9 research outputs found

    Decision problems for Clark-congruential languages

    Get PDF
    A common question when studying a class of context-free grammars is whether equivalence is decidable within this class. We answer this question positively for the class of Clark-congruential grammars, which are of interest to grammatical inference. We also consider the problem of checking whether a given CFG is Clark-congruential, and show that it is decidable given that the CFG is a DCFG.Comment: Version 2 incorporates revisions prompted by the comments of anonymous referees at ICGI and LearnAu

    On Long Words Avoiding Zimin Patterns

    Get PDF
    A pattern is encountered in a word if some infix of the word is the image of the pattern under some non-erasing morphism. A pattern p is unavoidable if, over every finite alphabet, every sufficiently long word encounters p. A theorem by Zimin and independently by Bean, Ehrenfeucht and McNulty states that a pattern over n distinct variables is unavoidable if, and only if, p itself is encountered in the n-th Zimin pattern. Given an alphabet size k, we study the minimal length f(n,k) such that every word of length f(n,k) encounters the n-th Zimin pattern. It is known that f is upper-bounded by a tower of exponentials. Our main result states that f(n,k) is lower-bounded by a tower of n-3 exponentials, even for k=2. To the best of our knowledge, this improves upon a previously best-known doubly-exponential lower bound. As a further result, we prove a doubly-exponential upper bound for encountering Zimin patterns in the abelian sense

    Equivalence of Deterministic One-Counter Automata is NL-complete

    Full text link
    We prove that language equivalence of deterministic one-counter automata is NL-complete. This improves the superpolynomial time complexity upper bound shown by Valiant and Paterson in 1975. Our main contribution is to prove that two deterministic one-counter automata are inequivalent if and only if they can be distinguished by a word of length polynomial in the size of the two input automata

    Decision problems for Clark-congruential languages

    Get PDF
    A common question when studying a class of context-free grammars (CFGs) is whether equivalence is decidable within this class. We answer this question positively for the class of Clark-congruential grammars, which are of interest to grammatical inference. We also consider the problem of checking whether a given CFG is Clark-congruential, and show that it is decidable given that the CFG is a deterministic CFG

    Bisimulation equivalence and regularity for real-time one-counter automata

    Get PDF
    A one-counter automaton is a pushdown automaton with a singleton stack alphabet, where stack emptiness can be tested; it is a real-time automaton if it contains no ε -transitions. We study the computational complexity of the problems of equivalence and regularity (i.e. semantic finiteness) on real-time one-counter automata. The first main result shows PSPACEPSPACE-completeness of bisimulation equivalence; this closes the complexity gap between decidability [23] and PSPACEPSPACE-hardness [25]. The second main result shows NLNL-completeness of language equivalence of deterministic real-time one-counter automata; this improves the known PSPACEPSPACE upper bound (indirectly shown by Valiant and Paterson [27]). Finally we prove PP-completeness of the problem if a given one-counter automaton is bisimulation equivalent to a finite system, and NLNL-completeness of the problem if the language accepted by a given deterministic real-time one-counter automaton is regular.Web of Science80474372
    corecore