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ANALYTIC REGULARITY AND GPC APPROXIMATION
FOR CONTROL PROBLEMS CONSTRAINED BY

LINEAR PARAMETRIC ELLIPTIC AND PARABOLIC PDES∗

ANGELA KUNOTH† AND CHRISTOPH SCHWAB‡

Abstract. This paper deals with linear-quadratic optimal control problems constrained by a
parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state
equation depends on a countable number of parameters i.e., on σj with j ∈ N, and that the PDE
operator may depend non-affinely on the parameters. We consider tracking-type functionals and
distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that
the state and the control are analytic as functions depending on these parameters σj . We establish
sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the
stochastic coordinate sequence σ = (σj)j≥1 of the random inputs, and prove convergence rates of best
N -term truncations of these expansions. Such truncations are the key for subsequent computations
since they do not assume that the stochastic input data has a finite expansion. In the follow-up
paper [KS], we explain two methods how such best N -term truncations can practically be computed,
by greedy-type algorithms as in [SG, G], or by multilevel Monte-Carlo methods as in [KSS]. The
sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive
tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed
in [DK, GK, K], see [KS].

Key words. Linear-quadratic optimal control, linear parametric or stochastic PDE, distributed
or boundary control, elliptic or parabolic PDE, analyticity, generalized polynomial chaos approxi-
mation.

AMS subject classifications. 41A, 65K10, 65N99, 49N10, 65C30.

1. Introduction. Increasingly, the simulation and design of complex systems re-
quires the numerical solution of partial differential equations (PDEs) involving a large
number of parameters, thereby leading to PDEs on high dimensional, so-called design
spaces. Typical examples are PDEs with stochastic coefficients or stochastic PDEs
driven by noise which are transformed into deterministic high-dimensional PDEs
by means of spectral approaches like Wiener chaos or Karhunen-Loève expansions
[GS, KX, Sch, W]. Such approaches for quantification of uncertainty pose enormous
challenges for numerical simulations already for a single elliptic PDE and has triggered
several contributions over the past years, see, e.g., [BNT, BTZ, CDS1, HLM, SG, ST].

Of particular recent interest are optimal control problems of uncertain systems
governed by linear parametric or stochastic PDEs. In PDE-constrained control with
a tracking-type optimization functional, the goal is to steer the solution y of the PDE,
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the state, towards a prescribed desired state, the target y∗, in a least-squares sense
while minimizing the effort for the control u. If the governing PDE depends on a (pos-
sibly infinite) sequence of parameters arising, for example, from random field inputs in
models of uncertainty as diffusion coefficients, this requires the solution of the control
problem for each instance of the parameters. Already for a single random variable σ
in the diffusion coefficient, the computational expense of sampling state and control is
enormous: e.g., in a Monte-Carlo simulation with N independent draws, each realiza-
tion of this variable requires the solution of the whole control problem. Necessarily,
this results in N solutions of the control problem to be performed. Although easy
to realize and therefore quite popular, Monte-Carlo methods have the drawback that
the slow approximation rate of N−1/2 requires many samples to reach a sufficiently
low error, and this convergence rate cannot be improved even for smooth solutions.
Moreover, the case of infinitely many parameters cannot be handled immediately by
Monte-Carlo methods. As an alternative to these schemes, spectral approaches based
on so-called Wiener or generalized polynomial chaos (gpc) expansions in terms of or-
thogonal polynomials have been introduced in [W], see also [KX, Sch]. These lead to
deterministic parametric PDE-constrained control problems which depend on possibly
infinitely many parameters.

Already for deterministic, non-parametric linear-quadratic control problems con-
strained by elliptic state equations, one needs to solve as first order necessary and
sufficient conditions for optimality a coupled system of linear PDEs for the state y
and the adjoint state p each, and a third equation coupling p with the control u. For
such systems of PDEs, if the solutions are smooth, best approximations are obtained
with discretizations on uniform grids. In this case, multilevel solvers can produce the
solution triple in optimal linear complexity, see, e.g., [BoKu, BoSch, EG, Ha, SSZ].
In the case of nonsmooth solutions, for such systems of coupled PDEs, in recent
years solvers became available which produce optimal numerical approximations of
the solution triple (y, p, u) in the following sense. Accuracy versus work to obtain
these approximations is provably proportional to those of (wavelet-)best M -term ap-
proximations of the solution triple (y, p, u). This means that the complexity of the
scheme is as good as if one knew the solutions beforehand, expanded them in a wavelet
representation and selected the M largest coefficients, yielding best M -term approx-
imations. Thus, these schemes allow to achieve arbitrary, user-specified accuracy ε
with an order of arithmetic operations that is the best possible one afforded by the
regularity of the data. These solvers are based on adaptive wavelet schemes for which
convergence and optimal complexity have been established for distributed and Neu-
mann boundary control problems in [DK] and for Dirichlet control problems in [K].
The related concepts from nonlinear approximation theory which are used to establish
these results can be found in [DeVK] and the articles therein.

When the control problem is constrained by a (deterministic) parabolic evolution
PDE, the necessary conditions for optimality lead to a system of parabolic PDEs cou-
pled globally in time. Traditional time-stepping methods for the primal (forward in
time) problem require to store the solution of the adjoint (backward in time) problem
at all times, and vice versa. These enormous storage demands led to the development
of special techniques like checkpointing, see, e.g., [GW]. To overcome the limitations
posed by time-stepping approaches, we followed in [GK] the idea of [DL, SS] to employ
a full weak space-time formulation of the evolution PDE constraint. For the result-
ing system of coupled operator equations, we developed a wavelet-based time-space
adaptive algorithm and proved convergence and optimal complexity estimates in the
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sense explained above. We wish to point out that convergence results for adaptive
finite elements (or any other adaptive Galerkin approximation method) for such con-
trol problems do not yet exist, not even for the case of control problems constrained
by elliptic PDEs. Nevertheless, adaptive finite element methods seem to work well
practically, see [MV] for corresponding space-time methods for parabolic optimization
problems.

The purpose of the present paper is to provide a provably convergent and opti-
mally efficient adaptive algorithm for solving a large class of linear-quadratic optimal
control problems constrained by elliptic or parabolic PDEs with stochastic or possibly
infinitely many countable parametric coefficients and different types of control. The
solution triple of the necessary and sufficient conditions for optimality (y, p, u) will
then depend on time t, space x ∈ Rd and on the parameter sequence σ ∈ [−1, 1]N.

In this paper, we prove sparsity results for the dependence of the solution triple
(y, p, u) on the parameter σ = (σj)j≥1 ∈ [−1, 1]N. Therefore, this approach may
be viewed as a “semi-discretization” and the derivation of a-priori error estimates
with respect to σ. This will be achieved as follows. Building on recent results in
[CDS1, CDS2], we show that the state and the control are analytic as functions of
the parameter sequence σ. This, in turn, allows expansions of state and control
in terms of tensorized Legendre polynomials of the parameter sequence, so-called
generalized polynomial chaos (gpc) expansions. We will show that corresponding best
N -term truncations of these expansions decay at certain convergence rates which are
determined by sparsity properties of the random field input for the state equation.
Most interesting, however, are situations where the best N -term approximation rate
is higher than the rate 1/2 achieved by Monte-Carlo schemes.

Such best N -term truncations are the key for subsequent computations since they
do not assume that the stochastic input data has a finite expansion. This allows for
random field input data (such as stochastic coefficients) and is a substantial difference
to previous studies. In [BNT, BTZ] concerning elliptic PDEs, the stochastic coeffi-
cients and input data were assumed to depend on a finite number of random variables
(so-called “finite-dimensional noise assumption”). Likewise, in [GLL, HLM] dealing
with control problems constrained by elliptic PDEs with stochastic coefficients, the
stochastic model was approximated by a deterministic one using a Karhunen-Loève
expansion with a finite number of parameters. Our results allows to deal with random
field input, i.e., with stochastic coefficients whose Karhunen-Loève expansions are not
necessarily finite.

In order to cover a wide range of control problems, approximation results will
first be derived for an abstract, parametric saddle point problem, generalizing [CDS1,
CDS2]. Later, this is specified to different situations of linear-quadratic control prob-
lems with different types of PDEs and controls. The class of linear-quadratic optimal
control problems we are able to handle allows for elliptic and parabolic PDEs as con-
straints and different type of controls (distributed, Neumann boundary and Dirichlet
boundary control) and choices of norms in the optimization functional as long as
the resulting saddle point system of necessary conditions (for y, p) can be proved to
possess a unique solution for each choice of parameters σ.

The theoretical sparsity and N -term approximation results established in the
present paper is the foundation of sparse, adaptive tensor approximation algorithms
which will be presented in [KS], resulting in a compressive, fully discrete scheme in
terms of σ, t, x.

This paper is structured as follows. In the next section, it is proved that the
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solution of a linear operator equation involving a general parameter-dependent saddle
point operator in an abstract setting is analytic, with precise bounds on the growth
of the partial derivatives. This allows us in Section 2.4 to obtain rates of N -term
generalized polynomial chaos approximations. These results are specified in Section 3
to linear-quadratic control problems constrained by an elliptic PDE with distributed,
Neumann or Dirichlet boundary control and in Section 4 to control problems con-
strained by linear parabolic PDEs. We conclude in Section 5 with some remarks how
to realize this practically and how to combine the gpc approximations with discretiza-
tions with respect to space and time.

2. Parametric saddle point problems. We generalize the results of [CDS1]
and study well-posedness, regularity and polynomial approximation of solutions for
a family of abstract parametric saddle point problems. Particular attention is paid
to the case of an infinite sequence of parameters. The abstract results in the present
section are more general than what is required in our ensuing treatment of optimal
control problems and are of independent interest. We discuss in detail in the following
sections their application to optimal control problems for systems constrained by
elliptic and parabolic PDEs with random coefficients.

2.1. An abstract result. Throughout, we denote by X and Y two reflexive
Banach spaces over R (all results will hold with the obvious modifications also for
spaces over C) with (topological) duals X ′ and Y ′, respectively. By L(X ,Y ′), we
denote the set of bounded linear operators G : X → Y ′. The Riesz representation
theorem associates with each G ∈ L(X ,Y ′) a unique bilinear form G(·, ·) : X×Y → R
by means of

G(v, w) = 〈w,Gv〉Y×Y′ for all v ∈ X , w ∈ Y . (2.1)

Here and in what follows, we indicate spaces in duality pairings 〈·, ·〉 by subscripts.
We shall be interested in the solution of linear operator equations Gq = g and

make use of the following solvability result which is a straightforward consequence of
the closed graph theorem, see, e.g., [BF].

Proposition 1. An operator G ∈ L(X ,Y ′) is boundedly invertible if and only
if its associated bilinear form satisfies the inf-sup conditions: there exists a constant
γ > 0 such that

inf
0 6=v∈X

sup
0 6=w∈Y

G(v, w)

‖v‖X ‖w‖Y
≥ γ (2.2)

and

inf
06=w∈Y

sup
06=v∈X

G(v, w)

‖v‖X ‖w‖Y
≥ γ . (2.3)

If (2.2) and (2.3) hold, then for every g ∈ Y ′ the operator equation

find q ∈ X : G(q, v) = 〈g, v〉Y′×Y ∀v ∈ Y (2.4)

admits a unique solution q ∈ X . There holds the a-priori estimate

‖q‖X ≤
‖g‖Y′
γ

. (2.5)
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2.2. Parametric operator families. In the present paper, we shall be inter-
ested in parametric families of operators G. We admit both, finite as well as countably
infinite sequences σ of parameters. To this end, we denote by σ := (σj)j∈S ∈ S the set
of parameters where S ⊆ N is an at most countable index set. We assume the param-
eters to take values in S ⊂ RS. In particular, in the case S = N it holds S ⊆ RN, i.e.,
each realization of σ is a sequence of real numbers. We shall consider in particular the
parameter domain S = [−1, 1]N which we equip with the uniform probability measure

ρ(σ) =
⊗
j≥1

σj
2
. (2.6)

By NN
0 we denote the set of all sequences of nonnegative integers, and by F = {ν ∈ NN

0 :
|ν| <∞} the set of “finitely supported” such sequences, i.e., sequences of nonnegative
integers which have only a finite number of nonzero entries. For ν ∈ F, we denote by
n ⊂ N the set of coordinates j such that νj 6= 0, with j repeated νj ≥ 1 many times.
Analogously, m ⊂ N denotes the supporting coordinate set for µ ∈ F.

We consider parametric families of continuous, linear operators which we denote
as G(σ) ∈ L(X ,Y ′). We now make precise the dependence of G(σ) on the parameter
sequence σ which is required for our regularity and approximation results: G(σ)
is required to be (real) analytic. Recall that a (real) analytic function is infinitely
differentiable and coincides, in an open, nonempty neighborhood of each point, with
its Taylor series at that point. This is detailed in the following

Assumption 1. The parametric operator family {G(σ) ∈ L(X ,Y ′) : σ ∈ S} is a
regular p-analytic operator family for some 0 < p ≤ 1, i.e.,

(i) G(σ) ∈ L(X ,Y ′) is boundedly invertible for every σ ∈ S with uniformly
bounded inverses G(σ)−1 ∈ L(Y ′,X ), i.e., there exists C0 > 0 such that

sup
σ∈S
‖G(σ)−1‖L(Y′,X ) ≤ C0; (2.7)

(ii) for any fixed σ ∈ [−1, 1]N, the operators G(σ) are (real) analytic functions
with respect to σ. Specifically, this means that there exists a nonnegative
sequence b = (bj)j≥1 ∈ `p(N) such that

∀ν ∈ F\{0} : sup
σ∈S

∥∥(G(0))−1(∂νσG(σ))
∥∥
L(X ,X )

≤ C0b
ν . (2.8)

Here ∂νσG(σ) := ∂ν1

∂σ1

∂ν2

∂σ2
· · ·G(σ); the notation bν signifies the (finite due to

ν ∈ F) product bν1
1 b

ν2
2 . . . and we use the convention 00 := 1.

Note that the estimates in (2.8) are taken for all possible derivatives from the
finite set F. This will be one of the keys for dealing with infinitely many parameters
σ. The regularity parameter p ∈ (0, 1] which controls the decay of the derivatives
∂νσG(σ) will play a prominent role throughout this paper. The dependence of G(σ)
on σ formulated in Assumption 1 allows for very general situations. One of the most
frequently appearing cases is the following.

Affine Parameter Dependence. The special case of affine parameter depen-
dence arises, for example, in diffusion problems where the diffusion coefficients are
given in terms of a Karhunen-Loève expansion (see, e.g., [ST] for such Karhunen-
Loève expansions and their numerical analysis, in the context of elliptic PDEs with
random coefficients). Then, there exists a family {Gj}j≥0 ⊂ L(X ,Y ′) such that G(σ)
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can be written in the form

∀σ ∈ S : G(σ) = G0 +
∑
j≥1

σjGj . (2.9)

We shall refer to G0 = G(0) as “nominal”, or ‘mean-field” operator, and to Gj , j ≥ 1,
as “fluctuation” operators. In order for the sum in (2.9) to converge, we impose the
following assumptions on {Gj}j≥0. In doing so, we associate with the operators Gj
the bilinear forms Gj(·, ·) : X ×Y → R.

Assumption 2. The family of operators {Gj}j≥0 in (2.9) satisfies the following
conditions:

1. The “mean field” operator G0 ∈ L(X ,Y ′) is boundedly invertible, i.e. (cf.
Proposition 1) there exists γ0 > 0 such that

inf
0 6=v∈X

sup
0 6=w∈Y

G0(v, w)

‖v‖X ‖w‖Y
≥ γ0 (2.10)

and that

inf
06=w∈Y

sup
06=v∈X

G0(v, w)

‖v‖X ‖w‖Y
≥ γ0 . (2.11)

2. The “fluctuation” operators {Gj}j≥1 are small with respect to G0 in the fol-
lowing sense: there exists a constant 0 < κ < 1 such that∑

j≥1

‖Gj‖X→Y′ ≤ κγ0 . (2.12)

We remark that with (2.10), (2.11), condition (2.12) follows from∑
j≥1

‖G−1
0 Gj‖X→X ≤ κ . (2.13)

We show next that, under Assumption 2, the parametric family G(σ) is boundedly
invertible uniformly with respect to the parameter vector σ belonging to the parameter
domain S = [−1, 1]N.

Theorem 2. Under Assumption 2, for every realization σ ∈ S = [−1, 1]N of the
parameter vector, the parametric operator G(σ) is boundedly invertible. Specifically,
for the bilinear form G(σ; ·, ·) : X × Y → R associated with G(σ) ∈ L(X ,Y ′), there
hold the uniform inf-sup conditions with γ = (1− κ)γ0 > 0 and with κ, γ0 > 0 as in
Assumption 2,

∀σ ∈ S : inf
06=v∈X

sup
06=w∈Y

G(σ; v, w)

‖v‖X ‖w‖Y
≥ γ (2.14)

and

∀σ ∈ S : inf
06=w∈Y

sup
06=v∈X

G(σ; v, w)

‖v‖X ‖w‖Y
≥ γ . (2.15)

In particular, for every g ∈ Y ′ and for every σ ∈ S, the parametric operator equation

find q(σ) ∈ X : G(σ; q(σ), v) = 〈g, v〉Y×Y′ ∀v ∈ Y (2.16)



Analytic Regularity & GPC Approximation for Parametric PDE-Constrained Control Probl. 7

admits a unique solution q(σ) which satisfies the a-priori estimate

sup
σ∈S
‖q(σ)‖X ≤

‖g‖Y′
(1− κ)γ0

. (2.17)

Proof. As the result is essentially a perturbation result, there are several ways to
prove it. One approach, which was used for example in [G], is based on a Neumann
Series argument. We give an alternative proof by verifying the inf-sup conditions
directly. The inf-sup condition (2.2) is equivalent to the following assertion: given
v ∈ X , there exists wv ∈ Y (linearly depending on v) such that i) ‖wv‖Y ≤ c1‖v‖X
and ii) G(v, wv) ≥ c2‖v‖2X . Then (2.2) holds with γ = c2/c1.

By Assumption 2, in particular by (2.10), i) and ii) are satisfied for the bilinear
form G0(·, ·) with constants c1,0 and c2,0, i.e., γ0 = c2,0/c1,0.

With v ∈ X arbitrary and with wv ∈ Y as in i) and ii) for the bilinear form
G0(·, ·) (in particular, independent of σ), we obtain for every σ ∈ S = [−1, 1]N

G(σ; v, wv) = G0(v, wv) +
∑
j≥1

σjGj(v, wv)

≥ c2,0‖v‖2X −
∑
j≥1

|Gj(v, wv)|

= c2,0‖v‖2X − c1,0
∑
j≥1

‖Gj‖X→Y′‖v‖2X

=

c2,0 − c1,0∑
j≥1

‖Gj‖X→Y′

 ‖v‖2X
≥ c2,0(1− κ)‖v‖2X
≥ c2,0

c1,0
(1− κ)‖v‖X ‖wv‖Y

= γ0(1− κ)‖v‖X ‖wv‖Y .

This implies (2.14). The stability condition (2.15) is verified analogously. The a-priori
bound (2.17) follows then from (2.5) with the constant γ = (1− κ)γ0.

From the preceding considerations, the following is readily verified.
Corollary 3. Let the affine parametric operator family of operators {Gj}j≥0

in (2.9) satisfy Assumption 2. Then they satisfy Assumption 1 with

C0 =
1

(1− κ)γ0
and bj :=

‖Gj‖X→Y′

(1− κ)γ0
for all j ≥ 1

for any 0 < p ≤ 1.

2.3. Analytic dependence of solutions. We now establish that the depen-
dence of the solution q(σ) on σ is analytic, with precise bounds on the growth of
the partial derivatives. This result generalizes the statement for parametric diffusion
problems from [CDS1], Theorem 4, to general saddle point problems. It later allows
us to prove a-priori estimates for finite approximations of q(σ) with respect to σ.

Theorem 4. Let the parametric operator family {G(σ) ∈ L(X ,Y ′) : σ ∈ S}
satisfy Assumption 1 for some 0 < p ≤ 1. Then, for every f ∈ Y ′ and every σ ∈ S
there exists a unique solution q(σ) ∈ X of the parametric operator equation

G(σ) q(σ) = f in Y ′. (2.18)
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The parametric solution family q(σ) depends analytically on the parameters, and the
partial derivatives of the parametric solution family q(σ) satisfy the bounds

sup
σ∈S
‖(∂νσq)(σ)‖X ≤ C0‖f‖Y′ |ν|! b̃ν for all ν ∈ F, (2.19)

where 0! := 1 and the sequence b̃ = (b̃j)j≥1 ∈ `p(N) is defined by

b̃j = bj/ ln 2 for all j ∈ N.

Proof. Rather than proving (2.19), we prove the (slightly) stronger bound

sup
σ∈S
‖(∂νσq)(σ)‖X ≤ C0‖f‖Y′ d|ν|bν for all ν ∈ F , (2.20)

where the sequence d = (dn)n≥0 is defined recursively by

d0 := 1 , dn :=

n−1∑
i=0

(
n

i

)
di , n = 1, 2, ... . (2.21)

The proof of (2.20) proceeds by induction with respect to |ν|: if |ν| = 0, ν = 0 and
the assertion (2.20) follows from (2.7) and the a-priori bound (2.5). For 0 6= ν ∈ F,
we take the derivative ∂νσ of the equation (2.18). The existence of these derivatives
follows as in the proof of Theorem 4.2 in [CDS1] since G(σ) is a linear operator from
X to Y ′ and boundedly invertible for every σ. Recalling for the (finitely supported)
multi-indices ν, µ ∈ F their associated (finite) index sets n,m ⊂ N and abbreviate
n := |n| = |ν|, m := |m| = |µ|, respectively, we find with the generalized product rule
due to the σ-independence of f the identity∑

m∈P(n)

∂n\mσ (G(σ)) ∂mσ (q(σ)) = 0 for all σ ∈ S .

Here, P(n) denotes the power set of n ⊂ N. Solving this identity for ∂nσ(q(σ)), we find

G(σ)(∂nσq)(σ) = −
∑

m∈P(n)\{n}

∂n\mσ (G(σ)) ∂mσ (q(σ)) in Y ′ .

From the bounded invertibility of G(σ), we get the recursion

(∂νσq)(σ) = −
∑

m∈P(n)\{n}

(G(σ))−1∂n\mσ (G(σ)) ∂mσ (q(σ)) in Y ′ . (2.22)

Taking the ‖ · ‖X norm on both sides and using the triangle inequality, we find

‖(∂νσq)(σ)‖X ≤
∑

m∈P(n)\{n}

‖(G(σ))−1∂n\mσ (G(σ))‖L(X ,X )‖∂mσ (q(σ))‖X

≤
n−1∑
m=0

∑
m∈P(n)
|m|=m

‖(G(σ))−1∂n\mσ (G(σ))‖L(X ,X )‖∂mσ (q(σ))‖X .
(2.23)

Now (2.20) for n = |ν| = 1 follows directly, upon using (2.8) for the singleton sets
n = {j}.
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We now proceed by induction with respect to |ν|. We consider ν ∈ F such that
n = |ν| ≥ 2 and assume that the assertion (2.20) has already been proved for all ν̃ ∈ F
such that 1 ≤ |ν̃| < n. We then obtain from (2.23)

‖(∂νσq)(σ)‖X ≤
∑

m∈P(n)\{n}

‖(G(σ))−1∂n\mσ (G(σ))‖L(X ,X )‖∂mσ (q(σ))‖X

≤
n−1∑
m=0

∑
m∈P(n)
|m|=m

C0‖f‖Y′ bν−µdmbµ

= C0‖f‖Y′ bν
n−1∑
m=0

(
n

m

)
dm

= C0‖f‖Y′ bνdn

which is (2.20) for ν ∈ F such that |ν| = n.
The assertion (2.19) now follows from (2.20) and the elementary inequality

dn ≤
(

1

ln 2

)n
n! for all n ∈ N .

2.4. Convergence rates of N-term gpc (generalized polynomial chaos)
approximation. The estimates (2.19) of the partial derivatives of q(σ) with respect
to σ will be the basis for quantifying approximability of q(σ) in the space L2(S, ρ;X ).
This is the space of all functions v for which the norm ‖v‖L2(S,ρ;X ) given by

‖v‖2L2(S,ρ;X ) :=

∫
S
‖v(σ)‖2X dρ(σ) (2.24)

is finite. Recall that σ ∈ S is possibly infinite. The ultimate goal is to compute an
approximation q̃N of q with at most N degrees of freedom such that

‖q − q̃N‖L2(S,ρ;X ) <∼ N−r (2.25)

with some largest possible rate r > 0, where the symbol <∼ denotes inequality
up to constants which are specifically independent of N . If we are able to establish
such an estimate with a rate r exceeding the Monte-Carlo benchmark rate 1/2, this
approximation would converge faster than Monte-Carlo methods (assuming equal,
uniform cost for the solution of each control problem) even in the case of only finitely
many parameters σ. A second key aspect of the methods proposed here is that they
allow for reduced resolution in x and t in large parts of the parameter space, in
contrast to Monte-Carlo sampling which mandates the same level of resolution in all
sampling points.

The first step in the direction to obtain (2.25) will be to establish an a-priori-
type error estimate for a best N -term approximation qN of q. This means that qN
possesses at most N degrees of freedom and minimizes the error to q with respect
to L2(S, ρ;X ). Of course, this approximation is tied to the choice of the concrete
finite-dimensional subspace of L2(S, ρ;X ) and its basis. In the context of stochastic
parameters, the spectral approach introduced in [GS], see also [KX, Sch], is based on
so-called Wiener/generalized polynomial chaos (gpc) expansions. These expansions
are performed in terms of tensor products of orthonormal polynomials with respect
to L2(−1, 1) and the measure (2.6). The choice of this interval stems from choos-
ing the parameter space S = [−1, 1]N; the notion of ‘chaos’ indicates that this was
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originally designed to transform stochastic coefficients into deterministic ones, and
‘generalized’ expresses that one works with orthogonal polynomials with respect to
the inner product for L2(S, ρ;X ) weighted by the uniform probability measure dρ(σ)
defined in (2.6).

There are at least three reasons to choose such spectral approaches over others.
First, since it is a spectral expansion in terms of orthogonal polynomials, one can
achieve an exponential convergence rate in the polynomial degree N which is optimal.
This result was first established in [BTZ] for the case of a finite number K of random
parameters σ for elliptic PDEs with random inputs; here, however, the constant in the
error estimate depended strongly on K. Thus, as K →∞ in the convergence analysis,
this approximation result required an assumption of truncation with respect to K.
Optimal error estimates for the general case of infinitely many parameters were for the
first time established in [ST] for the same problem class under the assumption that the
Karhunen-Loève expansion of the stochastic diffusion coefficient decays exponentially
to zero in the L∞ norm. This was relaxed in [CDS1] to the more realistic assumption
of algebraic decay, as in (2.19).

The second reason for choosing the spectral approach is that this allows for an
immediate computation of the mean field E(qN ), as detailed below in (2.37). Thirdly,
all the inner products in relation to σ for different polynomial degrees vanish; an
enormous computational advantage. In our setting, we base our approximations on
Legendre polynomials which provide an orthonormal polynomial basis for L2(−1, 1)
and which are easy to construct.

To this end, let Ln(t) denote the Legendre polynomial of degree n ≥ 0 in (−1, 1)
which is normalized such that ∫ 1

−1

|Ln(t)|2 dt
2

= 1 . (2.26)

Then L0 = 1 and {Ln}n≥0 is an orthonormal basis of L2(−1, 1) with respect to the
measure (2.6). For ν ∈ F, denote ν! = ν1! ν2! ... and introduce the tensorized Legendre
polynomials

Lν(σ) =
∏
j≥1

Lνj (σj) . (2.27)

Note that for each ν ∈ F, there are only finitely many nontrivial factors in this
product, and each Lν(σ) depends only on finitely many of the σj . By construction,
the countable collection {Lν(σ) : ν ∈ F} is a Riesz basis, i.e., a dense, orthonormal
family in L2(S, ρ;X ): in particular, each v ∈ L2(S, ρ;X ) admits an orthonormal
expansion

v(σ) =
∑
ν∈F

vνLν(σ) , where vν :=

∫
S
v(σ)Lν(σ)dρ(σ) ∈ X (2.28)

and there holds Parseval’s equality

‖v‖2L2(S,ρ;X ) =
∑
µ∈F

‖vµ‖2X . (2.29)

The Legendre representation (2.28) is the basis for the analysis of best N -term ap-
proximation rates. To this end, denote by Λ ⊂ F a subset of cardinality N = #Λ <∞,
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and let XΛ := span{Lν : ν ∈ Λ} ⊂ L2(S, ρ;X ). Then, with qν denoting the Legendre
coefficients of the solution q of the parametric operator equation (2.18), Parseval’s
identity (2.29) implies∥∥q −∑

ν∈Λ

qνLν
∥∥2

L2(S,ρ;X )
= inf
vΛ∈XΛ

‖q − vΛ‖2L2(S,ρ;X ) (2.30)

=
∑
ν 6∈Λ

‖qν‖2X .

Best N -term approximation rates in ‖ · ‖L2(S,ρ;X ) will therefore follow from summa-
bility of the norms αν = ‖qν‖X of the Legendre coefficients by the following lemma
whose’s proof is elementary [CDS2] and which is by now known as Stechkin’s Lemma.

Lemma 5. Let 0 < p ≤ q ≤ ∞ and α = (αν)ν∈F be a sequence in `p(F). If FN is
the set of indices corresponding to the N largest values of |αν |, we have( ∑

ν /∈FN

|αν |q
)1/q ≤ ‖α‖`p(F)N

−r,

where r := 1
p −

1
q ≥ 0.

We therefore need to address the p-summability of the ‖·‖X norms of the Legendre
coefficients qν of q(σ). We first prove estimates for these coefficients.

Proposition 6. Let 0 < p ≤ 1 and b = (bj)j≥1 be as in Assumption 1 above.
Moreover, let the sequence d = (dj)j≥1 be defined by dj := βbj where β = 1/(

√
3 ln 2),

and b̃ = (b̃j)j≥1 be defined by b̃j := bj/ ln 2. Under Assumption 1, we then have for
all ν ∈ F

‖qν‖X ≤ C0‖f‖Y′
|ν|!
ν!

dν (2.31)

and

‖qν‖X ‖Lν‖L∞(S) ≤ C0‖f‖Y′
|ν|!
ν!

b̃ν . (2.32)

Proof. In view of the representation (2.28) in terms of Legendre polynomials, the
expansion coefficients qν of the solution q(σ) of (2.18) read for any ν ∈ F

qν =

∫
S
q(σ)Lν(σ) dρ(σ) ∈ X . (2.33)

Since q(σ) depends analytically on σ, we can use repeated integration by parts to each
of the one-dimensional integrals in (2.33), see the proof of Corollary 6.1 in [CDS1], to
arrive at the a-priori estimate

‖qν‖X ≤
β|ν|

ν!
sup
σ∈S
‖(∂νσq)(σ)‖X .

Among others, such estimates allow to steer anisotropic sparse interpolation algo-
rithms of Smolyak type.

Applying (2.19) to further estimate the right hand side immediately yields (2.31).
Similarly, also the estimate (2.32) follows.
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This result means that the sequence of the norms of the Legendre coefficients
(‖qν‖X )ν∈F ∈ `p(F) for the same value of the regularity parameter p ∈ (0, 1] for
which G(σ) satisfies Assumption 1. Since p ≤ 1, such sequences are called sparse and
the corresponding expansions of the type (2.28) sparse generalized polynomial chaos
(gpc) expansions. The terminology of sparsity has been used widely in the context of
compressed sensing, addressing the efficient approximation of random sequences with
sequences in `p with p as close as possible to zero, see, e.g., [RW].

Based on the estimates in Proposition 6, we obtain the following result on con-
vergence rates of best N -term polynomial approximations of the parametric solution
q(σ) of the parametric operator equation (2.18).

Theorem 7. Under Assumption 1 with some 0 < p ≤ 1, there exists a sequence
(ΛN )N∈N ⊂ F of index sets whose cardinality does not exceed N such that

‖q − qN‖L2(S,ρ;X ) <∼ N−r , r =
1

p
− 1

2
(2.34)

where the inequality holds with a constant independent of N . Here, qN := qΛN where
qΛN denotes the sequence in L2(S, ρ;X ) whose entries qν equal those of the sequence
q if ν ∈ ΛN ⊂ F and which equal zero otherwise.

In other words, if the parametric operator family {G(σ) ∈ L(X ,Y ′) : σ ∈ S}
satisfies Assumption 1 just for weakest case p = 1, this spectral approach achieves the
same benchmark rate as Monte-Carlo methods. For any p < 1, the rate of the spec-
tral Galerkin approximation will already outperform Monte-Carlo methods. (Since
the latter performs approximations for the mean field, the corresponding statement
for the expectation values is derived in Corollary 8 below.) In the extreme case that
Assumption 1 holds for any 0 ≤ p < 1 as in the case of affine parameter depen-
dence discussed in the second part of Section 2.2, see Corollary 3, the above rate r is
arbitrarily high.

Proof. The proof of Theorem 7 proceeds along the lines of the argument in
[CDS1] for the parametric diffusion problem: we use the bounds (2.31) and (2.32),
and Theorem 7.2 of [CDS1], i.e.,

for 0 < p ≤ 1 :

(
|ν|!
ν!
αν
)
ν∈F
∈ `p(F) if and only if ‖α‖`1(N) < 1 and α ∈ `p(N) .

Applying this result to the sequences α = d and to α = b̃ = (ln 2)−1b, we obtain
the p-summability, and, by referring to the Stechkin Lemma 5 with q = 2 and the
Parseval identity (2.29), the assertion (2.34) follows.

At this point, we shall relate the above approximation result to the original vari-
ational problem (2.18). Formulated in L2(S, ρ;X ), the problem reads as follows: find
q ∈ L2(S, ρ;X ) such that

E(G(σ)q(σ)) = f (2.35)

where the expectation is defined as

E(G(σ)q(σ)) :=

∫
S
G(σ)q(σ) dρ(σ). (2.36)

With the approximation result of Theorem 7, we can immediately get a corresponding
error estimate for the Galerkin approximation qΛ ∈ XΛ of (2.35), i.e., the solution of
(2.35) projected onto XΛ, by applying Céa’s Lemma, see, e.g., [BF], in the first step
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in (2.30). Also, we can derive from qN an approximation to the mean field or (formal)
“ensemble average” q := E(q) as

qN := E(qN ) =
∑
ν∈ΛN

eνqν . (2.37)

Here qν are the expansion coefficients defined in (2.33) and eν are the νth moments of
the Legendre polynomials eν := E(Lν(σ)) =

∫
S Lν(σ)dρ(σ). Since we are dealing with

the uniform probability measure (2.6), the orthogonality and normalization properties
of the Legendre polynomials (2.26) yield eν = 0 for all ν except ν = 0 in which case
we have e0 = 1. Thus, the expectation of qN is just given by the 0th polynomial chaos
expansion coefficient,

qN = E(qN ) = q0 =

∫
S
q(σ)dρ(σ). (2.38)

Moreover, as in [CDS1], one has by the triangle and the Cauchy-Schwarz inequality
the estimate

‖q − qN‖X ≤
∫
S
‖q(σ, ·)− qN (σ, ·)‖Xdρ(σ) ≤ ‖q − qN‖L2(S,ρ;X ) (2.39)

which, together with the main approximation estimate (2.34) yields the same rate
also for the mean fields.

Corollary 8. Let the operator family {G(σ) ∈ L(X ,Y ′) : σ ∈ S} satisfy
Assumption 1 for some 0 < p ≤ 1. Then, with the approximation qN defined in
Theorem 7, it holds

‖q − qN‖X <∼ N−r , r =
1

p
− 1

2
. (2.40)

We next illustrate the scope of the foregoing abstract results with several concrete
instances of PDE-constrained control problems: we consider problems constrained
by parametric elliptic or parabolic PDE operators and different types of controls.
In either case, we develop gpc approximation results by identifying the parametric
control problem as particular case of the abstract parametric saddle point problem
(2.18). Importantly, due to our formulation as a saddle point problem, the best N -
term approximation rates obtained from Theorem 7 pertain to concurrent N -term
approximation of state and control with the same set of active gpc coefficients.

3. Parametric Linear-Quadratic Elliptic Control Problems. We describe
the setup of the control problem constrained by a linear parametric elliptic PDE by
first addressing conditions on the PDE constraint as an operator equation with a
parametric linear elliptic operator A = A(σ) on a reflexive Banach space Y . Our
standard example with be a scalar diffusion problem. As mentioned above in Section
2.2, this means that we are actually in the case of affine parameter dependence so that
Assumption 1 always holds for any 0 < p ≤ 1, as stated in Corollary 3. However, since
all the subsequent results also hold for the more general case as long as Assumption
1 as satisfied, we formulate the main results for the more general situation.

Assumption 3. For each fixed σ ∈ S, the operator A(σ) ∈ L(Y, Y ′) is symmetric
and boundedly invertible, i.e., A(σ) : Y → Y ′ is linear, self-adjoint, invertible and
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satisfies the continuity and coercivity estimates∣∣〈v,A(σ)w〉Y×Y ′
∣∣ ≤ CA‖v‖Y ‖w‖Y , v, w ∈ Y, (3.1)

〈v,A(σ)v〉Y×Y ′ ≥ cA‖v‖
2
Y , v ∈ Y, (3.2)

with some constants 0 < cA ≤ CA <∞ independent of σ.

These imply the estimates

cA‖w‖Y ≤ ‖A(σ)w‖Y ′ ≤ CA‖w‖Y for any w ∈ Y (3.3)

which, in terms of operator norms, may be expressed as

‖A(σ)‖Y→Y ′ := sup
w∈Y, w 6≡0

‖A(σ)w‖Y ′
‖w‖Y

≤ CA, ‖A(σ)−1‖Y ′→Y ≤ c−1
A . (3.4)

If the precise format of the constants in (3.3) does not matter, we will abbreviate this
as

‖A(σ)w‖Y ′ ∼ ‖w‖Y for any w ∈ Y (3.5)

and use a <∼ b or a >∼ b for the corresponding one-sided estimates.

Some examples of operators A and space Y are provided next which satisfy As-
sumption 3 provided that (3.6) stated below holds. In all the following, Ω ⊂ Rd

denotes a bounded domain with Lipschitz boundary ∂Ω.

Example 9.

(i) (Dirichlet problem with homogeneous Dirichlet boundary conditions)
〈v,A(σ)w〉Y×Y ′ =

∫
Ω

(a(σ)∇xv · ∇xw)dx, Y = H1
0 (Ω).

In this and all the following examples, the coefficient a(σ) is supposed to
satisfy the uniform ellipticity assumption UEA(ra, Ra): there exist positive
constants ra, Ra such that for all x ∈ Ω and all σ ∈ S it holds

0 < ra ≤ a(x, σ) ≤ Ra <∞. (3.6)

This is a standard assumption for stochastic PDEs since it guarantees that
the operator A(σ) is elliptic uniformly with respect to the parameter sequences
σ. More generally, ra and Ra may depend on σ, but are in Lp(S; ρ) for p ≥ 2,
as is the case for a log-normal distribution, see, e.g., [BNT] for examples.

(ii) (Reaction-diffusion problem with possibly anisotropic diffusion with Neumann
boundary conditions)

〈v,A(σ)w〉Y×Y ′ =

∫
Ω

(a(σ)∇xv · ∇xw + vw)dx, Y = H1(Ω) .

Note that Assumption 3 is, due to the self-adjointness a special case of the con-
ditions on the operator G in Proposition 1 with X = Y = Y . Thus, this assumption
implies that for any given deterministic f ∈ Y ′ and fixed σ ∈ S, the operator equation

A(σ) y = f (3.7)

has a unique solution y = y(σ) ∈ Y .
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3.1. Distributed or Neumann boundary control. Allowing an additional
function u = u(σ) on the right hand side of (3.7), we ask to steer the solution of such
an equation towards a prescribed desired deterministic state y∗, under the condition
that the effort on u should be minimal.

We formulate the control problems involving expectation values as, e.g., in [GLL].
As we have seen at the end of Section 2.4, the respective approximations can then be
derived from the main approximation result in Theorem 7 as in Corollary 8.

We define an optimal control problem with a functional of tracking type as follows:
minimize over the state y(σ) and the control u(σ) the functional

E(J̃(y(σ), u(σ))) :=
1

2
E(‖Ty(σ)− y∗‖2O) +

ω

2
E(‖u(σ)‖2U ) (3.8)

subject to the linear operator equation

E(A(σ) y(σ)) = f + EE(u(σ)). (3.9)

Here ω > 0 is a fixed constant which balances the least squares approximation of the
states and the norm for the control and T, E are some linear (trace and extension)
operators described below.

We need to add some requirements on the norms used in (3.8). In view of As-
sumption 3, in order for (3.9) to have a well-defined unique solution, we need to assure
that either y ∈ Y or Eu ∈ Y ′. The latter is satisfied if the control space U defining
the penalty norm part of the functional is such that U ⊆ Y ′ with continuous embed-
ding. Then the observation space O defining the least squares part of the functional
(3.19) may be chosen as any O ⊇ Y . In this case, T may be any continuous linear
operator from Y onto its range, i.e., ‖Tv‖range(T) <∼ ‖v‖Y for v ∈ Y with range(T)
continuously embedded in O. Alternatively, assuring Ty ∈ O and selecting O ⊆ Y
embedded continuously would allow for any choice of U .

There are two standard examples covered by this formulation which we have in
mind (see [DK] for more general formulations). A distributed control problem is one
where the control is exerted on all of the right hand side of (3.9), i.e., E is just
the identity. This case is perhaps rather of academic nature but serves as a good
illustration for the essential mechanisms.

Example 10. (Dirichlet problem with distributed control)
Here the PDE constraints (before taking the expectation values on both sides) are given
by the standard scalar second order Dirichlet problem with distributed control,

−∇x·(a(σ)∇x) y(σ) = f + u(σ) in Ω,

y(σ) = 0 on ∂Ω,
(3.10)

which gives rise to the operator equation (3.9) with

〈v,A(σ)w〉Y×Y ′ =

∫
Ω

a(σ)∇xv · ∇xw dx, Y = H1
0 (Ω), Y ′ = H−1(Ω), (3.11)

and given f ∈ Y ′. Admissible choices for O,U are the classical case O = U = L2(Ω),
see [L], or the natural choice O = Y and U = Y ′, in which case the operators T,E
are the canonical injections T = I, E = I. Many more possible choices covering, in
particular, fractional Sobolev spaces, have been discussed in [DK], as well as including
a class of Neumann problems with distributed control.
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Example 11. (Reaction-diffusion problem with Neumann boundary control)
Consider the second order Neumann problem in strong form

−∇x·(a(σ)∇x) y(σ) + y(σ) = f in Ω,

(a(σ)∇xy(σ)) · n = u(σ) on ∂Ω,
(3.12)

where n denotes the outward normal at ∂Ω. Here the weak form is based on setting
Y = H1(Ω) and

〈v,A(σ)w〉Y×Y ′ =

∫
Ω

(a(σ)∇xv · ∇xw + vw)dx, (3.13)

and given f ∈ Y ′. Recall that for any v ∈ H1(Ω), its normal trace n · ∇xv to ∂Ω
belongs to H−1/2(∂Ω). Thus, in order for the right hand side of (3.12) to be well-
defined, the control u must belong to H−1/2(∂Ω), i.e., the operator E is the adjoint
of the normal trace operator, or, E : H−1/2(∂Ω)→ Y ′ is an extension operator to Ω.
The formulation of the constraint as an operator equation reads in this case

A(σ) y(σ) = f + Eu(σ). (3.14)

As previously, one could choose O to be a space defined on Ω. However, a more
frequent practical situation arises when one wants to achieve a prescribed state on
some part of the boundary. Denote by Γ◦ ⊆ ∂Ω an observation boundary with strictly
positive d−1-dimensional measure and by T : H1(Ω)→ H1/2(Γ◦) the trace operator to
this part of the boundary. Then an admissible choice is O = H1/2(Γ◦). As discussed
above, we need to require for the control that u ∈ H−1/2(∂Ω). For these choices, the
functional (3.8) is of the form

J̃(y, u) =
1

2
‖Ty − y∗‖2H1/2(Γ◦)

+
ω

2
‖u‖2H−1/2(∂Ω). (3.15)

The fractional trace norms appearing here in a natural form are often replaced, perhaps
partly due to the difficulty of evaluating fractional order Sobolev norms numerically,
by the classical choice Γ◦ = ∂Ω and O = U = L2(∂Ω) [L]; we hasten to add, however,
that in the context of multiresolution discretizations in Ω and on ∂Ω, fractional Sobolev
norms can be realized numerically in optimal complexity, see, e.g.,[DK, GK] and [Bu1,
Bu2] for corresponding numerical experiments including distributed control problems
for elliptic PDEs. Wavelet constructions on general polygonal domains were provided,
e.g., in [HaSch, Ng].

One calls (3.8) with constraints (3.9) a linear-quadratic control problem: a qua-
dratic functional is to be minimized subject to a linear equation coupling state and
control. From an optimization point of view, the solution of this problem has a simple
structure: on account of J̃ being convex, one only needs to consider the first order
conditions for optimality. To derive these, for σ ∈ S, in principle, the dual operator
of A(σ) comes into play which is defined by

〈A(σ)∗v, w〉Y ′×Y := 〈v,A(σ)w〉Y×Y ′ (3.16)

that is, A(σ)∗ ∈ L(Y, Y ′). Of course, since in Assumption 3 A(σ) was required to be
self-adjoint for each fixed σ ∈ S, we have A(σ)∗ = A(σ).

Note that in case of an unsymmetric A(σ), the property to be boundedly invertible
(3.5) immediately carries over to A(σ)∗, that is, for fixed σ ∈ S and any v ∈ Y , one
has the mapping property

‖A(σ)∗v‖Y ′ ∼ ‖v‖Y . (3.17)
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For ease of presentation in this paper, we select here the natural case O = Y
and U = Y ′ resulting in T = I and E = I for the trace and extension operators.
The more general case which may involve Sobolev spaces with possibly fractional
smoothness indices has been treated in [DK] for PDE-constrained control problems
without parameters.

To represent the Hilbert space norms in the optimization functional, we shall
employ Riesz operators RY : Y → Y ′ defined by

〈v,RY w〉Y×Y ′ := (v, w)Y , v, w ∈ Y. (3.18)

Defining RY ′ : Y ′ → Y correspondingly by 〈v,RY ′w〉Y ′×Y := (v, w)Y ′ for v, w ∈ Y ′,
this implies RY ′ = R−1

Y so that we can write both norms in the target functional in
terms of one Riesz operator R = RY . Since the inner product (·, ·)Y is symmetric,
the Riesz operator R is also symmetric. In view of Corollary 8, for easier readability
and in view of Corollary 8, we formulate the following result for a fixed choice of σ,
i.e., without taking the expectation values as in (3.8) and (3.9), see also Remark 19
below.

Proposition 12. Necessary and sufficient for the linear-quadratic control prob-
lem to minimize for (fixed) σ ∈ S

J(y(σ), u(σ)) :=
1

2
‖y(σ)− y∗‖2Y +

ω

2
‖u(σ)‖2Y ′ (3.19)

over all (y(σ), u(σ)) ∈ Y ×Y ′ subject to (3.9) are the Euler equations for the solution
triple (y(σ), p(σ), u(σ)) ∈ Y × Y × Y ′

A(σ) y(σ) = f + u(σ)

(EE) A(σ)∗ p(σ) = R(y∗ − y(σ)) (3.20)

ωR−1 u(σ) = p(σ). (3.21)

Proof. We present a proof of this well-known result only to bring out the roles of
the Riesz operators; we skip in this proof the dependence of σ for better readability.
The derivation of (EE) is based on computing the zeroes of the first order variations
of the Lagrangian functional

Lagr(y, p, u) := J(y, u) + 〈p,A y − f − u〉Y×Y ′ , (3.22)

introducing a new variable p ∈ Y called the Lagrangian or adjoint variable by which
the constraints (3.9) are appended to the functional J , see, e.g., [L]. By inserting
definition (3.19) and (3.18), the Lagrangian functional attains the form

Lagr(y, p, u) = 1
2 〈y − y∗, R(y − y∗)〉Y×Y ′ +

ω
2

〈
u,R−1u

〉
Y ′×Y + 〈p,A y − f − u〉Y×Y ′ .

(3.23)
The constraint (3.9) is recovered as the zero of the first variation of Lagr(y, p, u) in
direction of p. Moreover, ∂

∂u Lagr(y, p, u) = 0 yields ωR−1u− p = 0. Finally,

∂

∂y
Lagr(y, p, u) := lim

δ→0

Lagr(y + δ, p, u)− Lagr(y, p, u)

δ

= lim
δ→0

1
2 〈δ,R(y − y∗)〉Y×Y ′ + 1

2 〈y − y∗, Rδ〉Y×Y ′ + 〈p,Aδ〉Y×Y ′
δ

= lim
δ→0

〈δ,R(y − y∗)〉Y×Y ′ + 〈p,Aδ〉Y×Y ′
δ



18 Angela Kunoth and Christoph Schwab

by symmetry of R. Bringing A on the other side of the dual form yields

∂

∂y
Lagr(y, p, u) = R(y − y∗) +A∗p

and therefore ∂
∂y Lagr(y, p, u) = 0 if and only if (3.20) holds.

In our formulation, the design equation (3.21) expresses the control just as a
weighted Riesz transformed adjoint state. For later analysis, it will help us to eliminate
the control using (3.21) and write (EE) as the condensed Euler equations for the
solution pair (y(σ), p(σ)) ∈ Y × Y

A(σ) y(σ) = f + 1
ωRp(σ) (3.24)

A(σ)∗ p(σ) = R(y∗ − y(σ)).

With the abbreviation ŷ∗ := Ry∗ ∈ Y ′, we write this as a coupled system to find for
given (f, ŷ∗) ∈ Y ′ × Y ′ a solution pair (y(σ), p(σ)) ∈ Y × Y which solves(

A(σ) − 1
ω R

R A(σ)∗

)(
y(σ)

p(σ)

)
=

(
f

ŷ∗

)
. (3.25)

Identifying the matrix operator appearing in this system with G(σ) in the abstract
problem in Section 2, we define the corresponding bilinear form G(σ; ·, ·) : X ×X → R
where X := Y × Y , Y := X , for q = (y, p), q̃ = (ỹ, p̃) ∈ X by

G(σ; q, q̃) :=

〈
q,

(
A(σ) − 1

ω R

R A(σ)∗

)
q̃

〉
X×X ′

(3.26)

= 〈y,A(σ)ỹ〉Y×Y ′ −
1
ω 〈y,Rp̃〉Y×Y ′ + 〈p,Rỹ〉Y×Y ′ + 〈p,A(σ)∗p̃〉Y×Y ′ .

We equip the space X with the norm

‖q‖X =

∥∥∥∥(yp
)∥∥∥∥

Y×Y
= ‖y‖Y + ‖p‖Y . (3.27)

Proposition 13. The parametric bilinear form G(σ; ·, ·) : X × X → R is con-
tinuous on X ×X for any constant weight ω > 0, and uniformly with respect to the
parameter vector σ. It is coercive on X for ω = 1 with coercivity constant cG := cA

2
and cA from (3.2). For 0 < ω ≤ 1, it is coercive on X with a constant cG defined
below in (3.29). Moreover, it is symmetric for ω = 1.

Proof. The symmetry of G(σ; ·, ·) for ω = 1 follows immediately from the repre-
sentation (3.26) and by recalling that A(σ) is self-adjoint. The continuity of G(σ; ·, ·)
results from the definition of R (3.18) and applying Cauchy-Schwarz inequality, to-
gether with the continuity (3.1) of A(σ), i.e., for any q = (y, p), q̃ = (ỹ, p̃) ∈ X we
have from (3.26)

|G(σ; q, q̃)| ≤
∣∣〈y,A(σ)ỹ〉Y×Y ′

∣∣+
∣∣〈p,A(σ)∗p̃〉Y×Y ′

∣∣+ 1
ω |(y, p̃)Y |+ |(p, ỹ)Y |

≤ CA (‖y‖Y ‖ỹ‖Y + ‖p‖Y ‖p̃‖Y ) + 1
ω‖y‖Y ‖p̃‖Y + ‖p‖Y ‖ỹ‖Y

≤ CA
(
1 + 1

ω

)
‖q‖X ‖q̃‖X =: CG‖q‖X ‖q̃‖X . (3.28)

As for the coercivity, for q = (y, p) ∈ X , using the symmetry of R, its definition, the
coercivity (3.2) and Cauchy-Schwarz’ inequality, we infer for 0 < ω ≤ 1 (meaning that
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(1− 1
ω ≤ 0)

G(σ; q, q) = 〈y,A(σ)y〉Y×Y ′ + 〈p,A(σ)∗p〉Y×Y ′ +
(
1− 1

ω

)
〈y,Rp〉Y×Y ′

≥ cA
(
‖y‖2Y + ‖p‖2Y

)
−
(

1
ω − 1

)
|(y, p)Y |

≥ cA
(
‖y‖2Y + ‖p‖2Y

)
−
(

1
ω − 1

)
‖y‖Y ‖p‖Y .

In case ω = 1, this immediately yields G(σ; q, q) ≥ cA
2 ‖q‖

2
X = cG‖q‖2X for every σ ∈ S.

For ω < 1, we obtain

G(σ; q, q) ≥
(
cA − ( 1

ω − 1)
) (
‖y‖2Y + ‖p‖2Y

)
≥ 1

2

(
cA − ( 1

ω − 1)
)
‖q‖2X =: cG‖q‖2X . (3.29)

By the Theorem of Lax-Milgram, we therefore have, based on Proposition 13, the
following result.

Theorem 14. Under Assumption 3, for every 0 < ω ≤ 1 and for every σ ∈ S,
the control problem (3.25) admits a unique solution q(σ) = (y(σ), u(σ)) ∈ X for any
given deterministic right hand side g := (f, ŷ∗) ∈ X ′.

Since, moreover, the parametric family {A(σ) : σ ∈ S} depends on σ in a affine
fashion, i.e.,

A(σ) = A0 +
∑
j≥1

σjAj , (3.30)

the parametric matrix operator G(σ) ∈ L(X ,X ′) satisfies Assumption 2 with X =
Y = Y × Y .

Corollary 15. State, the costate and the control are simultaneously analytic
with respect to all parameters. Moreover, the tensorized Legendre expansion (see
(2.27)) of the solution triple (y(σ), p(σ), u(σ)) is sparse, and therefore, in particu-
lar, best N -term gpc approximation rates of all these quantities in the L2(S, ρ;X )
norm hold.

Proof. The first part of the statement follows by Theorem 4; the preceding result
establishes the simultaneous analyticity of state as well as of the costate, with respect
to all parameters and therefore, by (3.21), also of the control. The second statement
follows upon referring to Theorem 7.

Remark 16. Note that the affine dependence of the operator G(σ) in (3.26),
see Corollary 3, was crucial in being able to use the abstract results of Section 2.
Analogous analytic dependence results also hold for control problems with certain more
general parameter dependences.

Occasionally, it is useful to derive from (3.25) an equation for the control alone.
Proposition 17. Under Assumption 3, system (EE) reduces to the condensed

equation for the control

(A(σ)−∗RA(σ)−1 + ωR−1)u(σ) = A(σ)−∗R
(
y∗ −A(σ)−1f

)
(3.31)

(using A−∗ := (A∗)−1) which we abbreviate as

M(σ)u(σ) = m(σ). (3.32)
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Proof. On account of Assumption 3, A(σ) ∈ L(Y, Y ′) is invertible uniformly with
respect to σ ∈ S so that (3.9) can be expressed as

y(σ) = A(σ)−1 f +A(σ)−1 u(σ). (3.33)

Inserted into (3.20) this yields

A(σ)∗p(σ) = −RA(σ)−1 u(σ) +R(y∗ −A(σ)−1f) (3.34)

and, again by Assumption 3,

p(σ) = −A(σ)−∗RA(σ)−1 u(σ) +A(σ)−∗R(y∗ −A(σ)−1f).

Using the identity (3.21), we can eliminate p(σ) and arrive at

ωR−1 u(σ) = −A(σ)−∗RA(σ)−1 u(σ) +A(σ)−∗R(y∗ −A(σ)−1f)

which is just (3.31).
Remark 18. We observe that the condensed equation (3.31) contains the bound-

edly invertible, parametric Schur complement operator M(σ); this operator, while be-
ing boundedly invertible, is not affine in the parameter vector σ anymore even if A(σ)
was. Therefore, the theory developed in the second part in Section 2 in the special
case of affine parameter dependence does not apply. Nevertheless, analytic parameter
dependence can be inferred for M(σ) from the structure of its definition, and analytic
continuation as in [CDS2] will allow to infer directly analytic dependence and best
N -term gpc approximation rates for the control u(σ) without approximation of the
state. As this requires introduction of complex extensions of all operators, forms and
spaces involved, we do not address this in detail here.

Remark 19. The setup is similar to the control problems considered in [GLL,
HLM] where, however, the number of stochastic parameters is assumed to be finite.

We can apply the same techniques used in [GLL] to derive the optimality con-
ditions (EE) for the control problem and PDE constraints with expectation values as
in (3.8) subject to (3.9) and arrive at the expectations of the Euler equations for the
solution triple (y, p, u) as

E(A(σ) y(σ)) = f + E(u(σ)) (3.35)

(EEE) E(A(σ)∗ p(σ)) = R(y∗ − E(y(σ))) (3.36)

ωR−1 E(u(σ)) = E(p(σ)). (3.37)

However, as explained in the derivation of Corollary 8, we can remain in the situation
of considering (EE) and all the following necessary conditions for optimality just as
in Proposition 12 for a fixed parameter σ.

3.2. Dirichlet boundary control. The last and perhaps practically most rel-
evant example of control problems with a tracking-type functional and a stationary
PDE as constraint concerns problems with Dirichlet boundary control: minimize for
some given data y∗ the quadratic functional

J(y, u) =
1

2
‖y − y∗‖2O +

ω

2
‖u‖2U , (3.38)

where state y and control u are coupled through the linear elliptic boundary value
problem

−∇x · (a(σ)∇xy) + y = f in Ω,
y = u on Γ,

(a(σ)∇xy) · n = 0 on ∂Ω \ Γ.
(3.39)
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Here Γ ⊂ ∂Ω denotes the control boundary assumed to be a set of positive Lebesgue
measure on which the control is exerted. Of course, we could allow again for an
observation boundary and trace to this boundary in (3.38) as in Example 11, see
[K]. We dispense with this generalization here and choose for the following simply
O = H1(Ω) and given observation y∗ ∈ H1(Ω). Recall that our approximation result
depends fundamentally on the fact that the operator G(σ) is boundedly invertible.
Thus, some of the situations causing problems with deterministic L2 Dirichlet control
problems and their finite element discretizations, see, e.g., [CR, GY, KV], do not
appear here. Envisaging the discretization of the state/costate/control with respect
to space in terms of wavelet coordinates at a later stage, the choice of fractional norms
does not pose any numerical difficulty since it just amounts to a multiplication with
a diagonal matrix; see [Bu2, Pa] for corresponding numerical studies. Specifically, in
[Pa] numerous cases of Dirichlet boundary control problems are studied by varying
fractional trace norms for O, U and the parameter ω.

To formulate (3.39) in weak form, we define A(σ) as in (3.13), and set Y =
H1(Ω). It is because of the appearance of the control u as a Dirichlet boundary
condition in (3.39) that this is referred to as a Dirichlet boundary control problem.
As it will be required to allow for repeated updates of the control, this suggests to
formulate the constraints (3.39) weakly as a saddle point problem itself which results
from appending the Dirichlet boundary conditions by Lagrange multipliers as follows.
The trace operator to Γ, T : H1(Ω) → H1/2(Γ) is surjective and defines a bilinear
form

〈Tv, w〉H1/2(Γ)×(H1/2(Γ))′ = 〈Tv, w〉H1/2(Γ)×(H1/2(Γ))′ (3.40)

on H1(Ω) × (H1/2(Γ))′. Setting Q := (H1/2(Γ))′, the PDE constraint (3.39) can be
formulated weakly as a linear saddle point problem: find (y1, y2) ∈ Y ×Q such that(

A(σ) T∗

T 0

)(
y1(σ)

y2(σ)

)
=

(
f

u(σ)

)
(3.41)

holds. The trace operator T : Y → Q is continuous and surjective on the kernel of
A(σ) yielding that the linear saddle point operator

B(σ) :=

(
A(σ) T∗

T 0

)
: Y ×Q→ Y ′ ×Q′ (3.42)

is an isomorphism and one has the norm equivalence∥∥∥∥B(σ)

(
v1

v2

)∥∥∥∥
Y ′×Q′

∼
∥∥∥∥(v1

v2

)∥∥∥∥
Y×Q

, (3.43)

see, e.g., [K]. Thus, if again A(σ) satisfies Assumption 3, we have assured that the
saddle point operator B(σ) for the PDE constraint defined in (3.41) also satisfies
Assumption 3. Finally, we choose for the control in (3.38) the natural space U =
H1/2(Γ). For the control problem to minimize (3.38) subject to (3.41), the optimality
conditions, derived analogously as in Proposition 12 are now to find for given f ∈
Y ′, y∗ ∈ Y the quintuple (y1(σ), y2(σ), p1(σ), p2(σ), u(σ)) ∈ X×X×Q for X := Y ×Q
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such that

B(σ)

(
y1(σ)

y2(σ)

)
=

(
f

u(σ)

)

(DEE) B(σ)∗
(
p1(σ)

p2(σ)

)
=

(
−RY (y(σ)− y∗)

0

)
ωRUu(σ) = p2(σ)

where RY is defined as in (3.18) and RU accordingly for (·, ·)U . Setting ŷ∗ := RY y∗ ∈
Y ′ and using the design equation in (DEE) to eliminate p2(σ), we arrive at the saddle
point system of saddle point problems similar to (3.25), to solve for y(σ), p(σ)) :=
(y1(σ), y2(σ), p1(σ), p2(σ)) ∈ X ×X the system

G(σ) :=

 B(σ)

(
0 0
0 − 1

ωR
−1
U

)
(
RY 0
0 0

)
B(σ)∗

(y(σ)
p(σ)

)
=


f
0
ŷ∗
0

 =: g . (3.44)

Corollary 20. Together with Theorem 14, we have therefore established again
the simultaneous analyticity of all the solution functions y(σ), p(σ), u(σ) for the case
that A(σ) depends affinely on σ according to (3.30). Moreover, applying again Theo-
rem 7, we have established best N -term gpc approximation rates for the state, costate
and control in the L2(S, ρ;X ) norm with the same rate r.

4. Parametric Linear-Quadratic Parabolic Control Problems. The pre-
ceding control problems were stationary, i.e., the equation of state was elliptic. We
now show how control problems with parabolic equations of state fit into the abstract
results in Section 2. Accordingly, we introduce in the present section first an ap-
propriate functional frame work for parabolic evolution problems, following [SS]. In
view of Theorem 2, we verify in particular the stability conditions (2.10), (2.11) for
the nominal parabolic operator G0, in the corresponding spaces X and Y and estab-
lish its mapping properties and bounded invertibility. We then present examples of
optimal control problems, following [GK].

The functional setting of the nominal problem is next used to formulate results
for its parametric version and, in particular, for precise statements of smallness of per-
turbations. Sufficient conditions are once more given to cast the parametric parabolic
control problem into the abstract theory of Section 2, implying in particular analytic
dependence of state and controls on the parameter vector σ. Sufficient conditions on
the perturbations to ensure best N -term convergence rates will be identified.

4.1. Space–Time Variational Formulations of Parabolic State Equa-
tions. Denote by ΩT := I ×Ω with time interval I := (0, T ) the time–space cylinder
for functions f = f(t, x) depending on time t and space x. The parameter T < ∞
will always denote a finite time horizon. Let Y be a dense subspace of H := L2(Ω)
which is continuously embedded in L2(Ω) and denote by Y ′ its topological dual. The
associated dual form is denoted by 〈·, ·〉Y ′×Y or, shortly 〈·, ·〉. Later we will use 〈·, ·〉
also for duality pairings between function spaces on the time-space cylinder ΩT with
the precise meaning clear from the context. We consider abstract parabolic problems
as developed, e.g., in [L, Chapter III, pp. 100]. Specifically, we assume given for a.e.
t ∈ I and for σ ∈ S bilinear forms a(σ, t; ·, ·) : Y × Y → R so that t 7→ a0(σ, t; ·, ·) is
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measurable on I and such that a(σ, t; ·, ·) is continuous and elliptic on Y , uniformly
in t ∈ I and in σ ∈ S: there exist constants 0 < α1 ≤ α2 <∞ independent of t such
that for a.e. t ∈ I and for every σ ∈ S

|a(σ, t; v, w)| ≤ α2‖v‖Y ‖w‖Y , v, w ∈ Y,
a(σ, t; v, v) ≥ α1‖v‖2Y , v ∈ Y .

(4.1)

By the Riesz representation theorem, there exists a one-parameter family of bounded,
linear operators A(σ, t) ∈ L(Y, Y ′) such that

∀σ ∈ S : 〈A(σ, t)v, w〉 := a(σ, t; v, w), v, w ∈ Y . (4.2)

Typically, A(σ, t) will be a linear elliptic differential operator of second order on Ω and
Y will denote a function space on Ω, such as, e.g., Y = H1

0 (Ω). We denote by L2(I;Z)
the space of all functions v = v(t, x) for which for a.e. t ∈ I one has v(t, ·) ∈ Z. Instead
of L2(I;Z), we will write this space as the (topological) tensor product of the two
separable Hilbert spaces, L2(I)⊗Z, which, by [A, Theorem 12.6.1], can be identified.

For analytical purposes, it is convenient to interpret linear parabolic evolution
equations as ordinary differential equations in an infinite-dimensional state space Y
(see, e.g., [E]): given an initial condition y0 ∈ H and right-hand side f ∈ L2(I;Y ′),
find y(σ; ·) in some function space on ΩT such that

〈∂y(σ;t,·)
∂t , v〉+ 〈A(σ, t) y(σ; t, ·), v〉 = 〈f(t, ·), v〉 for all v ∈ Y and a.e. t ∈ (0, T ),

〈y(0, ·), v〉 = 〈y0, v〉 for all v ∈ H .
(4.3)

In order to cast such parabolic equations of state into the abstract setting of
Section 2 and as basis for the recently developed space-time adaptive, compressive
discretizations of such equations of state, however, space–time variational formulation
for (4.3) are required. One such formulation is based on the Bochner type solution
space

X := {w ∈ L2(I;Y ) : ∂w(t,·)
∂t ∈ L2(I;Y ′)} = L2(I;Y ) ∩H1(I;Y ′)

= (L2(I)⊗ Y ) ∩
(
H1(I)⊗ Y ′

)
(4.4)

equipped with the graph norm

‖w‖2X := ‖w‖2L2(I;Y ) + ‖∂w(t,·)
∂t ‖

2
L2(I;Y ′) (4.5)

and the Bochner space of test functions

Y := L2(I;Y )×H = (L2(I)⊗ Y )×H (4.6)

equipped, for v = (v1, v2) ∈ Y, with the norm

‖v‖2Y := ‖v1‖2L2(I;Y ) + ‖v2‖2H (4.7)

Note that v1 = v1(t, x) and v2 = v2(x). (We remark in passing that the choices (4.4)
of spaces incorporates the initial condition as essential condition in the space; other
possible formulations allow for the initial condition as natural condition, see [ChSt]
for details on such formulations which, in the present context of tracking type, high-
dimensional parametric control problems, allow for completely analogous results).
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Integration of (4.3) over t ∈ I leads to the variational problem: given f ∈ Y ′, for
every σ ∈ S find a function y(σ) ∈ Y

b(σ; y(σ), v) = 〈f, v〉 for all v = (v1, v2) ∈ Y, (4.8)

where the bilinear form b(σ; ·, ·) : X × Y → R is defined by

b(σ;w, (v1, v2)) :=

∫
I

(
〈∂w(t,·)

∂t , v1(t, ·)〉+ 〈A(σ, t)w(t, ·), v1(t, ·)〉
)
dt+ 〈w(0, ·), v2〉

(4.9)
and the right-hand side 〈f + y0, ·〉 : Y → R by

〈f, v1〉+ 〈y0, v2〉 :=

∫
I

〈f(t, ·), v1(t, ·)〉 dt+ 〈y0, v2〉 (4.10)

for v = (v1, v2) ∈ Y. It is well-known (see, e.g. [DL, Chapter XVIII, Sect. 3]) that
the parametric operator family {B(σ) : σ ∈ S} defined by the bilinear form b(σ; ·, ·) in
(4.9) is a family of isomorphisms from X to Y ′. In [SS], detailed bounds on the norms
of the operator and its inverse were established. To prepare the ensuing formulation
and regularity results on the parametric parabolic optimal control problem, we next
formulate the corresponding result for the state equation (4.8). This result is again
a special case of the abstract results, Theorem 4 and Theorem 7. Alternatively, it
could be inferred from the abstract theory of parabolic evolution equations in [PS],
subject to a requirement of continuity of A(σ, t) with respect to t ∈ [0, T ], uniformly
with respect to σ ∈ S.

Recall that we have assured for elliptic diffusion problems that the parametric
family {A(σ, t) ∈ L(Y, Y ′) : σ ∈ S, t ∈ I} is p regular for arbitrary 0 < p ≤ 1 since
it is affine according to (3.30). In order to cover also more general cases, we assume
again for the following result that {A(σ, t) ∈ L(Y, Y ′) : σ ∈ S, t ∈ I} is p-regular for
some 0 < p ≤ 1.

Theorem 21. For every σ ∈ S, the parabolic evolution operator B(σ) ∈ L(X ,Y ′)
defined by 〈B(σ)w, v〉 := b(σ;w, v) for w ∈ X and for v ∈ Y with the parametric
bilinear form b(σ; ·, ·) from (4.9) and with the choice of spaces X , Y as in (4.4) and
(4.6) is boundedly invertible: there exist constants 0 < β1 ≤ β2 <∞ such that

sup
σ∈S
‖B(σ)‖X→Y′ ≤ β2 and sup

σ∈S
‖B(σ)−1‖Y′→X ≤

1

β1
. (4.11)

Moreover, the parametric operator family {B(σ) : σ ∈ S} satisfies Assumption 1 with
the same regularity parameter p. In particular, the parametric family y(σ) in (4.8) of
states satisfies the a-priori estimate

∀ν ∈ F : sup
σ∈S
‖(∂νσy)(σ)‖X ≤ C0‖f‖Y′ |ν|!b̃ν , (4.12)

and admits a Legendre expansion

y(σ) =
∑
ν∈F

yν(σ)Lν(σ) , yν =

∫
σ∈S

y(σ)Lν(σ)ρ(dσ) (4.13)

which converges in L2(S, ρ;X ). The sequences (‖yν‖X )ν∈F ∈ `p(F) and their best
N -term truncated Legendre expansions converge at rate N−(1/p−1/2) in L2(S, ρ;X ).
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Proof. As proved in [SS], for every σ ∈ S the continuity constant β2 and the
inf–sup condition constant β1 for b(σ; ·, ·) are independent of σ ∈ S and satisfy

β1 ≥
min(α1α

−2
2 , α1)√

2 max(α−2
1 , 1) + %2

, β2 ≤
√

2 max(1, α2
2) + %2, (4.14)

where α1, α2 are the constants from (4.1) bounding A(σ, t) and % is defined as

% := sup
06≡w∈Y

‖w(0, ·)‖H
‖w‖Y

. (4.15)

We like to recall from [DL, E] that Y is continuously embedded in C0(I;H) so that
the pointwise in time initial condition in (4.3) is well-defined. From this it follows
that the constant % is bounded uniformly for the choice of Y ↪→ H.

In the sequel, we will require the dual operator B(σ)∗ : Y → X ′ of B(σ) which is
defined formally by

∀σ ∈ S : 〈B(σ)w, v〉 =: 〈w,B(σ)∗v〉 . (4.16)

From the definition of the bilinear form (4.9) on X × Y, it follows by integration by
parts for the first term with respect to time and using the adjoint A(σ, t)∗ with respect
to the duality pairing Y ′ × Y that

b(σ;w, (v1, v2)) =

∫
I

(
〈w(t, ·), ∂v1(t,·)

∂t 〉+ 〈w(t, ·), A(σ, t)∗v1(t, ·)〉
)
dt

+ 〈w(0, ·), v2〉+ 〈w(t, ·), v1(t, ·)〉|T0

=: 〈w,B(σ)∗v〉. (4.17)

Note that the first term of the right-hand side which involves ∂
∂tv1(t, ·) is still well-

defined with respect to t as an element of Y ′ on account of w ∈ Y.
So far, we considered only the parabolic state equation and proved analyticity

and polynomial approximation rates.
We now turn to perturbed, parametric state equations resulting from parametric

uncertainty in the spatial operator A(σ, t), and present in particular sufficient condi-
tions on the perturbations of A0(t) in order for the perturbed state equation to fit
into the general Assumption 2 and Theorem 2.

4.2. Tracking-type control problem constrained by a parametric, para-
bolic PDE. Recalling the situation from [GK], we wish to minimize, for some given
target state y∗ and fixed end time T > 0, the quadratic functional

J(y, u) := ω1

2 ‖y − y∗‖
2
L2(I;O) + ω2

2 ‖y(T, ·)− y∗(T, ·)‖2O + ω3

2 ‖u‖
2
L2(I;U) (4.18)

over the state y(σ) = y(σ; t, x) and over the control u(σ) = u(σ; t, x) subject to

B(σ)y(σ) = Eu(σ) +

(
f

y0

)
in Y ′, (4.19)

where B(σ) denotes the parametric, parabolic evolution operator defined by Theorem
21 and where f ∈ Y ′ is given by (4.10). In (4.18), the real weight parameters ω1, ω2 ≥
0 are such that ω1 + ω2 > 0 and ω3 > 0. The space O by which the integral over
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Ω in the first two terms in (4.18) is indexed is to satisfy O ⊇ Y with continuous
embedding. Although there is in the wavelet framework great flexibility in choosing
even fractional Sobolev spaces for O, for better readibility, we pick here O = Y .
Moreover, in a general case we suppose that the operator E is a linear operator
E : U → Y ′ extending

∫
I
〈u(t, ·), v1(t, ·)〉 dt trivially, i.e., E ≡ (I, 0)>. For ease of

presentation in the current setting, we choose again U = Y ′ similar to the stationary
case in Section 3.1.

The tracking type control problem consists in minimizing the functional (4.18)
subject to the parametric parabolic equation of state (4.19). We recall that the Riesz
operator RY : Y → Y ′ defined by

(v, z)Y =: 〈v,RY z〉, v, z ∈ Y, (4.20)

maps Y boundedly invertibly onto its dual Y ′. Since here RU = R−1
Y as in Section

3.1, we write R = RY .

Analogously to the derivation of the system (EE) in Section 3.1, we can derive
the first order necessary conditions consisting of the primal system together with the
costate or adjoint equations and the design equation. For a unification of notation, it
will be useful to define

y1(σ) := y(σ), y2(σ) := y(σ; 0)

and, since the adjoint state also requires the state to be evaluated at the finite end
point (sometimes also denoted as finite horizon) T , y3(σ) := y(σ;T ). Then the
necessary conditions for optimality read:
find the solution tuple (y1(σ), y2(σ), y3(σ), p1(σ), p2(σ), u(σ)) ∈ X×Y ×Y ×X×Y ×Y ′
as

B1(σ) y1(σ) = u(σ) + f

B2(σ)y2(σ) = y0

B1(σ)∗p1(σ) + ω1RY y1(σ) = ω1RY y∗ (4.21)

B2(σ)∗p2(σ) + ω2RY y3(σ) = ω2RY y∗(T )

ω3u(σ) = RY p1(σ) .

Here B1(σ), B2(σ) are the linear operators defined by the first and second dual forms
in (4.9), respectively, with ‘dual’ B1(σ)∗, B2(σ)∗ defined according to (4.17). Note
that the appearance of the Lagrange multipliers p1(σ), p2(σ) is caused by appending
the parabolic constraints (4.19) to the functional (4.18). Thus, the variable p1(σ) is
the adjoint state p1(σ) = p(σ; t, x), and p2(σ) may be interpreted as evaluating p at
the end point T , i.e., p2(σ) = p(σ;T, x). For presentation purposes, we also define
p3(σ) = p(σ; 0, x). Eliminating u(σ) = ω−1

3 RY p1(σ) from the design equation and
abbreviating

ŷ∗ := RY y∗ and ŷ∗(T ) := RY y∗(T ) ,

and

ŷ(σ) = (y1(σ), y2(σ), y3(σ)), p̂(σ)) = (p1(σ), p2(σ), p3(σ))
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we arrive at the coupled system

G(σ)

(
ŷ(σ)

p̂(σ)

)
:=


B̂(σ) diag(− 1

ω3
RY , 0, 0) 1

ω1
RY 0 0

0 0 1
ω2
RY

0 0 0

 B̂(σ)
∗


(
ŷ(σ)

p̂(σ)

)
(4.22)

=


f
y0

0
ω1ŷ∗

ω2ŷ∗(T )
0

 =: g

where B̂(σ) := diag(B1(σ), B2(σ), 0). For the final result, we assume again that
the parametric family of spatial operators {A(σ, t) ∈ L(Y, Y ′) : σ ∈ S} satisfies
Assumption 1 for some regularization parameter 0 < p ≤ 1. Applying the arguments
as for the proof of Theorem 21, Corollary 20 and Theorem 7, we arrive at

Theorem 22. Assume that for every t ∈ [0, T ] the parametric family of spatial
operators {A(σ, t) ∈ L(Y, Y ′) : σ ∈ S} satisfy Assumption 1. Then

(i) for every σ ∈ S, the tracking type control problem (4.21) can be written

as a parametric saddle point operator equation G(σ)(ŷ(σ), p̂(σ)) = g for the

solution tuple (ŷ(σ), p̂(σ)) ∈ X with G(σ) ∈ L(X ,Y ′) where the space X = Y
is given by

X = X × Y × Y. (4.23)

(ii) Moreover, for ω1 + ω2 > 0, ω3 > 0, the parametric saddle point operator
G(σ) ∈ L(X ,Y) in (4.22) is boundedly invertible for all σ ∈ S and satisfies
Assumption 1 with the same regularity parameter p.

(iii) The parametric family of state-costate pairs S 3 σ 7→

(
ŷ(σ)

p̂(σ)

)
∈ L2(S, ρ;X )

depends analytically on σ ∈ S.
(iv) The parametric family of state-costate pairs admits a concurrent Legendre

expansion (
ŷ(σ)

p̂(σ)

)
=
∑
ν∈F

Lν(σ)

(
yν
pν

)
,

(
yν
pν

)
∈ X . (4.24)

(v) Furthermore, the parametric Legendre expansion is sparse, i.e., the coefficient
sequence in (4.24) is p-summable,(∥∥∥∥(yνpν

)∥∥∥∥
X

)
ν∈F
∈ `p(F)

for the same value of p,
(vi) For every N ∈ N, there exists an index set Λ ⊂ F of cardinality not exceeding

N such that the N -term truncated Legendre expansions(
yN (σ)
pN (σ)

)
:=
∑
ν∈Λ

Lν(σ)

(
yν
pν

)
,

(
yν
pν

)
∈ X ,
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approximates simultaneously the state and the control on the entire parameter
domain S at rate N−(1/p−1/2) in L2(S, ρ;X ).

We emphasize again that the same index set Λ can be used for concurrent approx-
imation of both variables (y, p) (see, eg., Corollary 20) and, on account of the relation
between the control u and p (4.21), also for u. This is caused by formulating the
energy equations as a saddle point problem and applying the abstract theory from
Section 2.4. This fact will facilitate the actual computation of this index set.

5. Conclusion. We have proved, for control problems constrained by linear el-
liptic and parabolic PDEs which depend on possibly countably infinitely many param-
eters, analytic parameter dependence of the state, co-state and of the control. The
parameter dependence was allowed to be more general than affine. The particular
case of affine dependence arises, for example, in state equations with random coef-
ficients which are parametrized in terms of Karhunen-Loève expansions as in [ST].
We have quantified the analytic dependence of (co)state and control. Specifically,
we established that these quantities allow expansions in terms of tensorized poly-
nomial chaos type bases which are sparse, their sparsity being quantified in terms
of p-summability of the coefficient sequences. This sparsity result which may be
viewed as an a-priori estimate with respect to the parameters is the analytical foun-
dation for the development of sparse tensor discretizations of these problems. After
having established in Theorem 22 the existence of index sets Λ for which gpc ex-
pansions of state and control attain rates of best N -term approximation, following
the ideas in [CCDS, G], adaptive Galerkin approximations of (co)state and control
on the entire (possibly infinite-dimensional) parameter space which realize optimal
approximation rates can be computed by greedy algorithms; for implementational
aspects for elliptic forward problems, we refer to [EGSZ]. The adaptive Galerkin
discretization algorithms developed there for the stochastic forward problem can be
combined with finite element or wavelet methods for control problems as presented in
[BoKu, BoSch, Bu1, DK, EG, GK, GY, K, MV, Pa, SSZ]. Such sparse tensor Galerkin
approximations, combined with appropriate discretizations in space and time, are the
subject of the forthcoming manuscript [KS].

The results on quantitative parameter dependence of state and costate obtained in
Section 2.3 are the basis for the use of Quasi-Monte-Carlo (QMC) quadrature schemes
developed in [KSS] for the case of elliptic PDEs with random coefficients. These are
somewhat easier to implement but currently are proven to realize the optimal N -
term rates for the range 2

3 < p ≤ 1. Higher order QMC methods currently under
development will appeal also to the regularity results in Section 2.3 of the present
paper.
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