154 research outputs found

    Provably-Correct Task Planning for Autonomous Outdoor Robots

    Get PDF
    Autonomous outdoor robots should be able to accomplish complex tasks safely and reliably while considering constraints that arise from both the environment and the physical platform. Such tasks extend basic navigation capabilities to specify a sequence of events over time. For example, an autonomous aerial vehicle can be given a surveillance task with contingency plans while complying with rules in regulated airspace, or an autonomous ground robot may need to guarantee a given probability of success while searching for the quickest way to complete the mission. A promising approach for the automatic synthesis of trusted controllers for complex tasks is to employ techniques from formal methods. In formal methods, tasks are formally specified symbolically with temporal logic. The robot then synthesises a controller automatically to execute trusted behaviour that guarantees the satisfaction of specified tasks and regulations. However, a difficulty arises from the lack of expressivity, which means the constraints affecting outdoor robots cannot be specified naturally with temporal logic. The goal of this thesis is to extend the capabilities of formal methods to express the constraints that arise from outdoor applications and synthesise provably-correct controllers with trusted behaviours over time. This thesis focuses on two important types of constraints, resource and safety constraints, and presents three novel algorithms that express tasks with these constraints and synthesise controllers that satisfy the specification. Firstly, this thesis proposes an extension to probabilistic computation tree logic (PCTL) called resource threshold PCTL (RT-PCTL) that naturally defines the mission specification with continuous resource threshold constraints; furthermore, it synthesises an optimal control policy with respect to the probability of success. With RT-PCTL, a state with accumulated resource out of the specified bound is considered to be failed or saturated depending on the specification. The requirements on resource bounds are naturally encoded in the symbolic specification, followed by the automatic synthesis of an optimal controller with respect to the probability of success. Secondly, the thesis proposes an online algorithm called greedy Buchi algorithm (GBA) that reduces the synthesis problem size to avoid the scalability problem. A framework is then presented with realistic control dynamics and physical assumptions in the environment such as wind estimation and fuel constraints. The time and space complexity for the framework is polynomial in the size of the system state, which is efficient for online synthesis. Lastly, the thesis proposes a synthesis algorithm for an optimal controller with respect to completion time given the minimum safety constraints. The algorithm naturally balances between completion time and safety. This work proves an analytical relationship between the probability of success and the conditional completion time given the mission specification. The theoretical contributions in this thesis are validated through realistic simulation examples. This thesis identifies and solves two core problems that contribute to the overall vision of developing a theoretical basis for trusted behaviour in outdoor robots. These contributions serve as a foundation for further research in multi-constrained task planning where a number of different constraints are considered simultaneously within a single framework

    Compositional synthesis of reactive systems

    Get PDF
    Synthesis is the task of automatically deriving correct-by-construction implementations from formal specifications. While it is a promising path toward developing verified programs, it is infamous for being hard to solve. Compositionality is recognized as a key technique for reducing the complexity of synthesis. So far, compositional approaches require extensive manual effort. In this thesis, we introduce algorithms that automate these steps. In the first part, we develop compositional synthesis techniques for distributed systems. Providing assumptions on other processes' behavior is fundamental in this setting due to inter-process dependencies. We establish delay-dominance, a new requirement for implementations that allows for implicitly assuming that other processes will not maliciously violate the shared goal. Furthermore, we present an algorithm that computes explicit assumptions on process behavior to address more complex dependencies. In the second part, we transfer the concept of compositionality from distributed to single-process systems. We present a preprocessing technique for synthesis that identifies independently synthesizable system components. We extend this approach to an incremental synthesis algorithm, resulting in more fine-grained decompositions. Our experimental evaluation shows that our techniques automate the required manual efforts, resulting in fully automated compositional synthesis algorithms for both distributed and single-process systems.Synthese ist die Aufgabe korrekte Implementierungen aus formalen Spezifikation abzuleiten. Sie ist zwar ein vielversprechender Weg für die Entwicklung verifizierter Programme, aber auch dafür bekannt schwer zu lösen zu sein. Kompositionalität gilt als eine Schlüsseltechnik zur Verringerung der Komplexität der Synthese. Bislang erfordern kompositionale Ansätze einen hohen manuellen Aufwand. In dieser Dissertation stellen wir Algorithmen vor, die diese Schritte automatisieren. Im ersten Teil entwickeln wir kompositionale Synthesetechniken für verteilte Systeme. Aufgrund der Abhängigkeiten zwischen den Prozessen ist es in diesem Kontext von grundlegender Bedeutung, Annahmen über das Verhalten der anderen Prozesse zu treffen. Wir etablieren Delay-Dominance, eine neue Anforderung für Implementierungen, die es ermöglicht, implizit anzunehmen, dass andere Prozesse das gemeinsame Ziel nicht böswillig verletzen. Darüber hinaus stellen wir einen Algorithmus vor, der explizite Annahmen über das Verhalten anderer Prozesse ableitet, um komplexere Abhängigkeiten zu berücksichtigen. Im zweiten Teil übertragen wir das Konzept der Kompositionalität von verteilten auf Einzelprozesssysteme. Wir präsentieren eine Vorverarbeitungmethode für die Synthese, die unabhängig synthetisierbare Systemkomponenten identifiziert. Wir erweitern diesen Ansatz zu einem inkrementellen Synthesealgorithmus, der zu feineren Dekompositionen führt. Unsere experimentelle Auswertung zeigt, dass unsere Techniken den erforderlichen manuellen Aufwand automatisieren und so zu vollautomatischen Algorithmen für die kompositionale Synthese sowohl für verteilte als auch für Einzelprozesssysteme führen

    On Determinisation of Good-for-Games Automata

    Get PDF
    International audienceIn this work we study Good-For-Games (GFG) automata over ω-words: non-deterministic automata where the non-determinism can be resolved by a strategy depending only on the prefix of the ω-word read so far. These automata retain some advantages of determinism: they can be composed with games and trees in a sound way, and inclusion LpAq Ě LpBq can be reduced to a parity game over A ˆ B if A is GFG. Therefore, they could be used to some advantage in verification, for instance as solutions to the synthesis problem. The main results of this work answer the question whether parity GFG automata actually present an improvement in terms of state-complexity (the number of states) compared to the deterministic ones. We show that a frontier lies between the Büchi condition, where GFG automata can be determinised with only quadratic blow-up in state-complexity; and the co-Büchi condition, where GFG automata can be exponentially smaller than any deterministic automaton for the same language. We also study the complexity of deciding whether a given automaton is GFG

    Automatic winning shifts

    Get PDF
    To each one-dimensional subshift XX, we may associate a winning shift W(X)W(X) which arises from a combinatorial game played on the language of XX. Previously it has been studied what properties of XX does W(X)W(X) inherit. For example, XX and W(X)W(X) have the same factor complexity and if XX is a sofic subshift, then W(X)W(X) is also sofic. In this paper, we develop a notion of automaticity for W(X)W(X), that is, we propose what it means that a vector representation of W(X)W(X) is accepted by a finite automaton. Let SS be an abstract numeration system such that addition with respect to SS is a rational relation. Let XX be a subshift generated by an SS-automatic word. We prove that as long as there is a bound on the number of nonzero symbols in configurations of W(X)W(X) (which follows from XX having sublinear factor complexity), then W(X)W(X) is accepted by a finite automaton, which can be effectively constructed from the description of XX. We provide an explicit automaton when XX is generated by certain automatic words such as the Thue-Morse word.Comment: 28 pages, 5 figures, 1 tabl

    Deterministic regular functions of infinite words

    Get PDF
    Regular functions of infinite words are (partial) functions realized by deterministic two-way transducers with infinite look-ahead. Equivalently, Alur et. al. have shown that they correspond to functions realized by deterministic Muller streaming string transducers, and to functions defined by MSO-transductions. Regular functions are however not computable in general (for a classical extension of Turing computability to infinite inputs), and we consider in this paper the class of deterministic regular functions of infinite words, realized by deterministic two-way transducers without look-ahead. We prove that it is a well-behaved class of functions: they are computable, closed under composition, characterized by the guarded fragment of MSO-transductions, by deterministic B\"uchi streaming string transducers, by deterministic two-way transducers with finite look-ahead, and by finite compositions of sequential functions and one fixed basic function called map-copy-reverse.Comment: 45 page

    Alternative Automata-based Approaches to Probabilistic Model Checking

    Get PDF
    In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal logic (LTL). The standard approach translates an LTL formula into a deterministic ω-automaton with a double-exponential blow up. There are approaches for Markov chain analysis against LTL with exponential runtime, which motivates the search for non-deterministic automata with restricted forms of non-determinism that make them suitable for PMC. For MDPs, the approach via deterministic automata matches the double-exponential lower bound, but a practical application might benefit from approaches via non-deterministic automata. We first investigate good-for-games (GFG) automata. In GFG automata one can resolve the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an accepting run for an accepted word. We explain that GFG automata are well-suited for MDP analysis on a theoretic level, but our experiments show that GFG automata cannot compete with deterministic automata. We have also researched another form of pseudo-determinism, namely unambiguity, where for every accepted word there is exactly one accepting run. We present a polynomial-time approach for PMC of Markov chains against specifications given by an unambiguous Büchi automaton (UBA). Its two key elements are the identification whether the induced probability is positive, and if so, the identification of a state set inducing probability 1. Additionally, we examine the new symbolic Muller acceptance described in the Hanoi Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean formula over unconditional fairness constraints. We present a construction of small deterministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This fact has triggered a DPLL-based algorithm for deciding positiveness

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden für das zeitabhängige Argumentieren über reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann
    corecore