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Abstract
Probabilistic model checking (PMC) aims to determine the likelihood of a system to meet
a specification. In this thesis we consider as models for randomized systems discrete-time
Markov chains and discrete-time Markov decision processes (MDPs).

In this thesis we focus on linear temporal logic (LTL) for expressing specifications. The
standard approach for non-probabilistic systems translates an LTL formula into a non-
deterministic Büchi automaton (NBA) with a single-exponential number of states in the
worst case. While in the non-probabilistic setting non-deterministic Büchi automata (NBA)
can be used directly, the probabilistic choices are incompatible with the direct use of an NBA.
In the standard approach to PMC, the NBA obtained from the LTL formula is determinized,
which can lead to a double-exponential number of states in total. There are approaches
for Markov chain analysis against LTL with exponential runtime, which motivates the
search for non-deterministic automata with restricted forms of non-determinism that make
them suitable for PMC. For MDPs, the approach via deterministic automata matches the
double-exponential lower bound, but a practical application might benefit from approaches
via non-deterministic automata.

We first investigate good-for-games (GFG) automata. In GFG automata one can resolve
the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an
accepting run for an accepted word. We explain that GFG automata are well-suited for MDP
analysis on a theoretic level, but our experiments show that GFG automata constructed by
the methods proposed by [HP06] cannot compete with deterministic automata.

We have also researched another form of pseudo-determinism, namely unambiguity,
where for every accepted word there is exactly one accepting run. For unambiguous Büchi
automata (UBA) it is claimed in the literature that Markov chain analysis for a given
UBA can be done in polynomial time. We show that the proposed approach is flawed
and present a new polynomial-time approach for PMC of Markov chains against UBA
specifications. Instead of identifying single states inducing probability 1 (which may not
exists), we identify sets of states inducing probability 1.

Additionally, we examine the new symbolic Muller acceptance described in the Hanoi
Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean
formula over unconditional fairness constraints. We present a construction of small de-
terministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a
positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This
fact has triggered a DPLL-based algorithm for deciding positiveness.

For every approach we perform benchmarks on the LTL-to-automata translation itself as
well as on models of the PRISM benchmark suite.
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1 Introduction
The growing complexity and dependence on computational systems in our every day
life renders checking their correctness and safety more complicate. Many errors and
pitfalls can be avoided by testing and simulation but both methods are incomplete.
Alternatively, formal methods offer an exhaustive system analysis.

One technique for formal verification is interactive theorem proving, see, e.g., [BC04;
NK14]. Interactive theorem proving allows the creation of proofs in a user-supported
fashion with several benefits such as automatic code generation or automated proof
search up to a certain depth.

Model checking belongs to the area of formal methods as well, being an automated
technique for the formal analysis of abstract models. In its classical form it decides
whether a model of a system satisfies a property. It has been introduced in the early
eighties of the last century, with the notable publications [EC80; LP85; CES86], and
has spread out into different research lines by now, e.g., analysis of timed automata
[AD94; LPY95; BY04] or probabilistic systems [Var85; VW86; CY95; Var99]. For a
broad introduction we refer to [BK08].

One of the most basic models is Kripke structures. Kripke structures are labeled
graphs where states can be initial. One model of the behavior are paths which are
sequences of states. Kripke structures offer a purely non-deterministic behavior: The
first state and the successors states of a path are chosen non-deterministically. Every
path can be lifted to its trace by taking the labelings instead of the states. The traces
of the paths can be seen as the possible behaviors of the Kripke structures.

For specifying properties one usually employs temporal logics. The two most
prominent temporal logics are computation tree logic (CTL) and linear temporal
logic (LTL).

CTL is a branching time logic, in which one does reason about the computation
tree, which is the unfolded behavior of a system. CTL can be checked in polynomial
time [CE81; CES86].

LTL focuses on the paths of a model as the semantic of LTL is defined by a set of
words. A model satisfies an LTL formula if all the model’s traces are contained in
the set of words that satisfy the LTL formula, i.e., the model exhibits only behavior
characterized by the LTL formula. The typical approach for LTL model checking
employs ω-automata. The negated LTL formula is transformed into a (possibly
exponential-sized) non-deterministic Büchi automaton (NBA). Then a product is
built, in which one can search for behavior that the Kripke structure displays but
that is forbidden by the specification.

Prominent model checkers for Kripke structures and LTL are SPIN [Hol04] and
nuSMV [Cim+02]. In practice, the model (and the product) size can become very large
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1 Introduction

even for simple systems, and thus actual model checking turns unfeasible very fast if
the system’s model is saved state-by-state in the memory. This problem is called the
state space explosion problem and led to symbolic reasoning over the models. Instead
of analyzing particular states, one does analyze set of states. An important milestone
of symbolic reasoning was the introduction of binary decision diagrams (BDDs).

BDDs can serve for a compact representation of the state space of a model or
automaton. They have been introduced by [Bry86] and have found their way into
several applications, e.g., VLSI design [MT98]. BDDs are essentially a graph repre-
sentation of Boolean functions, offering a good compromise between computational
efficiency and memory consumption. For a general introduction to BDDs we refer to
[Bur+92; Weg00].

Another handling of the state explosion problem is offered by bounded model
checking (BMC) [Bie+99; Bie+03]. BMC relies on an iterative enumeration of all
finite paths up to a certain bound k. If a counterexample for the correctness of
the system is found, then this counterexample is returned. If k exceeds a threshold
marking that the whole model has been explored and no counterexample can be
found anymore, the BMC algorithm returns the correctness of the system. In practice,
BMC outperforms BDD-based model checking if a counterexample exists, and is
therefore useful for prototyping in particular.

Since the basic model checking focuses on Kripke structures and therefore asks
for a binary answer whether the specification is satisfied or not, the need for more
expressiveness emerged quite naturally. Probabilistic model checking focuses on
Markovian models like Markov chains or Markov decision processes (MDPs for short),
thus enabling answers like “The system obeys the specification with a likelihood of
99.95%”. Markov chains can be seen as Kripke structures with a pure probabilistic
transition structure. If one provides non-deterministic choices to Markov chains, one
obtains MDPs. Analogously to games, MDPs are called 11/2-player games, where one
player resolves the non-deterministic choices, and the other (half) player resolves the
probabilistic choices probabilistically.

Despite the probabilistic nature of Markovian models the syntax and semantics
of LTL remains equal. However, for CTL a probabilistic counterpart, PCTL, exists.
Like CTL, PCTL can be checked efficiently in polynomial time, see, e.g., [HJ94] and
there exists model checkers focusing on PCTL (or some of its variants), such as STORM
[Deh+17] and MRMC [Kat+11].

The probabilistic choices of Markovian models blocks the direct application of
NBAs in the process of model checking Markovian models against LTL formula. As
a resort to this problem, deterministic automata are usually employed.

The translation of LTL to deterministic ω-automata can cause a double-exponential
blow-up [KV05; KR11]. This double-exponential blow-up together with the polynomial-
time algorithms for building the product and the analysis of it yields an overall
double-exponential-time algorithm for the analysis of Markov decision processes
(MDP) against LTL. This double-exponential time algorithm matches the lower
bound [CY95]. The case is different for Markov chains, where a PSPACE lower bound
is known [Var85]. Thus, the double-exponential blow-up over deterministic automata
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1.1 Literature

leaves a complexity gap for Markov chains.

1.1 Literature
1.1.1 Markov Decision Processes
First results in the area of probabilistic model checking for MDPs have been achieved
for qualitative PMC, where one wants to prove that a path property holds almost
surely for all possible or a single resolution of the non-determinism. Alternatively,
one wants to prove that a path property holds with a positive probability for all
possible or a single resolution of the non-determinism. Hart, Sharir and Pnueli
[HSP83] discussed the termination problem in the qualitative setting for a system
of concurrent processes. Pnueli continued this work with Zuck in [PZ86a; PZ86b]
and presented a tableau-based approach for LTL. The first results on automata-
based approaches for MDP analysis have been published by Vardi [Var85] and Vardi
and Wolper [VW86], which was revisited by Courcoubetis and Yannakakis [CY95].
They depend on so-called deterministic-in-the-limit Büchi automata, i.e., automata
that behave deterministically after reaching a final state. The construction of a
deterministic-in-the-limit Büchi automaton out of an NBA resembles the breakpoint
construction [MH84], a multi subset construction, and can cause an exponential
blow-up. Thus, the overall approach for MDP analysis for LTL matches the lower
2EXPTIME bound.

Probabilistic model checking suffers also from the state space explosion problem.
Here, the concept of BDDs has been transferred to multi-terminal BDDs (MTBDDs),
i.e., BDDs representing not only Boolean functions but multi-valued functions [CFZ93;
Bah+93] as they can represent matrices with real values between 0 and 1. The
probabilistic model checker PRISM [Par02; KNP11] supports MTBDDs by the two
engines hybrid and mtbdd. In the hybrid engine the result vector containing the
probability to obey the specification for every state is stored in an explicit manner,
whereas in the mtbdd engine the result vector is stored symbolically as well. In the
explicit engine the state-space of the model is represented state-for-state, as well
as the transitions.

Besides the employment of MTBDDs, statistical model checking [LDB10; LV15]
mitigates the state space explosion problem by simulating the system and sampling a
finite number of runs. These runs are used to provide estimates about the correctness
of systems within certain bounds.

Recent developments have lowered the computation time for a certain fragment of
LTL to single exponential time, namely LTL\□U [KV15]. This fragment describes
LTL formulas in positive normal form using the operators ⃝,♦,□ and U with the
additional restriction that no U operator occurs in the scope of a □ operator. In
[Kin17] the fragment LTL\□U is extended to a fragment called LTLD, where the
restrictions of LTL\□U are loosened in the following way:

• for a formula ϕU ψ occurring inside of a □ operator, ψ has to contain only ♦
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and □ as temporal operators,

• in every formula of the form ϕ ∨ ψ occurring inside of a □ operator, at least ϕ
or ψ has to contain only ♦ and □ as temporal operators.

Covering full LTL, Sickert, Esparza, Jaax and Křetínský offered a new (double-
exponential) construction of deterministic-in-the-limit Büchi automata [Sic+16].
These deterministic-in-the-limit automata are even suitable for quantitative prob-
abilistic model checking. As their implementation MoChiBa [SK16] shows, that the
efficiency of MDP analysis benefits from the usage of deterministic-in-the-limit Büchi
automata.

Another tool for the generation of deterministic-in-the-limit automata is Seminator
[Bla+17], which takes a non-deterministic automaton with a transition-based gener-
alized Büchi acceptance as input, and transforms it into a deterministic-in-the-limit
automaton. However, the resulting automaton may be not suited for quantitative
PMC, but only qualitative PMC.

The mentioned work relied on building a single ω-automaton equivalent to the
specification. The authors of [Hah+15] consider an alternative. They provide a
translation into two automata with the same graph structure, but different acceptance
conditions, under-approximating and over-approximating the languages respectively.
Accordingly, one product with two acceptance conditions is built, and every maximal
end-component is checked, whether it satisfies the two acceptance conditions. If
the two result are different, the affected automaton part is refined via breakpoint
construction or if necessary a full determinization to deliver exact results. The authors
implemented this approach into their probabilistic model checker IscasMC [Hah+14]
and in its successor ePMC [Tur17].

1.1.2 Markov chains
The PSPACE lower bound for the analysis of Markov chains against LTL specifications
inspired several algorithms avoiding deterministic automata. Courcoubetis and
Yannakakis [CY88; CY95] presented an automata-less Markov chain analysis method,
that can be lifted to PSPACE algorithm for qualitative analysis. We give short
overview for its quantitative version: To calculate PrM (ϕ), the Markov chain M
and the LTL formula ϕ are refined to a Markov chainM′ and an LTL formula ϕ′

preserving the probability, i.e., PrM(ϕ) = PrM′(ϕ′). The refinement is carried out
iteratively until the refined LTL formula does not contain any temporal operator,
which then can be easily checked.

In a refinement step one selects a subformula ψ with a temporal operator as
top-most operator (in the syntax tree of the formula) and no other temporal operator.
Then, this subformula is replaced by a fresh atomic proposition in ϕ, leading to a new
LTL formula ϕ′. The Markov chainM is transformed with the usage of computed
probabilities for every state of M and ψ in such a way that PrM(ϕ) = PrM′(ϕ′)
holds, where we denote the transformed Markov chain asM′. The transformation of
M doubles the state space in the worst case.
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The refinement step is repeated until ϕ′ does not contain any temporal operator
anymore. As the remaining task one has to calculate PrM′(ϕ′) for such a simple
formula ϕ′. This step just amounts to a summation over the initial distribution ι(s)
for every state s satisfying ϕ′ and ι being the initial distribution ofM′.

Couvreur, Saheb and Sutre [CSS03] suggested separated automata, a special form
of unambiguous automata. For a deeper consideration of [CSS03], in particular a
comparison with unambiguous automata, we refer to Section 4.1.6.

Instead of a single automaton, [BRV04] takes a weak alternating ω-automaton
A as input and transforms it into two ω-automata, a so-called full automaton and
a local transition system. The local transition system and the Markov chain form
a product, and then a state is searched with the help of the full automaton, that
counter witnesses PrM (A) = 1.

1.1.3 ω-automata
Non-deterministic Büchi automata have been introduced independently in 1962 by
Büchi [Büc62] and Trakhtenbrot [Tra62] as tools for decision problems in the area of
mathematical logics.

LTL model checking of Kripke structures is usually done by building an automaton
equivalent to the negated specification. Vardi and Wolper [VW86] have suggested a
rather simple construction method for NBA equivalent to a given LTL specification.

The constructions for NBA became more elaborate, see [GO01; Bab+12] for an
approach via alternating automata, or [Ger+95] for a tableau-based approach.

The competition between the LTL-to-NBA translations has lead to the generation
of smaller NBA, yielding an improved starting point for determinization algorithms.
The research for determinization algorithms follows two main lines: Safra-based
methods [Saf88; Pit07; Sch09] (and their heuristic improvements in [KB06; KB07])
and Muller-Schupp based methods [MS95; KW08; Fog+13; FL15]. A hybrid version
has been proposed by Redziejowski [Red12].

The earliest approach [McN66] for determinization which was presented by Mc-
Naughton has not been pursued much further, since it is double-exponential in the
size of the Büchi automaton and therefore does not match the single exponential
lower bound.

Since the class of languages equivalent to a deterministic Büchi automaton (also
called DBA-realizable languages) is a strict subset of ω-regular languages (in contrast
to NBA), more expressive acceptance conditions exist: Rabin [Rab72], Streett [Str82],
parity [Mos84], Muller [Mul63] among others. All acceptance conditions can be seen
as a special form of a Muller acceptance, which explicitly represents every possible
acceptable set of states being visited infinitely often.

Instead of taking an intermediate step via non-deterministic Büchi automata, direct
translations from LTL to deterministic ω-automata have been proposed. Křetínský
and Esparza [KE12] offer a direct translation to a deterministic (generalized) Rabin
automaton for the LTL fragment where ♦ and □ are the only allowed temporal
operators. This approach has been extended [Bab+13b; KG13; EK14] until full LTL
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has been covered. Very recently at LICS 2018, Esparza, Křetínský and Sickert have
provided a Master theorem enabling the decomposition of the language described
by an LTL formula into fragments offering a simpler translation to automata than
translations for full LTL [EKS18].

Apart from striving to generate small deterministic automata during the construc-
tion, post generation algorithms for shrinking the automaton size without changing
the accepted language have also been proposed.

Simulation delivers a general-purpose method for shrinking automata. They are
based on calculating a simulation relation on the state space that can be used to
collapse the states within the same equivalence classes and still obtain an equivalent
automaton. However, one cannot achieve a minimal number of state with these
techniques in case of ω-automata. Prominent examples are stutter simulations [KB07;
MD15], which enable to collapse states that are unnecessary finite repetitions, and
bisimulation [Mil80; Par81] identifying equivalent substructures in an automaton.

A very intuitive minimization technique concerns weak deterministic Büchi au-
tomata (WDBA), i.e., deterministic Büchi automata where every SCC contains
either no accepting state or solely accepting states. This requirement reduces the
expressiveness of WDBA to the intersection of DBA-realizable languages and coDBA-
realizable languages.1 Löding [Löd01] established the connection between WDBA
and deterministic finite automata over finite words (DFA) and reduced the task
of minimizing WDBA to minimizing DFA. We have implemented his minimization
technique in the probabilistic model checker PRISM and could achieve a reduction in
30 out of 44 cases [Kle+17].

For minimization of a wider range of ω-automata, SAT-based approaches have
been proposed recently. Schewe proves the NP-completeness of deciding whether a
DBA has a minimal number of states and analogous NP-completeness results for
deterministic co-Büchi automata, and deterministic parity automata [Sch10]. Ehlers
builds on this result and minimizes DBA with SAT-solvers [Ehl10]. To cover full
ω-regularity, Baarir and Duret-Lutz generalized this to Emerson-Lei ω-automata
[BD15], which are essentially ω-automata with Muller acceptance expressed in a
symbolic fashion.

In 2015 the Hanoi Omega Automata Format was published [Bab+15]. The Hanoi
Omega Automata Format is a unified exchange format for ω-automata tools. This
format allows a tool-agnostic interoperation, e.g., PRISM is now able to use every tool
that supports the Hanoi Omega Automata Format (and determinization) for the
creation of deterministic automata.

Now we turn to specific types of ω-automata discussed in this thesis. This overview
should be seen as a collection of literature to separate our contribution. A deeper
literature review will be covered in the specific chapters.

1DBA-realizable languages are ω-regular languages for which an equivalent DBA exists. Analogously,
coDBA-realizable languages are languages, for which an equivalent deterministic co-Büchi ω-
automaton exists.
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Good-for-games automata. The concept of good-for-games automata (GFG) has
been introduced by Henzinger and Piterman [HP06]. In a good-for-games automaton
the resolution of the non-determinism for a finite prefix of an accepted word does not
require any look-ahead.

It was introduced for the synthesis of reactive systems where one typically solves 2-
player games. Good-for-games automata were offered as a substitute to deterministic
automata.

In [HP06] a translation from NBA to GFG parity automata has been presented,
which can be incorporated into a translation from LTL to GFG parity automata. The
authors of [KS15] have shown the potential of good-for-games by exhibiting a family
of good-for-games co-Büchi automata, which are exponentially more succinct than
every equivalent deterministic automaton. Still, [HP06] proves that a transformation
from NBA to GFG automata can cause an exponential blow-up.

Unambiguous Büchi automata. Unambiguity in a non-deterministic automaton
demands that there is exactly one accepting run for every accepted word. The
phenomenon has been widely studied in the 1980s. In particular, Stearns and
Hunt [SH85] have considered universality (“Is every word an accepted word?”) for
unambiguous regular grammars (and automata) over finite words and could establish
a polynomial time result for deciding universality. Bousquet and Löding [BL10] could
prove an analogous result for separated Büchi automata, i.e., automata that are still
unambiguous if all states have been set to initial. The first authors who looked into
the application of separated automata for Markov chain analysis were Couvreur,
Sutre and Saheb [CSS03]. As one can construct a separated automaton equivalent
to an LTL formula within exponential time, and the Markov chain analysis against
separated automata specifications can be done in polynomial time, the overall time
complexity for this approach is single exponential.

Based on [CSS03], Benedikt, Lenhardt, and Worrell [BLW13b; BLW14] proposed a
generalization to unambiguous Büchi automata. Their claim, that a polynomial-time
analysis of Markov chains under UBA specifications is possible, is true, but their
proofs rely on a false assumption and therefore their algorithms work incorrectly.
This flaw does not affect the second contribution of [BLW14], namely an algorithm
for model checking Markov chains against unambiguous automata over finite words.

Emerson-Lei acceptance. The commonly used Rabin, Streett and parity accep-
tances can be seen as particular forms of Muller acceptance. Muller acceptance
explicitly enumerates every possible set of states (or transitions) that is visited
infinitely often in an accepting run. This explicit representation is verbose, and
therefore in [Bab+15] a more compact symbolic representation is proposed which
we call Emerson-Lei acceptance. The idea of Emerson-Lei acceptance goes back to
Emerson and Lei [EL87]. They have considered positive Boolean formulas with atoms
stating that a certain atomic proposition should be seen infinitely often or only finitely
often. Apart from small syntactical differences, the definitions of Emerson and Lei in
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[EL87] and the symbolic acceptance in [Bab+15] agree. The motivation of [EL87] is
the handling of fairness conditions in the context of model checking Kripke structures
against CTL. The authors show NP-completeness for checking whether there exists a
path in a Kripke structure satisfying an Emerson-Lei acceptance. Additionally, in
[EL87] it is proven that CTL model checking with a disjunction of Streett formulas
as fairness condition can be done in linear time in the size of the CTL formula, the
size of the model and quadratic in the size of the fairness condition.

Results on model checking with different acceptance conditions does not only
exist in the realm of Kripke structures, but in the realm of MDPs as well. Baier,
Ciesinski and Größer [BGC09a] adapted the result of [EL87] for model checking
Streett acceptance to MDPs. Chatterjee, Gaiser and Křetínský [CGK13] could
improve significantly the speed of MDP analysis by the employment of deterministic
automata with a generalized Rabin acceptance.

1.2 Contribution
This thesis offers new approaches for the analysis of Markov chains and MDPs that
avoid the typical approach via a deterministic Rabin (or Streett) automaton. We
always assume that the Markovian models are given in a discrete-time setting, and
do not pursue a continues-time setting. For MDP analysis, the double-exponential
time standard approach matches the lower bound, but from a practical point of view,
it might still be possible to improve the efficiency by moving away from deterministic
Rabin automata. We study restricted forms of non-determinism and a more extensive
acceptance than Rabin acceptance.

For MDPs we turn to good-for-games automata and to Emerson-Lei acceptance. In
this thesis we consider only deterministic Emerson-Lei automata and not combinations
of the different approaches, e.g., GFG Emerson-Lei automata.

For Markov chains, the approach via a deterministic ω-automaton leaves a complex-
ity gap to the PSPACE lower bound. We present a method that runs in polynomial
time if a UBA specification is given. As LTL can be transformed into UBA with an
exponential blow-up as upper bound, this algorithm runs in exponential time.

Good-for-games automata. In Chapter 3 we address the question whether good-
for-games automata can be used for 11/2-player games. For this, we provide a new
non-standard product construction with the goal of quantitative analysis of MDPs
against ω-regular specifications represented by a good-for-games automaton. In the
product we can resort to standard reachability analysis. As the process of building
the product and the reachability analysis can be done in polynomial time, the overall
approach is polynomial in time if a Markov decision process and a GFG automaton
are given.

We adapt in a straightforward manner the proof of the double-exponential blow-up
from LTL to deterministic automata [KV05] to the GFG setting. This double-
exponential lower bound matches the double-exponential upper bound one would
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obtain by combining the single-exponential translation from LTL to NBA and the
single-exponential translation from NBA to GFG parity automata. Overall, the
time complexity of our GFG-based method for MDP analysis matches the double-
exponential lower bound if we are given an MDP and an LTL formula as input.

We also report on an implementation of the transformation of LTL to good-for-
games parity automata described in [HP06] as well as their utility in probabilistic
model checking.2

The contribution in Chapter 3 is based on [Kle+14].

Unambiguous Büchi automata. In Chapter 4 we explain the mistaken assumption
of [BLW13b; BLW14] and provide an alternative polynomial time algorithm. The
main part concentrates on the case where we have a uniform Markov chain, i.e., a
Markov chain where at every position of every trace the symbols occur with the same
probability. In this case the first step consists of an SCC analysis for every SCC in a
bottom-up manner. This analysis decides whether the analyzed SCC consists of states
inducing positive probability, and, if applicable, searches for a set of states within
the SCC inducing probability 1. With the help of this state set, we can calculate the
induced probability of every SCC state. Afterwards, the induced probability of states
not contained in a positive SCC can be derived by solving a linear equation system.

The case of a uniform Markov chain and a UBA can be easily lifted to the general
case of an arbitrary Markov chain.

The chapter concludes with several benchmarks. At first, we provide a benchmark
on particular challenging UBA to compare the efficiency of two different positivity
checks. For benchmarking the actual model checking process, we refer to the bounded
retransmission protocol from the PRISM benchmark suite as a Markov chain model.
Here, we evaluate pre-generated automata, and LTL formulas as property input.
In case of pre-generated automata, we compare deterministic automata against
unambiguous automata. In case of LTL, we compare the model checking approaches
via deterministic automata, unambiguous automata and the automata-less method
of [CY95]. As a last benchmark we compare the sizes of the generated automata for
a selection of LTL formulas.

The contribution in Chapter 4 is based on [Bai+16].

Emerson-Lei acceptance. In Chapter 5 we consider the Emerson-Lei acceptance
condition. We present a translation from two important LTL fragments into de-
terministic Emerson-Lei automata with an additional fallback to generic LTL-to-
deterministic-ω-automata translators for full LTL. The two fragments are the safety-
/cosafety fragment and a fragment which we call fairness fragment, and which
subsumes the typical fairness conditions like unconditional, strong and weak fairness.
Our translation features a product construction: We view an LTL formula as a
positive Boolean combination of temporal formulas, i.e., formulas where the top-most

2We want to mention that the recently found problems in the value iteration (see [Bai+17]) did
not affect any of our experiments in PRISM.
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operator is a temporal operator. The temporal formulas are translated independently,
and then combined via a product construction, where the acceptance reflects the
Boolean structure of the input LTL formula. This product construction is enhanced
by the knowledge about the subformulas, e.g., it is sufficient to check a fairness LTL
formula after a cosafety LTL formula has already been satisfied if both formulas are
combined via a conjunction.

As a second contribution in the field of Emerson-Lei acceptance we show how
quantitative probabilistic model checking can be done for an MDP with the aid of
DPLL-based techniques. It turns out that this DPLL-based algorithm mimics the
standard behavior for checking a Rabin or Streett acceptance, and thus, works for
both cases in polynomial time.

We conclude with a broad comparison between our newly developed tool Delag
and state-of-the-art tools like Rabinizer or SPOT. This comparison takes place both
by a direct automata comparison, and by the analysis of the WLAN handshaking
protocol, an MDP model from the PRISM benchmark suite.

The contribution in Chapter 5 is based on [MS17] and not yet published material
developed in a cooperation with Christel Baier, František Blahoudek, Alexandre
Duret-Lutz, Joachim Klein, and Jan Strejček.
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2 Preliminaries
In Chapter 2 we introduce the notations we use throughout the thesis.

2.1 Linear temporal logic
In this thesis we consider standard linear temporal logic (LTL) [Pnu77], a propositional
logic augmented with the temporal operators U (“until”) and ⃝ (“next”).

Definition 2.1 (Syntax of LTL). A formula of LTL over a finite set of atomic
propositions AP is given by the syntax:

ϕ ::= true | a | ¬ϕ | ϕ ∧ ψ | ⃝ϕ | ϕU ψ with a ∈ Ap

We derive the usual abbreviations:

false = ¬true
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ = ¬ϕ ∨ ψ

♦ϕ = true U ϕ “finally”
□ϕ = ¬♦¬ϕ “globally”

ϕRψ = ¬ (¬ϕU ¬ψ) “release”.

We use LTL(M) for a set of temporal operators M to describe the fragment of
LTL, where every temporal operator occurs in M . Additionally, LTLX,Y (M) =
{Xϕ, Y ϕ : ϕ ∈ LTL(M)}.

An ω-word w over the alphabet AP is an infinite sequence of sets of symbols
σ0 σ1 σ2 . . .. We denote the symbol at position i by w[i] = σi and the infinite suffix
σi σi+1 . . . by w [i . . .].

Definition 2.2 (Semantics of LTL). The satisfaction relation |= between an ω-word
w and a formula ϕ is inductively defined as follows:

w |= true
w |= a ⇐⇒ a ∈ w [0]

w |= ¬ϕ ⇐⇒ w ̸|= ϕ

w |=⃝ϕ ⇐⇒ w [1 . . .] |= ϕ

w |= ϕU ψ ⇐⇒ ∃i ≥ 0. (w [i . . .] |= ψ ∧ ∀j ∈ {0, . . . , i− 1}.w [j . . .] |= ϕ)

11



2 Preliminaries

For an LTL formula ϕ we define L(ϕ) =
{︁
w ∈ (2AP)ω : w |= ϕ

}︁
as the set of

satisfying words. Two formulas ϕ, ψ are called equivalent, denoted by ϕ ≡ ψ, if
L(ϕ) = L(ψ).

The positive normal form demands that every occurrence of ¬ appears directly
before an atomic proposition. An exhaustive rewriting with the following rewrite
rules brings every LTL formula into positive normal form:

¬true ↦→ false ¬false ↦→ true ¬¬ϕ ↦→ ϕ

¬(ϕ ∧ ψ) ↦→ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ↦→ ¬ϕ ∧ ¬ψ ϕ→ ψ ↦→ ¬ϕ ∨ ψ
¬⃝ ϕ ↦→ ⃝¬ϕ ¬(ϕU ψ) ↦→ ¬ϕR¬ψ ¬(ϕRψ) ↦→ ¬ϕU ¬ψ

2.2 Automata over infinite words
ω-automata can be seen as language acceptors for infinite words. In this thesis we
consider only ω-automata that exhibits non-deterministic branching. We do not allow
universal branching as in alternating automata.

Definition 2.3. An ω-automaton A = (Q,Σ, δ, Q0,Φ) is a tuple, where

• Q is a non-empty, finite set of states,

• Σ is a finite alphabet,

• δ : Q× Σ→ 2Q is the (non-deterministic) transition function,

• Q0 ⊆ Q is the non-empty set of initial states and

• Φ is the acceptance condition.

We denote by A[R] for R ⊆ Q the automaton A with R as initial states, i.e.,
A[R] = (Q,Σ, δ, R,Φ). In case R = {q} is a singleton, we omit the braces: A[q]. We
extend the transition function to δ : 2Q×Σ∗ → 2Q in the standard way for subsets of
Q and finite words over Σ. The size |A| of A denotes the number of states in A. For
complexity results we sometimes refer to the word length of A which is the length of
the string when A is written in binary encoding on the tape of a Turing machine.
A is said to be complete, if δ(q, σ) ̸= ∅ for all states q ∈ Q and all symbols σ ∈ Σ.
A is called deterministic, if |Q0| = 1 and |δ(q, σ)| ≤ 1 for all q ∈ Q and σ ∈ Σ. Given
states q, p ∈ Q and a finite word x = σ1 σ2 . . . σn ∈ Σ∗ then a run for x from q to p is a
sequence q0 q1 . . . qn ∈ Q+ with q0 = q, qn = p and qi+1 ∈ δ(qi, σi+1) for 0 ⩽ i < n. A
run in A for an infinite word w = σ0 σ1 σ2 . . . ∈ Σω is a sequence ρ = q0

σ0−→ q1
σ1−→ . . .

starting in an initial state q0 such that qi+1 ∈ δ(qi, σi) for all i ∈ N. If the word w is
clear, we sometimes omit the transitions and just write ρ = q0 q1 . . ..

12
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We write inf(ρ) to denote the set of all states occurring infinitely often in ρ.
A run ρ is called accepting, if it meets the acceptance condition Φ, denoted by
ρ |= Φ. As the syntactical description of the acceptance condition we use the syntax
presented in [Bab+15], where the acceptance condition is denoted by a positive
Boolean combination of Fin (Z) or Inf (Z) atoms with Z ⊆ Q and with ∧ and ∨ as
allowed Boolean connectives. We call this acceptance an Emerson-Lei acceptance.

The semantics of Fin (Z) and Inf (Z) are defined in straight-forward manner: A
run ρ = q0

σ0−→ q1
σ1−→ . . . is accepting for Fin (Z) if and only if inf(ρ) ∩ Z = ∅ holds,

whereas ρ is accepting for Inf (Z) if and only if inf(ρ) ∩ Z ̸= ∅ holds. Fin (·) and
Inf (·) are dual to each other, i.e., every run ρ is accepting for Inf (Z) if and only if it
is not accepting for Fin (Z), and analogously, ρ is accepting for Fin (Z) if and only
if it is not accepting for Inf (Z). This dualism allows an easy complementation for
deterministic Emerson-Lei automata by replacing every Inf (Z) with Fin (Z) and vice
versa, and replacing every ∧ with ∨ and vice versa as well.

We consider here the following six special types of acceptance conditions in partic-
ular and describe their constraints for infinite runs:

• Büchi: Φ = Inf (Z) stands for a set of states, that needs to appear infinitely
often.

• generalized Büchi: Φ =
⋀︁
i Inf (Zi) is a conjunction of Büchi acceptances, i.e.,

each Zi has to appear infinitely often.

• co-Büchi: Φ = Fin (Z) is the dual acceptance of Büchi acceptance.

• parity: Φ can be seen as a function col : Q → N assigning to each state q a
parity color and requiring that the least parity color appearing infinitely often is
even.1 As formal syntax we fix Inf (Z0)∨ (Fin (Z1)∧ (Inf (Z2)∨ (Fin (Z3)∧ . . .)))
with Zi consisting of all states of color i.

• generalized Rabin: Φ is a disjunction of conjunctions, where every conjunction
has at most one Fin (·). Formally,

Φ =
⋁︂

i∈{1,...,n}

⎛⎝Fin (Ui) ∧
⋀︂

j∈{1,...,ni}

Inf (L1,j)

⎞⎠ ,

i.e., requiring that for one of the conjunctions the states in Ui appear at most
finitely often while in Li,j for every j ∈ {1, . . . , ni} some state appears infinitely
often. The term Rabin acceptance (without generalized) describes the special
case where ni = 1 for every i in {1, . . . , n}

1One can replace “least” by “maximal” and “even” by “odd” to get other versions of parity. No
version of parity acceptance has more expressiveness, as one can change from “least” to “maximal”
by reversing the colors, if they are seen as an ordered list. Analogously, for “even” and “odd”
one can just add 1 to every color.
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• Streett: Φ is dual to Rabin, i.e., it is a strong fairness condition. Syntactically,
we fix

⋀︁
i∈{1,...,n} Fin (Ui) ∨ Inf (Li) as Streett acceptance.

Büchi acceptance can be seen as a special case of parity acceptance which again
can be seen as a special case of Rabin acceptance as well as Streett acceptance. We
use the standard notations NBA (NPA, NRA, NSA) for non-deterministic Büchi
(parity, Rabin, Streett) automata and DBA, DPA, DRA, DSA for their deterministic
versions. In an analogous way, we define transition-based acceptance. Syntactically,
transition-based acceptance uses atoms Fin (Z) and Inf (Z) with Z being a set of
transitions, the rest transfers directly.

The language of A, denoted by Lω(A), consists of all infinite words w ∈ Σω that
have at least one accepting run in A, i.e., w ∈ Lω(A) if and only if there exists a
run ρ for w with ρ |= Φ. To simplify notifications, we write Lω(R) for Lω(A [R]) and
Lω(q) for Lω(A [q]) if A is clear from the context.

It is well-known (see [Tho97; GTW02]) that the classes of languages recognizable
by DRA, DSA or DPA, their non-deterministic version, and NBA are the same (the
so-called ω-regular languages), while DBA are less powerful. For each LTL formula ϕ
with atomic propositions in some finite set AP, the semantics of ϕ can be described
as an ω-regular language L(ϕ) over the alphabet Σ = 2AP and there is an NBA A
for ϕ (i.e., L(ϕ) = Lω(A)) whose size is at most exponential in the formula length
|ϕ| [WVS83; VW86].

There are several important subclasses of ω-regular languages, which we explain
now. A safety language L is characterized by so-called bad prefixes, i.e., a set of finite
words B such that Pref(L) ∩B = ∅ where Pref(L) = {u ∈ Σ∗ : ∃w ∈ Σω.uw ∈ L}.
A well-known (but incomplete) LTL fragment describing ω-regular safety languages is
LTL(R ,⃝). The dual of safety languages are cosafety languages, i.e., an ω-regular
language L is cosafety, if Σω \ L is a safety language. Analogously, every formula out
of LTL(U ,⃝) describes a cosafety language, but there are LTL formulas describing
cosafety languages not in LTL(U ,⃝).

As a third fragment we consider LTL□♦,♦□(♦,□,⃝) (and the Boolean combinations
of it) which we call the fairness fragment. With this fragment one can enforce realistic
behavior for example that certain transitions are taken infinitely often.

2.3 Automata over finite words
We use non-deterministic finite automata (NFA) as acceptors of regular languages
over finite words. The syntax agrees with the syntax of ω-automata except that the
acceptance condition is fixed to Reach (Z) with Z being a subset of Q. A run in a NFA
A for a finite word w = σ0 σ1 . . . σn ∈ Σ∗ is a sequence ρ = q0

σ0−→ q1
σ1−→ . . .

σn−→ qn+1

starting in an initial state q0 such that qi+1 ∈ δ(qi, σi) for all i ∈ N. The run
ρ = q0

σ0−→ q1
σ1−→ . . .

σn−→ qn+1 is accepting if and only if qn+1 ∈ Z. A word σ0 . . . σn is
accepted, if and only if there exists an accepting run for the word. Analogously to
infinite words, we write Lfin(A) for the set of accepted words.
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To obtain an equivalent deterministic finite automaton (DFA) Adet for an NFA
A = (Q,Σ, δ, Q0,Reach (Z)), we apply the powerset construction, also called Rabin-
Scott construction [RS59]. The powerset tracks every possible run for a finite word
in a sequence of powersets. More formally,

Adet = (2Q,Σ, δdet, {Q0} ,Reach (Zdet)),

where

• δdet(P, σ) =
{︂⋃︁

q∈P δ(q, σ)
}︂
,

• Zdet =
{︁
P ∈ 2Q : P ∩ Z ̸= ∅

}︁
.

For a simpler notation, we omit unnecessary brackets for singleton sets in the case
of DFA, e.g., the above definition for δdet(P, σ) simplifies to δdet(P, σ) =

⋃︁
q∈P δ(q, σ).

2.4 Markovian models
Markovian models serve to describe probabilistic behavior. In this thesis, we restrict
ourselves to Markov decision processes (MDP for short) as well as sometimes to a
subclass of Markov decision processes, Markov chains. We only consider the discrete-
time setting, i.e., the behavior evolves in discrete steps, in contrast to the continuous
time-setting where the behavior occur in reference to a real-valued timeline.

Markov chains. For a clear and easy presentation we start with (discrete-time)
Markov chains (DTMCs for short) and progress afterwards to (discrete-time) Markov
decision processes.

Markov chains are an operational model for systems that exhibit solely probabilistic
choices.

Definition 2.4. A Markov chain is a tuple

M = (S, P, ι,AP, ℓ)

where

• S is a finite set of states,

• P : S × S → [0, 1] is the transition probability function satisfying:∑︁
s′∈S

P (s, s′) ∈ {0, 1} for all s ∈ S,

• ι : S → [0, 1] is the initial distribution satisfying
∑︁

s∈S ι(s) = 1,

• ℓ : S → 2AP is a labeling function.
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The size of a Markov chain, written as |M|, is defined as its number of states. For
complexity results we sometimes assume the Markov chain to be written in binary
encoding on the tape of a Turing machine as input. We call the length of this input
word length of the Markov chain.

Occasionally, we replace the initial distribution ι of a Markov chainM with the
Dirac distribution Dirac[s] for a certain state s, where Dirac[s] : S → [0, 1] denotes
the distribution mapping s to 1 and every other state to 0. We denote this Markov
chain byM[s].

The last two components, AP and ℓ, serve to formalize properties of paths inM.
Formally, AP is a finite set of atomic propositions and ℓ : S → 2AP assigns to each
state s the set ℓ(s) of atomic propositions that hold in s. Paths in M are finite
or infinite sequences π = s0 s1 s2 . . . starting in the initial state s0 that are built
by consecutive steps, i.e., P (si, si+1) > 0 for all i. The trace of π is the word over
the alphabet Σ = 2AP that arises by taking the projections to the state labels, i.e.,
trace(π) = ℓ(s0) ℓ(s1) ℓ(s2) . . ..

Given a finite path π̂ = s0 s1 . . . sn the cylinder set of π̂, denoted Cyl(π̂), is the set
of infinite paths π = s0 s1 . . . such that π̂ ∈ Pref(π) (with Pref(π) as a short form for
Pref({π})). The set of infinite paths is supposed to be equipped with the σ-algebra
generated by the cylinder sets of the finite paths and the probability measure given by
Pr
(︁
Cyl(s0 s1 . . . sn)

)︁
= ι(s0)·

∏︁
0≤i<n P (si, si+1) where a1, . . . , an ∈ Σ. In notations

like PrM(ϕ) or PrM(A) we identify LTL formulas ϕ and ω-automata A with their
languages. For the mathematical details of the underlying σ-algebra and probability
measure, we refer to [Put94; BK08].

Occasionally, we also consider Markov chains with transition labels in some alphabet
Σ. These are defined as triplesM = (S, P, ι) where S and ι are as above and the
transition probability function is of the type P : S × Σ × S → [0, 1] such that∑︁

(a,s′)∈Σ×S P (s, a, s
′) = 1 for all states s ∈ S. If L ⊆ Σω is measurable, then PrM(L)

denotes the probability measure of the set of infinite paths π where the projection to
the transition labels constitutes a word in L. Furthermore, ifM[Σ] = (S, P, ι) is a
transition-labeled Markov chain where S = {s} is a singleton and P (s, a, s) = 1/|Σ|
for all symbols a ∈ Σ, then PrM[Σ](L) = Pr(L) for all measurable languages L.

We refer to the positivity problem and almost universality problem every now and
then. The positivity problem asks whether a positive probability given an ω-regular
language L holds, i.e., whether PrM (L) > 0 holds. Complementary, the almost
universality problem asks whether PrM (L) = 1 holds.

The terms positivity and almost-surely directly transfers to automata if we assume
a uniform Markov chain, i.e., a Markov chain whose traces have at every position
every symbol with the same probability.

Markov decision processes. MDPs are an operational model for systems that
exhibit both non-deterministic and probabilistic choices.
Definition 2.5. A Markov decision process is a tuple

M = (S,Act, P, ι,AP, ℓ)
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where

• S is a finite set of states,

• Act is a finite set of actions,

• P : S × Act × S → [0, 1] is the transition probability function satisfying:

∑︁
s′∈S

P (s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act,

• ι : S → [0, 1] is the initial distribution satisfying
∑︁

s∈S ι(s) = 1, and

• ℓ : S → 2AP is a labeling function.

The definitions of the size and of the word length of an MDP transfers directly.
Analogously, the notionsM [µ] andM [s] for a distribution µ and a state s are the
same as for Markov chains.

We write Act(s) for the set of actions α that are enabled in s, i.e., P (s, α, s′) > 0
for some s′ ∈ S, in which case s′ ↦→ P (s, α, s′) is a distribution formalizing the
probabilistic effect of taking action α in state s. We refer to the triples (s, α, s′)
with P (s, α, s′) > 0 as a step. The choice between the enabled actions is viewed to
be non-deterministic. For technical reasons, we require Act(s) ̸= ∅ for all states s.
The last two components, AP and ℓ, serve to formalize properties of paths inM.
Formally, AP is a finite set of atomic propositions and ℓ : S → 2AP assigns to each
state s the set ℓ(s) of atomic propositions that hold in s. Paths inM are finite or
infinite sequences π = s0 α0 s1 α1 s2 α2 . . . starting in the initial state s0 that are
built by consecutive steps, i.e., P (si, αi, si+1) > 0 for all i. The trace of π is the word
over the alphabet Σ = 2AP that arises by taking the projections to the state labels,
i.e., trace(π) = ℓ(s0) ℓ(s1) ℓ(s2) . . .. For an LTL formula ϕ over AP we write π |= ϕ
if trace(π) ∈ L(ϕ).

MDPs can be seen as stochastic games, also called a 11
2
-player games. The first

(full) player resolves the non-deterministic choice by selecting an enabled action α of
the current state s. The second (half) player behaves probabilistically and selects
a successor state s′ with P (s, α, s′) > 0. Strategies for the full player are called
schedulers. In general, they can be history-dependent, i.e., a scheduler is a function
s : (S × Act)∗ × S → Act selecting the next action given the current path prefix. We
call a path π = s0

α0−→ s1
α1−→ . . . an s-path if αi = s(s0, α0, s1, α1, . . . , αi−1, si) for all

i ≥ 0.
Since the behavior ofM is purely probabilistic if some scheduler s is fixed, one can

reason about the probability of path events. One can construct a (possibly infinite)
Markov chainMs induced byM and s: Ms = (Ss, Ps, ι,AP, ℓs) where

• Ss are all finite, non-empty sequences of state-action pairs finished by a state
in (S × Act)∗ S,

17



2 Preliminaries

• If s(s0
α0−→ . . .

αn−1−−−→ sn) = αn:
Ps(s0

α0−→ . . .
αn−1−−−→ sn, s0

α0−→ . . .
αn−1−−−→ sn

αn−→ sn+1) = P (sn, αn, sn+1),

• If s(s0
α0−→ . . .

αn−1−−−→ sn) ̸= αn:
Ps(s0

α0−→ . . .
αn−1−−−→ sn, s0

α0−→ . . .
αn−1−−−→ sn

αn−→ sn+1) = 0, and

• ℓs(s0
α0−→ . . .

αn−1−−−→ sn) = ℓ(sn).
If L is an ω-regular language, then PrsM(L) denotes the probability under s for the
set of infinite paths π with trace(π) ∈ L which equals PrMs(L).

IfM is clear from the context, we omitM in notations like PrsM and just write
Prs. Analogously, Prss for PrsM[s].

For a worst-case analysis of a system modeled by an MDPM, one ranges over
all schedulers (i.e., all possible resolutions of the non-determinism) and considers
the maximal or minimal probabilities for some ω-regular language L. Depending on
whether L represents a desired or undesired path property, the quantitative worst-case
analysis amounts to computing Prmin

M (ϕ) = mins PrsM(L) or Prmax
M (L) = maxs PrsM(L).

The existence of such schedulers is well-known, see, e.g., [Put94; FV96].
We introduced only deterministic schedulers, i.e., schedulers that choose a particular

action given a history. There are also randomized schedulers, that choose a distribution
over the actions for a finite history. As the probability Prmax

M (L) for an ω-regular
language is independent whether one ranges over all randomized schedulers or only
over all deterministic schedulers, and analogously for Prmin

M (L), it is sufficient for
our purposes to consider only deterministic schedulers. For further informations on
randomized schedulers we refer to, e.g., [Put94].

Markov chains are a special case of MDPs, where |Act(s)| = 1 for every state s ∈ S.
This results in the existence of exactly one scheduler, and therefore Prmin

M and Prmax
M

coincides.
Analogously to Markov chains, we refer to the positivity problem and almost

universality problem every now and then. In the positivity problem we ask whether
a positive probability given an ω-regular language L holds for at least one scheduler,
i.e., whether Prmax

M (L) > 0 holds. Complementary, in the almost universality problem
we ask whether Prmin

M (L) = 1 holds.

2.4.1 Analysis of Markovian models under LTL specifications
The standard automata-based analysis of Markovian model (we assume we are given
an MDP or a Markov chain) relies on a product construction of the Markovian model
with a deterministic automaton, where the automaton serves as a monitor signaling
accepted behavior. The standard approach is agnostic to the method transforming for
LTL to a deterministic ω-automaton. Therefore several methods have been developed,
the two main directions being a direct translation or taking an intermediate step via
non-deterministic Büchi automata.

However, there is an unavoidable double-exponential blow-up in the transformation
from LTL to deterministic ω-automata, see [AL04; KV05; KR11]. This raises the
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s0

s1 s2

Markovian
ModelM

1
2

1
2

LTL formula ϕ, e.g., ♦□ done

non-deterministic
Büchi automaton A q0 q1

true

done

done

deterministic Rabin
automaton D q0 q1

¬done
done

¬done

done

Probabilistic model checker
PrM (D) (or Prmax

M (D)) in POLY

PrM (ϕ) (or Prmax
M (ϕ))

2EXP

EXP

EXP

Figure 2.1: General scheme for probabilistic model checking with LTL as implemented
in PRISM. The edge labelings EXP and 2EXP are upper and lower bounds
for an exponential (respectively double-exponential) blow-up.

question whether non-deterministic Büchi automata can be used directly for the
analysis of Markovian models, since LTL can be translated into non-deterministic
Büchi automata with a single-exponential blow-up. This question has to be declined,
as the positivity and the almost universality problem for strongly connected NBA
are PSPACE-complete, see [Var85; CY95] and also Theorem 4.43.

Formally, the product of a Markov decision processM = (S,Act, P, ι,AP, ℓ) and
a complete deterministic ω-automaton A = (Q,Σ, δ, q0,Φ) is defined as the Markov
decision process

M⊗A = (S ×Q,Act, P ′, ι′, {τ})

where

• P ′(⟨s, q⟩ , α, ⟨s′, q′⟩) =

{︄
P (s, α, s′) if q′ = δ (q, ℓ(s′))

0 otherwise

• ι′(s, q) =

{︄
ι(s) if q = δ (q0, ℓ(s))

0 otherwise

The product should be seen as the original Markov decision process annotated
with the states of A, indicating whether a certain behavior is accepted or not.
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2 Preliminaries

As Markov chains are essentially Markov decision processes with exactly one
enabled action per state, the product definition carries over directly.

As a second step we need to analyse the so-called end-components, since almost all
paths will end in an end-component and visit every state in it infinitely often [Alf97].
An end-component is a pair (T,A) where

• T ⊆ S is a non-empty subset of states,

• A(s) ⊆ Act(s) is a non-empty set of enabled actions for every s ∈ T ,

• for every s ∈ T and α ∈ A(s) Post (s, α) = {t ∈ S : P (s, α, t) > 0} ⊆ T , and

• (T,A) induces a strongly connected component.

We call an end-component (T,A) maximal (MEC for short), if there is no end-
component (T ′, A′) ̸= (T,A) with T ⊆ T ′ and A(s) ⊆ A′(s) for all s ∈ T .

For an infinite path π = s0
α0−→ s1

α1−→ s2
α2−→ . . . we describe its limit, denoted by

Limit(π), as the pair (T,A) with T being the set of infinitely often visited states and
A : T → 2Act being the function mapping every state to its set of infinitely often
taken actions.

Lemma 2.6 (see Theorem 3.2 of [Alf97]). LetM be an MDP, s a state inM, and
s a scheduler forM. Then

PrsM[s] (π ∈ Paths(s) : Limit(π) is an end-component) = 1

In the special case of a Markov chain, the end-components degenerate to bot-
tom strongly connected components (BSCCs for short), i.e., strongly connected
components without outgoing transitions. Thus, Lemma 2.6 can be reformulated into

Lemma 2.7 (see Corollary 3.1 of [Alf97]). LetM be a Markov chain, and s a state
inM. Then

PrM[s](π ∈ Paths(s) : inf(π) is a BSCC) = 1

With Lemma 2.6 we can now analyse every end-component whether it is accepting
or not. In this section we restrict ourselves to the Rabin acceptance. For a deeper
inspection of the MEC analysis under the Emerson-Lei acceptance, we refer to
Section 5.3.

Let
⋁︁

i∈{1,...,n}
(Fin (Ei) ∧ Inf (Fi)) be a Rabin acceptance and (T,A) a MEC. Then,

we call (T,A) accepting if and only if it contains an end-component (T ′, A′) such
that there is a Rabin pair Fin (Ei) ∧ Inf (Fi) with T ′ ∩ Ei = ∅ and T ′ ∩ Fi ̸= ∅.
We call the set of states being in an accepting maximal end-component U . With
the knowledge of the accepting end-components, we can reduce MDP analysis to
calculation the probability of reaching a state in U .

Theorem 2.8. LetM be an MDP, ϕ an LTL formula, A be a DRA equivalent to ϕ,
and U the set of all states in an accepting end-component inM⊗A. Then

Prmax
M (ϕ) = Prmax

M⊗A(♦U)
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2.4 Markovian models

xs = 1 for all s ∈ U
xs = 0 for all s such that U is not reachable from s

0 ≤ xs ≤ 1 for all s such that U is reachable from s and s ̸∈ U

xs ≥
∑︂
t∈S

P (s, α, t) · xt
for all α ∈ Act and s such that U is reachable from s
and s ̸∈ U

and minimize
∑︂
s∈S

xs

Figure 2.2: Linear program for calculating (xs)s∈S with xs = Prmax
M[s](♦U) for an MDP

M and state set U .

xs = 1 for all s ∈ U
xs = 0 for all s such that U is not reachable from s

xs =
∑︂
t∈S

P (s, t) · xt for all s such that U is reachable from s and s ̸∈ U

Figure 2.3: Linear equation system for calculating (xs)s∈S with xs = PrM[s](♦U) for
a Markov chainM and state set U .

Now we highlight how to calculate the maximal probability to satisfy a reachability
property:

Theorem 2.9 (see Theorem 3.5 of [Alf97]). LetM be an MDP with S being the states
and U ⊆ S. Then the unique solution (xs)s∈S of the linear program in Figure 2.2
agrees with Prmax

M[s](♦U).

In case of a Markov chain the linear program of Theorem 2.9 can be replaced by
the system of linear equations in Figure 2.3.

As the last step, we sum over the values of the initial distribution for every state s:

Prmax
M (♦U) =

∑︂
s∈S

ι(s) · Prmax
M[s](♦U)

Given a deterministic ω-automaton D all necessary steps for calculating Prmax
M (D)

can be done in polynomial time in the word length ofM and D. The translation from
LTL to deterministic ω-automata requires double-exponential time in the worst-case,
so for the overall complexity we obtain:

Theorem 2.10 (see [Var85]). Deciding Prmax
M (ϕ) > 0 for an MDPM and an LTL

formula ϕ is in 2EXPTIME.
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2 Preliminaries

Despite Theorem 2.10 is formulated for qualitative analysis, the quantitative
analysis can be carried out also in 2EXPTIME with the means as explained above.

The matching lower bound has been proven by Courcoubetis and Yannakakis via a
reduction from the membership problem for exponential space bounded, alternating
Turing machines:

Theorem 2.11 (see Theorem 3.2.1. of [CY95]). Deciding Prmax
M (ϕ) > 0 for an MDP

M and an LTL formula ϕ is 2EXPTIME-complete.

The lower bound of Theorem 2.11 changes to a PSPACE lower bound in the case
of Markov chains:

Theorem 2.12 (see [Var85]). Deciding PrM(ϕ) > 0 for a Markov chainM and an
LTL formula ϕ is PSPACE-hard.

Despite there are several algorithms with a better worst-case time-complexity than
2EXPTIME (see Section 1.1.2), the usage of deterministic automata for the Markov
chain analysis under LTL can be seen as standard, as it is the way PRISM and STORM
deals with Markov chains and LTL.
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3 Good-for-games Automata
A desire to avoid deterministic ω-automata occurred not only in the area of prob-
abilistic model checking, but in the area of synthesis of reactive systems as well
[KV05; KPV06; PPS06; SF07]. In 2006 Henzinger and Piterman [HP06] proposed
the so-called good-for-games property for non-deterministic automata, a restricted
form of non-determinism. This property has been independently proposed by Col-
combet [Col09] for weighted automata, but here it is called history-deterministic.
Henzinger and Piterman also developed an algorithm, which we call HP-algorithm,
for constructing a good-for-games parity automaton out of an NBA, aimed at a
compact symbolic representation. Very recently, at STACS 2018, Kuperberg and
Majumdar [KM18] presented a modified breakpoint construction for transforming
non-deterministic co-Büchi automata to good-for-games automata and sketched a
generalisation to non-deterministic Büchi automata.

In a good-for-games automaton, the non-determinism can be resolved in an in-
cremental way for every accepted word without look-ahead. The formal definition
of GFG ω-automata [HP06] relies on a game-based view of ω-automata. Given a
complete ω-automaton A as before, we consider A as the game arena of an infinite,
turn-based 2-player game, called monitor game: if the current state is q, then player 1
chooses a symbol σ ∈ Σ whereas the other player (player 0) has to answer by a succes-
sor state q′ ∈ δ(q, σ), i.e., resolves the non-determinism. In the next round q′ becomes
the current state. A play is a maximal alternating sequence ς = q0 σ0 q1 σ1 q2 σ2 . . . of
states and (action) symbols in the alphabet Σ starting with an initial state q0. Intu-
itively, the σi’s are the symbols chosen by player 1 and the qi’s are the states chosen by
player 0 in round i. Player 0 wins the play ς if whenever ς|Σ = σ0 σ1 σ2 . . . ∈ Lω(A)
then ς|Q = q0 q1 q2 . . . is an accepting run. A strategy for player 0 is a function
f : (Q× Σ)∗ → Q with f(. . . q σ) ∈ δ(q, σ) and f(ε) ∈ Q0. A play ς = q0 σ0 q1 σ1 q2 . . .
is said to be f-conform or an f-play if qi = f(q0 σ0 . . . σi−2 qi−1σi−1) for all i ≥ 1. An
automaton A is called good-for-games if there is a strategy f such that player 0 wins
each f-play. Such strategies will be called GFG-strategies for A. Obviously, each
complete deterministic automaton enjoys the GFG property.

Example 3.1. The first example, depicted in Figure 3.1, is a good-for-games Büchi
automaton. It accepts the language L(□♦a). This automaton is non-deterministic
for the symbols that contain a, allowing the choice of either staying in the current
state or switching to the other. A GFG strategy for player 0 is the following strategy
f: If the current symbol contains the atomic proposition a, then player 0 chooses to
go to state q1, otherwise the strategy advises going to state q0.

This strategy ensures that all words accepted by Lω(A) are indeed accepted, as the
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3 Good-for-games Automata

q0 q1true

a

a

true

Figure 3.1: Good-for-games NBA A for □♦a. Accepting Büchi states are marked
with a double circle.

only way for player 1 to generate a word w ∈ Lω(A) is to choose infinitely many
symbols with a. But then player 0 visits infinitely often the accepting state q1, since
every time a symbol with a is selected, player 0 moves to q1 via his strategy. So for
an accepted word the f-conform play contains infinitely many accepting states q1 and
thus the projection to the automata states delivers an accepting run.

q0

qtq1 q2

q3

a a¬a

b

¬b

c

¬c

true

true

Figure 3.2: NBA B for a ∧ ⃝(b ∨ c), not good-for-games.

Example 3.2. The second NBA, shown in Figure 3.2, is not good-for-games. Let
player 1 pick the symbol {a} in the beginning. Now there exists a non-deterministic
choice between q1 and q2. Assume that the strategy for player 0 moves to q1. Then,
player 1 can choose the symbol {c}, leading to the trap state qt from which no accepting
run is possible. However, every word starting with {a} {c} is an accepted word and
thus choosing q1 in the first choice is not a valid move for a GFG strategy. In the
other case, if the strategy of player 0 moves to q2 after the first symbol {a}, player 1
can choose the symbol {b}, trapping the run in the non-accepting qt again. So, for
every accepted word {a} {b} . . . the conform play again does not yield an accepted run
and thus choosing q2 is not a valid move for a GFG strategy either.

We obtain that there does not exist a GFG strategy, because in the initial state q0
player 0 would need to know which of the two symbols player 1 will choose in the
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second step. So player 0 would need the ability to look-ahead, which is impossible for
GFG automata.

The automaton in Figure 3.1 is determinizable-by-pruning (DBP). Determinizable-
by-pruning [Bok+13] means that an equivalent deterministic automaton is embedded,
i.e., one can remove certain states and transitions, and obtain an equivalent deter-
ministic automaton. [Bok+13] demonstrates the existence of GFG automata that
are not determinizable-by-pruning. Colcombet studied GFG automata on finite
words in more depth and discovered, that every GFG NFA is determinizable-by-
pruning [Col12]. The influence of different acceptance conditions for good-for-games
automata has been covered in [KS15; BKS17]. The authors of [KS15] have proven,
that every GFG Büchi automaton can be determinized to a DBA with a quadratic
blow-up in the state space at most. Thus, GFG Büchi automata are as expressive
as DBA. The situation differs for GFG co-Büchi automata, where an exponential
blow-up may be unavoidable, but since every GFG co-Büchi automaton is also a
non-deterministic co-Büchi automaton, and non-deterministic co-Büchi automata
have the same expressiveness as deterministic co-Büchi automata, GFG co-Büchi
automata and deterministic co-Büchi automata are equivalent concerning expressive-
ness. For standard acceptance conditions like Rabin, Streett, Emerson-Lei, or parity,
all GFG automata cover ω-regularity, since deterministic automata are trivially good-
for-games. [BKS17] consider so-called typeness for (tight) good-for-games automata.
Tightness enforces that a good-for-games automaton does not contain any redundant
states or transitions that are not used by any GFG strategy. For explaining typeness,
we assume a good-for-games Rabin automaton A, whose language can be recognized
by a good-for-games Büchi automaton. Then, there exists an equivalent good-for-
games Büchi automaton on the same graph structure as A. So, tight good-for-games
Rabin automata are Büchi-type. The same notion transfers to the co-Büchi condition:
For every tight GFG Streett automaton A, that is co-Büchi-realizable, there is an
equivalent GFG co-Büchi automaton on the same graph structure as A.

Contribution. We present a new approach for probabilistic model checking based on
good-for-games automata, and show how to compute maximal or minimal probabilities
for path properties in MDPs. If we assume that the path properties are specified by a
GFG automaton, we achieve polynomial time complexity in both the word length of
the given MDP and GFG automaton if the GFG automaton has one of the standard
acceptances (Büchi, parity, Rabin, Streett). If the path properties are specified by an
LTL formula, we achieve a time complexity polynomial in the size of the given MDP
and double-exponential in the size of the LTL formula.

We evaluate this GFG-based approach empirically using our symbolic implementa-
tion of the HP-algorithm, including several variants, using binary decision diagrams.
We compare the performance of the HP-algorithm with the standard determinization
approach of Safra, relying on the implementation ltl2dstar [KB06; KB07]. To
compare the performance in actual probabilistic model checking, we have extended the
probabilistic model checker PRISM [KNP04] and evaluate the GFG-based approach on
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3 Good-for-games Automata

the IEEE802.11 handshaking protocol as well as on the dining philosopher’s problem.

3.1 Automata-based Analysis of Markov Decision
Processes

We address the task to compute the maximal or minimal probability in an MDPM
for the path property imposed by a non-deterministic ω-automaton A. The standard
approach, see, e.g., [BK08], assumes A to be deterministic and relies on a product
construction where states in M are augmented by the current state of A. Thus,
M⊗A can be seen as a refinement ofM since A does not affectM’s behaviors, but
attaches information on A’s current state for the prefixes of the traces induced by
the paths ofM.

In the context of MDP analysis, we assume w.l.o.g. that a good-for-games automa-
ton has exactly one initial state. For a good-for-games automaton with several initial
states, we pick an arbitrary GFG strategy f, and set the unique initial state q0 to the
state f(ε) chosen by f for the empty word.

We now modify the standard definition of the product of an MDP with a non-
deterministic ω-automata (with a unique initial state). The crucial difference is
that the actions are now pairs ⟨α, p⟩ consisting of an action in M and a state
in A, representing the non-deterministic alternatives in both the MDP M and
the automaton A. Formally, let M = (S,Act, P, ι,AP, ℓ) be an MDP and A =
(Q,Σ, δ, q0,Φ) a complete non-deterministic ω-automaton with Σ = 2AP . The product
MDP is

M⊗A = (S ×Q,Act×Q,P ′, ι′, Q, ℓ′)

where the transition probability function P ′ is given by P ′(⟨s, q⟩, ⟨α, p⟩, ⟨s′, q′⟩) =
P (s, α, s′) if p = q′ ∈ δ(q, ℓ(s)). In all other cases P ′(⟨s, q⟩, ⟨α, p⟩, ⟨s′, q′⟩) = 0. The
initial distribution is given by ι′(⟨s, q⟩) = ι(s) if q = q0 and ι′(⟨s, q⟩) = 0 in all other
cases. The assumption that A is complete yields that for each α ∈ Act(s) there is
some action ⟨α, q′⟩ ∈ Act(⟨s, q⟩) for all states s inM and q in A. In the product, the
states of the automaton serve as the atomic propositions and the labeling function
is given by ℓ′(⟨s, q⟩) = {q}, i.e., simply lifting the automaton state to the product.
This allows us to consider the traces inM⊗A simply as words over the alphabet
Q. Likewise, A’s acceptance condition Φ can be seen as a language over Q, which
permits treating Φ as a property that the paths inM⊗A might or might not have.
In particular, for Prmax

M⊗A
(︁
Φ
)︁
, Φ corresponds to the set of paths in the product where

the projection on the A-states yields an accepting path in A.

Theorem 3.3. For each MDPM and non-deterministic ω-automaton A as above:

(a) Prmax
M⊗A

(︁
Φ
)︁
≤ Prmax

M
(︁
Lω(A)

)︁
(b) If A is good-for-games, then: Prmax

M⊗A
(︁
Φ
)︁

= Prmax
M
(︁
Lω(A)

)︁
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3.1 Automata-based Analysis of Markov Decision Processes

Proof. We first observe that by the definition of the transition probability function
P ′ we have:

• If π′ = ⟨s0, q0⟩ γ0 ⟨s1, q1⟩ γ1 ⟨s2, q2⟩ γ2 . . . is a path inM⊗A where γi = ⟨αi, pi⟩,
then pi = qi+1 and π′|M = s0 α0 s1 α1 s2 α2 . . . is a path in M and π′|A =
q0 q1 q2 . . . is a run in A for the word

trace
(︁
π′|M

)︁
= ℓ(s0) ℓ(s1) ℓ(s2) . . . ∈

(︁
2AP)︁ω

In this case, we have:

π′ |= Φ iff the run π′|A is accepting

• Vice versa, if π = s0 α0 s1 α1 s2 α2 . . . is a path inM and ρ = q0 q1 q2 . . . a run
in A for its trace, then

πρ = ⟨s0, q0⟩ γ0 ⟨s1, q1⟩ γ1 ⟨s2, q2⟩ γ2 . . .

is a path inM⊗A where γi = ⟨αi, qi+1⟩. In this case, we have: ρ is accepting
iff πρ |= Φ.

Proof of statement (a). To show (a), we demonstrate that a scheduler for
M⊗A that maximizes the probability for Φ can be transferred to a scheduler forM
while maintaining the probabilities when considering the language Lω(A). Intuitively,
this holds as the scheduler choices for the A-successors in the product represent a
specific resolution of the non-determinism in A. The converse does not necessarily
hold in the non-good-for-game case, as the scheduler inM⊗A has to commit to a
particular resolution of the non-determinism in A, without being able to predict the
future.

We pick a scheduler s′ forM⊗A that maximizes the probability for A’s acceptance
condition. The goal is to derive a scheduler s forM under which the probability for
generating traces in Lω(A) is at least

Prmax
M⊗A

(︁
Φ
)︁

= Prs′M⊗A
(︁
Φ
)︁
.

The task is now to define s(π) ∈ Act( last(π) ) for finite paths π inM where last(π)
denotes the last state of π. Let π = s0 α0 s1 α1 . . . αn−1 sn be a finite path in M.
We introduce inductively states q1, . . . , qn, qn+1 in A as follows. Let

γ0
def
= ⟨α0, q1⟩ = s′(⟨s0, q0⟩)

and for 0 ≤ i ≤ n:

γi
def
= ⟨αi, qi+1⟩ = s′

(︁
⟨s0, q0⟩ γ0 ⟨s1, q1⟩ γ1 . . . γi−1 ⟨si, qi⟩

)︁
Clearly, in the above inductive definition we have qi+1 ∈ δ(qi, ℓ(si)) and αi ∈ Act(si).
We then define:

s(s0 α0 s1 α1 . . . αn−1 sn)
def
= αn
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3 Good-for-games Automata

Now, we show that for every s′-path inM⊗A with a trace satisfying the acceptance
condition Φ, there exists a s-path inM with a trace accepted by A. Suppose that
π′ = ⟨s0, q0⟩ γ0 ⟨s1, q1⟩ γ1 ⟨s2, q2⟩ γ2 . . . is an infinite s′-path with π′ |= Φ. InM⊗A,
for an action γi = ⟨αi, qi+1⟩ to be enabled, qi+1 ∈ δ(qi, αi) must hold. Since π′ satisfies
Φ, π′|A = q0 q1 . . . is an accepting run in A for the trace of π′|M = s0 α0 s1 α1 s2 α2 . . ..
By definition ofM⊗A, π′|M = s0 α0 s1α1 s2 α2 . . . is a path inM. Thus, the set
of all s-paths π with trace(π) ∈ Lω(A) contains the set of the paths π′|M where π′

is a s′-path inM⊗A with π′ |= Φ and consequently Prs′M⊗A
(︁
Φ
)︁
≤ PrsM

(︁
A
)︁
. We

obtain the desired result:

Prmax
M⊗A

(︁
Φ
)︁

= Prs′M⊗A
(︁
Φ
)︁
≤ PrsM

(︁
Lω(A)

)︁
≤ Prmax

M
(︁
Lω(A)

)︁
Proof of statement (b). To show (b), we show that the good-for-games property
allows a scheduler inM⊗A to resolve the non-determinism induced by A in the
product in an optimal way. Technically, this relies on combining a maximizing
scheduler forM and Lω(A) with a GFG-strategy for A.

We suppose now that A is good-for-games. By (a), it suffices to show that

Prmax
M
(︁
A
)︁
≤ Prmax

M⊗A
(︁
Φ
)︁

Let f denote a GFG-strategy for the monitor game for A and let s be a scheduler
inM that maximizes the probability to generate traces in Lω(A). The goal is to
compose s and f to obtain a scheduler s′ forM⊗A such that the probability under
s′ for the paths π′ with π′ |= Φ is at least PrsM

(︁
A
)︁
.

The definition of s′(π′) for the finite paths π′ in M⊗A is by induction on the
length of π′. For the initial state we define:

s′(⟨s0, q0⟩)
def
= ⟨ s(s0), f(q0 ℓ(s0)) ⟩

For a finite path π′ = ⟨s0, q0⟩ γ0 ⟨s1, q1⟩ γ1 . . . γn−1 ⟨sn, qn⟩ inM⊗A of length n ≥ 1
where γi = ⟨αi, qi+1⟩, the definition of s′(π′) is as follows:

s′(π′)
def
= ⟨ s(π′|M), f

(︁
q0 ℓ(s0) q1 ℓ(s1) . . . qn ℓ(sn)

)︁
⟩

Suppose now that π = s0 α0 s1 α1 s2 α2 . . . is an infinite s-path inM with trace(π) ∈
Lω(A). We now consider the accepting run ρ = q0 q1 q2 . . . for trace(π) that is
obtained using the GFG-strategy f in the monitor game for A. That is:

qi+1 = f
(︁
q0 ℓ(s0) q1 ℓ(s1) . . . qi ℓ(si)

)︁
Then, πρ = ⟨s0, q0⟩ γ0 ⟨s1, q1⟩ γ1 ⟨s2, q2⟩ γ2 . . . is an infinite s′-path with πρ |= Φ
where γi = ⟨αi, qi+1⟩. Thus, the set of all infinite s′-paths π′ with π′ |= Φ subsumes
all paths πρ resulting from combining an s-path π in M where trace(π) ∈ Lω(A)
with its (unique) accepting f-run ρ. This yields:

Prmax
M
(︁
Lω(A)

)︁
= PrsM

(︁
Lω(A)

)︁
≤ Prs′M⊗A

(︁
Φ
)︁
≤ Prmax

M⊗A
(︁
Φ
)︁

This completes the proof of statement (b) in Theorem 3.3.

28



3.1 Automata-based Analysis of Markov Decision Processes

Example 3.4 (Necessity of the GFG Property in Theorem 3.3(b)). To illustrate that
the GFG-property is crucial in part (b) of Theorem 3.3, we provide an example for
an MDPM (even a Markov chain) and non-deterministic ω-automaton A such that
Prmax

M⊗A
(︁
Φ ) is strictly smaller than Prmax

M
(︁
A ).

s0 a

s1b s2 c

1/2 1/2

β, 1 γ, 1

α

q0

qtq1 q2

q3

a a¬a

b

¬b

c

¬c

true

true

Figure 3.3: Markov decision processM (left) and NBA A for a ∧ ⃝(b ∨ c) (right).

The left of Figure 3.3 shows the MDPM with three states s0, s1, s2, actions α, β
and γ and atomic propositions a, b and c. M behaves purely probabilistically. Hence,
it can be seen as a Markov chain and the concept of schedulers is irrelevant forM.
AsM has only two paths π1 = s0 α s1 β s1 β s1 β . . . and π2 = s0 α s2 γ s2 γ s2 γ . . .,
M has only two traces, namely {a} {b}ω and {a} {c}ω.
The picture on the right shows the same NBA as in Figure 3.2. It is an NBA
A over the alphabet 2{a,b,c} and the accepting state q3. Thus, Φ is given by Inf (q3).
Clearly, Lω(A) is the language for the LTL formula

ϕ = a ∧ ⃝(b ∨ c)

Since both paths π1 and π2 of M satisfy ϕ, the probability for ϕ in M is 1, which
yields Prmax

M (A) = 1.
Figure 3.4 shows the product-MDP M⊗ A. Any scheduler s for M⊗ A just

has two options in the initial state ⟨s0, q0⟩, “select action ⟨α, q1⟩” or “select action
⟨α, q2⟩”, while there is just one enabled action for the other states. In particular,
M⊗A has just two schedulers.
By symmetry, it suffices to consider the scheduler s choosing action ⟨α, q1⟩ for

the initial state. The s-paths resolve the probabilistic choice between ⟨s1, q1⟩ and
⟨s2, q1⟩. No accepting state of the form ⟨s, q3⟩ is reachable from state ⟨s2, q1⟩, while
the accepting state ⟨s1, q3⟩ will be reached in the next step from ⟨s1, q1⟩. Hence:

PrsM⊗A
(︁
Φ ) =

1

2
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s0, q0

s1, q1

s2, q1

s1, q2

s2, q2

s1, q3

s2, q3

s1, qt

s2, qt

1/2

1/2

1/2

1/2

β, q3 1

γ, qt 1

β, qt 1

γ, qt 1

β, q3
1

γ, qt
1

β, qt
1

γ, q3
1

α, q1

α, q2

Figure 3.4: Product MDPM⊗A.

The same argument applies to the scheduler forM⊗A that chooses action ⟨α, q2⟩ in
the first step. Thus, we get:

1

2
= Prmax

M⊗A(Φ) < Prmax
M (A) = 1

Theorem 3.3 (b) shows that with a slightly modified definition of the product, the
techniques that are known for the quantitative analysis of MDPs against deterministic
ω-automata specifications [Var85; VW86; Alf97] are also applicable for GFG automata.
The computation of maximal probabilities for properties given by a standard ω-
regular acceptance condition Φ (e.g., Büchi, Rabin, parity or Streett) can be carried
out by a graph analysis that replaces Φ with a reachability condition and linear
programming techniques for computing maximal reachability probabilities. See, e.g.,
[BK08; BGC09a; BGC09b]. The time complexity is polynomial in the size ofM and
A, matching the complexity of the approach using deterministic ω-automata.

[KV05; KR11] proves that a double-exponential blow-up for translating LTL to
deterministic ω-automata (of any type) is unavoidable. We show now how the proof
in [KR11] can be adapted for GFG automata, yielding a double-exponential lower
bound for GFG automata as well, which is in accordance with the known 2EXPTIME-
completeness for the analysis of MDPs against LTL specifications [CY95].

Theorem 3.5. There exists a family of LTL formulas (ϕn)n∈N such that
|ϕn| = O(n), while every GFG Emerson-Lei automaton An for ϕn has at least 22Ω(

√
n)

states.

Proof. The proof relies on the following family of ω-regular languages (Ln)n∈N for
which a double-exponential blow-up is unavoidable. Let Σ = {a, b} be an alphabet
with two elements. [KV05] defines a family of languages Ln over the alphabet
Σ ∪ {#, $} of the following form:

Ln =
⋃︂
w∈Σn

L(w)
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where L(w) is the following ω-regular language:

L(w) =
{︁
w1 # . . . #wi−1 #w#wi+1 # . . . #wm# $w#ω :

w1, . . . , wi−1, wi+1, . . . , wm ∈ Σ∗, m ∈ N, 0 ⩽ i ⩽ m
}︁

The languages Ln are safety languages and can be recognized by a DBA An, which are
known to need at least 22Ω(n) states. Intuitively, this is because An needs to remember
all words of length n that have been seen before $ to check whether one of them
matches the word after $. There exist 2n possible words of length n and therefore 22n

possibilities for which words of length n have occurred before the $-symbol. Thus,
intuitively, for checking whether a duplicated word of length n occurs after $, An
needs at least 22Ω(n) states. The proof from [KV05], that every DBA accepting the
language Ln needs at least 22Ω(n) states can be extended to a GFG automata in a
straightforward manner.

We will prove the claim that every GFG automaton recognizing Ln has at least
22

Ω(n) states by contradiction. We refer to words in Σn as n-blocks. Further we
assume a total order on Σn, thereby we can define the n-block wi as the i-th word in
Σn. In this proof we will use index sets containing indices ranging from 1 to 2n and
corresponding to the n-blocks that have appeared before the $. We define for every
such index set

I =
{︁
i1, i2, . . . , ik

}︁
⊆
{︁
0, 1, . . . , 2n−1

}︁
the finite word wI = #wi1#wi2# . . .#wik#$. As An is good-for-games, there exists
a GFG-strategy f. Let qI be the state reached in the f-play after consuming the
finite word wI . Since there are 2n different n-blocks, there exist 22

n subsets of
{0, 1, . . . , 2n−1}, but by assumption An has less than 22

n states. Therefore there
must be two distinct sets I ̸= J with qI = qJ . W.l.o.g. let i ∈ I \ J . The word
wI wi#ω belongs to Ln, and hence is accepted by An and the f-play for wI wi#ω is
accepting as well. On the other hand, wJ wi#ω is not in Ln. But as qI = qJ there is
an accepting run for the suffix wi#ω and we get wJ wi#ω ∈ Ln. Contradiction.

As other standard acceptance conditions like Rabin, parity or Streett are a particular
form of Emerson-Lei, the same argument holds also for GFG Rabin, GFG parity,
GFG Streett automata and GFG Emerson-Lei automata. As shown in [KV05], there
is an LTL formula ϕn of size O

(︁
n2
)︁
for Ln yielding the double-exponential lower

bound for the transformation from LTL to GFG automata.

Minimal probabilities IfM is an MDP as before and s a scheduler forM then for
each ω-regular language L over the alphabet 2AP :

PrsM(L) = 1− PrsM(L)

where L denotes the complement of L, i.e., L =
(︁
2AP)︁ω \ L. Hence, we get:

Prmin
M (L) = 1− Prmax

M (L)

As a consequence of Theorem 3.3, we obtain:
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Corollary 3.6. For each MDPM, LTL formula ϕ and complete GFG-automaton
A with acceptance condition Φ for ¬ϕ:

Prmin
M
(︁
ϕ
)︁

= 1− Prmax
M⊗A

(︁
Φ
)︁

Moreover, Prmin
M
(︁
ϕ
)︁
≤ 1− Prmax

M⊗A
(︁
Φ
)︁
for each non-deterministic ω-automaton A

for ¬ϕ.

3.2 From LTL to GFG Automata
It has previously been shown [KB06; KB07] that it is possible in practice, using the
tool ltl2dstar, to obtain deterministic ω-automata for a wide range of LTL formula ϕ
via the translation to an NBA and Safra’s determinization construction [Saf88] refined
by various heuristics. Here, we are interested in replacing Safra’s determinization
algorithm with the HP-algorithm [HP06] to generate a GFG automaton instead of a
deterministic automaton. We first provide an outline of the HP-algorithm and then
explain a few new heuristics.

3.2.1 The HP-algorithm
The HP-algorithm transforms an NBA B = (Q,Σ, δ, q0,Φ) with Φ = Inf (F ) and
|Q| = n states into a GFG automaton A with parity acceptance and at most 2n · n2n

states and 2n parity colors (or an NRA with n Rabin pairs), which improves on the
upper bound given for Safra’s determinization algorithm.

Like Safra’s construction, the HP-algorithm relies on the simultaneous tracking
of multiple subset constructions to determine acceptance or rejection in the NBA.
However, while the states of Safra’s DRA organize the subsets in trees, the HP-
algorithm uses a simpler, linear arrangement of the subsets. The state space P =
(2Q × 2Q)n of the GFG automaton A consists of n pairs of subsets of NBA states
Q, i.e., states of the form p = ⟨(A1, B1), . . . , (An, Bn)⟩ where Bi ⊆ Ai ⊆ Q, plus the
following two additional constraints on the state space:

• if Ai = ∅ for i < n, then Ai+1 = ∅, and

• for all i < j, Ai ∩ Aj = ∅ or Aj ⊆ Bi.

The first constraint ensures that an empty Ai implies that all the following Aj are
empty as well. The second constraint ensures that each set A is contained in the
B-part of some previous pair and disjoint from all sets between the two. Let T ⊆ P
be the tuples that satisfy the constraints above. Each set Bi serves to mark those
states in Ai that were reached via some accepting state in F of the NBA. The
initial state q0,G of A is the tuple ⟨({q0} , {q0} ∩ F ), (∅,∅), . . . , (∅,∅)⟩, i.e., where
A1 corresponds to the initial state q0 of the NBA and B1 is non-empty if and only if
q0 is accepting.
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The successor state in A for symbol σ is obtained by applying the transition
function δ of the NBA to each of the subsets and adding states in F to the Bi

subsets. In crucial difference to Safra’s construction, the HP-algorithm however then
introduces significant non-determinism by allowing A to discard an arbitrary number
of states in any of the subsets. For p = ⟨. . . (Ai, Bi) . . .⟩, the set A′

i in a σ-successor
p′ of A thus does not correspond to A′

i = δ(Ai, σ) but there is a non-deterministic
choice between any A′

i satisfying A′
i ⊆ δ(Ai, σ), including the empty set.

For the formal definition of the transition function of the GFG automatonA, we rely
on the functions succi(p, σ) : P×Σ→ 2(2

Q×2Q) that provide the possible values for the
i-th pair (A′

i, B
′
i) in the successor state, given a state p = ⟨(A1, B1), . . . , (An, Bn)⟩ ∈ P

in the GFG automaton A and symbol σ. The definition of succi distinguishes three
cases. In the first case, where Ai ̸= Bi ̸= ∅ holds, we have

succi(p, σ) = {(A′, B′) : A′ ⊆ δ(Ai, σ) and
B′ ⊆ (δ(Bi, σ) ∩ A′) ∪ (A′ ∩ F )}

This reflects a “standard” step, where the subset construction proceeds as normal
and where Bi is updated with newly visited accepting states. In the second case,
whenever Ai = Bi ̸= ∅, we have

succi(p, σ) = {(A′, B′) : A′ ⊆ δ(Ai, σ) and B′ ⊆ A′ ∩ F}

As Ai and Bi are equal, this reflects the situation where all states tracked by Ai
could have been reached while visiting some accepting state. The remaining third
case arises whenever Ai is empty. Here, succi allows for Ai to be “reset”, starting the
subset construction anew by choosing some subset of states of the first set A1:

succi(p, σ) = {(A′, B′) : A′ ⊆ δ(A1, σ) and B′ ⊆ A′}

The transition function δG of A is then defined by the application of succi to each
pair, additionally constraining the successor state to those tuples that satisfy the
constraints on the state space by restricting to the states in T :

δG(p, σ) = T ∩
n∏︂
i=1

succi(p, σ)

In the acceptance condition of A, the “resets” (whenever Ai = ∅ for some pair i)
are reflected as “bad” events for the pair i, as they signify that the previously tracked
runs terminated. The “good” events for pair i in the acceptance condition occur
whenever all states in an Ai are marked as having recently visited F , i.e., whenever
Ai = Bi ̸= ∅. Infinitely many “good” events for a pair i without “bad” events for
that pair then correspond to the existence of an accepting run in the NBA B. This
can be straightforwardly encoded as a Rabin condition with n Rabin pairs or as a
parity condition by giving the good and bad events of pair i higher priority than the
events of pair j for j > i.

33



3 Good-for-games Automata

Formally, a parity acceptance condition for A is obtained as follows. For a given
state p = ⟨(A1, B1), . . . , (An, Bn)⟩, we obtain the left-most “bad” pair via the function
indU(p) and the left-most “good” pair via the function indL(p), defined as follows:

indU(p) = min ({k : k ∈ {2, . . . , n} ∧ Ak = ∅} ∪ {n+ 1})
indL(p) = min ({k : k ∈ {2, . . . , n} ∧ Ak = Bk ̸= ∅} ∪ {n+ 1})

The value n+1 signals that none of the pairs were “bad” or “good”, respectively. The
coloring function for the parity acceptance condition (with colors {0, . . . , 2n− 1}) is
then obtained via

col(p) =

⎧⎪⎨⎪⎩
0 if A1 = B1 ̸= ∅
2i+ 1 if indU(p) = i+ 2 ∧ indL(p) ≥ i+ 2

2i+ 2 if indL(p) = i+ 2 ∧ indU(p) > i+ 2

An equivalent Rabin acceptance can be easily obtained by rewriting the parity
acceptance, as usual.

The HP-algorithm relies on the GFG-strategy to resolve the non-determinism in
the constructed automaton A, i.e., which states in the subsets are kept, which are
dropped and when to reset. There is a large amount of non-determinism and a lot of
combinatorial possibilities in the reachable state space of A. This is confirmed by our
experiments, e.g., applying the construction to the two-state NBA for ♦□a already
yields a GFG automaton with 16 states, where ltl2dstar generates a two-state
DRA. As stated in [HP06], the HP-algorithm is thus not well-suited for an explicit
representation for A, but is intended for a symbolic implementation. In this context,
[HP06] briefly discusses the possibility of variants of the transition function in the
GFG automaton that either apply more or less strict constraints on the relationship
enforced between the (Ai, Bi) pairs in each state. Especially, [HP06] posits that
introducing even further non-determinism (and increasing the number of possible
states) by loosening a disjunctness requirement on the Ai may lead to a smaller
symbolic representation. In our experiments, we will consider such a variant of
the HP-algorithm, where the second constraint on the state space (“for all i < j,
Ai ∩ Aj = ∅ or Aj ⊆ Bi”) is removed. We will refer to this variant as the loose
variant.

3.2.2 Iterative approach
In the context of games, [HP06] proposes an iterative approach to the HP-algorithm
by successively constructing the automata Am obtained by using only the first m
of the n pairs, i.e., by setting Ai = Bi = ∅ for all m < i ≤ n. In the acceptance
condition this reduces the number of required parity colors to 2m and Rabin pairs to
m as well. For these automata, Lω(Am) = Lω(A) = Lω(B), but there is no guarantee
that Am for m < n is good-for-games by construction. We start with m = 1 and
increase m until early success or reaching m = n. Our experimental results indeed
show that early termination appears rather often.
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We now explain how the iterative approach of [HP06] can be integrated in the
GFG-based quantitative analysis of MDPs against LTL specifications. Suppose, e.g.,
that the task is to show that Prmax

M
(︁
ϕ
)︁
≥ θ for some LTL formula ϕ and threshold

θ ∈ ]0, 1]. Let B be an n-state NBA with Lω(B) = L(ϕ) and Am the automaton
obtained using only the first m ≤ n pairs in the HP-algorithm applied to B. Let Φm

denote the acceptance condition of Am. By Theorem 3.3 (a):
If Prmax

M⊗Am

(︁
Φm
)︁
≥ θ for some m ≤ n then Prmax

M
(︁
ϕ
)︁
≥ θ.

Moreover, Prmax
M⊗Am

(︁
Φm
)︁
≤ Prmax

M⊗Am+1

(︁
Φm+1

)︁
form < n, since the paths inM⊗Am

constitute a subset of the paths inM⊗Am+1. These observations suggest an approach
that resembles the classical abstraction-refinement schema: starting with m = 1, we
carry out the quantitative analysis ofM⊗Am against Φm and successively increase m
until Prmax

M⊗Am

(︁
Φm
)︁
≥ θ or Am is GFG (which is the case at the latest when m = n).

As an additional heuristic to increase the performance of the linear programming
techniques that are applied for the quantitative analysis ofM⊗Am against Φm, one
can reuse the results computed forM⊗Am−1 and Φm−1 as initial values.

GFG checking. It remains to explain how to check whether Am has the GFG
property for m < n, i.e., when it is not clear from the construction itself that
the GFG property holds. In this aspect, our prototype implementation departs
from [HP06] and checks whether Am is GFG by solving a Rabin game (itself an
NP-complete problem) constructed from Am and a DRA for ¬ϕ constructed with
ltl2dstar while [HP06] proposes an algorithm based on checking fair simulation.
We will use this GFG check in our experimental evaluation to study the impact of
the iterative approach in terms of the number of required iterations that are actually
needed in practice as well as the size of the resulting GFG automata. To obtain these
results, the particular choice of the GFG test is irrelevant.

We detail here a game-based characterization of the GFG property, which serves
as the basis for checking whether a given ω-automaton A is good-for-games in our
implementation of the iterative approach of the HP-construction. This approach is
based on the game-based approach to determinization of GFG automata presented
in [Bok+13].

Given an NRA A = (Q,Σ, δA, q0,ΦA) then – by definition – A is good-for-games
if there is a strategy that generates an accepting run for exactly the words w with
w ∈ Lω(A). Since the class of ω-regular languages is closed under complementation
there exists a DRA D = (P,Σ, δD, p0,ΦD) with Lω(D) = Σω \ Lω(A). W.l.o.g. we
assume transition relations of A and D to be total.

We now construct a turn-based two-player game GA,D with full observation for
both players as follows. The set of game vertices is V = V1 ∪ V0 where the set of
vertices where player 1 moves is V1 = Q×P and where player 0 moves in the vertices
in V0 = Q × P × Σ. We set the initial vertex to ⟨q0, p0⟩. The moves in GA,D are
defined by the following two structural operational semantics rules (SOS-rules):

q ∈ Q, p ∈ P, σ ∈ Σ

⟨q, p⟩ −→ ⟨q, p, σ⟩
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and
q′ ∈ δA(q, σ), p′ = δD(p, σ)

⟨q, p, σ⟩ −→ (q′, p′)

Player 1 chooses a symbol σ ∈ Σ and player 0 resolves the non-determinism. As D is
deterministic, the game-structure GA,D can be viewed as a refinement of the monitor
game associated with A. The states in A are simply augmented with the information
on D’s current state and the chosen symbol.

The objective in GA,D is defined such that player 0 wins a play ς , if for every word
w:

• if w ∈ Lω(A), then ς|A is an accepting run in A

• if w /∈ Lω(A), then ς|D is an accepting run in D.

where ς|A denotes the projection of ς to the states A. More precisely, we erase all
vertices ⟨q, p, σ⟩ from ς and replace the vertices ⟨q, p⟩ with q. Likewise ς|D arises from
ς by taking the projection to the D-components of the vertices ⟨q, p⟩ in ς. Formally,
the objective for player 0 in the game GA,D is the Rabin condition resulting from the
union of the acceptances of A and D lifted to the product. That is, if

ΦA =
⋁︁

1≤i≤n
Fin

(︁
UA
i

)︁
∧ Inf

(︁
LA
i

)︁
ΦD =

⋁︁
1≤i≤m

Fin
(︁
UD
i

)︁
∧ Inf

(︁
LD
i

)︁
are the Rabin acceptance of A and D, respectively, then we define the objective for
player 0 in the game GA,D as the Rabin acceptance

Ψ =
⋁︂

1≤i≤n+m

Fin (Ui) ∧ Inf (Li)

where for 1 ≤ i ≤ n and 1 ≤ j ≤ m:

Ui = {⟨q, p⟩ ∈ V0 : q ∈ UA
i }

Li = {⟨q, p⟩ ∈ V0 : q ∈ LA
i }

Un+j = {⟨q, p⟩ ∈ V0 : q ∈ UB
j }

Ln+j = {⟨q, p⟩ ∈ V0 : q ∈ LB
j }

Lemma 3.7 (Game-based characterization of the GFG property). A is good-for-
games iff player 0 has a winning strategy in the Rabin game GA,D.

In what follows, let G = GA,D.

Proof of “⇐=” Assume that player 0 has a winning strategy g : (V1 V0)
+ → V1 in

G. To define a GFG-strategy f : (Q× Σ)+ → Q for player 0 in the monitor game for
A, we first look at the play fragment q0 σ1 q1 σ2 . . . qn σn+1 and consider the choice of
g in G for the following play fragment in G:

ς = ⟨q0, p0⟩ ⟨q0, p0, σ1⟩ ⟨q1, p1⟩ ⟨q1, p1, σ2⟩ . . . ⟨qn, pn⟩ ⟨qn, pn, σn+1⟩
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where pi = δD(p0, σ0 σ1 . . . σi−1) is the unique state in D that is reached from p0 by
reading the finite input string σ0 σ1 . . . σi−1. Let ⟨qn+1, pn+1⟩ = g(ς). Then, we define:

f(q0 σ1 q2 σ2 . . . qn σn) = qn+1

Suppose that w = σ0 σ1 σ2 . . . ∈ Lω(A). Since the strategy g is winning, the g-play
induced by w,

ς = ⟨q0, p0⟩ ⟨q0, p0, σ1⟩ ⟨q1, p1⟩ ⟨q1, p1, σ2⟩ . . . ,

in G is winning for player 0, i.e., ς satisfies the Rabin condition Ψ associated with G.
We pick some Rabin pair Fin (Ui) ∧ Inf (Li) with 1 ≤ i ≤ n such that ς |= Fin (Ui)
and ς |= Inf (Li). There has to exist such a Rabin pair, since ς has to satisfy the
winning objective which means that for an accepted word w ∈ Lω(A) we have to
fulfill a Rabin pair stemming from A. By taking the projection of all states in
Fin (Ui) ∧ Inf (Li) we obtain a Rabin pair Fin

(︁
UA
i

)︁
∧ Inf

(︁
LA
i

)︁
in A and the f-play

induced by w is q0 σ1 q1 σ2 . . .. Hence, ς|A = q0 q1 . . . is a run for w in A and

ς|A |= Fin
(︁
UA
i

)︁
and ς|A |= Inf

(︁
LA
i

)︁
.

Thus, ς meets the Rabin condition of A.

Proof of “=⇒” Assume A is good-for-games. Then, there exists a GFG-strategy
f : (Q× Σ)+ → Q for the monitor game for A. We define the strategy g for player 0
in G as follows. Given the play fragment

ς = ⟨q0, p0⟩ ⟨q0, p0, σ1⟩ ⟨q1, p1⟩ ⟨q1, p1, σ2⟩ . . . ⟨qn, pn⟩ ⟨qn, pn, σn⟩

in G we define g(ς) as follows:

g(ς) = ⟨f(q0 σ1 q1 σ2 . . . qn σn), δD(pn, σn)⟩

Let w = σ0 σ1 σ2 . . . ∈ Σω be an infinite word.
Case 1: w ∈ Lω(A). For the g-play ς = ⟨q0, p0⟩ ⟨q0, p0, σ0⟩ ⟨q1, p1⟩ ⟨q1, p1, σ1⟩ . . .
induced by w in G we have:

ς|A = q0 q1 q2 . . . |= Fin
(︁
UA
i

)︁
∧ Inf

(︁
LA
i

)︁
for some i ∈ {1, . . . , n}. As G’s objective Ψ contains the corresponding Rabin pair
(Ui, Li), we get ς |= Ψ.
Case 2: w /∈ Lω(A). Then, w ∈ Lω(D). Let ρ be the unique run for w in D. Then,
ρ |= ΦD. Hence, there exists j ∈ {1, . . . ,m} with ρ |= Fin

(︁
UD
j

)︁
and ρ |= Inf

(︁
LD
j

)︁
.

Let
ς = ⟨q0, p0⟩ ⟨q0, p0, σ0⟩ ⟨q1, p1⟩ ⟨q1, p1, σ1⟩ ⟨q2, p2⟩ ⟨q2, p2, σ2⟩ . . .

be the g-play in G if player 1 chooses the symbols σi according to w. Then, ς|D = ρ.
Hence, ς |= Fin (Un+j) and ς |= Inf (Ln+j). Thus, ς satisfies the objective Ψ for player
0 in G.
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In practice, when starting from an LTL formula ϕ, we do not construct D from
A via complementation and determinization. As we know that Lω(A) = L(ϕ), we
obtain the DRA D by applying standard algorithms for the construction of a DRA for
the negation ¬ϕ, i.e., via the tool ltl2dstar. Even though A and D (and thus the
game as well) have a worst-case double-exponential number of states in the size of the
formula, and though solving Rabin games is itself NP-complete, we have been able to
use this approach in practice for the smaller automata (see Section 3.3) to determine
whether the intermediate automata in the iterative approach of the HP-construction
are GFG or not.

3.2.3 Union operator for disjunctive formulas
For generating a deterministic automaton from an LTL formula, it has been shown
in [KB06] that optionally handling disjunctive LTL formulas of the form ϕ = ϕ1 ∨ ϕ2

by constructing DRA A1 and A2 for the subformulas ϕ1 and ϕ2 and then obtaining
the DRA A1 ∪A2 for the language Lω(A1) ∪ Lω(A2) via a product construction can
be very beneficial in practice. The definition of A1 ∪A2 used in [KB06] can easily be
extended to NRA. The GFG property is preserved by the union construction.

Definition 3.8 (Union of two NRA). Let A1 = (Q1,Σ, δ1, q0,1,Φ1) and
A2 = (Q2,Σ, δ2, q0,2,Φ2) be two complete NRA over the same alphabet with Φ1 =(︁
Fin (U1,1)∧Inf (L1,1)

)︁
∨. . .∨

(︁
Fin (U1,n)∧Inf (L1,n)

)︁
and Φ2 =

(︁
Fin (U2,1)∧Inf (L2,1)

)︁
∨

. . . ∨
(︁
Fin (U2,n) ∧ Inf (L2,n)

)︁
. The NRA A1 ∪ A2 = (Q′,Σ, δ′, q′0,Φ

′) is defined as
follows. The state space of A1 ∪A2 is Q′ = Q1×Q2 and q′0 = (q0,1, q0,2) its initial
state. The transition function δ′ is given by:

δ′((q1, q2), σ) =
{︁
(q′1, q

′
2) : q

′
1 ∈ δ1(q1, σ), q′2 ∈ δ2(q2, σ)

}︁
The Rabin acceptance Φ′ is given by:⋁︂
1≤i≤n

(︁
Fin (U1,i ×Q2) ∧ Inf (L1,i ×Q2)

)︁
∨
⋁︂

1≤j≤m

(︁
Fin (Q1 × U2,j) ∧ Inf (Q1 × L2,j)

)︁
Obviously, Lω(A1 ∪ A2) = Lω(A1) ∪ Lω(A2). Additionally, the union operation

preserves the GFG property.

Lemma 3.9 (Good-for-games for the union operation). Let A1 and A2 be complete
NRA. If A1 and A2 are GFG, then A1 ∪ A2 is good-for-games, too.

Proof. Let f1 : (Q1 × Σ)+ → Q1 be a GFG-strategy for A1 and f2 : (Q2 × Σ)+ → Q2

be a GFG-strategy for A2. We define a strategy

f : (Q′ × Σ)+ → Q′

for A1 ∪ A2 and ς = ⟨q0,1, q0,2⟩ σ0 . . . ⟨qi,1, qi,2⟩ σi as follows:

f(ς)
def
= ⟨ f1(ς

⃓⃓
1
), f2(ς

⃓⃓
2
) ⟩

38



3.3 Implementation and Experiments

where ς
⃓⃓
1
= q0,1 σ0 q1,1 . . . qi−1,1σi denotes the projection of the play ς to the first

automaton. ς
⃓⃓
2
is defined analogously.

The goal is to show that f is a GFG-strategy for A1 ∪ A2. Let w = σ0 σ1 σ2 . . . ∈
Lω(A1 ∪ A2) = Lω(A1) ∪ Lω(A2) and let

ς = ⟨q0,1, q0,2⟩ σ0 ⟨q1,1, q1,2⟩ σ1 ⟨q2,1, q2,2⟩ σ2 . . .

be the induced f-play in the monitor game for A1∪A2 with ς
⃓⃓
Σ
= w. W.l.o.g. we may

suppose that w ∈ Lω(A1). By the definition of f, the play ς
⃓⃓
1
= q0,1 σ0 q1,1 σ1 q2,1 σ2 . . .

in the monitor game for A1 is f1-conform, and hence q0,1 q1,1 q2,1 . . . is an accepting
run in A1. Thus, there is a Rabin pair Fin (Uw) ∧ Inf (Lw) in Φ1 with

q0,1 q1,1 . . . |= Fin (Uw) ∧ Inf (Lw)

Hence, for the run ς
⃓⃓
Q

= ⟨q0,1, q0,2⟩ ⟨q1,1, q1,2⟩ ⟨q2,1, q2,2⟩ . . . in A1 ∪ A2 we have:

ς
⃓⃓
Q
|= Fin (Uw ×Q2) ∧ Inf (Lw ×Q2)

We conclude that ς
⃓⃓
Q
is an accepting run for the word w in A1 ∪ A2.

3.3 Implementation and Experiments
We have implemented the HP-algorithm in a tool we refer to as ltl2gfg. Based on
ltl2gfg, we have additionally implemented the GFG-based quantitative analysis of
MDPs in PRISM. After a brief overview of ltl2gfg, we report on our experiments and
comparison with the determinization approach of ltl2dstar. Our implementation
and the logs of the experiments are available at [Mül18].

3.3.1 LTL2GFG
Given an LTL formula ϕ, our implementation ltl2gfg constructs a symbolic, BDD-
based representation of a GFG-NPA for ϕ. It first converts ϕ into an (explicitly
represented) NBA B. In our experiments, we use ltl2ba v1.1 [GO01] for this task.
To facilitate an efficient symbolic representation of the various subsets used in the
HP-algorithm, B is then converted to a symbolic representation, using a unary en-
coding of the |Q| = n states of B, i.e., using one Boolean variable qi per state.1 The
state space of the GFG-automaton A, i.e., the n pairs (Ai, Bi) is likewise encoded by
n2 Boolean variables ai,j and bi,j , i.e., ai,j is true iff NBA state qj ∈ Ai and bi,j is true

1As the states and transition relation of the GFG automaton A have to encode sets of NBA states,
such a unary encoding is the most straightforward and natural choice. A similar situation exists
when considering symbolic determinization (e.g., [MS08]). As it is crucial for performance to
keep the number of BDD variables low, this also negates the potential benefits of symbolic
LTL-to-NBA translations (e.g., [CGH97; RV10]), as their use would require a very large number
of BDD variables to allow the encoding of sets of NBA states.
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iff qj ∈ Bi for 1 ≤ i, j ≤ n. To allow the encoding of the transition relations of A and
B, each state variable has a primed copy, i.e., q′i, a′i,j and b′i,j and each of the k atomic
proposition in ϕ is represented by a Boolean variable li. Using these Boolean variables,
the symbolic encoding of the transition relation of the NBA B via a BDD-based
switching function is straightforwardly obtained by relating the l, q and q′ variables
according to the valid choices of successor state. Likewise, the definitions for the
transition relation and acceptance condition of A in the HP-algorithm directly induce
the Boolean BDD operations necessary for building the corresponding switching
functions. For the performance of a BDD-based symbolic representation, the order
of the variables is crucial. As is standard for BDD-based automata encodings, the
state variables and their copies are always kept adjacent. The standard variable
ordering used by ltl2gfg is then an interleaving of the ai,j and bi,j variables with
the qj variables, i.e.,

l1 < . . . < lk < q1 < . . . < qj < a1,j < b1,j < a2,j < b2,j < . . . < qj+1 < . . . .

This ordering ensures that the related parts of the transition relation tend to be
in proximity and has fared best in our initial experiments for finding a sensible
ordering. As detailed below, we also optionally used dynamic reordering techniques
based on sifting [Rud93] for the variable order to heuristically reduce the BDD size
of the symbolic encoding. ltl2gfg uses the JINC C++ BDD library [Oss10] for the
symbolic representation.

Experimental results for the HP-algorithm We report here on a number of ex-
periments with ltl2gfg using the benchmark formulas used in the evaluation of
ltl2dstar in [KB06; KB07], i.e., 39 LTL formulas from the literature [EH00; SB00]
and 55 pattern formulas [DAC99] that represent common specification patterns. We
denote the generated automata equivalent to formula ϕ by Aϕ. All our experiments
were carried out on a computer with 2 Intel E5-2680 8-core CPUs at 2.70 GHz with
384GB of RAM running Linux and with a memory limit of 10 GB and a timeout of
30 minutes for each formula.

For every automaton Aϕ, we report on the number of BDD nodes in the encoding of
the transition function, as this is the most crucial aspect. To allow a fair comparison
with the explicit determinization in ltl2dstar, we consider symbolic encodings of
the DRA Aϕ obtained from ltl2dstar 0.5.1, using the same LTL-to-NBA translator,
i.e., ltl2ba, as used by ltl2gfg. This encoding uses ⌈log2 n⌉ Boolean variables
to straightforwardly encode the n state indices in Aϕ, which is the same encoding
employed in PRISM for its DRA-based approach to LTL model checking.

Table 3.1 and Table 3.2 present statistics for the construction of DRA with
ltl2dstar and GFG-NPA/NRA2 with ltl2gfg for the benchmark formulas. Fig-

2The GFG automata obtained directly using the HP-algorithm have parity acceptance, while the
automata obtained by the “union” of multiple GFG automata have Rabin acceptance, as the
union construction does not preserve the special structure of parity acceptance when it considers
the original NPA as NRA in the construction.

40



3.3 Implementation and Experiments

Aϕ with constr. time
aborted <1s <10s <1m <30m

ltl2dstar std. 0 90 90 92 94
no opt. 0 89 90 90 94

ltl2gfg std. 43 36 45 48 51
std., dynamic 45 23 36 45 49

loose, dynamic 36 35 48 55 58
lo., union, dyn. 36 45 54 55 58

lo., iterative 22 72 72 72 72
lo., it., un., dyn. 20 67 70 72 74

Table 3.1: Statistics for the automata Aϕ constructed for the 94 benchmark formulas.
Number of Aϕ constructed within a given time frame.

Aϕ with BDD size
aborted <10 <102 <103 <104 <105 ≥105

ltl2dstar std. 0 4 65 87 90 91 3
no opt. 0 3 48 78 89 90 4

ltl2gfg std. 43 3 6 19 26 36 15
std., dynamic 45 5 8 19 36 39 10

loose, dynamic 34 5 14 31 47 55 3
lo., union, dyn. 36 4 13 35 53 55 3

lo., iterative 22 3 19 39 60 72 0
lo., it., un., dyn. 20 4 32 63 70 74 0

Table 3.2: Statistics for the automata Aϕ constructed for the 94 benchmark formulas.
Number of Aϕ constructed within a given range of BDD sizes.
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Figure 3.5: Number of automata for the 94 benchmark formulas that were constructed
in the given amount of time (timeout at 1800 seconds/30 minutes),
cf. Table 3.1. The construction times are aggregated at a resolution of 2
decimal places and presented in logarithmic scale to provide detail in the
sub-second range.

ure 3.5 depicts the results on the construction times presented in Table 3.1 in graphical
form and in more detail. The ltl2dstar results are given once with standard settings
and for a variant where all optimizations are disabled, i.e., with purely Safra’s con-
struction. For ltl2gfg, we start with the pure HP-algorithm and consider variants
with the “loose” transition definition, the union construction, and with dynamic
reordering of the variable order. We also give statistics for the iterative approach,
where ltl2gfg constructs the partial automata Am until it can be shown (via solving
a Rabin game [PP06]) that the automaton is GFG.

ltl2dstar (with optimizations) constructed most of the automata in a few seconds,
the most difficult was constructed in 863s and had 1.1 million BDD nodes if dynamic
reordering was enabled, and 254s and 1.2 million BDD nodes, if dynamic reordering
was not enabled. Apart from the most difficult automata, the BDD sizes range in
the hundreds and thousands. For all the ltl2gfg variants, a significant fraction
of automata could not be constructed in the time and memory limits, around 40%
for the standard HP-algorithm, and dropping to around 20% for the best variant.
The loose variant by itself had a mixed effect, but in conjunction with dynamic
reordering was generally beneficial. The union construction was very beneficial for
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with n NBA states
2 3 4 5 6 7 8 9 10 11 12 >12

number of ϕ 13 17 13 9 8 3 3 1 4 2 4 11
number of ϕ, M < n 11 17 13 8 8 1 2 1 0 0 1 2
number of ϕ, M = 1 11 8 5 4 2 1 1 0 0 0 1 2
number of ϕ, M = 2 2 9 8 4 6 0 1 1 0 0 0 0
number of ϕ,
GFG check aborted

0 0 0 1 0 2 1 0 4 2 3 9

Table 3.3: Results of the iterative approach in ltl2gfg, for the loose variant. M is
the minimal value m ≤ n for which the partial NPA Am could be shown
to be GFG.

the disjunctive formulas. For example, the automata for □♦a → □♦b could not
be constructed in the time limits with the standard HP-algorithm but could be
handled using the union construction. The iterative approach was successful as well
in obtaining smaller automata, which is explained by the fact that for a large number
of formulas it could be shown that the partial automata A1 or A2 were already
GFG, as detailed in Table 3.3. For the iterative approach we were mostly focused
on experimental data for the minimal value m for which Am becomes GFG and the
effect on the BDD size. Clearly, these values do not depend on our particular choice
of GFG check or its implementation. Interestingly, even though our choice of GFG
check is theoretically expensive, it turned out to be quite effective in practice, as can
be seen in the corresponding rows of Table 3.1.

Table 3.4 lists the size of the constructed automata in terms of the number of
reachable states in more detail for a selection of the benchmark formulas representing
simple, typical patterns relevant for probabilistic model checking. We consider here
the standard variant of the HP-algorithm [HP06] and combinations of the loose, the
union and the iterative variant. We contrast this with the results of ltl2dstar in
the default variant. Missing entries correspond to timeouts during the generation.
Table 3.5 lists the corresponding size of the automata in terms of BDD nodes used
for encoding the transition function of the automata. The tables were generated with
dynamic reordering of the variable order activated.

In Table 3.5, we see as well one of the formulas where the BDD size of the GFG
automaton was (marginally) better than the BDD size of the DRA obtained by
ltl2dstar. For □a the BDD for the transition function consists of 8 nodes in
ltl2gfg, while the BDD of ltl2dstar consists of 10 nodes.

At the end, despite the various approaches implemented in ltl2gfg, there were
only 6 formulas with relatively small automata where the BDD size of the smallest
GFG automaton was smaller than that of the DRA obtained from ltl2dstar (172
nodes instead of 229 nodes, 219 instead of 347, and the other 4 automata differing
by 1 or 2 at a size of less than 20 nodes). For all of our benchmark formulas [KB06;
KB07; EH00; SB00; DAC99] none of the GFG automata had a smaller number of

43



3 Good-for-games Automata

Form
ula

ltl2gfg
ltl2dstar

standard
loose

loose,union
loose,iterative

loose,iterative,union
true

3
3

3
3

3
2

false
2

2
2

2
2

1
a

6
8

8
4

4
3

□
a

3
3

3
3

3
3

♦
a

16
46

46
6

6
2

♦
□
a
→

□
♦
b

−
3.3
·10

9
5329

6482
81

2
♦
□
a
→

□
♦
b

−
2.2
·10

9
3358

−
414

4
aU

b
16

46
46

6
6

3
aU

(bU
c)

224
7734

7734
12

12
4

□
(a
→

♦
b)

33
73

73
9

9
4

□
(a
→

□
b)

33
73

73
9

9
4

(♦
a
)→

(bU
a
)

135
5837

54
89

10
5

□
a
→

(♦
(b∧
⃝

♦
c))

−
8.3
·10

1
1

8.3
·10

1
1

243
243

2
(♦

(a
∧
⃝

♦
b))→

(¬
aU

c)
−

2.2
·10

9
3358

4295
54

6
(aU

b)∨
□
a

434
11952

11952
460

460
4

(□
¬
a
)∨

(♦
(b∧

♦
a
))

−
5.3
·10

6
7750

341
16

4

Table
3.4:D

etailed
statistics

for
exam

ple
form

ulas:
num

ber
ofreachable

states.

44



3.3 Implementation and Experiments

Fo
rm

ul
a

lt
l2

gf
g

lt
l2

ds
ta

r
st
an

da
rd

lo
os
e

lo
os
e,

un
io
n

lo
os
e,

ite
ra
tiv

e
lo
os
e,

ite
ra
tiv

e,
un

io
n

tr
ue

7
7

7
7

7
3

fa
lse

7
7

7
7

7
1

a
59

46
46

17
17

11
□
a

8
8

8
8

8
10

♦
a

12
3

85
85

22
22

6
♦
□
a
→

□
♦
b

−
69
66
9

14
7

23
83

51
6

♦
□
a
→

□
♦
b

−
12
80
3

14
9

−
10
7

8
a
U
b

13
2

10
2

10
2

23
23

14
a
U
(b
U
c)

51
65

16
42

16
42

62
62

21
□
(a
→

♦
b)

18
2

97
97

31
31

12
□
(a
→

□
b)

99
71

71
18

18
19

(♦
a
)
→

(b
U
a
)

65
73
5

28
06

11
9

48
4

33
22

□
a
→

(♦
(b
∧
⃝

♦
c)
)

−
93
15
5

93
15
5

64
6

64
6

19
0

(♦
(a
∧
⃝

♦
b)
)
→

(¬
a
U
c)

−
41
72
9

19
8

10
19

48
29

(a
U
b)
∨
□
a

41
86

62
3

62
3

23
6

23
6

17
(□
¬a

)
∨
(♦

(b
∧
♦
a
))

−
24
87
4

14
99

15
54

68
12

Ta
bl
e
3.
5:

D
et
ai
le
d
st
at
ist

ic
s
fo
r
ex
am

pl
e
fo
rm

ul
as
:
siz

e
of

th
e
tr
an

sit
io
n
fu
nc
tio

n
B
D
D
.

45



3 Good-for-games Automata

states than the DRA generated by ltl2dstar. In particular, the automata obtained
without the iterative approach often had millions and more states.

3.3.2 Implementation and experiments in PRISM

Despite the negative results of our experiments in Section 3.3.1, we investigated the
use of good-for-games automata in the context of probabilistic model checking. It
could be the case that particularities of the symbolic encoding or of the automaton’s
structure turn out to be beneficial in this setting.

We extended the MTBDD-based, symbolic engine of PRISM 4.1 with an implemen-
tation of our algorithm for computing Prmax

M (ϕ) using GFG automata for ϕ (and
Prmin

M (ϕ) using a GFG automaton for ¬ϕ). We import the BDD of A generated
with ltl2gfg into PRISM and perform the product withM and analysis inM⊗A
symbolically.

We compare this approach with the standard approach of PRISM, where an explicit
DRA is constructed with an integrated version of ltl2dstar, which is then symbol-
ically encoded as described before. Additionally, we evaluate our case studies on
Delag, our tool for generating deterministic Emerson-Lei automata (see Chapter 5).
The analysis is then carried out symbolically by the MTBDD engine for every approach,
i.e., where the matrix and the value vector are stored via MTBDDs. Using the
hybrid engine, which stores the value vector explicitly, would be obstructive for the
GFG approach, since the automata have a large state number, and thus the product.

If PRISM normally handles a formula via a specialized algorithm for simple path
formulas that does not need an automata product construction, we forced the use of
the general, automata-based approach. We have carried out our experiments with
the different variants for the generation of GFG automata of ltl2gfg. As before, we
impose a 30 minute time and 10GB memory limit.

PRISM case study: IEEE 802.11. For our first experiment, we use a PRISM
model [KNS02] from the PRISM benchmark suite for parts of the WLAN carrier-
sense protocol of IEEE 802.11. For details on the model we refer to http://www.
prismmodelchecker.org/casestudies/wlan.php

It models a two-way handshake mechanism of the IEEE 802.11 (WLAN) medium
access control scheme with two senders that compete for the medium. As messages get
corrupted when both senders send at the same time (called a collision), a probabilistic
back-off mechanism is employed to reduce the likelihood of collisions. The back-off
procedure is the key feature of the protocol, which is started if an error occurred
or the sender wants to send a new message after sending a message. The back-off
procedure consists of waiting a randomized amount of time while the channel has to
be free. It ends with retrying to send a message. To define the maximal amount of
waiting time in the back-off procedure, the model is parametrized by the parameter
MAX_BACKOFF. Here, we consider the values MAX_BACKOFF ∈ {1, . . . , 6}. Since stations
cannot listen to their own transmissions, after having started to transmit a message,
they cannot determine for a short amount of time whether another station has started
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to send at the same moment, called the vulnerable section. To reduce the likelihood
of these collisions, a station has to check that the channel is free for a fixed time
period. This happens in state Wait_Difs. In the model, a collision counter is used
to record the number of collisions for use in the formulas. For our experiments, we
set the maximum number of collisions that can be counted to 4.

For this benchmark we consider the following LTL path properties:

• ϕ1 = ♦(correct1 ∧ correct2)
“Eventually station 1 and station 2 have sent their message correctly.”

• ϕ2 = ¬♦□(Backoff1 ∨ Wait_Difs1 ∨ Wait_ack1)
“Station 1 never gets stuck in the back-off procedure or during one of the waiting
procedures.”

• ϕ3 = (□♦Backoff1)→ (□♦vuln1)
“If station 1 backs off infinitely often, it is also infinitely often in its vulnerable
section.”

• ϕ4 = □(col→ ♦msg_1_send)
“If a collision occurred on the channel, then station 1 will nevertheless send its
message correctly at some point in the future.”

• ϕ5 = □(col→ ♦(msg_1_send ∧ #col < 2))
“Like ϕ4, but with the additional constraint of no more additional collisions.”

• ϕ6 = ♦(correct1 ∧ correct2) ∧ □(# col < 2)
“Eventually both stations have sent their messages and the number of collisions
never exceeds 1.”

We also evaluated the properties we use in Section 5.4.2 (Benchmark for Emerson-
Lei acceptance) for the model with MAX_BACKOFF = 3, but the GFG approach
performed so poorly, that an evaluation based on the properties in Section 5.4.2 does
not make sense. Only the calculation for two properties could be performed within
the time limit of 30 minutes and memory bound of 10 GB at least for some GFG
variants: Prmin(ϕ1) and Prmin(ϕ2). For Prmin(ϕ1), 9 of the 16 variants were able to
complete the calculation, mostly variants that contained the iterative computation.
The iterative variant with dynamic reordering was the fastest (1120.7 seconds). The
setting PRISM with Delag (our tool generating Emerson-Lei automata, see Chapter 5)
was able to complete the calculation for Prmin(ϕ1) within 10.2 seconds.

47



3 Good-for-games Automata

PRISM ltl2gfg PRISM standard
tMC |M⊗A| tMC |M⊗A|

Prmin(ϕ1) 15.7 s 20,937 6.5 s 20,961
Prmin(ϕ2) 22.4 s 24,812 0.5 s 22,668
Prmin(ϕ3) 45.9 s 34,191 1.6 s 25,151
Prmin(ϕ4) 27.1 s 23,123 2.4 s 21,382
Prmin(ϕ5) 147.5 s 22,502 100.8 s 21,005
Prmin(ϕ6) 100.8 s 21,348 44.0 s 21,085

Table 3.6: Results for model checking WLAN3. For every approach the overall model
checking time tM, and the BDD size of the product |M⊗A| are listed.

For Prmin(ϕ2) every variant was able to complete the calculation within the time
bound. The variant union with dynamic reordering was here the fastest: 425.2
seconds. In comparison, PRISM with Delag took 516.2 seconds, which was the worst
for Delag under all properties listed in Section 5.4.2.

In our tables, we will refer by WLANn to the case-study MDP with maximum back-off
value MAX_BACKOFF, for n from 1 to 6. Table 3.6 lists the time spent for calculating
Prmin

M (ϕ) for each of the six LTL formulas ϕ and the WLAN3 MDP. For this table, we
list the results using the optimal variant of ltl2gfg for each formula. In all cases in
this table, the time spent generating the GFG automata was less than one second.
This allows a fair comparison against the standard PRISM approach using DRA.
Interestingly, the BDD sizes listed in Table 3.6 for the number of MTBDD nodes used
to encode the transition matrix of the productM⊗A is roughly similar between
the standard approach based on DRA and the best ltl2gfg approach. However, the
time then spent for calculating the probabilities in the product are vastly higher for
the GFG approach than for the DRA approach.

Table 3.7 lists the time spent in model checking the different MDPs and formulas
in PRISM using the standard approach. Table 3.8 lists the corresponding values for
the approach using ltl2gfg in the loose variant, which also employed the iterative
and union approach. This variant generally behaved well in these experiments. We
did not use dynamic variable reordering here, since it turned out to be not beneficial.
We list as well the time spent for constructing the GFG NRA for ¬ϕi. The formulas
are negated because we are interested in the minimal probabilities.

To provide an overview of the behavior of the different variants of ltl2gfg in the
context of PRISM, Table 3.9 compares the running time of some variants against the
baseline of the DRA-based standard approach. We consider the 36 combinations of
WLAN1 to WLAN6 and ϕ1 to ϕ6. The table lists the number of cases where a timeout
occurred and where time spent using the GFG approach exceeded the standard
approach only by a given factor. We refer to the baseline time spent using the
standard approach in PRISM as tSTD and to the time spent using the GFG approach
(when there was no timeout) as tGFG. For example, if we consider the loose variant
with active iterative approach, in 11 of the 36 cases the running time of PRISM
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Prmin(·) ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

WLAN1 0.8 s 0.1 s 0.4 s 0.4 s 9.2 s 5.7 s
WLAN2 2.1 s 0.3 s 0.8 s 1.1 s 27.5 s 18.5 s
WLAN3 6.5 s 0.5 s 1.6 s 2.4 s 100.8 s 58.8 s
WLAN4 16.6 s 0.7 s 4.6 s 6.3 s 331.5 s 186.0 s
WLAN5 58.2 s 1.1 s 15.3 s 19.7 s 1058.5 s 443.1 s
WLAN6 170.3 s 2.1 s 79.4 s 97.6 s − 1226.4 s

Table 3.7: Time consumption for model checking with standard PRISM.

Prmin(·) ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

Constructing
GFG A¬ϕi

0.3 s 0.3 s 0.5 s 0.3 s 0.3 s 0.4 s

WLAN1 2.6 s 4.0 s 9.6 s 4.7 s 17.0 s 13.2 s
WLAN2 6.1 s 9.8 s 19.9 s 10.8 s 52.5 s 37.9 s
WLAN3 18.1 s 26.8 s 53.9 s 29.6 s 162.3 s 116.8 s
WLAN4 66.1 s 87.6 s 189.5 s 113.1 s 513.7 s 374.4 s
WLAN5 222.2 s 322.4 s 660.7 s 365.0 s − 1139.8 s
WLAN6 765.4 s 1101.9 s − 1297.4 s − −

Table 3.8: Time consumption for PRISM and ltl2gfg (variant loose, iterative and
union).

std. loose
loose loose

loose loose loose it. it.
dyn. union it. dyn. union

tGFG < 3 · tSTD 7 8 7 7 7 7 9
tGFG < 7 · tSTD 11 11 11 15 16 13 15
tGFG < 20 · tSTD 17 17 17 21 22 21 21
tGFG < 250 · tSTD 29 27 29 30 32 28 30

tGFG ≤ 30m 31 28 30 32 33 32 32

Aborted 5 8 6 4 3 4 4

Table 3.9: Results for model checking IEEE 802.11 with PRISM and different variants
of ltl2gfg.
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with the GFG approach was within the time spent by the standard PRISM approach
multiplied by the factor 7. As can be seen, the loose variant with union and the
iterative approach fared well in general. Interestingly, the automata generated with
active dynamic reordering in some cases fared significantly worse than those using the
initial variable ordering. As PRISM does not support a reordering of the variables, the
BDD representation of the GFG automaton is optimized by the dynamic reordering
in ltl2gfg for the stand-alone representation. Clearly, this variable ordering may
however not be optimal for the product with the MDP. Likewise, the dynamic variable
reordering sometimes slowed down the GFG check in the iterative approach.

As it was to be expected given our results on the automata construction, the
GFG-based analysis did not improve on the standard approach. Even using the
optimal variant of ltl2gfg for each formula, ignoring the automata construction
times, and for cases where the productM⊗A had a comparable BDD size for the
GFG- and DRA-based approach, the model checking using the GFG automata took
significantly longer.

PRISM case study: Dining philosophers As a second benchmark, we consider the
well-known problem of the dining philosophers. Lehmann and Rabin [LR81] presented
a probabilistic solution to this problem, which was analyzed by Lynch, Saias and
Segala [LSS94] for its timing behavior. Our model from the PRISM benchmark suite,
see http://www.prismmodelchecker.org/casestudies/phil_lss.php, consists of
three philosophers, who sit around a table with a fork on the right side of each
philosopher. Each philosopher either eats or thinks. To eat, the philosopher has to
grab both the fork to the left and to the right. The order in which each philosopher
wants to grab the forks is determined probabilistically. The PRISM model introduces
an additional constant K, which restricts the maximal number of transitions that a
philosopher can be forced to wait if he is currently attempting to grab a fork. For
our benchmark we chose K = 4.

We considered the following LTL properties:

• ϕ1 = □(p1 = wait→ ♦p1 = eat)
“If philosopher 1 is hungry, he will eat eventually”

• ϕ2 = □♦ (p1 = wait ∨ p2 = wait ∨ p3 = wait)
→ □♦ (p1 = eat ∨ p2 = eat ∨ p3 = eat)

“If one philosopher is hungry infinitely often, one philosopher eats infinitely
often”

• ϕ3 = □¬
(︁
(p1 = eat∧p2 = eat)∨(p1 = eat∧p3 = eat) ∨ (p2 = eat∧p3 = eat)

“Only one of the philosophers can eat at the same time”

• ϕ4 = ♦(p1 = eat ∨ p2 = eat ∨ p3 = eat)
“Eventually at least one philosopher eats”
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PRISM ltl2gfg PRISM standard
tGFG tMC |M⊗A| tDRA tMC |M⊗A|

Prmax
M (ϕ1) 0.3 s 2.3 s 21,155 <0.1 s 1.1 s 18,865

Prmin
M (ϕ1) 0.3 s 4.2 s 18,946 <0.1 s 0.7 s 18,336

Prmin
M (ϕ2) 1.5 s 12.9 s 78,667 <0.1 s 1.2 s 54,460

Prmin
M (ϕ3) 0.3 s 0.7 s 13,222 <0.1 s <0.1 s 13,204

Prmax
M (ϕ4) 0.3 s 2.4 s 16,188 <0.1 s 1.6 s 22,692

Prmin
M (ϕ5) 0.3 s 2.5 s 35,904 <0.1 s 0.2 s 22,932

Prmin
M (ϕ6) 0.3 s 5.3 s 40,156 <0.1 s 0.7 s 36,840
ϕ7 3.7 s 8.3 s 92,141 <0.1 s 4.8 s 57,171

Table 3.10: Results for model checking dining philosophers. The time for probabilistic
model checking (tMC ) includes the time for building the automaton (tGFG
for building the GFG automaton, tDRA for building the DRA).

• ϕ5 = □♦(p1 = think ∨ p1 = wait ∨ p1 = eat∨
p2 = think ∨ p2 = wait ∨ p2 = eat∨
p3 = think ∨ p3 = wait ∨ p3 = eat)

“Infinitely often one philosopher thinks, waits or eats”

• ϕ6 = □
(︁
(p1 = wait ∨ p2 = wait ∨ p3 = wait)
→ (♦(p1 = eat ∨ p2 = eat ∨ p3 = eat))

)︁
“If some philosopher wants to eat, one philosopher will eat eventually”

• ϕ7 = min
s∈S0

(︁
Prmin

M,s(♦
≤30(p1 = took ∨ p2 = took ∨ p3 = took))

)︁
where
S0 = {s ∈ S : s |= p1 = try ∨ p2 = try ∨ p3 = try} and
♦≤nϕ = ϕ ∨ (⃝ϕ) ∨ (⃝ ⃝ ϕ) ∨ . . . ∨ (⃝ . . .⃝⏞ ⏟⏟ ⏞

n times

ϕ).

“If one philosopher tries to eat, one philosopher will take two forks (pi = took)
within 30 transitions”

For ϕ7, we rely on PRISM’s “filter” mechanism, where the inner Prmin is evaluated for
all relevant states in one go, subsequently applying the outer min operator to the
results.

Table 3.10 lists statistics for our benchmark experiments when using the GFG
approach in PRISM and when using the standard, deterministic automata based
approach. For the GFG approach, we list results for the best of the different GFG
variants for each formula, determined by the overall time spent for generating the
automaton and the subsequent model checking. The first two columns for ltl2gfg
and the PRISM standard approach, respectively, list the time spent for constructing
the automaton and for model checking, where the model checking time includes the
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3 Good-for-games Automata

time for automata construction. The remaining columns list the number of MTBDD
nodes used for representing the product of the model and the automaton.

As in the previous case study, model checking using the GFG automata took
longer than the standard approach. For property ϕ7, all variants with the iterative
optimization but without dynamic reordering finished with a running time between 8
and 9 seconds, while all iterative variants with dynamic reordering finished with a
running time between 618 and 633 seconds. All non-iterative variants exceeded the
time limit during the automaton construction for ϕ7.

dyn.
it. loose loose

loose loose un. it. un.
dyn. it. dyn. un. loose un. dyn.

tGFG ⩽ 2 · tstd 1 0 2 0 2 0 0 0
tGFG ⩽ 5 · tstd 2 2 3 1 3 2 2 2
tGFG ⩽ 10 · tstd 3 2 3 3 3 2 4 2
tGFG ⩽ 25 · tstd 7 5 7 6 7 5 7 5
tGFG ⩽ 50 · tstd 7 7 8 6 8 7 7 7
tGFG ⩽ 30m 7 7 8 8 8 7 7 7

Aborted 1 1 0 0 0 1 1 1

Table 3.11: Results for model checking dining philosophers with PRISM and different
variants of ltl2gfg.

Analogously to Table 3.9, Table 3.11 provides details for the model checking
time for several variants of ltl2gfg against the standard approach. For the dining
philosophers, the iterative and union approach without dynamic reordering behaved
well in comparison to other ltl2gfg variants. On the other hand, when the union
optimization or the iterative approach is disabled, the time consumption increases.

As a whole, the model checking results confirm the result of the case study for
IEEE 802.11. We were not able to outperform the standard PRISM approach, even if
we use the optimal variant of ltl2gfg for each property.

3.4 Conclusion
We have demonstrated that good-for-games automata can be used instead of deter-
ministic automata for the quantitative analysis of MDPs against ω-regular properties.
Our approach has the same asymptotic worst-case time complexity as the standard
approach with deterministic automata. We have implemented the HP-algorithm
to evaluate whether GFG automata offer advantages over deterministic automata
in practice. We have performed extensive experiments for the generation of GFG
automata from NBA for given LTL formulas and for probabilistic model checking,
considering several variants and heuristics that can lead to dramatic improvements in
the size of the constructed automata. However, the GFG automata were often bigger
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than DRA obtained by the implementation of Safra’s algorithms in ltl2dstar. This
was evident not only in the number of states in the generated automata, which is not
as crucial for a symbolic encoding, but also in the size of the symbolic BDD-based rep-
resentations, in contrast to the expectation that the HP-algorithm could potentially
construct GFG automata with a more efficient symbolic encoding. Our experiments
with the GFG-based approach implemented in probabilistic model checker PRISM
then likewise resulted in a higher time and memory consumption compared to the
deterministic automaton approach.

However, it is still too early to discard the concept of GFG automata for practical
purposes as our negative results in the experiments might be an artifact of the
particular translation algorithm. Our negative empirical results might be an artifact
of the HP-algorithm, which is – to the best of our knowledge – the only implemented
algorithm for the generation of GFG automata that are not deterministic. Therefore,
it would be interesting to consider alternative constructions that lead to succinct
GFG automata for an explicit or symbolic representation. The recent results on GFG
automata that have fewer states than equivalent deterministic automata [KS15] might
provide ideas in this direction. It would also be interesting to consider constructions
that attempt to exploit the potential benefits in succinctness offered by targeting
Rabin and Streett acceptance conditions directly instead of using parity acceptance.
A short while ago, Kuperberg and Majumdar [KM18] designed a new generation
algorithm with non-deterministic co-Büchi automata as starting point. Additionally,
they sketched an adaption of Safra’s determinization for achieving the GFG property,
but an evaluation of the proposed algorithms remains open.

Likewise, there is an interest in discovering alternative automata types that rely
on weaker conditions than the GFG property but can nevertheless be employed
for probabilistic model checking or other settings. One example of such a property
would be GFG-in-the-limit, but the substantial problem of constructing such succinct
automata remains.
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4 Unambiguous Büchi automata
Unambiguity is a widely studied generalization of determinism with many important
applications in automata-theoretic approaches, see, e.g., [Col12; Col15]. A non-
deterministic automaton is said to be unambiguous if each word has at most one
accepting run. In this thesis we consider unambiguous Büchi automata (UBA) over
infinite words. Not only are UBA as expressive as the full class of non-deterministic
Büchi automata (NBA) [Arn85], they can also be exponentially more succinct than
deterministic automata. For example, the language “eventually b occurs and a
appears k steps before the first b” over the alphabet {a, b, c} is recognizable by a
UBA with k+1 states (see the UBA on the left of Figure 4.1), while a deterministic
automaton requires at least 2k states, regardless of the acceptance condition, as it
needs to store the positions of the a’s among the last k input symbols. Languages
of this type arise in a number of contexts, e.g., absence of unsolicited response in a
communication protocol – if a message is received, then it has been sent in the recent
past. Another UBA is depicted on the right of Figure 4.1 containing a universal
UBA. An ω-automaton A is universal, if every infinite word is accepted by A. For
the particular UBA depicted on the right side of Figure 4.1, all accepting runs for
words starting with a begin in qa, whereas all accepting runs for words starting with
b begin in qb.

The NBA for linear temporal logic (LTL) formulas obtained by applying the
classical closure algorithm of [WVS83; VW86] are unambiguous. The generated
automata moreover enjoy the separation property: the languages of the states are
pairwise disjoint. Thus, while the generation of deterministic ω-automata from LTL
formulas involves a double-exponential blow-up in the worst case, the translation of
LTL formulas into separated UBA incurs only a single exponential blow-up. This fact
has been observed by several authors, see, e.g., [CSS03; Mor10], and recently adapted
for LTL with step parameters [Zim13; CK14]. However, separation is such a strong
constraint, that even deterministic automata are not necessarily separated, although

q0 qa q1 qk−2· · · qk−1 qf

a, c

a a, c a, c b

a, b, ck − 1 steps

qa qba

a

b

b

Figure 4.1: Left: UBA for “eventually b and a appears k steps before first b”, right:
A universal and separated UBA.
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deterministic
ω-automata

separated
ω-automata

unambiguous
ω-automata

CM ω-automata

Figure 4.2: Overview of different classes of unambiguous ω-automata. CM ω-
automata are Carton-Michel automata, called CUBA in [CM03]. Note
that there is exactly one deterministic Carton-Michel ω-automaton.

they are always unambiguous. In [CM03], there is an even stronger notion of separated
UBA, which we call CM-automata in this document. These are separated UBA
that are also universal if every state is set to be initial. For a fixed alphabet, there
exists exactly one deterministic CM-automaton: The trivial one-state automaton
with a transition for every symbol [CM03]. The authors of [Li+16a] have developed
a polynomial-time algorithm for parameter synthesis in parametric Markov chains
and (non-deterministic) CM-automata. For a picture of the different classes of
unambiguity, see Figure 4.2.

The nice properties of UBA make them a potentially attractive alternative to
deterministic ω-automata in those applications for which general non-deterministic
automata are not suitable. However reasoning about UBA is surprisingly difficult.
While many decision problems for unambiguous non-deterministic finite automata
(UFA) are known to be solvable in polynomial time [SH85], the complexity of several
fundamental problems for unambiguous automata over infinite words is unknown.
This, for instance, applies for checking universality, which is known to be in P
for deterministic Büchi automata and PSPACE-complete for NBA. However, the
complexity of the universality problem for UBA is a long-standing open problem.
Polynomial-time solutions are only known for separated UBA and other subclasses of
UBA [BL10; IL12].

The class of finitely ambiguous Büchi automata received attention lately. The
property of having at most one accepting run for every word is relaxed to having only
finitely many accepting runs for every word in a finitely ambiguous Büchi automaton.
There exists a family of NBA, such that every equivalent finitely ambiguous Büchi
automaton is at least of exponential size [LP18]. Finitely ambiguous Büchi automata
can be constructed starting from an NBA similarly to [KW08] (see [LP18]), and
complemented to a UBA with an exponential blowup [Rab18]. For finite words
finitely ambiguous automata has been considered for a longer time. For a survey
on properties, in particular the state complexity of automata, for different degrees
of ambiguity, we refer to the survey paper [HSS17]. In the thesis we use the terms
“unambiguous” and “unambiguity” in the more usual sense of having at most one
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accepting run for every word, and do not pursue finite ambiguity further.
In the context of probabilistic model checking, UFA provide an elegant approach

to compute the probability for a regular safety or cosafety property in finite-state
Markov chains [BLW14]. The use of separated UBA for a single exponential-time
algorithm that computes the probability for an LTL formula in a Markov chain has
been presented in [CSS03]. However, separation is a rather strong condition and non-
separated UBA (and even DBA) can be exponentially more succinct than separated
UBA, see [BL10]. This motivates the design of algorithms that operate with general
UBA rather than the subclass of separated UBA. Algorithms for the generation of
(possibly non-separated) UBA from LTL formulas that are more compact than the
separated UBA generated by the classical closure-algorithm have been realized in the
tool Tulip [Len13b; Len13a] and the automata library SPOT [Dur13].

Contribution. The main theoretical contribution of this chapter is a polynomial-
time algorithm to compute the probability measure PrM(Lω(U)) of the set of infinite
paths generated by a finite-state Markov chainM that satisfy an ω-regular property
given by a (not necessarily separated) UBA U . The existence of such an algorithm
has previously been claimed in [BLW13b; BLW14; Len13b]. However, these previous
works share a common fundamental error. Specifically they rely on the claim that
if PrM(Lω(U)) > 0, then there exists a state s of the Markov chain M and a
state q of the automaton U such that q accepts almost all traces emanating from
s (see [BLW13b, Lemma 7.1], [BLW14, Theorem 2]1 , and [Len13b, Section 3.3.1]).
While this claim is true in case that U is deterministic [CY95], it needs not to hold
when U is merely unambiguous. Sections 4.1.1 and 4.1.2 give a more detailed analysis
of the issue, describing precisely the nature of the errors in the proofs of [BLW13b;
Len13b; BLW14]. To the best of our knowledge these errors are not easily fixable,
and we thus take a substantially different approach.

Our algorithm involves a two-phase method that first analyzes the strongly con-
nected components (SCCs) of a graph obtained from the product ofM and U , and
then computes the value PrM(Lω(U)) using linear equation systems. The main
challenge is the treatment of the individual SCCs. For a given SCC, we have an
equation system comprising a single variable and equation for each vertex (s, q),
with s a state of M and q a state of U . We use results in the spectral theory of
non-negative matrices to argue that this equation system has a non-zero solution
exactly in case that the SCC makes a non-zero contribution to PrM(Lω(U)). In order
to compute the exact value of PrM(Lω(U)), the key idea is to introduce an additional
normalization equation. To obtain the latter, we identify a pair (s,R), where s is a
state of the Markov chainM and R a set of states of automaton U such that almost
all paths starting in s have an accepting run in U when the states in R are declared
to be initial. The crux of establishing a polynomial bound on the running time of our
algorithm is to find such a pair (s,R) efficiently (in particular, without determinizing

1As the flaw is in the handling of the infinite behavior, the claim and proof of Lemma 1 in [BLW14],
dealing with unambiguous automata over finite words, remain unaffected.
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U) by exploiting structural properties of unambiguous automata.
As a consequence of our main result, we obtain that the almost universality problem

for UBA, which can be seen as the probabilistic variant of the universality problem
for UBA and which asks whether a given UBA accepts almost all infinite words, is
solvable in polynomial time.

The second contribution in this chapter is an implementation of the new algorithm
as an extension of the model checker PRISM, using the automata library SPOT [Dur13]
for the generation of UBA from LTL formulas and the COLT library [Hos04] for
various linear algebra algorithms. We evaluate our approach using the bounded
retransmission protocol case study from the PRISM benchmark suite [KNP12] as
well as specific aspects of our algorithm using particularly “challenging” UBA.

4.1 Analysis of Markov chains against
UBA-specifications

The task of the probabilistic model checking problem for a given Markov chainM
and NBA A is to compute PrM(Lω(A)). The positive model checking problem for
M and A asks whether PrM(Lω(A)) > 0. Likewise, the almost-sure model checking
problem forM and A denotes the task to check whether PrM(Lω(A)) = 1. While
the positive and the almost-sure probabilistic model checking problems for Markov
chains and NBA are both known to be PSPACE-complete [Var85; CY95], the analysis
of Markov chains against UBA-specification can be carried out efficiently as stated in
the following theorem:

Theorem 4.1. Given a Markov chainM and a UBA U , the value PrM(Lω(U)) is
computable in time polynomial in the sizes ofM and U .

The statement of Theorem 4.1 has already been presented in [BLW13b] and restated
[BLW13a; BLW14] (see also the PhD thesis [Len13b]). However, the presented
algorithm to compute PrM(Lω(U)) is flawed. This approach, rephrased for the
special case where the task is to compute Pr(Lω(U)) for a given positive UBA U
(which means a UBA where Pr(Lω(U)) > 0) relies on the mistaken belief that there
is at least one state q in U such that Pr(Lω(U [q])) = 1. However, such states need
not exist.

Outline of Section 4.1. At first, we present two counterexamples for [BLW13b] and
[BLW14] as well (see also [Len13b]). The remainder of Section 4.1 is devoted to the
proof of Theorem 4.1. We first assume that the Markov chainM generates all words
according to a uniform distribution (“uniform Markov chain”) and explain how to
compute the value Pr(Lω(U)) for a given UBA U in polynomial time. For this, we first
address the case of strongly connected UBA (Section 4.1.3) and then lift the result
to the general case (Section 4.1.4). The central idea of the algorithm relies on the
observation that each positive, strongly connected UBA has “recurrent sets” of states,
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called cuts. We exploit structural properties of unambiguous automata for the efficient
construction of a cut and show how to compute the values Pr(Lω(U [q])) for the states
of U by a linear equation system with one equation per state and one equation for the
generated cut. Furthermore, positivity of a UBA U (i.e., Pr(Lω(U)) > 0) is shown to
be equivalent to the existence of a positive solution of the system of linear equations
for the states. Finally, we explain how to adapt these techniques to general Markov
chains (Section 4.1.5).

4.1.1 Counterexample for the approach of [BLW13b]
The original proposal for using UBA for model checking of DTMCs can be found
in Lemma 7.1 of [BLW13b] (p.22) which is the same as in [Len13b]. We now give a
counterexample for this approach.

In [BLW13b], the Büchi automata are state-labeled, usually with an alphabet
over some atomic propositions. For presentational simplicity, we use here a fixed
alphabet {a, b, c, d}, corresponding to the states of the Markov chain, omitting the
atomic proposition based labeling functions. The accepting condition in [BLW13b] is
a state-based generalized Büchi condition Φ.

The paper [BLW13b] assumes a product graph out of a Markov chainM and an
unambiguous generalized Büchi automaton U . The nodes are pairs of Markov chain
states and UBA states with matching labels. There is an edge between two nodes
if and only if there is an edge between the two corresponding Markov chain states
and an edge between the two corresponding UBA states. It defines an SCC C to be
accepting if

(i) for every Büchi condition Inf (Z) occurring in the generalized Büchi condition
Φ there exists a node ⟨s, qZ⟩ with qZ ∈ Z, and

(ii) for every node ⟨s, p⟩ and every transition s −→ t in the Markov chainM there
exists a transition p −→ q in U such that ⟨t, q⟩ is contained in C.

Example. Our counterexample will give a Markov chain and a UBA, for which
PrM(Lω(U)) = 1 holds, but the product will not contain an accepting SCC according
to the definition of [BLW13b]. Consider the (state-labeled) UBA U and the Markov
chainM of Figure 4.3.

The UBA accepts all words of the form(︁
(dab) + (dac)

)︁ω
and consequently PrM(Lω(U)) = 1.

The product graphM⊗U that arises from the construction in the proof of Lemma
7.1 of [BLW13b] is depicted in Figure 4.4. It is strongly connected, but it is not
accepting as condition (ii) is violated: Consider the vertex (a, qa) in the product
graph. There exists a transition a → c in the Markov chain, however there is no
successor (c, t) in the SCC of the product graph, with t being a successor of qa in
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qd d

qaa

qbb
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Figure 4.3: Markov chain M (left) and UBA U (right, state labels from alphabet
{a, b, c, d}).

d, qd

a, qa

b, qb

a, pa

c, pc

Figure 4.4: Product graph according to [BLW13b].

the UBA (c can not be consumed from the state qa in the UBA). As the (only) SCC
in the product is not accepting, all vertices in the product graph are assigned value
0 in the linear equation system, yielding that PrM(Lω(U)) = 0. However, as stated
above, PrM(Lω(U)) = 1.

4.1.2 Counterexample for the approach of [BLW14]

Since [BLW13b] was flawed, the authors of [BLW13b] attempted to repair the proposed
UBA-based analysis of Markov Chains [BLW14]. However, the approach of [BLW14]
is flawed as well. We now present a detailed explanation for [BLW14].

They first present a technique for computing the probability of a Markov chain to
satisfy a (co-)safety specification given by an unambiguous finite automaton (UFA)
using a linear equation system with variables for pairs of states in the Markov chain
and the UFA. This approach can be seen as an elegant variant of the universality
test for UFA using difference equations [SH85].

In what follows, letM = (S, P, ι) be a Markov chain and U = (Q,Σ, δ, Q0, Inf (F ))
an UBA with the alphabet Σ = S. In this section, we use the following additional
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notations:2
Pr#

M[s] =
∑︂
t∈S

P (s, t) · PrM[t]

The task addressed in [BLW14] is to compute PrM(Lω(U)). The algorithm proposed
in [BLW14] relies on the mistaken belief that if the Markov chainM generates words
accepted by the given UBA U with positive probability then the product-graph
M⊗U contains recurrent pairs. These are pairs ⟨s, q⟩ consisting of a state s inM
and a state q of U such that almost all paths inM starting in a successor of s can be
written as the infinite concatenation of cycles around s that have a run in U starting
and ending in q. (The formal definition of recurrent pairs will be given below.) This
claim, however, is wrong as there exist UBA that continuously need a look-ahead for
the paths starting in a fixed state of the Markov chain.

Before presenting a counterexample illustrating this phenomenon and the faultiness
of [BLW14], we recall some notations of [BLW14]. Given a state s ∈ S of the Markov
chainM and a state q ∈ Q of the UBA U , the regular languages Gs,q, Hs,q ⊆ S+ are
defined as follows:

Gs,q =
{︁
s1 s2 . . . sk ∈ S+ : sk = s and p s1 s2... sk−−−−−→ q for some p ∈ Q0

}︁
Hs,q =

{︁
s1 s2 . . . sk ∈ S+ : sk = s and q s1 s2... sk−−−−−→ q

}︁
A pair ⟨s, q⟩ ∈ S × F is called recurrent if Pr#

M[s]

(︁
Hω
s,q

)︁
= 1.

The accepted language of U can then be written as:

Lω(U) =
⋃︂

(s,q)∈S×F

Gs,q ·Hω
s,q

The idea of [BLW14] is to reduce the task to compute PrM(Lω(U)) to the task of
computing the probability forM to generate a finite word accepted by a UFA for
the language given by the UFA resulting from the union of the regular languages Gs,q

where ⟨s, q⟩ is recurrent. To show the correctness of this approach, [BLW14] claims
that for each pair ⟨s, q⟩ ∈ S ×Q:

Pr#
M[s]

(︁
Hω
s,q

)︁
∈
{︁
0, 1
}︁

and thus Pr#
M[s]

(︁
Hω
s,q

)︁
= 0 for the non-recurrent pairs ⟨s, q⟩ ∈ S × F . To prove this

claim, the authors conjecture (in Equation (5) of [BLW14]) that:

Pr#
M[s]

(︁
(Hs,q)

ω
)︁

= lim
n→∞

Pr#
M[s]

(︁
(Hs,q)

n
)︁ (∗)

= lim
n→∞

Pr#
M[s]

(︁
Hs,q

)︁n
The following example shows that equality (∗) is wrong, and recurrent pairs need not
exist, even if U is universal.

2We depart here from the notations of [BLW14] where the notation PrM,t has been used as a short
form for Pr#

M[t].
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4 Unambiguous Büchi automata

Example. We consider the Markov chainM = (S, P, ι) with two states, say S =
{a, b}, and the transition probabilities

P (a, a) = P (a, b) = P (b, a) = P (b, b) = 1
2

and the uniform initial distribution, i.e., ι(a) = ι(b) = 1
2
(depicted in Figure 4.5 on

the left). Thus:

Pr#
M[a] = Pr#

M[b] = 1
2
· PrM[a] +

1
2
· PrM[b]

From state a, the Markov chainM schedules almost surely an infinite word w starting
with a and containing both symbols a and b infinitely often. The analogous statement
holds for state b ofM.

a b

½
½

½
½

qa qba

a

b

b

Figure 4.5: Markov chainM (left) and universal UBA U (right).

Let U =
(︁
Q, {a, b}, δ, Q, Inf (Q)

)︁
be the UBA with state space Q = {qa, qb} where

both states are initial and final and

δ(qa, a) = δ(qb, b) =
{︁
qa, qb

}︁
,

while δ(qa, b) = δ(qb, a) = ∅ (depicted in Figure 4.5 on the right). Then, U is
universal as U can use a one-letter look-ahead to generate an infinite run for each
infinite word over {a, b}. More precisely, for doing so, U moves to state qa if the next
letter is a and to state qb is the next letter is b. As both states are final, each word
has an accepting run. Thus, Lω(U) = {a, b}ω and therefore PrM(Lω(U)) = 1.

The language Ha,qa is given by the regular expression a((a+ b∗)a)∗. Note that the
first a stems from the fact that we start in qa in U and can only consume a. The a
from the end of the regular expression stems from the definition of Ha,qa , where the
last symbol has to agree with the Markov chain state, in this case a. Thus, for n ⩾ 2,
the language Hn

a,qa consists of all finite words x ∈ {a, b}∗ that start with letter a and
contain at least n occurrences of two consecutive letters a. Likewise, the language
Hω
a,qa consists of all infinite words over {a, b} with infinitely many aa’s and where the

first letter is a. Hence:

PrM[a]

(︁
Hω
a,qa

)︁
= PrM[a]

(︁
Hn
a,qa

)︁
= 1

PrM[b]

(︁
Hω
a,qa

)︁
= PrM[b]

(︁
Hn
a,qa

)︁
= 0

for all n ∈ N with n ⩾ 1. This yields:
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4.1 Analysis of Markov chains against UBA-specifications

Pr#
M[a]

(︁
Hω
a,qa

)︁
= Pr#

M[a]

(︁
Hn
a,qa

)︁
= 1

2

for all n ∈ N with n ⩾ 1. On the other hand:

lim
n→∞

Pr#
M[a](Ha,qa )

n = lim
n→∞

(︁
1
2

)︁n
= 0

Thus, equality (∗) is wrong. In this example, none of the pairs ⟨a, qa⟩, ⟨a, qb⟩, ⟨b, qa⟩,
⟨b, qb⟩ is recurrent. Note that the languages Ha,qb and Hb,qa are empty and that an
analogous calculation yields:

Pr#
M[b]

(︁
Hω
b,qb

)︁
= Pr#

M[b]

(︁
Hn
b,qb

)︁
= 1

2

and lim
n→∞

Pr#
M[b](Hb,qb )

n = 0.

4.1.3 Strongly connected UBA
In Section 4.1.3 we prove Theorem 4.1 in the special case for a uniform Markov chain
and a UBA, which is strongly connected. Therefore, we abbreviate PrM(L) by Pr(L)
ifM is the uniform Markov chain and L an ω-regular language. We generalize the
results in Section 4.1.4 and Section 4.1.5.

For this we start with a lemma about positive ω-regular languages which we use
very often, in particular in case of strongly connected UBA.

Lemma 4.2. If L ⊆ Σω is ω-regular and Pr(L) > 0, then there exists x ∈ Σ∗ such
that Pr

(︁{︁
w ∈ Σω : xw ∈ L

}︁)︁
= 1.

Proof. Pick a deterministic ω-automaton D = (Q,Σ, δ, qinit,Φ) for L, for instance,
with a Rabin acceptance condition. W.l.o.g. all states are reachable from qinit and
D is complete. LetMD = (Q,P ) be the transition-labeled Markov chain resulting
from D by turning all branchings in D into uniform probabilistic choices, i.e., for
each state q and each letter a, P (q, a, q′) = 1/|Σ| if δ(q, a) = q′ and P (q, a, q′) = 0
otherwise. Clearly, the underlying graph of D andMD is the same. If C is a bottom
strongly connected component (BSCC) of D resp. MD, then C is said to satisfy
D’s acceptance condition Φ, denoted C |= Φ, iff all infinite paths π with inf (π) = C
meet the condition imposed by Φ, where inf (π) denotes the set of states that appear
infinitely often in π. For example, if Φ is a Rabin condition, say

Φ =
⋁︂

1⩽i⩽k

(Fin (Ui) ∧ Inf (Li) ) where Ui, Li ⊆ Q,

and C ⊆ Q a BSCC, then C |= Φ iff there is at least one Rabin pair Fin (Ui)∧ Inf (Li)
in Φ with C ⊆ Q \ Ui and C ∩ Li ̸= ∅. As almost all paths inMD eventually enter a
BSCC and visit all its states infinitely often, we get:

Pr(L) > 0 iff PrMD(Φ) > 0

iff D has at least one BSCC C with C |= Φ
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4 Unambiguous Büchi automata

In this case and if x is a finite word such that δ(qinit, x) ∩ C ̸= ∅, then Pr({w ∈ Σω :
xw ∈ L }) = 1.

We continue with some general observations about strongly connected Büchi au-
tomata under probabilistic semantics. For this, we suppose A =

(︁
Q,Σ, δ, Q0, Inf (F )

)︁
is a strongly connected NBA where Q0 and F are non-empty. Note that A might be
incomplete.

Fact 4.3. Suppose A is a strongly connected NBA. Then, the following statements
are equivalent:

(1) Pr(Lω(A)) > 0

(2) Pr(Lω(q)) > 0 for some state q

(3) Pr(Lω(p)) > 0 for all states p

Proof. The implications (1) =⇒ (2) and (3) =⇒ (1) are trivial. We now show that
(2) =⇒ (3). Since A is strongly connected, there exists a finite word x with p x−→ q,
i.e., q ∈ δ(p, x). But then

Pr(Lω(p)) ⩾
1

|Σ||x|
· Pr(Lω(q)) > 0

Note that 1/|Σ||x| is the probability for (the cylinder set spanned by) the finite word
x.

Moreover, almost all words w ∈ Σω\Lω(A) have a finite prefix x with δ(Q0, x) = ∅:

Lemma 4.4 (Measure of strongly connected NBA). For each strongly connected
NBA A with at least one final state, we have:

Pr(Lω(A)) = 1− Pr
(︁{︁
w ∈ Σω : w has a finite prefix x with δ(Q0, x) = ∅

}︁)︁
In particular, A is almost universal if and only if δ(Q0, x) ̸= ∅ for all finite words

x ∈ Σ∗. This observation will be crucial at several places in the soundness proof of
our algorithm for UBA, but can also be used to establish PSPACE-hardness of the
positivity (probabilistic non-emptiness) and almost universality problem for strongly
connected NBA (see Theorem 4.43).

To prove Lemma 4.4, we accumulate several statements, i.e., Lemma 4.5 until
Lemma 4.11 serve as base for a proof. We start with showing that the language
consisting of all words w ∈ Σω \ Lω(A) such that δ(Q0, x) ̸= ∅ for all x ∈ Pref(w) is
a null set. If Lω(A) has positive measure, this statement is a simple consequence of
Lemma 4.2 (see Lemma 4.5 below). The general case will be shown in Lemma 4.11
using known results for the positive probabilistic model checking problem.
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4.1 Analysis of Markov chains against UBA-specifications

Lemma 4.5. Suppose A is strongly connected and Pr(Lω(A)) > 0. Let L denote
the set of infinite words w ∈ Σω \ Lω(A) such that δ(Q0, x) ̸= ∅ for all x ∈ Pref(w).
Then, Pr(L) = 0.

Proof. Suppose by contradiction that Pr(L) is positive. Obviously, L is ω-regular.
Lemma 4.2 yields the existence of a finite word x such that

Pr
(︁{︁

v ∈ Σω : xv ∈ L
}︁)︁

= 1

Let R = δ(Q0, x). Then, R is non-empty and Pr(Lω(A[R]) ) = 0, i.e., Pr(Lω(q) ) = 0
for all states q ∈ R. This is impossible by Fact 4.3.

To prove the analogous result for the general case (possibly Pr(Lω(A)) = 0), we
rely on results by Courcoubetis and Yannakakis [CY95] for the positive probabilistic
model checking problem. These results rephrased for our purposes yield the following.
Let Adet denote the standard powerset construction of A. That is, the states of Adet

are the subsets of Q and the transitions in Adet are given by R a−→ R′ iff R′ = δ(R, a).
The initial state of Adet is Q0. Adet is viewed here just as a pointed labeled graph
rather than an automaton over words.

Recall that A might be incomplete. Thus, ∅ is a trap state of Adet that is reached
via the a-transition from any state R ⊆ Q where δ(R, a) is empty. Hence, {∅} is a
BSCC of Adet that might or might not be reachable from Q0. We refer to {∅} as the
trap-BSCC of Adet. All other BSCCs of Adet are called non-trap.

A state q ∈ Q of A is said to be recurrent3 if there is some BSCC C of Adet that
contains a state R ⊆ Q of Adet with q ∈ R and that is reachable from the singleton
{q} viewed as a state of Adet. That is, q is recurrent iff there exists a finite word x
such that q x−→ q and the set δ(q, x) belongs to a BSCC of Adet.

Fact 4.6 (Proposition 4.1.4 in [CY95]). For each NBA A (not necessarily strongly
connected):

Pr
(︁
Lω(A)

)︁
> 0 iff

{︃
there exists a finite word x ∈ Σ∗ such that
δ(Q0, x) ∩ F contains a recurrent state

Example 4.7. We consider the strongly connected NBA shown in Figure 4.6. Then,
Adet has two BSCCs, namely the trap-BSCC {∅} and the non-trap BSCC {Q}.
The singletons {qa} and {qb}, viewed as states of Adet, can reach {Q}. Hence, both
states qa and qb are recurrent. To justify the statement of Fact 4.6, we observe that
Pr(Lω(A)) = 1/2 > 0 and δ({qa}, a) ∩ F = {qb} contains a recurrent state.

3The word recurrent has two meanings in this thesis. For the counterexamples of [BLW13b;
BLW14] the term is used in the meaning of the according papers, whereas from now on we use
the term recurrent in the sense of a state q of A such that a state R with q ∈ R is reachable
from {q} in Adet.
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qa qba

a

b

b

{qa} Q

∅

{qb}
a

b

b

a

a, b

a, b

Figure 4.6: Automata from Example 4.7, NBAA (left) and correspondingAdet (right).

Suppose now that A is strongly connected. Then, for each non-trap BSCC C of
Adet (i.e., C ̸= {∅}) and each state p of A there exists some R ⊆ Q with p ∈ R ∈ C.
Moreover, whenever R ∈ C and x ∈ Σ∗, then δ(R, x) ∈ C.

Lemma 4.8. If A is strongly connected and Adet has a non-trap BSCC that is
reachable from some singleton {q}, then all states p ∈ Q are recurrent.

Proof. Let C be a non-trap BSCC of Adet that is reachable from {q} and let p be
a state of A. We pick finite words x, y ∈ Σ∗ such that q ∈ δ(p, x) and δ(q, y) ∈ C.
Then, for all finite words z, δ(q, yz) ∈ C and therefore:

∅ ̸= δ(q, yz) ⊆ δ(p, xyz)

Hence, δ(p, xyz) = δ(δ(p, xy), z) is non-empty for all words z. Thus, there is a
non-trap BSCC C ′ (possibly different from C) that is reachable from p via some finite
word of the form xyz. As stated above, C ′ contains some R ⊆ Q with p ∈ R. Hence,
p is recurrent.

We summarize Fact 4.6 and Lemma 4.8 in the following corollary:

Corollary 4.9 (Probabilistic emptiness of strongly connected NBA). Let A be a
strongly connected NBA with at least one final state. Then, the following statements
are equivalent:

(1) Pr
(︁
Lω(A)

)︁
= 0.

(2) Adet has no non-trap BSCC that is reachable from some singleton {q}.

(3) There is no recurrent state in A.
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q0

p1

p2

c

c c

a, b a, b

c

Q

{p1, p2}

{q0, p1}

{q0}

∅

{p2}

{p1}

{q0, p2}c

a, bc

a, b

c

a, b

a, b

c

c

c

a, b

c

a, b
a, b

a, b, c

Figure 4.7: Automata from Example 4.10, NBAA (left) andAdet (right, with BSCCs).

Example 4.10. We consider the strongly connected NBA shown in Figure 4.7. Then,
Adet has a non-trap BSCC consisting of the states {p1, p2} and Q that is not accessible
from any singleton. However, there is another non-trap BSCC in Adet consisting of
the three states {p1}, {p2} and {q0, p2}. Indeed, A accepts almost all words starting
with letter c and therefore Pr(Lω(A)) = 1/3.

We are now ready to complete the proof of Lemma 4.4 by proving the following
lemma:

Lemma 4.11. Suppose A is strongly connected with at least one final state. Let L be
the set of infinite words w ∈ Σω \ Lω(A) such that δ(Q0, x) ̸= ∅ for all x ∈ Pref(w).
Then, Pr(L) = 0.

Proof. We consider first the case where A has a single initial state, say Q0 = {q0}.
Suppose by contradiction that Pr(L) is positive. Then, there is some finite word z
such that zv ∈ L for almost all words v ∈ Σω. Let R = δ(q0, z). By definition of L,
the set R is non-empty and δ(R, x) ̸= ∅ for all finite words x. Hence, the state ∅ is
not reachable from R in Adet. Therefore, there is a non-trap BSCC of Adet that is
reachable from the singleton {q0}. Hence, Pr(Lω(A)) > 0 by Corollary 4.9. But then
Pr(L) = 0 by Lemma 4.5. Contradiction.

The argument for the general case is as follows. Suppose by contradiction that L
has positive measure. We consider the labeled Markov chainM = (2Q, P,Dirac[Q0])
that arises from the deterministic automaton Adet with initial state Q0 by attaching
uniform distributions. That is, if R,R′ ⊆ Q and a ∈ Σ, then P (R, a,R′) = 1/|Σ|
if R′ = δ(R, a) and P (R, a,R′) = 0 otherwise. For almost all words w in L, the
corresponding path πw inM eventually visits some BSCC C ofM resp. Adet and
visits all its states infinitely often. By assumption C is non-trap.
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4 Unambiguous Büchi automata

The goal is to show that a non-trap BSCC is accessible from some singleton. Let
L′ denote the set of all words w = a1 a2 a3 . . . ∈ L such that πw eventually enters
some BSCC ofM and visits all its states infinitely often. Then, Pr(L′) = Pr(L). If
w = a1 a2 a3 . . . ∈ L′ and πw = R0R1R2 . . . then R0 = Q0 and Rn = δ(Q0, a1 . . . an).
By König’s Lemma (see, e.g., Lemma 8.1.2 of [Die17]) there is an infinite run q0 q1 q2 . . .
for w in A such that qi ∈ Ri for all i ∈ N. We write Runs(w) to denote the set of
all these runs. Pick some run ρ = q0 q1 q2 . . . ∈ Runs(w) and define U0 = {q0} and
Ui = δ(q0, a1 a2 . . . ai) = δ(Ui−1, ai) for i ⩾ 1. Clearly, qi ∈ Ui ⊆ Ri for all indices i
and πρ = U0 U1 U2 . . . is a path inM and the unique run for w in Adet starting in
{q0}.

Consider the set U of all sets U ⊆ Q such that U ∈ inf (πρ) for some word w ∈ L′

and some ρ ∈ Runs(w). (The notation inf (π) is used to denote the set of elements
that appear infinitely often in π.) We now show that the subgraph of Adet consisting
of the nodes U ∈ U contains a BSCC. For each subset V of U and each state q ∈ Q,
let

Lq,V =
{︁
w ∈ L′ : ∃ρ ∈ Runs(w) s.t. q = first(πρ) ∧ inf (πρ) = V

}︁
Then, L′ is the union of all sets Lq,V with (q,V) ∈ Q0 × U. As Pr(L′) = Pr(L) > 0
and Q0 × U is finite, there is some pair (q,V) ⊆ Q0 × U with Pr(Lq,V) > 0. Clearly,
Lq,V is ω-regular. Hence, there is some finite word z such that

Pr
(︁{︁
v ∈ Σω : zv ∈ Lq,V

}︁)︁
= 1.

Let R = δ(q, z). We now regard the fragment of Adet that is reachable from R. Let
M[R] be the corresponding Markov chain (i.e., the sub Markov chain of M with
initial state R). Since zv ∈ Lq,V for almost all words v ∈ Σω, inf (π) = V for almost
all paths inM[R]. But then V constitutes a non-trap BSCC ofM[R], and therefore
of M and Adet. Since V is reachable from {q} in Adet, we obtain Pr(Lω(A)) > 0
by Corollary 4.9. Lemma 4.5 yields Pr(L) = 0, which contradicts the assumption
Pr(L) > 0.

Remark 4.12. Clearly, Pr(Lω(A)) depends on Q0 as there might be state-letter
pairs (q, a) where δ(q, a) is empty. However, Lemma 4.4 implies that if A is strongly
connected with at least one final state, then Pr(Lω(A)) does not depend on F .

For computing Pr(Lω(U)) given a UBA U , it suffices to compute the values
Pr(Lω(q)) for the (initial) states of U as we have

Pr(Lω(U)) =
∑︂
q∈Q0

Pr(Lω(q))

The following simple fact will be used at several places:
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Fact 4.13. Let U be a UBA with Lω(q) ̸= ∅ for each state q ∈ Q. Then, for each
state p ∈ Q, each non-empty subset R of Q of the form R = δ(Q0, y) for some word
y ∈ Σ∗ and each finite word x = a1 a2 . . . an ∈ Σ∗ there exists at most one state q ∈ R
and at most one run

q = q0
a1−→ q1

a2−→ . . .
an−→ qn = p

for x starting in q and ending in p. In particular, the NFA (Q,Σ, δ, δ(Q0, y),Reach ({p}))
is unambiguous for each y ∈ Σ∗ and each state p ∈ Q.

Proof. If there would be two runs q0
y−→ q

x−→ p and q′0
y−→ q′

x−→ p where q, q′ ∈ R
and q0, q

′
0 ∈ Q0, then each word yxw with w ∈ Lω(p) would have two accepting

runs. This is impossible by the unambiguity of U and the assumption that Lω(p) is
non-empty for all states p ∈ Q.

Fact 4.13 will often be used in form of the statement that, for all states q, p ∈ Q
and all finite words x, there is at most one run for x from q to p.

We now suppose that U is a strongly connected UBA. Note that Lω(p) ̸= ∅ and
Pr(Lω(p)) = 0 is possible. However, in this case Pr(Lω(q)) = 0 for all states q. The
following theorem states that for strongly connected UBA U , the accepting runs of
almost all words in Lω(U) visit each state of U infinitely often. Although irrelevant
for the soundness of our algorithm, we find that it reveals an interesting structural
property of strongly connected UBA.

We use the following notations. For w ∈ Lω(U), we write accrun(w) to denote the
unique accepting run for w in U . For q0 q1 q2 . . . ∈ Qω, the set inf (q0 q1 q2 . . .) denotes
the set of all states q ∈ Q such that q = qi for infinitely many indices i. Thus, if
w ∈ Lω(U), then inf (accrun(w)) collects all states q ∈ Q that appear infinitely often
in the accepting run for w.

Theorem 4.14 (Measure of strongly connected UBA). If U is a strongly connected
UBA with at least one final state, then:

Pr
(︁{︁
w ∈ Lω(U) : inf (accrun(w)) = Q

}︁)︁
= Pr

(︁
Lω(U)

)︁
Proof. To prove Theorem 4.14, we can rely on the following facts that hold for all
events (measurable sets) Li, L in each probability space:

• Pr(L1) = Pr(L2) = 1 iff Pr(L1 ∩ L2) = 1

Hence, if L1, . . . , Ln ⊆ L and Pr(L1) = . . . = Pr(Ln) = Pr(L), then Pr(L1∩. . .∩
Ln) = Pr(L) as Pr(Li |L) = 1 for all i = 1, . . . , n implies Pr(L1∩ . . .∩Ln |L) =
1.

• if (Ln)n∈N is a countable family of measurable sets with L0 ⊇ L1 ⊇ L2 ⊇ . . .,
then

Pr(L) = lim
n→∞

Pr(Ln) where L =
⋂︂
n∈N

Ln

as every probability measure is continuous from above.
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Hence, for the proof of Theorem 4.14 it suffices to show that the accepting runs for
almost all words in Lω(U) contain a fixed state q that appears infinitely often. Thus,
the goal is to show:

Pr
(︁{︁
w ∈ Lω(U) : q ∈ inf (accrun(w))

}︁)︁
= Pr

(︁
Lω(U)

)︁
The claim is obvious if Pr(Lω(U)) = 0. Suppose now that Pr(Lω(U)) > 0. Hence,
Pr(Lω(p)) > 0 for all states p (Fact 4.3). We first show that the accepting runs for
almost all words in Lω(U) eventually visit q.

Claim: Pr(
{︁
w ∈ Lω(U) : accrun(w) |= ♦q

}︁
) = Pr

(︁
Lω(U)

)︁
.

Proof of the claim: Suppose by contradiction that there is some state q ∈ Q such
that the set of words w ∈ Lω(U) whose run does not visit q has positive measure, i.e.,

Pr
{︁
w ∈ Lω(U) : accrun(w) ̸|= ♦q

}︁
> 0

Lemma 4.2 yields the existence of a finite word x ∈ Σ∗ such that:

Pr
(︁{︁

w ∈ Σω : xw ∈ Lω(U), accrun(xw) ̸|= ♦q
}︁)︁

= 1

In particular, δ(Q0, x) is non-empty. Pick some state p ∈ δ(Q0, x), say p ∈ δ(q0, x)
where q0 ∈ Q0. As U is strongly connected, there is some non-empty finite word y
with q ∈ δ(p, y). Let

L =
{︁
xyv : v ∈ Lω(q)

}︁
and L′ =

{︁
yv : v ∈ Lω(q)

}︁
.

As Pr(Lω(q)) > 0 and there is exactly one run for xy from Q0 to q, we get:

Pr(L′) ⩾ Pr(L) =
1

|Σ|n
· Pr(Lω(q)) > 0

where n = |x|+ |y|. The words xyv ∈ L have accepting runs starting with the prefix:

q0
x−→ p

y−→ q

In particular:

L′ ⊆
{︁
w ∈ Σω : xw ∈ Lω(U), accrun(xw) |= ♦q

}︁
and therefore:

Pr
(︁{︁

w ∈ Σω : xw ∈ Lω(U), accrun(xw) |= ♦q
}︁)︁

> 0

But then:

Pr
(︁{︁

w ∈ Σω : xw ∈ Lω(U), accrun(xw) ̸|= ♦q
}︁)︁

< 1

Contradiction. This completes the proof of the claim.
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With an analogous argument we get that for each state q ∈ Q, Pr(Lω(U)) = Pr(Ln)
where Ln is the set of all infinite words w ∈ Lω(U) such that accrun(w) visits state
q at least n times. It holds, that

Lω(U) = L0 ⊇ L1 ⊇ L2 ⊇ . . . ⊇
⋂︂
n∈N

Ln
def
= L

Then, L is the set of all words w ∈ Lω(U) such that q ∈ inf (accrun(w)). Additionally,
we have:

Pr(L) = lim
n→∞

Pr(Ln) = Pr(Lω(U))

This completes the proof of Theorem 4.14.

Remark 4.15. The only place where the proof of Theorem 4.14 uses the unambiguity
of U is in the statement that L agrees with the set of infinite words w such that
q ∈ inf (accrun(w)).

Remark 4.16. With analogous arguments one can show that the accepting runs of
almost all words in Lω(U) contain each finite path of U infinitely often.

Deciding positivity for strongly connected UBA.

The following lemma provides a criterion to check positivity of a strongly connected
UBA in polynomial time using standard linear algebra techniques.

Lemma 4.17. Let U be a strongly connected UBA with at least one initial and one
final state, and

(∗) ζq =
1

|Σ|
·
∑︂
σ∈Σ

∑︂
p∈δ(q,σ)

ζp for all q ∈ Q

Then, the following statements are equivalent:

(1) Pr(Lω(U)) > 0,

(2) the linear equation system (*) has a strictly positive solution, i.e., a solution
(ζ∗q )q∈Q with ζ∗q > 0 for all q ∈ Q,

(3) the linear equation system (*) has a non-zero solution.

Given the strongly connected UBA U with at least one final state, we define a
matrix M ∈ [0, 1]Q×Q by Mp,q =

1
|Σ| · |{a ∈ Σ : q ∈ δ(p, a)}| for all p, q ∈ Q. Since U

is strongly connected, M is irreducible. We write ρ(M) for the spectral radius of M .
We will use the following lemma in the proof of Lemma 4.17.

Lemma 4.18. We have ρ(M) ≤ 1. Moreover, ρ(M) = 1 if and only if Pr(Lω(U)) >
0.
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4 Unambiguous Büchi automata

Proof. For p, q ∈ Q and n ∈ N, let Ep,n,q ⊆ Σω denote the event of all words
w = σ1σ2 . . . such that q ∈ δ(p, σ1σ2 . . . σn). Its probability under the uniform
distribution on Σω is an entry in the n-th power of M :

Pr(Ep,n,q) = (Mn)p,q (4.1)

In particular, Mn
p,q ≤ 1 for all n. From the boundedness of Mn it follows (e.g.,

by [HJ13, Corollary 8.1.33]) that ρ(M) ≤ 1. The same result implies that

ρ(M) = 1 ⇐⇒ lim sup
n→∞

(Mn)p,q > 0 for all p, q ∈ Q

⇐⇒ lim sup
n→∞

(Mn)p,q > 0 for some p, q ∈ Q
(4.2)

For the rest of the proof, fix some state p ∈ Q. By the observations from the
beginning of Section 4.1.3 it suffices to show that Pr(Lω(p)) > 0 if and only if
ρ(M) = 1. To this end, consider the event Ep,n :=

⋃︁
q∈QEp,n,q. Notice that (Ep,n)n∈N

forms a decreasing family of sets. We have:

Pr(Lω(p)) = lim
n→∞

Pr(Ep,n) by Lemma 4.4

= lim
n→∞

Pr

(︄⋃︂
q∈Q

Ep,n,q

)︄
by definition of Ep,n

(4.3)

Assuming that ρ(M) = 1, we show that Pr(Lω(p)) > 0. Let q ∈ Q. We have:

Pr(Lω(p)) ≥ lim sup
n→∞

Pr(Ep,n,q) by (4.3)

= lim sup
n→∞

(Mn)p,q by (4.1)

> 0 by (4.2)

Conversely, assuming that ρ(M) < 1, we show that Pr(Lω(p)) = 0.

Pr(Lω(p)) = lim
n→∞

Pr

(︄⋃︂
q∈Q

Ep,n,q

)︄
by (4.3)

≤ lim sup
n→∞

∑︂
q∈Q

Pr(Ep,n,q) union bound

= lim sup
n→∞

∑︂
q∈Q

(Mn)p,q by (4.1)

= 0 by (4.2)

This concludes the proof.

Proof of Lemma 4.17. “(1) =⇒ (2)”: Suppose Pr(Lω(U)) > 0. Define the vector
(ζ∗q )q∈Q with ζ∗q = Pr(Lω(q)). It holds that

Lω(q) =
⋃︂
σ∈Σ

⋃︂
p∈δ(q,σ)

{σw : w ∈ Lω(p)}
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4.1 Analysis of Markov chains against UBA-specifications

Since U is unambiguous, the sets {σw : w ∈ Lω(p)} are pairwise disjoint. So, the
vector (ζ∗q )q∈Q is a solution to the equation system.

As Pr(Lω(U)) > 0 and U is strongly connected, the observation at the beginning
of Section 4.1.3 yields that Pr(Lω(q)) > 0 for all states q. Thus, the vector (ζ∗q )q∈Q is
strictly positive.

“(2) =⇒ (3)” holds trivially.
“(3) =⇒ (1)”: Suppose ζ∗ is a non-zero solution of the linear equation system.

Then, Mζ∗ = ζ∗. Thus, 1 is an eigenvalue of M . This yields ρ(M) ⩾ 1. But then
ρ(M) = 1 and Pr(Lω(U)) > 0 by Lemma 4.18.

Positivity check via rank computation. The first positivity check we present relies
simply on the rank of M − I with M being the matrix from Lemma 4.17. As the
second positivity check delivers also a possible way to calculate (Pr(Lω(q)) )q∈Q we
postpone its presentation to the end of this section.

Let U be a strongly connected UBA with at least one final state and let M be the
n × n-matrix from Lemma 4.17, where n = |Q| is the number of states in U . We
compute rank(M ′) of the matrix M ′ =M − I, where I is the identity matrix. If M ′

has full rank, i.e., rank(M ′) = n, then U is non-positive.
IfM ′ does not have full rank, we know that U is positive by the following argument.

As M ′ does not have full rank n, there is a vector v such that (M − I)v is the zero
vector; in other words, v is an eigenvector of M with eigenvalue 1. So the spectral
radius of M is at least 1. But by Lemma 4.18 the spectral radius of M is at most 1,
so it is equal to 1. Since M is irreducible, it follows from the Perron-Frobenius
theorem [BP79, Theorem 2.1.4 (b)] that M has a strictly positive eigenvector v′ with
eigenvalue 1, i.e., Mv′ = v′. Lemma 4.17 then yields that U is positive.

Computing pure cuts for positive, strongly connected UBA.

The key observation to compute the values Pr(Lω(q)) for the states q of a positive,
strongly connected UBA U is the existence of so-called cuts. These are sets C of
states with pairwise disjoint languages such that almost all words have an accepting
run starting in some state q ∈ C. More precisely:

Definition 4.19 ((Pure) cut). Let U be a UBA and C ⊆ Q. C is called a cut for U
if Lω(q)∩Lω(p) = ∅ for all p, q ∈ C with p ̸= q and U [C] is almost universal. A cut
is called pure if it has the form δ(q, z) for some state q and some finite word z ∈ Σ∗.

Obviously, U is almost universal iff Q0 is a cut. If q ∈ Q and Kq denotes the set of
finite words z ∈ Σ∗ such that δ(q, z) is a cut, then Pr(Lω(q)) equals the probability
measure of the language Lq consisting of all infinite words w ∈ Σω that have a prefix
in Kq.

The following concept of cut languages is irrelevant for the soundness proof of our
algorithm to compute Pr(Lω(U)). However, we find that Lemma 4.21 (see below) is
an interesting observation.
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4 Unambiguous Büchi automata

Definition 4.20 (Cut languages). For each state q in U , let Kq be the set of finite
words x such that δ(q, x) is a cut. We refer to Kq as the cut language for state q.

The cut languages Kq are upward-closed (i.e., if x ∈ Kq, then xy ∈ Kq for all finite
words y) by the first statement of Fact 4.22. The second statement of Fact 4.22 yields
that Kq is non-empty if Pr(Lω(q)) is positive. Vice versa, if x ∈ Kq, then almost all
infinite words w with x ∈ Pref(w) belong to Lω(q). Hence, the cut language Kq is
non-empty if and only if Pr(Lω(q)) > 0. Moreover, the cut language Kq is regular
since Kq = Lfin(Udet[q]) where Udet[q] denotes the DFA that results from the powerset
construction of U by declaring state {q} to be initial and the states that cannot reach
the trap BSCC to be final (in particular, the states in the non-trap BSCCs are final).
The unambiguity of U yields that Kq ∩ Kp = ∅ for all states q, p ∈ Q such that
{q, p} ⊆ δ(Q0, x) for some finite word x ∈ Σ∗.

We use Pr(Kq) as a short form notation for Pr(L) where L consists of all infinite
words that have some prefix in Kq. Recall that the cut language Kq is empty if
Pr(Lω(q)) = 0, in which case Pr(Lω(q)) = Pr(Kq) = 0.

Lemma 4.21. Pr(Lω(q)) = Pr(Kq).

Proof. Obviously, almost all infinite words that have a prefix in Kq belong to Lω(q).
This yields Pr(Lω(q)) ⩾ Pr(Kq). Suppose by contradiction that Pr(Lω(q)) > Pr(Kq).
Then, the regular language {w ∈ Lω(q) : Pref(w) ∩Kq = ∅} is positive. Lemma 4.2
yields the existence of some finite word x such that:

Pr
(︁{︁
v ∈ Σω : xv ∈ Lω(q), Pref(xv) ∩Kq = ∅

}︁)︁
= 1

In particular, x /∈ Kq and Pr
{︁
v ∈ Σω : xv ∈ Lω(q)

}︁
= 1. The latter yields that

δ(q, x) is a cut. But then x ∈ Kq (by definition of Kq). Contradiction.

The following facts are simple, general observations about cuts that will be used
at various places:

Fact 4.22. Suppose U is a UBA (possibly not strongly connected).

• If C is a cut, then so are the sets δ(C, y) for all finite words y ∈ Σ∗.

• If Pr(Lω(U)) > 0, then there exists some finite word x ∈ Σ∗ such that δ(Q0, xy)
is a cut for all words y ∈ Σ∗.

Proof. The first statement is obvious. The argument for the second statement is as
follows. Suppose Pr(Lω(U)) > 0. Lemma 4.2 asserts the existence of a finite word x
such that

Pr
{︁
w ∈ Σω : xw ∈ Lω(U)

}︁
= 1

Hence, the δ(Q0, x) is a cut, and so are the sets δ(Q0, xy) = δ(δ(Q0, x), y) for all
y ∈ Σ∗ by the first statement.
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4.1 Analysis of Markov chains against UBA-specifications

Fact 4.22 yields the following characterization of almost universal UBA:

U is almost universal iff Q0 is a cut

iff δ(Q0, x) is a cut for all x ∈ Σ∗

The above characterization holds in any (possibly not strongly connected) UBA. An
analogous characterization of positivity for strongly connected UBA is obtained using
the fact that Pr(Lω(U)) > 0 iff Pr(Lω(q)) > 0 for some state q:

U is positive, i.e., Pr(Lω(U)) > 0

iff U has a reachable cut, i.e., a cut of the form δ(Q0, x)

iff U has a pure cut, i.e., a cut of the form δ(q, x)

We now elaborate the notion of cuts in strongly connected UBA.

Fact 4.23. Suppose U is a strongly connected UBA and Pr(Lω(U) ) > 0.

• Let C be a cut and C ′ a subset of Q with Lω(q) ∩ Lω(p) = ∅ for all states
q, p ∈ C ′ with q ̸= p. Then, C ⊆ C ′ implies C = C ′.

• If δ(q, x) is a cut and y ∈ Σ∗ such that q ∈ δ(q, xy), then δ(q, x) = δ(q, xyx).

Proof. The first statement is obvious as Pr(Lω(r)) > 0 for all states r. For the second
statement we suppose C = δ(q, x) is a cut and r y−→ q for some state r ∈ C. Then:

δ(q, xyx) = δ(C, yx) ⊇ δ(r, yx) = δ( δ(r, y), x) ⊇ δ(q, x) = C

is a cut that subsumes R. Hence, C = δ(q, xyx) by the first statement.

As a consequence of Lemma 4.4, we get that if C ⊆ Q such that Lω(q)∩Lω(p) = ∅
for all states q, p ∈ C with q ̸= p then:

C is a cut iff δ(C, y) ̸= ∅ for all y ∈ Σ∗

Corollary 4.24 (Pure cuts in strongly connected UBA; see first part of Lemma 4.27).
Let U be a strongly connected UBA with at least one final state. Then for each state
q and each finite word x:

δ(q, x) is a cut iff δ(q, xy) ̸= ∅ for all y ∈ Σ∗

Proof. The languages of the states in δ(q, x) are pairwise disjoint by the unambiguity
of U . Hence, δ(q, x) is a (pure) cut if and only if U [δ(q, x)] is almost universal. By
Lemma 4.4, this is equivalent to the statement that δ(q, xy) ̸= ∅ for all y ∈ Σ∗.

The following lemma yields that for positive, strongly connected UBA, the pure
cuts constitute a non-trap BSCC in the deterministic automaton Udet obtained by
applying the standard powerset construction.
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4 Unambiguous Büchi automata

Lemma 4.25 (See second part of Lemma 4.27). Suppose Pr(Lω(U)) > 0 and U is
strongly connected. Then, for each cut C ⊆ Q the following statements are equivalent:

(1) C is pure, i.e., C = δ(q, x) for some state q ∈ Q and some word x ∈ Σ∗

(2) for each state p ∈ Q there exists a word z ∈ Σ∗ such that C = δ(p, z)

(3) C is reachable from any other cut, i.e., if C ′ is a cut, then there exists a finite
word y with C = δ(C ′, y).

Proof. Obviously, (1) is a consequence of (2). Let us prove the implication (1) =⇒
(2). Suppose δ(q, x) is a cut and let p ∈ Q be an arbitrary state. Pick some finite
word y with p

y−→ q. Then, δ(p, yx) ⊇ δ(q, x). We get δ(p, yx) = δ(q, x) by the
second statement of Fact 4.23.

We now show the implication (2) =⇒ (3). Let C ′ be a cut and p ∈ C ′. By
assumption (2), there is some word z such that C = δ(p, z). Then, δ(C ′, z) is a cut
as well and we have:

C = δ(p, z) ⊆ δ(C ′, z)

and therefore C = δ(C ′, z) by the first statement of Fact 4.23.
For the implication (3) =⇒ (1) we pick a cut C ′ of the form C ′ = δ(p, z) for some

state p ∈ C and word z. (Such a cut exists by the second statement in Fact 4.22.)
By assumption (3) there is a word y with C = δ(C ′, y). But then C = δ(p, yz).

The above lemma shows that if U is positive, then Udet has exactly one non-trap
BSCC consisting of the cuts of U that are reachable from some resp. all singleton(s).
More precisely, if Pr(Lω(U)) > 0 and U is strongly connected, then the cuts of U
that are reachable from some singleton constitute a BSCC C of Udet. This is the
only non-trap BSCC of Udet and C is reachable from each cut. Additionally, the trap
BSCC {∅} is reachable if there are states q in U with Pr(Lω(q)) < 1.

Remark 4.26. As the results above show: there is no cut C that is reachable from
some singleton and that is not contained in the non-trap BSCC C. However, there
might be cuts outside C. For example, let U = (Q, {a, b}, δ, Q0, Inf (F )) where

Q =
{︁
qa, qb, pa, pb

}︁
, Q0 =

{︁
qa, pb

}︁
, and F =

{︁
qa
}︁
.

The transition function δ is given by:

δ(qa, a) = {qa, qb}
δ(qb, b) = {pa, pb}

δ(pa, a) = {pa, pb}
δ(pb, b) = {qa, qb}

and δ(·) = ∅ in all remaining cases. The unambiguity of U is clear since the switch
between the q- and p-states are deterministic and since

Lω(qa) = Lω(pa) =
{︁
aw : w ∈ {a, b}ω

}︁
,

Lω(qb) = Lω(pb) =
{︁
bw : w ∈ {a, b}ω

}︁
.
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Thus, U is universal. The sets {qa, qb}, {pa, pb} constitute the non-trap BSCC
consisting of the cuts that are reachable from the four singletons. The set C = {qa, pb}
is a cut too, but C is not reachable from any singleton. However, δ(C, a) = δ(C, b) =
{qa, qb}.

Corollary 4.24 and Lemma 4.25 are summarized in Lemma 4.27.

Lemma 4.27 (Characterization of pure cuts). Let U be a strongly connected UBA.
For all q ∈ Q and z ∈ Σ∗ we have: δ(q, z) is a cut iff δ(q, zy) ̸= ∅ for each word
y ∈ Σ∗. Furthermore, if U is positive, then for each cut C:

C is pure, i.e., C = δ(q, z) for some state-word pair (q, z) ∈ Q× Σ∗

iff for each state q ∈ Q there is some word z ∈ Σ∗ with C = δ(q, z)

iff for each cut C ′ there is some word y ∈ Σ∗ with C = δ(C ′, y)

By Lemma 4.2 and Lemma 4.27 we get:

Corollary 4.28. If U is a strongly connected UBA, then

Pr(Lω(U)) > 0 iff U has a pure cut.

For the rest of Section 4.1.3, we suppose that U is positive and strongly connected.
The second part of Lemma 4.27 yields that the pure cuts constitute a bottom strongly
connected component of the automaton obtained from U using the standard powerset
construction. The goal is now to design an efficient (polynomially time-bounded)
algorithm for the generation of a pure cut. For this, we observe that if q, p ∈ Q,
q ̸= p, then {q, p} ⊆ C for some pure cut C iff there exists a word y such that
{q, p} ⊆ δ(q, y).

Lemma 4.29. Suppose Pr(Lω(U)) > 0 and U is strongly connected. Let q, p be states
in U with q ̸= p. Then:

{q, p} ⊆ C for some pure cut C

iff there is some finite word z with q z−→ q
z−→ p.

Proof. Let C be a pure cut that contains q and p. By Lemma 4.25 there is a word z
with C = δ(q, z). Then, C = δ(C, z) and δ(p, z) = ∅ by the unambiguity of U (see
Fact 4.13). But then q z−→ q

z−→ p. Vice versa, q z−→ q
z−→ p implies {q, p} ⊆ δ(C, z)

for each cut C with q ∈ C.

Remark 4.30. Lemma 4.29 yields that for all states q and p of a strongly connected
UBA U :

• If there is no word z with q z−→ q
z−→ p, then there is no cut C with {q, p} ⊆ C.

• If Pr(Lω(U)) > 0 and q z−→ q
z−→ p, then there is a pure cut C that contains q

and p.
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q

p δ(p, z) ̸= ∅

δ(q, z)y

y

z

z

Figure 4.8: An extension y ∈ Σ∗ for a state-word pair (q, z) ∈ Q× Σ∗. (Figure taken
from [Kie17]).

The existence of some finite word z with q z−→ q
z−→ p can be checked efficiently using

standard algorithms for NFA. Note that the first case applies (i.e., no such word z ex-
ists) if and only if the accepted languages of the NFA Bq,q = (Q,Σ, δ, {q},Reach ({q}))
and Bq,p = (Q,Σ, δ, {q},Reach ({p})) are disjoint. The latter can be checked by run-
ning an emptiness check to the product-NFA of Bq,q and Bq,p. If the languages of Bq,q
and Bq,p are not disjoint, then we can generate a finite word z of length at most |Q|2
such that q z−→ q

z−→ p by searching an accepted word of the product of Bq,q and Bq,p.

Definition 4.31 (Extension). A word y ∈ Σ∗ is an extension for a state-word pair
(q, z) ∈ Q × Σ∗ iff there exists a state p ∈ Q such that q ̸= p, δ(p, z) ̸= ∅ and
{q, p} ⊆ δ(q, y).

The scheme for an extension is depicted in Figure 4.8. Occasionally, we refer to
the pair (p, y) as an extension of (q, z). It is easy to see that if y is an extension of
(q, z), then δ(q, yz) is a proper superset of δ(q, z) (see Lemma 4.32). Furthermore,
for all state-word pairs (q, z) ∈ Q× Σ∗ (see Lemma 4.33):

δ(q, z) is a cut iff there is no extension for (q, z)

These observations lead to the following algorithm for the construction of a pure
cut. We pick an arbitrary state q in the UBA and start with the empty word z0 = ε.
The algorithm iteratively seeks for an extension for the state-word pair (q, zi). If an
extension yi for (q, zi) has been found, then we switch to the word zi+1 = yizi. If no
extension exists, then (q, zi) is a pure cut. In this way, the algorithm generates an
increasing sequence of subsets of Q,

δ(q, z0) ⊊ δ(q, z1) ⊊ δ(q, z2) ⊊ . . . ⊊ δ(q, zk),

which terminates after at most |Q| steps and yields a pure cut δ(q, zk).

Lemma 4.32. Let U be a (possibly non-positive, possibly not strongly connected)
UBA, and let q, p be states in U and y, z finite words. If y is an extension of (q, z),
then δ(q, yz) is a proper superset of δ(q, z).
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Proof. Since {q, p} ⊆ δ(q, y) we have:

δ(q, z) ⊆ = δ(q, z) ∪ δ(p, z) = δ
(︁
{q, p}, z

)︁
⊆ δ

(︁
δ(q, y), z

)︁
= δ(q, yz)

In particular, δ(q, z) ⊆ δ(q, yz). The set δ(p, z) is non-empty (by the definition of
extensions). Let r be an arbitrary state in δ(p, z). Then, r /∈ δ(q, z), since otherwise
the word yz would have two runs from q to r:

q
y−→ q

z−→ r and q
y−→ p

z−→ r,

which is impossible by the unambiguity of U (see Fact 4.13).

Lemma 4.33. Let U be a positive, strongly connected UBA. Then for each state-word
pair (q, z) ∈ Q× Σ∗:

δ(q, z) is a cut iff the pair (q, z) has no extension

Proof. “=⇒”: Let δ(q, z) be a cut and suppose by contradiction that there exists an
extension y for (q, z). Let p ∈ Q such that q ̸= p, δ(p, z) ̸= ∅ and {q, p} ⊆ δ(q, y).
The set δ(q, yz) \ δ(q, z) is non-empty (Lemma 4.32). As Pr(Lω(r) ) > 0 for all states
r, we get:

Pr
(︁
Lω(δ(q, yz))

)︁
= Pr

(︁
Lω(δ(q, z))

)︁
+
∑︂

r ∈ δ(q, yz)
r /∈ δ(q, z)

Pr
(︁
Lω(r) ) > Pr

(︁
Lω(δ(q, z))

)︁

Hence, Pr(Lω(δ(q, z)) < 1. But then δ(q, z) cannot be a cut as Pr(Lω(R)) = 1 for
all cuts R. Contradiction.

“⇐=”: Suppose now that (q, z) has no extension. We have to show that C = δ(q, z)
is a cut.

We first observe that there is some cut R that contains C. For this, we may pick
any cut R′ with q ∈ R′. Then, R = δ(R′, z) is a cut with C ⊆ R. For each state
p ∈ R \ {q}, there is some finite word y with q y−→ q

y−→ p (see Lemma 4.29). Since
there exists no extension for (q, z), we have δ(p, z) = ∅ for all states p ∈ R \C. This
yields:

C = δ(q, z) = δ(C, z) = δ(R, z)

By Fact 4.22, as R is a cut, δ(R, z) is a cut as well and hence so is C.

It remains to explain an efficient realization of the search for an extension of the
state-word pairs (q, zi). The idea is to store the sets Qi[p] = δ(p, zi) for all states p.
The sets Qi[p] can be computed iteratively by:

Q0[p] = {p} and Qi+1[p] =
⋃︁

r∈δ(p,yi)
Qi[r]
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To check whether (q, zi) has an extension we apply standard techniques for the
intersection problem for the languages Hq,q = {y ∈ Σ∗ : q ∈ δ(q, y)} and Hq,Fi

=
{y ∈ Σ∗ : δ(q, y) ∩ Fi ̸= ∅} where Fi = {p ∈ Q \ {q} : Qi[p] ̸= ∅}. Then, for each
word y ∈ Σ∗ we have: y ∈ Hq,q ∩Hq,Fi

if and only if y is an extension of (q, zi). The
languages Hq,q and Hq,Fi

are recognized by the NFA Uq,q = (Q,Σ, δ, q,Reach (q)) and
Uq,Fi

= (Q,Σ, δ, q,Reach (Fi)). Thus, to check the existence of an extension and to
compute an extension y (if existent) where the word y has length at most |Q|2, we
may run an emptiness check for the product-NFA U [q, q]⊗ U [q, Fi]. We conclude:
Corollary 4.34. Given a positive, strongly connected UBA U , a pure cut can be
computed in time polynomial in the word-length of U .

Computing the measure of positive, strongly connected UBA.

We suppose that U =
(︁
Q,Σ, δ, Q0, Inf (F )

)︁
is a positive, strongly connected UBA

and C is a cut. (C might be a pure cut that has been computed by the techniques
explained above. However, in Theorem 4.35 C can be any cut.) Consider the linear
equation system of Lemma 4.17 with variables ζq for all states q ∈ Q and add the
constraint that the variables ζq for q ∈ C sum up to 1.
Theorem 4.35. Let U be a positive, strongly connected UBA and C a cut. Then,
the probability vector (Pr(Lω(q)) )q∈Q is the unique solution of the following linear
equation system:

(1) ζq =
1

|Σ|
·
∑︂
σ∈Σ

∑︂
p∈δ(q,σ)

ζp for all states q ∈ Q

(2)
∑︂
q∈C

ζq = 1

Proof. Let n = |Q|. Define a matrix M ∈ [0, 1]Q×Q by Mq,p = |{σ ∈ Σ : p ∈
δ(q, σ)}|/|Σ| for all q, p ∈ Q. Then, the n equations (1) can be written as ζ = Mζ,
where ζ = (ζq)q∈Q is a vector of n variables. It is easy to see that the values
ζ∗q = Pr(Lω(q)) for q ∈ Q satisfy the equations (1). That is, defining ζ∗ = (ζ∗q )q∈Q we
have ζ∗ =Mζ∗. By the definition of a cut, those values also satisfy equation (2).

It remains to show uniqueness. We employ Perron-Frobenius theory as follows.
Since ζ∗ = Mζ∗, the vector ζ∗ is an eigenvector of M with eigenvalue 1. By
ζ∗ being strictly positive (i.e., positive in all components), it follows from [BP79,
Corollary 2.1.12] that ρ = 1 for the spectral radius ρ of M . Since U is strongly
connected, matrix M is irreducible. By [BP79, Theorem 2.1.4 (b)] the spectral
radius ρ = 1 is a simple eigenvalue of M , i.e., all solutions of ζ = Mζ are scalar
multiples of ζ∗. Among those multiples, only ζ∗ satisfies equation (2). Uniqueness
follows.

Together with the criterion of Lemma 4.17 to check whether a given strongly
connected UBA is positive, we obtain a polynomially time-bounded computation
scheme for the values Pr(Lω(q)) for the states q of a given strongly connected UBA.
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4.1 Analysis of Markov chains against UBA-specifications

Foundations of the eigenvalue algorithm. The first approach for the positivity
check (see page 73) was based on a rank computation. Now we give a second approach
for the positivity check and a possible way to calculate the vector (Pr(Lω(q)) )q∈Q as
well. It relies on an iterative approximation of an eigenvector.

Let U be a strongly connected UBA with at least one final state. Let M be the
matrix from the proof of Theorem 4.35. Define M = (I +M)/2 where I denotes the
Q×Q identity matrix. Denote by 1⃗ = (1)q∈Q the column vector where all components
are 1. Define 0⃗ similarly. For i ≥ 0 define v(i) =M

i · 1⃗. Our algorithm is as follows.
Exploiting the recurrence v(i+ 1) =M · v(i) we compute the sequence v(0), v(1), . . .
until we find an i > 0 with either v(i+ 1) < v(i) (by this inequality we mean strict
inequality in all components) or v(i+ 1) ≈ v(i). In the first case we conclude that
Pr(Lω(U)) = 0. In the second case we compute a cut C and multiply v(i) by a scalar
c > 0 so that c ·

∑︁
q∈C v(i)q = 1, and conclude that (Pr(Lω(q)) )q∈Q ≈ c · v(i). This

algorithm is justified by the following two lemmas.
Lemma 4.36. We have Pr(Lω(U)) = 0 if and only if there is i ≥ 0 with v(i+1) < v(i).
Lemma 4.37. If Pr(Lω(U)) > 0, then v(∞) := limi→∞ v(i) > 0⃗ exists, and
Mv(∞) = v(∞), and v(∞) is a scalar multiple of (Pr(Lω(q)) )q∈Q.

For the proofs we need the following two auxiliary lemmas:
Lemma 4.38. Let ρ > 0 denote the spectral radius of M . Then the matrix limit
limi→∞

(︁
M/ρ

)︁i exists and is strictly positive in all entries.

Proof. Since M is irreducible, M |Q| is strictly positive (in all entries). Then it follows
from [HJ13, Theorem 8.2.7] that the matrix limit

lim
i→∞

(︁
M/ρ

)︁i
= lim

i→∞

(︂(︁
M/ρ

)︁|Q|
)︂i

exists and is strictly positive.
Lemma 4.39. For any v ∈ CQ and any c ∈ C we have Mv = cv if and only if
Mv = 1+c

2
v. In particular, M and M have the same eigenvectors with eigenvalue 1.

The proof of Lemma 4.39 is obvious. We prove now Lemma 4.36 and 4.37.

Proof of Lemma 4.36. Let i ≥ 0 with v(i+ 1) < v(i). With [BP79, Theorem 2.1.11]
it follows that the spectral radius of M is smaller than 1, hence by Lemma 4.39
the spectral radius of M is smaller than 1 as well. By Lemma 4.18 it follows that
Pr(Lω(U)) = 0.

For the converse, let Pr(Lω(U)) = 0. By Lemma 4.18, the spectral radius of M is
smaller than 1. Let ρ denote the spectral radius ofM . By Lemma 4.39, we have ρ < 1.
If ρ = 0, then M is the zero matrix and we have v(1) = 0⃗ < 1⃗ = v(0). Let ρ > 0. It
follows from Lemma 4.38 that there is i ≥ 0 such that ρ

(︁
M/ρ

)︁i+1
<
(︁
M/ρ

)︁i (with
the inequality strict in all components). Hence, M i+1

< M
i and v(i+1) =M

i+1 · 1⃗ <
M

i · 1⃗ = v(i).
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4 Unambiguous Büchi automata

Proof of Lemma 4.37. Let Pr(Lω(U)) > 0. Then, by Lemma 4.18, the spectral radius
of M is 1. So, with Lemma 4.39 the spectral radius of M is 1. By Lemma 4.38 the
limit v(∞) = limi→∞M

i
1⃗ exists and is positive. From the definition of v(∞) we have

Mv(∞) = v(∞). By Lemma 4.39 also Mv(∞) = v(∞). So v(∞) solves equation (1)
from Theorem 4.35. There is a scalar c > 0 so that cv(∞) satisfies both equations
(1) and (2) from Theorem 4.35. By the uniqueness statement of Theorem 4.35 it
follows that cv(∞) = (Pr(Lω(q)) )q∈Q.

The next section shows how to lift these results for arbitrary UBA.

4.1.4 Computing the measure of arbitrary UBA
In what follows, let U = (Q,Σ, δ, Q0, Inf (F )) be a (possibly not strongly connected)
UBA and C a strongly connected component (SCC) of U . C is called non-trivial if C
viewed as a direct graph contains at least one edge, i.e., if C is cyclic. Recall that C
is called bottom if δ(q, a) ⊆ C for all q ∈ C and all a ∈ Σ. If C is a non-trivial SCC of
U and p ∈ C, then the sub-NBA

U
⃓⃓
C,p =

(︁
C,Σ, δ|C, {p}, Inf (C ∩ F )

)︁
of U with state space C, initial state p and the transition function δ|C given by
δ|C(q, a) = δ(q, a)∩C is strongly connected and unambiguous. Let Lp be the accepted
language, i.e., Lp = Lω(U

⃓⃓
C,p). The values Pr(Lp), p ∈ C, can be computed using the

techniques for strongly connected UBA presented in Section 4.1.3. A non-trivial SCC
C is said to be positive if Pr(Lp) > 0 for all/some state(s) p in C.

We perform the following preprocessing. As before, for any p ∈ Q we write Lω(p)
for Lω(U [p] ), and call p zero if Pr(Lω(p)) = 0. First we remove all states that are
not reachable from any initial state. Then we run standard graph algorithms to
compute the directed acyclic graph (DAG) of SCCs of U . By processing the DAG
bottom-up we can remove all zero states by running the following loop: If all BSCCs
are marked (initially, all SCCs are unmarked), then exit the loop; otherwise pick an
unmarked BSCC C.

• If C is trivial or does not contain any final state, then we remove it: more
precisely, we remove it from the DAG of SCCs, and we modify U by deleting
all transitions p σ−→ q where q ∈ C.

• Otherwise, C is a non-trivial BSCC with at least one final state. We check
whether C is positive by applying the techniques of Section 4.1.3. If it is positive,
we mark it; otherwise we remove it as described above.

Note that this loop does not change Pr(Lω(p)) for any state p.
Let QBSCC denote the set of states in U that belong to some BSCC. The values

Pr(Lω(p) ) for the states p ∈ QBSCC can be computed using the techniques of
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4.1 Analysis of Markov chains against UBA-specifications

Section 4.1.3. The remaining task is to compute the values Pr(Lω(q) ) for the states
q ∈ Q \QBSCC . For q ∈ Q \QBSCC , let βq = 0 if δ(q, σ) ∩QBSCC = ∅ for all σ ∈ Σ.
Otherwise:

βq =
1

|Σ|
·
∑︂
σ∈Σ

∑︂
p∈δ(q,σ)∩QBSCC

Pr(Lω(p) )

We now show that the probabilities Pr(Lω(q) ) for q ∈ Q \ QBSCC are computable
by the linear equation system shown in Figure 4.9 with |Q \QBSCC | equations and
variables ζq for q ∈ Q \QBSCC .

ζq =
1

|Σ|
·
∑︂
σ∈Σ

∑︂
r ∈ δ(q, σ)
r /∈ QBSCC

ζr + βq for q ∈ Q \QBSCC

Figure 4.9: Linear equation system for computing Pr(Lω(q)) in UBA.

Theorem 4.40. If all BSCCs of U are non-trivial and positive, then the linear
equation system in Figure 4.9 has a unique solution, namely ζ∗q = Pr(Lω(q) ).

Proof. We write Q for Q \QBSCC and define a matrix M ∈ [0, 1]Q×Q by

Mq,p =
|{σ ∈ Σ : p ∈ δ(q, σ)}|

|Σ|
for all q, p ∈ Q.

Further, we define a vector β ∈ [0, 1]Q with β = (βq)q∈Q. Then the equation system
in Figure 4.9 can be written as

ζ = Mζ + β ,

where ζ = (ζq)q∈Q is a vector of variables. By reasoning similar to the beginning of
the proof of Lemma 4.17 one can show that the values ζ∗q = Pr(Lω(q)) for q ∈ Q
satisfy this equation system. That is, by defining ζ∗ = (ζ∗q )q∈Q we have ζ∗ =Mζ∗+β.

It remains to show uniqueness. Since β is non-negative,

ζ∗ ⩾Mζ∗

holds where the inequalities hold component-wise. As M is non-negative, it follows
from monotonicity that we have

ζ∗ ⩾ Mζ∗ ⩾ M2ζ∗ ⩾ . . . (4.4)

For i ⩾ 1, let Qi be the set of states in Q that have a path in U of length i or shorter
to a BSCC of U . We prove by induction on i that for all i ≥ 1:(︁

M iζ∗
)︁
q

< ζ∗q for all q ∈ Qi. (4.5)
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4 Unambiguous Büchi automata

For i = 1, note that βq > 0 for all q ∈ Q1, hence (Mζ∗)q < (Mζ∗ + β)q = ζ∗q for all
q ∈ Q1. For the step of induction, let q ∈ Qi+1 for i ⩾ 1. Then, there exist σ ∈ Σ and
p ∈ δ(q, σ) ∩ Qi. Hence, Mq,p > 0. By induction hypothesis we have (M iζ∗)p < ζ∗p .
This yields: (︁

M i+1ζ∗
)︁
q

=
∑︂
r∈Q

Mq,r

(︁
M iζ∗

)︁
r

= Mq,p⏞⏟⏟⏞
>0

(︁
M iζ∗

)︁
p⏞ ⏟⏟ ⏞

<ζ∗p

+
∑︂

r∈Q\{p}

Mq,r

(︁
M iζ∗⏞ ⏟⏟ ⏞

⩽ζ∗ by (4.4)

)︁
r

< Mq,p · ζ∗p +
∑︂

r∈Q\{p}

Mq,rζ
∗

= (Mζ∗)q

⩽ ζ∗q by (4.4).

This shows (4.5). Since Q|Q| = Q it follows

M |Q|ζ∗ < ζ∗ , (4.6)

where the inequality is strict in all components. So there is 0 < c < 1 with
M |Q|ζ∗ ⩽ cζ∗. By induction, it follows M |Q|·iζ∗ ⩽ ciζ∗ for all i ⩾ 0. Thus,
limi→∞M iζ∗ = 0, where 0 denotes the zero vector. By (4.6) the vector ζ∗ is strictly
positive. It follows that limi→∞M i = [0], where [0] denotes the zero matrix.

Let x ∈ RQ be an arbitrary solution of the equation system in Figure 4.9, i.e.,
x =Mx+ β. Since ζ∗ =Mζ∗ + β, subtracting the two solutions yields

x−ζ∗ =M(x−ζ∗) = M2(x−ζ∗) = . . . = lim
i→∞

M i(x−ζ∗) = [0](x−ζ∗) = 0 ,

where 0 denotes the zero vector. Hence, x = ζ∗, which proves uniqueness of the
solution.

Theorem 4.40 yields that the value Pr(Lω(U)) for a given UBA U is computable
in polynomial time.

Remark 4.41. For the special case where δ(q, σ) = {q} for all q ∈ F and σ ∈ Σ, the
language of U is a cosafety property and under the assumption that all BSCCs are
non-trivial and positive, Pr(Lω(q)) = 1 if q ∈ F = QBSCC . In this case, the linear
equation system in Theorem 4.40 coincides with the linear equation system presented
in [BLW13b] for computing the probability measure of the language of U viewed as a
UFA.

Remark 4.42. As a consequence of our results, the positivity problem (“does
Pr(Lω(U)) > 0 hold?”) and the almost universality problem (“does Pr(Lω(U)) = 1
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4.1 Analysis of Markov chains against UBA-specifications

hold?”) for UBA are solvable in polynomial time. This should be contrasted with the
standard (non-probabilistic) semantics of UBA and the corresponding results for NBA.
The non-emptiness problem for UBA is in P (this already holds for NBA), while the
complexity-theoretic status of the universality problem for UBA is a long-standing
open problem. For standard NBA, it is well-known that the non-emptiness problem
is in P and the universality problem is PSPACE-complete. However, the picture
changes when switching to NBA with the probabilistic semantics as both the positivity
problem and the almost universality problem for NBA are PSPACE-complete, even
for strongly connected NBA.

Theorem 4.43 (see also [Var85; CY95]). The positivity and the almost universality
problem for strongly connected NBA are PSPACE-complete.

Proof. Membership in PSPACE follows from the results of [Var85; CY95]. PSPACE-
hardness of the positivity and almost universality problem for strongly connected
NBA can be established using a polynomial reduction from the universality problem
for non-deterministic finite automata (NFA) where all states are final. The latter
problem is known to be PSPACE-complete [KRS09].

Let B = (Q,Γ, δB, Q0,Reach (Q)) be an NFA. We can safely assume that Q0

is non-empty and all states are reachable from Q0. We define an NBA A =
(Q,Σ, δA, Q0, Inf (Q)) over the alphabet Σ = Γ ∪ {#} as follows. If q ∈ Q and
a ∈ Γ, then δA(q, a) = δB(q, a) and δA(q,#) = Q0. Clearly, A is strongly connected.
Furthermore, δA(R,#) = Q0 for all non-empty subsets R of Q and δA(q, x#) = Q0

for all states q and all words x ∈ Σ∗ where δA(q, x) is non-empty.
B is universal iff Lfin(B) = Γ∗

iff δB(Q0, y) ̸= ∅ for all y ∈ Γ∗

iff δA(Q0, x) ̸= ∅ for all x ∈ Σ∗

By Lemma 4.4 (see Section 4.1.3), B is universal iff Pr(Lω(A)) = 1. This yields the
PSPACE-hardness of the almost universality problem for strongly connected NBA.
Moreover, all singletons {q} can reach Q0, and if there is a non-trap BSCC C of Adet,
then Q0 ∈ C. Using Corollary 4.9, we obtain:

B is universal iff Q0 is contained in some non-trap BSCC of Adet

iff Pr(Lω(A)) > 0

This yields the PSPACE-hardness of the positivity problem for strongly connected
NBA.

4.1.5 Probabilistic model checking of Markov chains against
UBA

To complete the proof of Theorem 4.1, we show how the results of the previous section
can be adapted to compute the value PrM(Lω(U)) for a Markov chainM = (S, P, ι)
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and a UBA U =
(︁
Q,Σ, δ, Q0, Inf (F )

)︁
with alphabet Σ = S.4

For an NBA A over the alphabet S, we write PrM[s](A) for PrM[s](Π) where Π
denotes the set of infinite paths s0 s1 s2 s3 . . . in the Markov chainM such that s0 = s
and s1 s2 s3 . . . ∈ Lω(A). Thus, PrM[s](A) = PrM[s](L) where L = {sw : w ∈ Lω(A)}.
In contrast, PrM[s](Lω(A)) denotes the probability of the set of infinite paths w in
M that start in s and are accepted by A. Thus, PrM[s](Lω(A)) and PrM[s](A) might
be different.

As a first step, we build a UBA P =M⊗ U that arises from the synchronous
product of the UBA U with the underlying graph of the Markov chainM. Formally,
ifM = (S, P, ι) is a Markov chainM and A =

(︁
Q,S, δ,Q0, Inf (F )

)︁
an NBA with

the alphabet S, then

M⊗A =
(︁
S ×Q,S,∆, Q′

0, Inf (S × F )
)︁

where
Q′

0 =
{︁
⟨s, q⟩ ∈ S ×Q : ι(s) > 0, q ∈ δ(Q0, s)

}︁
and for s, t ∈ S with P (s, t) > 0 and q ∈ Q:

∆(⟨s, q⟩, t) =
{︁
⟨t, p⟩ : p ∈ δ(q, t)

}︁
If P (s, t) = 0, then ∆(⟨s, q⟩, t) = ∅. Given that M viewed as an automaton over
the alphabet S behaves deterministically, the NBAM⊗A is unambiguous if A is a
UBA.

To adapt the soundness proofs accordingly we need to “relativize” the probabilities
for words in S∗ according to the paths inM. That is, we have to switch from the
uniform probability measure Pr over the σ-algebra spanned by the cylinder sets of
the finite words Cyl(x) = {xw : w ∈ Σω} to the measures PrM[s] induced by the
states ofM.

We now illustrate how the proofs can be adapted by a few central statements.

Lemma 4.44 (cf. Lemma 4.2). Let s ∈ S be a state of M and L ⊆ Sω be an
ω-regular language with PrM[s](L) > 0. Then, there exists a finite path x ∈ S∗

starting in state s such that almost all extensions of x belong to L according to the
measure PrM[s], i.e.,

PrM[s]

{︁
w ∈ L : x ∈ Pref(w)

}︁
= PrM[s]

(︁
Cyl(x)

)︁
where Pref(w) denotes the set of finite prefixes of w.

4In practice, e.g., when the UBA is obtained from an LTL formula, the alphabet of the UBA
is often defined as Σ = 2AP over a set of atomic propositions AP and the Markov chain is
equipped with a labeling function from states to the atomic propositions that hold in each state.
Clearly, unambiguity w.r.t. the alphabet 2AP implies unambiguity w.r.t. the alphabet S when
switching from the original transition function δ : Q × 2AP → 2Q to the transition function
δS : Q×S → 2Q given by δS(q, s) = δ(q, L(s)), where L : S → 2AP denotes the labeling function
of M.
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Proof. The argument is fairly the same as in the proof of Lemma 4.2. We regard a
deterministic automaton D for L and consider the product Markov chainM⊗D. In
this context, we considerM as a transition-labeled Markov chain where all outgoing
transitions of state s are labeled with s. If PrM[s](L) is positive, then there is a finite
path x from s such that the lifting of x from ⟨s, qinit⟩ in the product ends in a state
that belongs to some BSCC where the acceptance condition of D holds. But then,
w ∈ L for almost all infinite paths w inM with x ∈ Pref(w).

Lemma 4.45 (Generalization of Lemma 4.4). For each NBA A over the alphabet S
whereM⊗A is strongly connected we have:

PrM
(︁
Lω(A)

)︁
= 1− PrM

{︁
w ∈ Sω : δ(Q0, x) = ∅ for some x ∈ Pref(w)

}︁
In particular, PrM(Lω(A) ) = 1 if and only if δ(Q0, x) ̸= ∅ for all finite words
x ∈ S+ where x is a finite path inM starting in s.

Proof. The arguments transfers from the proof of Lemma 4.4. Instead of Fact 4.6, we
can rely on the original result of [CY95] for checking whether PrM(Lω(A)) > 0 for
a given Markov chainM. Note that the only reference to the probability measure
is in the form “almost all words in L enjoy property XY” which simply means “the
words in L not satisfying XY constitute a null set”. At a few places we used 1/|Σ||x|
as the measure of (the cylinder set spanned by) the finite word x as label of some
path from state p to q. The value 1/|Σ||x| has to be replaced with Prs(Cyl(x)) for the
corresponding state s inM. Note that if ⟨s, p⟩ x−→ ⟨t, q⟩ inM⊗A, then Prs(Cyl(x))
is positive.

Our algorithm relies on the observation that

PrM(Lω(U)) =
∑︂
s∈S

ι(s) · PrM[s](U [δ(Q0, s)] )

for a Markov ChainM and UBA U . As the languages of the UBA U [q] for q ∈ δ(Q0, s)
are pairwise distinct (by the unambiguity of U), we have PrM[s](U [δ(Q0, s)]) =∑︁

q∈δ(Q0,s)
PrM[s](U [q]). Thus, the task is to compute the values PrM[s](U [q]) for

s ∈ S and q ∈ Q.
Let P [s, q] denote the UBA resulting from P by declaring ⟨s, q⟩ to be initial. It

is easy to see that PrM[s](P [s, q] ) = PrM[s](U [q] ) for all states ⟨s, q⟩ of P, as the
product construction only removes transitions in U that can not occur in the Markov
chain. Our goal is thus to compute the values PrM[s](P [s, q]). For this, we remove
all states ⟨s, q⟩ from P that can not reach a state in S × F . Then, we determine
the non-trivial SCCs of P and, for each such SCC C, we analyze the sub-UBA
P
⃓⃓
C obtained by restricting to the states in C. An SCC C of P is called positive if

PrM[s](P
⃓⃓
C[s, q]) > 0 for all/any ⟨s, q⟩ ∈ C. As in Section 4.1.4, we treat the SCCs

in a bottom-up manner, starting with the BSCCs and removing them if they are
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non-positive. Clearly, if a BSCC C of P does not contain a final state or is trivial, then
C is not positive. Analogously to Lemma 4.17, we can check whether a non-trivial
BSCC C in P containing at least one final state is positive by analyzing a linear
equation system.

Lemma 4.46 (cf. Lemma 4.17). Let C be a BSCC of P and

(∗) ζs,q =
∑︂

t∈Post(s)

∑︂
p∈δC(q,t)

P (s, t) · ζt,p for all ⟨s, q⟩ ∈ C.

Then, the following statements are equivalent:

(1) C is positive,

(2) the linear equation system (∗) has a positive solution,

(3) the linear equation system (∗) has a non-zero solution.

Proof. The proof of Lemma 4.17 presented in Section 4.1.3 is directly applicable here
as well by considering the |C| × |C|-matrix M with

M⟨s,q⟩,⟨t,p⟩ =

{︃
P (s, t) : if p ∈ δ(q, t)
0 : otherwise

Note that the matrix M is non-negative and irreducible and the entry in the n-th
power of M for state ⟨s, q⟩ and ⟨t, p⟩ is the probability with respect to PrM[s] of all
infinite paths w = s0 s1 s2 . . . inM with s0 = s such that p ∈ ∆C(q, s1 . . . sn). (Recall
that ∆C denotes the transition relation of P restricted to C.)

We now explain how to adapt the cut-based approach of Section 4.1.3 for computing
the probabilities in a positive BSCC C of P .

For ⟨s, q⟩ ∈ C and t ∈ S, let ∆C(⟨s, q⟩, t) = ∆(⟨s, q⟩, t)∩C. A pure cut in C denotes
a set C ⊆ C such that PrM[s](P [C]) = 1 and C = ∆C(⟨s, q⟩, z) for some ⟨s, q⟩ ∈ C
and some finite word z ∈ S∗ such that s z is a cycle inM. (In particular, the last
symbol of z is s, and therefore C ⊆ {⟨s, p⟩ ∈ C : p ∈ Q}.)

Using Lemma 4.45 we can now adapt Corollary 4.24 and obtain:

Corollary 4.47 (Pure cuts in BSCCs of the product; cf. Corollary 4.24). Let C be a
positive BSCC of P with at least one final state. Then, for each state ⟨s, q⟩ ∈ C and
each finite word x, the following two statements are equivalent:

(a) {⟨s, p⟩ : p ∈ δC(q, x)} is a pure cut.

(b) For each y ∈ S∗, there is some p ∈ δC(q, x) such that ∆C(⟨s, p⟩, y) ̸= ∅.

As before, let C be a positive BSCC of the product-UBA P . Given a state ⟨s, q⟩
in C and a word z ∈ S∗, a word y ∈ S∗ is said to be an extension of (⟨s, q⟩, z) if the
following two conditions hold:
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(1) s y is a cycle in the Markov chainM

(2) there exists a state p ∈ Q \ {q} in U such that ∆C(⟨s, p⟩, z) ̸= ∅ and
{⟨s, q⟩, ⟨s, p⟩} ⊆ ∆C(⟨s, q⟩, y).

Note that (1) implies, if y = t0 t1 . . . tm, then t0 ∈ Post(s) and tm = s. In what
follows, for s, t ∈ S, q, p ∈ Q and x ∈ S∗, we often write

⟨s, q⟩ x−→C ⟨t, p⟩

to indicate that ⟨t, p⟩ ∈ ∆C(⟨s, q⟩, x).

Lemma 4.48 (cf. Lemma 4.32). If y is an extension of (⟨s, q⟩, z), then ∆C(⟨s, q⟩, yz)
is a proper superset of ∆C(⟨s, q⟩, z).

Proof. Let p ∈ Q \ {q} in U such that ∆C(⟨s, p⟩, z) ̸= ∅ and {⟨s, q⟩, ⟨s, p⟩} ⊆
∆C(⟨s, q⟩, y) (see condition (2)).

We first show that ∆C(⟨s, q⟩, z) ⊆ ∆C(⟨s, q⟩, yz). For this, we pick a pair ⟨t, r⟩ ∈
∆C(⟨s, q⟩, z). By condition (2) of extensions, we have ⟨s, q⟩ ∈ ∆C(⟨s, q⟩, z). Then:

⟨s, q⟩ y−→C ⟨s, q⟩
z−→C ⟨t, r⟩

and therefore ⟨t, r⟩ ∈ ∆C(⟨s, q⟩, yz).
To show that the inclusion is strict we prove that ∆C(⟨s, p⟩, z) ∩∆C(⟨s, q⟩, z) = ∅.

We suppose by contradiction that ⟨t, r⟩ ∈ ∆C(⟨s, p⟩, z) ∩∆C(⟨s, q⟩, z). Then:

⟨s, q⟩ y−→C ⟨s, q⟩
z−→C ⟨t, r⟩ and ⟨s, q⟩ y−→C ⟨s, p⟩

z−→C ⟨t, r⟩

But then q y−→ q
z−→ t and q y−→ p

z−→ t in U . This is impossible by the unambiguity
of U .

Lemma 4.49 (cf. Lemma 4.33). As before, let C be a positive BSCC of P. Then for
each ⟨s, q⟩ ∈ C and word z ∈ S+ where the last symbol is s:

∆C(⟨s, q⟩, z) is a pure cut iff the pair (⟨s, q⟩, z) has no extension

Proof. The proof is fairly similar to the proof of Lemma 4.33.
“=⇒”: Let C = ∆C(⟨s, q⟩, z) be a pure cut. Suppose by contradiction that there

exists an extension y for (⟨s, q⟩, z). Let p ∈ Q such that q ̸= p, ∆C(⟨s, p⟩, z) ̸= ∅
and {⟨s, q⟩, ⟨s, p⟩} ⊆ ∆C(⟨s, q⟩, y). By Lemma 4.48, the set ∆C(⟨s, q⟩, yz) is a proper
superset of ∆(⟨s, q⟩, z). As C is positive, we have PrMu (P [u, r] ) > 0 for all ⟨u, r⟩ ∈ C.
With an argument as in the proof of Lemma 4.33 we obtain:

PrM[s]

(︁
P [∆C(⟨s, q⟩, yz)]

)︁
> PrM[s]

(︁
P [∆C(⟨s, q⟩, z)]

)︁
Hence, PrM[s]

(︁
P [∆C(⟨s, q⟩, z)]

)︁
< 1. But then ∆C(⟨s, q⟩, z) cannot be a pure cut.

Contradiction.
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4 Unambiguous Büchi automata

“⇐=”: Suppose now that (⟨s, q⟩, z) has no extension. To prove that C =
∆C(⟨s, q⟩, z) is a cut we rely on the second part of Lemma 4.45. Thus, the task
is to show that ∆C(C, x) ̸= ∅ for all finite words x ∈ S+ where x is a finite path in
M starting in s. To prove this, one first shows that C is contained in some pure cut
R of the form ∆C(⟨s, r⟩, z) for some state r ∈ Q. As the last symbol of z is s, the
elements of R have the form ⟨s, r⟩ for some r ∈ Q. For each state p ∈ Q \ {q} where
⟨s, p⟩ /∈ R, there is some finite word y with

⟨s, q⟩ y−→C ⟨s, q⟩
y−→C ⟨s, p⟩

For this we can rely on an adaption of Lemma 4.29. Since there exists no extension
for (⟨s, q⟩, z), we have ∆C(⟨s, p⟩, z) = ∅ for all states p ∈ Q where ⟨s, p⟩ /∈ C. This
yields:

C = ∆C(⟨s, q⟩, z) = ∆C(C, z) = ∆C(R, z)

Using that R is a pure cut, we can now apply Lemma 4.45 to obtain the claim.

To compute a pure cut in C, we pick an arbitrary state ⟨s, q⟩ in C and successively
generate path fragments z0, z1, . . . , zk ∈ S∗ inM by adding prefixes. More precisely,
z0 = ε and zi+1 has the form yzi for some y ∈ S+ such that (1) s y is a cycle
in M and (2) there exists a state p ∈ Q \ {q} in U with ∆C(⟨s, p⟩, zi) ̸= ∅ and
{⟨s, q⟩, ⟨s, p⟩} ⊆ ∆C(⟨s, q⟩, y). Each such word y is called an extension of (⟨s, q⟩, zi),
and ∆C(⟨s, q⟩, zi+1) = ∆C(⟨s, q⟩, yzi) is a proper superset of ∆C(⟨s, q⟩, zi). The set
C = ∆C(⟨s, q⟩, z) is a pure cut if and only if (⟨s, q⟩, zi) has no extension. The search
for an extension can be realized efficiently using a technique similar to the one
presented in Section 4.1.3. Thus, after at most min{|C|, |Q|} iterations, we obtain a
pure cut C.

Having computed a pure cut C of C, the values PrMs (P [s, q]) for ⟨s, q⟩ ∈ C are
then computable as the unique solution of the linear equation system consisting of
equations (*) and the additional equation

∑︁
⟨s,q⟩∈C ζs,q = 1.

Theorem 4.50 (cf. Theorem 4.35). Let C be a positive BSCC of P and C a pure cut
for C. Then, the probability vector (PrM[s](Lω(P [s, q]) )⟨s,q⟩∈C is the unique solution
of the following linear equation system:

(1) ζs,q =
∑︂

t∈Post(s)

∑︂
p∈δC(q,t)

P (s, t) · ζt,p for all ⟨s, q⟩ ∈ C

(2)
∑︂

⟨s,q⟩∈C

ζs,q = 1

Proof. It is easy to see that the vector (ζ∗⟨s,q⟩)⟨s,q⟩∈C with

ζ∗⟨s,q⟩ = PrM[s](Lω(P [s, q]) )
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is indeed a solution of (1) and (2). For the uniqueness, we rely on the proof
presented for Theorem 4.35 in Section 4.1.3 with the |C| × |C|-matrix M defined by
M⟨s,q⟩,⟨t,p⟩ = P (s, t) if p ∈ δ(q, t) and M⟨s,q⟩,⟨t,p⟩ = 0 otherwise.

Given a non-trivial, non-bottom SCC of P and a state ⟨s, q⟩ ∈ C, we write
C[s, q] to denote the sub-UBA of P that arises when declaring ⟨s, q⟩ as initial
state and restricting the transitions of P to those inside C. That is, C[t, p] =(︁
C, S,∆C, ⟨s, q⟩, Inf (F ∩ C)

)︁
. Then, C is positive iff PrM[s](C[s, q]) > 0 for some state

⟨s, q⟩ ∈ C iff PrM[s](C[s, q]) > 0 for all states ⟨s, q⟩ ∈ C.
In this way we adapt Theorem 4.35 to obtain the values PrM[s](P [s, q]) for the

states ⟨s, q⟩ belonging to some positive BSCC of P. It remains to explain how to
adapt the equation system of Theorem 4.40.

Recall that we assume a preprocessing that treats the SCCs of P in a bottom-up
manner and turns P into a UBA where all BSCCs are non-trivial and positive. QBSCC
denotes the set of states that are contained in some BSCC of P and Q? denotes the
states of (the modified UBA) P not contained in QBSCC . For ⟨s, q⟩ ∈ Q?, let βs,q = 0
if ∆(⟨s, q⟩, t) ∩QBSCC = ∅ for all t ∈ S. Otherwise:

βs,q =
∑︂

t∈Post(s)

∑︂
p ∈ δ(q, t) s.t.
⟨t, p⟩ ∈ QBSCC

P (s, t) · PrM[t](P [t, p] )

Theorem 4.51 (cf. Theorem 4.40). Notations and assumptions as before. Then, the
vector (PrM[s](P [s, q]))⟨s,q⟩∈Q?

is the unique solution of the following linear equation
system:

ζs,q =
∑︂

t∈Post(s)

∑︂
p ∈ δ(q, t) s.t.
⟨t, p⟩ /∈ QBSCC

P (s, t) · ζt,p + βs,q for ⟨s, q⟩ ∈ Q?

Proof. It is easy to see that the vector (PrM[s](P [s, q]))⟨s,q⟩∈Q?
indeed solves the linear

equation system. For the uniqueness of the solution, we can apply the same arguments
as in the proof of Theorem 4.40, but now for the |Q?| × |Q?|-matrix M given by
M⟨s,q⟩,⟨t,p⟩ = P (s, t) if p ∈ δ(q, t) and M⟨s,q⟩,⟨t,p⟩ = 0 otherwise, where ⟨s, q⟩ and ⟨t, p⟩
range over all states in Q?.

Let QBSCC be the set of BSCC states of P and Q? be the states of P not contained
in QBSCC . For ⟨s, q⟩ ∈ Q?, let βs,q = 0 if ∆(⟨s, q⟩, t) ∩ QBSCC = ∅ for all t ∈ S.
Otherwise:

βs,q =
∑︂

t∈Post(s)

∑︂
p ∈ δ(q, t) s.t.
⟨t, p⟩ ∈ QBSCC

P (s, t) · PrM[t](P [t, p] )
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4 Unambiguous Büchi automata

Then, the vector (PrM[s](P [s, q]))⟨s,q⟩∈Q?
is the unique solution of the linear equation

system

ζs,q =
∑︂

t∈Post(s)

∑︂
p ∈ δ(q, t) s.t.
⟨t, p⟩ /∈ QBSCC

P (s, t) · ζt,p + βs,q for ⟨s, q⟩ ∈ Q?

This completes the proof of Theorem 4.1.

4.1.6 Separated Büchi automata
Recall that an NBA is called separated if the languages of its states are pairwise
disjoint. Obviously, each separated NBA is unambiguous. Although separated Büchi
automata are as powerful as the full class of NBA [CM03] and translations of LTL
formulas into separated UBA of (single) exponential time complexity exist [WVS83;
CSS03], non-separated UBA and even deterministic automata can be exponentially
more succinct than separated UBA [BL10].

We now explain in which sense our algorithm for (possibly non-separated) UBA
can be seen as a conservative extension of the approach presented by Couvreur, Saheb
and Sutre [CSS03]. To keep the presentation simple, we consider the techniques to
compute Pr(Lω(U)). Analogous statements hold for the computation of PrM(Lω(U))
for a given Markov chainM.

Given a separated, strongly connected UBA U =
(︁
Q,Σ, δ, Q0, Inf (F )

)︁
with at least

one initial and one final state, we have:

Pr(Lω(U)) > 0 iff Q is a reachable cut

Furthermore, Q is a cut iff δ(Q, a) = Q for all a ∈ Σ (Lemma 4.4). Thus, for the
special case where the given UBA is separated and positive, there is no need for the
inductive construction of a cut as outlined in Section 4.1.3. Instead, we can deal
with C = Q. The linear equations in Theorem 4.35 can be derived from the results
presented in [CSS03]. More precisely, equation (1) corresponds to the equation system
in Proposition 5.1 of [CSS03], while equation (2) can be rephrased to

∑︁
q∈Q ζq = 1,

which corresponds to the equation used in Proposition 5.2 of [CSS03].
To check whether Q is a cut for a given (possibly non-positive) separated, strongly

connected UBA, [CSS03] presents a simple criterion that is based on a counting
argument. Lemma 4.14 in [CSS03] yields that for separated, strongly connected UBA
we have:

Q is a cut iff |Σ| · |Q| = |δ|

where |δ| is the total number of transitions in U given by
∑︁
q∈Q

∑︁
σ∈Σ
|δ(q, σ)|.
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4.2 Implementation and Experiments
We implemented a probabilistic model checking procedure for Markov chains and
UBA specifications using the algorithm detailed in Section 4.1 as an extension to the
probabilistic model checker PRISM [KNP11] version 4.4 beta. All experiments were
carried out on a computer with two Intel E5-2680 8-core CPUs at 2.70 GHz with
384GB of RAM running Linux, a time limit of 30 minutes and a memory limit of
10GB, if not stated otherwise. Our implementation is based on the explicit engine of
PRISM, where the Markov chain is represented explicitly. Our implementation supports
UBA-based model checking for handling the LTL fragment of PRISM’s PCTL∗-like
specification language as well as direct verification against a path specification given
by a UBA provided in the HOA format [Bab+15]. For LTL formulas, we rely on
external LTL-to-UBA translators. For the purpose of the benchmarks we employ
the ltl2tgba tool from SPOT [Dur14] version 2.5 to generate a UBA for a given LTL
formula. The according implementation, as well as the data logs can be found at
[Mül18].

For the linear algebra parts of the algorithms, we rely on the COLT library [Hos04].
We considered two different variants for the SCC computations. The first variant
(see page 73) relies on COLT to perform a QR decomposition of the matrix for the SCC
to compute its rank, which allows to decide the positivity of the SCC. The second
approach (see page 81) relies on a variant of the power iteration method for iteratively
computing an eigenvector. This method has the benefit that, in addition to deciding
the positivity, the computed eigenvector can be directly used to compute the values
for a positive SCC, once a cut has been found. (As the proof of Theorem 4.35 shows:
Pr(Lω(q)) = ζ∗q /

∑︁
p∈C ζ

∗
p if ζ∗ is an eigenvector of the matrix M for eigenvalue 1.)

We evaluated the performance and scalability of the cut generation algorithm together
with both approaches for treating SCCs. For this purpose we selected automata
specifications that are challenging for our UBA-based model checking approach. As
the power iteration method performed better, our benchmark results presented in
this section are based on power iteration method for the SCC handling.

4.2.1 Evaluation of the rank computation
To assess the scalability of our implementation in the face of particularly difficult
UBA, we considered two families of parametrized UBA. Both have an alphabet defined
over a single atomic proposition resulting in a two-element alphabet that we use to
represent either a 0 or a 1 bit. The first automaton (“complete automaton”), depicted
in Figure 4.10 on the left for k = 2, is a complete automaton, i.e., recognizes Σω. It
consists of a single, accepting starting state that non-deterministically branches to
one of 2k states, each one leading after a further step to a k-state chain that only lets
a particular k-bit bitstring pass, subsequently returning to the initial state. As all
the k-bit bitstrings that can occur have a chain, the automaton is complete. Likewise,
the automaton is unambiguous as each of the bitstrings can only pass via one of the
chains.
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Figure 4.10: UBA “complete automaton” (left) and “nearly complete automaton”
(right) for k = 2.

Our second automaton (“nearly complete automaton”), depicted in Figure 4.10 on
the right for k = 2, arises from the first automaton by a modification of the chain
for the “all zero” bitstring, inhibiting the return to the initial state. Clearly, the
automaton is not complete.

We use both kinds of automata in an experiment using our extension of PRISM
against a simple, two-state DTMC that encodes a uniform distribution between
the two “bits”. This allows us to determine whether the given automaton is almost
universal. As the PRISM implementation requires the explicit specification of a
DTMC, we end up with a product that is slightly larger than the UBA, even though
we are essentially performing the UBA computations for the uniform probability
distribution. In particular, this experiment serves to investigate the scalability of our
implementation in practice for determining whether an SCC is positive, for the cut
generation and for computing the probabilities for the SCC states. It should be noted
that equivalent deterministic automata, e.g., obtained by determinizing the UBA
using the ltl2dstar tool are significantly smaller (in the range of tens of states) due
to the fact that the UBA in question are constructed inefficiently on purpose.

cut generation power iter. rank-based
k |A| SCC size tcut ext. checks cut size teigen iter. tpositive tvalues
5 193 258 0.1 s 10124 32 <0.1 s 215 0.5 s 0.4 s
6 449 578 0.1 s 40717 64 <0.1 s 282 4.3 s 4.3 s
7 1025 1282 0.9 s 172102 128 0.1 s 358 56.5 s 56.9 s
8 2305 2818 1.8 s 929413 256 0.1 s 443 830.8 s 835.1 s
9 5121 6146 17.9 s 6818124 512 0.1 s 537 - -

Table 4.1: Benchmark results for “complete automaton” with parameter k. − stands
for timeout.

Table 4.1 presents statistics for our experiments with the “complete automaton”
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power iteration rank-based
k |A| SCC size teigen iter. tpositive
5 193 250 <0.1 s 52 0.4 s
6 449 569 <0.1 s 78 4.1 s
7 1025 1272 <0.1 s 112 54.4 s
8 2305 2807 0.1 s 155 844.0 s
9 5121 6134 0.1 s 205 -

Table 4.2: Benchmark results for “nearly complete automaton” with parameter k.

with various parameter values k, resulting in increasing sizes of the UBA and the SCC
(number of states). We list the time spent for generating a cut (tcut), the number
of checks whether a given word is an extension during the cut generation algorithm,
and the size of the cut. In all cases, the cut generation requires 2 iterations. Then
we compare the SCC handling based on the power iteration with the SCC handling
relying on a rank computation for determining positivity of the SCC and a subsequent
computation of the values. For the power iteration method, we provide the time
spent for iteratively computing an eigenvector (teigen) and the number of iterations
(iters.). For the other method, we provide the time spent for the positivity check by
a rank computation with a QR decomposition from the COLT library (tpositive) and
for the subsequent computation of the values via solving the linear equation system
(tvalues). We used an overall timeout of 60 minutes for each PRISM invocation and an
epsilon value of 10−10 as the convergence threshold.

As can be seen, the power iteration method for the numeric SCC handling performed
well, with a modest increase in the number of iterations for rising k until converging
on an eigenvector, as it can fully exploit the sparseness of the matrix. In contrast, the
QR decomposition for rank computation performs worse. The time for cut generation
exhibits a super-linear relation with k, which is reflected in the higher number of
words that were checked to determine that they are an extension. Note that our
example was chosen in particular to put stress on the cut generation.

The results for the “nearly complete automaton”, depicted in Table 4.2, focus
on the computation in the “dominant SCC”, i.e., the one containing all the chains
that return to the initial state. For the other SCC, containing the self-loop, non-
positivity is immediately clear as it does not contain a final state. In contrast to the
“complete automaton”, no cut generation takes place, as the SCC is not positive. The
results roughly mirror the ones for the “complete automata”, i.e., the power iteration
method is quite efficient in determining that the SCC is not positive, while the QR
decomposition for the rank computation needs significantly more time and scales
worse.

4.2.2 Case Study: Bounded Retransmission Protocol
We report here on benchmarks using the bounded retransmission protocol (BRP)
case study of the PRISM benchmark suite [KNP12]. The model from the benchmark
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suite covers a single message transmission, retrying for a bounded number of times
in case of an error. We have slightly modified the model to allow the transmission
of an infinite number of messages by restarting the protocol once a message has
been successfully delivered or the bound for retransmissions has been reached. We
will include benchmarks with pre-generated automata, as well as benchmarks with
LTL as starting point. For the LTL benchmarks we have implemented the iterative
refinement method presented in [CY95], as it is also a single-exponential approach.
We call this implementation PRISM CY95. The benchmarks include also an evaluation
for deterministic Emerson-Lei automata generated by Delag, which we present in
Chapter 5.

Automata based specifications. We consider the property “the message was re-
transmitted k steps before an acknowledgment.” To remove the effect of selecting
specific tools for the LTL-to-automaton translation (ltl2tgba for UBA, the Java-
based PRISM reimplementation of ltl2dstar [KB06] to obtain a deterministic Rabin
automaton (DRA) for the standard PRISM approach), we consider directly model
checking against automata specifications at first. As the language of the property
is equivalent to the UBA depicted in Figure 4.1 (on the left) when a stands for a
retransmission, b for an acknowledgment, and c for no acknowledgment, we use this
automaton and the minimal DBA for the language (this case is denoted by Ak).
We additionally consider the UBA and DBA obtained by replacing the self-loop in
the last state with a switch back to the initial state (denoted by Bk), i.e., roughly
applying the ω-operator to Ak.

Table 4.3 shows results for selected k (with a timeout of 30 minutes), demonstrating
that for this case study and properties our UBA-based implementation is generally
competitive with the standard approach of PRISM relying on deterministic automata.
For Ak, our implementation detects that the UBA has a special shape where all final
states have a true-self loop which allows skipping the SCC handling. Without this
optimization, tPos are in the sub-second range for all considered Ak. At a certain
point, the implementation of the standard approach in PRISM becomes unsuccessful,
due to PRISM size limitations in the product construction of the Markov chain and the
deterministic automaton (Ak/Bk: k ⩾ 16). As can be seen, using the UBA approach
we were able to successfully scale the parameter k beyond 48 when dealing directly
with the automata-based specifications (Ak/Bk) and within reasonable time required
for model checking.

LTL based specifications. We consider here two LTL properties: The first one is:

ϕk = (¬ack_received) U
(︁
retransmit ∧ (¬ack_received U =k ack_received)

)︁
,

where aU =kb stands for a∧¬b∧⃝(a∧¬b)∧ . . .∧⃝k−1(a∧¬b)∧⃝kb. The formula
ϕk ensures that k steps before an acknowledgment the message was retransmitted.
Hence, it is equivalent to the property described by the automaton Ak. For the
LTL-to-automata translation we included the Java-based PRISM reimplementation
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PRISM standard PRISM UBA
|AkDRA| |M⊗AkDRA| tMC |AkUBA| |M⊗AkUBA| tMC tPos

k = 4, A4 33 61,025 0.4 s 6 34,118 0.3 s
B4 33 75,026 0.4 s 6 68,474 1.3 s 1.0 s

k = 6, A6 129 62,428 0.5 s 8 36,164 0.2 s
B6 129 97,754 0.5 s 8 99,460 1.7 s 1.3 s

k = 8, A8 513 64,715 0.6 s 10 38,207 0.3 s
B8 513 134,943 0.7 s 10 136,427 2.6 s 2.1 s

k = 14, A14 32,769 83,845 4.2 s 16 44,340 0.3 s
B14 32,769 444,653 4.9 s 16 246,346 6.8 s 6.1 s

k = 16, A16 131,073 − − 18 46,390 0.3 s
B16 131,037 − − 18 282,699 8.9 s 8.0 s

k = 48, A48 − − − 50 79,206 0.8 s
B48 − − − 50 843,414 72.4 s 70.3 s

Table 4.3: Statistics for DBA/DRA- and UBA-based model checking of the BRP case
study (parameters N = 16, MAX = 128), a DTMC with 29358 states,
depicting the number of states for the automata and the product and the
time for model checking (tMC). For B, the time for checking positivity
(tPos) is included in tMC. The mark − stands for “not available” or timeout
(30 minutes).

of ltl2dstar [KB06] to obtain a deterministic Rabin automaton (DRA) for the
standard PRISM approach as well as our tool Delag which we present in Chapter 5.
For the purpose of this benchmark, it is sufficient to know that Delag recognizes
that ϕk is a cosafety language and creates a deterministic Büchi automaton with
a construction from Rabinizer [EKS16]. For the generation of UBA, we relied on
SPOT, as it is the only tool that is capable of generating UBA explicitly. SPOT actually
generates a UFA for ϕk which is recognized by our implementation in PRISM as
explained above.
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k PRISM standard PRISM Delag PRISM UBA PRISM CY95
|ADRA| |M⊗ADRA| tMC |AEL| |M⊗AEL| tMC |AUBA| |M⊗AUBA| tMC |Mfinal| tMC

4 122 29,358 0.6 s 23 29,358 1.1 s 21 34,757 0.3 s 42,081 1.8 s
6 4,602 29,358 1.8 s 73 61,790 1.2 s 71 37,951 0.4 s 61,795 3.8 s
8 − − − 267 63,698 1.3 s 265 41,902 1.1 s 87,063 9.2 s
14 − − − 16,401 79,576 6.4 s − − − 106,876 28.1 s
16 − − − 65,555 − − − − − 106,876 35.1 s

Table 4.4: Statistics for automata-based (standard, Delag, and UBA) and CY95 model checking of the BRP model and ϕk.
For every approach except PRISM CY95, the corresponding automata sizes and product sizes are depicted, for
PRISM CY95 the size of the last refined Markov chain (|Mfinal|) is depicted. For every approach the overall model
checking times (tMC) are listed, which includes the time for automata translation in case of the automata based
approaches.

k PRISM standard PRISM Delag PRISM UBA PRISM CY95
|ADRA| |M⊗ADRA| tMC |AEL| |M⊗AEL| tMC |AUBA| |M⊗AUBA| tpos tCut tMC |Mfinal| tMC

1 6 29,358 0.3 s 9 33,454 1.0 s 4 31,422 <0.1 s n/a 0.3 s 29,358 0.5 s
2 17 37,678 0.4 s 16 39,726 1.1 s 8 41,822 4.5 s 0.2 s 5.0 s 33,470 0.5 s
3 65 39,726 0.4 s 28 43,806 1.1 s 14 45,934 4.9 s 0.2 s 5.5 s 37,711 0.8 s
4 314 43,806 0.5 s 52 47,902 1.2 s 22 54,126 5.6 s 0.2 s 6.2 s 42,081 1.1 s
5 1,443 47,902 1.1 s 100 56,062 1.3 s 32 62,334 6.4 s 0.2 s 7.0 s 50,918 1.3 s
6 9,016 56,029 3.9 s 196 60,113 1.3 s 44 78,669 9.1 s 0.3 s 9.9 s 61,795 1.7 s
7 67,964 − − 388 68,249 1.5 s 58 86,853 10.1 s 0.4 s 11.0 s 74,952 2.2 s
8 − − − 772 72,323 1.9 s 74 103,157 13.4 s 0.2 s 14.4 s 88,117 2.7 s
10 − − − 3,076 84,468 5.7 s 112 127,562 19.2 s 0.2 s 21.2 s 88,117 3.7 s

Table 4.5: Statistics for automata-based (standard, Delag, and UBA) and CY95 model checking of the BRP model and ψk.
The structure of this table corresponds to Table 4.4, but with additional listing of the time for the positivity checks
tpos and cut calculation time tcut. n/a means not available.
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4.2 Implementation and Experiments

Table 4.4 lists the results for model checking ϕk. From a certain point on, the
implementation of the standard approach in PRISM is unsuccessful, due to PRISM
restriction in the DRA construction (k ⩾ 8) or a timeout during UBA construction
(k ⩾ 13). If PRISM (vs. SPOT or Delag) was able to construct an automaton, then
the automata-based approaches were faster than PRISM CY95. Delag comes close
to produce deterministic automata with the possible 2k states, but SPOT produces
unnecessary large UBA for ϕk. This is reflected in the model checking runtimes where
the UBA approach is the fastest for k ≤ 8, but this turns for k ≥ 9, where the UBA
approach took 3.1s, and PRISM Delag took 1.3s. For k ≥ 13, SPOT was not able to
produce a UBA within the time bound of 30min.

As second formula we investigate

ψk = □(msg_send→ ♦(ack_send ∧ ♦⩽kack_received)),

where ♦⩽ka denotes a ∨⃝(a ∨⃝(. . . ∨⃝a))⏞ ⏟⏟ ⏞
k times

. This formula requires that every

request (sending a message and waiting for an acknowledgment) is eventually re-
sponded by an answer (the receiver of the message sends an acknowledgment and
this acknowledgment is received within the next k steps).

Table 4.5 summarizes the result of the benchmark for ψk. Here, the PRISM standard
approach with its own implementation of ltl2dstar was able to finish the calculations
until k = 6. For k = 7, PRISM standard was able to construct the DRA (with 67,964
states and within 27.5 seconds), but not able to construct the product anymore. In
case of Delag, ψk does not belong to the natively supported fragment, and SPOT is
used as the fallback solution to generate a deterministic automaton.

In contrast to the deterministic automata, the UBA sizes increase moderately for an
increasing k. The positivity check of the UBA-approach is the most time-consuming
part of the calculation. For k = 1 there is no positive SCC, so the cut calculation
is omitted. The model checking process consumes more time in the UBA case in
comparison with PRISM standard until k = 6, but for bigger k the performance turned
around. Even if PRISM standard would have complete the calculation for k = 7 it
would have been slower, as the creation of the DRA took 27.5 seconds.

The other single exponential approach, PRISM CY95, outperforms the other ap-
proaches in case of ψk. The final refined Markov chainMfinal are always smaller than
the size of the product with the UBA. So, besides the case k = 1, the ratio between
tMC for PRISM UBA and tMC for PRISM CY95 amounts between 5 (k = 7) and 10
(k = 2).

4.2.3 NBA versus UBA
To gain some understanding on the cost of requiring unambiguity for an NBA, we
have compared the sizes of NBA and UBA generated by the ltl2tgba tool of SPOT
for the formulas of [EH00; SB00; DAC99] used for benchmarking, e.g., in [KB06]. We
consider both the “normal” formulas and their negations, yielding 188 formulas.
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4 Unambiguous Büchi automata

Number of states ≤ x ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 7 ≤ 10 ≤ 12 ≤ 20 > 20
ltl2tgba NBA 12 49 103 145 158 176 181 185 188 0
ltl2tgba UBA 12 42 74 108 123 153 168 173 180 8

Table 4.6: Number of formulas where the (standard) NBA and UBA has a number
of states ≤ x.

As can be seen in Table 4.6, both the NBA and UBA tend to be of quite reasonable
size. Most of the generated UBA (102) have the same size as the NBA and for 166
of the formulas the UBA is at most twice the size as the corresponding NBA. The
largest UBA has 112 states, the second largest has 45 states.

4.3 Conclusion
In this chapter we presented a polynomial-time algorithm for Markov chain analysis
against properties given as unambiguous Büchi automata. As LTL formulas can be
transformed into UBA with a single exponential blow-up, the overall time complexity
becomes single exponential.

We provided an extension of PRISM for this approach and its practical evaluation
shows that the UBA-based approach is very competitive in comparison to the approach
using deterministic automata, in some cases even outperforms deterministic automata.

For the other single exponential approaches like [CSS03] using separated automata
and [BRV04] using weak alternating automata we are not aware of any available
implementation.5

The single exponential approach of [CY95] is competitive to the UBA approach,
as specifically the positivity check can be eluded. In our benchmark of the bounded
retransmission protocol, the UFA/UBA approach outperformed PRISM CY95, if the
property was actually a UFA, or the LTL formula could be translated to one. In case
an actual UBA was used, PRISM CY95 outperformed PRISM UBA due to the long
positivity checks to identify the positive SCCs.

In a more abstract comparison, Markov chain analysis via UBA offer some ad-
vantages regarding the flexibility. The intermediate step of transforming LTL to
UBA allows reduction techniques as, for example, simulation. Also, the generation
of UBA could be designed to create smaller UBA. As our experiments suggests, the
eigenvalue algorithm can deduce non-positiveness of an SCC very fast in practice,
which is also reflected in the benchmark of the bounded retransmission protocol. In
case of a positive SCC, the eigenvalue computation consumes more time and the
UBA approach can be slower than the iterative refinement of PRISM CY95. For the
generation of UBA we used the tool SPOT, which implements a rather simple and
straightforward way to produce unambiguous Büchi automata [Dur17]. Alternatively,

5The paper [CSS03] addresses experiments with a prototype implementation, but this implementa-
tion seems not to be available anymore. Section 4.1.6 briefly explains that our algorithm can be
seen as a generalization of the approach of [CSS03] with separated UBA.
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4.3 Conclusion

Tulip contained an LTL-to-UBA translator, but it is not available anymore. As
in case with deterministic automata, the performance of the UBA-based approach
depends strongly on the availability of small UBA. In contrast to non-deterministic
or deterministic automata, the generation of small UBA or their simplification has
not yet been explored thoroughly. Another promising approach would be to modify
known LTL-to-NBA translations. We see a potential in the compositional approach of
[EKS18] by a modification of the translations for the fragments to generate UBA and
a disjoint union for the languages in the master theorem of [EKS18]. Alternatively,
one would change the longer known translation of [GO01; Bab+12] such that one
creates an unambiguous very weak alternating automaton and applies an adjusted,
unambiguity-preserving transformation to NBA. However, for general LTL bench-
marks, the difference in the number of states between NBA and UBA is comparably
small, but as our LTL formulas for the bounded retransmission protocol benchmark
suggest, the look-ahead of UBA has not been fully exploited yet.
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5 Emerson-Lei acceptance
In the previous chapters we focused on ω-automata with a restricted form of non-
determinism. Now we turn to deterministic ω-automata but delve into the acceptance
condition of ω-automata. It is well-known, that the acceptance condition of an
ω-automaton has an important influence of the size of the automaton, even in the
non-deterministic case (see for example [Bok17b]). Also for deterministic automata,
an exponential blow-up in the state-space may be unavoidable, if one switches from
a Rabin acceptance to a Streett acceptance (or the other way around), see [SV89].

We reexamine the Muller acceptance, but due to its large representation, we add a
crucial twist by a symbolic representation. A (standard) Muller acceptance is a subset
of the state power set (or transition power set) stating explicitly which inf(ρ) of a
run ρ are accepting. More formally, a state-based Muller acceptance of an automaton
with state space Q is a set Z ⊆ 2Q and a run ρ is accepting if and only if inf(ρ) ∈ Z.
Thus, the acceptance can be exponentially big in the number of states. This has
led to a representation in a symbolic fashion, as presented in [Bab+15], which we
call Emerson-Lei acceptance (EL for short). For the symbolic representation the
atoms Fin (Z) and Inf (Z) with Z ⊆ Q are introduced with the obvious semantics: A
run ρ is accepting for Fin (Z) if and only if Z is visited only finitely often in ρ; ρ is
accepting for Inf (Z) if and only if Z is visited infinitely often in ρ.1

This symbolic Muller acceptance have already been studied by Emerson and Lei.
In [EL85] they regard it as a fairness constraint for CTL model checking on Kripke
structures. One problem they consider is to search for a path satisfying a fairness
constraint (which corresponds to checking non-emptiness for an EL automaton and
to positive probability under a maximal scheduler for an MDP). In case of disjunction
of Streett conditions they provide an algorithm with a linear time complexity in
the Kripke structure size and quadratic in the size of the fairness constraint. The
authors also reduces 3SAT to the general case of finding an accepting path in a
Kripke structure for a fairness constraint and thus show the NP-hardness of it. The
NP membership of the problem is obtained by a reference to [SC85]. The authors
of [SC85] consider Kripke structures and the LTL fragment LTL(♦,□), i.e., the
fragment allowing only ♦ and □ as temporal operators and prove an analogous
NP-completeness result for this fragment.

Moving to a compactly expressed acceptance condition allows us to reduce the
number of states and to use fewer acceptance sets compared to existing translations,
although there is a well-known exponential lower bound for the size of deterministic

1Transition-based Muller acceptance and transition-based Emerson-Lei acceptance are defined
analogously.
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5 Emerson-Lei acceptance

ω-automata starting from a non-deterministic ω-automaton [Mic88; Saf88].
The richer acceptance condition complicates typical algorithmic questions, as

deciding positivity for Markov decision processes (does “Prmax
M (L) > 0” hold), or

emptiness for ω-automata.
While for Rabin acceptance the solution of the positivity problem for MDPs (and

emptiness for ω-automata) is rather straightforward, the same problems for Streett
acceptance triggered a long line of research, see, e.g., [EL85; EL87; BGC09b] where
a repeated generation of SCCs and removal of Fin (·) states is done, until one SCC
is found, that contains only Inf (·) states or no SCC is left, which means that the
Streett condition is unsatisfiable. This algorithm has been improved by heuristics in
[RT96; LH00], and adapted to symbolic computation in [BGS00], parallel computation
[ČP03], and on-the-fly-techniques [DPC09].

A lot of research has put into the translation of LTL to deterministic ω-automata
(see Section 1.1.3), but to the best of our knowledge all those translations are targeted
at a particular acceptance like Rabin, Streett or parity. There exists already the
idea of a production construction in [Bab+15] to obtain a complex acceptance: The
formula is split into several subformulas, where the top-most operator in the syntax
tree is a temporal operator, and the subformulas are not nested within the scope
of another temporal operator. These subformulas are converted to deterministic
automata with one of the already known translators. These deterministic automata
are composed in a product construction, where the graph is standard product, and
the acceptance of the product automaton where every top-most temporal formula is
substituted by the acceptance of the corresponding deterministic automaton.

Contribution. We present a translation from LTL to deterministic Emerson-Lei
automata that trades a compact state space for a more complex acceptance condition
structure. Here, we give a direct translation of fragments of LTL without an interme-
diate step over non-deterministic automata. We consider special fairness properties
in particular and give a translation based on buffers. For safety and cosafety LTL
formulas we rely on the af function [EKS16; Sic+16] computing the left-derivative
directly on the formula. Additionally, if we encounter a subformula not contained
in our supported fragments for a direct translation, we rely on external tools for
translation, and compose a deterministic automaton for the overall formula with the
product construction of [Bab+15]. We improve the product construction and make
use of the knowledge about the subformulas, if one subformula falls into the fairness or
safety/cosafety fragment. This knowledge helps us to suspend one automaton similar
to [Bab+13a], but we work more on the automaton level whereas [Bab+13a] works
on the LTL level. A general scheme for our approach is depicted in Figure 5.1, which
we implemented in our tool Delag (Deterministic Emerson-Lei Automata Generator).

As a second theoretical contribution we consider the complexity of deciding
Prmax

M (Φ) > 0 for an MDPM and an Emerson-Lei acceptance Φ. We prove, that
the positivity problem is NP-complete for a class of Emerson-Lei acceptances if the
satisfiability problem is NP-complete for the corresponding class of Boolean formu-
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5.1 Construction

LTL
ϕ

(co-)safety
♦(b1 ∧ ♦b2)

TELA

fairness
LTL♦□,□♦(♦,□,⃝)

□♦ (□c)
□♦ (a1 ∧⃝a2)

fairness
LTL♦□,□♦(⃝)

♦□ c
□♦ (a1 ∧⃝a2)

TELA

unsupported
fragment

□(d1 → ♦d2)
TELA

TELA
for ϕsplit

rewrite

external tool product

Figure 5.1: The input LTL formula is split up, each subformula is translated indepen-
dently, and then a product automaton is constructed, as can be seen for the
example ϕ = □♦ (a1∧⃝ a2)∧♦ (b1∧♦ b2)∧□♦ (□c)∧□ (d1 → ♦d2). The
abbreviation TELA stands for transition-based Emerson-Lei automata.

las. This NP-completeness result inspired us to take on a well-known SAT-solving
algorithm, called DPLL (see [DP60] and its refinement [DLL62]). This DPLL-based
algorithm for deciding positivity for the whole class of Emerson-Lei acceptance turns
out to be polynomial in time for Streett and (generalized) Rabin acceptance.

We conducted several experiments to evaluate the practical impact of this idea:
At first we compared the size of the automata measured in state space size as well
as acceptance sizes for our tool and several other tools like SPOT and Rabinizer.
Secondly, we performed a case study (IEEE 802.11 Wireless LAN Handshaking
protocol) and also compared it with SPOT and Rabinizer. On both sides, we could
show the potential of Delag, i.e., allowing arbitrary acceptance conditions to obtain
smaller automata.

5.1 Construction
The automaton is constructed from an LTL formula in positive normal form as a
product of smaller automata for each top-most temporal subformula. For this we
define sf(ϕ) to be the set of temporal subformulas not nested within the scope of
another temporal operator, e.g., sf((♦□a) ∨⃝b) = {♦□a,⃝b}.

5.1.1 Fragments of LTL
We study several syntactic fragments of LTL. Recall, that LTL(M) consists all LTL
formulas whose temporal operators occur solely in M , and that LTL□♦,♦□(♦,□,⃝) is
an abbreviation for the set of formulas of the form ♦□ϕ or □♦ϕ with ϕ having only
♦,□ or ⃝ as temporal operators. At first, we show that the fairness LTL fragment
can be simplified to formulas without nested ♦ and □:
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5 Emerson-Lei acceptance

Theorem 5.1 (Fairness LTL Normal Form). Let ϕ be an LTL♦□,□♦(♦,□,⃝) formula.
Then there exists an equivalent formula ϕ′ ≡ ϕ that is a Boolean combination of
formulas in LTL♦□,□♦(⃝) and in positive normal form.

Proof. W.l.o.g. we assume that ϕ is given in positive normal form. Then, the
exhaustive application of the following folklore equivalence-preserving rewrite rules,
described in [EH00; SB00; Li+16b], brings every fairness LTL formula into the desired
normal form:

♦□(♦ϕ) ↦→ □♦ϕ □♦(♦ϕ) ↦→ □♦ϕ
♦□(□ϕ) ↦→ ♦□ϕ □♦(□ϕ) ↦→ ♦□ϕ
♦□(⃝ϕ) ↦→ ♦□ϕ □♦(⃝ϕ) ↦→ □♦ϕ

♦□(ϕ ∧ ψ) ↦→ ♦□ϕ ∧ ♦□ψ □♦(ϕ ∨ ψ) ↦→ □♦ϕ ∨□♦ψ
♦□(ϕ ∨ ♦ψ) ↦→ ♦□ϕ ∨□♦ψ □♦(ϕ ∧ ♦ψ) ↦→ □♦ϕ ∧□♦ψ
♦□(ϕ ∨□ψ) ↦→ ♦□ϕ ∨ ♦□ψ □♦(ϕ ∧□ψ) ↦→ □♦ϕ ∧ ♦□ψ

ϕ ̸∈ LTL(⃝)⇒ ♦□(ϕ) ↦→ ♦□(cnf(ϕ)) ϕ ̸∈ LTL(⃝)⇒ □♦(ϕ) ↦→ □♦(dnf(ϕ))
with cnf(ϕ) and dnf(ϕ) denoting the translation into conjunctive normal form (CNF)
and disjunctive normal form (DNF).

This translation might cause an exponential blow-up in formula size due to the
translation into conjunctive and disjunctive normal form. Concerning the number
of states, the construction for fairness LTL to deterministic automata we present is
only dependent on the size of the alphabet and the nesting depth of the ⃝-operators,
which are both unchanged (or even decreased) by the translation. However, as
the formula after the translation can be exponentially big, the acceptance of the
automaton can be exponentially big as well. Further, from now on we assume all
fairness LTL formulas are rewritten to this normal form.

Apart from the rules listed above, our implementation uses several well-known
simplification rules to rewrite formulas outside of the fairness fragment to formulas
within, e.g., □♦(ϕU ψ) ↦→ □♦ψ and ♦□(ϕU ψ) ↦→ □♦ψ ∧ ♦□(ϕ ∨ ψ).

5.1.2 Fairness-LTL

We now show that there is a natural way to represent formulas of the LTL fairness
fragment as deterministic automata. In particular, if we look at Boolean combinations
of fairness-LTL formulas (LTL♦□,□♦(⃝)), we obtain an acceptance condition mirroring
the structure of the input formula. Furthermore, if the formula does not contain
any ⃝, the automaton we obtain is a single-state automaton. For all other formulas
we need to store a bounded history in the form of a FIFO-buffer of sets of atomic
propositions (or valuations) that have been seen. We establish now the tools necessary
to compute the structure of such a buffer. We use the following operations defined
on finite and infinite sequences of sets (assuming n ≤ m):
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5.1 Construction

Pointwise Intersection: σ0σ1 . . . ⊓ υ0 . . . υm = (σ0 ∩ υ0) . . . (σm ∩ υm)∅ω

Pointwise Union: σ0 . . . σn ⊔ υ0 . . . υm = (σ0 ∪ υ0) . . . (σn ∪ υn) . . . υm

Forward Closure: cl(σ0 . . . σn) = σ0(σ0 ∪ σ1) . . .
n⋃︂
k=0

σk

Drop Last Set of Letters: drop(σ0 . . . σnσn+1) = σ0 . . . σn

Relevant History. Let us consider an example formula: □♦(a1 ∧⃝a2). In order
to check whether w |= a1 ∧⃝a2 holds we just need to know whether a1 ∈ w[0] and
a2 ∈ w[1] holds. The rest of w can be ignored. The relevant history H(ϕ) for an LTL
formula ϕ is a finite word over 2AP and masks all propositions that are irrelevant for
evaluating ϕ. We compute the relevant history H recursively from the structure of
the formula:
H : LTL(⃝)→ (2AP)∗ H(true) = ϵ H(false) = ϵ

H(a) = {a} H(¬a) = {a}
H(ϕ ∧ ψ) = H(ϕ) ⊔ H(ψ) H(ϕ ∨ ψ) = H(ϕ) ⊔ H(ψ)

H(⃝ϕ) = ∅H(ϕ)

Lemma 5.2. Let ϕ be an LTL(⃝) formula and let w = σ0 σ1 . . . be a ω-word. Then
w |= ϕ if and only if w ⊓ H(ϕ) |= ϕ.

Proof. By induction on ϕ. For succinctness we just exhibit two cases and all other
cases are analogous.
Case ϕ =⃝ψ. Then, w |= ϕ iff w [1 . . .] |= ψ iff w [1 . . .]⊓H(ψ) |= ψ iff ∅(w [1 . . .]⊓
H(ψ)) |= ϕ iff w ⊓H(ϕ) |= ϕ.
Case ϕ = ψ∧ψ′. Then, w |= ϕ iff w |= ψ∧w |= ψ′ iff w⊓H(ψ) |= ψ∧w⊓H(ψ′) |= ψ′

iff w ⊓ (H(ψ) ⊔H(ψ′)) |= ϕ iff w ⊓H(ϕ) |= ϕ.

The deterministic, transition-based Emerson-Lei automaton we are constructing
keeps a buffer masked by H. Intuitively, the automaton delays the decision whether
ϕ holds by n = |H(ϕ)| − 1 steps and then decides whether it holds true, instead of
non-deterministically guessing the future and verifying this guess as done in standard
LTL translations.

Definition 5.3. Let ϕ be an LTL(⃝) formula over AP and let n = max(|H(ϕ)|−1, 0).
We then define a transition-based Emerson-Lei automaton for □♦ϕ:

A(□♦ϕ) = (Q, 2AP , δ,∅n, Inf (Z))

Q = {w ∈ (2AP)n : ∀i. w[i] ⊆ cl(H(ϕ))[i]}
δ(σw, σ′) = wσ′ ⊓ drop(cl(H(ϕ))) for all σ, σ′ ∈ 2AP and w ∈ (2AP)n−1

Z = {(w, σ, w′) ∈ δ : wσ∅ω |= ϕ}

107



5 Emerson-Lei acceptance

{}

{a1}

a1

a1

a1a2a1a2

a1a2 a1a2

(a) ψ1 = □♦(a1 ∧⃝a2)

♦(b1 ∧ ♦b2) ♦b2 true
b1b2

b1b2

b1

b2

b2 true

(b) ψ2 = ♦(b1 ∧ ♦b2)

Figure 5.2: Automata for ψ1 and ψ2. Double-lined edges denote accepting transitions.

Observe that we must take the closure of H(ϕ) before intersecting with the buffer.
Otherwise, we might lose information while propagating letters from the back to the
front of the buffer. Further, we can always drop the last set of letters of the relevant
history, since a transition-based acceptance is used. In the context of state-based
acceptance this needs to be stored in the buffer as well.

Let us apply this construction to our example: □♦(a1 ∧ ⃝a2). First, we get
H(a1 ∧ ⃝a2) = {a1}{a2}. Second, since we always drop the last set of letters,
we have drop(H(a1 ∧ ⃝a2)) = {a1} and n = 1. Thus, we obtain the Emerson-
Lei automaton shown in Figure 5.2a, which is in fact a (transition-based) Büchi
automaton.

Theorem 5.4. Let ϕ be an LTL(⃝) formula over AP.

L(□♦ϕ) = L(A(□♦ϕ))

Proof. Assume w |= □♦ϕ holds. Thus, we have
∞
∃ i. w[i . . .] |= ϕ and we obtain

∞
∃ i. w[i . . .] ⊓ H(ϕ) |= ϕ by using Lemma 5.2. Thus, there exists a finite word
w′ ∈ (2AP)∗ with (1) w′∅ω = wi ⊓ H(ϕ), (2) w′∅ω |= ϕ, and (3) |w′| = |H(ϕ)|. Thus,
A(□♦ϕ) infinitely often takes the (shortened) transition t = (w′[0] . . . w′[n−1], w′[n]).
Due to (2) we have t ∈ α and thus w ∈ L(A(□♦ϕ)). The other direction is
analogous.

Since ♦□ϕ is equivalent to ¬□♦¬ϕ, we immediately obtain also a translation
for LTL♦□(⃝). We only need to change the acceptance condition to Fin (Z) with
Z = {(w, σ, w′) ∈ δ : wσ∅ω ̸|= ϕ}.

5.1.3 Safety- and Cosafety-LTL
Translating safety LTL to deterministic automata is a well-studied problem. Since
these languages can be defined using bad prefixes, meaning once a bad prefix has been
read, the word is rejected, most automata generated by most available translations
will have a single rejecting sink. All other states and transitions are then either
rejecting or accepting. We use the straight-forward approach to apply the af -function
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5.1 Construction

from [EKS16] to obtain a deterministic automaton for cosafety LTL formulas and
by duality also for automata for safety languages. The af -function computes the
left-derivative of a language expressed as an LTL formula:

af (true, σ) = true
af (false, σ) = false

af (a, σ) =

{︄
true if a ∈ σ
false if a ̸∈ σ

af (¬a, σ) = ¬af (a, σ)

af (ϕ ∧ ψ, σ) = af (ϕ, σ) ∧ af (ψ, σ)
af (ϕ ∨ ψ, σ) = af (ϕ, σ) ∨ af (ψ, σ)
af (⃝ϕ, σ) = ϕ

af (♦ϕ, σ) = af (ϕ, σ) ∨ ♦ϕ

af (ϕU ψ, σ) = af (ψ, σ) ∨ (af (ϕ, σ) ∧ ϕU ψ)

In the actual construction ofA(ϕ), we consider the LTL formulas up to propositional
equivalence. For the equivalence class of ϕ, we write [ϕ]P . For example, true ∨ ♦a
and true would be represented by the same state. Also, for an LTL formula ϕ of
LTL(U ,⃝) we consider the set of equivalence classes of all subformulas, denoted by
S(ϕ), instead of direct consideration of the subformulas.

Definition 5.5 ([EKS16], Definition 7). Let ϕ be a formula of LTL(U ,⃝), then

A(ϕ) =
(︂

S(ϕ), 2AP , af , [ϕ]P , Inf
(︁
{true σ−→ true : σ ∈ 2AP}

)︁)︂
.

Theorem 5.6 ([EKS16], Theorem 2). Let ϕ be a formula of LTL(U ,⃝), then

L(ϕ) = L(A(ϕ)).

For the cosafety formula ♦(b1 ∧ ♦b2) we then obtain the automaton of Figure 5.2b
with the accepting sink [true]P . This approach also immediately tells us, when a run
is accepting by looking at the state.

The handling of safety formulas ϕ ∈ LTL(R ,⃝) can be done by the addition of
the following rules for af :

af (□ϕ, σ) = af (ϕ, σ) ∧□ϕ

af (ϕRψ, σ) = af (ψ, σ) ∧ (af (ϕ, σ) ∨ ϕRψ)

Additionally we change the acceptance condition to its dual version:

Fin
(︁
{false σ−→ false : σ ∈ 2AP}

)︁
,

as a run ends in the trap state [false]P , if it has consumed a bad prefix, and thus,
the word is rejected.

5.1.4 General LTL
If the translation encounters a subformula not covered by Section 5.1.2 and Sec-
tion 5.1.3, it resorts to an external general purpose LTL-to-deterministic-automaton
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translation. Here the only restriction on the type of the automaton is that it has
to be transition-based, since the translation for the fragments presented in Sections
5.1.2 and 5.1.3 produces transition-based Emerson-Lei automata. Nevertheless, con-
verting state-based to transition-based acceptance can be easily achieved by shifting
the acceptance from every state to its outgoing transitions. Also, every standard
acceptance, like Büchi, Rabin, Streett or parity can be interpreted as Emerson-Lei
acceptance.

5.1.5 Product construction
In the previous sections we discussed translations tailored to specific LTL fragments.
Now we present a translation for full LTL. We split an LTL formula ϕ into several
subformulas, that have a temporal operator on the root node in their syntax tree, and
are not in the scope of another temporal operator. For all of such subformulas, we
translate them into a deterministic automaton as described before, or if they do not fall
into one of the supported fragments, we use a general LTL-to-deterministic-automata
translation. Afterwards, all these deterministic automata yield a deterministic
automaton for ϕ by a product construction. We first introduce the standard product
construction for Emerson-Lei automata that is similar to the product construction
for Muller automata and then move on to the enhanced construction.

Consider the following parametric formula: □♦(a1 ∧⃝(a2 ∧ . . .⃝ am)) ∧ ♦(b1 ∧
♦(b2∧ . . .♦bn)). We will later demonstrate that the propagation of information allows
us to construct a Büchi automaton of size O(n +m), while SPOT in the standard
configuration yields automata of size O(n ·m) and only after enabling simulation-
based reductions this decreases to sizes comparable to our automata. Let us now
examine the construction, while we translate the formula □♦(a1∧⃝a2)∧♦(b1∧♦b2).

Standard Construction. For the product construction for an LTL formula ϕ we
assume we are given a deterministic Emerson-Lei automaton A(ψ) for every ψ ∈ sf(ϕ).
We denote by QA(ψ) the states of A(ψ) and by qA(ψ)

0 the initial state of A(ψ). Every
state of the product automaton is a mapping from sf(ϕ) to

⋃︁
ψ∈sf(ϕ)Q

A(ψ) where every
subformula ψ is mapped to a state in QA(ψ). We denote by s[ψ] = q the current state
of the automaton A(ψ) in the product state s, meaning ψ ↦→ q ∈ s.

Definition 5.7. Let ϕ be a formula and for every ψ ∈ sf(ϕ) let A(ψ) be a deterministic
Emerson-Lei automaton recognizing L(ψ). The deterministic Emerson-Lei automaton
for the product is defined as:

A×(ϕ) = (Q, 2AP , δ, q0, A(ϕ))

δ(s, σ) = {ψ ↦→ δA(ψ)(s[ψ], σ) : ψ ∈ sf(ϕ)} q0 = {ψ ↦→ q
A(ψ)
0 : ψ ∈ sf(ϕ)}

Further, Q is defined as the set of all reachable states. The acceptance condition
is recursively computed over the structure of ϕ with ↑ denoting the lifting of the
acceptance condition:
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A(true) =true A(ϕ ∧ ψ) =A(ϕ) ∧ A(ψ)
A(false) =false A(ϕ ∨ ψ) =A(ϕ) ∨ A(ψ)

α(ψ) = ↑ αA(ψ) for ψ ∈ sf(ϕ)

Since all δA(ψ) are deterministic, δ is also deterministic.

Theorem 5.8. Let ϕ be an LTL formula. Then

L(ϕ) = L(A×(ϕ))

Enhanced Construction. An essential part of the enhanced product construction is
the removal of unnecessary information from the product states. For this we introduce
three additional states with special semantics: qacc signalizes that the component
moved to an accepting sink state, while qrej expresses that the component moved to a
rejecting sink state. Alternatively, if a component got irrelevant for the acceptance
condition it is also moved to qrej. Lastly, qhold says that the component was put on
hold. More specifically, we put the fairness automata on hold, if a “neighboring”
automaton still needs to fulfill its goal, such as reaching an accepting trap. To make
notation easier to read we assume that every automaton A(ϕ) contains these states
and all accepting sinks (or traps) have been replaced by qacc and rejecting by qrej.
We use the following abbreviations to reason about LTL formulas:

• conj(ϕ) (disj(ϕ)) denotes the set of all conjuncts of a conjunction (disjuncts
of a disjunction) outside the scope of a temporal operator, e.g. let ϕ =
♦a ∧ (⃝b ∨□c), then conj(ϕ) = {{♦a,⃝b ∨□c}} and disj(ϕ) = {{⃝b,□c}}.

• ϕ[F ← ψ] denotes the substitution of all formulas in the set F with the formula
ψ, e.g. (♦a ∧ (⃝b ∨□c))[{♦a,□a} ← true] = true ∧ (⃝b ∨□c).

• support(ϕ) denotes the support of a formula, where the formula is viewed
as a propositional formula, which means that temporal operators are also
considered propositions, e.g., support((⃝a ∧ ♦b) ∨ (♦b)) = {♦b}. This means
every assignment can be restricted to the propositions of the support: S |=P

ϕ⇔ S ∩ support(ϕ) |=P ϕ, where |=P denotes the conventional propositional
satisfaction relation.

We use the following definitions to manipulate product states:

Definition 5.9 (Product state modifications). An update of a product state tests a
predicate P on a formula-state pair (ψ, q) and replaces q with a new value obtained
by the updater U depending on ψ if it holds:

update(s, P, U) = {ψ ↦→ (if P (ψ, q) then U(ψ) else q) : ψ ↦→ q ∈ s}
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prune(s) disables automata in s that became irrelevant for the acceptance condition,
meaning there are no longer in the support of the original formula after using knowledge
from other automata. For this let us denote by Facc all ψ ↦→ qacc ∈ s and by Frej all
ψ ↦→ qrej ∈ s.

prune(s) = update(s, P, U)
P (ψ, q) = (q ̸= qacc ∧ ψ ̸∈ support(ϕ[Facc ← true,Frej ← false]))
U(ψ) = qrej

start (s) starts (fairness) automata that are required for the acceptance but have been
put on hold. This is the case, if automata with terminal acceptance for formulas
in the same conjunction (start (s)c) have not yet reached qacc or the dual case for
disjunctions:

start (s)c = update(s, Pc, U)
start (s)d = update(s, Pd, U)
Pc(ψ, q) = (q = qhold ∧ ∃C ∈ conj(ϕ). ψ ∈ C ∧ ∀χ ∈ C ∩ LTL(U ,⃝). s[χ] = qacc)
Pd(ψ, q) = (q = qhold ∧ ∃D ∈ disj(ϕ). ψ ∈ D ∧ ∀χ ∈ D ∩ LTL(R ,⃝). s[χ] = qrej)

U(ψ) = q
A(ψ)
0

Definition 5.10 (Enhanced product automaton). Let ϕ be a formula. The Emerson-
Lei automaton for the enhanced product automaton is defined the same way as
Definition 5.7 with the following changes:

A×
E(ϕ) = (Q, 2AP , δ, q0, A(ϕ))

δ(s, σ) = start
(︁
prune({ψ ↦→ δA(ψ)(s[ψ], σ) : ψ ∈ sf(ϕ)})

)︁
q0 = start

(︄{︄
ψ ↦→

{︄
q
A(ψ)
0 if ψ ∈ sf(ϕ) \ LTL♦□,□♦(⃝)

qhold otherwise

}︄)︄
Theorem 5.11. Let ϕ be a formula.

L(ϕ) = L(A×
E(ϕ))

If we apply this construction to □♦(a1∧⃝a2)∧♦(b1∧♦b2), we obtain the automaton
shown in Figure 5.3. Observe that □♦(a1 ∧⃝a2) is put on hold until the automaton
for ♦(b1 ∧ ♦b2) reaches qacc.

Further Optimizations

There are two further optimizations we implement: First, we replace the local histories
of each automaton for LTL♦□,□♦(⃝) with one global history. Second, we piggyback the
acceptance of (co-)safety automata on neighboring fairness automata. Let C ∈ conj(ϕ)
be a conjunction, ψr ∈ LTL(U ,⃝) ∩ C and ψf ∈ LTL♦□(⃝) ∩ C. We then have
αA(ψf ) = Fin (S) and extend S with QA(ψr) \ {qacc}. The same trick can be applied
to ψf ∈ LTL□♦(⃝) and of course to the dual case with ψs ∈ LTL(R ,⃝).
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ψ1 ↦→ ♦(b1 ∧ ♦b2)
ψ2 ↦→ qhold

ψ1 ↦→ ♦b2
ψ2 ↦→ qhold

ψ1 ↦→ qacc
ψ2 ↦→ {}

ψ1 ↦→ qacc
ψ2 ↦→ {a1}b1b2

b1b2

b1

b2

b2

a1

a1 a1a2

a1a2 a1a2

a1a2

Figure 5.3: Enhanced product automaton for □♦(a1 ∧⃝a2) ∧ ♦(b1 ∧ ♦b2), only the
accepting edges for □♦(a1 ∧⃝a2) are drawn.

5.2 End-component analysis for Emerson-Lei
acceptance

The previous section dealt with the construction of deterministic Emerson-Lei au-
tomata. Now we detail the application of them in PMC. For this we assume that
a product of the MDP and EL automaton has been already built in the standard
way, and we start with a (product) Markovian model and an Emerson-Lei accep-
tance condition. In this section we assume, that every Emerson-Lei acceptance is
transition-based, but analogous results can be stated for state-based acceptance. At
first, we look at the easy case of a Markov chain.

Markov Chains. Markov chains can be checked efficiently against Emerson-Lei
acceptance conditions: Assume a Markov chainM and an Emerson-Lei acceptance
Φ. To calculate PrM (Φ) one has to check, for all reachable BSCCs, whether they
are accepting or not. As almost surely every path ends in a BSCC and visits every
state in it infinitely often, a BSCC is accepting iff the set of all states (or transitions)
is accepting. To finish calculating PrM(Φ) one can solve the linear equation system
of Figure 2.3. The algorithmic solution for the positivity problem, i.e., PrM(Φ) > 0
immediately follows:

Lemma 5.12. Deciding PrM(Φ) > 0 for a Markov chain M and an Emerson-Lei
acceptance Φ can be done in polynomial time.

Of course, one can also decide PrM(Φ) > 0 by pure graph-theoretic means, i.e.,
checking, whether there exists a reachable accepting BSCC.

5.2.1 Markov decision processes
Given an MDPM = (S,Act, P, ι,AP, ℓ) and an Emerson-Lei acceptance Φ ∈ Cδ, the
positivity problem is to decide whether Prmax

M (Φ) > 0 holds.
Now we establish the connection between the satisfiability problem for Boolean

formulas and the positivity problem. For that we show how to translate a Boolean
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formula ϕ into an Emerson-Lei acceptance Φ. W.l.o.g. we assume ϕ to be given in
positive normal form. For every atomic proposition x occurring in ϕ we construct
an Inf

(︂
s

x−→ s
)︂
, where s x−→ s is meant as a transition from state s to itself with

action x, and Inf
(︂
s

x−→ s
)︂
a short form notation for Inf

(︂
{s x−→ s}

)︂
. Analogously, ¬x

is transformed into Fin
(︂
s

x−→ s
)︂
.

With this transformation, the NP-hardness for the satisfiability of a class of Boolean
formulas results in the NP-hardness for the corresponding Emerson-Lei acceptance
problem.

Theorem 5.13. Let C be a class of Boolean formulas and C − SAT the class of
satisfiable Boolean formulas contained in C. If C − SAT is NP-complete, then
deciding whether the positivity problem for MDPs and C-Emerson-Lei acceptances is
NP-complete as well.

Proof. For proving the hardness we provide a polynomial reduction from C − SAT.
Let ϕ be a C-formula with atomic propositions X = {x1, . . . , xn}. We generate a
one-state MDP M with an xi action and a transition s

xi,1−−→ s for every atomic
proposition xi in ϕ.

For further considerations, we identify a transition by its action, i.e., a transition
subset Y ⊆ {s} ×X × {1} × {s} can be identified by the corresponding labelings{︂
x ∈ X : s

x,1−→ s ∈ Y
}︂
. The acceptance condition Φ is obtained from ϕ by replacing

every occurrence of xi with Inf (xi) and every occurrence of ¬xi with Fin (xi).
Obviously, a transition subset Y ⊆ X (seen as a set of actions) satisfies Φ if and only

if Y |= ϕ. Every model of ϕ can be transformed to a corresponding end-component
of M by visiting Y infinitely often, since there is only one state with a self-loop
for every action x ∈ X. Analogously, every subset of transitions Y satisfying the
acceptance condition Φ is also a model for ϕ. Therefore,M is positive for Φ if and
only if ϕ is satisfiable.

To prove that the positivity problem belongs to NP, we assume that we are given
an MDPM and an Emerson-Lei acceptance Φ. One can choose non-deterministically
an end-component, and check whether the set of transitions in the end-component
satisfies Φ.

The proof of Theorem 5.13 can be modified to work with state-based acceptance.
The key idea is to introduce a state for every atomic proposition in ϕ and to identify
the state space with the atomic propositions.

Clearly, Inf (A) ∨ Inf (B) ≡ Inf (A ∪ B). Hence, each CNF acceptance formula can
be transformed into an equivalent generalized Streett formula of the form

⋀︂
1≤i≤n

Fin (Ai,1)∨. . .∨Fin (Ai,ki)∨Inf (Bi) ≡
⋀︂

1≤i≤n

(Inf
(︁
Ai,1
)︁
∧. . .∧Inf

(︁
Ai,k

)︁
→ Inf (Bi))
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Lemma 5.14. Let M be an MDP and Φ a generalized Streett acceptance. Then
deciding whetherM is positive for Φ is NP-complete.

Note, that the class of generalized Streett acceptance corresponds to the class
of Horn formulas. So, the reverse direction of Theorem 5.13 does not hold, unless
P = NP . Another prominent example class C of propositional CNF-formulas where
the satisfiability problem can be solved in polynomial time is 2CNF. The full class of
2CNF acceptance for deciding non-emptiness in an automaton is NP-complete, see
Lemma 5.15.

Let 2CNF− NEG denote the set of all 2CNF-formulas where only negative literals
occur, e.g., (¬x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x4). All 2CNF − NEG formulas
are satisfiable, since the valuation that assigns false to every atomic proposition is
a model for every 2CNF − NEG formula. However, the corresponding problem to
check whether an MDP is positive for a 2CNF − NEG acceptance is NP-complete.
An analogous NP-completeness result for checking emptiness of an automaton with
a 2CNF− NEG acceptance has been proven by Emerson and Lei, see [EL87]. This
proof can be adapted in a straight-forward manner for MDPs.

Lemma 5.15 (see Theorem 4.7 of [EL87]). Deciding non-emptiness for an automaton
with a 2CNF− NEG acceptance condition is NP-complete.

Despite the NP-hardness of 2CNF acceptance, several subclasses of 2CNF ac-
ceptance are solvable in polynomial time. So, the positivity problem for Streett
acceptance [BGC09b] and clearly Rabin acceptance is decidable in polynomial time
(see Section 2.4.1).

In general, deciding positivity ofM (and Φ) can be reduced to the search of some
reachable EC satisfying Φ:

By Lemma 2.6 we know that Prmax
M (Φ) > 0 iff there exists some reachable EC

T = (T,A) such that Φ is satisfied by all transitions occurring in T .
What remains to explain is how to check whether a particular EC satisfies Φ. For

this, we take the set of transitions of the EC (here we denote it by ∆) and set every
Inf (Z) in Φ to true if Z ∩∆ ̸= ∅, otherwise to false. Analogously, we set Fin (Z) to
true if Z ∩ ∆ = ∅, otherwise to false. The overall evaluation of Φ for EC follows
immediately in the standard way.

Algorithm 1 implements a naive positivity check for a given MDPM and Emerson-
Lei acceptance Φ. It enumerates all reachable ECs and checks whether there is an EC
T = (T,A) satisfying Φ. For the last step we take a function CheckEC for granted,
which can be implemented as explained above. As there may be an exponential
number of ECs, Algorithm 1 may require exponential time.

5.2.2 Fin (·)-less acceptance
If the acceptance condition Φ does not use any Fin (·) operator, for any transition
sets T and T ′ with T ⊆ T ′ we have T |= Φ =⇒ T ′ |= Φ, i.e., visiting more
transitions cannot invalidate the acceptance condition. This implies that for checking
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Algorithm 1 Checking Prmax
M (Φ) > 0 amounts to showing that there is a reachable

EC satisfying Φ.
1: function Check(MDPM, EL acceptance Φ)
2: for all T ∈ ECDecomp(M) do
3: if CheckEC(T ,Φ) then
4: Return true
5: end if
6: end for
7: Return false
8: end function

positiveness of MDPs with Fin (·)-less acceptance, it is enough to check whether any
maximal EC T satisfies Φ.

Algorithm 2 Implementation of Check for Fin (·)-less acceptance.
1: function Check(MDPM, EL acceptance Φ)
2: for all T ∈MECDecomp(M) do
3: Φ′ ← cut(Φ, T )
4: if Φ′ ̸= false then
5: Return true
6: end if
7: end for
8: Return false
9: end function

Algorithm 2 shows an implementation of this approach. Similar to Algorithm 1 it
searches for an accepting end-component, but here it suffices to analyze the maximal
end-components only. Therefore we use the MEC decomposition function called
MECDecomp instead of ECDecomp. Algorithm 2 also relies on a function cut(Φ,
∆) for a transition based EL acceptance Φ and a transition set ∆. This function
replaces every occurrence of Inf (Z) with Inf (Z ∩∆). We will reuse cut(Φ,∆) in
the following section, and there also every occurrence of Fin (Z) is replaced with
Fin (Z ∩∆) for every set Z.

We overload cut(Φ, ∆) by cut(Φ, T ) for an end-component T , where we identify
T by its transitions ∆.

Also, after the previous replacements, the following rewrite rules (and if applicable,
their symmetric rules) are applied:

Inf (∅) ↦→ false Fin (∅) ↦→ true
Φ ∧ false ↦→ false Φ ∧ true ↦→ Φ

Φ ∨ false ↦→ Φ Φ ∨ true ↦→ true
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5.3 A DPLL based positivity check
As Theorem 5.13 suggests, there is a close connection between Emerson-Lei accep-
tances and Boolean formulas. We can see Emerson-Lei acceptances as Boolean
formulas in positive normal form with Inf (·) as positive Boolean variables and Fin (·)
as negative Boolean variables. One of the most important decision problems in
the context of Boolean formulas is satisfiability, called SAT. Among SAT solving
algorithms, one of the most prominent ones is the DPLL algorithm, introduced by
Davis, Putman, Logemann, and Loveland [DP60; DLL62]. It relies on a split on the
truth values of variables enhanced with heuristics such as unit rule and pure literal
rule.

In this section we investigate the connection between Boolean formulas and
Emerson-Lei acceptance further and present a DPLL-based Check procedure for
deciding positivity of an MDP.

5.3.1 Tseytin transformation for Emerson-Lei Acceptance
Since the DPLL algorithm presumes conjunctive normal form (CNF) for a propo-
sitional formula, we use an adapted Tseytin transformation [Tse68]. Let us first
introduce some helpful notations. Let Φ be an Emerson-Lei acceptance. We call Φ
Boolean if it is of the form Ψ ∧ Γ or Ψ ∨ Γ. The set of the Boolean subformulas of Φ
is denoted by B(Φ).

For the Tseytin transformation we introduce a slack variable sΨ for every Boolean
subformula Ψ ∈ B(Φ). We denote the set of slack variables by V. The function
s : Cδ → V ∪ AP maps every Boolean Emerson-Lei acceptance to its corresponding
slack variable and preserves atomic propositions:

s(Φ) =

{︄
sΦ if Φ is Boolean
Φ otherwise

The idea of the Tseytin transformation is to introduce a slack variable for ev-
ery Boolean subformula, signaling whether the subformula should be true or not.
Therefore, the function t introduces a slack variable for a Boolean subformula and
transforms the subformula into a clause.

t(Φ) =

⎧⎪⎨⎪⎩
(¬s (Φ) ∨ s (Ψ)) ∧ (¬s (Φ) ∨ s (Γ)) if Φ = Ψ ∧ Γ

¬s (Φ) ∨ s (Ψ) ∨ s (Γ) if Φ = Ψ ∨ Γ

Φ otherwise

As a whole, we get the following satisfiability-equivalent formula cnf(Φ) in conjunc-
tive normal form for an Emerson-Lei acceptance Φ:

cnf(Φ) = s(Φ) ∧
⋀︂

Ψ∈B(Φ)

t(Ψ)
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As a heuristic we allow the consolidation of binary conjunction to n-ary conjunctions.
For example, in the generalized Rabin acceptance

(Fin (U1) ∧ Inf (L1,1) ∧ Inf (L1,2)) ∨
(Fin (U2) ∧ Inf (L2,1) ∧ Inf (L2,2))

both generalized Rabin pairs would be summarized to one conjunction each.

5.3.2 DPLL-based positivity check
For deciding positivity of an MDPM and an Emerson-Lei acceptance Φ, our DPLL-
based algorithm analyzes every reachable MEC one after another. If an MEC
containing a satisfying EC is found, then Prmax

M (Φ) is positive. In contrast to the
naive approach of Algorithm 1 the method here does not explicitly enumerate all ECs,
but rather chooses slack variables or Fin (·) variables, and in case of Fin (·) variables,
prunes the MEC and enumerate all remaining MECs in the pruned MEC.

In contrast to purely Boolean formulas, we have in case of Emerson-Lei acceptance
Fin (·)-variables, Inf (·)-variables, and, additionally introduced by the Tseytin transfor-
mation, Boolean slack variables. This leads to a different branching behavior. During
the recursion, our adaption of the DPLL algorithm always considers end-components.
In this sense, an Inf (·) that shares transitions with the EC can be easily satisfied.
We can thus assume that every Inf (·) with a non-empty transition set is currently
true, since by visiting every transition in the current end-component, every Inf (·)
variable becomes true. So, we branch only over Fin (·), and slack variables. Still,
during the recursion, an Inf (·) can become false if every transition that is required
for the satisfaction of the Inf (·) becomes pruned.

The complete algorithm is depicted in Algorithm 4 (relying on the helper func-
tions depicted in Algorithm 3). The core method is the recursive function Check-
MEC(T ,Φ ∈ Cδ). It works on a particular MEC of M and decides, whether the
Emerson-Lei acceptance condition is satisfied within the MEC or not. It starts with a
precalculation (see function Precalculation in Algorithm 3), where every Fin (·)-
and every Inf (·)-set is intersected with the transitions that are completely inside the
currently analyzed MEC. Then, we check for the easy cases. Every atomic proposition
Inf (∅) is unsatisfiable and can be removed from the formula. Likewise, every Fin (∅)
is always satisfied (in a non-empty MEC), which allows us to remove every clause
with a Fin (∅) literal. Afterwards, we test T for emptiness and return false if this
is the case, as the emptiness precludes the existence of any cycle. Analogously, we
check Φ = false after the application of Cut. We also check whether every clause
contains an Inf (·) variable. If this is the case, every clause can be made true easily
by visiting every transition of T infinitely often and we return true.

After precalculation, we apply two heuristics: the unit clause rule and the pure
literal rule. The first checks whether there exists a clause with exactly one literal
of the form s, ¬s, or Fin (Z). If there exists such a clause, the corresponding slack
variable must be set to a truth value such that the clause evaluates to true.
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Algorithm 3 Helper functions for Algorithm 4.
1: function Precalculation(MEC T , EL acceptance Φ)
2: Φ← cut(Φ, T )
3: if T is empty or Φ = false then
4: Return false
5: end if
6: if every clause contains an Inf (·) then
7: Return true
8: end if
9: Return Φ

10: end function

11: function Branch(EC T = (T,A), Φ ∈ Cδ, l ∈ V ∪ AP, v ∈ {true, false})
12: for all T ′ ∈ update(T , l, v) do
13: if CheckMEC(T ′,Φ [l ← v]) then
14: Return true
15: end if
16: end for
17: Return false
18: end function

19: function update(MEC T = (T,A), l ∈ V ∪ AP, v ∈ {true, false})
20: T ′ ← {T }
21: if (l = Fin (Z)) ∧ (v = true) then
22: T ′ ←MECDecomp(T \ Z)
23: end if
24: Return T ′

25: end function
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Algorithm 4 A DPLL based algorithm for checking the satisfiability of a Emerson-Lei
acceptance Φ in CNF within a given end-component.

1: function CheckMEC(MEC T , EL acceptance Φ ∈ Cδ)
2: Φ← precalculation(T ,Φ)
3: if Φ ∈ {true, false} then
4: Return Φ
5: end if
6: //Unit rule
7: if Φ contains a unit clause κ of the form Fin (Z) or s then
8: Return Branch(T ,Φ, κ, true)
9: end if

10: if Φ contains a unit clause κ of the form ¬s then
11: Return Branch(T ,Φ, s, false)
12: end if
13: //Pure literal rule
14: if Φ contains a slack variable l and the complement does not occur then
15: Return Branch(T ,Φ, l, true)
16: end if
17: if Φ contains a slack variable ¬l and the complement does not occur then
18: Return Branch(T ,Φ, l, false)
19: end if
20: //Branching
21: κ← chooseLiteral(Φ)
22: Return Branch(T ,Φ, κ, true) ∨ Branch(T ,Φ, κ, false)
23: end function

24: function Check(MDPM, EL acceptance Φ)
25: for all T ∈MECDecomp(M) do
26: if CheckMEC(T ,Φ) then
27: Return true
28: end if
29: end for
30: Return false
31: end function
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The pure literal rule is applicable if there exists a slack variable occurring solely
positive, or solely negative in Φ. Again, we do not need to split on the truth values
of the slack variable, since we can assume safely that this literal evaluates true.

If none of the two heuristics is applicable, we choose a literal (either one of the slack
literals or a Fin (·) literal) and branch over it. We search for a satisfying assignment
by setting the literal at first to be true, and afterwards to be false.

Every time we set a Fin (Z) variable to true, we have to remove every transition in Z
from our current maximal end-component T . Since this may violate the requirements
for an end-component, we enumerate all MECs contained in T \ Z and branch into
them. This ensures that the algorithm returns true iff there exists an end-component
fulfilling the acceptance.

s1 s2

s3

s4

α

β
β

α

α

α

Figure 5.4: A maximal end-component with six end-components contained in it. In
particular, the end-components ({s1}, {s1 ↦→ {α}}) and ({s3}, {s3 ↦→
{β}}) among them.

Example 5.16. Let

Φ0 =
(︂
¬x ∨ Fin

(︁
s1

α−→ s1
)︁
∨ Fin

(︁
s2

α−→ s1, s2
α−→ s4

)︁)︂
∧ x∧(︂

¬x ∨ Fin
(︁
s4

α−→ s3
)︁
∨ Inf

(︁
s3

β−→ s3
)︁)︂

be an Emerson-Lei acceptance after the Tseytin transformation and T be the MEC
depicted in Figure 5.4. We first apply the unit rule for x and obtain

Φ1 =
(︂
Fin
(︁
s1

α−→ s1
)︁
∨ Fin

(︁
s2

α−→ s1, s2
α−→ s4

)︁)︂
∧
(︂
Fin
(︁
s4

α−→ s3
)︁
∨ Inf

(︁
s3

β−→ s3
)︁)︂
.

Assume that variable Fin
(︁
s2

α−→ s1, s2
α−→ s4

)︁
is chosen as branching literal, and

initially considered to be true. This leads to two possible MECs to branch in:
({s1} , {s1 ↦→ {β}}) and ({s3} , {s3 ↦→ {β}}).

In Φ1 the first clause is removed, thus

Φ2 = Fin
(︁
s4

α−→ s3
)︁
∧ Inf

(︁
s3

β−→ s3
)︁

remains. Still, it needs to be checked, whether one of the two MECs satisfies Φ2.
In case of ({s1} , {s1 ↦→ {β}}) the acceptance simplifies to Fin (∅) ∨ Inf (∅) and

therefore true. In case of ({s3} , {s3 ↦→ {β}}) the acceptance is reduced to Inf
(︁
s3

β−→ s3
)︁

but now in every clause there is an Inf (Z) with Z ̸= ∅, so the algorithm returns true.
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5 Emerson-Lei acceptance

Emerson-Lei automata. Deciding non-emptiness for automata profits from similar
techniques as probabilistic model checking.

We can see an Emerson-Lei automaton as a Markov decision process where every
transition probability equals 1. So, deciding non-emptiness for Emerson-Lei automata
reduces to the search for an accepting cycle. Therefore, we analyze every SCC as
described in Algorithm 4, but with SCC decomposition instead of MEC decomposition.

To sum up, we can formulate Theorem 5.13 also for Emerson-Lei automata. Since
non-emptiness and emptiness are dual to each other, we stick to the usual formulation
of emptiness checking.

Lemma 5.17 (see Theorem 5.13). Let C − SAT be a class of Boolean formulas, for
which the satisfiability problem is NP-complete. Then, deciding emptiness Lω(A) = ∅
for an Emerson-Lei automaton A with an acceptance condition Φ in C is coNP-
complete.

5.3.3 Choosing the branching literal
In Algorithm 4 the function chooseLiteral is left unspecified. In fact, any function
returning a literal (from the slack or Fin (·) literals) that occurs in Φ leads to a
correct implementation. To achieve a good performance in practice it is interesting
to consider several heuristics to select a beneficial literal for the branching step.

One important rule is that we prefer to branch over slack literals if there are any
and only if no slack literal is left we branch over Fin (·) literals. This may lead to
faster pruning of clauses, since every slack variable stands for a whole subformula of
the original formula. Especially in case of a generalized Rabin acceptance this leads
to a polynomial pair-by-pair check.

5.3.4 Generalized Rabin acceptance
Tseytin transformation for generalized Rabin acceptance. The generalized ver-
sion of a Rabin condition is a disjunction of conjunctions of a Fin (·) variable and
several Inf (·) variables:

Φ =
(︁
Fin (U1) ∧

⋀︂
j∈J1

Inf (L1,j)
)︁
∨ . . . ∨

(︁
Fin (Un) ∧

⋀︂
j∈Jn

Inf (Ln,j)
)︁

For a depiction of the syntax tree see Figure 5.5. The Tseytin transformation
introduces a slack variable xk for every generalized Rabin pair k. The generalized
Rabin pair Fin (Uk)∧ Inf (Lk,1)∧ . . .∧ Inf (Lk,nk

) is represented by the clauses (¬xk ∨
Fin (Uk)), (¬xk ∨ Inf (Lk,1)) up to (¬xk ∨ Inf (Lk,nk

)). The choice for Rabin pair k
is depends on the clause ¬yk−1 ∨ xk ∨ yk. The clause becomes true if yk−1 becomes
false, if xk becomes true, or if yk becomes true. Variable yk−1 becomes false only if
at least one Rabin pair with index smaller than k has been satisfied. The variable xk
becomes true only if Rabin pair k is satisfied. Alternatively, also a Rabin pair with
index greater than k can be satisfied, which corresponds to variable yk being true.
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∨

y0

∧
x1

Fin (U1) ∧

Inf (L1,1) ∧

Inf (L1,2) · · ·

∨ y1

∧
x2

Fin (U2) · · ·

∨ y2

· · · · · ·

Figure 5.5: The syntax tree of a generalized Rabin condition.

The overall CNF formula for a Rabin condition is as follows:

cnf(Φ) =y0 ∧
(︁
¬y0 ∨ x1 ∨ y1

)︁
∧
(︁
¬x1 ∨ Fin (U1)

)︁
∧(︁

¬x1 ∨ Inf (L1,1)
)︁
∧ . . . ∧

(︁
¬x1 ∨ Inf (L1,n1)

)︁
∧
(︁
¬y1 ∨ x1 ∨ y2

)︁
∧ . . .

DPLL algorithm for generalized Rabin acceptance. For describing the behavior
on cnf(Φ) for a generalized Rabin condition Φ we will use the two following notations:
Xk describes the clauses for the k-th generalized Rabin pair, i.e., Xk = (¬xk ∨
Fin (Uk)) ∧

⋀︁
j∈Jk(¬xk ∨ Inf (Lk,j)). Yk intuitively describes the remainder of cnf(Φ)

if only Rabin pairs of index at least k+1 should be checked, i.e., Yk =
⋀︁
k≤j<n−2(¬yj∨

xj+1∨ yj+1)∧ (¬yn−2∨xn−1∨xn)∧
⋀︁
k<j≤n Xj. With Figure 5.5 it becomes clear that

the DPLL-algorithm on cnf(Φ) works in polynomial time: At first, the unit clause
y0 is chosen, and the assignment y0 ↦→ true is propagated. After that, there exists a
choice between slack variables yj and xj each with j > 0. Assume the variable xk is
chosen. Setting xk to true transforms the clauses Xk to a unit clauses by removing
¬xk in every clause. Therefore the k-th Rabin pair is checked. Additionally, variable
yk becomes pure. The exhaustive application of the pure literal rule leads to the
assignment yj ← false for j ≥ k, yj ← true for 0 < j < k and xj ← false for j ̸= k.
Setting xj to false removes every clause in Xj and leaves a situation analogous to
above.

We now assume the literal yk is chosen. Setting yk to true results in the removal
of Rabin pairs with an index smaller or equal to k. In particular, by the pure literal
rule every yj with 0 < j < k is set to true, and every xj with 0 < j ≤ k is set to
false. What remains of cnf(Φ) are the clauses (xk+1 ∨ yk+1), Xk+1 and Yk+1 leaving
a situation similar after applying the unit rule to cnf(Φ).

Dual to yk ← true assigning yk to false causes yk+1 and xk+1 being pure, both
are set to false, thus removing the clauses Xk+1. Overall, the thorough use of the
pure-literal rule removes every clause in Yk, thus leaving only the first up to k− 1-th
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5 Emerson-Lei acceptance

generalized Rabin pair to be checked, which is done in polynomial time by analogous
arguments.

5.3.5 Streett acceptance
Tseytin transformation for Streett acceptance. We denote a Streett acceptance
as Φ = (Fin (U1) ∨ Inf (L1)) ∧ . . . ∧ (Fin (Un) ∨ Inf (Ln)). The syntax tree is depicted
in Figure 5.6. Despite a Streett condition being already in CNF, the Tseytin trans-
formation introduces two slack variables for every Streett pair. A Streett pair is
mimicked by the clause ¬xk ∨ Fin (Uk) ∨ Inf (Lk). The clause ¬yk−1 ∨ xk signals that
the k-th Streett pair should be true. The clauses ¬yk−1 ∨ yk for every k ∈ {1, . . . , n}
ensures that every Streett pair has to be satisfied.

∧

y0

∨
x1

Fin (U1) Inf (L1)

∧ y1

∨
x2

Fin (U2) Inf (L2)

∧ y2

· · · · · ·

∨ xn

Fin (Un) Inf (Ln)

Figure 5.6: The syntax tree of a Streett condition.

Overall, the transformed formula is:

cnf(Φ) =y0 ∧
(︁
¬y0 ∨ x1

)︁
∧
(︁
¬x1 ∨ Fin (U1) ∨ Inf (L1)

)︁
∧(︁

¬y0 ∨ y1
)︁
∧ . . . ∧

(︁
¬xn ∨ Fin (Un) ∨ Inf (Ln)

)︁
DPLL for Streett acceptance. At first, the DPLL-algorithm reverts the Tseytin
transformation by the application of the unit rule: In the k-th iteration there is a
unit clause yk−1. Setting yk−1 to true generates two new unit clauses, namely xk and
yk. Again, apply the unit rule to xk transforms the clause ¬xk ∨ Fin (Uk) ∨ Inf (Lk)
to Fin (Uk) ∨ Inf (Lk), therefore generating the k-th Streett pair as a clause. Then,
the k + 1-th iteration starts with applying the unit rule to yk. As a whole, applying
the unit rule iteratively transforms cnf(Φ) back to Φ.

For Streett acceptance, the unit rule suffices to ensure a polynomial-time algorithm
for checking, whether an MEC contains an accepting EC: Let ∆ be the transitions
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of an MEC which should be checked against a Streett acceptance Φ =
(︁
Fin (U1) ∨

Inf (L1)
)︁
∧ . . . ∧

(︁
Fin (Un) ∨ Inf (Ln)

)︁
. First, we intersect all sets with ∆, i.e., we

obtain (︁
Fin (U1 ∩∆) ∨ Inf (L1 ∩∆)

)︁
∧ . . . ∧

(︁
Fin (Un ∩∆) ∧ Inf (Ln ∩∆)

)︁
We remove all literals of the form Inf (∅) (meaning false) and remove all clauses

with Fin (∅) (with the meaning true). Now, if there is in every clause an Inf (·) literal,
the formula is fulfilled and therefore satisfiable. If not, then there exists a unit clause
of the form Fin (Fk ∩∆). Applying the unit rule means pruning MEC T . We obtain
new MECs T1, . . . , Tk. Now checking whether Φ is satisfied by an EC in T reduces
now to checking whether there exists MEC Tj ∈ {T1, . . . , Tk} such that it has an
accepting EC for Φ′.

Complexity. The argument for polynomial time complexity follows [BGC09a]. As
above, we go through every clause, and either it contains a non-empty Inf (·)-literal
(meaning, that at the current moment, it is assumed to be true), or it is a unit literal
of the form Fin (Uk). So, the only branching happens on the MDP side, where we
prune an MEC, and divide into several new MECs and check them recursively.

Note that the recursion depth is at most min(|Φ|, |T |). Also, after pruning, we
obtain at most |T | − 1 new MECs to branch in. With a linear time for finding the
new MECs, we obtain O(|T |2 ·min(|T |, |Φ|)) as overall complexity.

Emerson-Lei automata. Analogously to positivity for MDPs, for emptiness of EL
automata the choice of the branching literal can influence the runtime of Algorithm 4.
The presented algorithm works for a generalized Rabin and a Streett acceptance in
polynomial time as well. In particular, the automata-theoretic analog of Algorithm 4
works for a Streett acceptance as described in [EL87] and for a generalized Rabin
acceptance as the canonical approach.

5.4 Implementation and Experiments
Our experimental evaluation consists of two parts: At first, we evaluate our translation
by comparing the automata sizes and acceptance sizes. The second contribution in
our evaluation considers probabilistic model checking with the help of automata. For
every experiment, we set a time limit of 30 minutes and a memory limit of 10 GB
for every process.2 The according implementations, and data logs can be found at
[Mül18].

2All experiments were carried out on a computer with two Intel E5-2680 8-core CPUs at 2.70 GHz
with 384GB of RAM running Linux.

125



5 Emerson-Lei acceptance

5.4.1 Automata Sizes
For the comparison of the acceptance conditions, we rely on counting the number of
Fin (·) and Inf (·) occurring in the acceptance condition. We compare our tool Delag
with Rabinizer version 3.1 [EKS16] and ltl2tgba of SPOT version 2.5 [Dur+16].
Our benchmark consists of 94 LTL formulas from [SB00; DAC99; EH00] where for 34
formulas Delag was able to translate a formula completely without using an external
tool. For these formulas we do not need to rely on an external tool translating LTL
to deterministic automata. Should we require external tools to translate parts of
the formula, as described in Section 5.1.4, we use ltl2tgba of SPOT as the fallback
solution.

Overall, Delag produced automata with a minimal state space in 77 cases among
ltl2tgba and Rabinizer, slightly surpassed by ltl2tgba with 78 formulas. For
the comparison of the acceptance, Delag has delivered the smallest acceptance
for 59 formulas, whereas ltl2tgba could produce an automaton with a minimal
acceptance condition for 82 formulas. As can be seen in Table 5.1, Delag, ltl2tgba
and Rabinizer show roughly the same behavior, generating for 36 vs. 37 vs. 35
formulas automata with size less or equal than 3, with a slight advantage for Delag
producing more automata of size one.

Number of states ⩽ x ⩽ 1 ⩽ 2 ⩽ 3 ⩽ 4 ⩽ 6 ⩽ 10 ⩽ 20 > 20
Delag 9 17 36 59 75 87 90 4
SPOT 6 17 37 60 78 89 92 2
Rabinizer 6 15 35 53 75 84 91 3

Table 5.1: Overview of the number of automata generated by the tools Delag, SPOT
and Rabinizer with an upper bound of states.

The situation differs for the sizes of the acceptance condition (see Table 5.2):
ltl2tgba generates 72 automata with acceptance size 1 whereas Delag generates 50
automata with acceptance size 1. For bigger acceptance sizes the number of generated
automata are similar for ltl2tgba and Delag. In comparison, Rabinizer tends to
produce automata with bigger acceptance sizes.

Acceptance size ⩽ x ⩽ 1 ⩽ 2 ⩽ 3 ⩽ 4 ⩽ 6 ⩽ 10 > 10
Delag 50 79 83 83 90 91 3
ltl2tgba 72 84 84 86 93 94 0
Rabinizer 20 34 54 67 81 88 6

Table 5.2: Overview of the number of automata generated by the tools Delag,
ltl2tgba and Rabinizer with an upper bound for the acceptance sizes.

Now, we consider a property specifically designed in such a way, that Emerson-Lei
automata can reflect the structure of the corresponding LTL formula in the acceptance
condition, whereas generalized Rabin (or Streett) automata has to transform the
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acceptance into disjunctive (or conjunctive) normal form, resulting in a big acceptance
condition. For this, we define two mutually recursive formula patterns modeling
Rabin and Streett conditions:

ϕR,0 = ♦□a0 ∧□♦b0 ϕR,n+1 = (♦□an+1 ∧□♦bn+1) ∨ ϕS,n

ϕS,0 = ♦□a0 ∨□♦b0 ϕS,n+1 = (♦□an+1 ∨□♦bn+1) ∧ ϕR,n

It is clear from Definition 5.7 that the presented translation in Section 5.1 uses
2n+ 2 acceptance sets for ϕR,n and one state.

For the formulas ϕR,n the results are as expected (see Table 5.3). Delag produces
always the smallest acceptance with a one-state automaton, whereas the acceptance
sizes of the automata produced by Rabinizer grow faster, e.g., for n = 5 and n = 7
Rabinizer produces an automaton with acceptance size 45 and 109, respectively.
Both Delag and Rabinizer produce one state automata. ltl2tgba behaves dif-
ferently: The state space size of the automata grows with n: for n = 1 ltl2tgba
produces an automaton with 7 states and an acceptance size of 4, whereas for n = 3
the state space increased to 21889 states and an acceptance size of 20. For n > 3 we
were not able to produce automata with ltl2tgba.

n = 0 1 2 3 4 5 6 7

Delag 2 4 6 8 10 12 14 16

ltl2tgba 2 4 8 20 − − − −
Rabinizer 2 5 7 17 19 45 47 109

Table 5.3: Acceptance sizes for the alternating formula ϕR,n; − means timeout or
memout.

For the evaluation of the history, we took the formula pattern ϕH,n:

ϕH,n =

{︄(︁
♦□(a ∨⃝nb)

)︁
∨ ϕH,n−1 if n is even(︁

♦□(¬a ∨⃝nb)
)︁
∨ ϕH,n−1 otherwise

Every subformula a ∨⃝nb (or ¬a ∨⃝nb) commits the first position or the n-th
position. So only two out of n positions may be fixed, and hence we can share a lot
of the state space between the ♦□ formulas.

The results can be found in Table 5.4. The state space of ltl2tgba grows faster
than Delag, the former being only capable to produce automata up to n = 5 before
hitting the memory limit. For Rabinizer, we were not able to produce automata
for n ⩾ 4, since Rabinizer supports only a limited number of acceptance set. This
shows, that the acceptance condition grows immensely.

5.4.2 Implementations and Experiments in PRISM

We have implemented a routine for the analysis of MDPs in PRISM version 4.3.1 dev.
Here we compare the behavior of PRISM if the four tools Delag, ltl2tgba from
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n = 0 1 2 3 4 5 6 7

Delag
#States 1 2 4 8 16 32 64 128

Acc. size 1 2 3 4 5 6 7 8

ltl2tgba
#States 2 4 21 170 1816 22196 − −
Acc. size 2 2 2 2 2 2 − −

Rabinizer
#States 1 2 5 11 − − − −
Acc. size 1 3 7 19 − − − −

Table 5.4: Automata sizes and number of acceptance sets for ϕH,n; − means timeout
or memout.

SPOT, Rabinizer and the PRISM reimplementation of ltl2dstar are employed as
automata generation tools. As case study we consider the IEEE 802.11 Wireless
LAN Handshaking protocol [KNS02] from the PRISM benchmark suite [KNP12]. It
describes a resolving mechanism to stop interference if two stations want to send
a message at the same time. The key trick is that all participating stations listen
to interference, and if a message has become garbled, the stations waits a random
amount of time (limited by an upper bound called Backoff) and then tries to resend
the message. We used the following properties:

• ϕ1 =
⋀︁

1≤i≤n□ (garbledi → ♦ correcti)
“If a message from sender i has been garbled, it will be sent correctly in the
future”

• ϕ2 =
⋀︁

1≤i≤n ♦ correcti : “Every sender sends at least one message correctly.”

• ϕ3 =
⋀︁

1≤i≤n waiti U (waiti ∧□≤k free)
where □≤kfree = free ∧⃝ free ∧ . . . ∧⃝k free
“The first time every station wants to send, the channel remains free for k steps”

• ϕ4 =
⋀︁

1≤i≤n(□♦ waiti)→ (□♦ correcti)
“Every station, that wants to send a message infinitely often, is able to send a
message correctly infinitely often ”

• ϕ5 =
(︁⋀︁

1≤i≤n ♦ correcti
)︁
∧
(︁⋀︁

1≤i≤n(□♦ waiti)→ (□♦ correcti)
)︁

“Every station satisfies both the reachability formula ϕ2 and the fairness formula
ϕ4”

Every property can be translated directly by Delag without external tools, ex-
cept ϕ1, for which we translate the subformulas □ (garbledi → ♦ correcti) with
ltl2tgba and then build the product. So ϕ1 should be seen as a benchmark for the
product construction.
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For all properties we asked for the minimal (Prmin (·)) or maximal (Prmax (·)) prob-
ability of the IEEE 802.11 handshaking model with two stations and a Backoff
of at most 3 to satisfy the property. If a formula has a window length (e.g. □≤k)
we uniformly choose k = 6. Table 5.5 lists some measured time values and au-
tomata/product sizes. In contrast to the evaluation of the good-for-games approach
in Section 3.3, all PRISM experiments in this section were carried out with the hybrid
engine, an engine that combines symbolic and explicit data structures offering a good
compromise.
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Property
PRISM Delag PRISM ltl2tgba PRISM Rabinizer PRISM std

|A| BDD size
tMC |A| BDD size

tMC |A| BDD size
tMC |A| BDD size

tMCM⊗A M⊗A M⊗A M⊗A
Prmin (ϕ1) 4 31,861 8.7 s 5 44,172 9.8 s 4 31,861 32.7 s 15 45,095 122.5 s
Prmin (ϕ2) 4 61,711 188.7 s 4 61,719 196.8 s 4 61,719 189.2 s 5 61,759 167.7 s
Prmin (ϕ3) 20 46,013 27.2 s 20 46,109 27.6 s 72 47,114 28.3 s 21 46,025 15.7 s
Prmin (ϕ4) 1 30,091 50.6 s 5 30,473 8.7 s 1 30,091 44.8 s 49 39,141 62.5 s
Prmax (ϕ4) 1 30,091 7.9 s 35 153,906 600.1 s 1 30,091 5.9 s − − −
Prmin (ϕ5) 4 61,711 130.0 s 21 65,469 96.0 s 4 61,719 127.5 s 197 80,632 161.5 s
Prmax (ϕ5) 4 61,711 162.7 s 38 176,628 1152.7 s 4 61,719 164.0 s − − −

Table 5.5: PRISM runtimes (tMC) for the IEEE 802.11 case study enhanced with automata sizes (|A|) and the number of BDD
nodes in the product (|M⊗A|). − stands for timeout.
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First, the generation time for every automaton was below 1.0 s, except for Rabinizer
at Prmin (ϕ3) where it was 1.8 s and for the ltl2dstar reimplementation in PRISM
at Prmax (ϕ4) (3.8 s) as well as at Prmax (ϕ5) (14.1 s). In two cases PRISM Delag was
the fastest. For Prmin (ϕ4) PRISM ltl2tgba took only 8.7 s in comparison to 50.6 s
for PRISM Delag despite the smaller automaton, as one heuristic applies for PRISM
ltl2tgba did not apply for PRISM Delag: For the analysis of the MECs we always
check at first, whether the whole MEC satisfies the acceptance condition, and only
if this is not the case, we look for accepting sub-end-components within the MEC.
For PRISM ltl2tgba the whole MEC was accepting, but for PRISM Delag one has to
search for an accepting sub-end-component. Since in a symbolic representation SCC
enumeration is costly, PRISM ltl2tgba was much faster.

In general, one can see, that Delag always produced the smallest automaton
resulting in the smallest number of BDD nodes in the product and comparatively
small model checking times for PRISM Delag.

5.5 Conclusion
We presented a general framework based on the product construction and specialized
translations for fragments of LTL to build deterministic Emerson-Lei automata. In
particular, for the important fairness fragment we established an efficient construction,
where the state space only depends on the nesting depth of ⃝, and the acceptance
condition reflects the complexity of the formula. The general construction applies
a range of additional optimizations, such as pushing temporal operators down the
syntax tree, piggybacking to reduce the number of acceptance sets and sharing of
equal automata parts. In particular, our history buffer approach reduces the state
space, since the buffer can be shared between automata for different subformulas. If
a formula does not belong to one of our explicitly supported fragments, we can run
an external LTL-to-deterministic-automaton translator and incorporate the resulting
automaton via product construction and lifting.

Benchmarking this approach has shown the potential of our method. Standard
benchmarks highlight the potential of allowing more complex acceptance conditions,
our tool produced automata with state numbers comparable to SPOT.

However, the heuristics presented here are not complete, and this approach should
be understood as a framework. So, one direction for future work is to add more
explicitly supported LTL fragments. Another point would be to analyze the subfor-
mulas which cannot be translated directly and choose an external tool that behaves
well for these specific subformulas. For example, it is well-known, that obligation
LTL formulas can be translated to weak DBA, and then efficiently minimized. This
is implemented in SPOT. Another direction one could take is a deeper look into is
starting with a non-deterministic Büchi automaton and trying to find small deter-
ministic automata with complex acceptance conditions. Of course, general methods
to shrink the state space like bisimulation could be also applied. Also, the particular
ingredients of our transformation could be optimized further, e.g., the history could
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be allocated dynamically, and therefore reduce the state space even further without
increasing the acceptance condition complexity.

Of course, both approaches could be combined, and intermediate steps over non-
deterministic automata are only done, if the LTL formula cannot be dealt with by
Delag directly.

For MDP analysis, the Emerson-Lei acceptance adds some difficulty. In fact, if
deciding satisfiability for a class of Boolean formulas is NP-complete, then deciding
positiveness for MDPs and an Emerson-Lei acceptance of the corresponding Emerson-
Lei acceptance class is NP-complete as well. Still, for subclasses like acceptances
without any Fin (·) variable, polynomial time checks are possible. For the general
case the DPLL algorithm for solving the satisfiability of Boolean formula can be
adapted to the Emerson-Lei setting. To achieve the required conjunctive normal form,
we refined the Tseytin transformation. This transformation introduces slack variables
which are treated by the consecutive DPLL-algorithm. The slack variables provide an
interesting heuristic for the choice of the branch variable in our DPLL algorithm: We
always prefer slack variables over Fin (·) variables. This heuristic allows a polynomial
time behavior for Rabin and Streett acceptances similar to already known approaches.

The benchmarks of our approach in the area of PMC show that our DPLL algorithm
causes only a very small overhead, but benefits from the small state space. Thus,
the time for the overall model checking process were for 5 out of 7 cases in the same
order of magnitude as the best time of PRISM Rabinizer and PRISM ltl2tgba.
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6 Conclusion
In this thesis we presented three new automata-based approaches different from the
standard approach that employs deterministic Rabin automata in order to avoid or
cope with the double-exponential blow-up.

Good-for-games automata were a promising candidate for MDP analysis. We
showed that the GFG strategy of the good-for-games automaton and the maximal
scheduler of an MDP share some similarities. The GFG strategy tries to construct an
accepting run for an accepted word depending on the history, whereas the maximizing
scheduler tries to maximize the probability depending on the history. Thus, a modified
product construction and a standard MEC and reachability analysis are sufficient for
MDP analysis against a GFG automaton specification. The overall approach starting
from LTL can be done in double-exponential time, thus meeting the lower bound for
MDP analysis under LTL specifications. Nonetheless, practical evaluation showed
that good-for-games automata fell behind the standard approach of using [GO01] to
generate a non-deterministic Büchi automaton and Safra’s determinization [Saf88] to
determinize it.

Unambiguous automata on the other hand showed an advantage over deterministic
automata both on a theoretical level and in a practical evaluation. The single-
exponential blow-up of the LTL-to-UBA translation gives UBA an edge over deter-
ministic automata, but the actual model checking process becomes more complicated
although still polynomial. Still, the performance of the overall process heavily depends
on efficient LTL-to-UBA translators.

In 2017, Boker, Kupferman and Skrzypczak [BKS17] have proven that every
unambiguous GFG automaton can be transformed to an equivalent deterministic
automaton by removing unnecessary transitions and states. Thus, the combination
of unambiguity and good-for-games is not a promising candidate for performance
improvements.

The Emerson-Lei acceptance differs from unambiguity and good-for-games, as it
works on the acceptance level, not on the non-determinism of the automaton. The
product construction allows a reflection of the Boolean structure of the input LTL
formula into the acceptance condition, not into the state space of the automaton. Since
every Emerson-Lei automaton is actually a Muller automaton with a symbolically
represented acceptance condition, the double-exponential blow-up from LTL to
deterministic automata cannot be avoided by the Emerson-Lei acceptance. Still, in
the automata generation part our tool Delag could compete with other standard
automata tools like Rabinizer and ltl2tgba from SPOT.

In the application for model checking, EL automata are well-suited for the analysis
of Markov chains, as checking PrM(Φ) > 0 is still possible in polynomial time. For
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Markov decision processes, the situation becomes more complicated. The positivity
problem relates closely to satisfiability of Boolean formulas, and thus, becomes
NP-complete. As solution for checking Prmax

M (Φ) > 0 we took inspiration from the
DPLL algorithm. As an advantage, our DPLL-based algorithm works in polynomial
time for the commonly used acceptances generalized Rabin and Streett. As our
practical evaluation on the WLAN handshaking protocol shows, it is worth to take
the comparably small overhead of solving the NP-complete positivity problem.

Future Work. The bad performance of the good-for-games approach in the bench-
marks comes from the GFG automata generation algorithm developed by Henzinger
and Piterman. This observation asks for an improved generation algorithm. Very
recently, [KM18] suggested a modified version of Safra’s determinization algorithm
for translating an NBA to a good-for-games automaton. To the best of our knowl-
edge, there is no implementation publicly available and therefore an evaluation of
their proposal is an open task. If the generation algorithm performs well, the usage
of good-for-games automata for probabilistic model checking could turn out more
positive, and if the automaton suits an explicit representation, renders GFG-based
MDP analysis with explicit representation feasible.

The principle that smaller automata likely lead to a more efficient model checking
process also holds for our UBA-based approach to Markov chain analysis. The
problem of UBA generation has not been studied in depth, but is current research by
us. Currently, only one LTL-to-UBA translator is available, which uses an adaption of
[Cou99], see also [Dur17]. A comparison in a symbolic setting as well as a comparison
with the other single-exponential approaches of [BRV04] and [CSS03] is also still
open. Apart from applications in probabilistic model checking, a very intriguing open
problem is universality checking (“Is every infinite word accepted?”) for UBA. We
can only give a PSPACE upper bound as this problem can be solved in PSPACE for
NBA.

Obviously, the single-exponential generation of UBA from LTL forbids a direct usage
for the MDP analysis, as MDP analysis under LTL is 2EXPTIME-complete. However,
unambiguous Büchi automata might be a good starting point for deterministic-in-
the-limit automata to achieve quantitative MDP analysis similar to [Sic+16].

A natural idea would be to combine unambiguity with Emerson-Lei acceptance.
Still, one would have to rewrite the LTL formula on the top-level according to [Dur17],
and then apply a product construction for conjunctions and a union of automata for
disjunctions. Nevertheless, as every known translation which produces unambiguous,
but not deterministic automata, aims at (generalized) Büchi acceptance, the resulting
overall acceptance would be without any Fin (·) atom.

As we have identified two LTL fragments with a natural translation to deterministic
Emerson-Lei automata, the translation of full LTL remains an open question. A
reasonable starting point would be NBA and then a modification of a suitable
determinization algorithm.

For the positivity problem we employed only a rather simple DPLL-based algorithm,
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known techniques like conflict-driven clause learning could improve the performance
even further. Not only improving the efficiency of the actual model checking algorithm
would lead to a better overall performance, but also generating smaller deterministic
Emerson-Lei automata. However, minimization of Emerson-Lei (or Muller) automata
is an unsolved problem, but succinctness results in comparison to Rabin and Streett
automata [Bok17a] demonstrate the potential of Emerson-Lei automata.
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