginary, Eq. (51) is not valid. We define a new function:

g xð Þ ¼ ψ xð Þ � ψ 1ð Þ
χ 1ð Þ χ xð Þ: (52)

One can readily check that g satisfies the following boundary-value problem:

φ0000 xð Þ ¼ λ20φ xð Þ, φ 0ð Þ ¼ φ0 0ð Þ ¼ 0, φ 1ð Þ ¼ φ00 1ð Þ ¼ 0, (53)

and therefore

Z 1

0
g00 σð Þ�� ��2dσ ¼

Z 1

0
g0000 σð Þg σð Þσ ¼ λ20

Z 1

0
g σð Þj j2dσ: (54)

Eq. (54) is valid if and only if λ20 .0; however, for a deadbeat mode, λ20 ,0. The
obtained contradiction means that for each double mode, there is one eigenfunction
and one associate function. ■

4.1 Deadbeat mode behavior as k1 ! 1

As k1 approaches 1, the spectral branches are moving upward and toward the
imaginary axis (Figures 6 and 7). As a result of this motion, eigenvalues approach
the imaginary axis at different rates depending on whether k1 approaches 1 from
above or below.

As follows from Table 3, the real parts of the eigenvalues decrease steadily as
k1 ! 1þ, to a point where the eigenvalue becomes a deadbeat mode. An increase in
the number of deadbeat modes can be seen as k1 ! 1þ, which is in agreement with
Statement (3) of Theorem 1. One can see from Table 3 that there are pairs of
modes such that the distance between them tends to zero as k1 ! 1þ. (Compare
modes no.5 and no.7 for ∣k1 � 1∣ ¼ 10�4, modes no.4 and no.7 for ∣k1 � 1∣ ¼ 10�6,
modes no.5 and no.8 for ∣k1 � 1∣ ¼ 10�8, and modes no.4 and no.7 for
∣k1 � 1∣ ¼ 10�10). Such behavior indicates convergence of the two simple deadbeat
modes to a double mode, which is consistent with Theorem 2.

Analyzing Table 4, one can see that the eigenvalues get closer to the imaginary
axis as k1 ! 1�. However the rate at which their real parts approach zero is

Figure 6.
Eigenvalues with ∣Reλ∣. 10 as k1 ! 1þ.
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significantly lower than in the case k1 ! 1þ. Even at k1 ¼ 1� 10�10, the eigenvalue
closest to the imaginary axis has a real part of about 10�4, which means that it is not
a deadbeat mode (see Statement (1) of Theorem 1).

The eigenvalues near the imaginary axis approach the same double deadbeat
modes in both cases when k1 ! 1� (see Statement (2) of Theorem 1). In conclusion,
one can claim that the eigenvalues are indeed approaching the imaginary axis;
however, the rate of this approach is different for k1 ! 1� and k1 ! 1þ. In the
former case, an eigenvalue’s distance from the imaginary axis decreases very slowly;
in the latter case, the eigenvalues quickly “jump” on the imaginary axis and turn
into deadbeat modes.

5. Outline of the numerical scheme

To carry out the numerical analysis of the differential operator Lk1, k2 , we use the
Chebyshev collocation method and cardinal functions [14–16].

Recall that the Nth Chebyshev polynomial of the first kind is defined by

TN ξð Þ ¼ cosNθ, � 1≤ ξ≤ 1 where ξ ¼ cos θ, θ∈ 0; π½ �: (55)

The cardinal functions, ψk ξð Þ, and the Chebyshev-Gauss-Lobatto (CGL) grid
points ξkf g are defined as follows:

ψk ξð Þ ¼ �1ð Þk 1� ξ2
� �

T0
N�1 ξð Þ

ck N � 1ð Þ2 ξ� ξkð Þ , ξk ¼ cos
k� 1ð Þπ
N � 1

, for 1≤ k≤ N,

(56)

where coefficients ck are such that c1 ¼ cN ¼ 2 and ck ¼ 1 for 1, k,N. The

main property of cardinal functions is ψk ξj
� �

¼ δkj (using the Kronecker delta). The

family ψkf gNk¼1 forms a basis in the space of polynomials of degree N � 1ð Þ, i.e., if f
is such polynomial, then f and f 0 can be written in the forms

f ξð Þ ¼ ∑
N

k¼1
f ξkð Þψk ξð Þ and f 0 ξð Þ ¼ ∑

N

k¼1
f 0 ξkð Þψk ξð Þ: (57)

Figure 7.
Eigenvalues with ∣Reλ∣. 10 as k1 ! 1�.
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If f ¼ f ξ1ð Þ; f ξ2ð Þ; …; f ξNð Þ½ �T and g ¼ f 0 ξ1ð Þ; f 0 ξ2ð Þ; …; f 0 ξNð Þ� �T, then
g ¼ Df , where D is the Chebyshev derivative matrix with the elements

D11 ¼ �DNN ¼ 1þ 2 N � 1ð Þ2
6

, Dkk ¼ � ξk
2 1� ξ2k
� � for 1, k,N,

Dj,k ¼
cj �1ð Þjþk

ck ξj � ξk
� � for j 6¼ k:

(58)

5.1 Discretization of Lk1,k2

Rescaling the independent variable x as ξ ¼ 2x� 1, we rewrite the operator and
its domain, representations (14) and (15), in the form

Lk1, k2 ¼ �i
0 1

� 16
ρ ξð Þ

∂
2

∂ξ2
EI ξð Þ ∂

2

∂ξ2

� �
0

2
4

3
5, (59)

and

D Lk1, k2ð Þ ¼ f u0; u1ð ÞT ∈H : u0 ∈H4 �1; 1ð Þ, u1 ∈H2
0 �1; 1ð Þ; u1 �1ð Þ ¼ u01 �1ð Þ ¼ 0;

4EI 1ð Þu″0 1ð Þ ¼ �k1u1 1ð Þ; 4 EI ξð Þu″0 ξð Þ� �0���
ξ¼1

¼ k2u01 1Þg,ð
(60)

where H ¼ H2
0 �1; 1ð Þ � L2 �1; 1ð Þ, equipped with the norm

Uk k2H ¼ 1
4

Z 1

�1
16EI ξð Þ u″0 ξð Þ�� ��2 þ ρ ξð Þ u1 ξð Þj j2
h i

dξ: (61)

We approximate the action of Lk1, k2 on the finite-dimensional subspace HN ⊂H
of polynomials of degree at most N � 1ð Þ. Using the CGL grid and the cardinal
functions, we substitute for u0 and u1 their truncated expansions:

u0 ξð Þ≈ ∑
N

k¼1
Φkψk ξð Þ, Φk ¼ u0 ξkð Þ, u1 ξð Þ≈ ∑

N

k¼1
Θkψk ξð Þ, Θk ¼ u1 ξkð Þ: (62)

Let Φ and Θ be N-dim vectors and Ψ be a 2N-dim vector defined by

Φ ¼ Φ1; Φ2; …; ΦN½ �T, Θ ¼ Θ1; Θ2; …; ΘN½ �T, Ψ ¼ Φ
Θ

� �
: (63)

Let L be the finite-dimensional approximation of the differential operator Lk1, k2 .
The discretized operator L induced by Lk1, k2 can be given by

L ¼ �i
0 IN�N

�16
EI
ρ
D4 0

2
4

3
5, (64)

where IN�N is the N �N identity matrix and D is the derivative matrix (58).
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significantly lower than in the case k1 ! 1þ. Even at k1 ¼ 1� 10�10, the eigenvalue
closest to the imaginary axis has a real part of about 10�4, which means that it is not
a deadbeat mode (see Statement (1) of Theorem 1).

The eigenvalues near the imaginary axis approach the same double deadbeat
modes in both cases when k1 ! 1� (see Statement (2) of Theorem 1). In conclusion,
one can claim that the eigenvalues are indeed approaching the imaginary axis;
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former case, an eigenvalue’s distance from the imaginary axis decreases very slowly;
in the latter case, the eigenvalues quickly “jump” on the imaginary axis and turn
into deadbeat modes.

5. Outline of the numerical scheme
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points ξkf g are defined as follows:

ψk ξð Þ ¼ �1ð Þk 1� ξ2
� �

T0
N�1 ξð Þ

ck N � 1ð Þ2 ξ� ξkð Þ , ξk ¼ cos
k� 1ð Þπ
N � 1

, for 1≤ k≤ N,

(56)

where coefficients ck are such that c1 ¼ cN ¼ 2 and ck ¼ 1 for 1, k,N. The

main property of cardinal functions is ψk ξj
� �

¼ δkj (using the Kronecker delta). The

family ψkf gNk¼1 forms a basis in the space of polynomials of degree N � 1ð Þ, i.e., if f
is such polynomial, then f and f 0 can be written in the forms

f ξð Þ ¼ ∑
N

k¼1
f ξkð Þψk ξð Þ and f 0 ξð Þ ¼ ∑

N

k¼1
f 0 ξkð Þψk ξð Þ: (57)

Figure 7.
Eigenvalues with ∣Reλ∣. 10 as k1 ! 1�.
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We approximate the action of Lk1, k2 on the finite-dimensional subspace HN ⊂H
of polynomials of degree at most N � 1ð Þ. Using the CGL grid and the cardinal
functions, we substitute for u0 and u1 their truncated expansions:

u0 ξð Þ≈ ∑
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k¼1
Φkψk ξð Þ, Φk ¼ u0 ξkð Þ, u1 ξð Þ≈ ∑
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k¼1
Θkψk ξð Þ, Θk ¼ u1 ξkð Þ: (62)

Let Φ and Θ be N-dim vectors and Ψ be a 2N-dim vector defined by

Φ ¼ Φ1; Φ2; …; ΦN½ �T, Θ ¼ Θ1; Θ2; …; ΘN½ �T, Ψ ¼ Φ
Θ

� �
: (63)

Let L be the finite-dimensional approximation of the differential operator Lk1, k2 .
The discretized operator L induced by Lk1, k2 can be given by

L ¼ �i
0 IN�N
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where IN�N is the N �N identity matrix and D is the derivative matrix (58).
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5.2 Incorporating the boundary conditions

Discretization of the boundary conditions in the domain description (60) yields

ΦN ¼ 0, DΦ½ �N ¼ 0, ΘN ¼ 0, DΘ½ �N ¼ 0,
4EI D2Φ
� �

1 þ k1Θ1 ¼ 0, 4EI D3Φ
� �

1 � k2 DΘ½ �1 ¼ 0:
(65)

Let rN, zN, lN ∈RN be auxiliary row-vectors

rN ¼ 0 0 ⋯ 0 1½ �, zN ¼ 0 0 ⋯ 0 0½ �, lN ¼ 1 0 ⋯ 0 0½ �
(66)

and Dn
j designate the jth row of the nth derivative matrix Dn. Using Eqs. (66) we

represent Eqs. (65) as the following matrix equation:

KΨ �

rN zN
D1

N zN
zN rN
zN D1

N

4EID2
1 k1lN

4EID3
1 �k2D1

1

2
666666664

3
777777775

Φ
Θ

� �
¼ 0: (67)

K is called the boundary operator. Let KN be the kernel of K, i.e.,
KN ¼ v∈R2N : Kv ¼ 0

� �
. We have to identify all eigenvalues of the operator L,

when its domain is restricted to KN . It is clear that KN is isomorphic to Rk with
k � dimKN ¼ dimHN � rankK ¼ 2N � 6. Let B be the matrix consisting of column
vectors that form an orthonormal basis in KN . It is clear that BTB is the identity
matrix on Rk and BBT is the identity matrix on K. The following result holds: if λ is
an eigenvalue of the operator L, and the corresponding eigenvector Ψ satisfies
Eq. (67), then the same λ is an eigenvalue of the matrix BTLB

� �
. However, the

inverse statement is not necessarily true. Indeed, we observe that BBT is the identity
in KN , which is not equivalent to the identity in HN . Assume now that λ is an
eigenvalue of BTLB with corresponding eigenvector v∈Rk. If Ψ ¼ Bv, we have

BBTLΨ ¼ BBTLBv ¼ λBv ¼ λΨ, (68)

but BBTL 6¼ L, which indicates that fake eigenvalues may exist.

5.3 Filtering of spurious eigenvalues

In order to decide which eigenvalues of BTLB should be discarded, we impose
the following condition. Let Λ be the spectrum of BTLB and V be the set of its
eigenfunctions. We construct the set of “trusted” eigenvalues [14, 15], for some
εf .0 filtering precision, as

Λε ¼ λ∈Λ : LBvλ � λBvλk kC , εf ; for corresponding eigenvectorvλ ∈V
� �

, (69)

where �k kC is a discrete approximation to the integral norm defined in Eq. (61).
(The subscript C is short for Chebyshev). Using the CGL quadrature, we obtain the
following formula for the norm of a vector Ψ defined as in Eq. (63):
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Ψk kC ¼ π=4
N � 1

∑
N

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2k

q
16EI ξkð Þ D2Φ

� �
k

�� ��2 þ ρ ξkð Þ Θkj j2
h i

:

6. Conclusions

In this work we have considered the spectral properties of the Euler-Bernoulli
beam model with special feedback-type boundary conditions. The dynamics gener-
ator of the model is a non-self-adjoint matrix differential operator acting in a
Hilbert space of two-component Cauchy data. This operator has been approximated
by a “discrete” operator using Chebyshev polynomial approximation. We have
shown that the eigenvalues of the main operator can be approximated by the
eigenvalues of its discrete counterpart with high accuracy. This means that the
leading asymptotic terms in formulas (20) and (21) can be used by practitioners
who need the elastic modes.

Further results deal with existence and formulas of the deadbeat modes. It has
been shown that for the case when one control parameter, k1, is such that k1 ! 1þ

and the other one k2 ¼ 0, the number of deadbeat modes approaches infinity. The
formula for the rate at which the number of the deadbeat modes tends to infinity

has been derived. It has also been established that there exists a sequence k nð Þ
1

n o∞

n¼1
of the values of parameter k1, such that the corresponding deadbeat mode has a
multiplicity 2, which yields the existence of the associate mode shapes for the
operator Lk1,k2 . The formulas for the double deadbeat modes and asymptotics for

the sequence k nð Þ
1

n o
as n ! ∞ have been derived.
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Chapter 10

Integral Inequalities and
Differential Equations via
Fractional Calculus
Zoubir Dahmani and Meriem Mansouria Belhamiti

Abstract

In this chapter, fractional calculus is used to develop some results on integral
inequalities and differential equations. We develop some results related to the
Hermite-Hadamard inequality. Then, we establish other integral results related to
the Minkowski inequality. We continue to present our results by establishing new
classes of fractional integral inequalities using a family of positive functions; these
classes of inequalities can be considered as generalizations of order n for some other
classical/fractional integral results published recently. As applications on inequal-
ities, we generate new lower bounds estimating the fractional expectations and
variances for the beta random variable. Some classical covariance identities, which
correspond to the classical case, are generalised for any α≥ 1, β≥ 1. For the part of
differential equations, we present a contribution that allow us to develop a class of
fractional chaotic electrical circuit. We prove recent results for the existence and
uniqueness of solutions for a class of Langevin-type equation. Then, by establishing
some sufficient conditions, another result for the existence of at least one solution is
also discussed.

Keywords: fractional calculus, fixed point, Riemann-Liouville integral,
Caputo derivative, integral inequality

1. Introduction

During the last few decades, fractional calculus has been extensively developed
due to its important applications in many field of research [1–4]. On the other hand,
the integral inequalities are very important in probability theory and in applied
sciences. For more details, we refer the reader to [5–12] and the references therein.
Moreover, the study of integral inequalities using fractional integration theory is
also of great importance; we refer to [1, 13–17] for some applications.

Also, boundary value problems of fractional differential equations have occu-
pied an important area in the fractional calculus domain, since these problems
appear in several applications of sciences and engineering, like mechanics, chemis-
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refer the reader to [3, 18–20].
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present our results by establishing several classes of fractional integral inequalities
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Abstract

In this chapter, fractional calculus is used to develop some results on integral
inequalities and differential equations. We develop some results related to the
Hermite-Hadamard inequality. Then, we establish other integral results related to
the Minkowski inequality. We continue to present our results by establishing new
classes of fractional integral inequalities using a family of positive functions; these
classes of inequalities can be considered as generalizations of order n for some other
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ities, we generate new lower bounds estimating the fractional expectations and
variances for the beta random variable. Some classical covariance identities, which
correspond to the classical case, are generalised for any α≥ 1, β≥ 1. For the part of
differential equations, we present a contribution that allow us to develop a class of
fractional chaotic electrical circuit. We prove recent results for the existence and
uniqueness of solutions for a class of Langevin-type equation. Then, by establishing
some sufficient conditions, another result for the existence of at least one solution is
also discussed.
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using a family of positive functions; these classes of inequalities can be considered
as generalizations for some other fractional and classical integral results published
recently [22]. Then, as applications, we generate new lower bounds estimating the
fractional expectations and variances for the beta random variable. Some classical
covariance identities, which correspond to α ¼ 1, are generalized for any α≥ 1 and
β≥ 1; see [23].

For the part of differential equations, with my coauthor, we present a contribu-
tion that allows us to develop a class of fractional differential equations generalizing
the chaotic electrical circuit model. We prove recent results for the existence
and uniqueness of solutions for a class of Langevin-type equations. Then, by
establishing some sufficient conditions on the data of the problem, another result
for the existence of at least one solution is also discussed. The considered class has
some relationship with the good paper in [20].

The chapter is structured as follows: In Section 2, we recall some preliminaries
on fractional calculus that will be used in the chapter. Section 3 is devoted to the
main results on integral inequalities as well as to some estimates on continuous
random variables. The Section 4 deals with the class of differential equations of
Langevin type: we study the existence and uniqueness of solutions for the consid-
ered class by means of Banach contraction principle, and then using Schaefer fixed
point theorem, an existence result is discussed. At the end, the Conclusion follows.

2. Preliminaries on fractional calculus

In this section, we present some definitions and lemmas that will be used in this
chapter. For more details, we refer the reader to [2, 13, 15, 24].

Definition 1.1. The Riemann-Liouville fractional integral operator of order α≥0,
for a continuous function f on a, b½ � is defined as

Jαa f tð Þ½ � ¼ 1
Γ αð Þ

ðt

a

t� τð Þα�1f τð Þdτ, α >0,  a< t≤ b,

J0a f tð Þ½ � ¼ f tð Þ,
(1)

where Γ αð Þ≔ Ð∞0 e�uuα�1du:
Note that for α >0, β >0, we have

JαJβf tð Þ ¼ Jαþβf tð Þ, (2)

and

Jαa J
β
a f tð Þ½ � ¼ JβaJ

α
a f tð Þ½ �: (3)

In the rest of this chapter, for short, we note a probability density function by
p:d:f . So, let us consider a positive continuous function ω defined on a, b½ �. We recall
the ω�concepts:

Definition 1.2. The fractional ω�weighted expectation of order α >0, for a
random variable X with a positive p:d:f : f defined on a, b½ �, is given by

Eα,ω Xð Þ≔ Jαa tω f½ � bð Þ ¼ 1
Γ αð Þ

ðb

a

b� τð Þα�1τω τð Þf τð Þdτ, α >0, a< t≤ b, (4)
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Definition 1.3. The fractional ω�weighted variance of order α >0 for a random
variable X having a p:d:f : f on [a, b] is given by

σ2α,ω Xð Þ ¼ Vα,ω Xð Þ≔ 1
Γ αð Þ

ðb

a

b� τð Þα�1 τ � E Xð Þð Þ2ω τð Þ f τð Þdτ, α >0: (5)

Definition 1.4. The fractional ω�weighted moment of orders r >0, α >0 for a
continuous random variable X having a p:d:f : f defined on [a, b] is defined by the
quantity:

Eα,ω Xrð Þ≔ 1
Γ αð Þ

ðb

a

b� τð Þα�1τrω τð Þ f τð Þdτ, α >0: (6)

We introduce the covariance of fractional order as follows.
Definition 1.5. Let f 1 and f 2 be two continuous on a, b½ �:We define the fractional

ω�weighted covariance of order α >0 for f 1 Xð Þ, f 2 Xð Þ� �
by

Covα,ω f 1 Xð Þ, f 2 Xð Þ� �
≔

1
Γ αð Þ

ðb

a

b� τð Þα�1 f 1 τð Þ � f 1 μð Þ� �
f 2 τð Þ � f 2 μð Þ� �

ω τð Þ f τð Þdτ, α >0,

(7)

where μ is the classical expectation of X.
It is to note that when ω xð Þ ¼ 1, x∈ a, b½ �, then we put

Varα,ω Xð Þ≔Varα Xð Þ,Covα,ω Xð Þ≔Covα Xð Þ,Eα,ω Xð Þ≔Eα Xð Þ

Definition 1.6. For a function K ∈Cn a, b½ �,ð Þ and n� 1< α≤ n, the Caputo
fractional derivative of order α is defined by

DαK tð Þ ¼ Jn�α dn

dtn
K tð Þð Þ

¼ 1
Γ n� αð Þ

ðt

a

t� sð Þn�α�1K nð Þ sð Þds:

We recall also the following properties.
Lemma 1.7. Let n∈ ∗ , and n� 1< α< n. The general solution of Dαy tð Þ ¼ 0,

t∈ a, b½ � is given by

y tð Þ ¼
Xn�1

i¼0

ci t� að Þi, (8)

where ci ∈, i ¼ 0, 1, 2, ::, n� 1:
Lemma 1.8. Let n∈ ∗ and n� 1< α< n. Then

JαDαy tð Þ ¼ y tð Þ þ
Xn�1

i¼0

ci t� að Þi, t∈ a, b½ �, (9)

for some ci ∈, i ¼ 0, 1, 2, ::, n� 1:
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3. Some integral inequalities

3.1 On Minkowski and Hermite-Hadamard fractional inequalities

In this subsection, we present some fractional integral results related to
Minkowski and Hermite-Hadamard integral inequalities. For more details, we refer
the reader to [21].

Theorem 1.9. Let α >0, p≥ 1 and let f , g be two positive functions on
0,∞ ,½½ such that for all t >0, Jαf p tð Þ< ∞, Jαgp tð Þ< ∞: If 0< m≤ f τð Þ

g τð Þ ≤ M, τ∈ 0, t½ �,
then we have

Jαf p tð Þ½ �1p þ Jαgp tð Þ½ �1p ≤ 1þM mþ 2ð Þ
mþ 1ð Þ Mþ 1ð Þ Jα f þ gð Þp tð Þ½ �1p: (10)

Proof: We use the hypothesis f τð Þ
g τð Þ < M, τ∈ 0, t½ �, t >0: We can write

Mþ 1ð Þp
Γ αð Þ

ðt

0

t� τð Þα�1f p τð Þdτ

≤
Mp

Γ αð Þ
ðt

0

t� τð Þα�1 f þ gð Þp τð Þdτ:

(11)

Hence, we have

Jαf p tð Þ≤ Mp

Mþ 1ð Þp J
α f þ gð Þp tð Þ: (12)

Thus, it yields that

Jαf p tð Þ½ �1p ≤ M
Mþ 1

Jα f þ gð Þp tð Þ½ �1p: (13)

In the same manner, we have

1þ 1
m

� �
g τð Þ≤ 1

m
f τð Þ þ g τð Þð Þ: (14)

And then,

Jαgp tð Þ½ �1p ≤ 1
mþ 1

Jα f þ gð Þp tð Þ½ �1p: (15)

Combining (13) and (15), we achieve the proof.
Remark 1.10. Applying the above theorem for α ¼ 1, we obtain Theorem 1.2 of

[25] on 0, t½ �:
With the same arguments as before, we present the following theorem.
Theorem 1.11. Let α >0, p≥ 1 and let f , g be two positive functions on 0,∞ ,½½

such that for all t >0, Jαf p tð Þ< ∞, Jαgp tð Þ< ∞: If 0< m≤ f τð Þ
g τð Þ ≤ M, τ∈ 0, t½ �, then

we have
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Jαf p tð Þ½ �1p þ Jαgp tð Þ½ �1p ≤ 1þM mþ 2ð Þ
mþ 1ð Þ Mþ 1ð Þ Jα f þ gð Þp tð Þ½ �1p: (16)

Remark 1.12. Taking α ¼ 1 in this second theorem, we obtain Theorem 2.2 in
[26] on 0, t½ �:

Using the notions of concave and Lp�functions, we present to the reader the
following result.

Theorem 1.13. Suppose that α >0, p > 1, q > 1 and let f , g be two positive func-
tions on 0,∞ :½½ If f p, gq are two concave functions on 0,∞ ,½½ then we have

2�p�q f 0ð Þ þ f tð Þð Þp g 0ð Þ þ g tð Þð Þq Jα tα�1ð Þð Þ2

≤ Jα tα�1f p tð Þð ÞJα tα�1gq tð Þð Þ:
(17)

The proof of this theorem is based on the following auxiliary result.
Lemma 1.14. Let h be a concave function on a, b½ �: Then for any x∈ a, b½ �, we

have

h að Þ þ h bð Þ≤ h bþ a� xð Þ þ h xð Þ≤ 2h
aþ b
2

� �
: (18)

3.2 A family of fractional integral inequalities

We present to the reader some integral results for a family of functions [22].
These results generalize some integral inequalities of [27]. We have

Theorem 1.15. Suppose that f i
� �

i¼1,… n are n positive, continuous, and decreasing
functions on a, b½ �: Then, the following inequality

Jα
Qn

i 6¼p f γii f
β
p tð Þ

h i

Jα
Qn

i¼1 f
γi
i tð Þ� � ≥

Jα t� að ÞδQn
i 6¼p f γii f

β
p tð Þ

h i

Jα t� að ÞδQn
i¼1 f

γi
i tð Þ

h i (19)

holds for any a< t≤ b, α >0, δ >0, β≥ γp >0, where p is a fixed integer in
1, 2, … , nf g.
Proof: It is clear that

ρ� að Þδ � τ � að Þδ
� �

f β�γp
p τð Þ � f β�γp

p ρð Þ
� �

≥0, (20)

for any fixed p∈ 1, … nf g and for any β≥ γp >0, δ >0, τ, ρ∈ a, t½ �; a< t≤ b:
Taking

Kp τ, ρð Þ≔ t� τð Þα�1

Γ αð Þ
Yn
i¼1

f γii τð Þ ρ� að Þδ � τ � að Þδ
� �

f β�γp
p τð Þ � f β�γp

p ρð Þ
� �

, (21)

we observe that

Kp τ, ρð Þ≥0: (22)

Also, we have
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β
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h i
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0≤
ðt

a

Kp τ, ρð Þdτ ¼  ρ� að ÞδJα
Yn

i6¼p

f γii f
β
p tð Þ

2
4

3
5þ f β�γp

p ρð ÞJα t� að Þδ
Yn
i¼1

f γii tð Þ
" #

�Jα t� að Þδ
Yn

i 6¼p

f γii f
β
p tð Þ

2
4

3
5� ρ� að Þδf β�γp ρð ÞJα

Yn
i¼1

f γii tð Þ
" #

:

(23)

Hence, we get

Jα t� að Þδ
Yn
i¼1

f γii tð Þ
" #

Jα
Yn

i 6¼p

f γii f
β
p tð Þ

2
4

3
5≥ Jα

Yn
i¼1

f γii tð Þ
" #

Jα t� að Þδ
Yn

i 6¼p

f γii f
β
p tð Þ

2
4

3
5:

(24)

The proof is thus achieved.
Remark 1.16. Applying Theorem 1.15 for α ¼ 1, t ¼ b, n ¼ 1, we obtain Theorem

3 in [27].
Using other sufficient conditions, we prove the following generalization.
Theorem 1.17. Suppose that f i

� �
i¼1,… n are positive, continuous, and decreasing

functions on a, b½ �: Then for any fixed p in 1, 2, … , nf g and for any
a< t≤ b, α >0,ω >0, δ >0, β≥ γp >0, we have

Jα
Qn

i6¼p f
γi
i f

β
p tð Þ

h i
Jω t� að ÞδQn

i¼1 f
γi
i tð Þ

h i
þ Jω

Qn
i6¼p f

γi
i f

β
p tð Þ

h i
Jα t� að ÞδQn

i¼1 f
γi
i tð Þ

h i

Jα t� að ÞδQn
i 6¼p f

γi
i f

β
p tð Þ

h i
Jω
Qn

i¼1 f
γi
i tð Þ� �þ Jω t� að ÞδQn

i 6¼p f
γi
i f

β
p tð Þ

h i
Jα
Qn

i¼1 f
γi
i tð Þ� � ≥ 1:

(25)

Proof: Multiplying both sides of (23) by t�ρð Þω�1

Γ ωð Þ
Qn

i¼1 f
γi
i ρð Þ,ω >0, then integrat-

ing the resulting inequality with respect to ρ over a, tð Þ, a< t≤ b and using Fubini’s
theorem, we obtain the desired inequality.

Remark 1.18.

i. Applying Theorem 1.17 for α ¼ ω, we obtain Theorem 1.15.

ii. Applying Theorem 1.17 for α ¼ ω ¼ 1, t ¼ b, n ¼ 1, we obtain Theorem 3
of [27].

Introducing a positive increasing function g to the family f i
� �

i¼1,… n, we
establish the following theorem.

Theorem 1.19. Let f i
� �

i¼1,… n and g be positive continuous functions on a, b½ �,
such that g is increasing and f i

� �
i¼1,… n are decreasing on a, b½ �: Then, the following

inequality

Jα
Qn

i6¼p f
γi
i f

β
p tð Þ

h i
Jα gδ tð ÞQn

i¼1 f
γi
i tð Þ� �

Jα gδ tð ÞQn
i 6¼p f

γi
i f

β
p tð Þ

h i
Jα
Qn

i¼1 f
γi
i tð Þ� � ≥ 1 (26)

holds for any a< t≤ b, α >0, δ >0, β≥ γp >0, where p is a fixed integer in
1, 2, … , nf g:
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Remark 1.20. Applying Theorem 1.19 for α ¼ 1, t ¼ b, n ¼ 1, we obtain Theorem
4 of [27].

3.3 Some estimations on random variables

3.3.1 Bounds for fractional moments of beta distribution

In what follows, we present some fractional results on the beta distribution [23].
So let us prove the following α�version.

Theorem 1.21. Let X,Y,U, and V be four random variables, such that X �
B p, qð Þ,Y � B m, nð Þ,U � B p, nð Þ, and V � B m, qð Þ. If p�mð Þ q� nð Þ≤ 0, then

Eα Xrð ÞEα Yrð Þ
Eα Urð ÞEα Vrð Þ ≥

B p, nð ÞB m, qð Þ
B p, qð ÞB m, nð Þ , α≥ 1:

For the proof of this result, we can apply a weighted version of the fractional
Chebyshev inequality as is mentioned in [1].

Remark 1.22. The above theorem generalizes Theorem 3.1 of [7].
We propose also the following α, βð Þ�version that generalizes the above result.

We have
Theorem 1.23. Let X,Y,U, and V be four random variables, such that X �

B p, qð Þ,Y � B m, nð Þ,U � B p, nð Þ, and V � B m, qð Þ. If p�mð Þ q� nð Þ≤ 0, then

Eα Xrð ÞEβ Yrð Þ þ Eβ Xrð ÞEα Yrð Þ
Eα Urð ÞEβ Vrð Þ þ Eβ Urð ÞEα Vrð Þ ≥

B p, nð ÞB m, qð Þ
B p, qð ÞB m, nð Þ , α, β≥ 1:

Remark 1.24. If α ¼ β ¼ 1, then the above theorem reduces to Theorem 3.1 of [7].

3.3.2 Identities and lower bounds

In the following theorem, the fractional covariance of X and g Xð Þ is expressed
with the derivative of g Xð Þ. It can be considered as a generalization of a covariance
identity established by the authors of [28]. So, we prove the result:

Theorem 1.25. Let X be a random variable having a p:d:f defined on a, b½ �;
μ ¼ E Xð Þ. Then, we have

Covα X, g Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

g0 xð Þdx
ðx

a

b� tð Þα�1 μ� tð Þ f tð Þdt, α≥ 1: (27)

We can prove this result by the application of the covariance definition in the
case where ω xð Þ ¼ 1:

The following theorem establishes a lower bound for Varα g Xð Þð Þ of any function
g∈C1 a, b½ �ð Þ. We have

Theorem 1.26. Let X be a random variable having a p:d:f defined on a, b½ �, such
that μ ¼ E Xð Þ. Then, we have

Varα g Xð Þð Þ≥ 1
VarX,α

1
Γ αð Þ

ðb

a

g0 xð Þdx
ðx

a

b� tð Þα�1 μ� tð Þ f tð Þdt
0
@

1
A

2

, (28)

for any g∈C1 a, b½ �ð Þ.
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0≤
ðt

a

Kp τ, ρð Þdτ ¼  ρ� að ÞδJα
Yn

i6¼p

f γii f
β
p tð Þ

2
4

3
5þ f β�γp

p ρð ÞJα t� að Þδ
Yn
i¼1

f γii tð Þ
" #

�Jα t� að Þδ
Yn

i 6¼p

f γii f
β
p tð Þ

2
4

3
5� ρ� að Þδf β�γp ρð ÞJα

Yn
i¼1

f γii tð Þ
" #

:

(23)

Hence, we get
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Jα
Yn

i 6¼p
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2
4

3
5≥ Jα
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i¼1

f γii tð Þ
" #

Jα t� að Þδ
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i 6¼p

f γii f
β
p tð Þ

2
4

3
5:

(24)

The proof is thus achieved.
Remark 1.16. Applying Theorem 1.15 for α ¼ 1, t ¼ b, n ¼ 1, we obtain Theorem

3 in [27].
Using other sufficient conditions, we prove the following generalization.
Theorem 1.17. Suppose that f i

� �
i¼1,… n are positive, continuous, and decreasing

functions on a, b½ �: Then for any fixed p in 1, 2, … , nf g and for any
a< t≤ b, α >0,ω >0, δ >0, β≥ γp >0, we have

Jα
Qn

i6¼p f
γi
i f

β
p tð Þ

h i
Jω t� að ÞδQn
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γi
i tð Þ

h i
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γi
i f

β
p tð Þ

h i
Jα
Qn

i¼1 f
γi
i tð Þ� � ≥ 1:

(25)

Proof: Multiplying both sides of (23) by t�ρð Þω�1

Γ ωð Þ
Qn

i¼1 f
γi
i ρð Þ,ω >0, then integrat-

ing the resulting inequality with respect to ρ over a, tð Þ, a< t≤ b and using Fubini’s
theorem, we obtain the desired inequality.

Remark 1.18.

i. Applying Theorem 1.17 for α ¼ ω, we obtain Theorem 1.15.

ii. Applying Theorem 1.17 for α ¼ ω ¼ 1, t ¼ b, n ¼ 1, we obtain Theorem 3
of [27].

Introducing a positive increasing function g to the family f i
� �

i¼1,… n, we
establish the following theorem.

Theorem 1.19. Let f i
� �

i¼1,… n and g be positive continuous functions on a, b½ �,
such that g is increasing and f i

� �
i¼1,… n are decreasing on a, b½ �: Then, the following

inequality

Jα
Qn

i6¼p f
γi
i f

β
p tð Þ

h i
Jα gδ tð ÞQn

i¼1 f
γi
i tð Þ� �

Jα gδ tð ÞQn
i 6¼p f

γi
i f

β
p tð Þ

h i
Jα
Qn

i¼1 f
γi
i tð Þ� � ≥ 1 (26)

holds for any a< t≤ b, α >0, δ >0, β≥ γp >0, where p is a fixed integer in
1, 2, … , nf g:
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Remark 1.20. Applying Theorem 1.19 for α ¼ 1, t ¼ b, n ¼ 1, we obtain Theorem
4 of [27].

3.3 Some estimations on random variables

3.3.1 Bounds for fractional moments of beta distribution

In what follows, we present some fractional results on the beta distribution [23].
So let us prove the following α�version.

Theorem 1.21. Let X,Y,U, and V be four random variables, such that X �
B p, qð Þ,Y � B m, nð Þ,U � B p, nð Þ, and V � B m, qð Þ. If p�mð Þ q� nð Þ≤ 0, then

Eα Xrð ÞEα Yrð Þ
Eα Urð ÞEα Vrð Þ ≥

B p, nð ÞB m, qð Þ
B p, qð ÞB m, nð Þ , α≥ 1:

For the proof of this result, we can apply a weighted version of the fractional
Chebyshev inequality as is mentioned in [1].

Remark 1.22. The above theorem generalizes Theorem 3.1 of [7].
We propose also the following α, βð Þ�version that generalizes the above result.

We have
Theorem 1.23. Let X,Y,U, and V be four random variables, such that X �

B p, qð Þ,Y � B m, nð Þ,U � B p, nð Þ, and V � B m, qð Þ. If p�mð Þ q� nð Þ≤ 0, then

Eα Xrð ÞEβ Yrð Þ þ Eβ Xrð ÞEα Yrð Þ
Eα Urð ÞEβ Vrð Þ þ Eβ Urð ÞEα Vrð Þ ≥

B p, nð ÞB m, qð Þ
B p, qð ÞB m, nð Þ , α, β≥ 1:

Remark 1.24. If α ¼ β ¼ 1, then the above theorem reduces to Theorem 3.1 of [7].

3.3.2 Identities and lower bounds

In the following theorem, the fractional covariance of X and g Xð Þ is expressed
with the derivative of g Xð Þ. It can be considered as a generalization of a covariance
identity established by the authors of [28]. So, we prove the result:

Theorem 1.25. Let X be a random variable having a p:d:f defined on a, b½ �;
μ ¼ E Xð Þ. Then, we have

Covα X, g Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

g0 xð Þdx
ðx

a

b� tð Þα�1 μ� tð Þ f tð Þdt, α≥ 1: (27)

We can prove this result by the application of the covariance definition in the
case where ω xð Þ ¼ 1:

The following theorem establishes a lower bound for Varα g Xð Þð Þ of any function
g∈C1 a, b½ �ð Þ. We have

Theorem 1.26. Let X be a random variable having a p:d:f defined on a, b½ �, such
that μ ¼ E Xð Þ. Then, we have

Varα g Xð Þð Þ≥ 1
VarX,α

1
Γ αð Þ

ðb

a

g0 xð Þdx
ðx

a

b� tð Þα�1 μ� tð Þ f tð Þdt
0
@

1
A

2

, (28)

for any g∈C1 a, b½ �ð Þ.
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To prove this result, we use fractional Cauchy-Schwarz inequality established
in [29].

Remark 1.27. Let us consider Ω∈C a, b½ �ð Þ that satisfies Ð xa b� tð Þα�1 μ� tð Þ
f tð Þdt ¼ b� xð Þα�1σ2Ω xð Þ f xð Þ. Then, we present the following result.

Theorem 1.28. Let X be a random variable having a p:d:f : defined on a, b½ �, such
that μ ¼ E Xð Þ, σ2 ¼ Var Xð Þ and Ω∈C a, b½ �ð Þ; Ð

x

a
b� tð Þα�1 μ� tð Þ f tð Þdt ¼

b� xð Þα�1σ2Ω xð Þ f xð Þ. Then, we have

Varα g Xð Þð Þ≥ σ4 Xð Þ
Varα Xð ÞE

2
α g0 Xð ÞΩ Xð Þð Þ: (29)

Proof: We have

Cov2α X, g Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

g0 xð Þdx b� xð Þα�1σ2Ω xð Þ f xð Þdx
2
4

3
5
2

: (30)

On the other hand, we can see that

1
Γ αð Þ

ðb

a

g0 xð Þdx b� xð Þα�1σ2Ω xð Þ f xð Þdx
2
4

3
5
2

¼ σ4E2
α g0 Xð ÞΩ Xð Þð Þ (31)

Thanks to the fractional version of Cauchy Schwarz inequality [29], and using
the fact that

Cov2α X, g Xð Þð Þ≤ Varα Xð ÞVarα g Xð Þð Þ, (32)

we obtain

σ4E2
α g0 Xð ÞΩ Xð Þð Þ≤ Varα Xð ÞVarα g Xð Þð Þ: (33)

This ends the proof.
Remark 1.29. Thanks to (30) and (31), we obtain the following fractional

covariance identity

σ2Eα g0 Xð ÞΩ Xð Þð Þ ¼ Covα X, g Xð Þð Þ:

It generalizes the good standard identity obtained in [28] that corresponds to
α ¼ 1 and it is given by

σ2E g0 Xð ÞΩ Xð Þð Þ ¼ Cov X, g Xð Þð Þ:

We end this section by proving the following fractional integral identity
between covariance and expectation in the fractional case.

Theorem 1.30. Let X be a continuous random variable with a p:d:f : having a
support an interval a, b½ �, E Xð Þ ¼ μ. Then, for any α≥ 1, the following general
covariance identity holds

Covα h Xð Þ, g Xð Þð Þ ¼ Eα g0 Xð ÞZ Xð Þð Þ, (34)
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where g∈C1 a, b½ �ð Þ, with E∣Z Xð Þg0 Xð Þ∣< ∞, h xð Þ is a given function and

Z xð Þf xð Þ b�xð Þα�1

Γ αð Þ ¼ Ð
x

a
E h Xð Þð Þ � h tð Þð Þ b�tð Þα�1

Γ αð Þ f tð Þdt:
Proof: We have

Covα h Xð Þ, g Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

b� xð Þα�1 h xð Þ � h μð Þð Þ g xð Þ � g μð Þð Þ f xð Þdx (35)

and

Eα g0 Xð ÞZ Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

b� xð Þα�1g0 xð ÞZ xð Þ f xð Þdx: (36)

The definition of Z Xð Þ implies that

Eα g0 Xð ÞZ Xð Þð Þ ¼ 1
Γ αð Þ

ðμ
a

g μð Þ � g tð Þð Þ b� tð Þα�1 h μð Þ � h tð Þð Þf tð Þdt (37)

þ 1
Γ αð Þ

ðb
μ

g tð Þ � g μð Þð Þ b� tð Þα�1 h tð Þ � h μð Þð Þ f tð Þdt:

Hence, we obtain

Eα Z Xð Þg0 Xð Þð Þ ¼ Covα g Xð Þ, h Xð Þð Þ: (38)

Remark 1.31. Taking α ¼ 1, in the above theorem, we obtain Theorem 2.2
of [10].

4. A class of differential equations of fractional order

Inspired by the work in [4, 20], in what follows we will be concerned with a
more general class of Langevin equations of fractional order. The considered class
will contain a nonlinearity that depends on a fractional derivative of order δ: So, let
us consider the following problem:

cDα D2 þ λ2
� �

u tð Þ ¼ f t, u tð Þ, cDδu tð Þ� �
,

t∈ 0, 1½ �, λ∈ ∗
þ

0< α≤ 1, 0≤ δ< α,

(39)

associated with the conditions

u 0ð Þ ¼ 0, u00 0ð Þ ¼ 0, u 1ð Þ ¼ βu ηð Þ, η∈ 0, 1ð Þ, (40)

where cDα denotes the Caputo fractional derivative of fractional order α, D2 is
the two-order classical derivative, f : 0, 1½ � � �  !  is a given function, and
β∈, such that βsin ληð Þ 6¼ sin λð Þ:

4.1 Integral representation

We recall the following result [20]:
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To prove this result, we use fractional Cauchy-Schwarz inequality established
in [29].

Remark 1.27. Let us consider Ω∈C a, b½ �ð Þ that satisfies Ð xa b� tð Þα�1 μ� tð Þ
f tð Þdt ¼ b� xð Þα�1σ2Ω xð Þ f xð Þ. Then, we present the following result.

Theorem 1.28. Let X be a random variable having a p:d:f : defined on a, b½ �, such
that μ ¼ E Xð Þ, σ2 ¼ Var Xð Þ and Ω∈C a, b½ �ð Þ; Ð

x

a
b� tð Þα�1 μ� tð Þ f tð Þdt ¼

b� xð Þα�1σ2Ω xð Þ f xð Þ. Then, we have

Varα g Xð Þð Þ≥ σ4 Xð Þ
Varα Xð ÞE

2
α g0 Xð ÞΩ Xð Þð Þ: (29)

Proof: We have

Cov2α X, g Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

g0 xð Þdx b� xð Þα�1σ2Ω xð Þ f xð Þdx
2
4

3
5
2

: (30)

On the other hand, we can see that

1
Γ αð Þ

ðb

a

g0 xð Þdx b� xð Þα�1σ2Ω xð Þ f xð Þdx
2
4

3
5
2

¼ σ4E2
α g0 Xð ÞΩ Xð Þð Þ (31)

Thanks to the fractional version of Cauchy Schwarz inequality [29], and using
the fact that

Cov2α X, g Xð Þð Þ≤ Varα Xð ÞVarα g Xð Þð Þ, (32)

we obtain

σ4E2
α g0 Xð ÞΩ Xð Þð Þ≤ Varα Xð ÞVarα g Xð Þð Þ: (33)

This ends the proof.
Remark 1.29. Thanks to (30) and (31), we obtain the following fractional

covariance identity

σ2Eα g0 Xð ÞΩ Xð Þð Þ ¼ Covα X, g Xð Þð Þ:

It generalizes the good standard identity obtained in [28] that corresponds to
α ¼ 1 and it is given by

σ2E g0 Xð ÞΩ Xð Þð Þ ¼ Cov X, g Xð Þð Þ:

We end this section by proving the following fractional integral identity
between covariance and expectation in the fractional case.

Theorem 1.30. Let X be a continuous random variable with a p:d:f : having a
support an interval a, b½ �, E Xð Þ ¼ μ. Then, for any α≥ 1, the following general
covariance identity holds

Covα h Xð Þ, g Xð Þð Þ ¼ Eα g0 Xð ÞZ Xð Þð Þ, (34)
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where g∈C1 a, b½ �ð Þ, with E∣Z Xð Þg0 Xð Þ∣< ∞, h xð Þ is a given function and

Z xð Þf xð Þ b�xð Þα�1

Γ αð Þ ¼ Ð
x

a
E h Xð Þð Þ � h tð Þð Þ b�tð Þα�1

Γ αð Þ f tð Þdt:
Proof: We have

Covα h Xð Þ, g Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

b� xð Þα�1 h xð Þ � h μð Þð Þ g xð Þ � g μð Þð Þ f xð Þdx (35)

and

Eα g0 Xð ÞZ Xð Þð Þ ¼ 1
Γ αð Þ

ðb

a

b� xð Þα�1g0 xð ÞZ xð Þ f xð Þdx: (36)

The definition of Z Xð Þ implies that

Eα g0 Xð ÞZ Xð Þð Þ ¼ 1
Γ αð Þ

ðμ
a

g μð Þ � g tð Þð Þ b� tð Þα�1 h μð Þ � h tð Þð Þf tð Þdt (37)

þ 1
Γ αð Þ

ðb
μ

g tð Þ � g μð Þð Þ b� tð Þα�1 h tð Þ � h μð Þð Þ f tð Þdt:

Hence, we obtain

Eα Z Xð Þg0 Xð Þð Þ ¼ Covα g Xð Þ, h Xð Þð Þ: (38)

Remark 1.31. Taking α ¼ 1, in the above theorem, we obtain Theorem 2.2
of [10].

4. A class of differential equations of fractional order

Inspired by the work in [4, 20], in what follows we will be concerned with a
more general class of Langevin equations of fractional order. The considered class
will contain a nonlinearity that depends on a fractional derivative of order δ: So, let
us consider the following problem:

cDα D2 þ λ2
� �

u tð Þ ¼ f t, u tð Þ, cDδu tð Þ� �
,

t∈ 0, 1½ �, λ∈ ∗
þ

0< α≤ 1, 0≤ δ< α,

(39)

associated with the conditions

u 0ð Þ ¼ 0, u00 0ð Þ ¼ 0, u 1ð Þ ¼ βu ηð Þ, η∈ 0, 1ð Þ, (40)

where cDα denotes the Caputo fractional derivative of fractional order α, D2 is
the two-order classical derivative, f : 0, 1½ � � �  !  is a given function, and
β∈, such that βsin ληð Þ 6¼ sin λð Þ:

4.1 Integral representation

We recall the following result [20]:
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Lemma 1.32. Let θ be a continuous function on 0, 1½ �. The unique solution of the
problem

cDα D2 þ λ2
� �

u tð Þ ¼ θ tð Þ,
t∈ 0, 1½ �, λ∈ ∗

þ

n� 1< α≤ n, n∈ ∗ ,

(41)

is given by

u tð Þ ¼ 1
λ

ðt

0

sinλ t� sð Þ
ðs

0

s� τð Þα�1

Γ αð Þ θ τð Þdτ þ
Xn�1

i¼1

cisi

0
@

1
Adsþ cn cos λtð Þ þ cnþ1 sin λtð Þ,

(42)

where ci ∈, i ¼ 1… nþ 1.
Thanks to the above lemma, we can state that
The class of Langevin equations (39) and (40) has the following integral repre-

sentation:

u tð Þ ¼ 1
λ

ðt

0

sinλ t� sð Þ
ðs
0

s� τð Þα�1

Γ αð Þ f ðτ; u τð Þ;Dδ τð ÞÞdτ
 !

ds

þ sin λtð Þ
Δ

β

ðη

0

sinλ η� sð Þ
ðs
0

s� τð Þα�1

Γ αð Þ f ðτ; u τð Þ;Dδ τð ÞÞdτ
 !

ds

2
4

�
ð1

0

sinλ 1� sð Þ
ðs
0

s� τð Þα�1

Γ αð Þ f ðτ; u τð Þ;Dδ τð ÞÞdτ
 !

ds

3
5,

(43)

where

Δ≔ λ sinλ� βsinληð Þ: (44)

4.2 Existence and uniqueness of solutions

Using the above integral representation (43), we can prove the following exis-
tence and uniqueness theorem.

Theorem 1.33. Assume that the following hypotheses are valid:
(H1): The function f : 0, 1½ � � �  !  is continuous, and there exist two

constants Λ1,Λ2 >0, such that for all t∈ 0, 1½ � and ui, vi ∈, i ¼ 1, 2,

∣ f t, u1, u2ð Þ � f t, v1, v1ð Þ∣ ≤ Λ1∣u1 � v1∣þ Λ2∣u2 � v2∣: (45)

(H2): Suppose that Λ≤ 1
Φþϒð Þ ,

where

Φ≔
Δ1 þ λþ β1λη

αþ1

Γ αþ 2ð ÞλΔ1
,Ψ≔

Δ1sα αþ 1ð Þ þ λ2 þ β1λ
2ηαþ1

Γ αþ 2ð ÞλΔ1
,ϒ≔

Ψ
Γ 2� δð Þ ,

Λ≔ max Λ1,Λ2ð Þ, Δ1 ¼ ∣Δ∣, β1 ¼ ∣β∣:
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Then problem (39) and (40) has a unique solution on 0, 1½ �.
Proof: We introduce the space

E ¼ u; u∈ C 0, 1½ �ð Þ,Dδu∈ C 0, 1½ �ð Þ� �
,

endowed with the norm ∥u∥E ≔∥u∥∞ þ ∥Dδu∥∞:
Then, E, ∥:∥Eð Þ is a Banach space.
Also, we consider the operator T : E ! E defined by

Tuð Þ tð Þ≔ 1
λ

ðt

0

sinλ t� sð ÞJα0 f s; u sð Þ;Dδu sð Þ� �
ds

þ sin λtð Þ
Δ

β

ðη

0

sinλ η� sð ÞJα0 f ðs; u sð Þ;Dδ sð ÞÞds
2
4

�
ð1

0

sinλ 1� sð ÞJα0 f ðs; u sð Þ;Dδu sð ÞÞds
3
5

(46)

We shall prove that the above operator is contractive over the space E.

Let u1, u2 ∈E. Then, for each t∈ 0, 1½ �, we have

∣Tu1 tð Þ � Tu2 tð Þ∣ ≤ 1
λ

ðt

0

∣sinλ t� sð Þ∣ Jα0∣ f s; u1 sð Þ;Dδu1 sð Þ� �� f s; u2 sð Þ;Dδu2 sð Þ� �
∣ds

þ ∣ sin λtð Þ∣
∣Δ∣

jβ
ðη

0

jsinλ η� sð Þj Jα0j f ðs; u1 sð Þ;Dδu1 sð ÞÞ � f ðs; u2 sð Þ;Dδu2 sð ÞÞjds
2
4

þ
ð1

0

jsinλ 1� sð Þ jJα0jf ðs; u1 sð Þ;Dδu1 sð ÞÞ � f ðs; u2 sð Þ;Dδu2 sð ÞÞjds
3
5≔A

By (H1), we have

A ≤
Λ

Γ αþ 2ð Þ
1
λ
þ 1
∣Δ∣

þ ∣β∣
∣Δ∣

ηαþ1
� �

ju1 � u2j þ jDδu1 �Dδu2j
� �

:

Hence, it yields that

∥Tu1 � Tu2∥∞ ≤ ΛΦ∥u1 � u2∥E: (47)

With the same arguments as before, we can write.

∣T0u1 tð Þ � T0u2 tð Þ∣ ≤ 1
λ
∣sinλ t� sð Þ∣ Jα0∣ f s; u1 sð Þ;Dδu1 sð Þ� �� f s; u2 sð Þ;Dδu2 sð Þ� �

∣ds

þ ∣λcos λtð Þ∣
∣Δ∣

jβ
ðη

0

jsinλ η� sð Þj Jα0j f s; u1 sð Þ;Dδu1 sð Þ� �� f s; u2 sð Þ;Dδu2 sð Þ� �jds
2
4

þ
ð1

0

jsinλ 1� sð Þj Jα0j f ðs; u1 sð Þ;Dδu1 sð ÞÞ � f ðs; u2 sð Þ;Dδu2 sð ÞÞjds
3
5≔B:
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Lemma 1.32. Let θ be a continuous function on 0, 1½ �. The unique solution of the
problem

cDα D2 þ λ2
� �

u tð Þ ¼ θ tð Þ,
t∈ 0, 1½ �, λ∈ ∗

þ

n� 1< α≤ n, n∈ ∗ ,

(41)

is given by

u tð Þ ¼ 1
λ

ðt

0

sinλ t� sð Þ
ðs

0

s� τð Þα�1

Γ αð Þ θ τð Þdτ þ
Xn�1

i¼1

cisi

0
@

1
Adsþ cn cos λtð Þ þ cnþ1 sin λtð Þ,

(42)

where ci ∈, i ¼ 1… nþ 1.
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λ
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ðs
0
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Γ αð Þ f ðτ; u τð Þ;Dδ τð ÞÞdτ
 !

ds

þ sin λtð Þ
Δ

β

ðη

0

sinλ η� sð Þ
ðs
0

s� τð Þα�1

Γ αð Þ f ðτ; u τð Þ;Dδ τð ÞÞdτ
 !

ds

2
4

�
ð1

0

sinλ 1� sð Þ
ðs
0

s� τð Þα�1

Γ αð Þ f ðτ; u τð Þ;Dδ τð ÞÞdτ
 !

ds

3
5,

(43)
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Hence, it yields that
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With the same arguments as before, we can write.
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Again, by (H1), we obtain

B≤ Λ
Δ1sα αþ 1ð Þ þ λ2 þ β1λ

2ηαþ1

Γ αþ 2ð ÞλΔ1

� �
ju1 � u2j þ jDδu1 �Dδu2j
� �

:

Consequently, we get

∥T0u1 � T0u2∥∞ ≤ ΛΨ∥u1 � u2∥E:

This implies that

∥DδTu1 �DδTu2∥∞ ≤ Λϒ∥u1 � u2∥E: (48)

Using (47) and (48), we can state that

∥Tu1 � Tu2∥E ≤ Λ Φþ ϒð Þ∥u1 � u2∥E:

Thanks to (H2), we can say that the operator T is contractive.
Hence, by Banach fixed point theorem, the operator has a unique fixed point

which corresponds to the unique solution of our Langevin problem.

4.3 Existence of solutions

We prove the following theorem.
Theorem 1.34. Assume that the following conditions are satisfied:
(H3): The function f : 0, 1½ � � �  !  is jointly continuous.
(H4): There exists a positive constant M; ∣f t, u, vð Þ∣ ≤ M for any

t∈ 0, 1½ �, u, v∈:
Then the problem (39), (40) has at least one solution on 0, 1½ �.
Proof: We use Schaefer fixed point theorem to prove this result. So we proceed

into three steps.
Step 1: We prove that T is continuous and bounded.
Since the function f is continuous by (H3), then the operator is also continuous;

this proof is trivial and hence it is omitted.
Let Ω⊂E be a bounded set. We need to prove that T Ωð Þ is a bounded set.
Let u∈Ω: Then, for any t∈ 0, 1½ �, we have

∣ Tuð Þ tð Þ∣ ≤ 1
λ
þ 1
∣Δ∣

� �ð1
0
Jα0∣f s, u sð Þ,Dδu sð Þ� �

∣dsþ ∣β∣
∣Δ∣

ðη
0
Jα0∣f s, u sð Þ,Dδ sð Þ� �

∣ds≔ C

Using (H4), we get

∥Tu∥∞ ≤ ΦM: (49)

In the same manner, we find that

∥DδTu∥∞ ≤ ϒM: (50)

From (49) and (50), we have

∥Tu∥E ≤ Φþ ϒð ÞM:

The operator is thus bounded.
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Step 2: Equicontinuity.
Let u∈E: Then, for each t1, t2 ∈ 0, 1½ �, we have

∣Tu t2ð Þ � Tu t1ð Þ∣ ≤ ∣
1
λ

ðt2

0

sinλ t2 � sð ÞJα0 f ðs; u sð Þ;Dδu sð ÞÞds�
ðt1

0

sinλ t1 � sð ÞJα0 f ðs; u sð Þ;Dδu sð ÞÞds
2
4

3
5

þ sin λt2ð Þ � sin λt1ð Þ
Δ

β

ðη

0

sinλ η� sð ÞJα0 f ðs; u sð Þ;Dδu sð ÞÞds
2
4

þ
ð1

0

sinλ 1� sð ÞJα0 f ðs; u sð Þ;Dδu sð ÞÞds
3
5∣

≤
∣Θ∣
∣Δ∣

∣ sin λt2ð Þ � sin λt1ð Þ∣þ 1
λ

ðt2

t1

sinλ t2 � sð ÞJα0∣ f s; u sð Þ;Dδu sð Þ� �
∣ds

þ 1
λ

ðt2

0

∣ðsinλ t2 � sð Þ � sinλ t1 � sð Þ∣Jα0∣ f s; u sð Þ;Dδu sð Þ� �
∣ds,

(51)

where

Θ≔ β

ðη

0

∣sinλ η� sð ÞJα0∣ f s, u sð Þ,Dδu sð Þ� �
∣dsþ

ð1

0

∣sinλ 1� sð Þ∣ Jα0∣ f s, u sð Þ,Dδu sð Þ� �
∣ds:

Analogously, we can obtain

∣T0u t2ð Þ � T0u t1ð Þ∣ ≤ λ
∣Θ∣
∣Δ∣

∣ cos λt2ð Þ � cos λt1ð Þ∣þ 1
λ
∣sinλ t2 � sð Þ � sinλ t1 � sð Þ∣ Jα0∣ f s; u sð Þ;Dδu sð Þ� �

∣:

Consequently, we can write

∣DδTu t2ð Þ �DδTu t1ð Þ∣ ≤ J1�δ∣T0u t2ð Þ � T0u t1ð Þ∣ (52)

As t1 ! t2, the right-hand sides of (51) and (52) tend to zero.
Therefore,

∥Tu t2ð Þ � Tu t1ð Þ∥E ! 0:

The operator T is thus equicontinuous.
As a consequence of Step 1 and Step 2 and thanks to Arzela-Ascoli theorem, we

conclude that T is completely continuous.
Step 3: We prove that Σ≔ u∈E; u ¼ λTu, 0< λ< 1f g is a bounded set.
Let u∈Σ. Then, for each t∈ 0, 1½ �, the following two inequalities are valid:

∣u tð Þ∣ ¼ ∣λTu tð Þ∣ ≤ ∣Tu tð Þ∣ ≤ MΦ

and

∣Dδu tð Þ∣ ¼ ∣λDδTu tð Þ∣ ≤ ∣DδTu tð Þ∣ ≤ Mϒ :
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Again, by (H1), we obtain

B≤ Λ
Δ1sα αþ 1ð Þ þ λ2 þ β1λ

2ηαþ1

Γ αþ 2ð ÞλΔ1

� �
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� �

:
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This implies that
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Thanks to (H2), we can say that the operator T is contractive.
Hence, by Banach fixed point theorem, the operator has a unique fixed point

which corresponds to the unique solution of our Langevin problem.

4.3 Existence of solutions

We prove the following theorem.
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Proof: We use Schaefer fixed point theorem to prove this result. So we proceed

into three steps.
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Since the function f is continuous by (H3), then the operator is also continuous;

this proof is trivial and hence it is omitted.
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Let u∈Ω: Then, for any t∈ 0, 1½ �, we have

∣ Tuð Þ tð Þ∣ ≤ 1
λ
þ 1
∣Δ∣

� �ð1
0
Jα0∣f s, u sð Þ,Dδu sð Þ� �

∣dsþ ∣β∣
∣Δ∣

ðη
0
Jα0∣f s, u sð Þ,Dδ sð Þ� �

∣ds≔ C
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∥DδTu∥∞ ≤ ϒM: (50)

From (49) and (50), we have

∥Tu∥E ≤ Φþ ϒð ÞM:

The operator is thus bounded.
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Step 2: Equicontinuity.
Let u∈E: Then, for each t1, t2 ∈ 0, 1½ �, we have

∣Tu t2ð Þ � Tu t1ð Þ∣ ≤ ∣
1
λ

ðt2

0
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Δ
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4
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λ
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∣:

Consequently, we can write
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As t1 ! t2, the right-hand sides of (51) and (52) tend to zero.
Therefore,

∥Tu t2ð Þ � Tu t1ð Þ∥E ! 0:

The operator T is thus equicontinuous.
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conclude that T is completely continuous.
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Therefore,

∥u∥E ≤ M ϒþΦð Þ:
Thanks to steps 1, 2, and 3 and by Schaefer fixed point theorem, the operator T

has at least one fixed point. This ends the proof of the above theorem.

5. Conclusions

In this chapter, the fractional calculus has been applied for some classes of
integral inequalities. In fact, using Riemann-Liouville integral, some Minkowski and
Hermite-Hadamard-type inequalities have been established. Several other fractional
integral results involving a family of positive functions have been also generated.
The obtained results generalizes some classical integral inequalities in the literature.
In this chapter, we have also presented some applications on continuous random
variables; new identities have been established, and some estimates have been
discussed.

The existence and the uniqueness of solutions for nonlocal boundary value
problem including the Langevin equations with two fractional parameters have
been studied. We have used Caputo approach together with Banach contraction
principle to prove the existence and uniqueness result. Then, by application of
Schaefer fixed point theorem, another existence result has been also proved. Our
approach is simple to apply for a variety of real-world problems.
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Approximate Solutions of Some
Boundary Value Problems by
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Bernstein Polynomials
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Abstract

In this chapter, we develop an efficient numerical scheme for the solution of
boundary value problems of fractional order differential equations as well as their
coupled systems by using Bernstein polynomials. On using the mentioned polyno-
mial, we construct operational matrices for both fractional order derivatives and
integrations. Also we construct a new matrix for the boundary condition. Based on
the suggested method, we convert the considered problem to algebraic equation,
which can be easily solved by using Matlab. In the last section, numerical examples
are provided to illustrate our main results.

Keywords: Bernstein polynomials, coupled systems, fractional order differential
equations, operational matrices of integration, approximate solutions
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1. Introduction

Generalization of classical calculus is known as fractional calculus, which is one
of the fastest growing area of research, especially the theory of fractional order
differential equations because this area has wide range of applications in real-life
problems. Differential equations of fractional order provide an excellent tool for the
description of many physical biological phenomena. The said equations play
important roles for the description of hereditary characteristics of various materials
and genetical problems in biological models as compared with integer order differ-
ential equations in the form of mathematical models. Nowadays, most of its appli-
cations are found in bio-medical engineering as well as in other scientific and
engineering disciplines such as mechanics, chemistry, viscoelasticity, control the-
ory, signal and image processing phenomenon, economics, optimization theory,
etc.; for details, we refer the reader to study [1–9] and the references there in. Due
to these important applications of fractional order differential equations, mathema-
ticians are taking interest in the study of these equations because their models are
more realistic and practical. In the last decade, many researchers have studied the
existence and uniqueness of solutions to boundary value problems and their
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coupled systems for fractional order differential equations (see [10–17]). Hence the
area devoted to existence theory has been very well explored. However, every
fractional differential equation cannot be solved for its analytical solutions easily
due to the complex nature of fractional derivative; so, in such a situation, approxi-
mate solutions to such a problem is most efficient and helpful. Recently, many
methods such as finite difference method, Fourier series method, Adomian decom-
position method (ADM), inverse Laplace technique (ILT), variational iteration
methods (VIM), fractional transform method (FTM), differential transform
method (DTM), homotopy analysis method (HAM), method of radial base function
(MRBM), wavelet techniques (WT), spectral methods and many more (for more
details, see [9, 18–38]) have been developed for obtaining numerical solutions of
such differential equations. These methods have their own merits and demerits.
Some of them provide a very good approximation. However, in the last few years,
some operational matrices were constructed to achieve good approximation as in
[39]. After this, a variety of operational matrices were developed for different
wavelet methods. This method uses operational matrices, where every operation,
for example differentiation and integration, involved in these equations is
performed with the help of a matrix. A large variety of operational matrices are
available in the literature for different orthogonal polynomials like Legendre,
Laguerre, Jacobi and Bernstein polynomials [40–48]. Motivated by the above
applications and uses of fractional differential equations, in this chapter, we devel-
oped a numerical scheme based on operational matrices via Bernstein polynomials.
Our proof is more generalized and there is no need to convert the Bernstein poly-
nomial function vector to another basis like block pulse function or Legendre poly-
nomials. To the best of our knowledge, the method we consider provides a very
good approximation to the solution. By the use of these operational matrices, we
apply our scheme to a single fractional order differential equation with given
boundary conditions as

Dαy tð Þ þ ADμy tð Þ þ By tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ≤ 1,

y 0ð Þ ¼ a, y 1ð Þ ¼ b,

�
(1)

where f tð Þ is the source term, A,B are any real numbers; then we extend our
method to solve a boundary value problem of coupled system of fractional order
differential equations of the form

Dαx tð Þ þ A1Dμ1x tð Þ þ B1Dν1y tð Þ þ C1x tð Þ þD1y tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ1, ν1 ≤ 1,

Dβy tð Þ þ A2Dμ2x tð Þ þ B2Dν2y tð Þ þ C2x tð Þ þD2y tð Þ ¼ g tð Þ, 1< β≤ 2, 0< μ2, ν2 ≤ 1,

y 0ð Þ ¼ a, y 1ð Þ ¼ b, y 0ð Þ ¼ c, y 1ð Þ ¼ d,

8><
>:

(2)

where f tð Þ, g tð Þ are source terms of the system, Ai,Bi,Ci,Di i ¼ 1, 2ð Þ are any real
constants. Also we compare our approximations to exact values and approximations
of other methods like Jacobi polynomial approximations and Haar wavelets
methods to evaluate the efficiency of the proposed method. We also provide some
examples for the illustration of our main results.

This chapter is designed in five sections. In the first section of the chapter, we
have cited some basic works related to the numerical and analytical solutions of
differential equations of arbitrary order by various methods. The necessary defini-
tions and results related to fractional calculus and Bernstein polynomials along with
the construction of some operational matrices are given in Section 2. In Section 3,
we have discussed the main theory for the numerical procedure. Section 4 contains
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some interesting practical examples and their images. Section 5 describes the
conclusion of the chapter.

2. Basic definitions and results

In this section, we recall some fundamental definitions and results from the
literature, which can be found in [10–16].

Definition 2.1. The fractional integral of order γ ∈þ of a function y∈L1 0, 1½ �,ð Þ
is defined as

Iγ0þy tð Þ ¼ 1
Γ γð Þ

ðt
0
t� τð Þγ�1y τð Þdτ:

Definition 2.2. The Caputo fractional order derivative of a function y on the interval
0, 1½ � is defined by

Dγ
0þy tð Þ ¼ 1

Γ n� γð Þ
ðt
0
t� τð Þn�γ�1y nð Þ τð Þdτ,

where n ¼ γ½ � þ 1 and γ½ � represents the integer part of γ.
Lemma 2.1. The fractional differential equation of order γ >0

Dγy tð Þ ¼ 0, n� 1< γ ≤ n,

has a unique solution of the form y tð Þ ¼ d0 þ d1tþ d2t2 þ … þ dn�1tn�1, where
dk ∈R and k ¼ 0, 1, 2, 3, :… , n� 1:.

Lemma 2.2. The following result holds for fractional differential equations

IγDγy tð Þ ¼ y tð Þ þ d0 þ c1tþ d2t2 þ … þ dn�1tn�1,

for arbitrary dk ∈R, k ¼ 0, 1, 2, … , n� 1.
Hence it follows that

Dγtk ¼ Γ kþ 1ð Þ
Γ k� γ þ 1ð Þ t

k�γ, Iγtk ¼ Γ kþ 1ð Þ
Γ kþ γ þ 1ð Þ t

kþγ and Dγ constant½ � ¼ 0:

2.1 The Bernstein polynomials

The Bernstein polynomials Bi,m tð Þ on 0, 1½ � can be defined as

Bi,m tð Þ ¼ m
i

� �
ti 1� tð Þm�i, for i ¼ 0, 1, 2…m,

where
m
i

� �
¼ m!

m�ið Þ!i! , which on further simplification can be written in the

most simplified form as

Bi,m tð Þ ¼
Xm�i

k¼0

Θ i,k,mð Þtkþi, i ¼ 0, 1, 2…m, (3)
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where

Θ i,k,mð Þ ¼ �1ð Þk m
i

� �
m� i
k

� �
:

Note that the sum of the Bernstein polynomials converges to 1.
Lemma 2.3. Convergence Analysis: Assume that the function g∈Cmþ1 0, 1½ � that is

mþ 1 times continuously differentiable function and let X ¼ B0,m,B1,m, … ,Bm,mh i. If
CTΨ xð Þ is the best approximation of g out of X, then the error bound is presented as

∥ g � CTΨ∥2 ≤
ffiffiffi
2

p
MS

2mþ3
2

Γ mþ 2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 3

p ,

where M ¼ max x∈ 0,1½ �∣ g mþ1ð Þ xð Þ∣, S ¼ max 1� x0, x0f g:
Proof. In view of Taylor polynomials, we have

F xð Þ ¼ g x0ð Þ þ x� x0ð Þg 1ð Þ x0ð Þ þ x� x0ð Þ2
Γ3

g 2ð Þ þ … þ x� x0ð Þm
Γ mþ 1ð Þ g

mð Þ,

from which we know that

∣ g � F xð Þ∣ ¼ ∣ g mþ1ð Þ ηð Þ∣ x� x0ð Þmþ1

Γ mþ 2ð Þ , there exist η∈ 0, 1ð Þ:

Due the best approximation CTΨ xð Þ of g, we have

∥ g � CTΨ xð Þ∥22 ≤∥ g � F∥22

¼
ð1
0

g xð Þ � F xð Þð Þ2dx

¼
ð1
0

j g mþ1ð Þ ηð Þj x� x0ð Þmþ1

Γ mþ 2ð Þ

" #2
dx

≤
M2

Γ2 mþ 2ð Þ
ð1
0
x� x0ð Þ2mþ2dx

≤
2M2S2mþ3

Γ2 mþ 2ð Þ 2mþ 3ð Þ :

Hence we have

∥ g � CTΨ xð Þ∥2 ≤
ffiffiffi
2

p
MS

2mþ3
2

Γ mþ 2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 3ð Þp : □

Let H ¼ L2 0, 1½ � be a Hilbert space, then the inner product can be defined as

< f , g> ¼
ð1
0
f xð Þ:g xð Þdx

and
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Y ¼ span B0,m,B1,m, …Bm,mf g

is a finite dimensional and closed subspace. So if f ∈H is an arbitrary element
then its best approximation is unique in Y: This terminology can be achieved by
using y0 ∈Y and for all y∈Y, we have ∥ f � y0∥≤∥ f � y∥: Thus any function can be
approximated in terms of Bernstein polynomials as

f tð Þ ¼
Xm
i¼0

ciB i,mð Þ, (4)

where coefficient ci can easily be calculated by multiplying (4) by
B j,mð Þ tð Þ, j ¼ 0, 1, 2, …m and integrating over 0, 1½ � by using inner product and

di ¼
Ð 1
0B i,mð Þ tð Þf tð Þdt, θ i,jð Þ ¼

Ð 1
0B i,mð Þ tð ÞB j,mð Þ tð Þdt, i, j ¼ 0, 1, 2:…m, we have

ð1
0
f tð ÞB j,mð Þ tð Þdt ¼

ð1
0

Xm
i¼0

ciB i,mð Þ tð Þ:B j,mð Þ tð Þdt, j ¼ 0, 1, 2…m,

which implies that
ð1
0
f tð ÞB j,mð Þ tð Þdt ¼

Xm
i¼0

ci

ð1
0
B i,mð Þ tð Þ:B j,mð Þ tð Þdt, j ¼ 0, 1, 2…m

which implies that d0 d1 :… dm½ � ¼ c0 c1:… cm½ �

θ 0,0ð Þ θ 0,1ð Þ ⋯ θ 0,rð Þ ⋯ θ 0,mð Þ

θ 1,0ð Þ θ 1,1ð Þ ⋯ θ 1,rð Þ ⋯ θ 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

θ r,0ð Þ θ r,1ð Þ ⋯ θ r,rð Þ ⋯ θ r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

θ m,0ð Þ θ m,1ð Þ ⋯ θ m,rð Þ ⋯ θ m,mð Þ

2
666666666664

3
777777777775

:

(5)

Let XM ¼ d0 d1 :… dm½ �, CM ¼ c0 c1:… cm½ �, where M ¼ mþ 1 where M is the

scale level and ΦM�M ¼

θ 0,0ð Þ θ 0,1ð Þ ⋯ θ 0,rð Þ ⋯ θ 0,mð Þ
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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θ m,0ð Þ θ m,1ð Þ ⋯ θ m,rð Þ ⋯ θ m,mð Þ

2
666666666664

3
777777777775

, so

XM ¼ CMΦM�M ) CM ¼ XMΦ�1
M�M: (6)

where Φm�M is called the dual matrix of the Bernstein polynomials. After
calculating ci, (4) can be written as

f tð Þ ¼ CMBT
M tð Þ, CM is coefficient matrix

where

BM tð Þ ¼ B 0,mð Þ,B 1,mð Þ, :…B m,mð Þ
� �

: (7)

Lemma 2.4. Let BT
M tð Þ be the function vector defined in (3), then the fractional order

integration of BT
M tð Þ is given by
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where

Θ i,k,mð Þ ¼ �1ð Þk m
i

� �
m� i
k

� �
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ffiffiffi
2

p
MS

2mþ3
2

Γ mþ 2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 3

p ,
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Γ3
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Γ mþ 1ð Þ g
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0
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Γ mþ 2ð Þ

" #2
dx
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M2
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ð1
0
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2M2S2mþ3
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IαBT
M tð Þ ¼ Pα

M�MB
T
M tð Þ, (8)

where Pα
M�M is the fractional integration’s operational matrix defined as

Pα
M�M ¼ P̂

α

M�MΦ
�1
M�M

and Φ�1
M�M is given in (3) and Pα

M�M is given by

P̂
α

M�M ¼

Ψ 0,0ð Þ Ψ 0,1ð Þ ⋯ Ψ 0,rð Þ ⋯ Ψ 0,mð Þ
Ψ 1,0ð Þ Ψ 1,1ð Þ ⋯ Ψ 1,rð Þ ⋯ Ψ 1,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ r,0ð Þ Ψ r,1ð Þ ⋯ Ψ r,rð Þ ⋯ Ψ r,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ m,0ð Þ Ψ m,1ð Þ ⋯ Ψ m,rð Þ ⋯ Ψ m,mð Þ

2
666666664

3
777777775
, (9)

where

Ψi,j ¼
Xm�i

k¼0

Xm�j

l¼0

θ i,k,mð Þθ j,l,mð Þ
Γ kþ iþ 1ð Þ

iþ jþ kþ lþ αþ 1ð ÞΓ kþ iþ αþ 1ð Þ : (10)

Proof. Consider

Bi,m tð Þ ¼
Xm�i

k¼0

θ i,k,mð Þtkþi (11)

taking fractional integration of both sides, we have

IαBi,m tð Þ ¼
Xm�i

k¼0

θ i,k,mð ÞIαtkþi ¼
Xm�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ t
kþiþα: (12)

Now to approximate right-hand sides of above

Xm�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ t
kþiþα ¼ C ið Þ

MBT
M tð Þ (13)

where C ið Þ
M can be approximated by using (3) as

C ið Þ
M ¼ X ið Þ

MΦ�1
M�M, (14)

where entries of the vector X ið Þ
M can be calculated in generalized form as

X jð Þ
M ¼

ð1
0

Xm�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ t
kþiþαB j,m tð Þdt, j ¼ 0, 1, 2:…m

) X jð Þ
M ¼

ð1
0

Xm�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ
Xm�j

l¼0

θ j,l,mð Þtkþiþα:tlþjdt, j ¼ 0, 1, 2:…m

¼
Xm�i

k¼0

θ i,k,mð Þ
Xm�j

l¼0

θ j,l,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ
1

kþ lþ jþ iþ αþ 1ð Þ , j ¼ 0, 1, 2, :…m

(15)
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evaluating this result for i = 0,1,2....m, we have

IαB0,m tð Þ
IαB1,m tð Þ

⋮

⋮

⋮

IαBm,m tð Þ

2
6666666666664

3
7777777777775

¼

X 0ð Þ
M Φ�1

M�MB
T
M tð Þ

X 1ð Þ
M Φ�1

M�MB
T
M tð Þ

⋮

⋮

⋮

X mð Þ
M Φ�1

M�MB
T
M tð ÞÞ

2
66666666666664

3
77777777777775

(16)

further writing

Ψi,j ¼
Xm�i

k¼0

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ
1

kþ lþ jþ iþ αþ 1ð Þ

we get

IαBT
M tð Þ ¼ P̂

α

M�M:Φ
�1
M�M:B

T
M tð Þ: (17)

Let us represent

P̂
α

M�M:Φ
�1
M�M ¼ Pα

M�M

thus

IαBT
M tð Þ ¼ Pα

M�M:B
T
M tð Þ: (18)

□
Lemma 2.5. Let BT

M tð Þ be the function vector as defined in (3), then fractional order
derivative is defined as

DαBT
M tð Þ ¼ Gα

M�M:B
T
M tð Þ (19)

where Gα
M�M is the operational matrix of fractional order derivative given by

Gα
M�M ¼ Ĝ

α

M�MΦ
�1
M�M, (20)

where ΦM�M is the dual matrix given in (3) and

Ĝ
α

M�M ¼

Ψ 0,0ð Þ Ψ 0,1ð Þ ⋯ Ψ 0,rð Þ ⋯ Ψ 0,mð Þ

Ψ 1,0ð Þ Ψ 1,1ð Þ ⋯ Ψ 1,rð Þ ⋯ Ψ 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ r,0ð Þ Ψ r,1ð Þ ⋯ Ψ r,rð Þ ⋯ Ψ r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ m,0ð Þ Ψ m,1ð Þ ⋯ Ψ m,rð Þ ⋯ Ψ m,mð Þ

2
6666666666664

3
7777777777775

, (21)
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thus
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where Ψ i,jð Þ is defined for two different cases as
Case I: i< α½ �ð Þ

Ψi,j ¼
Xm�i

k¼ α½ �

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ i� αð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ (22)

Case II: i≥ α½ �ð Þ

Ψi,j ¼
Xm�i

k¼0

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ i� αð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ : (23)

Proof. Consider the general element as

DαBi,m tð Þ ¼ Dα
Xm�i

k¼0

θ i,k,mð Þ:tkþi

 !
¼
Xm�i

k¼0

θ i,k,mð ÞDαtkþi: (24)

It is to be noted in the polynomial function Bi,m the power of the variable ‘t’ is an
ascending order and the lowest power is ‘i’ therefore the first α� 1½ � terms becomes
zero when we take derivative of order α:

Case I: i< α½ �ð ÞBy the use of definition of fractional derivative

DαBi,m tð Þ ¼
Xm�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�α: (25)

Now approximating RHS of (25) as

Xm�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�α ¼ C ið Þ
MBT

M tð Þ (26)

further implies that

X jð Þ
M ¼

ð1
0

Xm�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�αB j,m tð Þdt, j ¼ 0, 1, 2:…m

) X jð Þ
M ¼

Xm�i

k¼ α½ �
θ i,k,mð Þ

Xm�j

l¼0

θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ kþ iþ lþ j� αþ 1ð Þ , j ¼ 0, 1, 2:…m

(27)

Case II: i≥ α½ �ð Þ if i≤ α½ � then

X jð Þ
M ¼

Xm�i

k¼0

θ i,k,mð Þ
Xm�j

l¼0

θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ kþ iþ lþ j� αþ 1ð Þ , j ¼ 0, 1, 2:…m:

(28)

After careful simplification, we get
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DαB0,m tð Þ
DαB1,m tð Þ

⋮

⋮

⋮

DαBm,m tð Þ

2
66666666664

3
77777777775

¼

X 0ð Þ
M Φ�1

M�MB
T
M tð Þ

X 1ð Þ
M Φ�1

M�MB
T
M tð Þ

⋮

⋮

⋮

X mð Þ
M Φ�1

M�MB
T
M tð ÞÞ

2
666666666664

3
777777777775

: (29)

On further simplification, we have

Ψi,j ¼
Xm�i

k¼ α½ �

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ i< α½ �ð Þ

Ψi,j ¼
Xm�i

k¼0

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ
we get DαBT

M tð Þ ¼ Ĝ
α

M�MΦ
�1
M�M:B

T
M tð Þ:

(30)

Let

Ĝ
α

M�MΦ
�1
M�M ¼ Gα

M�M

so

DαBT
M tð Þ ¼ Gα

M�MB
T
M tð Þ

which is the desired result. □
Lemma 2.6. An operational matrix corresponding to the boundary condition by

taking BT
M tð Þ is function vector and K is coefficient vector by taking the approximation

u tð Þ ¼ KB̂ tð Þ

is given by

Qα,ϕ
M�M ¼

Ω 0,0ð Þ Ω 0,1ð Þ ⋯ Ω 0,rð Þ ⋯ Ω 0,mð Þ
Ω 1,0ð Þ Ω 1,1ð Þ ⋯ Ω 1,rð Þ ⋯ Ω 1,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω r,0ð Þ Ω r,1ð Þ ⋯ Ω r,rð Þ ⋯ Ω r,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω m,0ð Þ Ω m,1ð Þ ⋯ Ω m,rð Þ ⋯ Ω m,mð Þ

2
666666664

3
777777775
, (31)

where

Ωi,j ¼
ð1
0
Δi,mϕ tð ÞBj tð Þdt, i, j ¼ 0, 1, 2:…m:

Proof. Let us take u tð Þ ¼ KB̂ tð Þ, then
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where Ψ i,jð Þ is defined for two different cases as
Case I: i< α½ �ð Þ

Ψi,j ¼
Xm�i

k¼ α½ �

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ i� αð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ (22)

Case II: i≥ α½ �ð Þ

Ψi,j ¼
Xm�i

k¼0

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ i� αð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ : (23)

Proof. Consider the general element as

DαBi,m tð Þ ¼ Dα
Xm�i

k¼0

θ i,k,mð Þ:tkþi

 !
¼
Xm�i

k¼0

θ i,k,mð ÞDαtkþi: (24)

It is to be noted in the polynomial function Bi,m the power of the variable ‘t’ is an
ascending order and the lowest power is ‘i’ therefore the first α� 1½ � terms becomes
zero when we take derivative of order α:

Case I: i< α½ �ð ÞBy the use of definition of fractional derivative

DαBi,m tð Þ ¼
Xm�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�α: (25)

Now approximating RHS of (25) as

Xm�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�α ¼ C ið Þ
MBT

M tð Þ (26)

further implies that

X jð Þ
M ¼

ð1
0

Xm�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�αB j,m tð Þdt, j ¼ 0, 1, 2:…m

) X jð Þ
M ¼

Xm�i

k¼ α½ �
θ i,k,mð Þ

Xm�j

l¼0

θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ kþ iþ lþ j� αþ 1ð Þ , j ¼ 0, 1, 2:…m

(27)

Case II: i≥ α½ �ð Þ if i≤ α½ � then

X jð Þ
M ¼

Xm�i

k¼0

θ i,k,mð Þ
Xm�j

l¼0

θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ kþ iþ lþ j� αþ 1ð Þ , j ¼ 0, 1, 2:…m:

(28)

After careful simplification, we get
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DαB0,m tð Þ
DαB1,m tð Þ

⋮

⋮

⋮

DαBm,m tð Þ

2
66666666664

3
77777777775

¼

X 0ð Þ
M Φ�1

M�MB
T
M tð Þ

X 1ð Þ
M Φ�1

M�MB
T
M tð Þ

⋮

⋮

⋮

X mð Þ
M Φ�1

M�MB
T
M tð ÞÞ

2
666666666664

3
777777777775

: (29)

On further simplification, we have

Ψi,j ¼
Xm�i

k¼ α½ �

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ i< α½ �ð Þ

Ψi,j ¼
Xm�i

k¼0

Xm�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ
we get DαBT

M tð Þ ¼ Ĝ
α

M�MΦ
�1
M�M:B

T
M tð Þ:

(30)

Let

Ĝ
α

M�MΦ
�1
M�M ¼ Gα

M�M

so

DαBT
M tð Þ ¼ Gα

M�MB
T
M tð Þ

which is the desired result. □
Lemma 2.6. An operational matrix corresponding to the boundary condition by

taking BT
M tð Þ is function vector and K is coefficient vector by taking the approximation

u tð Þ ¼ KB̂ tð Þ

is given by

Qα,ϕ
M�M ¼

Ω 0,0ð Þ Ω 0,1ð Þ ⋯ Ω 0,rð Þ ⋯ Ω 0,mð Þ
Ω 1,0ð Þ Ω 1,1ð Þ ⋯ Ω 1,rð Þ ⋯ Ω 1,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω r,0ð Þ Ω r,1ð Þ ⋯ Ω r,rð Þ ⋯ Ω r,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω m,0ð Þ Ω m,1ð Þ ⋯ Ω m,rð Þ ⋯ Ω m,mð Þ

2
666666664

3
777777775
, (31)

where

Ωi,j ¼
ð1
0
Δi,mϕ tð ÞBj tð Þdt, i, j ¼ 0, 1, 2:…m:

Proof. Let us take u tð Þ ¼ KB̂ tð Þ, then
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0Iα1KB̂ tð Þ ¼ K0Iα1 B̂ tð Þ ¼ K

0Iα1B0 tð Þ
0Iα1B1 tð Þ

⋮
⋮
⋮

0Iα1Bm tð Þ

2
666666664

3
777777775
:

Let us evaluate the general terms

0Iα1Bi tð Þdt ¼ 1
Γα

ð1
0
1� sð Þα�1Bi,m sð Þds

¼ 1
Γα

Xm�i

k¼0

Θi,k,m

ð1
0
1� sð Þα�1skþids:

(32)

Since by

L
ð1
0
1� sð Þα�1skþids

� �
¼ ΓαΓ kþ iþ 1ð Þ

τkþαþi

taking inverse Laplace of both sides, we get

ð1
0
1� sð Þα�1:skþids ¼ L�1 Γα:Γ kþ iþ 1ð Þ

τkþαþi

� �
¼ Γα:Γ kþ iþ 1ð Þ

Γ kþ iþ αþ 1ð Þ

now Eq. (32) implies that

0Iα1Bi tð Þdt ¼
Xm�i

k¼0

Θi,k,m
Γ kþ iþ 1ð Þ

Γ kþ iþ αþ 1ð Þ ¼ Δi,m: (33)

Now using the approximation Δi,mϕ tð Þ ¼Pm
i¼0ĉiBi tð Þ ¼ Ci

MB
T
M, and using

Eq. (3) we get Ci
M ¼ Ki

MΦ
�1
M�MB

T
M and using cj ¼

Ð 1
0ϕ tð ÞBj tð Þdt,

ϕ tð ÞKIαB̂ tð Þ ¼ K

Δ0,mϕ tð Þ
Δ1,mϕ tð Þ

⋮

⋮

⋮

Δm,mϕ tð Þ

2
6666666666664

3
7777777777775

¼ K

C0
MΦ

�1
M�MB

T
M tð Þ

C1
MΦ

�1
M�MB

T
M tð Þ

⋮

⋮

⋮

Cm
MΦ

�1
M�MB

T
M tð Þ

2
6666666666664

3
7777777777775

¼ K

c00 c01 ⋯ c0r ⋯ c0m

c10 c11 ⋯ c1r ⋯ c1m

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

cr0 cr1 ⋯ crr ⋯ crm

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

cm0 cm1 ⋯ cmr ⋯ cmm

2
6666666666664

3
7777777777775

Φ�1
M�MB

T
M tð Þ

Φ�1
M�MB

T
M tð Þ

⋮

⋮

⋮

Φ�1
M�MB

T
M tð Þ

2
6666666666664

3
7777777777775

:

(34)
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On further simplification, we get

ϕ tð ÞKIαB̂ tð Þ ¼ K

Ω 0,0ð Þ Ω 0,1ð Þ ⋯ Ω 0,rð Þ ⋯ Ω 0,mð Þ
Ω 1,0ð Þ Ω 1,1ð Þ ⋯ Ω 1,rð Þ ⋯ Ω 1,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω r,0ð Þ Ω r,1ð Þ ⋯ Ω r,rð Þ ⋯ Ω r,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω m,0ð Þ Ω m,1ð Þ ⋯ Ω m,rð Þ ⋯ Ω m,mð Þ

2
666666664

3
777777775

B0 tð Þ
B1 tð Þ
⋮
⋮
⋮

Bm tð Þ

2
666666664

3
777777775
: (35)

So

ϕ tð Þ0Iα1u tð Þ ¼ KQα,ϕ
M�MB

T
M tð Þ,

and

Ωi,j ¼
ð1
0
Δi,mϕ tð ÞBj tð Þdt, i, j ¼ 0, 1, 2:…m: (36)

which is the required result. □

3. Applications of operational matrices

In this section, we are going to approximate a boundary value problem of
fractional order differential equation as well as a coupled system of fractional order
boundary value problem. The application of obtained operational matrices is shown
in the following procedure.

3.1 Fractional differential equations

Consider the following problem in generalized form of fractional order differ-
ential equation

Dαy tð Þ þ ADμy tð Þ þ By tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ≤ 1,

subject to the boundary conditions y 0ð Þ ¼ a, y 1ð Þ ¼ b,
(37)

where f tð Þ is a source term; A,B are any real constants and y tð Þ is an unknown
solution which we want to determine. To obtain a numerical solution of the above
problem in terms of Bernstein polynomials, we proceed as

Let Dαy tð Þ ¼ KMBT
M tð Þ: (38)

Applying fractional integral of order α we have

y tð Þ ¼ KMPα
M�MB

T
M tð Þ � c0 þ c1t

using boundary conditions, we have

c0 ¼ a, c1 ¼ b� a� KMPα
M�MB

T
M tð Þ��t¼1:
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0Iα1KB̂ tð Þ ¼ K0Iα1 B̂ tð Þ ¼ K

0Iα1B0 tð Þ
0Iα1B1 tð Þ

⋮
⋮
⋮

0Iα1Bm tð Þ

2
666666664

3
777777775
:

Let us evaluate the general terms

0Iα1Bi tð Þdt ¼ 1
Γα

ð1
0
1� sð Þα�1Bi,m sð Þds

¼ 1
Γα

Xm�i

k¼0

Θi,k,m

ð1
0
1� sð Þα�1skþids:

(32)

Since by

L
ð1
0
1� sð Þα�1skþids

� �
¼ ΓαΓ kþ iþ 1ð Þ

τkþαþi

taking inverse Laplace of both sides, we get

ð1
0
1� sð Þα�1:skþids ¼ L�1 Γα:Γ kþ iþ 1ð Þ

τkþαþi

� �
¼ Γα:Γ kþ iþ 1ð Þ

Γ kþ iþ αþ 1ð Þ

now Eq. (32) implies that

0Iα1Bi tð Þdt ¼
Xm�i

k¼0

Θi,k,m
Γ kþ iþ 1ð Þ

Γ kþ iþ αþ 1ð Þ ¼ Δi,m: (33)

Now using the approximation Δi,mϕ tð Þ ¼Pm
i¼0ĉiBi tð Þ ¼ Ci

MB
T
M, and using

Eq. (3) we get Ci
M ¼ Ki

MΦ
�1
M�MB

T
M and using cj ¼

Ð 1
0ϕ tð ÞBj tð Þdt,

ϕ tð ÞKIαB̂ tð Þ ¼ K

Δ0,mϕ tð Þ
Δ1,mϕ tð Þ

⋮

⋮

⋮

Δm,mϕ tð Þ

2
6666666666664

3
7777777777775

¼ K

C0
MΦ

�1
M�MB

T
M tð Þ

C1
MΦ

�1
M�MB

T
M tð Þ

⋮

⋮

⋮

Cm
MΦ

�1
M�MB

T
M tð Þ

2
6666666666664

3
7777777777775

¼ K

c00 c01 ⋯ c0r ⋯ c0m

c10 c11 ⋯ c1r ⋯ c1m

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

cr0 cr1 ⋯ crr ⋯ crm

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

cm0 cm1 ⋯ cmr ⋯ cmm

2
6666666666664

3
7777777777775

Φ�1
M�MB

T
M tð Þ

Φ�1
M�MB

T
M tð Þ

⋮

⋮

⋮

Φ�1
M�MB

T
M tð Þ

2
6666666666664

3
7777777777775

:

(34)
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On further simplification, we get

ϕ tð ÞKIαB̂ tð Þ ¼ K

Ω 0,0ð Þ Ω 0,1ð Þ ⋯ Ω 0,rð Þ ⋯ Ω 0,mð Þ
Ω 1,0ð Þ Ω 1,1ð Þ ⋯ Ω 1,rð Þ ⋯ Ω 1,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω r,0ð Þ Ω r,1ð Þ ⋯ Ω r,rð Þ ⋯ Ω r,mð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω m,0ð Þ Ω m,1ð Þ ⋯ Ω m,rð Þ ⋯ Ω m,mð Þ

2
666666664

3
777777775

B0 tð Þ
B1 tð Þ
⋮
⋮
⋮

Bm tð Þ

2
666666664

3
777777775
: (35)

So

ϕ tð Þ0Iα1u tð Þ ¼ KQα,ϕ
M�MB

T
M tð Þ,

and

Ωi,j ¼
ð1
0
Δi,mϕ tð ÞBj tð Þdt, i, j ¼ 0, 1, 2:…m: (36)

which is the required result. □

3. Applications of operational matrices

In this section, we are going to approximate a boundary value problem of
fractional order differential equation as well as a coupled system of fractional order
boundary value problem. The application of obtained operational matrices is shown
in the following procedure.

3.1 Fractional differential equations

Consider the following problem in generalized form of fractional order differ-
ential equation

Dαy tð Þ þ ADμy tð Þ þ By tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ≤ 1,

subject to the boundary conditions y 0ð Þ ¼ a, y 1ð Þ ¼ b,
(37)

where f tð Þ is a source term; A,B are any real constants and y tð Þ is an unknown
solution which we want to determine. To obtain a numerical solution of the above
problem in terms of Bernstein polynomials, we proceed as

Let Dαy tð Þ ¼ KMBT
M tð Þ: (38)

Applying fractional integral of order α we have

y tð Þ ¼ KMPα
M�MB

T
M tð Þ � c0 þ c1t

using boundary conditions, we have

c0 ¼ a, c1 ¼ b� a� KMPα
M�MB

T
M tð Þ��t¼1:
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Using the approximation and Lemma 2.2

aþ t b� að Þ ¼ F 1ð Þ
M BT

M tð Þ, tPα
M�MB

T
M tð Þ

���
t¼1

¼ Qα,ϕ
M�MB

T
M tð Þ:

Hence

y tð Þ ¼ KMPα
M�MB

T
M tð Þ þ aþ t b� að Þ � tKMPα

M�MB
T
M tð Þ��t¼1,

which gives y tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ �Qα,ϕ

M�MB
T
M tð Þ

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
BT
M tð Þ þ F 1ð Þ

M BT
M tð Þ:

(39)

Now

Dμy tð Þ ¼ Dμ KM Pα
M�M �Qα,ϕ

M�M

� �
BT
M tð Þ þ F 1ð Þ

M BT
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ

M�MB
T
M tð Þ þ F 1ð Þ

M Gμ
M�MB

T
M tð Þ

(40)

and

f tð Þ ¼ F 2ð Þ
M BT

M tð Þ: (41)

Putting Eqs. (38)–(41) in Eq. (37), we get

KMBT
M tð Þ þ AKM Pα

M�M �Qα,ϕ
M�M

� �
Gμ

M�MB
T
M tð Þ þ AF 1ð Þ

M Gμ
M�MB

T
M tð Þ

þBKM Pα
M�M � Qα,ϕ

M�M

� �
BT
M tð Þ þ BF 1ð Þ

M BT
M tð Þ ¼ F 2ð Þ

M BT
M tð Þ:

(42)

In simple form, we can write (42) as

KMBT
M tð Þ þ AKM Pα

M�M �Qα,ϕ
M�M

� �
Gμ

M�MB
T
M tð Þ þ AF 1ð Þ

M Gμ
M�MB

T
M tð Þ

þ BKM Pα
M�M �Qα,ϕ

M�M

� �
BT
M tð Þ þ BF 1ð Þ

M BT
M tð Þ � F 2ð Þ

M BT
M tð Þ ¼ 0

KM þ KM AP̂
α

M�MG
μ
M�M þ BP̂

α

M�M

� �
þ AF 1ð Þ

M Gμ
M�M þ BF 1ð Þ

M � F 2ð Þ
M ,

(43)

where

P̂
α

M�M ¼ Pα
M�M � Qα,ϕ

M�M:

Eq. (43) is an algebraic equation of Lyapunov type, which can be easily solved
for the unknown coefficient vector KM. When we find KM, then putting this in
Eq. (39), we get the required approximate solution of the problem.

3.2 Coupled system of boundary value problem of fractional order differential
equations

Consider a coupled system of a fractional order boundary value problem

Dαx tð Þ þ A1Dμ1x tð Þ þ B1Dν1y tð Þ þ C1x tð Þ þD1y tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ1, ν1 ≤ 1,

Dβy tð Þ þ A2Dμ2x tð Þ þ B2Dν2y tð Þ þ C2x tð Þ þD2y tð Þ ¼ g tð Þ, 1< β≤ 2, 0< μ2, ν2 ≤ 1,

(44)
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subject to the boundary conditions

x 0ð Þ ¼ a, x 1ð Þ ¼ b y 0ð Þ ¼ c, y 1ð Þ ¼ d, (45)

where Ai,Bi,Ci,Di i ¼ 1, 2ð Þ are any real constants, f tð Þ, g tð Þ are given source
terms. We approximate the solution of the above system in terms of Bernstein
polynomials such as

Dαx tð Þ ¼ KMBT
M tð Þ, Dβy tð Þ ¼ LMBT

M tð Þ
x tð Þ ¼ KMPα

M�MB
T
M tð Þ þ c0 þ c1t, y tð Þ ¼ LM Pβ

M�MB
T
M tð Þ þ d0 þ d1t

�

applying boundary conditions, we have

x tð Þ ¼ KMðPα
M�MB

T
M tð Þ þ aþ t b� að Þ � tKMPα

M�MB
T
M tð Þ��t¼1,

y tð Þ ¼ KMðPβ
M�MB

T
M tð Þ þ cþ t d� cð Þ � tKMP

β
M�MB

T
M tð Þ

���
t¼1

:

let us approximate

aþ t b� að Þ ¼ F1
MB

T
M tð Þ, cþ t d� cð Þ ¼ F2

MB
T
M tð Þ

tPα
M�MB

T
M tð Þ t¼1 ¼ Qα,ϕ

M�MB
T
M tð Þ, tPβ

M�MB
T
M tð Þ

���
���
t¼1

¼ Qβ,ϕ
M�MB

T
M tð Þ

then

x tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

y tð Þ ¼ LMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � LMQ

β,ϕ
M�MB

T
M tð Þ

Dμ1x tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ1

M�M þ F 1ð Þ
M Gμ1

M�MB
T
M tð Þ

Dν1y tð Þ ¼ Dν1 LMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � LMQ

β,ϕ
M�MB

T
M tð Þ

h i

¼ LM Pβ
M�M � Qβ,ϕ

M�M

� �
Gν1

M�M þ F 2ð Þ
M Gν1

M�MB
T
M tð Þ

Dμ2x tð Þ ¼ Dμ2 KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ2

M�M þ F 1ð Þ
M Gμ2

M�MB
T
M tð Þ

and

Dν2y tð Þ ¼ Dν2 KMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � KMQ

β,ϕ
M�MB

T
M tð Þ

h i

¼ LM Pβ
M�M � Qβ,ϕ

M�M

� �
Gν2

M�M þ F 2ð Þ
M Gν2

M�MB
T
M tð Þ

f tð Þ ¼ F 3ð ÞBT
M tð Þ, g tð Þ ¼ F 4ð ÞBT

M tð Þ:
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Using the approximation and Lemma 2.2

aþ t b� að Þ ¼ F 1ð Þ
M BT

M tð Þ, tPα
M�MB

T
M tð Þ

���
t¼1

¼ Qα,ϕ
M�MB

T
M tð Þ:

Hence

y tð Þ ¼ KMPα
M�MB

T
M tð Þ þ aþ t b� að Þ � tKMPα

M�MB
T
M tð Þ��t¼1,

which gives y tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ �Qα,ϕ

M�MB
T
M tð Þ

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
BT
M tð Þ þ F 1ð Þ

M BT
M tð Þ:

(39)

Now

Dμy tð Þ ¼ Dμ KM Pα
M�M �Qα,ϕ

M�M

� �
BT
M tð Þ þ F 1ð Þ

M BT
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ

M�MB
T
M tð Þ þ F 1ð Þ

M Gμ
M�MB

T
M tð Þ

(40)

and

f tð Þ ¼ F 2ð Þ
M BT

M tð Þ: (41)

Putting Eqs. (38)–(41) in Eq. (37), we get

KMBT
M tð Þ þ AKM Pα

M�M �Qα,ϕ
M�M

� �
Gμ

M�MB
T
M tð Þ þ AF 1ð Þ

M Gμ
M�MB

T
M tð Þ

þBKM Pα
M�M � Qα,ϕ

M�M

� �
BT
M tð Þ þ BF 1ð Þ

M BT
M tð Þ ¼ F 2ð Þ

M BT
M tð Þ:

(42)

In simple form, we can write (42) as

KMBT
M tð Þ þ AKM Pα

M�M �Qα,ϕ
M�M

� �
Gμ

M�MB
T
M tð Þ þ AF 1ð Þ

M Gμ
M�MB

T
M tð Þ

þ BKM Pα
M�M �Qα,ϕ

M�M

� �
BT
M tð Þ þ BF 1ð Þ

M BT
M tð Þ � F 2ð Þ

M BT
M tð Þ ¼ 0

KM þ KM AP̂
α

M�MG
μ
M�M þ BP̂

α

M�M

� �
þ AF 1ð Þ

M Gμ
M�M þ BF 1ð Þ

M � F 2ð Þ
M ,

(43)

where

P̂
α

M�M ¼ Pα
M�M � Qα,ϕ

M�M:

Eq. (43) is an algebraic equation of Lyapunov type, which can be easily solved
for the unknown coefficient vector KM. When we find KM, then putting this in
Eq. (39), we get the required approximate solution of the problem.

3.2 Coupled system of boundary value problem of fractional order differential
equations

Consider a coupled system of a fractional order boundary value problem

Dαx tð Þ þ A1Dμ1x tð Þ þ B1Dν1y tð Þ þ C1x tð Þ þD1y tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ1, ν1 ≤ 1,

Dβy tð Þ þ A2Dμ2x tð Þ þ B2Dν2y tð Þ þ C2x tð Þ þD2y tð Þ ¼ g tð Þ, 1< β≤ 2, 0< μ2, ν2 ≤ 1,

(44)
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subject to the boundary conditions

x 0ð Þ ¼ a, x 1ð Þ ¼ b y 0ð Þ ¼ c, y 1ð Þ ¼ d, (45)

where Ai,Bi,Ci,Di i ¼ 1, 2ð Þ are any real constants, f tð Þ, g tð Þ are given source
terms. We approximate the solution of the above system in terms of Bernstein
polynomials such as

Dαx tð Þ ¼ KMBT
M tð Þ, Dβy tð Þ ¼ LMBT

M tð Þ
x tð Þ ¼ KMPα

M�MB
T
M tð Þ þ c0 þ c1t, y tð Þ ¼ LM Pβ

M�MB
T
M tð Þ þ d0 þ d1t

�

applying boundary conditions, we have

x tð Þ ¼ KMðPα
M�MB

T
M tð Þ þ aþ t b� að Þ � tKMPα

M�MB
T
M tð Þ��t¼1,

y tð Þ ¼ KMðPβ
M�MB

T
M tð Þ þ cþ t d� cð Þ � tKMP

β
M�MB

T
M tð Þ

���
t¼1

:

let us approximate

aþ t b� að Þ ¼ F1
MB

T
M tð Þ, cþ t d� cð Þ ¼ F2

MB
T
M tð Þ

tPα
M�MB

T
M tð Þ t¼1 ¼ Qα,ϕ

M�MB
T
M tð Þ, tPβ

M�MB
T
M tð Þ

���
���
t¼1

¼ Qβ,ϕ
M�MB

T
M tð Þ

then

x tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

y tð Þ ¼ LMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � LMQ

β,ϕ
M�MB

T
M tð Þ

Dμ1x tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ1

M�M þ F 1ð Þ
M Gμ1

M�MB
T
M tð Þ

Dν1y tð Þ ¼ Dν1 LMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � LMQ

β,ϕ
M�MB

T
M tð Þ

h i

¼ LM Pβ
M�M � Qβ,ϕ

M�M

� �
Gν1

M�M þ F 2ð Þ
M Gν1

M�MB
T
M tð Þ

Dμ2x tð Þ ¼ Dμ2 KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ2

M�M þ F 1ð Þ
M Gμ2

M�MB
T
M tð Þ

and

Dν2y tð Þ ¼ Dν2 KMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � KMQ

β,ϕ
M�MB

T
M tð Þ

h i

¼ LM Pβ
M�M � Qβ,ϕ

M�M

� �
Gν2

M�M þ F 2ð Þ
M Gν2

M�MB
T
M tð Þ

f tð Þ ¼ F 3ð ÞBT
M tð Þ, g tð Þ ¼ F 4ð ÞBT

M tð Þ:
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Thus system (44) implies that

KMBT
M tð Þ þ A1KM Pα

M�M �Qα,ϕ
M�M

� �
Gμ1

M�M þ A1F
1ð Þ
M Gμ1

M�MB
T
M tð Þ

þ B1LM Pβ
M�M �Qβ,ϕ

M�M

� �
Gν1

M�M þ B1F
2ð Þ
M Gν1

M�MB
T
M tð Þ þ C1KMPα

M�MB
T
M tð Þ

þ C1F
1ð Þ
M BT

M tð Þ � C1KMQ
α,ϕ
M�MB

T
M tð Þ þD1LMP

β
M�MB

T
M tð Þ þD1F

2ð Þ
M BT

M tð Þ
� D1LMQ

β,ϕ
M�MB

T
M tð Þ ¼ F 3ð ÞBT

M tð Þ
LMBT

M tð Þ þ A2KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ2

M�M þ A2F
1ð Þ
M Gμ2

M�MB
T
M tð Þ

þ B2LM Pβ
M�M � Qβ,ϕ

M�M

� �
Gν2

M�M þ B2F
2ð Þ
M Gν2

M�MB
T
M tð Þ þ C2KMPα

M�MB
T
M tð Þ

þ C2F
1ð Þ
M BT

M tð Þ � C2KMQ
α,ϕ
M�MB

T
M tð Þ þD2LMP

β
M�MB

T
M tð Þ þD2F

2ð Þ
M BT

M tð Þ
� D2LMQ

β,ϕ
M�MB

T
M tð Þ ¼ F 4ð ÞBT

M tð Þ:
(46)

Rearranging the terms in the above system and using the following notation for
simplicity in Eq. (46)

Q̂
α

M�M ¼ A1 Pα
M�M �Qα,ϕ

M�M

� �
Gμ1

M�M þ C1 Pα
M�M �Qα,ϕ

M�M

� �

Q̂
β

M�M ¼ B1 Pβ
M�M �Qβ,ϕ

M�M

� �
Gν1

M�M þD1 Pβ
M�M �Qβ,ϕ

M�M

� �

R̂
α

M�M ¼ A2 Pα
M�M �Qα,ϕ

M�M

� �
Gμ2

M�M þ C2 Pα
M�M � Qα,ϕ

M�M

� �

R̂
β

M�M ¼ B2 Pβ
M�M �Qβ,ϕ

M�M

� �
Gν2

M�M þD2 Pβ
M�M �Qβ,ϕ

M�M

� �

FM ¼ A1F
1ð Þ
M Gμ1

M�M þ B1F
2ð Þ
M Gν1

M�M þ C1F
1ð Þ
M þ F 2ð Þ

M �D1F
3ð Þ
M

GM ¼ A2F
1ð Þ
M Gμ2

M�M þ B2F
2ð Þ
M Gν2

M�M þ C2F
1ð Þ
M þD2F

2ð Þ
M � F 4ð Þ

M ,

the above system (46) becomes

KMBT
M tð Þ þ KMQ̂

α

M�MB
T
M tð Þ þ LMQ̂

β

M�MB
T
M tð Þ þ FMBT

M tð Þ ¼ 0

LMBT
M tð Þ þ KMR̂

α

M�MB
T
M tð Þ þ LMR̂

β

M�MB
T
M tð Þ þ GMBT

M tð Þ ¼ 0

KM LM½ �
BT
M tð Þ 0

0 BT
M tð Þ

" #
þ KM LM½ �

Q̂
α

M�M 0

0 R̂
β

M�M

2
4

3
5 BT

M tð Þ 0

0 BT
M tð Þ

" #

þ KM LM½ �
0 R̂

α

M�M

Q̂
β

M�M 0

2
4

3
5 BT

M tð Þ 0

0 BT
M tð Þ

" #
þ FM GM½ �

BT
M tð Þ 0

0 BT
M tð Þ

" #
¼ 0

KM LM½ � þ KM LM½ �
Q̂

α

M�M R̂
α

M�M

Q̂
β

M�M R̂
β

M�M

2
4

3
5þ FM GM½ � ¼ 0,

(47)

which is an algebraic equation that can be easily solved by using Matlab
functional solver or Mathematica for unknown matrix KM LM½ �. Calculating the
coefficient matrix KM,LM and putting it in equations
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x tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

y tð Þ ¼ LMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � LMQ

β,ϕ
M�MB

T
M tð Þ,

we get the required approximate solution.

4. Applications of our method to some examples

Example 4.1. Consider

Dαy tð Þ þ c1Dνy tð Þ þ c2y tð Þ ¼ f tð Þ, 1< α< 2 (48)

subject to the boundary conditions

y 0ð Þ ¼ 0, y 1ð Þ ¼ 0:

Solution: We solve this problem under the following parameters sets defined as
S1 ¼ α ¼ 2, ν ¼ 1, c1 ¼ 1, c2 ¼ 1f g, S2 ¼ α ¼ 1:8, ν ¼ 0:8, c1 ¼ 10, c2 ¼ 100f g,

S3 ¼ α ¼ 1:5, ν ¼ 0:5, c1 ¼ 1=10, c2 ¼ 1=100f g, and select source term for S1 as

f 1 tð Þ ¼ t6 t� 1ð Þ3 þ t6 72 t� 168ð Þ þ 126ð Þ � 30 t4 þ 3 t5 3 t� 2ð Þ t� 1ð Þ2 (49)

f 2 tð Þ ¼ 11147682583723703125 t
21
5 1750 t3 � 4200 t2 þ 3255 t� 806ð Þ

406548945561989414912

þ 278692064593092578125 t
26
5 5250 t3 � 14350 t2 þ 12915 t� 3813ð Þ

25002760152062349017088
þ 100 t6 t� 1ð Þ3, (50)

f 3 tð Þ ¼ 5081767996463981 t
9
2 1344 t3 � 3360 t2 þ 2730 t� 715ð Þ

264146673456906240

þ 5081767996463981 t
11
2 1344 t3 � 3808 t2 þ 3570 t� 1105ð Þ

22452467243837030400
þ t6 t� 1ð Þ3

100
:

(51)

The exact solution of the above problem is

y tð Þ ¼ t6 t� 1ð Þ3:

We solve this problem with the proposed method under different sets of parameters as
defined in S1, S2, S3. The observation and simulation demonstrate that the solution
obtained with the proposed method is highly accurate. The comparison of exact solution
with approximate solution obtained using the parameters set S1 is displayed in Figure 1
subplot (a), while in Figure 1 subplot (b) we plot the absolute difference between the
exact and approximate solutions using different scale levels. One can easily observe that
the absolute error is much less than 10�12: The order of derivatives in this set is an integer.

By solving the problem under parameters set S2 and S3, we observe the same
phenomena. The approximate solution matches very well with the exact solution. See
Figures 2 and 3 respectively.

Example 4.2. Consider

Dαy tð Þ � 2D0:9y tð Þ � 3y tð Þ ¼ �4 cos 2tð Þ � 7 sin 2tð Þ (52)
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Thus system (44) implies that

KMBT
M tð Þ þ A1KM Pα

M�M �Qα,ϕ
M�M

� �
Gμ1

M�M þ A1F
1ð Þ
M Gμ1

M�MB
T
M tð Þ

þ B1LM Pβ
M�M �Qβ,ϕ

M�M

� �
Gν1

M�M þ B1F
2ð Þ
M Gν1

M�MB
T
M tð Þ þ C1KMPα

M�MB
T
M tð Þ

þ C1F
1ð Þ
M BT

M tð Þ � C1KMQ
α,ϕ
M�MB

T
M tð Þ þD1LMP

β
M�MB

T
M tð Þ þD1F

2ð Þ
M BT

M tð Þ
� D1LMQ

β,ϕ
M�MB

T
M tð Þ ¼ F 3ð ÞBT

M tð Þ
LMBT

M tð Þ þ A2KM Pα
M�M �Qα,ϕ

M�M

� �
Gμ2

M�M þ A2F
1ð Þ
M Gμ2

M�MB
T
M tð Þ

þ B2LM Pβ
M�M � Qβ,ϕ

M�M

� �
Gν2

M�M þ B2F
2ð Þ
M Gν2

M�MB
T
M tð Þ þ C2KMPα

M�MB
T
M tð Þ

þ C2F
1ð Þ
M BT

M tð Þ � C2KMQ
α,ϕ
M�MB

T
M tð Þ þD2LMP

β
M�MB

T
M tð Þ þD2F

2ð Þ
M BT

M tð Þ
� D2LMQ

β,ϕ
M�MB

T
M tð Þ ¼ F 4ð ÞBT

M tð Þ:
(46)

Rearranging the terms in the above system and using the following notation for
simplicity in Eq. (46)

Q̂
α

M�M ¼ A1 Pα
M�M �Qα,ϕ

M�M

� �
Gμ1

M�M þ C1 Pα
M�M �Qα,ϕ

M�M

� �

Q̂
β

M�M ¼ B1 Pβ
M�M �Qβ,ϕ

M�M

� �
Gν1

M�M þD1 Pβ
M�M �Qβ,ϕ

M�M

� �

R̂
α

M�M ¼ A2 Pα
M�M �Qα,ϕ

M�M

� �
Gμ2

M�M þ C2 Pα
M�M � Qα,ϕ

M�M

� �

R̂
β

M�M ¼ B2 Pβ
M�M �Qβ,ϕ

M�M

� �
Gν2

M�M þD2 Pβ
M�M �Qβ,ϕ

M�M

� �

FM ¼ A1F
1ð Þ
M Gμ1

M�M þ B1F
2ð Þ
M Gν1

M�M þ C1F
1ð Þ
M þ F 2ð Þ

M �D1F
3ð Þ
M

GM ¼ A2F
1ð Þ
M Gμ2

M�M þ B2F
2ð Þ
M Gν2

M�M þ C2F
1ð Þ
M þD2F

2ð Þ
M � F 4ð Þ

M ,

the above system (46) becomes

KMBT
M tð Þ þ KMQ̂

α

M�MB
T
M tð Þ þ LMQ̂

β

M�MB
T
M tð Þ þ FMBT

M tð Þ ¼ 0

LMBT
M tð Þ þ KMR̂

α

M�MB
T
M tð Þ þ LMR̂

β

M�MB
T
M tð Þ þ GMBT

M tð Þ ¼ 0

KM LM½ �
BT
M tð Þ 0

0 BT
M tð Þ

" #
þ KM LM½ �

Q̂
α

M�M 0

0 R̂
β

M�M

2
4

3
5 BT

M tð Þ 0

0 BT
M tð Þ

" #

þ KM LM½ �
0 R̂

α

M�M

Q̂
β

M�M 0

2
4

3
5 BT

M tð Þ 0

0 BT
M tð Þ

" #
þ FM GM½ �

BT
M tð Þ 0

0 BT
M tð Þ

" #
¼ 0

KM LM½ � þ KM LM½ �
Q̂

α

M�M R̂
α

M�M

Q̂
β

M�M R̂
β

M�M

2
4

3
5þ FM GM½ � ¼ 0,

(47)

which is an algebraic equation that can be easily solved by using Matlab
functional solver or Mathematica for unknown matrix KM LM½ �. Calculating the
coefficient matrix KM,LM and putting it in equations
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x tð Þ ¼ KMPα
M�MB

T
M tð Þ þ F 1ð Þ

M BT
M tð Þ � KMQ

α,ϕ
M�MB

T
M tð Þ

y tð Þ ¼ LMP
β
M�MB

T
M tð Þ þ F 2ð Þ

M BT
M tð Þ � LMQ

β,ϕ
M�MB

T
M tð Þ,

we get the required approximate solution.

4. Applications of our method to some examples

Example 4.1. Consider

Dαy tð Þ þ c1Dνy tð Þ þ c2y tð Þ ¼ f tð Þ, 1< α< 2 (48)

subject to the boundary conditions

y 0ð Þ ¼ 0, y 1ð Þ ¼ 0:

Solution: We solve this problem under the following parameters sets defined as
S1 ¼ α ¼ 2, ν ¼ 1, c1 ¼ 1, c2 ¼ 1f g, S2 ¼ α ¼ 1:8, ν ¼ 0:8, c1 ¼ 10, c2 ¼ 100f g,

S3 ¼ α ¼ 1:5, ν ¼ 0:5, c1 ¼ 1=10, c2 ¼ 1=100f g, and select source term for S1 as

f 1 tð Þ ¼ t6 t� 1ð Þ3 þ t6 72 t� 168ð Þ þ 126ð Þ � 30 t4 þ 3 t5 3 t� 2ð Þ t� 1ð Þ2 (49)

f 2 tð Þ ¼ 11147682583723703125 t
21
5 1750 t3 � 4200 t2 þ 3255 t� 806ð Þ

406548945561989414912

þ 278692064593092578125 t
26
5 5250 t3 � 14350 t2 þ 12915 t� 3813ð Þ

25002760152062349017088
þ 100 t6 t� 1ð Þ3, (50)

f 3 tð Þ ¼ 5081767996463981 t
9
2 1344 t3 � 3360 t2 þ 2730 t� 715ð Þ

264146673456906240

þ 5081767996463981 t
11
2 1344 t3 � 3808 t2 þ 3570 t� 1105ð Þ

22452467243837030400
þ t6 t� 1ð Þ3

100
:

(51)

The exact solution of the above problem is

y tð Þ ¼ t6 t� 1ð Þ3:

We solve this problem with the proposed method under different sets of parameters as
defined in S1, S2, S3. The observation and simulation demonstrate that the solution
obtained with the proposed method is highly accurate. The comparison of exact solution
with approximate solution obtained using the parameters set S1 is displayed in Figure 1
subplot (a), while in Figure 1 subplot (b) we plot the absolute difference between the
exact and approximate solutions using different scale levels. One can easily observe that
the absolute error is much less than 10�12: The order of derivatives in this set is an integer.

By solving the problem under parameters set S2 and S3, we observe the same
phenomena. The approximate solution matches very well with the exact solution. See
Figures 2 and 3 respectively.

Example 4.2. Consider

Dαy tð Þ � 2D0:9y tð Þ � 3y tð Þ ¼ �4 cos 2tð Þ � 7 sin 2tð Þ (52)
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subject to the boundary conditions

y 0ð Þ ¼ 0, y 1ð Þ ¼ sin 2ð Þ:

Solution: The exact solution of the above problem is y tð Þ ¼ sin 2tð Þ, when α ¼ 2.
However the exact solution at fractional order is not known. We use the well-known
property of FDEs that when α ! 2, the approximate solution approaches the exact
solution for the evaluations of approximate solutions and check the accuracy by using
different scale levels. By increasing the scale level M, the accuracy is also increased. By the

Figure 1.
(a) Comparison of exact and approximate solution of Example 4.1, under parameters set S1. (b) Absolute
error in the approximate solution of Example 4.1, under parameters set S1.

Figure 2.
(a) Comparison of exact and approximate solution of Example 4.1, under parameters set S2. (b) Absolute
error in the approximate solution of Example 4.1, under parameters set S2.
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proposed method, the graph of exact and approximate solutions for different values of M
and at α ¼ 1:7 is shown in Figure 4. From the plot, we observe that the approximate
solution becomes equal to the exact solution at α ¼ 2. We approximate the error of the
method at different scale levels and record that when scale level increases the absolute
error decreases as shown in Figure 4 subplot (b) and accuracy approaches 10�9, which is
a highly acceptable figure. For convergence of our proposed method, we examined the
quantity

Ð 1
0 ∣yexact � yapprox∣dt for different values of M and observed that the norm of error

decreases with a high speed with the increase of scale level M as shown in Figure 4b.

Figure 3.
(a) Comparison of exact and approximate solution of Example 4.1, under parameters set S3. (b) Absolute
error in the approximate solution of Example 4.1, under parameters set S3.

Figure 4.
(a) Comparison of exact and approximate solution of Example 4.2. (b) Absolute error for different scale level
M of Example 4.2.
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Example 4.3. Consider the following coupled system of fractional differential
equations

D1:8x tð Þ þDx tð Þ þ 9D0:8y tð Þ þ 2x tð Þ � y tð Þ ¼ f tð Þ
D1:8y tð Þ � 6D0:8x tð Þ þDy tð Þ � x tð Þ ¼ g tð Þ (53)

subject to the boundary conditions

x 0ð Þ ¼ 1, x 1ð Þ ¼ 2 and y 0ð Þ ¼ 2, y 1ð Þ ¼ 2:

Solution: The exact solution is

x tð Þ ¼ t5 1� tð Þ, y tð Þ ¼ t4 1� tð Þ:

We approximate the solution of this problem with this new method. The source
terms are given by

f tð Þ ¼ 2 t5 t� 1ð Þ � t4 t� 1ð Þ þ t4 6 t� 5ð Þ � 2229536516744740625 t
16
5 10 t� 7ð Þ

1008806316530991104

þ 1337721910046844375 t
16
5 25 t� 21ð Þ

1008806316530991104
(54)

g tð Þ ¼ t3 5 t� 4ð Þ � t5 t� 1ð Þ � 11147682583723703125 t
21
5 15 t� 13ð Þ

6557241057451442176

� 89181460669789625 t
11
5 25 t� 16ð Þ

144115188075855872
: (55)

Figure 5.
Comparison of exact and approximate solution of Example 4.3 for different scale level M.
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In the given Figure 5, we have shown the comparison of exact x tð Þ, y tð Þ and approx-
imate x tð Þ, y tð Þ in subplot (a) and (b) respectively.

As expected, the method provides a very good approximation to the solution of the
problem. At first, we approximate the solutions of the problem at α ¼ 2 because the exact
solution at α ¼ 2 is known. We observe that at very small scale levels, the method provides
a very good approximation to the solution. We approximate the absolute error by the
formula

Xerror ¼ ∣xexact � xapprox∣:

and

Yerror ¼ ∣yexact � yapprox∣:

We approximate the absolute error at different scale level of M, and observe that the
absolute error is much less than 10�10 at scale level M ¼ 7, see Figure 6. We also
approximate the solution at some fractional value of α and observe that as α ! 2
the approximate solution approaches the exact solution, which guarantees the accuracy of
the solution at fractional value of α. Figure 6 shows this phenomenon. In Figure 6, the
subplot (a) represents the absolute error of x tð Þ and subplot (b) represents the absolute
error of y tð Þ.

Example 4.4. Consider the following coupled system

D1:8x tð Þ � x tð Þ þ 3y tð Þ ¼ f tð Þ
D1:8y tð Þ þ 4x tð Þ � 2y tð Þ ¼ g tð Þ, (56)

subject to the boundary conditions

x 0ð Þ ¼ �1, x 1ð Þ ¼ �1 and y 0ð Þ ¼ �1, y 1ð Þ ¼ �1:

Solution: The exact solution for α ¼ β ¼ 2 is

Figure 6.
Absolute error in approximate solutions at different scale level M ¼ 3:7 for Example 4.3.
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x tð Þ ¼ t5 � t4 � 1, and y tð Þ ¼ t4 � t3 � 2: (57)

The source terms are given by

f tð Þ ¼ 445907303348948125t3:2 25t� 21ð Þ
3026418949592973312

þ t3 � 4t4 þ 3t5 � 2,

g tð Þ ¼ 89181460669789625t2:5 5t� 4ð Þ
14411518807585872

� 4t3 þ 6t4 � 2t5 � 2:

Approximating the solution with the proposed method, we observe that our scheme gives
high accuracy of approximate solution. In Figure 7, we plot the exact solutions together
with the approximate solutions in Figure 7(a) and (b) for x tð Þ and y tð Þ, respectively. We
see from the subplots (a) and (b) that our approximations have close agreement to that of
exact solutions. This accuracy may be made better by increasing scale level. Further, one can
observe that absolute error is below 10�10 in Figure 8, which indicates better accuracy of
our proposed method for such types of practical problems of applied sciences.

Figure 7.
Comparison of exact and approximate solution at scale level M ¼ 3, 7 for Example 4.4.

Figure 8.
Absolute error for different scale level M ¼ 3:7 for Example 4.4.
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In Figure 8, the subplot (a) represents absolute error for x tð Þ while subplot (b)
represents the same quantity for y tð Þ. From the subplots, we see that maximum absolute
error for our proposed method for the given problem (4.4) is below 10�10: This is very
small and justifies the efficiency of our constructed method.

Example 4.5. Consider the boundary value problem

Dαx tð Þ þ ωπð Þ2Dνx tð Þ þ x tð Þ ¼ �ωπ sin ωπtð Þ þ ωπð Þ
x 0ð Þ ¼ 0, x 1ð Þ ¼ �2:

(58)

Taking α ¼ 2, ν ¼ 1 and ω ¼ 1, 3, 5, … , the exact solution is given by

x tð Þ ¼ cos ωπtð Þ � 1:

We plot the comparison between exact and approximate solutions to the given exam-
ple at M ¼ 10 and corresponding to ω ¼ 3:5, α ¼ 2, β ¼ 1. Further, we approximate the
solution through Legendre wavelet method (LWM) [47], Jacobi polynomial method
(JM) and Bernstein polynomials method (BM), as shown in Figure 9.

From Table 1, we see that Bernstein polynomials also provide excellent solutions
to fractional differential equations [48].

5. Conclusion and future work

The above analysis and discussion take us to the conclusion that the new method
is very efficient for the solution of boundary value problems as well as initial value

Figure 9.
(a) Comparison of exact and approximate solution at scale level M ¼ 10,ω ¼ 3:5, α ¼ 2, ν ¼ 1 for
Example 4.5. (b) Absolute error at M ¼ 10.

ω M α ν ∥xapp � xex∥ at BM ∥xapp � xex∥ at WM ∥xapp � xex∥ at JM

0.5 10 2 1 7:000 �3ð Þ 2:966 �1ð Þ 1:500 �2ð Þ
1.5 15 1.6 0.9 6:091 �3ð Þ 4:918 �2ð Þ 1:623 �1ð Þ
2.0 20 1.8 0.8 1:237 �3ð Þ 2:108 �2ð Þ 2:723 �2ð Þ
3.5 25 1.9 0.7 1:008 �3ð Þ 5:795 �2ð Þ 1:813 �3ð Þ

Table 1.
Comparison of solution between Legendre wavelet method (LWM) [47], Jacobi polynomial method (JM) and
Bernstein polynomials method (BM) for Example 4.5.
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problems including coupled systems of fractional differential equations. One can
easily extend the method for obtaining the solution of such types of problems with
other kinds of boundary and initial conditions. Bernstein polynomials also give best
approximate solutions to fractional order differential equations like Legendre
wavelet method (LWM), approximation by Jacobi polynomial method (JPM), etc.
The new operational matrices obtained in this method can easily be extended to
two-dimensional and higher dimensional cases, which will help in the solution of
fractional order partial differential equations. Also, we compare our result to that of
approximate methods for different scale levels. We observed that the proposed
method is also an accurate technique to handle numerical solutions.
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