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Abstract

Synthesis is the task of automatically deriving correct-by-construction implementations from
formal specifications. While it is a promising path toward developing verified programs, it is
infamous for being hard to solve. Compositionality is recognized as a key technique for reducing
the complexity of synthesis. So far, compositional approaches require extensive manual effort.
In this thesis, we introduce algorithms that automate these steps.
In the first part, we develop compositional synthesis techniques for distributed systems.

Providing assumptions on other processes’ behavior is fundamental in this setting due to inter-
process dependencies. We establish delay-dominance, a new requirement for implementations
that allows for implicitly assuming that other processes will not maliciously violate the shared
goal. Furthermore, we present an algorithm that computes explicit assumptions on process
behavior to address more complex dependencies.
In the second part, we transfer the concept of compositionality from distributed to single-

process systems. We present a preprocessing technique for synthesis that identifies indepen-
dently synthesizable system components. We extend this approach to an incremental synthesis
algorithm, resulting in more fine-grained decompositions. Our experimental evaluation shows
that our techniques automate the required manual efforts, resulting in fully automated compo-
sitional synthesis algorithms for both distributed and single-process systems.
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Zusammenfassung

Synthese ist die Aufgabe korrekte Implementierungen aus formalen Spezifikation abzuleiten.
Sie ist zwar ein vielversprechender Weg für die Entwicklung verifizierter Programme, aber
auch dafür bekannt schwer zu lösen zu sein. Kompositionalität gilt als eine Schlüsseltechnik
zur Verringerung der Komplexität der Synthese. Bislang erfordern kompositionale Ansätze
einen hohen manuellen Aufwand. In dieser Dissertation stellen wir Algorithmen vor, die diese
Schritte automatisieren.

Im ersten Teil entwickeln wir kompositionale Synthesetechniken für verteilte Systeme. Auf-
grund der Abhängigkeiten zwischen den Prozessen ist es in diesem Kontext von grundlegender
Bedeutung, Annahmen über das Verhalten der anderen Prozesse zu treffen. Wir etablieren
Delay-Dominance, eine neue Anforderung für Implementierungen, die es ermöglicht, implizit
anzunehmen, dass andere Prozesse das gemeinsame Ziel nicht böswillig verletzen. Darüber
hinaus stellen wir einen Algorithmus vor, der explizite Annahmen über das Verhalten anderer
Prozesse ableitet, um komplexere Abhängigkeiten zu berücksichtigen.

Im zweiten Teil übertragen wir das Konzept der Kompositionalität von verteilten auf Einzel-
prozesssysteme. Wir präsentieren eine Vorverarbeitungmethode für die Synthese, die unab-
hängig synthetisierbare Systemkomponenten identifiziert. Wir erweitern diesen Ansatz zu
einem inkrementellen Synthesealgorithmus, der zu feineren Dekompositionen führt. Unsere ex-
perimentelle Auswertung zeigt, dass unsere Techniken den erforderlichen manuellen Aufwand
automatisieren und so zu vollautomatischen Algorithmen für die kompositionale Synthese
sowohl für verteilte als auch für Einzelprozesssysteme führen.
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Chapter 1

Introduction

Over the last decades, computer systems have evolved into a part of the fabric of life. Nowadays,
we are surrounded by digital systems and interact with them on numerous occasions every day.
We greatly benefit from the tremendous technological advances as they allow us, for instance, to
place our lives in the hand of medical systems such as heart-lung machines or cardiac pacemaker
devices, to fly with airplanes that allow the pilot to rely on the support of an extensive autopilot
system, and to even let the vision of the far-reaching use of self-driving vehicles seem realistic.
As most of our critical infrastructure depends on computer systems today, the dependability
and robustness of such safety-critical systems are indispensable.

More and more of these systems are of a reactive nature. Instead of receiving a single input
and computing an output based on it, they continually interact with their environment and
run for an indefinite time, resulting in an infinite input-output-behavior. Typical examples for
such reactive systems [HP84] are hardware circuits, embedded devices, and communication
protocols. The infinite behavior and, in particular, the possible need for both repeating tasks
and attending to tasks only triggered by inputs renders the development of correct reactive
systems particularly challenging [HP84].

Formal methods are a branch of computer science that addresses the provable correctness of
systems, including reactive systems. It aims at developing automated techniques for proving
that a system satisfies specific properties – called verifying a system – as well as for constructing
systems that inherently satisfy specific properties – called synthesizing a system. Synthesis is
an up-and-coming technique for developing formally verified programs as it eliminates the
need for manual, and thus error-prone, implementation tasks. It allows a developer to focus
on what a system should do instead of how it should be done. Furthermore, synthesis is able
to detect contradictory system specifications, which prevent the existence of an implementa-
tion that realizes them, early in the design process. In such situations, synthesis provides a
counterexample, which can guide the developer in refining the specification.

Naturally, synthesis is thus one of the grand visions of computer science. It was first formu-
lated by Alonzo Church in the late 1950s [Chu57] and has been an intriguing challenge ever since.
In the last decade, there have been breakthroughs in terms of practical applications of synthesis,
such as the synthesis of a controller for the AMBA AHB bus protocol [BGJ+07, Job07, GCH13,
BJP+12], an industrial standard for the on-chip communication of functional blocks in system-
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2 1. Introduction

on-a-chip devices. Moreover, several tools (see, e.g., [FFRT17, MSL18, MC18, RSDP22, Kha21])
that automatically construct correct implementations from formal specifications have been
developed. Since 2014, these synthesis tools compete in the annual reactive synthesis com-
petition SyntComp [BEJ14] on, today, roughly 1000 standard benchmarks. Until today, the
synthesis competition heavily facilitates the development of synthesis tools. Despite these
recent advances, the vision of synthesis is far from becoming a reality: the success stories
are limited to relatively small systems, and currently available synthesis tools do not scale to
complex system designs as commonly used in today’s practice.

Verification, in contrast, scales to much larger and more complex systems. Consequently, it
has already proven its applicability in industry (see, e.g., [HSLL97, BDG+04, CGP02, JGK+15]).
Compositionality has long been recognized as the key technique that makes a “significant differ-
ence” [dRLP98] for the scalability of verification algorithms. Compositional approaches break
down the analysis of a complex system into several smaller tasks over individual components,
which can then be solved independently. Afterward, the individual analysis results can be
recomposed into a solution for the entire system. Naturally, applying compositional techniques
to synthesis is thus a promising path to pursue.
In synthesis, however, developing successful compositional algorithms has proven much

more challenging. In a nutshell, synthesis seeks an implementation that satisfies the given
specification for all behaviors of the system’s environment. In compositional synthesis, we seek
an implementation of an individual system component that satisfies the specification for all
behaviors of the component’s environment. The component’s environment also includes the
remaining components of the system. Thus, we consider the other components to be adversarial.
However, a component implementation that satisfies the specification for all behaviors of
the component’s environment rarely exists: such an implementation needs to guarantee the
satisfaction of all system requirements – even of those that specify the behavior of other parts
of the system – irrespective of whether or not the other components cooperate in the goal
of satisfying the system specification. In practice, the satisfaction of the requirements for the
whole system usually cannot be guaranteed by one component alone but requires collaboration
between several components. For successful compositional synthesis, it is, therefore, crucial to
identify the connections between system components and their dependencies induced by the
system requirements. The critical question is what a component needs to know about other
components and their behavior in order to be able to satisfy the specification for all behaviors
of its environment. So far, identifying this knowledge and including it in the synthesis tasks for
the individual components has been a manual task. We develop techniques that automate the
extensive manual effort and address the question from two angles.
In the first part of this thesis, we focus on distributed systems, i.e., systems that inherently

consist of several components, so-called processes. The distributed synthesis problem seeks
implementations for all processes such that their composition satisfies the given system specifi-
cation. Due to the challenges outlined above, synthesizing implementations for the individual
processes separately often does not succeed. Therefore, classical distributed synthesis algo-
rithms rely on directly synthesizing an implementation for the whole system, thus considering
the composition of the processes. We introduce two approaches that, in contrast, enable compo-
sitionality for distributed synthesis. The first technique relies on weakening the requirement
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posed on implementations. Instead of implementations that satisfy the given specification in
every situation, we are interested in best-effort implementations, which are allowed to violate
the specification in certain situations. Intuitively, such an implementation “gives its best” to
meet the goal but is not guaranteed to do so. When carefully designing best-effort notions,
the satisfaction of the overall system specification can still be ensured when using best-effort
implementations for all processes. We introduce a notion of best effort for implementations,
called delay-dominance, together with an automaton-based criterion such that whenever the
criterion is satisfied, the best-effort notion induces a sound compositional synthesis algorithm
for distributed systems. Utilizing best-effort implementations allows for posing an implicit as-
sumption on the other processes, namely that they will not maliciously violate the specification.
As the strategies for all processes are best-effort strategies, this implicit assumption is satisfied.
For systems with complex interconnections between the processes, however, this implicit as-
sumption does not suffice. Instead, more sophisticated assumptions on the concrete behavior of
other processes might be necessary. We thus introduce a second technique for compositional
distributed synthesis that automatically derives additional guarantees on the behavior of every
process. These guarantees, so-called certificates, then provide essential information for the
individual synthesis tasks: an implementation is only required to satisfy the specification if the
other processes do not deviate from their guaranteed behavior.
In the second part of this thesis, we transfer the concept of compositional synthesis from

distributed systems to systems consisting of a single process, so-called monolithic systems. The
most challenging task in compositional monolithic synthesis is the decomposition of the system
into smaller components. For distributed systems, the individual processes naturally serve as
these components. For monolithic systems, however, suitable decomposition algorithms are
necessary. As the success of compositional synthesis highly depends on the decomposition, we
introduce two algorithms for selecting components. The first technique focuses on computing
a decomposition such that, given a realizable specification for the system, the synthesis tasks
for the individual components are guaranteed to succeed. For unrealizable specifications, our
approach guarantees that the synthesis task for at least one component fails. The decomposition
thus preserves both realizability and unrealizability. Moreover, our approach does not utilize any
assumptions about the other components’ behavior whatsoever. Therefore, the synthesis tasks
for the resulting components can be performed immediately by classical monolithic synthesis al-
gorithms. Due to its potential of revolutionizing monolithic reactive synthesis, the developers of
the synthesis tool ltlsynt [MC18] have integrated our decomposition algorithm into their most
recent release [RSDP22], which successfully competed in the synthesis competition SyntComp.
However, our decomposition algorithm only identifies multiple components if the specification
consists of separate parts without any dependencies between each other. To also enable the
use of compositional methods for monolithic synthesis for more complex specifications, we
introduce a second decomposition algorithm that again utilizes best-effort implementations.
This allows for finding independent implementations in more cases. Furthermore, we base
the second approach on an incremental rather than a fully compositional synthesis algorithm,
allowing components to rely on concrete implementations for previously synthesized compo-
nents. The technique thus combines implicit assumptions on other components, stemming from
the use of best-effort implementations, with explicit assumptions on the concrete behavior of
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previously synthesized components, stemming from the incremental nature of the synthesis
algorithm. Combining both assumption types increases the number of individual components
derived by the algorithm, thus resulting in more fine-grained system decompositions.
For both distributed and monolithic systems, the algorithms and techniques introduced in

this thesis automate the manual efforts that have previously been required for compositional
synthesis. We, therefore, obtain fully automated compositional synthesis approaches for dis-
tributed and monolithic systems, which render the developer’s manual intervention obsolete. In
an experimental evaluation, we show that our compositional approaches outperform classical,
non-compositional synthesis algorithms significantly.

This thesis builds upon a range of concepts, such as reactive synthesis in both its distributed
and monolithic form and compositionality. We elucidate these concepts in the following sections
to highlight the main contributions of this thesis in more detail afterward.

1.1. The Reactive Synthesis Problem
Synthesis is one of the pillars of formal methods. It is the task of automatically deriving a
correct-by-construction implementation for a system from a formal system specification. As it
eliminates the need for manual, and thus error-prone, implementation tasks, it has the potential
to revolutionize the process of developing correct systems. First formulated by Alonzo Church
more than 60 years ago [Chu57], synthesis never lost its fascination and is still considered to be
the grand vision of formal methods.
Formally, the synthesis problem asks whether there exists an implementation that satisfies

a given formal specification and, if so, derives such an implementation. A synthesized imple-
mentation is correct by construction, i.e., it inherently satisfies the specification in all possible
situations. If no implementation exists, a counterexample, which prevents the existence of any
realizing implementation, is derived. This allows for detecting contradictory specifications early
in the design process and guides the developer in refining the specification.
In this thesis, we focus on a particular class of systems, so-called reactive systems [HP84].

They continually interact with their environment and run for an indefinite amount of time. The
interface of a reactive system is defined by a set of inputs, whichmodel the environment behavior,
and a set of outputs, which model the system behavior. Typical examples of reactive systems
are hardware circuits, embedded controllers, and communication protocols. Consequently, we
consider reactive synthesis, which seeks implementations of reactive systems that inherently
satisfy the given formal specification, in the following. In general, we distinguish between
distributed systems, which consist of several components, so-called processes, and monolithic
systems, which consist of a single process. While we consider both types of reactive systems in
this thesis, the remainder of this section focuses on monolithic systems as the reactive synthesis
problem and its early solutions have been developed with single-process systems in mind.
The reactive synthesis problem was solved independently by Büchi and Landweber [BL69],

utilizing a game-based approach, and Rabin [Rab72], utilizing an automata-based approach.
In this thesis, we focus on the former one. It relies on the observation that synthesis can
be conceived as a game between a system player and an environment player. The system
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player tries to satisfy the specification, while the environment player tries to violate it. The
environment is thus interpreted to be adversarial. It is not limited other than in the alphabet of
the inputs. The game proceeds in rounds. In each round of the game, the environment player
first produces a valuation of the system’s input variables to which the system has to react. Then,
the system player chooses a valuation of the output variables in response to the inputs. Playing
the game round by round results in an infinite sequence of valuations of both input and output
variables. If this sequence satisfies the specification, then the system player wins. Otherwise,
the environment player wins. Both players can observe the history of valuations played in the
previous round and may base their decisions on these. The synthesis task is then to construct a
strategy for the system player that defines how to choose the valuations of output variables
in each step such that, for every behavior of the environment player, the system player wins
the game. Such a strategy is called winning. A finite representation of a winning strategy then
implements the reactive system. The specification is realizable for the considered system if a
winning strategy for the system player exists. Otherwise, it is unrealizable.

In this thesis, we focus on specifications given in linear-time temporal logic (LTL) [Pnu77],
arguably one of the most standard logics for describing reactive systems. Fur such system
specifications, early synthesis algorithms relying on the game-based synthesis approach employ
explicit game-solving. First, the LTL specification is translated into an equivalent nondeter-
ministic Büchi automaton [VW94]. Afterward, the automaton is determinized [Saf88] and
translated into an infinite two-player game between the system and the environment. There,
every state is controlled by either the environment player or the system player and represents
their possible choices of valuations of input or output variables, respectively. Environment
states and system states alternate. Solving the two-player game determines whether the system
player has a winning strategy. Whenever such a strategy exists, the system player also has a
memoryless winning strategy, i.e., a strategy independent of the game’s history except for the
last state [EJ91]. Memoryless strategies are finitely representable. Hence, if the system player
wins the game, it also has a winning strategy from which an implementation of the reactive
system that inherently satisfies the specification can be derived.
While the vision of synthesis is tantalizing and elegant theoretical solutions exist, the syn-

thesis problem is infamous for being hard to solve. For LTL specifications, for instance, it is
known to be 2EXPTIME-complete [PR89a]. Despite the high complexity, there has been tremen-
dous progress toward practical solutions. Several optimizations of the automaton construction
have been introduced [SB00, GO01, BKRS12]. Exploiting the structure of the specification to
construct relevant parts of the game on the fly and to reuse previous inconclusive solution
attempts [MSL18, LMS20] has improved the performance of explicit game-based synthesis ap-
proaches significantly. Orthogonally, the development of safraless decision procedures [KV05],
which avoid Safra’s complicated determinization procedures for automata, has given rise to
symbolic synthesis tools [Ehl11, BBF+12]. They represent the state space of the game sym-
bolically with, for instance, bounded decision diagrams (BDDs) [Ehl12] or antichains [FJR09].
Bounded synthesis [FS13] further improves the safraless approaches by bounding the size of the
implementation to be synthesized and by iteratively increasing the bound until an implementa-
tion that realizes the specification is found. This ensures that size-optimal implementations
are synthesized. Additionally bounding the number of cycles in the implementation to be
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synthesized yields structurally simpler results and thus improves the understandability of the
synthesized implementations [FK16, FK17]. A different line of research focused on restricting
the type of specification to fragments of LTL that allow for efficient synthesis algorithms. Most
successfully, the GR(1) fragment [PPS06, BJP+12, KP10], which assumes the LTL formula to be
split into a set of assumptions and a set of guarantees and for which polynomial time synthesis
algorithms exist, has found many applications in practice.

The extensive research on reactive synthesis has led to a broad landscape of tools for synthesis
from LTL specifications (see, e.g., BoSy [FFRT17], Strix [MSL18], ltlsynt [MC18, RSDP22],
and sdf-hoa [Kha21]). Since 2014, the annual reactive synthesis competition SyntComp [BEJ14,
JBB+17b, JBB+15, JBB+16, JB16, JBB+17a, JBC+19, JPA+22], in which the participating tools
compete on, today, roughly 1000 standard benchmarks, facilitated the development of synthesis
tools. Furthermore, synthesis has been successfully applied to industrial systems such as the
AMBA AHB bus protocol, an industrial standard for the on-chip communication of functional
blocks in system-on-a-chip designs [BGJ+07, Job07, GCH13, BJP+12].

Despite these milestones, however, the reactive synthesis tools lack scalability for large and
complex systems. Furthermore, the success stories in practical synthesis applications are limited
to selected, rather small examples whose specifications fall into “synthesis-friendly” fragments
of LTL. For more detailed introductions to the reactive synthesis problem and the history of its
solutions, see, for example, [Tho09, Fin16, BCJ18].

Synthesis of Distributed Systems. Given the advances in monolithic reactive systems, it is
a natural next step to consider more complex multi-process systems. Distributed systems consist
of several processes that repeatedly interact with each other and the system’s environment. The
system’s processes cooperate to achieve a shared goal: ensuring that the requirements for the
entire system are satisfied. The cooperation might be based on limited local knowledge about
the global state of the system. The processes of a distributed system and their communication
interfaces, i.e., which processes can communicate with each other through which variables,
are defined by an architecture. In particular, an architecture thus defines which system and
environment variables a process can observe. In monolithic synthesis, the specification refers
to the inputs and outputs of a single-process system. By definition, the outputs are controlled
by the system and the inputs are observable. This results in a game with perfect information. In
distributed synthesis, in contrast, a process might not be able to observe all global system input
but only a subset of them, resulting in a game with incomplete information [KV00].

Distributed synthesis is a generalization of monolithic synthesis. Given a specification of the
behavior of the whole system, the task is to derive a set of implementations, one for each system
process, such that their parallel composition satisfies the overall system specification. The
distributed synthesis problem was introduced by Pnueli and Rosner, who also showed that the
problem is, in general, undecidable [PR90]. The undecidability result has been extended to spec-
ifications that fall into the syntactic safety and reachability fragments of LTL [Sch14]. However,
distributed synthesis is known to be decidable for some architectures such as pipelines [PR90],
chains, and one-way rings [KV01]. The architecture-specific decidability results have been
generalized to a comprehensive criterion, the existence of so-called information-forks, that
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characterizes all architectures with an undecidable synthesis problem [FS05]. Intuitively, an in-
formation fork is a situation in which two processes receive information from the environment,
directly or indirectly, such that they cannot completely deduce the information received by the
other process. Thus, thee processes cannot be ordered according to their informedness.

Both automata-based [KV01] and game-based [MW03] synthesis algorithms have been pro-
posed for pipeline and ring architectures. More generally, for architectures without information
forks, the distributed synthesis problem can be solved by iteratively eliminating processes
from the architecture in the order of growing informedness. However, the complexity of this
approach is nonelementary in the number of processes [FS05]. Despite the theoretical solutions,
there thus do not exist tools that are capable of automatically synthesizing implementations for
the processes of a distributed system from general LTL specifications until now.

In the classical Pnueli/Rosner setting considered above, the processes of a distributed system
run synchronously, i.e., all processes make their moves simultaneously. Alternatively, one can
consider an asynchronous setting [PR89b], in which each process can progress at an individual
rate and can wait for other processes for synchronization when needed. Commonly, processes
interact through shared variables in the synchronous setting, while a causal memorymodel is con-
sidered in the asynchronous setting. In the causal memory model [GLZ04a, GLZ04b, MTY05], all
processes that are involved in a synchronization via a shared event exchange their entire causal
history. Therefore, the involved processes have the exact same information in the particular
moment of synchronization. All other processes remain uninformed. Distributed synthesis for
asynchronous systems with causal memory is often formalized with games [GGMW13] based on
Zielonka’s asynchronous automata [Zie87], to which we refer as control games in the following.
In control games, actions are either controllable or uncontrollable and can thus be restricted
by all or none of the involved players. The players aim at fulfilling an objective against all
possible unrestricted behavior together. For the special case of acyclic architectures, distributed
synthesis with control games is decidable [MW14]. However, as in the synchronous setting, the
complexity is nonelementary in the number of processes. Decidability results for control games
have also been obtained for restrictions on the synchronization behavior [MT02, MTY05] or on
the dependencies of actions [GLZ04b], and for decomposable games [Gim17]. Recently, general
undecidability has been shown for six processes [Gim22].
Petri games [FO17] are a variant of the distributed synthesis problem for asynchronous

systems with causal memory, where the processes of the distributed system are tokens on a
Petri net (see, e.g., [NPW81, Rei85, Old91]). The processes synchronize when they participate
in joint transitions. Similar to control games, the processes share their entire causal past,
including previous synchronizations, upon synchronization. The environment is also modeled
with tokens, and a system process can learn about the history of an environment process
when synchronizing with the corresponding environment token. The equivalence of control
games and Petri games has been established, and exponential upper and lower bounds for the
translation in both directions have been provided [BFH19]. For safety objectives and systems
with either a single environment token and a bounded number of system tokens [FO17] or
a single system token and a bounded number of environment tokens [FG17], the synthesis
problem for Petri games is decidable. Further decidability and undecidability results have been
obtained for Petri games with global winning conditions [FGHO22].
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The concept of bounded synthesis, i.e., searching for size-optimal solutions, has also been
applied to Petri games [Fin15, FGHO17]. Bounded synthesis has been extended to true concur-
rency, which allows for utilizing the concurrent nature of Petri games [HM19]. There exists an
online interface for bounded synthesis for Petri games [GHY21]. In this thesis, however, we
focus on the synchronous Pnueli/Rosner setting for distributed synthesis.

1.2. Compositionality
In many fields of computer science, the principle of compositionality has proven to be an
essential technique to obtain scalability. Compositional approaches break down a complex
problem into smaller subproblems that are easier to solve. The solutions for the subproblems
are then combined into a solution for the entire system. Already in the 1940s, divide-and-
conquer algorithms such as the famous merge sort, invented by John von Neumann (see, e.g.,
[Knu73]), utilized the concept of compositionality. The advantages of compositionality have
been recognized, for instance, in the design of cyber-physical systems [Tri16] as well as security
protocols [Cre04]. Researchers extensively study and discuss the concept of compositionality
as well as its applicability to and impact on various fields of computer science until today. For
instance, dedicated workshops on compositionality in computer vision [JKA+20] and artificial
intelligence [MM22] exist, to name just a few.
In the area of formal methods, compositionality had a strong influence on the applicability

of formal verification in practice. It has long been recognized that compositionality is the
key technique that makes a “significant difference” [dRLP98] for the scalability of verification
algorithms. The main idea of compositional verification is to break down the analysis of a
large and complex system into multiple smaller verification tasks (see, e.g., [GNP18, dRdBH+01,
CLM89]). A local task then examines a single component of the system, abstracting the rest
of the system into an assumption. The key technique of compositional verification is assume-
guarantee reasoning [MC81, Jon83, Pnu84], which, given a decomposition of the system into
components, associates each component with an assumption on its input and a guarantee on its
output. The assumptions capture the connections and interdependencies between the system
components. Although identifying a suitable decomposition as well as the assumptions and
guarantees by hand has proven to be challenging (see, e.g., [Lam97]), it has been a manual task
for decades. More recently, algorithms for automatic system decomposition [MWW08] and
assumption generation [CGP03, GPB02, NMA08, SC07, GMF08, FSB06, FPS08] for compositional
verification via assume-guarantee reasoning have been developed.

There has been extensive research on compositional verification in different settings. Composi-
tional verification techniques has been considered for finite-state hardware controllers [CLM91]
but also for infinite-state systems [McM99, DGM03]. There exist algorithms for composition-
ally verifying, for instance, concurrent [dRdBH+01, LT91, LMM21], real-time [Hoo91, dRH89,
CMP94, LL95], hybrid [Pla11, ABB16], parameterized [FMS97, BR06, NT16], and probabilis-
tic [LS92, FKP10] systems as well as protocols [LM92, ZH95, ACG+08]. Success stories of
compositional verification include model-checking a processor microarchitecture [JM01], the
parameterized verification of the FLASH cache coherence protocol via compositional model
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checking [McM01], the verification of a communication protocol for remotely operated vehi-
cles [GM09], and, in combination with bounded model checking [BCCZ99, Bie21], discovering
bugs in widely deployed software [CDS13].

Compositional Synthesis. Inspired by the success of compositional verification, applying
compositional techniques to synthesis is naturally a promising path to pursue. However, devel-
oping successful compositional algorithms has proven much more challenging in synthesis than
in verification. Recall that synthesis seeks a winning strategy for the system player in the game
against the system’s environment. Hence, if the system behaves according to a synthesized
strategy, then it satisfies the specification for every environment behavior. In compositional
synthesis, we consider individual components of the system in their environment. A compo-
nent’s environment particularly includes, in addition to the entire system’s environment, the
remaining components of the system. Therefore, we aim for a winning strategy for the player
that controls the component’s parts of the system in the game against not only the system’s
environment but also the remaining system components. Consequently, we consider the other
components of the system to be adversarial.

However, a winning strategy in the synthesis task of an individual system component rarely
exists: such a component strategy needs to guarantee the satisfaction of all system requirements
for the entire system – even of those that specify system behavior outside of the control of
the considered component – irrespective of whether or not the other system components
cooperate in the goal of satisfying the full system specification. In practice, the satisfaction of
the requirements for the entire system usually cannot be guaranteed by one component alone
but requires collaboration between several components. Therefore, the individual components
need to rely on assumptions about the other behavior of the other system components to be
able to ensure that all requirements for the system are satisfied.
Based on this observation, Chatterjee and Henzinger introduced assume-guarantee synthe-

sis [CH07] in 2007. It relies on the concept of assume-guarantee contracts, which establish
an agreement between the system components on their behavior. A component provides a
guarantee on its own behavior and, in return, makes an assumption on the behavior of the other
components of the system. A strategy for a component is then required to satisfy the specifi-
cation under the hypothesis that the other components respect the established assumptions
formalized in the assume-guarantee contract while not deviating from its own guarantee. If such
strategies exist for all system components, and if, for each component, its guarantee implies the
assumptions made by other components on the behavior of the considered component, then a
solution for the whole system is found. The parallel composition of all component strategies is
then guaranteed to satisfy the specification of the entire system.

The concept of assume-guarantee synthesis has ignited plenty of research on synthesis with
assume-guarantee contracts. There exist several algorithms for different variants of assume-
guarantee synthesis [CH07, GK13, AMT15, BCJK15, BRS17, AKRV17]. Most of them, however,
rely on the user to provide the assume-guarantee contracts or require that a strategy profile, on
which the components can synchronize, is constructed prior to synthesis. Therefore, extensive
manual efforts are required to use most assume-guarantee synthesis algorithms. Assume-
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guarantee distributed synthesis [MMSZ20], in contrast, circumvents the manual efforts by
utilizing the concept of environment assumptions [CH07], which was initially introduced in
the context of centralized reactive synthesis. This algorithm for assume-guarantee synthesis
for distributed systems negotiates the assume-guarantee contract iteratively. In each iteration,
it computes minimal environment assumptions according to [CH07] for each process of the
distributed system and uses these assumptions as additional constraints on the behavior of
the other components. In this way, the assumptions and guarantees of the system processes
are refined until a valid assume-guarantee contract is found. The negotiation procedure is not
guaranteed to terminate. In this assume-guarantee approach, assumptions are restricted to
safety formulas describing the concrete behavior of the other system processes.

Preventing the need for constructing explicit assumptions on the other processes’ behavior,
synthesis with weaker strategy requirements than winning has been considered [FKL10, KPV14,
CFGR16, DF11, DF14, DFR16, BRS17, AK20, LTVZ21]. In this thesis, we focus on the notion of
remorsefree dominance [DF11]. Instead of requiring a strategy to satisfy the given specification
in every situation, remorsefree dominance only requires a strategy to satisfy the specification
in situations that are realistic in the sense that they might actually occur when components
that all do their best to ensure the shared goal interact. More precisely, a remorsefree dominant
strategy is allowed to violate the specification as long as no other strategy would have satisfied
in the same situation, i.e., for the same environment behavior. In other words, if the violation of
the specification is the fault of the component’s environment, we do not blame the component
for preventing the fulfillment of the shared goal of satisfying the overall system requirements.
Hence, remorsefree dominance is a notion of best effort for strategies. A remorsefree dominant
strategy, intuitively, “gives its best” to satisfy the specification; however, the satisfaction of the
specification is not necessarily guaranteed. This corresponds to posing implicit assumptions on
other components, namely that they will not maliciously violate the specification.
For safety specifications, a specific type of formal specifications that intuitively capture that

“nothing bad happens” [Lam77], it has been shown that the parallel composition of remorsefree
dominant strategies is again remorsefree dominant [DF14]. This property is called the com-
positionality of remorsefree dominance for safety properties. This observation immediately
induces a compositional synthesis algorithm [DF14] for safety specifications that synthesizes
remorsefree dominant strategies for the processes of a distributed system separately and then
composes them to obtain a strategy for the entire system. Since remorsefree dominance is
compositional for safety properties, the resulting system strategy is guaranteed to be remorse-
free dominant. If the system specification is realizable, it follows that the compositionally
synthesized strategy is also winning. However, the existence of remorsefree dominant strategies
for the components is not always guaranteed. Furthermore, for more general specifications,
soundness of the compositional synthesis algorithm cannot be guaranteed.

Bounded dominance [DF14] is a variant of remorsefree dominance that ensures compositional-
ity not only for safety specifications but also for liveness specifications, which intuitively capture
that “something good eventually happens” [Lam77]. Intuitively, bounded dominance reduces
every specification to a safety property by introducing a measure of the strategy’s progress
with respect to the specification and by bounding the number of non-progress steps, i.e., steps
in which no progress is made. While bounded dominance thus induces a sound compositional
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synthesis algorithm for general specifications, it has two major disadvantages. First, it requires
a concrete bound on the number of non-progress steps, which is often challenging to determine.
Second, not every bounded dominant strategy is dominant. If the bound is chosen too small,
every strategy, also a non-dominant one, is trivially bounded dominant. Hence, it cannot be
guaranteed that, for realizable specifications, the parallel composition of individually synthe-
sized bounded dominant strategies is winning. Consequently, bounded dominance is not an
optimal notion for compositional distributed synthesis.

1.3. Contributions
In this thesis, we develop fully automated techniques for the compositional synthesis of reactive
systems. They render the extensive manual efforts, which have been required for utilizing com-
positional concepts in synthesis so far, unnecessary and circumvent the disadvantages of existing
approaches. In the first part of this thesis, we focus on distributed systems and introduce algo-
rithms for automatically deriving implicit and explicit assumptions on process behavior. In the
second part of this thesis, we transfer the concept of compositional synthesis from distributed
systems to monolithic systems and present suitable decomposition algorithms. We introduce
approaches based on winning and best-effort strategies for both types of systems.

Implicit Assumptions for Distributed Synthesis. We present a new requirement for
system strategies, called delay-dominance, that formalizes a notion of best effort while circum-
venting the weaknesses of both remorsefree dominance and bounded dominance. It introduces
a progress measure on strategies with respect to a specification given as an alternating co-
Büchi automaton. Based on this measure, delay-dominance then relates non-progress steps
in a delay-dominant strategy to non-progress steps in an alternative strategy. We show that
every delay-dominant strategy is also remorsefree dominant, resulting in the crucial property
that, for realizable specifications, every delay-dominant strategy is winning. Furthermore,
we introduce a criterion for specifications given as alternating co-Büchi automata such that
compositionality of delay-dominance is guaranteed if the criterion is satisfied. We present a
three-step construction of a universal co-Büchi automaton from an LTL formula that recognizes
delay-dominant strategies. We show that the resulting automaton is of single-exponential size
in the squared length of the LTL formula and can be used immediately for safraless synthesis
approaches [KPV06] to synthesize delay-dominant strategies, yielding the result that synthesis
of delay-dominant strategies is in 2EXPTIME. Based on delay-dominance, we introduce a com-
positional synthesis algorithm for distributed systems that utilizes implicit assumptions on the
behavior of other system processes.

Explicit Assumptions for Distributed Synthesis. We introduce a compositional synthesis
algorithm, called certifying synthesis, that, in addition to the strategies for the system processes,
automatically derives guarantees, so-called certificates, on the behavior of every process. The
certificates of the system processes constitute an assume-guarantee contract, thus providing
essential information to the synthesis tasks for the individual processes. Our algorithm is an
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extension of bounded synthesis for monolithic systems [FS13] that incorporates the additional
search for certificates into the synthesis task for the individual process strategies. We introduce
two representations of certificates, as LTL formulas and finite-state machines. We prove the
soundness and completeness of our synthesis algorithm for both of them. Furthermore, we
present an approach for determining which processes are relevant for the considered one in the
sense that assumptions on their behavior are required for a successful synthesis task. In this
way, the number of considered certificates is reduced for each system process while soundness
and completeness of certifying synthesis are preserved. Focusing on certificates represented
by finite-state machines, both deterministic and nondeterministic ones, we reduce certifying
synthesis to a SAT constraint-solving problem. We have developed a prototype of certifying
synthesis and compared it to non-compositional distributed synthesis algorithms, showcasing
the significant advantage of certifying synthesis for larger systems.

Assumption-free Decomposition for Monolithic Synthesis. We present an approach
for decomposing a monolithic system into independent components. It is based on identifying
independent parts of the system specification, which then define the components and their
requirements1. Given a realizable specification for the system, winning strategies for the indi-
vidual components can be synthesized independently. For an unrealizable system specification,
the synthesis task of at least one component is unrealizable as well. Hence, the decomposition
preserves both realizability and unrealizability of the monolithic synthesis task. The component
synthesis tasks are classical monolithic synthesis task. We establish a sound and complete
language-based criterion for determining whether two subspecifications are independent. We
lift the independence criterion to temporal logics by introducing an approximate independence
criterion for LTL formulas. We develop a decomposition algorithm for LTL formulas, which is
based on a syntactic dependency analysis of the formula according to the independence criterion.
We present two optimizations of the decomposition algorithm for formulas in assume-guarantee
form, which identifies assumptions that can be dropped for the considered set of guarantees
while preserving realizability and unrealizability. We have developed a prototype of our LTL
decomposition algorithm and have evaluated it on top of state-of-the-art synthesis tools. The
decomposition is nearly instantaneous and the synthesis time is reduced significantly if multiple
components have been derived. The decomposition algorithm can thus be seen as a prepro-
cessing technique for reactive synthesis algorithms and has already been integrated into the
newest release [RSDP22] of the synthesis tool ltlsynt [MC18] by its developers. Furthermore,
we illustrate the applicability of our specification decomposition algorithm for compositional
synthesis to the domain of smart contracts.

Assumption-based Decomposition for Monolithic Synthesis. We introduce an incremen-
tal synthesis approach for monolithic systems based on remorsefree dominant strategies and the
computation of a suitable system decomposition. In incremental synthesis, for every component,
a remorsefree dominant strategy is synthesized under the assumption that the components that
1Decomposition algorithms for specifications have also been studied as part of Gideon Geier’s Bachelor’s thesis at
Saarland University in 2020 [Gei20], which the author of this thesis supervised.
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have been considered previously do not deviate from their already synthesized strategies. This
allows for making both implicit assumptions, stemming from the use of remorsefree dominant
strategies, and explicit assumptions, stemming from the incremental nature of the synthesis
algorithm, about the other processes’ behavior. We propose two techniques for identifying the
components of the system as well as the order in which they are synthesized. The approaches
offer different trade-offs between precision and computational cost. The first decomposition
method is based on a semantic dependency analysis of the output variables of the system. The
second one relies on a syntactic analysis of the structure of the specification. Both the semantic
and syntactic decomposition approaches ensure the soundness and completeness of incremental
synthesis. Furthermore, we present rules for simplifying the specification for the individual com-
ponents by omitting irrelevant conjuncts while preserving realizability and unrealizability of
the synthesis tasks. We have developed a prototype of the incremental synthesis algorithm and
compared it to classical monolithic synthesis tools, demonstrating the advantage of incremental
synthesis for larger but decomposable system.

1.4. Publications
This thesis is based on the following peer-reviewed publications:

[FP20a] Bernd Finkbeiner and Noemi Passing. Dependency-based compositional synthesis.
In Automated Technology for Verification and Analysis - 18th International Sympo-
sium, ATVA 2020, Proceedings, Vol. 12302 of Lecture Notes in Computer Science, pp.
447–463. Springer, 2020. doi: 10.1007/978-3-030-59152-6_25

[FGP21a] Bernd Finkbeiner, Gideon Geier, and Noemi Passing. Specification decomposition
for reactive synthesis. In NASA Formal Methods - 13th International Symposium,
NFM 2021, Proceedings, Vol. 12673 of Lecture Notes in Computer Science, pp. 113–130.
Springer, 2021. doi: 10.1007/978-3-030-76384-8_8

[FP21a] Bernd Finkbeiner and Noemi Passing. Compositional synthesis of modular systems.
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303–319. Springer, 2021. doi: 10.1007/978-3-030-88885-5_20
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[FHKP23] Bernd Finkbeiner, Jana Hofmann, Florian Kohn, and Noemi Passing. Reactive syn-
thesis of smart contract control flows. In Automated Technology for Verification and
Analysis - 21st International Symposium, ATVA 2023, Proceedings, 2023. (To appear)

Furthermore, this thesis contains material published in the following technical reports:

[FP20b] Bernd Finkbeiner and Noemi Passing. Dependency-based compositional synthesis
(full version). 2020, arXiv: 2007.06941

[FGP21b] Bernd Finkbeiner, Gideon Geier, and Noemi Passing. Specification decomposition
for reactive synthesis (full version). 2021, arXiv: 2103.08459

[FP21b] Bernd Finkbeiner and Noemi Passing. Compositional synthesis of modular systems
(full version). 2021, arXiv: 2106.14783

[FHKP22] Bernd Finkbeiner, Jana Hofmann, Florian Kohn, and Noemi Passing. Reactive
synthesis of smart contract control flows. 2022, arXiv: 2205.06039

[FP22c] Bernd Finkbeiner and Noemi Passing. Synthesizing dominant strategies for liveness
(full version). 2022, arXiv: 2210.01660

1.5. Related Work
In this section, we discuss work closely related to the approaches introduced in this thesis.
First, we consider compositional algorithms for the synthesis of distributed systems, partic-
ularly focusing on approaches that fall into the class of assume-guarantee synthesis as well
as approaches that rely on best-effort strategies or environment assumptions. Afterward, we
discuss compositional synthesis algorithms for monolithic systems and the use of specification
decomposition in monolithic reactive synthesis tools.

Compositional Distributed Synthesis. There are several compositional approaches for the
synthesis of distributed systems. In this paragraph, we only focus on those that do not fall into
the class of assume-guarantee synthesis and that neither rely on environment assumptions nor
best-effort strategies. We address the other algorithms in separate paragraphs.
Finkbeiner et al. introduce a compositional synthesis algorithm based on information-flow

assumptions between the processes of a distributed system [FMM22]. Information-flow as-
sumptions are hyperproperties [CS10], i.e., properties that relate multiple execution traces, that
describe differences in the behavior of a system process that specific other system processes
can observe. In contrast to the assumptions considered in this thesis and the assume-guarantee
style algorithms by Majumdar et al. [MMSZ20] and Alur et al. [AMT15], which we address in
the subsequent paragraph, information-flow assumptions are not behavioral, i.e., they do not
restrict the behavior of other processes, but capture the information that a process can deduce
from other processes. Computing information-flow assumptions for compositional synthesis
can thus be seen as an orthogonal approach to deriving behavioral assumptions.

http://arxiv.org/abs/2007.06941
http://arxiv.org/abs/2103.08459
http://arxiv.org/abs/2106.14783
http://arxiv.org/abs/2205.06039
http://arxiv.org/abs/2210.01660
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Semi-automatic distributed synthesis [SF07] is a compositional synthesis approach for dis-
tributed systems that heavily relies on the assistance of the developer. The authors show that it
is possible to decompose a realizable specification into a conjunction of local properties that the
individual processes of the distributed system can guarantee. The synthesis of a strategy for
an individual system process can thus be done automatically once local properties are derived.
The composition of the separately synthesized strategies then serves as a strategy for the entire
system and is guaranteed to satisfy the full system specification. Strengthening the specification
into a conjunction of such local specifications, however, remains a manual task.

In the setting of controller synthesis, Alur et al. propose a compositional synthesis algorithm
for dynamically-decoupled multi-agent systems [AMT18]. Assuming that the specification is
given in a conjunctive form, they exploit the observation that conjuncts usually only concern
a small subset of agents. For each conjunct, a maximally permissive strategy is synthesized
for the agents involved in the conjunct. Such a strategy does not unnecessarily fix a particular
agent behavior. The resulting strategies for all conjuncts are intersected to identify potential
conflicts. For conflict resolution, constraints on local subproblems, which must be satisfied to
avoid conflict, are identified. These constraints are provided to the respective subproblems, and
synthesis of a maximally permissive strategy is performed again with the updated objective.
This process is repeated until a fixpoint in the strategies is reached.

Assume-Guarantee Synthesis. Chatterjee and Henzinger introduced the concept of assume-
guarantee synthesis first [CH07]. It considers the synthesis of two-process systems with
individual specifications such that the parallel composition of the process strategies realizes the
conjunction of the specifications. In Chatterjee and Henzinger’s formulation, the processes can
be considered conditionally competitive, as they primarily try to realize their own objective and
will only secondarily try to violate the other processes’ objective. Each process assumes that
the other process does not violate its own specification. The synthesis problem is then solved
by computing a secure equilibrium [CHJ06], which ensures that the strategies for the processes
realize their objectives and that differing from this strategy to violate the other process’s
objective can be penalized by the latter process violating the objective of the former process.
Assume-guarantee synthesis has, among others, been extended to the setting of concurrent
reactive programs with partial information [BCJK15], i.e., where variables can be local to a
process and thus non-observable for other processes, and to a quantitive setting [AKRV17], in
which the specification formalism is multi-valued, and the goal is to generate a system that
maximizes the satisfaction value of the specification.

In a similar line of research, Brenguier et al. introduce assume-admissible synthesis [BRS17]
based on the notion of admissible strategies [Ber07, Fae09, BRS14, BPRS17]. Admissibility is
a common concept of best effort for strategies, which we further discuss in the respective
paragraph on best-effort strategies. In assume-admissible synthesis, each process of the consid-
ered two-process system assumes that the other process plays an admissible strategy. Based
on this assumption, the synthesis algorithm derives, for each process, an admissible strategy
that is winning for its objective against all admissible strategies of the other process. Both
assume-guarantee synthesis and assume-admissible synthesis are sound in the sense that the
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composition of synthesized strategies for the individual system processes is guaranteed to
satisfy the conjunction of all system requirements.

Outside the setting of assume-guarantee synthesis, Chatterjee et al. present an algorithm for
computing minimally restrictive assumptions on the environment behavior to obtain realizabil-
ity of a given unrealizable specification [CHJ08]. In a similar direction, Alur et al. introduce a
pattern-based refinement algorithm for unrealizable LTL formula in the GR(1) fragment [PPS06,
BJP+12] by adding assumptions on the behavior of the environment [AMT13]. Both algorithms
have been used for assume-guarantee-style synthesis algorithms [MMSZ20, AMT15]. Majum-
dar et al. [MMSZ20] introduce assume-guarantee distributed synthesis based on minimally
restrictive environment assumptions [CHJ08]. They synthesize assume-guarantee contracts
using a negotiation algorithm. In each round of the negotiation, minimal assumptions are
constructed for each process and then added as additional constraints to the synthesis tasks
of the other processes. The assumptions and guarantees are refined iteratively until a valid
assume-guarantee contract is found. The negotiation procedure is not guaranteed to termi-
nate. The synthesis algorithm only considers assume-guarantee contracts consisting of safety
assumptions and guarantees. The approach is implemented in the tool Agnes [Mal20], which
currently only supports safety and deterministic Büchi objectives.
Alur et al. utilize their previous work [AMT13] on refining unrealizable GR(1) formulas for

assume-guarantee-style compositional synthesis [AMT15]. The approach is only applicable to
two-process systems with local specifications and an architecture with a serial connection of the
processes, such as pipelines. Hence, for one process of the system, its local specification needs to
be realizable irrespective of the behavior of the other process. The core of the synthesis algorithm
is to refine the local process specifications by generating assumptions and guarantees for the
two processes of the system to obtain realizability of the local objectives. The authors propose
three different algorithms for using pattern-based refinement in the context of compositional
synthesis based on the amount of information about the strategies of the process with realizable
local objectives shared between the processes.

Greenyer and Kindler propose an assume-guarantee-style synthesis algorithm for monolithic
systems [GK13]. As this paragraph focuses on distributed systems, we discuss their approach
in more detail in paragraph compositional monolithic systems.

Synthesis of Best-Effort Strategies. There are several notions of best effort in strategies.
Rationality is a requirement that is often posed on strategies [FKL10, KPV14, CFGR16]. Rational
agents are assumed to satisfy their own local objectives. Fisman et al. introduce rational
synthesis, where the system is assumed to be monolithic but where the environment consists of
several partially controllable components, which are assumed to be rational agents [FKL10].
Rational synthesis then derives a strategy for the considered monolithic system and a profile of
strategies that suggests a behavior of the environment components. The composition of the
system strategy and the strategy profile is required to satisfy the system’s objective. Furthermore,
the strategy profile should be an equilibrium in the sense that the environment agents do
not have an incentive to deviate from the strategy profile. The authors propose solutions to
the rational synthesis problem for three common notions in algorithmic game theory, Nash
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equilibria, dominating strategies, and subgame-perfect Nash equilibria (see, e.g., [NRTV07]).
Kupferman et al. extend rational synthesis as introduced by Fisman et al., in which agents
are rational and cooperative, to the rational but non-cooperative setting [KPV14]. They show
2EXPTIME-completeness for rational synthesis in both the cooperative and the non-cooperative
case. Furthermore, they extend the approach to quantitive system objectives. Condurache et al.
study the complexity of rational synthesis in both the cooperative and the non-cooperative
setting in more detail [CFGR16]. They provide tight complexity results for different kinds of
system objectives – safety, reachability, Büchi, co-Büchi, parity, Streett, Rabin, and Muller as
well as full LTL – and for both fixed and unfixed numbers of players.

The notion of admissibility of strategies [Ber07, Fae09, BRS14, BPRS17] is based on the
classical game theoretical concept of weakly dominated strategies. Intuitively, a strategy
weakly dominates another strategy if it performs as least as good as the dominated strategy
in all situations and if there exists a situation in which it performs strictly better than the
dominated strategy (see, e.g., [NRTV07]). A strategy is admissible if it is not weakly dominated
by any other strategy. Berwanger lifts the admissibility notion to games played on graphs and
provides existence results for admissible strategies in infinite multi-player games [Ber07]. Faella
studies admissible strategies in infinite two-player games and their required memory [Fae09].
He shows that admissible strategies may require an unbounded amount of memory even
for objectives for which memoryless strategies exist and introduces necessary and sufficient
conditions for objectives to have memoryless admissible strategies. Furthermore, he presents
an efficient way of computing admissible strategies from winning and cooperative strategies.
Brenguier et al. build upon Berwanger’s results [Ber07] and study the complexity of iterated
elimination of dominated strategies in different types of 𝜔-regular games [BRS14]. Additionally,
they present the construction of an 𝜔-automaton that recognizes all possible outcomes of
admissible strategies, i.e., those strategies that survive the iterated elimination of dominated
strategies. The automaton construction enables, for instance, solving the model-checking
under admissibility problem. Assume-admissible synthesis [BRS17] is a compositional synthesis
algorithm based on synthesizing admissible strategies for the individual processes, which we
discuss in the paragraph on assume-guarantee synthesis.

Similar to admissibility, remorsefree dominance, which has first been introduced for reactive
synthesis by Damm and Finkbeiner [DF11], relies on the notion of dominating strategies.
Domination in remorsefree dominance, however, is defined in a slightly different manner than
weak domination in admissibility: while it also requires a dominating strategy to perform
at least as good as the dominated one, it does not require the former strategy to perform
strictly better in some situation. A strategy is remorsefree dominant if it dominates all other
strategies. Remorsefree dominance is thus strictly stronger notion than admissibility, i.e., every
remorsefree dominant strategy is admissible while not every admissible strategy is remorsefree
dominant [BRS17]. For realizable specifications, remorsefree dominant strategies are guaranteed
to be winning. Remorsefree dominant strategies have been utilized for the compositional
synthesis of distributed systems for safety specifications by computing remorsefree dominant
strategies for the system processes separately [DF14]. This synthesis approach is restricted to
safety specifications as, for liveness specifications, it is not guaranteed that the composition of
two remorsefree dominant strategies is again remorsefree dominant.
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Bounded dominance [DF14] is a variant of remorsefree dominance that addresses this problem.
Intuitively, bounded dominance reduces a liveness specification to a safety property. It utilizes
a progress measure on strategies and introduces a bound on the number of steps in which a
strategy does not make progress with respect to the specification. While it is guaranteed that
the composition of two bounded dominant strategies is again bounded dominant, it requires
a concrete bound on the number of non-progress steps. Furthermore, a bounded dominant
strategy is not necessarily remorsefree dominant. If the bound is chosen too small, every
strategy, even one that unnecessarily violates the specification, is bounded dominant. Therefore,
in contrast do remorsefree dominance, bounded dominant strategies are even for realizable
specifications not necessarily winning.

Damm et al. generalize the compositional synthesis algorithm based on remorsefree dominant
strategies [DF14] to settings where remorsefree dominant strategies only exist under certain
assumptions about the future behaviors of other system processes [DFR16]. They propose
an incremental synthesis algorithm based on automatically constructing such assumptions.
The approach is only applicable for systems in which the processes can be ordered by their
criticality. Less critical processes are then required to change their behavior to guarantee that
the assumptions needed by more critical processes are satisfied.
Good-enough strategies [AK20] are similar to remorsefree dominant strategies [DF11] and

only require a strategy to satisfy the specification for input sequences for which there exists an
output sequence that satisfies the specification, i.e., only in situations in which the specification
can be satisfied. The concept of good-enough strategies has been extended to a multi-valued cor-
rectness notion, allowing for specifying system quality [AK20]. Furthermore, Li et al. [LTVZ21]
study good-enough strategies for LTL specifications over finite-traces [GV13], called LTL𝑓
specifications. They propose two synthesis algorithms for good-enough strategies for system
specifications given as LTL𝑓 formulas, one via good-enough strategies for LTL specifications
and one via a reduction to solving games played on deterministic Büchi automata.
Furthermore, the synthesis of best-effort strategies has been considered in the setting,

where additional LTL assumptions on the environment behavior are provided to the synthesis
task [AGL+20, AGR21]. Due to the existence of environment assumptions in the approach, we
discuss it in the subsequent paragraph.

Synthesis under Environment Assumptions. Similar to the best-effort notions for strate-
gies discussed in the previous paragraph, synthesis under environment assumptions aims at
relaxing the requirements on a system strategy. In contrast to best-effort strategies, explicit
assumptions on the environment are added to the synthesis task. We discuss different flavors of
such assumptions restricting the environment behavior.
The approach of Chatterjee et al. for synthesizing minimally restrictive environment as-

sumptions [CHJ08] and the pattern-based refinement of GR(1) formulas [AMT13], both already
mentioned in the paragraph on assume-guarantee synthesis, construct LTL formulas that re-
strict the possible environment behavior. These formals can then be used as assumptions in the
synthesis task to limit the possible input sequences. Similarly, Li et al. mine assumptions for syn-
thesis from counterexamples obtained during synthesis for unrealizable specifications [LDS11].
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Similar to [AMT13], they use template-based assumptions. To the best of our knowledge,
assumption mining, as introduced in [LDS11], has not been used for compositional synthesis.
The challenges of synthesis under environment assumptions formulated as LTL formulas are
discussed in [BEJK14]. The authors propose four goals that should be met when considering
synthesis under environment assumptions, casually formulated as “Be Correct!”, “Don’t Be
Lazy!”, “Never Give Up!”, and “Cooperate!”.
Aminof et al. propose to see environment assumptions as non-empty sets of strategies

instead of sets of traces [AGMR18]. Furthermore, they define the synthesis problem for LTL
specifications under environment assumptions represented by sets of environment strategies.
This concept is utilized in [AGL+20], where the environment is formalizes by two distinct
models and thus two environment assumptions, one capturing expected behavior and one that
also includes exceptional behavior. The environment assumptions are again formalized as LTL
formulas. A strategy is then required to win against the expected environment behaviors, and,
in addition, it should try to satisfy the exceptional behaviors as far as possible. Note that this
again resembles a notion of best effort, yet, in a different setting. The authors show that if
a winning strategy exists against the expected environment behavior, then there is also one
that additionally makes the best effort against the exceptional ones. Aminof et al. then show
that computing such a strategy that is winning against expected environment behavior and a
best-effort strategy against exceptional environment behavior is 2EXPTIME-complete and thus
not harder than classical synthesis [AGR21].
Instead of formalizing explicit environment behavior, assumptions on the environment

can also be conceptual such as assuming the environment to behave rational [FKL10, KPV14,
CFGR16]) or admissible [Ber07, Fae09, BRS14, BPRS17]. We refer to the previous paragraph for
more information on rational and admissible strategies and their synthesis problems.

Compositional Monolithic Synthesis. Compositional approaches to monolithic synthesis
have been studied from different angles. Kupferman et al. introduce a compositional synthesis
algorithm, extending their safraless synthesis algorithm [KV05], that is designed for incremen-
tally adding requirements to a specification during system design [KPV06]. They reduce the
LTL realizability problem to an emptiness problem of a nondeterministic Büchi tree automaton.
Given a specification consisting of several conjuncts, their approach first checks realizability
for the individual conjuncts. Then it reuses results from isolated realizability checks to reduce
the state space of the automaton for the full specification. As their approach was developed
with the incremental refinement of specifications in mind, it is only applicable to specifications
in conjunctive form, i.e., conjuncts of LTL subspecifications.

Filiot et al. introduce a compositional algorithm to solve the LTL realizability and synthesis
problems [FJR10, FJR11]. It relies on the author’s previous results that the LTL realizability
problem can be reduced to solving a safety game [FJR09]. The authors show that the safety
game for the realizability of an LTL formula in conjunctive form can be solved by solving safety
games for the conjuncts of the formula independently. For each subspecification, a separate
safety game is constructed, and a so-called master plan is computed. A master plan subsumes
all winning strategies. The algorithm then composes the master plans for the subspecifications,
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resulting in a master plan for the full specification from which an implementation can then be
extracted. For LTL formulas that are not in conjunctive form but consist of a set of assumptions
and a set of guarantees, the formula is translated into conjunctive form. Hence, we obtain several
conjuncts, one for each guarantee, which all contain all assumptions, resulting in an enormous
blow-up of the specification length. The authors propose a simple yet incomplete heuristic
for eliminating unnecessary assumptions for the individual subspecifications. Realizability of
the subspecifications might get lost when eliminating assumptions according to the heuristic.
The main algorithm for LTL formulas in conjunctive form has been implemented in the tool
Acacia+ [BBF+12], which is unfortunately not available anymore.

Kulkarni and Fu present a compositional distributed synthesis approach for LTL formulas in
conjunctive form [KF18]. The algorithm is restricted to LTL formulas that can be expressed with
deterministic finite-state automata, immediately enabling the use of safety games for synthesis.
The approach is thus not applicable to liveness properties. Similar to the compositional synthesis
algorithm by Filiot et al. [FJR10, FJR11], Kulkarni and Fu make use of the conjunctive nature of
many LTL specifications and propose to systematically construct the winning regions of the
safety games for the individual conjuncts separately. Furthermore, they introduce a method to
compute the winning region of the safety game for the synthesis task of the entire system by
combining the winning regions of the individual processes.

In a similar direction, Bansal et al. propose a compositional synthesis approach for specifica-
tions in Safety LTL [CMP92], a syntactic fragment of LTL that only allows safety properties, in
conjunctive form that synthesizes a strategy for each conjunct separately and then composes
them one by one [BGS+22]. The authors show that, for Safety LTL formulas, it suffices to
consider a partial game arena instead of the exact one to ensure the satisfaction of the formula
when building the conjunction with other formulas. This reduces the state space for subsequent
operations. The algorithm derives a deterministic safety automaton for each Safety LTL conjunct
separately. The authors propose two variants of splitting each automaton into a winning part
and a losing part, allowing for reducing the size of the automaton by clustering the losing part
into a single state. Lastly, the resulting automata are composed iteratively.

Independent of our specification decomposition algorithm for the compositional synthesis of
monolithic systems [FGP21a, FGP22], which is presented in Chapter 5, Mavridou et al. [MKG+21]
introduced a compositional realizability analysis in FRET [GPM+20, NAS20], a publicly available
tool for writing, understanding, formalizing, and analyzing requirements by NASA’s Ames
Research Center. Their approach is based on similar ideas as our LTL decomposition algorithm,
i.e., on identifying independent parts of the requirements by computing dependencies between
individual requirements, building a dependency graph, and computing the strongly connected
components. As specifications are written in FRETish [GPM+20], the requirement language of
FRET, in their setting, however, the dependency analysis differs. The optimized handling of
assumptions in specifications that consist of sets of assumptions and guarantees of our LTL
decomposition technique cannot be easily integrated into their approach for FRET. For a more
detailed comparison of both approaches, we refer to [MKG+21].

For specifications given as Live Sequence Charts [DH01], an expressive specification format
that distinguishes between behaviors that may happen and that must happen, Kugler and Segall
present two compositional synthesis approaches [KS09]. The first algorithm implements the
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sound composition of two synthesized strategies for subspecifications of the system specification.
It is not complete, as it requires the existence of individual strategies for the subspecifications,
regardless of any interconnections. The second approach computes an overapproximation of
the maximal winning strategy, a so-called optimistic strategy, for each subspecification and
then utilizes the first algorithm for composing them. Optimistic strategies follow a similar
idea as master plans in [FJR10], yet, they may violate liveness constraints while master plans
do not. The resulting composed strategy is again an optimistic strategy. However, it might
not be a valid strategy since the choices of the system and environment are not guaranteed to
alternate. In particular, the strategy might rely on entering an infinite loop of system events.
While the authors briefly describe a sound and complete extension of their algorithms, they
neither formalize nor implement it.

In the context of controller synthesis, Greenyer and Kindler propose a compositional mono-
lithic synthesis algorithm from specifications given as Modal Sequence Charts [HM08] based
on assume-guarantee contracts [GK13]. The approach heavily relies on manual interventions.
In particular, it requires the developer to identify a suitable decomposition of the system into
component and an assume-guarantee contract consisting of small enough properties so that
compositional synthesis has an advantage over classical monolithic synthesis. In the same
setting, Baier et al. present an algorithm for incrementally synthesizing most general controllers
for LTL specifications in conjunctive form [BKK11]. The already synthesized most-general
controllers are provided for the later synthesis tasks. The authors only show the existence of
most general controllers for the individual synthesis tasks for safety and co-safety objectives.

Specification Decomposition in Reactive Synthesis Tools. Several reactive synthesis
tools for monolithic systems decompose the given system specification into subspecifications.
The game-based tool Strix [MSL18] uses decomposition to identify suitable automaton types
for internal representation. Furthermore, it recognizes isomorphic parts of the specification to
avoid redundant synthesis tasks. The synthesis tools Unbeast [Ehl11] and Safety-First [SS13],
in contrast, analyze the specification to identify safety subspecifications, which can be syn-
thesized more efficiently. All three tools do not perform fully independent synthesis tasks for
the derived subspecifications. Therefore, they do not implement compositional monolithic
synthesis approaches. As outlined in the previous paragraph, Acacia+ [BBF+12] implements the
compositional synthesis approach by Filiot et al. [FJR10, FJR11], yet, it is not available anymore.
The developers of the synthesis tool ltlsynt [MC18] included our specification decomposition
approach for monolithic synthesis [FGP21a, FGP22], presented in Chapter 5, as an optimization
in their most recent release [RSDP22].

1.6. Structure of This Thesis
This thesis is structured into two parts. The former presents compositional synthesis algorithms
for distributed systems, utilizing both implicit and explicit assumptions on the behavior of
other system processes. The latter introduces decomposition techniques for monolithic systems,
thus enabling compositional monolithic synthesis. As the problems considered in both parts
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have the same origin, the required foundations coincide. Therefore, they are jointly presented
in Chapter 2. We particularly focus on system architectures and specifications as well as the
representation of system strategies and implementations. Furthermore, we formalize both the
monolithic and distributed reactive synthesis problem and present synthesis approaches for
both winning and remorsefree dominant strategies. Both parts of this thesis are sufficiently
self-contained to be read independently. We conclude the thesis in Chapter 7 with a discussion
of the results of this thesis and open problems.

Part I: Distributed Systems. In Chapter 3, we present the compositional distributed synthesis
algorithm based on implicit assumptions. First, we present existing approaches to compositional
synthesis that utilize variants of remorsefree dominance as a best-effort notion for strategies
and discuss their unsuitability for liveness specifications. Afterward, we introduce delay-
dominance as a new strategy requirement with a game-based definition and show that every
delay-dominant strategy is also remorsefree dominant. We establish a criterion for alternating co-
Büchi automata and prove that, if the criterion is satisfied, compositionality of delay-dominance
is guaranteed. Then, we introduce a three-step construction of a universal co-Büchi automaton
that can be immediately used for synthesizing delay-dominant strategies with safraless synthesis
algorithms. Lastly, we present a compositional synthesis approach for distributed systems based
on synthesizing separate delay-dominant strategies for the system’s processes.

In Chapter 4, we introduce a compositional synthesis algorithm for distributed systems that
automatically derives guarantees on the behavior of the processes, so-called certificates, which
constitute an assume-guarantee contract. We introduce a running example, which we will use
throughout the chapter. Afterward, we introduce the main concept of compositional synthesis
with certificates, focusing on certificates formalized with LTL formulas, and prove its soundness
and completeness. Next, we establish how certificates can be modeled with deterministic finite-
state machines and show soundness and completeness of the resulting synthesis algorithm. Then,
we present a reduction of compositional synthesis with certificates represented by deterministic
finite-state machines to a SAT constraint-solving problem. We introduce two optimizations
of the synthesis algorithm. First, we present a criterion for identifying which certificates are
relevant for a process and prove that soundness and completeness are preserved when only
considering relevant certificates. Second, we permit nondeterminism in certificates represented
by finite-state machines. We show soundness and completeness of the resulting approach
and discuss the necessary changes in the SAT encoding. Lastly, we present an experimental
evaluation of our approach.

Part II: Monolithic Systems. In Chapter 5, we present a decomposition algorithm for
monolithic systems that ensures, given a realizable system specification, realizability of the
resulting synthesis subtasks for all derived components. For an unrealizable system specification,
unrealizability of the synthesis subtasks of at least one component is guaranteed. First, we
introduce the concept of modular monolithic synthesis. Afterward, we establish a language-
based independence criterion for subspecifications and prove that soundness and completeness
of modular monolithic synthesis are guaranteed for decompositions satisfying the criterion.
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Next, we lift the language-based criterion to the temporal logic level by introducing a syntactic
independence criterion for LTL specifications that approximates the language-based criterion in
the sense that it might yield coarser decompositions than necessary. We prove that, nevertheless,
soundness and completeness of modular synthesis are guaranteed. We present an algorithm
for identifying system components based on the LTL independence criterion. Afterward, we
introduce optimizations of the algorithm for specifications in both strict and non-strict assume-
guarantee forms. We present an experimental evaluation of our approach, utilizing it as a
preprocessing technique for state-of-the-art synthesis tools. Lastly, we present the applicability
of our decomposition algorithm to smart contract specifications.

In Chapter 6, we introduce an incremental synthesis algorithm for distributed systems based
on the synthesis of remorsefree dominant strategies. After presenting a running example,
which we use throughout the chapter, we introduce the incremental synthesis algorithm. Next,
we present the concept of semantic dependencies between output variables and prove that
the absence of such dependencies guarantees the success of the individual synthesis tasks
in incremental synthesis. Consequently, we introduce a decomposition algorithm based on
semantic dependencies, ensuring soundness and completeness of incremental synthesis, and an
optimization, which allows for even more fine-grained decompositions, next. Afterward, we
present the concept of syntactic dependencies, which conservatively overapproximate semantic
dependencies, and a corresponding syntactic decomposition algorithm. We show that the
absence of syntactic dependencies again ensures the success of the individual synthesis tasks in
incremental synthesis and that hence soundness and completeness of incremental synthesis are
preserved. Next, we introduce rules for simplifying the specifications for the individual synthesis
tasks for the components by omitting conjuncts that do not affect the resulting strategies or
their existence. Lastly, we present an experimental evaluation of our approach.





Chapter 2

Foundations

In this section, we lay the foundations and fix the notations for the remainder of this thesis. We
introduce the type of systems that we consider as well as concepts for specifying requirements
on them. We present formalisms for modeling system strategies and introduce reactive synthesis
as a mechanism to derive such strategies from a system specification automatically.

2.1. Notation
Given an alphabet Σ, we denote the set of infinite words over 2Σ with (2Σ)𝜔 and the set of finite
words over 2Σ with (2Σ)∗. We define (2Σ)∞ = (2Σ)∗ ∪ (2Σ)𝜔 to be the set of finite and infinite
words over 2Σ. The length of a finite word 𝜎 ∈ (2Σ)∗ is denoted with |𝜎 |. The length of an
infinite word 𝜎 ∈ (2Σ)𝜔 is∞.
For a finite or infinite word 𝜎 ∈ (2Σ)∞ and 𝑘 ∈ N0 with 𝑘 ≤ |𝜎 |, we denote the symbol of 𝜎

at point in time 𝑘 with 𝜎𝑘 . Note that the first symbol of 𝜎 is 𝜎0 and thus 𝜎𝑘−1 denotes the 𝑘-th
symbol of 𝜎 . Given a word 𝜎 ∈ (2Σ)∞ and 𝑘 ∈ N0 with 𝑘 ≤ |𝜎 |, the prefix of length 𝑘 of 𝜎
is denoted with 𝜎 |𝑘 = 𝜎0 . . . 𝜎𝑘−1. We denote the set of all prefixes of 𝜎 of arbitrary length
with Pref (𝜎). Given words 𝜎 ∈ Σ∗ and 𝜎 ′ ∈ Σ∞ with |𝜎 ′ | > 0, the concatenation of 𝜎 and 𝜎 ′

is defined by 𝜎 · 𝜎 ′ = 𝜎0 . . . 𝜎 |𝜎 |−1𝜎
′
0 . . . 𝜎

′
|𝜎 ′ |−1. If 𝜎

′ ∈ Σ∗ holds, then we have 𝜎 · 𝜎 ′ ∈ Σ∗ with
|𝜎 · 𝜎 ′ | = |𝜎 | + |𝜎 ′ |. Otherwise, 𝜎 · 𝜎 ′ ∈ Σ𝜔 holds. Irrespective of the alphabet, we represent the
empty word with Y and Y · 𝜎 = 𝜎 holds for all 𝜎 ∈ (2Σ)∞.

For a word 𝜎 ∈ (2Σ)∞ and a set 𝑋 ⊆ Σ, we define 𝜎 ∩ 𝑋 = (𝜎0 ∩ 𝑋 ) (𝜎1 ∩ 𝑋 ) . . . (𝜎 |𝜎 |−1 ∩ 𝑋 ).
We have 𝜎 ∩ 𝑋 ∈ (2𝑋 )∞. For two words 𝜎 ∈ (2Σ)∞ and 𝜎 ′ ∈ (2Σ′)∞ with Σ ∩ Σ′ = ∅ and
|𝜎 | = |𝜎 ′ |, we define 𝜎 ∪𝜎 ′ = (𝜎0∪𝜎 ′0) (𝜎1∪𝜎 ′1) . . . (𝜎 |𝜎 |−1∪𝜎 ′|𝜎 |−1). We have 𝜎 ∪𝜎 ′ ∈ (2Σ∪Σ′)∞.
For a 𝑘-tuple 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) we define the projection to the 𝑖-th component of 𝑎 as #𝑖 (𝑎) = 𝑎𝑖 .

2.2. Monolithic and Distributed Systems
In this thesis, we consider reactive systems [HP84]. Such systems continually receive inputs
from their environment and react to them by producing outputs. Furthermore, they run for an
indefinite amount of time, i.e., they do not terminate. Thus, a reactive system has an infinite
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input/output behavior. Since we only consider reactive systems, we call reactive systems
simply systems in the remainder of this thesis. Every system consists of 𝑛 system processes
𝑝1, . . . , 𝑝𝑛 , which may interact with each other as well, and a process 𝑝env modeling the system’s
environment. We capture the design of a system with its architecture:

Definition 2.1 (System Architecture).
An architecture 𝒜 is a tuple𝒜 = (𝑃,𝑉 , 𝐼,𝑂), where 𝑃 is a set of processes consisting of the
environment process 𝑝env and a set 𝑃− = 𝑃 \ {𝑝env} of 𝑛 system processes, 𝑉 is a finite set of
variables, 𝐼 = ⟨𝐼1, . . . , 𝐼𝑛⟩ assigns a set 𝐼𝑖 ⊆ 𝑉 of inputs to each system process 𝑝𝑖 ∈ 𝑃−, and
𝑂 = ⟨𝑂1, . . . ,𝑂𝑛⟩ assigns a set 𝑂𝑖 ⊆ 𝑉 of outputs to each process 𝑝𝑖 ∈ 𝑃 . For every 𝑝𝑖 ∈ 𝑃−,
the inputs and outputs are disjoint, i.e., 𝐼𝑖 ∩ 𝑂𝑖 = ∅. The processes have pairwise disjoint
output variables, i.e., 𝑂𝑖 ∩𝑂 𝑗 = ∅ holds for all 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑃 with 𝑖 ≠ 𝑗 . The variables 𝑉 of the
whole system are the inputs and outputs of all processes, i.e., 𝑉 =

⋃
𝑝𝑖 ∈𝑃− 𝐼𝑖 ∪

⋃
𝑝𝑖 ∈𝑃 𝑂𝑖 .

Given an architecture𝒜 = (𝑃,𝑉 , 𝐼,𝑂), we denote all variables of a system process 𝑝𝑖 ∈ 𝑃−with
𝑉𝑖 = 𝐼𝑖 ∪𝑂𝑖 . Intuitively, a system process controls its outputs and can observe its inputs. All
other variables of the system, however, are unobservable. Thus, all variables a system process
𝑝𝑖 ∈ 𝑃− can interact with are captured in its variables 𝑉𝑖 . We denote all system output variables
with 𝑂− =

⋃
𝑝𝑖 ∈𝑃−𝑂𝑖 and all system input variables with 𝐼− =

⋃
𝑝𝑖 ∈𝑃− 𝐼𝑖 .

For an architecture 𝒜 = (𝑃,𝑉 , 𝐼,𝑂) with |𝑃−| ≥ 2, the parallel composition 𝑝1 | | 𝑝2 of two
system processes 𝑝1, 𝑝2 ∈ 𝑃− is a process with inputs 𝐼𝑝1 | |𝑝2 = (𝐼1 ∪ 𝐼2) \ (𝑂1 ∪𝑂2) and outputs
𝑂𝑝1 | |𝑝2 = 𝑂1∪𝑂2. Although such composed processes are not directly part of the architecture𝒜,
we call them processes in the remainder of this thesis as well. Whenever the context is clear,
we do not distinguish between composed processes and system processes. We denote the set of
all system processes and all processes composed from one or more system processes with P.
That is, we define P =

{
𝑝𝑖1 | | . . . | | 𝑝𝑖𝑚 | {𝑝𝑖1, . . . , 𝑝𝑖𝑚 } ∈ 2𝑃

− \ ∅
}
. For all processes 𝑝𝑖 ∈ P, we

denote their sets of variables, inputs, and outputs with 𝑉𝑖 , 𝐼𝑖 , and 𝑂𝑖 , respectively, irrespective
of whether 𝑝𝑖 is a system process or a process composed from one or more system processes.
While this introduces ambiguity in general, it is, in this thesis, always clear from the context
whether the sets𝑉𝑖 , 𝐼𝑖 , and𝑂𝑖 refer to the variables, inputs, and outputs, respectively, of the 𝑖-th
system process 𝑝𝑖 ∈ 𝑃− or of the 𝑖-th process 𝑝𝑖 ∈ P.

We call an architecture 𝒜 = (𝑃,𝑉 , 𝐼,𝑂) distributed if |𝑃−| > 1 holds, i.e., if it contains at least
two system processes. Otherwise, it is called monolithic. In the remainder of this thesis, we
assume that an architecture, either distributed (Part I) or monolithic (Part II), is given.

Example 2.1. In Figure 2.1, two distributed architectures𝒜1 and𝒜2 are depicted. Both consist
of three system processes 𝑝1, 𝑝2, and 𝑝3 and the environment process 𝑝env . Furthermore, we
have 𝐼 = {𝑎} and𝑂 = {𝑏, 𝑐, 𝑑} for both architectures. For architecture𝒜1 depicted in Figure 2.1a,
we obtain the sets 𝐼1 = {𝑎}, 𝐼2 = {𝑏}, and 𝐼3 = {𝑐} of input variables of the system processes
as well as the sets 𝑂1 = {𝑏}, 𝑂2 = {𝑐}, and 𝑂3 = {𝑑} of outputs. For architecture 𝒜2 depicted
in Figure 2.1b, we obtain the sets 𝐼1 = {𝑎, 𝑑}, 𝐼2 = {𝑏}, and 𝐼3 = {𝑐} of input variables of the
system processes as well as the sets 𝑂1 = {𝑏}, 𝑂2 = {𝑐}, and 𝑂3 = {𝑑} of outputs. Clearly,
in both architectures, the sets of inputs and outputs of a system process are disjoint and the
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𝑒𝑛𝑣 𝑝1 𝑝2 𝑝3
𝑎 𝑏 𝑐 𝑑

(a) Pipeline architecture𝒜1

𝑒𝑛𝑣 𝑝1 𝑝2 𝑝3
𝑎 𝑏 𝑐

𝑑

(b) One-way ring architecture 𝒜2

Figure 2.1.: Two distributed system architectures𝒜1 and𝒜2.

system processes do not share output variables. The parallel compositions 𝑝2 | | 𝑝3 of the two
system processes 𝑝2 of 𝑝3 of 𝒜1 is defined by the set 𝐼𝑝2 | |𝑝3 = {𝑏} of input variables and the set
𝑂𝑝1 | |𝑝2 = {𝑐, 𝑑} of output variables. △

2.3. Linear-time Properties
Linear-time properties describe requirements of a system. Given a finite set of atomic proposi-
tions Σ, a linear-time property 𝑃 is an 𝜔-language over 2Σ, i.e., it is a set of infinite words over 2Σ.
Hence, 𝑃 ⊆ (2Σ)𝜔 holds. In the following, we consider two types of linear-time properties.
A safety property is a linear-time property that intuitively describes that “nothing bad hap-

pens” [Lam77]. A typical safety property is, for instance, that a system never reaches an unsafe
state. Formally, safety properties are defined as follows:

Definition 2.2 (Safety Property).
A safety property is a linear-time property 𝑃 ⊆ (2Σ)𝜔 such that for all words 𝜎 ∈ (2Σ)𝜔 \ 𝑃 ,
there exists a finite prefix [ ∈ (2Σ)∗ of 𝜎 such that

𝑃 ∩
{
𝜎 ′ ∈ (2Σ)𝜔 | [ ∈ Pref (𝜎 ′)

}
= ∅.

Thus, for every word 𝜎 ∈ (2Σ)𝜔 that does not lie in 𝑃 , there exists a finite prefix [ ∈ (2Σ)∗
of 𝜎 such that all infinite extensions of [, i.e., sequences �̂� ∈ (2Σ)𝜔 with �̂�0 . . . �̂� |[ |−1 = [, do not
lie in 𝑃 either. We call [ a bad prefix for 𝜎 .
In contrast, a liveness property is a linear-time property that, intuitively, describes that

“something good eventually happens” [Lam77]. A typical liveness property is, for instance, that
a system eventually terminates. Formally, liveness properties are defined as follows:

Definition 2.3 (Liveness Property).
A liveness property is a linear-time property 𝑃 ⊆ (2Σ)𝜔 such that{

[ ∈ (2Σ)∗ | ∃𝜎 ∈ 𝑃 . [ ∈ Pref (𝜎)
}
= (2Σ)∗.

Hence, for every finite sequence [ ∈ (2Σ)∗ there exists an infinite extension 𝜎 ∈ (2Σ)𝜔 of [
that lies in 𝑃 . Not every linear-time property is a safety or liveness property. However, for every
linear-time property 𝑃 ⊆ (2Σ)𝜔 , there exists an equivalent linear-time property 𝑃 ′ ⊆ (2Σ)𝜔 that
is a conjunction of a safety and a liveness property [AS87].
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2.4. Linear-time Temporal Logic
Linear-time temporal logic (LTL) [Pnu77] is a common specification language for linear-time
properties. For a finite set of atomic propositions Σ and 𝑎 ∈ Σ, the syntax of LTL is given by

𝜑,𝜓 = 𝑞true | 𝑎 | ¬𝜑 | 𝜑 ∨𝜓 | 𝜑 | 𝜑U𝜓 .

We derive the usual Boolean operators false = 𝑞¬true,𝜑∧𝜓 = 𝑞¬(¬𝜑∨¬𝜓 ),𝜑 → 𝜓 = 𝑞¬𝜑∨𝜓 ,
and 𝜑 ↔ 𝜓 = (𝜑 → 𝜓 ) ∧ (𝜓 → 𝜑). In addition to the temporal operators next 𝜑 and until
𝜑U𝜓 , we use the derived operators eventually 𝜑 = 𝑞trueU 𝜑 , globally 𝜑 = 𝑞¬ ¬𝜑 , and
weak until 𝜑W𝜓 = 𝑞 𝜑 ∨ (𝜑U𝜓 ).

The satisfaction relation 𝜎, 𝑘 |= 𝜑 for an infinite word 𝜎 ∈ (2Σ)𝜔 , a point in time 𝑘 ∈ N0, and
an LTL formula 𝜑 is defined by

𝜎, 𝑘 |= true

𝜎, 𝑘 |= 𝑎 iff 𝑎 ∈ 𝜎𝑘
𝜎, 𝑘 |= ¬𝜓 iff 𝜎, 𝑘 ̸ |= 𝜓

𝜎, 𝑘 |= 𝜑 ∨𝜓 iff 𝜎, 𝑘 |= 𝜑 or 𝜎, 𝑘 |= 𝜓

𝜎, 𝑘 |= 𝜑 iff 𝜎, 𝑘 + 1 |= 𝜑

𝜎, 𝑘 |= 𝜑U𝜓 iff ∃ 𝑗 ≥ 𝑘. 𝜎, 𝑗 |= 𝜓 ∧ ∀𝑘 ≤ ℓ ≤ 𝑗 . 𝜎, ℓ |= 𝜑.

An infinite word 𝜎 ∈ (2Σ)𝜔 satisfies and LTL formula 𝜑 if, and only if, 𝜎, 0 |= 𝜑 holds. We also
write 𝜎 |= 𝜑 for 𝜎, 0 |= 𝜑 . The language L(𝜑) of an LTL formula 𝜑 is the set of infinite words
that satisfy 𝜑 , i.e., L(𝜑) = {𝜎 ∈ (2Σ)𝜔 | 𝜎 |= 𝜑}. We denote the set of atomic propositions
occurring in an LTL formula 𝜑 with prop(𝜑) ⊆ Σ. The length of an LTL formula 𝜑 is denoted
with |𝜑 |. We represent a conjunctive LTL formula 𝜑 = 𝜓1 ∧𝜓2 ∧ . . . ∧𝜓 𝑗 also by the set of its
conjuncts, i.e., by {𝜓1,𝜓2, . . . ,𝜓 𝑗 }. In the remainder of this thesis, we only consider systems
whose requirements are described with LTL formulas. Therefore, we use the terms specification
and LTL formula as synonyms.

Example 2.2. Consider the LTL formula 𝜑 = 𝑎 ∧ 𝑏 over atomic propositions {𝑎, 𝑏}. It
describes that both atomic propositions 𝑎 and 𝑏 need to be set to true eventually. The infinite
words 𝜎 = ∅∅{𝑎, 𝑏}∅𝜔 and 𝜎 ′ = {𝑎}{𝑏}∅𝜔 both satisfy 𝜑 , i.e., we have 𝜎 |= 𝜑 and 𝜎 ′ |= 𝜑 . The
infinite word 𝜎 ′′ = {𝑎}𝜔 , in contrast, violates 𝜑 , i.e., we have 𝜎 ′′ ̸ |= 𝜑 . The language L(𝜑) of 𝜑
is a liveness property. △

2.5. 𝜔-Automata
Automata are another concept for expressing system requirements. Since we consider reactive
systems and thus need to specify infinite temporal behavior, we utilize 𝜔-automata. In this
thesis, we consider both alternating automata and non-alternating automata. For the latter, we
consider both nondeterministic and universal branching. Moreover, we consider two different
types of acceptance conditions of 𝜔-automata: Büchi and co-Büchi acceptance.
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First, we introduce nondeterministic and universal 𝜔-automata. Afterward, we present
alternating𝜔-automata, permitting both types of branching. Although non-alternating automata
are technically special cases of alternating automata, we define them separately for ease of
presentation. Lastly, we present the Büchi and co-Büchi acceptance conditions.

2.5.1. Nondeterministic and Universal 𝜔-Automata
Intuitively, 𝜔-automata are similar to finite automata but read infinite sequences instead of
finite ones. Consequently, the acceptance condition of an 𝜔-automaton is also defined on
infinite sequences. In the following, we focus on non-alternating 𝜔-automata. We use the
terms 𝜔-automaton and non-alternating 𝜔-automation as synonyms. Formally, non-alternating
𝜔-automata are defined as follows.

Definition 2.4 (Non-Alternating 𝜔-Automaton).
Let Σ be a finite alphabet. An 𝜔-automaton over Σ is a tuple A = (𝑄,𝑞0, 𝛿,Acc), where 𝑄 is a
finite set of states, 𝑞0 ∈ 𝑄 is the designated initial state, 𝛿 : 𝑄 × 2Σ ×𝑄 is a transition relation,
and Acc ⊆ 𝑄∞ is an acceptance condition.

An 𝜔-automaton A = (𝑄,𝑞0, 𝛿,Acc) is called complete if, and only if, there is at least one
successor state for every source state and every valuation of variables, i.e., for all 𝑞 ∈ 𝑄 and
] ∈ 2Σ, there is some 𝑞′ ∈ 𝑄 with (𝑞, ], 𝑞′) ∈ 𝛿 . It is called deterministic if, and only if, there is
at most one successor state for every source state and every valuation of variables, i.e., for all
𝑞 ∈ 𝑄 and ] ∈ 2Σ, we have 𝑞′ = 𝑞′′ for all 𝑞′, 𝑞′′ ∈ 𝑄 with both (𝑞, ], 𝑞′) ∈ 𝛿 and (𝑞, ], 𝑞′′) ∈ 𝛿 .

If A is not deterministic, we distinguish two branching types: nondeterministic branching
and universal branching. A non-alternating 𝜔-automaton has either purely nondeterministic
or purely universal branching. We call an 𝜔-automaton with nondeterministic branching also
nondeterministic𝜔-automaton. An𝜔-automaton with universal branching is also called universal
𝜔-automaton. Depending on the branching type of the automaton, we interpret the choice
for a successor state to be either existential or universal. Therefore, we define the runs of
both automata types similarly, namely as sequences, and interpret them differently, namely as
sequences and trees, respectively, when characterizing the acceptance of a word:

Definition 2.5 (Run of a non-Alternating 𝜔-Automaton).
Let A = (𝑄,𝑞0, 𝛿,Acc) be a non-alternating 𝜔-automaton with alphabet Σ. Let 𝜎 ∈ (2Σ)∞ be
a sequence. A run of A induced by 𝜎 is a sequence 𝑟 = 𝑞0𝑞1 . . . ∈ 𝑄∞ with (𝑞𝑘 , 𝜎𝑘 , 𝑞𝑘+1) ∈ 𝛿
for all 𝑘 ≥ 0 with 𝑘 + 1 < |𝜎 |. A run 𝑟 is accepting if, and only if, 𝑟 ∈ Acc holds.

The runs produced by a complete 𝜔-automaton on an infinite sequence are also infinite.
An infinite word 𝜎 ∈ (2Σ)𝜔 can induce several runs for both nondeterministic and universal
𝜔-automata A. The set of all such runs is denoted with Runs(A, 𝜎). In order to accept an
infinite word 𝜎 ∈ (2Σ)𝜔 , a nondeterministic 𝜔-automatonA is required to have some accepting
run for 𝜎 . For a universal 𝜔-automaton, in contrast, all runs of A induced by 𝜎 need to be
accepting. Formally, a nondeterministic 𝜔-automaton A accepts a word 𝜎 ∈ (2Σ)𝜔 if, and only
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if, there exists a run 𝑟 ∈ Runs(A, 𝜎) that is accepting. A universal 𝜔-automaton A accepts
a word 𝜎 ∈ (2Σ)𝜔 if, and only if, all runs 𝑟 ∈ Runs(A, 𝜎) are accepting. Irrespective of the
branching type, the language L(A) of an 𝜔-automaton A is the set of all accepted words, i.e.,
L(A) =

{
𝜎 ∈ (2Σ)𝜔 | A accepts 𝜎

}
. To further distinguish nondeterministic and universal

𝜔-automata, we often interpret the set of runs of a universal automaton as a single tree. We
formalize trees when introducing alternating 𝜔-automata in the next section.

2.5.2. Alternating 𝜔-Automata
An alternating 𝜔-automaton allows for both existential and universal choices. Intuitively,
existential choices can be seen as “or”-choices that allow for choosing one of the possible
successor states as the actual successor, while universal choices are “and”-choices, where all of
the possible successor states constitute an actual successor. Therefore, the transition function
of an alternating automaton yields a positive Boolean formula over the set of states.
The positive Boolean formulas over a set 𝑋 , denoted B+(𝑋 ), are the formulas built from

elements of 𝑋 , conjunction, disjunction, true, and false. A set 𝑌 ⊆ 𝑋 satisfies a positive Boolean
formula b ∈ B+(𝑋 ), denoted 𝑌 |= b , if, and only if, the truth assignment which assigns true to all
variables in𝑌 and false to all variables in𝑋 \𝑌 satisfies b . We assume that the elements of B+(𝑋 )
are given in disjunctive normal form (DNF), i.e., as a disjunction of one or more conjunctions
of literals of 𝑋 . Since every propositional formula can be converted into an equivalent one in
disjunctive normal form, this assumption does not restrict the possible elements of B+(𝑋 ). We
represent a propositional formula

∨
𝑖

∧
𝑗 𝑐𝑖, 𝑗 in disjunctive normal form also in its set notation⋃

𝑖

{⋃
𝑗

{
𝑐𝑖, 𝑗

}}
. Formally, an alternating 𝜔-automaton is then defined as follows:

Definition 2.6 (Alternating 𝜔-Automaton).
Let Σ be a finite alphabet. An alternating 𝜔-automaton over Σ is a tuple A = (𝑄,𝑞0, 𝛿,Acc),
where 𝑄 is a finite set of states, 𝑞0 is the designated initial state, 𝛿 : 𝑄 × Σ → B+(𝑄) is a
transition function, and Acc ⊆ 𝑄∞ is an acceptance condition.

Since alternating 𝜔-automata allow for universal choices, their runs form trees instead of
sequences. Intuitively, a run tree’s branching then represents the automaton’s universal choices.
Note that due to the existence of additional existential choices, every alternating 𝜔-automaton
induces a set of run trees on every input sequence. Formally, a tree is defined as follows:

Definition 2.7 (Σ-labeled Tree).
Let Σ be a finite alphabet and let𝐷 be a set of directions. A tree T over𝐷 is a prefix-closed subset
of 𝐷∗, i.e., T ⊆ 𝐷∗ holds and if we have 𝑥 · 𝑑 ∈ T then 𝑥 ∈ T holds as well. We refer to the
elements 𝑥 ∈ T of T as nodes. The depth of a node 𝑥 is denoted with |𝑥 |. The empty sequence Y
is called the root. The children of a node 𝑥 ∈ T are the nodes children(𝑥) = {𝑥 · 𝑑 ∈ T | 𝑑 ∈ 𝐷}.
A Σ-labeled tree (T, ℓ) over 𝐷 consists of a tree T over directions 𝐷 and a labeling function
ℓ : T → Σ. A branch of (T, ℓ) is a maximal sequence ℓ (𝑥0)ℓ (𝑥1) . . . ∈ Σ∞ with 𝑥0 = Y and
𝑥 𝑗+1 ∈ children(𝑥 𝑗 ) for every 𝑗 ∈ N0.
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For every node 𝑥 ∈ T of a tree T, there exists a unique finite sequence of nodes in T that,
starting from the root Y of T, reaches node 𝑥 . We call this sequence the prefix of 𝑥 in T and denote
it with pref (T, 𝑥,). Furthermore, we denote the set of all branches of a Σ-labeled tree (T, ℓ) with
Branches(T, ℓ) and the set of infinite branches of (T, ℓ) with BranchesInf (T, ℓ).
A run tree of an alternating 𝜔-automaton A = (𝑄,𝑞0, 𝛿, acc) is then a tree that is labeled

in the states of A, i.e., in 𝑄 . The labeling function is defined according to A’s transition
function 𝛿 . Intuitively, every universal choice in A defined by 𝛿 yields a new branch in the run
tree, while every existential choice induces a new run tree. Formally, a run tree of an alternating
𝜔-automaton is defined as follows:

Definition 2.8 (Run of an Alternating 𝜔-Automaton).
Let A = (𝑄,𝑞0, 𝛿,Acc) be an alternating 𝜔-automaton with alphabet Σ. Let 𝜎 ∈ (2Σ)𝜔 be an
infinite sequence. A run tree of A induced by 𝜎 is a 𝑄-labeled tree (T, ℓ) with ℓ (Y) = 𝑞0 and
{ℓ (𝑥 ′) | 𝑥 ′ ∈ children(𝑥)} |= 𝛿 (ℓ (𝑥), 𝜎 |𝑥 |) for all 𝑥 ∈ T. A run tree (T, ℓ) is accepting if, and
only if, 𝑏 ∈ Acc holds for all of (T, ℓ)’s branches 𝑏.

An alternating 𝜔-automaton A over alphabet Σ induces several run trees on a single infinite
sequence 𝜎 ∈ (2Σ)𝜔 if existential choices occur during a run of A on 𝜎 . Slightly overloading
notation, we denote the set of all such run trees by Runs(A, 𝜎). In order to accept an infinite
word 𝜎 ∈ (2Σ)𝜔 , an alternating 𝜔-automata is only required to induce some accepting run
tree for 𝜎 . Formally an alternating 𝜔-automaton A over alphabet Σ accepts an infinite word
𝜎 ∈ (2Σ)𝜔 if, and only if, there exists a run tree 𝑟 ∈ Runs(A, 𝜎) of A induced by 𝜎 that is
accepting. The language L(A) of an alternating 𝜔-automaton A over alphabet Σ is the set of
all accepted words, i.e., we have L(A) =

{
𝜎 ∈ (2Σ)𝜔 | A accepts 𝜎

}
.

2.5.3. Büchi and co-Büchi Acceptance Conditions
There are several types of acceptance conditions for 𝜔-automata. In this thesis, we focus on
the Büchi and co-Büchi conditions. Both these acceptance conditions are defined over the set
Inf (𝑟 ) ⊆ 𝑄 of states of the automaton A = (𝑄,𝑞0, 𝛿,Acc) that occur infinitely often in a run 𝑟

of A. Formally, Inf (𝑟 ) is given by Inf (𝑟 ) =
{
𝑞 ∈ 𝑄 | ∀𝑘 ≥ 0.∃𝑘 < 𝑗 ≤ |𝑟 |. 𝑟 𝑗 = 𝑞

}
. We now

define both Büchi and co-Büchi acceptance based on Inf (𝑟 ).
Intuitively, the Büchi acceptance condition states that a certain set 𝐹 ⊆ 𝑄 of so-called accepting

states needs to be visited infinitely often. Formally:

Definition 2.9 (Büchi Acceptance Condition).
Let A = (𝑄,𝑞0, 𝛿,Acc) be an 𝜔-automaton over alphabet Σ. Let 𝐹 ⊆ 𝑄 be a set of accepting
states. A run 𝑟 of A is accepted by the Büchi condition if, and only if, 𝐹 ∩ Inf (𝑟 ) ≠ ∅ holds.
Hence, we define

AccBüchi(𝐹 ) = {𝑟 ∈ 𝑄∞ | 𝐹 ∩ Inf (𝑟 ) ≠ ∅} .

By definition of Inf (𝑟 ), a finite run can never visit any state infinitely often. Hence, a finite
run only satisfies the Büchi acceptance condition if the set of accepting states is empty. We call
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an alternating, nondeterministic, or universal 𝜔-automaton with Büchi acceptance condition
alternating Büchi automaton (ABA), nondeterministic Büchi automaton (NBA), or universal Büchi
automaton (UBA), respectively.

Specifications given as LTL formulas can be translated into alternating and nondeterministic
Büchi automata with a linear and exponential blow-up in the automaton size, respectively:

Proposition 2.1 ([MSS88]). Let 𝜑 be an LTL formula. There exists an alternating Büchi automa-
ton A𝜑 with O(|𝜑 |) states such that L(A𝜑 ) = L(𝜑) holds.

Proposition 2.2 ([KV05]). Let 𝜑 be an LTL formula. There exists a nondeterministic Büchi
automaton A𝜑 with O(2 |𝜑 |) states such that L(A𝜑 ) = L(𝜑) holds.

The co-Büchi condition, in contrast, intuitively requires that a certain set 𝐹 ⊆ 𝑄 of so-called
rejecting states must be visited only finitely many times. Formally:

Definition 2.10 (Co-Büchi Acceptance Condition).
Let A = (𝑄,𝑞0, 𝛿,Acc) be an 𝜔-automaton over alphabet Σ. Let 𝐹 ⊆ 𝑄 be a set of rejecting
states. A run 𝑟 of A is accepted by the co-Büchi condition if, and only if, 𝐹 ∩ Inf (𝑟 ) = ∅ holds.
Hence, we define

Accco-Büchi(𝐹 ) = {𝑟 ∈ 𝑄∞ | 𝐹 ∩ Inf (𝑟 ) = ∅} .

By definition of Inf (𝑟 ), a finite run can never visit any state infinitely often. Hence, a finite
run trivially satisfies the co-Büchi acceptance condition for any set of rejecting states. We call
an alternating, nondeterministic, or universal 𝜔-automaton with co-Büchi acceptance condition
alternating co-Büchi automaton (ACA), nondeterministic co-Büchi automaton (NCA), or universal
co-Büchi automaton (UCA), respectively.

Similar to Büchi automata, LTL formulas can also be translated into alternating and universal
co-Büchi automata with a linear and exponential blow-up in the automaton size, respectively.
These results follow from Propositions 2.1 and 2.2, i.e., the respective results for Büchi au-
tomata, and the observation that the Büchi and co-Büchi acceptance conditions, as well as
nondeterministic and universal branching, are dual:

Proposition 2.3. Let 𝜑 be an LTL formula. There exists an alternating co-Büchi automaton A𝜑

with O(|𝜑 |) states such that L(A𝜑 ) = L(𝜑) holds.

Proof. There exists an alternating Büchi automaton B¬𝜑 = (𝑄,𝑞0, 𝛿,AccBüchi(𝐹 )) with O(|¬𝜑 |)
states such that L(B¬𝜑 ) = L(¬𝜑) holds by Proposition 2.1. We construct an alternating co-
Büchi automaton A𝜑 from B¬𝜑 as follows: A𝜑 = (𝑄,𝑞0, 𝛿 ′,Accco-Büchi(𝐹 )), where 𝛿 ′ is the
transition function obtained from 𝛿 when replacing all conjunctions with disjunctions and
vice versa. Hence, A𝜑 is a copy of B¬𝜑 with dual transition function and, as the accepting
states of B¬𝜑 are interpreted as rejecting states in A𝜑 , with dual acceptance condition. Due to
the duality of the Büchi and co-Büchi acceptance conditions as well as nondeterministic and
universal branching, L(A𝜑 ) = L(¬𝜑) = L(𝜑) follows. Since O(|¬𝜑 |) = O(|𝜑 |) holds, the
universal co-Büchi automaton A𝜑 has O(|𝜑 |) states. □
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(a) Büchi automaton A𝜑 for 𝜑 = 𝑎 ∧ 𝑏.
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(b) Co-Büchi automaton A𝜓 for𝜓 = 𝑎 ∨ 𝑏.

Figure 2.2.: Non-alternating Büchi automaton A𝜑 and alternating co-Büchi automaton A𝜓 .

Proposition 2.4. Let 𝜑 be an LTL formula. There exists a universal co-Büchi automatonA𝜑 with
O(2 |𝜑 |) states such that L(A𝜑 ) = L(𝜑) holds.

Proof. There is a nondeterministic Büchi automaton B¬𝜑 = (𝑄,𝑞0, 𝛿,AccBüchi(𝐹 )) with O(|¬𝜑 |)
states such that L(B¬𝜑 ) = L(¬𝜑) holds by Proposition 2.2. We construct a universal co-Büchi
automatonA𝜑 from B¬𝜑 as follows: A𝜑 = (𝑄,𝑞0, 𝛿,Accco-Büchi(𝐹 )). Hence,A𝜑 is a copy of B¬𝜑 ,
where nondeterministic transitions are interpreted as universal ones and accepting states as
rejecting ones. Therefore, due to the duality of the Büchi and co-Büchi acceptance conditions
as well as nondeterministic and universal branching, L(A𝜑 ) = L(¬𝜑) = L(𝜑) follows. Since
O(|¬𝜑 |) = O(|𝜑 |) holds, A𝜑 has O(|𝜑 |) states. □

In the remainder of this thesis, we only consider 𝜔-automata with Büchi and co-Büchi
acceptance conditions. For ease of presentation, we, therefore, denote the acceptance condition
simply with the set 𝐹 of accepting or rejecting states, respectively, whenever the acceptance
type is clear from the context. We represent an alternating or non-alternating 𝜔-automaton
A = (𝑄,𝑞0, 𝛿, 𝐹 ) over alphabet Σ with Büchi or co-Büchi acceptance as a directed graph
with vertex set 𝑄 and a symbolic representation of the transition relation 𝛿 as propositional
formulas B(Σ). In alternating 𝜔-automata, we depict universal choices by connecting the
transitions with a gray arc. In both alternating and non-alternating 𝜔-automata, the accepting
or rejecting states in 𝐹 are marked with double circles.

Example 2.3. First, consider the LTL formula 𝜑 = 𝑎 ∧ 𝑏, which describes that both atomic
propositions 𝑎 and 𝑏 need to be set to true eventually. Consider the non-alternating Büchi
automaton A𝜑 shown in Figure 2.2a. It is deterministic and thus induces for each infinite
sequence 𝜎 ∈ (2{𝑎,𝑏})𝜔 only a single run. The only accepting state is 𝑞3, which is a sink state,
i.e., once entering it, it can never be left again. Thus, all runs that do not enter 𝑞3 eventually
are rejecting. Clearly, all sequences 𝜎 ∈ (2{𝑎,𝑏})𝜔 for which 𝑎 and 𝑏 are set to true eventually
induce a run that enters 𝑞3. Hence, A𝜑 accepts the same language as 𝜑 .

Next, consider the LTL formula𝜓 = 𝑎 ∨ 𝑏. It requires that either atomic proposition 𝑏
is set to true in the next time step or atomic proposition 𝑎 is set to true infinitely often. Consider
the alternating co-Büchi automatonA𝜓 depicted in Figure 2.2b. It contains both existential and
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universal transitions. First, consider a sequence 𝜎 ∈ (2{𝑎,𝑏})𝜔 with 𝑏 ∈ 𝜎1, i.e., where 𝑏 is set
to true in the second time step. Among others, 𝜎 induces a run tree with a single branch in
which we, starting from 𝑞0, move to 𝑞4 and then to 𝑞3. The non-rejecting state 𝑞3 is never left.
Hence, an accepting run tree of A𝜓 induced by such sequences 𝜎 exists. Second, consider a
sequence 𝜎 ∈ (2{𝑎,𝑏})𝜔 with 𝜎 |= 𝑎 and 𝜎 ̸ |= 𝑏. Note that although 𝜎 induces a run tree
with a single branch that moves from 𝑞0 to 𝑞4 in the first time step, this run tree is rejecting
since 𝑏 ∉ 𝜎1 holds by assumption and therefore the run tree enters the rejecting sink 𝑞5. Since
an alternating co-Büchi automaton only requires the existence of some accepting run tree, this
particular run tree does not result in A𝜓 rejecting 𝜎 . In the following, we can thus ignore
this run tree and focus on the upper part of the automaton. Note that this part contains only
universal choices and thus induces only a single run tree, yet, with possibly multiple branches.
This run tree can only be rejecting if it contains a branch that visits 𝑞2 infinitely often. This can
only be the case if 𝑎 is always set to false from some point in time on. Hence, such a branch
cannot be induced by a 𝜎 . Since sequences that violate 𝑎 set 𝑎 to false from some point on,
such sequences, in contrast, only induce run trees that contain at least one rejecting branch.
Thus, for a word 𝜎 ∈ (2{𝑎,𝑏})𝜔 with 𝜎 ̸ |= 𝑎 ∨ 𝑏, all run trees of A𝜓 induced by 𝜎 are
rejecting while, for a word 𝜎 ∈ (2{𝑎,𝑏})𝜔 with 𝜎 |= 𝑎 ∨ 𝑏 induces some accepting run tree.
Therefore, A𝜓 accepts the same language as𝜓 . △

2.6. System Models and Strategies
We model a reactive system with a finite-state transducer. Transducers are a particular type of
finite-state machines that read infinite sequences over input variables and, in every step, change
their internal state and produce a valuation of output variables. A system strategy defines the
behavior of a reactive system. It maps a history of valuations of input variables to a valuation of
output variables. We first introduce finite-state transducers as our model for reactive systems.
Afterward, we formalize system strategies and connect them with our system model.

2.6.1. Finite-State Transducers
We consider finite-state transducers as a model for reactive systems. Thus, we consider trans-
ducers that read infinite sequences of valuations of input variables 𝐼 of the system and output
valuations of output variables 𝑂 of the system in every step. Formally, we define finite-state
(Γ, Υ)-transducers for finite sets Γ, Υ, where in our context Γ = 2𝐼 and Υ = 2𝑂 .

Definition 2.11 (Finite-state (Γ, Υ)-Transducer).
Let Γ and Υ be finite input and output alphabets, respectively. A finite-state (Γ, Υ)-transducer
T = (𝑇,𝑇0, 𝜏, ℓ) consists of a finite set of states 𝑡 , a designated set of initial states 𝑇0 ⊆ 𝑇 , a
transition relation 𝜏 : 𝑇 × Γ ×𝑇 , and a labeling relation ℓ : 𝑇 × Γ × Υ.

In the remainder of this thesis, we assume, without loss of generality, that all states of a
finite-state transducer are reachable. A finite-state (Γ, Υ)-transducer T = (𝑇,𝑇0, 𝜏, ℓ) is called
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transition-deterministic if, and only if, |𝑇0 | ≤ 1 holds and if for all states 𝑡 ∈ 𝑇 and all inputs ] ∈ Γ,
there exists at most one state 𝑡 ′ ∈ 𝑇 such that (𝑡, ], 𝑡 ′) ∈ 𝜏 holds. It is called labeling-deterministic
if, and only if, for all states 𝑡 ∈ 𝑇 and all inputs ] ∈ Γ, there exists at most one output 𝑜 ∈ Υ such
that ℓ (𝑡, ]) = 𝑜 holds. If T is both transition-deterministic and labeling-deterministic, then we
call it simply deterministic. The finite-state transducer T is called transition-complete if |𝑇0 | ≥ 1
holds and if for all states 𝑡 ∈ 𝑇 and all inputs ] ∈ Γ, there exists at least one state 𝑡 ′ ∈ 𝑇 such
that (𝑡, ], 𝑡 ′) ∈ 𝜏 holds. It is called labeling-complete if for all states 𝑡 ∈ 𝑇 and all inputs ] ∈ Γ,
there exists some output 𝑜 ∈ Υ such that (𝑡, ], 𝑜) ∈ ℓ holds. If T is both transition-complete and
labeling-complete, then we call it simply complete.

We distinguish between two types of finite-state transducers, Moore transducers and Mealy
transducers. For the former, the labeling depends only on the state, not on the input. Formally,
for all states 𝑡 ∈ 𝑇 , we have {𝑜 ∈ Υ | (𝑡, ], 𝑜) ∈ ℓ} = {𝑜 ∈ Υ | (𝑡, ]′, 𝑜) ∈ ℓ} for all input valuations
], ]′ ∈ Γ. Slightly misusing notation, we thus consider the labeling relation ℓ for a Moore
transducers T = (𝑇,𝑇0, 𝜏, ℓ) to be of type 𝑇 × Υ. Furthermore, for labeling-deterministic Moore
transducers, we then also write ℓ (𝑡) = 𝑜 instead of (𝑡, 𝑜) ∈ ℓ . For Mealy transducers, in
contrast, the labeling of a transition may also depend on the input valuation, i.e., we might have
{𝑜 ∈ Υ | (𝑡, ], 𝑜) ∈ ℓ} ≠ {𝑜 ∈ Υ | (𝑡, ]′, 𝑜) ∈ ℓ} for input valuations ], ]′ ∈ Γ with ] ≠ ]′.
Given an infinite input word 𝛾 = 𝛾0𝛾1 . . . ∈ Γ𝜔 , a finite-state (Γ, Υ)-transducer T = (𝑇,𝑇0, 𝜏, ℓ)

defines a set Paths(T , 𝛾) of finite or infinite sequences 𝜋 = (𝑡0, 𝜐0) (𝑡1, 𝜐1) . . . ∈ (𝑇 × Υ)∞ of
states and outputs of T that describes the possible internal changes of states of T as well as its
outputs when reading 𝛾 , the so-called paths:

Paths(T , 𝛾) = 𝑞 {(𝑡0, 𝜐0) (𝑡1, 𝜐1) . . . ∈ (𝑇 × Υ)∞ | 𝑡0 ∈ 𝑇0 ∧
∀𝑘 ≥ 0. (𝑡𝑘 , 𝛾𝑘 , 𝑡𝑘+1) ∈ 𝜏 ∧ (𝑡𝑘 , 𝛾𝑘 , 𝜐𝑘 ) ∈ ℓ} .

Note that if T produces a finite path 𝜋 ∈ (𝑇 × Υ)∗ on input sequences 𝛾 ∈ Γ𝜔 , then T is
incomplete. The finiteness of 𝜋 can be due to both transition-incompleteness and labeling-
incompleteness. If 𝜋 ends at point in time 𝑘 due to transition-incompleteness, then the last pair
(𝑡𝑘 , 𝜐𝑘 ) of 𝜋 is built from the target state of the last successful transition as well as its labeling.
If 𝜋 ends at point in time 𝑘 due to labeling-incompleteness, then (𝑡𝑘 , 𝛾𝑘 ) is built from the target
state of the last successful transition that has a labeling.
In this thesis, however, we consider labeling-complete transducers only. Hence, whenever

the transducer T produces a finite path 𝜋 on 𝛾 , then 𝜋 is finite due to transition-incompleteness.
Therefore, in particular, the last pair (𝑡𝑘 , 𝜐𝑘 ) of 𝜋 is always built from the target state of the last
successful transition as well as its labeling.
For every path 𝜋 ∈ Paths(T , 𝛾) of T induced by 𝛾 ∈ Γ𝜔 with 𝜋 = (𝑡0, 𝜐0) (𝑡1, 𝜐1) . . ., there

exists a sequence 𝜌 = (𝛾0, 𝜐0) (𝛾1, 𝜐1) . . . ∈ (Γ × Γ)∞ of valuations of input and output variables
that captures the inputs of all successful transitions together with the outputs of the respective
source states. Hence, intuitively, 𝜌 combines 𝛾 with the output sequence of T defined by 𝜋 .
Note, however, that if a path 𝜋 ∈ Paths(T , 𝛾) is finite, the last pair state 𝑡𝑘 occurring in 𝜋

is the target state of the last successful transition since we only consider labeling-complete
transducers. Thus, in particular, it is not the source state of a further successful transition.
Therefore, for a finite path 𝜋 , the corresponding sequence 𝜌 only considers the labelings of the
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(a) Deterministic (2{𝑐 }, 2{𝑎,𝑏})-trans-
ducer T1 with Moore semantics.
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⊤ | ∅

⊤ | ∅

¬𝑏 | {𝑎
}

𝑏 | ∅

⊤ | {𝑎}

⊤ | ∅ ∨ {𝑎}

(b) Nondeterministic (2{𝑏}, 2{𝑎})-transducer T2 with Mealy
semantics.

Figure 2.3.: Finite-state transducers T1 and T2. Both are complete.

states up to point in time |𝜋 | − 2 and hence |𝜌 | = max {0, |𝜋 | − 1} if 𝜋 is finite. If 𝜋 is infinite,
in contrast, 𝜌 is clearly infinite as well. The sequence 𝜌 is called trace. Formally, the set of all
traces of T for input 𝛾 ∈ Γ𝜔 is defined by

Traces(T , 𝛾) = 𝑞 {𝜌 ∈ (Γ × Υ)𝜔 | ∃𝜋 ∈ Paths(T , 𝛾).∀0 ≤ 𝑘 < |𝜋 | − 1. 𝜌𝑘 = (𝛾𝑘 , #2(𝜋𝑘 ))} .

In our context, where we have Γ = 2𝐼 and Υ = 2𝑂 , we merge the input 𝛾𝑘 and output 𝜐𝑘
of a trace 𝜌 ∈ Traces(T , 𝛾) of T at a point in time 𝑘 ≥ 0 with 0 ≤ 𝑘 < |𝜌 | into a single set
𝜎𝑘 = 𝛾𝑘 ∪ 𝜐𝑘 ∈ 2𝐼∪𝑂 . Since 𝐼 ∩𝑂 = ∅ holds by definition of architectures, 𝛾𝑘 and 𝜐𝑘 are always
non-contradictory, and thus building their union is uniquely possible. Slightly overloading
notation, we call the merged trace simply trace as well and define

Traces(T , 𝛾) = 𝑞 {𝜎 ∈ (Γ ∪ Υ)𝜔 | ∃𝜋 ∈ Paths(T , 𝛾) .∀0 ≤ 𝑘 < |𝜋 | − 1. 𝜎𝑘 = 𝛾𝑘 ∪ #2(𝜋𝑘 )}

directly. The set of all infinite traces produced by T on some infinite input sequence is defined
by Traces(T ) = ⋃

𝛾 ∈Γ𝜔 Traces(T , 𝛾).
We depict a finite-state (2𝐼 , 2𝑂 )-transducer T = (𝑇,𝑇0, 𝜏, ℓ) as a directed graph with vertex

set 𝑇 and a symbolic representation of the transition relation 𝜏 as propositional formula B(𝐼 ).
The labeling relation is depicted on the edges of the graph as well: for a transition (𝑡, ], 𝑡 ′) ∈ 𝜏 ,
we add the disjunction of all 𝑜 ∈ 2𝑂 with (𝑡, ], 𝑜) ∈ ℓ to the respective edge representing a
transition (𝑡, ], 𝑡 ′) ∈ 𝜏 . The labeling is separated from the propositional formula describing the
transition – and thus the input valuations – using a gray pipe.

Example 2.4. In Figure 2.3, two complete finite-state transducers are shown. Figure 2.3a
depicts the (2{𝑐 }, 2{𝑎,𝑏})-transducer T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1) with 𝑇1 = {𝑡0, 𝑡1}, 𝑇1,0 = {𝑡0}, both
(𝑡0, ], 𝑡1) ∈ 𝜏1 and (𝑡1, ], 𝑡0) ∈ 𝜏1 for all ] ∈ 2{𝑐 } , and both (𝑡0, ], {𝑎}) ∈ ℓ1 and (𝑡1, ], {𝑏}) ∈ ℓ1
for all ] ∈ 2{𝑐 } . Clearly, T1 is deterministic and has Moore semantics. Furthermore, its set of
traces is given by Traces(T1) = ({𝑎}{𝑏})𝜔 ∪ (2{𝑐 })𝜔 . Figure 2.3b illustrates the (2{𝑏}, 2{𝑎})-
transducer T2 = (𝑇2,𝑇2,0, 𝜏2, ℓ2) with 𝑇2 = {𝑡0, 𝑡1, 𝑡2, 𝑡3}, 𝑇2,0 = {𝑡0} as well as (𝑡0, ], 𝑡1) ∈ 𝜏2,
(𝑡0, ], 𝑡2) ∈ 𝜏2, (𝑡2, ], 𝑡2) ∈ 𝜏2, (𝑡3, ], 𝑡3) ∈ 𝜏2, (𝑡0, ], ∅) ∈ ℓ2, (𝑡2, ], {𝑎}) ∈ ℓ2, and both (𝑡3, ], ∅) ∈ ℓ2
and (𝑡3, ], {𝑎}) ∈ ℓ2 for all ] ∈ 2{𝑏} , and (𝑡1, ∅, 𝑡2) ∈ 𝜏2, (𝑡1, {𝑏}, 𝑡3) ∈ 𝜏2, (𝑡1, ∅, {𝑎}) ∈ ℓ2, and
(𝑡1, {𝑏}, ∅) ∈ ℓ2. Clearly, T2 is nondeterministic, for instance due to the transitions with source
state 𝑡0, and has Mealy semantics due to the labeling in state 𝑡2. △
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We defined system models, and thus transducers, irrespective of the system’s architecture.
For a monolithic architecture𝒜 = (𝑃,𝑉 , 𝐼,𝑂), we consider a finite-state (2𝐼1, 2𝑂1)-transducer
modeling the single system process 𝑝1 ∈ 𝑃−. For a distributed architecture 𝒜 = (𝑃,𝑉 , 𝐼,𝑂),
we consider finite-state (2𝐼𝑖 , 2𝑂𝑖 )-transducer modeling all respective system processes 𝑝𝑖 ∈ 𝑃−.
Moreover, we are interested in a finite-state (2𝑂env , 2𝑂− ) transducer that models the entire
system, i.e., the interplay of all system processes. Note that the transducer for the whole system
reads infinite words of output variables of the environment process 𝑝env and is labeled in the
union of the output variables of all system processes.

To model distributed systems with several processes, we often only model the processes indi-
vidually, i.e., with individual finite-state (2𝐼𝑖 , 2𝑂𝑖 )-transducers T𝑖 . To argue about the behavior
of the entire system and thus to obtain the finite-state (2𝑂env , 2𝑂− ) transducer T that models the
full system, we, therefore, need to compose the individual transducers T𝑖 . In the following, we
present how such a joined transducer T can be constructed: we define the parallel composition
of two finite-state transducers.

Definition 2.12 (Parallel Composition of Finite-State Transducers).
Let 𝐼1, 𝐼2,𝑂1, and𝑂2 be finite sets of input and output variables with 𝐼1∩𝑂1 = ∅ and 𝐼2∩𝑂2 = ∅.
Let T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1) be a finite-state (2𝐼1, 2𝑂1)-transducer and let T2 = (𝑇1,𝑇2,0, 𝜏2, ℓ2) be a
finite-state (2𝐼2, 2𝑂2)-transducer. The parallel composition of T1 and T2, denoted T1 | | T2, is the
finite-state (2(𝐼1∪𝐼2 )\(𝑂1∪𝑂2 ) , 2𝑂1∪𝑂2)-transducer T1,2 = (𝑇,𝑇0, 𝜏, ℓ) with

• 𝑇 = 𝑇1 ×𝑇2,
• 𝑇0 = 𝑇1,0 ×𝑇2,0,
• ((𝑢, 𝑣), ], (𝑢′, 𝑣 ′)) ∈ 𝜏 if, and only if, there are 𝑜1 ∈ 2𝑂1 and 𝑜2 ⊆ 2𝑂2 with (𝑢, ]1, 𝑜1) ∈ ℓ1
and (𝑣, ]2, 𝑜2) ∈ ℓ2 such that (𝑢, ]1, 𝑢′) ∈ 𝜏1 and (𝑣, ]2, 𝑣 ′) ∈ 𝜏2 hold, where ]1 = (]∪𝑜2)∩𝐼1
and ]2 = (] ∪ 𝑜1) ∩ 𝐼2, and

• ((𝑢, 𝑣), ], 𝑜) ∈ ℓ if, and only if, (𝑢, (]∪𝑜) ∩ 𝐼1, 𝑜 ∩𝑂1) ∈ ℓ1 and (𝑣, (]∪𝑜) ∩ 𝐼2, 𝑜 ∩𝑂2) ∈ ℓ1.

Without loss of generality, we assume in the remainder of this thesis that unreachable states
are removed from T1 | | T2. Intuitively, the parallel composition T1 | | T2 of two finite-state
transducers T1 and T2 is the product of T1 and T2. Note that the output variables of one of
the transducers can be the input variables of the other one. This is carefully handled in the
definition of the transition and labeling relations of T1 | | T2.

Example 2.5. Reconsider the nondeterministic finite-state (2{𝑏}, 2{𝑎})-transducerT2 withMealy
semantics from Figure 2.3b. Furthermore, consider the deterministic finite-state (2{𝑐 }, 2{𝑏})-
transducer T3 with Mealy semantics depicted in Figure 2.4a. The parallel composition T2 | | T3
of T2 and T3 is shown in Figure 2.4b. It is a nondeterministic finite-state (2{𝑐 }, 2{𝑎,𝑏})-transducer
with Mealy semantics. △

Note that the parallel composition T1 | | T2 of two finite-state transducers T1 and T2 can be
nondeterministic or incomplete even if T1 and T2 are both deterministic and complete; for
instance, if both T1 and T2 have Mealy semantics and one of T1’s outputs is an input of T2 and
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𝑡0 𝑡1

𝑎 | ∅
¬𝑎 | ∅

𝑐 | {𝑏}

¬𝑐 | ∅

(a) Deterministic (2{𝑐 }, 2{𝑏})-trans-
ducer T3 with Mealy semantics.

(𝑡0, 𝑡0)

(𝑡1, 𝑡0)

(𝑡2, 𝑡0) (𝑡2, 𝑡1)

⊤ | ∅

⊤ | ∅

⊤ | {𝑎}

𝑐 | {𝑎, 𝑏}

¬𝑐 | {𝑎}
⊤ | {𝑎}

(b) Nondeterministic (2{𝑐 }, 2{𝑎,𝑏})-transducer T2 | | T3 with Mealy
semantics, parallel composition of T2 and T3.

Figure 2.4.: Finite-state transducer T3 and the parallel composition with T2 from Figure 2.3b.

vice versa. If both T1 and T2 are Moore transducers, however, their parallel composition is
guaranteed to be deterministic as long as they both are deterministic. Furthermore, T1 | | T2 is
complete as long as both T1 and T2 are complete:

Lemma 2.1. Let 𝐼1, 𝐼2, 𝑂1, and 𝑂2 be finite sets with 𝐼1 ∩ 𝑂1 = ∅ and 𝐼2 ∩ 𝑂2 = ∅. Let T1 be a
finite-state (2𝐼1, 2𝑂1)-transducer and let T2 be a finite-state (2𝐼2, 2𝑂2)-transducer. Let both T1 and T2
have Moore semantics. Then T1 | | T2 has Moore semantics as well. If T1 and T2 are deterministic,
then so is T1 | | T2. If T1 and T2 are complete, then T1 | | T2 is transition-complete. If T1 and T2 are
labeling-complete and 𝑂1 ∩𝑂2 = ∅ holds, then T1 | | T2 is labeling-complete as well.

Proof. Let T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1), T2 = (𝑇2,𝑇2,0, 𝜏2, ℓ2), and T1 | | T2 = (𝑇,𝑇0, 𝜏, ℓ). For the sake of
readability, let 𝐼 = (𝐼1 ∪ 𝐼2) \ (𝑂1 ∪𝑂2) and let 𝑂 = 𝑂1 ∪𝑂2. Since both T1 and T2 have Moore
semantics by assumption, it follows immediately from the definition of the labeling relation ℓ

that T has Moore semantics as well.
First, let both T1 and T2 be deterministic. Then, we have |𝑇1,0 | ≤ 1 and |𝑇2,0 | ≤ 1 and thus,

by definition of transducer composition, |𝑇0 | ≤ 1 holds. Let (𝑢, 𝑣), (𝑢′, 𝑣 ′) ∈ 𝑇 and let ] ∈ 2𝐼
such that ((𝑢, 𝑣), ], (𝑢′, 𝑣 ′)) ∈ 𝜏 holds. Then, by construction of 𝜏 , there exist 𝑜1 ∈ 2𝑂1 and
𝑜2 ⊆ 2𝑂2 with (𝑢, ]1, 𝑜1) ∈ ℓ1 and (𝑣, ]2, 𝑜2) ∈ ℓ1 such that (𝑢, ]1, 𝑢′) ∈ 𝜏1 and (𝑣, ]2, 𝑣 ′) ∈ 𝜏2 hold,
where ]1 = (] ∪ 𝑜2) ∩ 𝐼1 and ]2 = (] ∪ 𝑜1) ∩ 𝐼2. Since T1 and T2 are deterministic by assumption
and thus, in particular, transition-deterministic, 𝑢′ ∈ 𝑇1 and 𝑣 ′ ∈ 𝑇2 are the only successor
states of 𝑢 and 𝑣 in T1 and T2 for input ]1 and ]2, respectively. Since T1 and T2 have Moore
semantics by assumption, their labeling relations are independent of the input. Since they are
labeling-deterministic, the labeling relations assign only a single valuation of output variables
to the respective state. Hence, 𝑜1 and 𝑜2 are the only valuations of output variables that can
satisfy (𝑢, ]1, 𝑜1) ∈ ℓ1 and (𝑣, ]2, 𝑜2) ∈ ℓ1. Therefore, ]1 and ]2 are unique for (𝑢, 𝑣) and ] and hence
(𝑢′, 𝑣 ′) ∈ 𝑇 is the only successor state of (𝑢, 𝑣) for ] in T . Thus, T is deterministic.
Second, let both T1 and T2 be labeling-complete. Then, we have |𝑇1,0 | ≥ 1 and |𝑇2,0 | ≥ 1

and thus, by definition of transducer composition, |𝑇0 | ≥ 1 holds. Let (𝑢, 𝑣) ∈ 𝑇 and let
] ∈ 2𝐼 . Since both T1 and T2 are labeling-complete and since they have Moore semantics by
assumption, there are outputs 𝑜1 ∈ 2𝑂1 and 𝑜2 ∈ 2𝑂2 such that (𝑢, 𝑜1) ∈ ℓ1 and (𝑣, 𝑜2) ∈ ℓ2 holds.
If 𝑂1 ∩𝑂2 = ∅ holds, then clearly 𝑜1 ∪ 𝑜2 is well-defined, i.e., it is non-contradictory, and thus,
by definition of transducer composition, we have ((𝑢, 𝑣), ], 𝑜1 ∪ 𝑜2) ∈ ℓ for all ] ∈ 2𝐼 . Hence, T
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is then labeling-complete as well. If both T1 and T2 are, in addition to labeling-completeness,
also transition-complete, then there exist transitions (𝑢, ]1, 𝑢′) ∈ 𝜏1 and (𝑣, ]2, 𝑣 ′) ∈ 𝜏2, where
]1 = (]∪𝑜2) ∩ 𝐼1 and ]2 = (]∪𝑜1) ∩ 𝐼2. Thus, by definition of transducer composition, there exists
a state (𝑢′, 𝑣 ′) ∈ 𝑇 such that ((𝑢, 𝑣), ], (𝑢′, 𝑣 ′)) ∈ 𝜏 holds. Hence, T is then transition-complete
as well, even if 𝑂1 ∩𝑂2 ≠ ∅ holds. □

Furthermore, if the parallel composition T1 | | T2 of two complete finite-state transducers T1
and T2 produces infinite traces only, then its traces 𝜎 ∈ Traces(T1 | | T2) are, restricted to the
respective variables, traces of both T1 and T2 as well:

Lemma 2.2. Let 𝐼1, 𝐼2, 𝑂1, and 𝑂2 be finite sets with 𝐼1 ∩ 𝑂1 = ∅ and 𝐼2 ∩ 𝑂2 = ∅. Let T1 be a
complete finite-state (2𝐼1, 2𝑂1)-transducer and let T2 be a complete finite-state (2𝐼2, 2𝑂2)-transducer.
Let 𝑉1 = 𝐼1 ∪𝑂1, 𝑉2 = 𝐼2 ∪𝑂2, and 𝑉 = 𝑉1 ∪𝑉2. If all traces of T1 | | T2 are infinite, then we have

Traces(T1 | | T2) =
{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩𝑉1 ∈ Traces(T1) ∧ 𝜎 ∩𝑉2 ∈ Traces(T2)

}
.

Proof. Let T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1), T2 = (𝑇2,𝑇2,0, 𝜏2, ℓ2), and T1 | | T2 = (𝑇,𝑇0, 𝜏, ℓ). First, let 𝜎 ∈ (2𝑉 )𝜔
be an infinite sequence such that both 𝜎 ∩𝑉1 ∈ Traces(T1) and 𝜎 ∩𝑉2 ∈ Traces(T2) hold. Let
𝛾 = 𝜎 ∩ ((𝐼1 ∪ 𝐼2) \ (𝑂1 ∪𝑂2)), let 𝛾1 = 𝜎 ∩ 𝐼1, and let 𝛾2 = 𝜎 ∩ 𝐼2. Then, since both transducers
T1 and T2 are complete by assumption, it holds that, for all 𝑖 ∈ {1, 2}, transducer T𝑖 produces
an infinite path 𝜋𝑖 ∈ Paths(T𝑖 , 𝛾𝑖) for input sequence 𝛾𝑖 such that #2(𝜋𝑖

𝑘
) = 𝜎𝑘 ∩𝑂𝑖 holds for

all points in time 𝑘 ≥ 0. Based on the paths 𝜋1 and 𝜋2, we construct an infinite sequence
𝜋 ∈ (𝑇, 2𝑂1∪𝑂2)𝜔 of pairs of states of T1 | | T2 and output valuations as follows:

𝜋𝑘 = ((#1(𝜋1
𝑘
)), #1(𝜋2

𝑘
)), #2(𝜋1

𝑘
) ∪ #2(𝜋2

𝑘
)) for all 𝑘 ≥ 0

Since #2(𝜋𝑖
𝑘
) = 𝜎𝑘 ∩ 𝑂𝑖 holds for all 𝑖 ∈ {1, 2} and all 𝑘 ≥ 0, the union of the outputs of T1

and T2 is well-defined as no conflicts can occur. Thus, 𝜋 is well-defined. We first show that
𝜋 ∈ Paths(T1 | | T2, 𝛾) holds, i.e., that we have #1(𝜋0) ∈ 𝑇0 and (#1(𝜋𝑘 ), 𝛾𝑘 , #1(𝜋𝑘+1)) ∈ 𝜏 as well as
(#1(𝜋𝑘 ), 𝛾𝑘 , #2(𝜋𝑘 )) ∈ ℓ for all points in time 𝑘 ≥ 0. By assumption, both 𝜋1 ∈ Paths(T1, 𝛾1) and
𝜋2 ∈ Paths(T2, 𝛾2) hold and hence we have #1(𝜋𝑖

0) ∈ 𝑇 𝑖
0 as well as both (#1(𝜋𝑖

𝑘
), 𝛾𝑖

𝑘
, #1(𝜋𝑖

𝑘+1)) ∈ 𝜏𝑖
and (#1(𝜋𝑖

𝑘
), 𝛾𝑖

𝑘
, #2(𝜋𝑖

𝑘
)) ∈ ℓ𝑖 for all 𝑖 ∈ {1, 2} and all 𝑘 ≥ 0. Thus, by construction of 𝜋 , in

particular #1(𝜋0) ∈ 𝑇0 holds. Since we have #2(𝜋𝑖
𝑘
) = 𝜎𝑘 ∩𝑂𝑖 for all 𝑖 ∈ {1, 2} and all 𝑘 ≥ 0, it

follows from the construction of 𝛾 that 𝛾𝑘 ∪ #2(𝜋3−𝑖
𝑘
) = 𝜎𝑘 ∩ (𝑂3−𝑖 ∪ ((𝐼1 ∪ 𝐼2) \𝑂𝑖)) holds for all

𝑖 ∈ {1, 2} and all𝑘 ≥ 0. Thus, we have (𝛾𝑘∪#2(𝜋3−𝑖
𝑘
))∩𝐼𝑖 = (𝜎𝑘∩(𝑂3−𝑖∪(𝐼1∪𝐼2)\𝑂𝑖)))∩𝐼𝑖 . Since

𝐼𝑖 ∩𝑂𝑖 = ∅ holds by assumption for all 𝑖 ∈ {1, 2}, we have ((𝐼1 ∪ 𝐼2) \𝑂𝑖) ∩ 𝐼𝑖 = (𝐼1 ∪ 𝐼2) ∩ 𝐼𝑖 = 𝐼𝑖
and hence (𝑂3−𝑖 ∪ ((𝐼1 ∪ 𝐼2) \𝑂𝑖)) ∩ 𝐼𝑖 = 𝐼𝑖 follows. Therefore, (𝛾𝑘 ∪ #2(𝜋3−𝑖

𝑘
)) ∩ 𝐼𝑖 = 𝛾𝑖 holds for

all 𝑖 ∈ {1, 2} and all 𝑘 ≥ 0. Hence, we have (#1(𝜋1
𝑘
), #1(𝜋2

𝑘
)), 𝛾𝑘 , (#1(𝜋1

𝑘+1), #1(𝜋
2
𝑘+1))) ∈ 𝜏 and

(#1(𝜋1
𝑘
), #1(𝜋2

𝑘
)), 𝛾𝑘 , #2(𝜋1

𝑘
) ∪ #2(𝜋2

𝑘
)) ∈ ℓ for all 𝑘 ≥ 0 by definition of the parallel composition

of finite-state transducers and thus, by construction of 𝜋 , both (#1(𝜋𝑘 ), 𝛾𝑘 , #1(𝜋𝑘+1)) ∈ 𝜏 and
(#1(𝜋𝑘 ), 𝛾𝑘 , #2(𝜋𝑘 )) ∈ ℓ follow. Therefore, 𝜋 ∈ Paths(T1 | | T2, 𝛾) holds. Moreover, by construction
of 𝜋 , we have #2(𝜋𝑘 ) = #2(𝜋1

𝑘
) ∪ #2(𝜋2

𝑘
) for all 𝑘 ≥ 0 and thus, since #2(𝜋𝑖

𝑘
) = 𝜎𝑘 ∩𝑂𝑖 holds, we

have #2(𝜋𝑘 ) = 𝜎𝑘 ∩ (𝑂1 ∪𝑂2) for all 𝑘 ≥ 0. Since we have 𝛾 = 𝜎 ∩ ((𝐼1 ∪ 𝐼2) \ (𝑂1 ∪𝑂2)) by
definition, 𝛾𝑘 ∪ #2(𝜋𝑘 ) = 𝜎𝑘 ∩ 𝑉 follows for all 𝑘 ≥ 0. Hence, since 𝜎 ∈ (2𝑉 )𝜔 holds and by
definition of traces, 𝜎 ∈ Traces(T1 | | T2, 𝛾) follows.
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Second, let 𝜎 ∈ Traces(T1 | | T2) be a trace of the parallel composition T1 | | T2 of T1 and T2.
Let 𝛾 = 𝜎 ∩ ((𝐼1 ∪ 𝐼2) \ (𝑂1 ∪𝑂2)), let 𝛾1 = 𝜎 ∩ 𝐼1, and let 𝛾2 = 𝜎 ∩ 𝐼2. Then, since all traces
of T1 | | T2 are infinite by assumption, T1 | | T2 produces an infinite path 𝜋 ∈ Paths(T1 | | T2, 𝛾)
for input sequence 𝛾 such that #2(𝜋𝑘 ) = 𝜎𝑘 ∩ (𝑂1 ∪𝑂2) holds for all points in time 𝑘 ≥ 0. We
construct infinite sequences 𝜋1 ∈ (𝑇1, 2𝑂1)𝜔 and 𝜋2 ∈ (𝑇2, 2𝑂2)𝜔 from 𝜋 as follows:

𝜋1
𝑘
= (#1(#1(𝜋𝑘 )), #2(𝜋𝑘 ) ∩𝑂1) for all 𝑘 ≥ 0

𝜋2
𝑘
= (#2(#1(𝜋𝑘 )), #2(𝜋𝑘 ) ∩𝑂2) for all 𝑘 ≥ 0

We first show that 𝜋𝑖 ∈ Paths(T𝑖 , 𝛾𝑖) holds for all 𝑖 ∈ {1, 2}. Since 𝜋 ∈ Paths(T1 | | T2, 𝛾), we
have #1(𝜋0) ∈ 𝑇1,0 ×𝑇2,0 and thus #1(𝜋𝑖

0) ∈ 𝑇𝑖,0 follows for all 𝑖 ∈ {1, 2} with the construction
of 𝜋𝑖 . Hence, it remains to show that, for all 𝑖 ∈ {1, 2}, we have both (#1(𝜋𝑖

𝑘
), 𝛾𝑖

𝑘
, #1(𝜋𝑖

𝑘+1)) ∈ 𝜏𝑖
and (#1(𝜋𝑖

𝑘
), 𝛾𝑖

𝑘
, #2(𝜋𝑖

𝑘
)) ∈ ℓ𝑖 for all points in time 𝑘 ≥ 0. Since 𝜋 ∈ Paths(T1 | | T2, 𝛾) holds by

assumption, we have both (#1(𝜋𝑘 ), 𝛾𝑘 , #1(𝜋𝑘+1)) ∈ 𝜏 and (#1(𝜋𝑘 ), 𝛾𝑘 , #2(𝜋𝑘 )) ∈ ℓ for all 𝑘 ≥ 0.
Therefore, for all 𝑘 ≥ 0, there exist outputs 𝑜1 ⊆ 𝑂1 and 𝑜2 ⊆ 𝑂2 such that 𝑜1 ∪ 𝑜2 = #2(𝜋𝑘 ) and
both (#1(#1(𝜋𝑘 )), (𝛾𝑘 ∪𝑜3−𝑖) ∩ 𝐼𝑖 , #1(#1(𝜋𝑘+1))) ∈ 𝜏𝑖 and (#1(#1(𝜋𝑘 )), (𝛾𝑘 ∪𝑜3−𝑖) ∩ 𝐼𝑖 , 𝑜𝑖) ∈ ℓ𝑖 hold.
Since 𝑜1 ∪ 𝑜2 = #2(𝜋𝑘 ) holds, we clearly have 𝑜𝑖 = #2(𝜋𝑘 ) ∩𝑂𝑖 for all 𝑖 ∈ {1, 2}. Furthermore,
by construction of 𝜋 , we have #2(𝜋𝑘 ) = 𝜎𝑘 ∩ (𝑂1 ∪𝑂2) and thus 𝑜𝑖 = 𝜎𝑘 ∩𝑂𝑖 follows. Hence,
we have 𝛾𝑘 ∪ 𝑜3−𝑖 = 𝜎𝑘 ∩ (𝑂3−𝑖 ∪ ((𝐼1 ∪ 𝐼2) \ 𝑂𝑖)) by construction of 𝛾 . Thus, in particular,
(𝛾𝑘 ∪𝑜3−𝑖) ∩ 𝐼𝑖 = (𝜎𝑘 ∩ (𝑂3−𝑖 ∪ ((𝐼1∪ 𝐼2) \𝑂𝑖))) ∩ 𝐼𝑖 holds. Since 𝐼𝑖 ∩𝑂𝑖 = ∅ holds by assumption,
we have (𝐼1 ∪ 𝐼2) \ 𝑂𝑖) ∩ 𝐼𝑖 = (𝐼1 ∪ 𝐼2) ∩ 𝐼𝑖 = 𝐼𝑖 and hence (𝑂3−𝑖 ∪ ((𝐼1 ∪ 𝐼2) \ 𝑂𝑖)) ∩ 𝐼𝑖 = 𝐼𝑖
follows. Therefore, (𝛾𝑘 ∪ 𝑜3−𝑖) ∩ 𝐼𝑖 = 𝛾𝑖

𝑘
holds for all 𝑖 ∈ {1, 2} and all 𝑘 ≥ 0. Hence, both

(#1(#1(𝜋𝑘 )), 𝛾𝑖𝑘 , #1(#1(𝜋𝑘+1))) ∈ 𝜏𝑖 and (#1(#1(𝜋𝑘 )), 𝛾
𝑖
𝑘
, #2(𝜋𝑖

𝑘
)) ∈ ℓ𝑖 follow with the construction

of the parallel composition of finite-state transducers for all 𝑖 ∈ {1, 2} and all 𝑘 ≥ 0. Thus,
𝜋𝑖 ∈ Paths(T𝑖 , 𝛾𝑖) holds for all 𝑖 ∈ {1, 2}. Moreover, by construction of the sequence 𝜋𝑖 , we
have #2(𝜋𝑖

𝑘
) = #2(𝜋𝑘 ) ∩𝑂𝑖 and thus #2(𝜋𝑖

𝑘
) = (𝜎𝑖 ∩ (𝑂1 ∪𝑂2)) ∩𝑂𝑖 = 𝜎𝑘 ∩𝑂𝑖 follows for all

𝑖 ∈ {1, 2} and all 𝑘 ≥ 0. Since 𝛾𝑖 = 𝜎 ∩ 𝐼𝑖 holds by definition, we thus have 𝛾𝑖
𝑘
∪ #2(𝜋𝑖

𝑘
) = 𝜎𝑘 ∩𝑉𝑖

for all 𝑘 ≥ 0. Therefore, 𝜎 ∩𝑉𝑖 ∈ Traces(T𝑖 , 𝛾𝑖) follows for all 𝑖 ∈ {1, 2}. □

2.6.2. System Strategies
While system models define all possible behaviors of a reactive system, a system strategy defines
a concrete behavior of the system. Hence, it characterizes how the system concretely reacts to
an input sequence. Therefore, in contrast to system models, system strategies are both complete
and deterministic. That is, for every input sequence, there exists exactly one output sequence.
Formally, we define a system strategy as follows:

Definition 2.13 (System Strategy and Computation).
Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅. A system strategy is a
function 𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 . The computation of strategy 𝑠 on an infinite input sequence
𝛾 ∈ (2𝐼 )𝜔 , denoted comp(𝑠,𝛾), is the infinite word 𝜎 ∈ (2𝐼∪𝑂 )𝜔 with both 𝜎 ∩ 𝐼 = 𝛾 and
𝑠 (𝜎0 . . . 𝜎𝑘 , 𝜎𝑘+1 ∩ 𝐼 ) = 𝜎𝑘+1 ∩𝑂 for all points in time 𝑘 ≥ 0.
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Figure 2.5.: Strategy tree for a strategy 𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 with 𝐼 = {𝑐} and 𝑂 = {𝑎, 𝑏} that
alternates between outputting 𝑎 and 𝑏, irrespective of the input. For ease of presentation we
denote every node of the tree with its label.

Intuitively, a system strategy thus maps a history of valuations of input and output variables
and the current input valuation to a valuation of output variables. Hence, the behavior of a
system strategy 𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 is characterized by an infinite 2𝑂 -labeled tree (T, ℓ). It
branches according to the valuations of 𝐼 and its nodes 𝑥 ∈ T are labeled with the strategic
choice of 𝑠 on 𝑥 . An exemplary strategy tree for a strategy that alternates between outputting 𝑎
and 𝑏, irrespective of the input 𝑐 , is depicted in Figure 2.5.

When reading an infinite input sequence 𝛾 ∈ (2𝐼 )𝜔 , a strategy 𝑠 : (2𝐼∪𝑂 )∗×2𝐼 → 2𝑂 produces
a unique infinite output sequence characterizing the system’s behavior: the computation
comp(𝑠, 𝛾) of 𝑠 on 𝛾 . The computations of a system strategy then define whether the strategy
complies with a system specification given as a linear-time property:

Definition 2.14 (Specification Realization).
Let 𝑉 be a finite set of variables. Let 𝐼 ⊆ 𝑉 and 𝑂 ⊆ 𝑉 be finite sets of input and output
variables with 𝐼 ∩𝑂 = ∅. Let 𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 be a system strategy and let 𝐿 ⊆ (2𝑉 )𝜔 be
a linear-time property. Then, 𝑠 realizes 𝐿, denoted 𝑠 |= 𝐿, if, and only if, comp(𝑠,𝛾) ∪ 𝛾 ′ ∈ 𝐿
holds for all 𝛾 ∈ (2𝐼 )𝜔 and all 𝛾 ′ ∈ (2𝑉 \(𝐼∪𝑂 ) )𝜔 .

Given a set 𝑉 of variables and sets 𝐼 ⊆ 𝑉 and 𝑂 ⊆ 𝑉 of input and output variables with
𝐼∩𝑂 = ∅, we call a linear-time property 𝐿 ⊆ (2𝑉 )𝜔 realizable if there exists some system strategy
𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 that realizes 𝐿. Overloading notation, we say that a system strategy 𝑠

realizes an LTL formula 𝜑 instead of saying that 𝑠 realizes 𝜑 ’s language L(𝜑). Throughout this
thesis, we call system strategies simply strategies when the context is clear.
It is well-known that whenever there exists a system strategy that realizes an LTL formula,

then there also exists one that is finitely representable [EJ91]. Since we only consider system
requirements formalized in LTL in this thesis, we can thus always assume that there exist
finitely representable strategies for realizable system objectives. A finite representation of a
system strategy is called implementation. For simplicity, however, we use the terms strategy
and implementation interchangeably when the context is clear.
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In this thesis, we model system implementations as finite-state transducers. We also call
transducers that represent system strategies strategy transducers. Let 𝐼 and 𝑂 be finite sets
of inputs and outputs. A finite-state (2𝐼 , 2𝑂 )-transducer T that represents a system strategy
𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 produces exactly the computations of 𝑠 . Since a system strategy produces
for every infinite word a unique infinite output word, a finite-state transducer that represents a
system strategy needs to produce a unique trace and thus also a unique path for every infinite
input word as well. Therefore, the transducer needs to be both deterministic and complete as
it can otherwise produce multiple path – if it is nondeterministic – or no path at all – if it is
incomplete. The unique path produced by a T on input sequence 𝛾 ∈ (2𝐼 )𝜔 then needs to
coincides with the computation of 𝑠 on 𝛾 , i.e., with comp(𝑠, 𝛾). Hence, for a transducer T to
represent a system strategy 𝑠 , we require that Traces(T , 𝛾) = {comp(𝑠,𝛾)} holds for all𝛾 ∈ (2𝐼 )𝜔 .
Therefore, it follows immediately from Definition 2.14, that a finite-state (2𝐼 , 2𝑂 )-transducer T
realizes a linear-time property 𝐿 ∈ (2𝑉 )𝜔 , where 𝐼 ∪𝑂 ⊆ 𝑉 , if it is deterministic and complete
and if Traces(T ) ∪ (2𝑉 \(𝐼∪𝑂 ) )𝜔 ⊆ 𝐿 holds.
Note that we defined system strategies irrespective of the architecture of the system. For a

monolithic architecture 𝒜 = (𝑃,𝑉 , 𝐼,𝑂), a system strategy 𝑠 : (2𝐼1∪𝑂1)∗ × 2𝐼1 → 2𝑂1 defines the
behavior of the single system process 𝑝1 ∈ 𝑃−. For a distributed architecture 𝒜 = (𝑃,𝑉 , 𝐼,𝑂),
we consider strategies 𝑠𝑖 : (2𝐼𝑖∪𝑂𝑖 )∗ × 2𝐼𝑖 → 2𝑂𝑖 defining the behavior of all respective system
process 𝑝𝑖 ∈ 𝑃−. These strategies are also called process strategies. Moreover, we consider a
system strategy 𝑠 : (2𝑂env∪𝑂− )∗ × 2𝑂env → 2𝑂− for the entire system, i.e., for the interplay of all
system processes. We denote the parallel composition of two system strategies 𝑠1 and 𝑠2 with
𝑠1 | | 𝑠2 and define it in terms of the underlying finite-state transducers, i.e., 𝑠1 | | 𝑠2 is represented
by T1 | | T2, where T1 and T2 are finite-state transducers representing 𝑠1 and 𝑠2, respectively.

2.6.3. Winning and Dominant System Strategies
In this thesis, we consider two types of system strategies: winning strategies and remorsefree
dominant – or simply dominant – strategies. Given an LTL formula 𝜑 , a strategy is called
winning for 𝜑 if it realizes the linear-time property L(𝜑):

Definition 2.15 (Winning Strategy).
Let 𝑉 be a finite set of variables. Let 𝐼 ⊆ 𝑉 and 𝑂 ⊆ 𝑉 be finite sets of input and output
variables with 𝐼 ∩ 𝑂 = ∅. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let
𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 be a strategy. Then, 𝑠 is winning for 𝜑 , if, and only if, 𝑠 |= 𝜑 holds.

Thus, a winning strategy 𝑠 is required to satisfy the specification 𝜑 for every input sequence.
Hence, an LTL formula is realizable if, and only if, there exists a winning strategy for it. In most
settings, winning strategies are considered.

Remorsefree dominance [DF11] is a weaker requirement than winning. In contrast to winning
strategies, remorsefree dominant strategies are allowed to violate the specification for an input
sequence if no other strategy would have satisfied it in the same situation. In the remainder
of this thesis, we call remorsefree dominant strategies also dominant strategies whenever the
context is clear. Formally, remorsefree dominant strategies are defined as follows:
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Definition 2.16 (Dominant Strategy [DF14]).
Let 𝑉 be a finite set of variables. Let 𝐼 ⊆ 𝑉 and 𝑂 ⊆ 𝑉 be finite sets of input and output
variables with 𝐼 ∩ 𝑂 = ∅. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let
𝑠 : (2𝐼∪𝑂 )∗×2𝐼 → 2𝑂 be a strategy. A strategy 𝑡 : (2𝐼∪𝑂 )∗×2𝐼 → 2𝑂 is dominated by 𝑠 , denoted
𝑡 ⪯ 𝑠 , if, and only if, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝛾 ′ ∈ (2𝑉 \(𝐼∪𝑂 ) )𝜔 either comp(𝑠,𝛾) ∪ 𝛾 ′ |= 𝜑 or
comp(𝑡, 𝛾) ∪ 𝛾 ′ ̸ |= 𝜑 holds. Strategy 𝑠 is called dominant for 𝜑 if 𝑡 ⪯ 𝑠 holds for all alternative
strategies 𝑡 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 .

Intuitively, a strategy 𝑠 dominates a strategy 𝑡 if it is “at least as good” as 𝑡 . It is dominant
for 𝜑 if it is at least as good as every other possible strategy and thus if it is “as good as possible”.
Dominance is, therefore, a notion of best effort: if a strategy 𝑠 fails to satisfy the specification
but there does not exists any better strategy, then 𝑠 did it’s best and thus should not feel any
remorse concerning its behavior. A dominant strategy also dominates other dominant strategies,
particularly itself. An LTL formula is called admissible if a dominant strategy exists for it.

Example 2.6. Consider the LTL formula 𝜑 = 𝑎 ∧ 𝑏. Let 𝐼 = {𝑎} and 𝑂 = {𝑏}. There does
not exist a winning strategy 𝑠 for 𝜑 : irrespective of the sequence of output valuations produced
by 𝑠 , the computation of 𝑠 on some input sequence 𝛾 ∈ (2𝐼 )𝜔 accurately reflects the valuations
of input variables defined by 𝛾 . Thus, in particular, for an input sequence 𝛾 ∈ (2𝐼 )𝜔 that does
not set 𝑎 to true at any point in time, i.e., with 𝑎 ∉ 𝛾𝑘 for all 𝑘 ≥ 0, the computation comp(𝑠, 𝛾) of
any strategy 𝑠 contains no 𝑎. Hence, for such input sequences, comp(𝑠,𝛾) violates 𝜑 irrespective
of the choice of the strategy 𝑠 . However, there exist dominant strategies for 𝜑 , for instance a
strategy 𝑠 that sets 𝑏 to true in the very first time step: for input sequences that do not contain
any 𝑎, all strategies violate 𝜑 as outlined above. For all other input sequences, the computation
of 𝑠 clearly satisfies 𝜑 . △

Every strategy that is winning for an LTL specification 𝜑 is clearly also remorsefree dominant
for 𝜑 . Hence, if 𝜑 is realizable, then there exists a dominant strategy 𝑠 for 𝜑 whose computation
satisfies 𝜑 for every input sequence. Since every other dominant strategy 𝑡 for 𝜑 needs to be
at least as good as 𝑠 , its computation thus needs to satisfy 𝜑 for every input sequence as well.
Therefore, every dominant strategy for 𝜑 is winning for 𝜑 if 𝜑 is realizable:

Proposition 2.5 ([DF14]). Let 𝑉 be a finite set of variables. Let 𝐼 ⊆ 𝑉 and𝑂 ⊆ 𝑉 be finite sets of
input and output variables with 𝐼 ∩𝑂 = ∅. Let 𝜑 be an LTL formula over atomic propositions 𝑉 .
If 𝜑 is realizable, then every dominant strategy 𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 is winning for 𝜑 .

2.7. Infinite Games
Games, particularly two-player games, are a common model in computer science. Since we
consider reactive systems in this thesis and thus systems that do not terminate, we utilize
infinite games, i.e., games that are played indefinitely. Infinite games can, for instance, be used
for solving the reactive synthesis problem. An infinite game is played in an arena, which is
represented by a graph whose set of vertices, the so-called positions, is partitioned into the
positions of the two players Player 0 and Player 1. Formally:
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Definition 2.17 (Game Arena).
A game arena is a tuple A = (𝑃, 𝑃0, 𝑃1, 𝑣0, 𝐸), where 𝑃 , 𝑃0, 𝑃1 are sets of positions with
𝑃 = 𝑃0 ∪ 𝑃1 and 𝑃0 ∩ 𝑃1 = ∅, 𝑣0 ∈ 𝑃 is the initial position, 𝐸 ⊆ 𝑃 × 𝑃 is a set of edges such
that for all positions 𝑣 ∈ 𝑃 , there exists a position 𝑣 ′ ∈ 𝑃 such that (𝑣, 𝑣 ′) ∈ 𝐸 holds. Player 𝑖
controls the positions in 𝑃𝑖 .

In an arena A = (𝑃, 𝑃0, 𝑃1, 𝑣0, 𝐸), the players construct a play. A play is an infinite sequence
𝜌 ∈ 𝑃𝜔 of positions such that (𝜌𝑘 , 𝜌𝑘+1) ∈ 𝐸 holds for all 𝑘 ≥ 0. The player owning a position
chooses the edge on which the play is continued. That is, if a position 𝑣 ∈ 𝑃𝑖 , which is controlled
by Player 𝑖 and which is reached at point in time 𝑘 ≥ 0 in a play 𝜌 ∈ 𝑃𝜔 , has multiple outgoing
edges (𝑣, 𝑣 ′), (𝑣, 𝑣 ′′) ∈ 𝐸, then Player 𝑖 chooses whether 𝜌 continues with 𝑣 ′ or 𝑣 ′′, i.e., whether
𝜌𝑘+1 = 𝑣 ′ or 𝜌𝑘+1 = 𝑣 ′′ holds. We call a play initial if it starts in the initial position, i.e., if 𝜌0 = 𝑣0
holds for the play 𝜌 ∈ 𝑃𝜔 . Note that since we require every position of an arena to have at least
one outgoing edge, a play is guaranteed to be infinitely long. Based on game arenas and plays,
an infinite game is defined as follows:

Definition 2.18 (Infinite Game).
An infinite game G = (A,W) consists of a game arena A = (𝑃, 𝑃0, 𝑃1, 𝑣0, 𝐸) and a winning
conditionW ∈ 𝑃𝜔 . A play 𝜌 ∈ 𝑃𝜔 in A is winning for Player 0 if 𝜌 ∈ W holds and winning for
Player 1 otherwise.

Given a game G = (A,W) with arena A = (𝑃, 𝑃0, 𝑃1, 𝑣0, 𝐸), a strategy for Player 𝑖 intuitively
defines the decisions Player 𝑖 makes during a play. Formally, a strategy for Player 𝑖 is a function
` : 𝑃∗ × 𝑃𝑖 → 𝑃 such that for all positions 𝑣 ∈ 𝑃𝑖 and all finite sequences a ∈ 𝑃∗ of positions,
whenever ` (a, 𝑣) = 𝑣 ′ holds, then we have (𝑣, 𝑣 ′) ∈ 𝐸. A play 𝜌 ∈ 𝑃∗ is consistent with a player’s
strategy ` if, and only if, for all points in time 𝑘 ≥ 0, it holds that whenever we have 𝜌𝑘 ∈ 𝑃𝑖 ,
then 𝜌𝑘+1 = ` (𝜌 |𝑘 , 𝜌𝑘 ) holds. We denote the set of all plays that start in position 𝑣 and that
are consistent with ` with Plays(G, `, 𝑣). The set of initial plays that are consistent with `, i.e.,
Plays(G, `, 𝑣0), is also denoted with Plays(G, `). Note that, given a strategy ` for Player 0 and a
strategy `′ for Player 1, there is a unique initial play that is consistent with both ` and `′, i.e., we
have |Plays(G, `) ∩ Plays(G, `′) | = 1. A strategy for Player 𝑖 is winning if, and only if, all initial
and consistent plays are winning for Player 𝑖 . Hence, for a winning strategy ` : 𝑃∗ × 𝑃0 → 𝑃 for
Player 0, we have 𝜌 ∈ W for all plays 𝜌 ∈ Plays(G, `). For a winning strategy ` : 𝑃∗ × 𝑃1 → 𝑃

for Player 1, in contrast, we have 𝜌 ∉W for all 𝜌 ∈ Plays(G, `).

Example 2.7. Consider the game arena A depicted in Figure 2.6. Positions controlled by
Player 1 are depicted as rectangles, positions with rounded edges are controlled by Player 0.
LetW be a winning condition that states that the positions 𝑣5 and 𝑣7 should never be visited.
These states are highlighted in violet. A winning strategy for Player 0 is highlighted in blue.
It enforces every initial consistent play to reach 𝑣3 without visiting 𝑣5 or 𝑣7 beforehand. In 𝑣3,
Player 1 does not have any choice other than moving to 𝑣2. Position 𝑣2, however, is controlled
by Player 0 and the strategy described above enforces that a consistent play moves back to 𝑣3.
Hence, every initial consistent play loops between 𝑣2 and 𝑣3 forever while not visiting 𝑣5 or 𝑣6
before and therefore the strategy is winning. △
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𝑣0 𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6 𝑣7

Figure 2.6.: A game arenaA. Positions controlled by Player 1 are depicted as rectangles, positions
with rounded edges are controlled by Player 0. Positions 𝑣5 and 𝑣7, highlighted in violet, should
be avoided. A winning strategy for Player 0 is depicted in blue.

2.8. Reactive Synthesis
Intuitively, reactive synthesis [Chu57] is the task of automatically deriving a correct-by-
construction implementation for a reactive system from a formal specification. In this thesis,
we only consider formal specification given in LTL. Furthermore, we consider both monolithic
and distributed systems. Therefore, we formalize the reactive synthesis problem as follows.

Definition 2.19 (Reactive Synthesis Problem).
Let𝒜 = (𝑃,𝑉 , 𝐼,𝑂) be an architecture. Let 𝜑 be an LTL formula over atomic propositions 𝑉 .
The reactive synthesis problem is to derive system strategies 𝑠1, . . . , 𝑠𝑛 for the system processes
𝑝1, . . . , 𝑝𝑛 ∈ 𝑃− such that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

For monolithic architectures, the reactive synthesis problem for LTL specifications can be
solved by first translating the LTL formula into a nondeterministic Büchi automaton. After
determinizing the automaton with Safra’s construction [Saf88], we can employ the game-
based [BL69] or the automaton-based [Rab72] synthesis approach. In terms of complexity,
synthesis results in a doubly-exponential running time. In fact, the reactive synthesis problem
for monolithic architectures and LTL specifications is 2EXPTIME-complete:

Theorem 2.1 ([PR89a]). Let 𝒜 = (𝑃,𝑉 , 𝐼,𝑂) be a monolithic architecture. Let 𝜑 be an LTL
formula over atomic propositions 𝑉 . The question whether there exists a system strategy 𝑠 for the
single system process such that 𝑠 |= 𝜑 holds is 2EXPTIME-complete.

In this thesis, we focus on safraless [KV05] synthesis approaches, which avoid Safra’s con-
struction for determinizing the nondeterministic Büchi automaton. In particular, we consider
bounded synthesis [FS13], on which we elaborate in the following section.

2.8.1. Bounded Synthesis
Bounded synthesis [FS13] is a synthesis procedure for monolithic systems that derives size-
optimal strategies from LTL specifications. It constructs a finite-state transducer that realizes
the specification with a minimal number of states. To do so, bounded synthesis bounds the
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Figure 2.7.: Workflow of constraint-based bounded synthesis.

number of states of the desired transducer. Starting from bound 1, the bound is successively
increased if there does not exist a transducer of the specified size that realizes the specification.
This procedure is continued until a solution is found. There exists an upper bound on the
size of a finite-state transducer realizing the specification [FS13]. Thus, bounded synthesis is
guaranteed to terminate. If there does not exist a transducer of the size of the upper bound
that realizes the specification, then the specification is unrealizable. Bounded synthesis is, for
instance, implemented in the tools Unbeast [Ehl11], Acacia+ [BBF+12], and BoSy [FFT17].
Constraint-based bounded synthesis reduces bounded synthesis to a constraint-solving

problem. In particular, it encodes the existence of a finite-state transducer of the specified size
that realizes the specification into a constraint system. There exist SMT, SAT, QBF, and DQBF
encodings [FS13, FFRT17]. In the following, we describe the general workflow of constraint-
based bounded synthesis. An overview is depicted in Figure 2.7. First, bounded synthesis
translates a given LTL specification 𝜑 into a universal co-Büchi automaton A𝜑 of size O(2 |𝜑 |)
with L(A𝜑 ) = L(𝜑) (see Proposition 2.4). Recall that a finite-state transducer T representing a
system strategy 𝑠 realizes 𝜑 if, and only if, every trace generated by T lies in the language of 𝜑 .
Thus, since L(A𝜑 ) = L(𝜑) holds, it follows from the definition of the acceptance of universal
co-Büchi automata that T realizes 𝜑 if, and only if, every trace generated by T induces only
runs ofA𝜑 with finitely many visits to rejecting states. The runs ofA𝜑 induced by a finite-state
transducer T are captured by the unique run graph of A𝜑 and T :

Definition 2.20 (Run Graph).
Let 𝒜 be a monolithic architecture and let 𝐼 and 𝑂 be the inputs and outputs of the single
process. Let A = (𝑄,𝑞0, 𝛿, 𝐹 ) be a universal co-Büchi automaton over alphabet 𝐼 ∪ 𝑂 . Let
T = (𝑇,𝑇0, 𝜏, ℓ) be a deterministic and complete finite-state (2𝐼 , 2𝑂 )-transducer. The run
graph G = (V, E) of A and T , denoted T × A, is defined by

• V = 𝑇 ×𝑄 , the set of vertices, and
• E ⊆ V ×V , the edge relation, with ((𝑡, 𝑞), (𝑡 ′, 𝑞′)) ∈ E if, and only if,

∃] ∈ 2𝐼 .∃𝑜 ∈ 2𝑂 . (𝑡, ], 𝑡 ′) ∈ 𝜏 ∧ (𝑡, ], 𝑜) ∈ ℓ ∧ (𝑞, ] ∪ 𝑜, 𝑞′) ∈ 𝛿.
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A vertex 𝑣 = (𝑡, 𝑞) ∈ V of a run graph G = (V, E) is rejecting if, and only if, 𝑞 ∈ 𝐹 , i.e., 𝑞
is a rejecting state in the universal co-Büchi automaton A. A run is a path of G that starts in
the initial vertex (𝑡, 𝑞0) with 𝑡 ∈ 𝑇0. Note that since T is deterministic, we have |𝑇0 | = 1 and
thus the initial vertex of the run graph is unique. We call a run accepting if it is either finite or
contains only finitely many rejecting vertices. A run graph is accepting if every run is accepting.
The run graph of a finite-state transducer T and a universal co-Büchi automaton A then

captures whether or not T realizes A’s language:

Lemma 2.3 ([FS13]). Let𝒜 be a monolithic architecture and let 𝐼 and𝑂 be the inputs and outputs
of the single process. Let A be a universal co-Büchi automaton over alphabet 𝐼 ∪𝑂 . Let T be a
deterministic and complete finite-state (2𝐼 , 2𝑂 )-transducer. Then the run graph T ×A is accepting
if, and only if, T realizes L(A).

Hence, we can utilize the run graph of a candidate transducer T and the universal co-Büchi
automaton A𝜑 with L(A𝜑 ) = L(𝜑) in order to determine whether or not T realizes 𝜑 . More
precisely, we annotate the run graph T × A𝜑 . An annotation is a function _ : V → N ∪ {⊥},
whereV is the set of vertices of T × A𝜑 . Hence, _ maps the vertices of the run graph to either
unreachable ⊥ or to a natural number 𝑘 ∈ N.

Definition 2.21 (Valid Annotation [FS13]).
Let 𝒜 be a monolithic architecture and let 𝐼 and 𝑂 be the inputs and outputs of the single
process. Let A = (𝑄,𝑞0, 𝛿, 𝐹 ) be a universal co-Büchi automaton over alphabet 𝐼 ∪ 𝑂 and
let T = (𝑇,𝑇0, 𝜏, ℓ) be a deterministic and complete finite-state (2𝐼 , 2𝑂 )-transducer. Let
G = (V, E) be the run graph of T and A and let _ : V → N ∪ {⊥} be an annotation of G.
Then, _ is valid if, and only if,

• the initial vertex of G is reachable and thus annotated with a natural number, i.e.,
_((𝑡, 𝑞0)) ≠ ⊥ holds for the single state 𝑡 ∈ 𝑇0, and

• if a vertex 𝑣 ∈ V is annotated with a natural number, i.e., _(𝑣) = 𝑘 ≠ ⊥, then every
successor vertex 𝑣 ′ ∈ V with (𝑣, 𝑣 ′) ∈ E is annotated with a greater natural number
_(𝑣 ′), which needs to be strictly greater than 𝑘 if 𝑣 ′ is rejecting, i.e., _(𝑣 ′) ⊲𝑣′ 𝑘 , where

⊲𝑣′ =

{
> if 𝑣 ′ is rejecting
≥ otherwise.

Intuitively, a valid annotation counts how often a rejecting state is visited. The first require-
ment of Definition 2.21 ensures that the initial vertex is annotated “reachable”. The second
requirement ensures that the annotation strictly increases whenever a rejecting vertex is reached.
For non-rejecting states, in contrast, the annotation can remain unchanged.
Recall that if there exists a run in the run graph G that is not accepting, then it contains

infinitely many rejecting vertices. Since G has a finite set of vertices, the run thus contains a
cycle with a rejecting vertex. Hence, in a valid annotation, the annotation of this vertex would
need to strictly increase whenever it is visited, i.e., an infinite number of times. Therefore,
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there does not exist a valid annotation of a run graph that is not accepting and hence a valid
annotation of the run graph T × A𝜑 serves as a witness of T realizing 𝜑 :

Theorem 2.2 ([FS13]). Let 𝒜 be a monolithic architecture and let 𝐼 and 𝑂 be the inputs and
outputs of the single process. Let A be a universal co-Büchi automaton over alphabet 𝐼 ∪𝑂 . Let T
be a deterministic and complete finite-state (2𝐼 , 2𝑂 )-transducer. There is a valid annotation _ of
the run graph T × A if, and only if, T realizes L(A).

Hence, the bounded synthesis problem for a concrete bound 𝑏 ∈ N reduces to finding a valid
annotation of the run graph of the universal co-Büchi automaton representing the specification
and some candidate finite-state transducer with 𝑏 states. This search can be encoded into a
constraint system. If the constraint system is realizable, a deterministic and complete finite-state
transducer realizing the specification can be extracted immediately from the solution of the
constraint system. Otherwise, the bound is either increased (see Figure 2.7) or, if the upper
bound is reached, unrealizability of the specification is deduced.
In the original formulation of bounded synthesis, an encoding of bounded synthesis into

an SMT constraint-solving problem has been provided [FS13]. To be able to use state-of-
the-art constraint solvers, encodings in related domains have been proposed: SAT, QBF, and
DQBF [FFRT17]. The purely propositional SAT encoding expands the universal quantification
over the vertices of the run graph and uses binary arithmetic to encode the ordering constraints
of the valid annotation. The QBF encoding, also called the input-symbolic encoding, allows for
handling the input variables, i.e., the propositions controlled by the environment, symbolically:
a universal quantification over the input variables is added, resulting in a exponentially more
succinct encoding. Adding further universal quantification over the states of the candidate
finite-state transducer as well as of the universal co-Büchi automaton allows for representing
both of them symbolically. For this, a DQBF encoding is necessary.

Theorem 2.3 ([FS13, FFRT17]). Let 𝜑 be an LTL formula and let A be a universal co-Büchi
automaton with L(A) = L(𝜑). Let 𝑏 ∈ N be a bound. There exist SMT, SAT, QBF, and DQBF
constraint systems CSMT

𝑏,𝜑
, CSAT

𝑏,𝜑
, CQBF

𝑏,𝜑
, and CDQBF

𝑏,𝜑
respectively, such that CD

𝑏,𝜑
is satisfiable for

D ∈ {SAT, SMT,QBF,DQBF} if, and only if, 𝜑 is realizable with a deterministic and complete
finite-state transducer with 𝑏 states.

In practice, the SAT, QBF, and DQBF encodings all outperform the original SMT encoding.
Moreover, the more symbolic encodings, i.e., QBF and DQBF, are perform better than the purely
propositional SAT encoding [FFRT17, FFT17, Ten19]. Note that the performance of the DQBF
encoding highly depends on the performance of the underlying solver [Ten19]: while the SMT
encoding outperforms the DQBF encoding when using iDQ [FKBV14] (as in the experiments
performed in [FFRT17, FFT17]), the performance of the DQBF encoding sharply increases when
using dCAQE [TR19] instead. Nevertheless, the QBF encoding has shown to be the most
performant one in practice [FFRT17, FFT17, Ten19]. For large benchmarks in terms of states of
the finite-state transducer and the automaton, however, the DQBF encoding has an advantage
over the QBF encoding [Ten19].
The concept of bounded synthesis has been extended to the synthesis of distributed sys-

tems [FS07] and respective SAT, QBF, and DQBF encodings have been developed [Bau17].
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Figure 2.8.: Construction of the automatonA𝑑
𝜑 accepting computations of remorsefree dominant

strategies for LTL specification 𝜑 . The construction by Damm and Finkbeiner [DF14] is depicted
in blue, the one by Steiger [Ste13] in violet and with dashed edges.

Furthermore, for monolithic bounded synthesis, the ranking function used in valid annotations
has been extended to Büchi, parity, Rabin, and Streett acceptance conditions, resulting in a
bounded synthesis algorithm for CTL∗ specifications [KB17].

2.8.2. Synthesizing Remorsefree Dominant Strategies
In contrast to winning strategies, remorsefree dominant strategies [DF11] are allowed to violate
the specification in situations in which every other strategy would have violated the specification
as well (see Section 2.6.3). When synthesizing remorsefree dominant strategies rather than
winning once, it is thus crucial to identify such situations. In the following, we describe the
extension of bounded synthesis [FS13] to remorsefree dominant strategies.

Recall that constraint-based bounded synthesis relies on encoding the search for a winning
strategy, i.e., a strategy whose computation satisfies the given LTL specification for every input
sequence, into a constraint system. To do so, bounded synthesis translates the LTL specification
into a universal co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑) and encodes the search for a
strategy 𝑠 such that, for every input sequence 𝛾 ∈ (2𝐼 )𝜔 , the runs of A𝜑 induced by comp(𝑠,𝛾)
visit only finitely many rejecting states.

To utilize the existing algorithms for this check also for synthesizing remorsefree dominant
strategies, we encode the notion of remorsefree dominance into the universal co-Büchi au-
tomaton. Hence, we construct a universal co-Büchi automaton A𝑑

𝜑 that recognizes dominant
strategies. More precisely, A𝑑

𝜑 recognizes whether the specification 𝜑 is satisfied and whether
no strategy at all would satisfy 𝜑 in the same situation. An overview of the construction of A𝑑

𝜑 ,
which follows [DF11, DF14], is provided in Figure 2.8, highlighted in blue.

First, a universal co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑) is constructed from 𝜑 (see
Proposition 2.3). This automaton recognizes situations in which the specification 𝜑 is satisfied.
Second, we construct a universal co-Büchi automaton identifying situations in which no strategy
can satisfy 𝜑 as follows. Let 𝜑 ′ be a copy of 𝜑 , where every output variable 𝑜 ∈ 𝑂 is replaced by
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a fresh variable 𝑜 ′ ∉ 𝐼 ∪𝑂 . Intuitively, the primed variables define the outputs of an alternative
strategy. We build the automaton A¬𝜑 ′ with L(A¬𝜑 ′) = L(¬𝜑 ′) that, intuitively, accepts
sequences that define an alternative strategy that violates the specification for the given input
sequence. To consider all alternative strategies instead of only a single one, we universally
project to the unprimed variables in A¬𝜑 ′ . Intuitively, the resulting automaton quantifies
universally over the primed variables since it always considers both valuations. Formally, the
universal projection is defined as follows:

Definition 2.22 (Universal Projection).
Let A = (𝑄,𝑄0, 𝛿, 𝐹 ) be a universal co-Büchi automaton over alphabet Σ and let 𝑋 ⊂ Σ. The
universal projection ofA to 𝑋 is the universal co-Büchi automaton 𝜋𝑋 (A) = (𝑄,𝑄0, 𝜋𝑋 (𝛿), 𝐹 )
over alphabet 𝑋 , where 𝜋𝑋 (𝛿) = {(𝑞, 𝑎, 𝑞′) ∈ 𝑄 × 2𝑋 ×𝑄 | ∃𝑏 ∈ 2Σ\𝑋. (𝑞, 𝑎 ∪ 𝑏, 𝑞′) ∈ 𝛿}.

Intuitively, the projected automaton 𝜋𝑋 (A) for a universal co-Büchi automaton A over
alphabet Σ and a set 𝑋 ⊂ Σ contains the transitions of A for all possible valuations of the
variables in Σ\𝑋 . Hence, for a sequence 𝜎 ∈ (2𝑋 )𝜔 , all runs ofA on sequences extending 𝜎 with
some valuation of the variables in Σ\𝑋 , i.e., sequences 𝜎 ′ ∈ (2Σ)𝜔 with 𝜎 ′∩𝑋 = 𝜎 , are also runs
of the projected automaton 𝜋𝑋 (A). Since both A and 𝜋𝑋 (A) are universal automata, 𝜋𝑋 (A)
thus accepts a sequence 𝜎 ∈ (2𝑋 )𝜔 if, and only if, A accepts all sequences extending 𝜎 with
some valuation of the variables in Σ \ 𝑋 :

Lemma 2.4. Let A be a universal co-Büchi automaton over alphabet Σ. Let 𝑋 ⊂ Σ be a set and
let 𝜎 ∈ (2𝑋 )𝜔 . Then, 𝜋𝑋 (A) accepts 𝜎 if, and only if A accepts all 𝜎 ′ ∈ (2Σ)𝜔 with 𝜎 ′ ∩ 𝑋 = 𝜎 .

Proof. First, suppose that the projected automaton 𝜋𝑋 (A) accepts 𝜎 . Then, by definition of
universal co-Büchi automata, all paths 𝜋 ∈ Paths(𝜋𝑋 (A), 𝜎) of 𝜋𝑋 (A) induced by 𝜎 visit only
finitely many rejecting states. Suppose that there is an infinite sequence 𝜎 ′ ∈ (2Σ)𝜔 with
𝜎 ′ ∩ 𝑋 = 𝜎 that is rejected by A. Then, there is a path 𝜋 ′ ∈ Paths(A, 𝜎 ′) of A induced by 𝜎 ′

that contains infinitely many rejecting states. By definition of the universal projection and since
𝜎 ′ ∩ 𝑋 = 𝜎 holds, there thus also exists a path 𝜋 ′′ ∈ Paths(𝜋𝑋 (A), 𝜎) of 𝜋𝑋 (A) induced by 𝜎
such that #1(𝜋 ′𝑘 ) = #1(𝜋 ′′𝑘 ) as well as #2(𝜋

′
𝑘
) ∩ 𝑋 = #2(𝜋 ′′𝑘 ) holds for all points in time 𝑘 ≥ 0.

Since 𝜋 ′ and 𝜋 ′′ agree on their first component and thus on the visited states, it follows that 𝜋 ′′
contains infinitely many visits to rejecting states as well. Hence, 𝜋 ′′ is a path of 𝜋𝑋 (A) induced
by 𝜎 with infinitely many visits to rejecting states; contradicting that 𝜋𝑋 (A) accepts 𝜎 .

Second, suppose thatA accepts all sequences 𝜎 ′ ∈ (2Σ)𝜔 with 𝜎 ′∩𝑋 = 𝜎 . Then, by definition
of universal co-Büchi automata, all paths 𝜋 ∈ Paths(A, 𝜎 ′) of A induced by some 𝜎 ′ ∈ (2Σ)𝜔
with 𝜎 ′ ∩ 𝑋 = 𝜎 visit rejecting states only finitely often. Suppose that 𝜋𝑋 (A) rejects 𝜎 . Then,
there is a path 𝜋 ′ ∈ Paths(𝜋𝑋 (A), 𝜎) in 𝜋𝑋 (A) induced by 𝜎 that contains infinitely many
visits to rejecting states. By definition of the universal projection, there exists some 𝜎 ′ ∈ (2Σ)𝜔
with 𝜎 ′ ∩ 𝑋 = 𝜎 that induces a path 𝜋 ′′ ∈ Paths(A, 𝜎 ′) in A such that #1(𝜋 ′𝑘 ) = #1(𝜋 ′′𝑘 ) as
well as #2(𝜋 ′𝑘 ) = #2(𝜋 ′′𝑘 ) ∩ 𝑋 holds for all points in time 𝑘 ≥ 0. Since 𝜋 ′ and 𝜋 ′′ agree on
their first component and thus on the visited states, it follows that 𝜋 ′′ contains infinitely many
visits to rejecting states as well. Hence, since 𝜋 ′′ is induced by 𝜎 ′, the automaton A rejects 𝜎 ′;
contradicting that A accepts all sequences 𝜎 ′′ ∈ (2Σ)𝜔 with 𝜎 ′′ ∩ 𝑋 = 𝜎 . □



2.8. Reactive Synthesis 51

We utilize this property to obtain a universal co-Büchi automaton A𝜋 (¬𝜑 ′ ) from A¬𝜑 ′ that
considers all possible alternative strategies instead of only a particular one: we project to
the unprimed variables, i.e., to 𝐼 ∪ 𝑂 , thereby quantifying universally over the alternative
strategies. Combining the two automata A𝜑 and A𝜋 (¬𝜑 ′ ) in a product construction then yields
the desired universal co-Büchi automaton A𝑑

𝜑 that recognizes remorsefree dominant strategies
as the language of the product automaton is the union of the languages of A𝜑 and A𝜋 (¬𝜑 ′ ) .
Using the resulting automaton A𝑑

𝜑 instead of the universal co-Büchi automaton A𝜑 in
bounded synthesis then allows for synthesizing remorsefree dominant strategies. By Proposi-
tion 2.3, both intermediate automataA𝜑 andA¬𝜑 ′ are of size O(2 |𝜑 |). Since universal projection
does not alter the state space of an automaton, A𝜋 (¬𝜑 ′ ) has also O(2 |𝜑 |) states. Therefore, it
follows that A𝑑

𝜑 has O(2 |𝜑 |) states as well. Synthesizing remorsefree dominant strategies is, as
synthesis of winning strategies, 2EXPTIME-complete:

Theorem 2.4 ([DF14]). Let𝒜 = (𝑃,𝑉 , 𝐼,𝑂) be a monolithic architecture. Let 𝜑 be an LTL formula
over atomic propositions𝑉 . The question whether a property given as an LTL formula is admissible
in a single-process architecture is 2EXPTIME-complete. A remorsefree dominant strategy can be
computed in doubly-exponential time.

Steiger [Ste13] introduced a synthesis approach for remorsefree dominant strategies, which
slightly differs from the automaton construction from [DF11] presented above but results in
equivalent automata for synthesis. Instead of first constructing two different automata, one for
recognizing situations in which the specification is satisfied and one for recognizing situations in
which the specification cannot be satisfied by any strategy, his approach immediately constructs
a single automaton that accounts for both situations. In particular, he encodes the combination
of both automata directly into the specification and then constructs a single automaton out of
it. This allows for outsourcing more of the construction work to existing tools for automata
generation such as Spot [DLF+16, DRC+22].
More precisely, given an LTL specification 𝜑 , Steiger proposes to construct the modified

specification𝜓 = 𝜑 ′ → 𝜑 , where 𝜑 ′ is, similar to the synthesis approach presented above, a copy
of𝜑 , where every occurrence of an output variable of the system is replaced with a fresh variable.
Then, a universal co-Büchi automaton A𝜓 with L(A𝜓 ) = L(𝜓 ) is constructed. Intuitively, A𝜓

accepts sequences that either satisfy the specification 𝜑 or that define an alternative strategy
that violates the specification for the given input sequence. To consider all alternative strategies
instead of only a single one, we universally project to the unprimed variables in A𝜓 . The
resulting automaton is then the desired automaton A𝑑

𝜑 that recognizes remorsefree dominant
strategies. An overview of Steiger’s construction is integrated into Figure 2.8, highlighted in
violet and with dashed edges.
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Chapter 3

Synthesizing Best-Effort Strategies
for Liveness Properties

In this chapter, we study best-effort strategies for the compositional synthesis of distributed
systems. The naïve compositional distributed synthesis approach is to synthesize winning
strategies for the system processes separately. Usually, however, processes need to collaborate
in order to achieve the overall system’s correctness. For instance, a particular input sequence
may prevent the satisfaction of the specification no matter how a single process reacts, yet,
the other processes of the system ensure that, in the interplay of their strategies, this input
sequence will never be produced. Therefore, separate winning strategies rarely exist.
Remorsefree dominance [DF11], a weaker notion than winning, allows for making implicit

assumptions on the behavior of the other system processes. A remorsefree dominant strategy,
or simply dominant strategy, is allowed to violate the specification as long as no other strategy
would have satisfied it in the same situation. Hence, a remorsefree dominant strategy is a
best-effort strategy as we do not blame it for violating the specification if the violation is not its
fault. Intuitively, a dominant strategy thus implicitly assumes that the other system processes
will not violate the overall specification. Searching for dominant rather than winning strategies
then allows us to find strategies that do not necessarily satisfy the specification in all situations
but in all that are realistic in the sense that they actually can occur during the interaction of
the system processes if all of them play best-effort strategies. Therefore, remorsefree dominant
strategies have been utilized for compositional distributed synthesis algorithms [DF14].

However, the parallel composition of dominant strategies is only guaranteed to be dominant
for safety properties [DF14]. For liveness specifications, in contrast, dominance of the parallel
composition cannot be ensured. Thus, remorsefree dominance is, in general, not a compositional
notion and therefore it is not suitable for compositional synthesis for non-safety specifications.
Consider, for example, a system with two processes 𝑝1 and 𝑝2 that send messages to each other,
denoted with atomic propositions 𝑚1 and 𝑚2, respectively. Both processes are required to
send their message eventually, i.e., the specification is given by 𝜑 = 𝑚1 ∧ 𝑚2. For 𝑝𝑖 , it
is dominant to wait for the other process to send the message𝑚3−𝑖 before sending its own
message𝑚𝑖 : if 𝑝3−𝑖 sends its message eventually, 𝑝𝑖 does so as well, satisfying 𝜑 . If 𝑝3−𝑖 never
sends its message, 𝜑 is violated, no matter how 𝑝𝑖 reacts, and thus the violation of 𝜑 is not 𝑝𝑖 ’s
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fault. If both 𝑝1 and 𝑝2 play this strategy, however, combining them yields a system strategy
that never sends any message since both processes wait indefinitely on each other. At the same
time, strategies for the entire system that satisfy 𝜑 clearly exist, for instance, a strategy that
sends both messages in the very first time step.

Bounded dominance [DF14] is a variant of remorsefree dominance that ensures composition-
ality for general properties. Intuitively, it reduces every specification 𝜑 to a safety property by
introducing a measure of the strategy’s progress with respect to 𝜑 and by bounding the number
of non-progress steps, i.e., steps in which no progress is made. However, bounded dominance
has two major disadvantages: first, it requires an explicit bound on the number of non-progress
steps, and it is, in many cases, challenging to determine a suitable bound. Second, not every
bounded dominant strategy is remorsefree dominant: if the concrete bound 𝑛 is chosen too
small, every strategy, also one that is not remorsefree-dominant, is trivially 𝑛-dominant.
In this chapter, we introduce a new strategy requirement, called delay-dominance, that

builds upon the ideas of bounded dominance but circumvents the aforementioned weaknesses.
Similar to bounded dominance, it introduces a progress measure on strategies with respect
to the specification. However, it does not require a concrete bound on the number of non-
progress steps, i.e., steps, in which no progress with respect to the specification is made, but
relates such steps in the delay-dominant strategy 𝑠 to non-progress steps in an alternative
strategy 𝑡 : intuitively, a strategy 𝑠 delay-dominates a strategy 𝑡 if, whenever 𝑠 makes a non-
progress step, 𝑡 makes a non-progress step eventually as well. A strategy 𝑠 is delay-dominant if
it delay-dominates every other strategy 𝑡 . In this way, we ensure that a delay-dominant strategy
satisfies the specification at least as “fast” as all other strategies in all situations in which the
specification can be satisfied. Delay-dominance considers specifications given as alternating
co-Büchi automata and the progress measure is defined in terms of visits to rejecting states. We
introduce a two-player game, the so-called delay-dominance game, which is vaguely leaned on
the delayed simulation game for alternating Büchi automata [FW05], to formally define delay-
dominance: the winner of the game determines whether or not a strategy 𝑠 delay-dominates a
strategy 𝑡 on a given input sequence.
We show that every delay-dominant strategy is also remorsefree dominant. Furthermore,

we introduce a bad prefix criterion for alternating co-Büchi automata such that, if the criterion
is satisfied, compositionality of delay-dominance is guaranteed. The criterion is satisfied for
many automata, both ones describing safety properties and ones describing liveness properties.
Thus, delay-dominance overcomes the weaknesses of both remorsefree and bounded dominance.
Note that since delay-dominance relies, as bounded dominance, on the automaton structure,
there are realizable specifications for which no delay-dominant strategy exists. However, we
experienced that this rarely occurs in practice when constructing the automaton from an
LTL formula with standard algorithms. Moreover, if a delay-dominant strategy exists, it is
guaranteed to be winning if the specification is realizable. Hence, the parallel composition of
delay-dominant strategies for all processes in a distributed system is winning for the whole
system as long as the specification is realizable and the compositionality criterion is satisfied.
Therefore, delay-dominance is a suitable notion for compositional synthesis.

We thus introduce a synthesis approach for delay-dominant strategies that immediately
enables a compositional synthesis algorithm for distributed systems, namely synthesizing delay-
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dominant strategies for the system processes separately. We present a three-step construction of
a universal co-Büchi automaton A𝑖,A𝜑

from an LTL formula 𝜑 that recognizes delay-dominant
strategies for a system process 𝑝𝑖 ∈ 𝑃−. The automaton A𝑖,A𝜑

can immediately be used for
safraless synthesis [KV05] approaches such as bounded synthesis [FS13] to synthesize delay-
dominant strategies for single processes. We show that the size of A𝑖,A𝜑

is single-exponential
in the squared length of 𝜑 . Thus, synthesis of delay-dominant strategies is, similar to synthesis
of winning or remorsefree dominant strategies, in 2EXPTIME.

Publications and Structure. This chapter is based on work published in the proceedings
of the 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science [FP22b] and its extended version [FP22c]. The author of this thesis is the lead
author of the publications.

This chapter is structured as follows. First, we recap the compositional synthesis approach for
distributed systems based on remorsefree dominant strategies [DF14] and discuss its relation-
ship with liveness properties. In particular, we elucidate the shortcomings of both remorsefree
dominance and bounded dominance concerning compositional synthesis in Section 3.1.2. After-
ward, in Section 3.2, we introduce delay-dominance, our new strategy requirement, and show
that every delay-dominant strategy is also remorsefree dominant. Furthermore, we study the
compositionality of delay-dominance in Section 3.3. In particular, we consider a bad-prefix
criterion for alternating co-Büchi automata and prove that whenever the criterion is satisfied
by the automaton representing the specification, then compositionality of delay-dominance is
guaranteed. In Section 3.4, we present a three-step construction of a universal co-Büchi automa-
ton that recognizes delay-dominant strategies for single processes and that can immediately be
used for synthesizing delay-dominant strategies with safraless synthesis approaches. Lastly,
we present the resulting compositional synthesis algorithm for distributed systems utilizing
delay-dominant strategies in Section 3.5

3.1. Compositional Synthesis with Dominance
Given an LTL specification 𝜑 and a distributed architecture 𝒜, the synthesis problem asks
whether there exist system strategies 𝑠1, . . . , 𝑠𝑛 for the system processes 𝑝1, . . . , 𝑝𝑛 ∈ 𝑃− such
that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds and, if so, derives such strategies. Classical distributed synthesis
algorithms directly synthesize the parallel composition of the process strategies, i.e., 𝑠1 | | . . . | | 𝑠𝑛 ,
together to be able to ensure that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds. This, however, leads to huge state
and search spaces, resulting in poor scalability of the algorithms. Compositional distributed
synthesis approaches aim at breaking down the synthesis problem for the entire distributed
system into synthesis subtasks for the individual processes.

The naïve compositional synthesis approach for distributed systems is given in Algorithm 3.1.
For each system process 𝑝𝑖 ∈ 𝑃−, it tries to derive a winning strategy for the overall system
specification 𝜑 (line 5), i.e., a system strategy 𝑠𝑖 : (2𝐼𝑖∪𝑂𝑖 )𝜔 × 2𝐼𝑖 → 2𝑂𝑖 for process 𝑝𝑖 such that
comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑 holds for all input sequences 𝛾 ∈ (2𝐼𝑖 )𝜔 and all sequences 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 of
valuations of variables that cannot be observed by 𝑝𝑖 . If such a strategy exists, it is stored in the
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Algorithm 3.1: Naïve Compositional Distributed Synthesis
Input: 𝜑 : LTL, A: Architecture
Output :realizable: Bool, strategies: List Strategy

1 processes← getSystemProcesses(A)
2 foreach p ∈ processes do
3 pInp← getProcessInputs(A,p)
4 pOut← getProcessOutputs(A,p)
5 (pRealizable, pStrategy)← synthesize(𝜑 , pInp, pOut)
6 if pRealizable then
7 strategies.append(pStrategy)
8 else
9 return (false, [])

10 return (true, strategies)

list of process strategies (line 7). Otherwise the algorithm is aborted by returning (false, [])
(line 9). If all synthesis tasks succeeded, the list of process strategies is returned (line 10).

Suppose that the algorithm succeeds and returns a list of strategies 𝑠1, . . . , 𝑠𝑛 , one for each
system process. In that case, it follows immediately from the construction of the strategies,
particularly the fact that they are winning, that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds. Every process strategy
ensures that the overall system specification 𝜑 is satisfied for all input sequences and all
sequences of variables, which are not observable by the considered process. Thus, in particular,
the satisfaction of 𝜑 is guaranteed for the sequences that are produced in the interplay of all
process strategies. Hence, the synthesis algorithm is sound.
A critical shortcoming of the naïve compositional synthesis approach is, however, that

requiring the individual process strategies to be winning for the full system specification is for
almost all system architectures and specification too hard of a requirement. A process strategy
is required to guarantee the satisfaction of all system requirements – even of those that specify
the behavior of other processes – irrespective of whether or not the other processes cooperate
in achieving the goal of satisfying the specification. Hence, in most cases, the synthesis task fails
for at least one of the processes, resulting in the compositional synthesis algorithm not finding
a solution. Identifying the parts of the specification that indeed specify requirements posed on
the considered process and only considering them in the process’s synthesis task can improve
the applicability of the naïve compositional synthesis algorithm. However, identifying such
parts is a non-trivial task due to complex interconnections between specification parts, which
might result in indirect requirements on a process that are not easy to identify for the developer.
Furthermore, often the requirements on the behavior of two processes cannot be decoupled
entirely, again resulting in the problem that a process strategy also needs to guarantee that
requirements on the behavior of another process are satisfied.
Therefore, we focus on weakening the strategy requirement, i.e., not requiring a strategy

to satisfy the specification for all input sequences, in this chapter. In this way, we are able to
derive strategies for individual system processes in many situations, even if the specification
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𝑡0 𝑡1
⊤ | {𝑚𝑖}

⊤ | ∅

(a) Strategy transducer T 𝑠
𝑖 for process 𝑝𝑖 .

𝑡0 𝑡1 𝑡2
𝑚3−𝑖 | ∅

¬𝑚3−𝑖 | ∅

⊤ | {𝑚𝑖}

⊤ | ∅

(b) Strategy transducer T 𝑡
𝑖 for process 𝑝𝑖 .

Figure 3.1.: Two Moore transducers T 𝑠
𝑖 and T 𝑡

𝑖 representing strategies 𝑠𝑖 and 𝑡𝑖 for system
process 𝑝𝑖 ∈ 𝑃− from the running example. The former sends𝑚𝑖 in the first time step, the latter
waits for receiving𝑚3−𝑖 before sending𝑚𝑖 .

poses requirements on the behavior of other processes. Consequently, the hard and, currently,
manual task of identifying parts of the specification that affect the considered process is often
not necessary for successful synthesis. In this chapter, we focus on the strategy requirement
remorsefree dominance [DF11]. Recall that a dominant strategy is allowed to violate the specifi-
cation for input sequences for which no other strategy would have satisfied the specification
either. It is thus a weaker requirement than winning, and therefore dominant strategies exist in
more cases than winning ones.

Example 3.1. Consider the message-sending system with two processes from the introduction,
where two processes 𝑝1 and 𝑝2 send messages𝑚1 and𝑚2 to each other. Message𝑚𝑖 is sent by
process 𝑝𝑖 and received by process 𝑝3−𝑖 . Consequently, the inputs of 𝑝𝑖 are given by 𝐼𝑖 = {𝑚3−𝑖}
and the outputs by 𝑂𝑖 = {𝑚𝑖}. The system specification 𝜑 = 𝑚1 ∧ 𝑚2 formalizes that
both processes must send their messages eventually. Throughout this chapter, we will use the
message-sending system as a running example.
The satisfaction of the specification 𝜑 = 𝑚1 ∧ 𝑚2 cannot be ensured by any of the

processes alone since it poses requirements on output variables of both of them. In order to
realize 𝜑 , a strategy 𝑠𝑖 : (2{𝑚1,𝑚2})∗ × 2{𝑚3−𝑖 } → 2{𝑚𝑖 } for process 𝑝𝑖 needs to satisfy 𝜑 for
every input sequence 𝛾 ∈ (2{𝑚3−𝑖 })𝜔 . Yet, 𝑝𝑖 can only control variable 𝑚𝑖 , variable 𝑚3−𝑖 is
uncontrollable and thus its valuation is, for every point in time, defined by 𝑠𝑖 ’s input sequence 𝛾 .
Therefore, for the sequence 𝛾 ∈ (2{𝑚3−𝑖 })𝜔 with 𝛾 = ∅𝜔 , we have comp(𝑠𝑖 , 𝛾) ∩ {𝑚3−𝑖} = ∅𝜔
for all strategies 𝑠𝑖 for process 𝑝𝑖 . Hence, there does not exist a strategy for process 𝑝𝑖 that
realizes 𝜑 and thus there does not exist a winning strategy for 𝑝𝑖 and 𝜑 .

Let 𝑠𝑖 : (2{𝑚1,𝑚2})∗ × 2{𝑚3−𝑖 } → 2{𝑚𝑖 } be a strategy for process 𝑝𝑖 that outputs𝑚𝑖 in the very
first time step. A finite-state (2{𝑚3−𝑖 }, 2{𝑚𝑖 })-transducer T 𝑠

𝑖 with Moore semantics represent-
ing 𝑠𝑖 is depicted in Figure 3.1a. Clearly, for this strategy 𝑠𝑖 , we have comp(𝑠𝑖 , 𝛾) |= 𝑚𝑖 for
all input sequences 𝛾 ∈ (2{𝑚3−𝑖 })𝜔 . Furthermore, for all input sequences 𝛾 ∈ (2{𝑚3−𝑖 })𝜔 that
contain at least one𝑚3−𝑖 , i.e., with 𝛾𝑘 ∩ {𝑚3−𝑖} ≠ ∅ for at least one point in time 𝑘 ≥ 0, clearly
comp(𝑠𝑖 , 𝛾) |= 𝑚3−𝑖 holds as well and therefore comp(𝑠𝑖 , 𝛾) satisfies𝜑 for such input sequences.
For 𝛾 ∈ (2{𝑚3−𝑖 })𝜔 with 𝛾 = ∅𝜔 , in contrast, we have comp(𝑠𝑖 , 𝛾) ̸|= 𝜑 as shown above. However,
every strategy 𝑡𝑖 : (2{𝑚1,𝑚2})∗ × 2{𝑚3−𝑖 } → 2{𝑚𝑖 } for 𝑝𝑖 violates 𝜑 for input sequence 𝛾 = ∅𝜔 as
argued above. Thus, 𝑠𝑖 dominates every alternative strategy 𝑡𝑖 : (2{𝑚1,𝑚2})∗ × 2{𝑚3−𝑖 } → 2{𝑚𝑖 }

for 𝑝𝑖 and therefore 𝑠𝑖 is dominant for 𝑝𝑖 . △
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In the following, we recap a compositional distributed synthesis approach for safety spec-
ifications [DF14], which utilizes remorsefree dominant strategies rather than winning ones.
It thus succeeds in more cases than the naïve compositional distributed synthesis approach.
Afterward, we discuss limitations of the approach for liveness properties and, in this way, lay
the foundations for the remainder of this chapter.

3.1.1. Compositionality of Dominance for Safety Properties
Since remorsefree dominant strategies exist in more cases than winning ones, it is a straight-
forward extension of the naïve compositional synthesis approach to try to synthesize individual
remorsefree dominant strategies for the system processes rather than winning ones [DF14]. The
resulting compositional distributed synthesis algorithm is similar to the naïve compositional
synthesis algorithm (see Algorithm 3.1), yet, it replaces the synthesis task for winning strategies
in line 5 with a synthesis task for dominant strategies. This allows us to synthesize strategies
for the processes of a distributed system compositionally although no winning strategies for the
individual processes exist and hence this compositional approach succeeds in more cases. Note,
however, that although this approach finds solutions in more cases than the naïve approach
that tries to synthesize individual winning strategies, it is nevertheless still incomplete since
the existence of individual dominant strategies is not guaranteed [DF14].
For compositional distributed synthesis, it is crucial that the strategies for the individual

processes can be recomposed to obtain a strategy for the whole system. This property is called
compositionality. Note here that since we are considering arbitrary system architectures, system
processes are allowed to observe and, in particular, react to output variables of other system
processes. Therefore, we need to consider process strategies that can be represented with
Moore transducers in compositional synthesis as otherwise it is not guaranteed that the parallel
composition of the process strategies is complete (see Section 2.6.1).
Given an LTL specification 𝜑 , the parallel composition of individual process strategies that

are winning for 𝜑 is guaranteed to be winning for 𝜑 as well as outlined above for the soundness
of the naïve compositional synthesis algorithm. For the parallel composition of dominant
strategies, in contrast, arguing about – and even achieving – compositionality is much more
challenging: realizing the specification and thus satisfying it in all situations has the advantage
that nothing better can be achieved; even when considering the whole system and not only
individual processes. Dominant strategies, however, are allowed to violate the specification.
Although there then is no better strategy on the individual process-level, it is not obvious that
nothing better can be achieved when considering the entire system since then not only the
behavior of the individual process but that of all other processes can be controlled.
For safety specifications 𝜑 , compositionality of remorsefree dominant strategies has been

shown [DF14], i.e., the parallel composition of two remorsefree dominant strategies for 𝜑 is
guaranteed to be dominant for 𝜑 as well:

Theorem 3.1 ([DF14]). Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let 𝑠1 and 𝑠2 be
system strategies for processes 𝑝1 ∈ P and 𝑝2 ∈ P, respectively, and assume that both 𝑠1 and 𝑠2 are
dominant for 𝜑 . If 𝜑 is a safety property, then 𝑠1 | | 𝑠2 is dominant for 𝑝1 | | 𝑝2 and 𝜑 .
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Intuitively, dominant strategies are compositional for safety properties since if the parallel
composition 𝑠1 | |𝑠2 of two dominant strategies 𝑠1 and 𝑠2 violates the specification𝜑 on some input
sequence 𝛾 ∈ (2(𝐼1∪𝐼2 )\(𝑂1∪𝑂2 ) )𝜔 , then there exists a smallest bad prefix [ of comp(𝑠1 | | 𝑠2, 𝛾),
i.e., a smallest prefix such that every extension of it violates 𝜑 . Note that the existence of this
smallest bad prefix [ relies on the fact that the considered specification is a safety property,
which, by definition, allows for bad prefixes (see Section 2.3) and consequently also for smallest
bad prefixes. The last position of the smallest bad prefix then allows for blaming at least one of
the strategies for the violation of 𝜑 : the blamable strategy 𝑠𝑖 produces an output at this point
in time such that 𝜑 is violated, irrespective of future inputs as well as future behavior of both
process strategies. If there exists an alternative strategy 𝑡 for 𝑝1 | | 𝑝2 that does not violate 𝜑 ,
i.e., if the parallel composition 𝑠1 | | 𝑠2 of 𝑠1 and 𝑠2 is not dominant, then the strategy 𝑠𝑖 that
is blamable for the violation cannot be remorsefree dominant either: we can then extract a
strategy 𝑡𝑖 for the corresponding process 𝑝𝑖 from the strategy 𝑡 , which then dominates 𝑠𝑖 since 𝑡𝑖
does not violate 𝜑 on the input sequence resulting from the computation of the full strategy 𝑡
on 𝛾 , while, by the definition of smallest bad prefixes, strategy 𝑠𝑖 does. Consequently, since 𝑠1
and 𝑠2 are both dominant for 𝜑 by assumption, there cannot exist such an alternative strategy 𝑡
for 𝑝1 | | 𝑝2 and therefore 𝑠1 | | 𝑠2 is dominant.

Since dominant strategies are compositional for safety properties, the parallel composition of
separately synthesized process strategies is indeed a useful strategy for the entire system. It
is guaranteed to be dominant and, if the specification is realizable, it is even guaranteed to be
winning by Proposition 2.5. Hence, Theorem 3.1 enables a compositional synthesis approach for
safety properties that synthesizes individual dominant strategies for the system processes (see
Section 2.8.2 for an introduction to the synthesis of dominant strategies). In the next section,
we study the relationship of dominant strategies and liveness properties and, in particular, the
compositionality of dominant strategies for liveness properties.

3.1.2. Dominant Strategies and Liveness Properties
For safety properties, remorsefree dominance is a compositional notion. For liveness properties,
however, it is not: compositionality of dominant strategies for safety properties relies heavily on
the fact that if the computation of the parallel composition 𝑠1 | | 𝑠2 of two dominant strategies 𝑠1
and 𝑠2 violates the specification 𝜑 on some input sequence 𝛾 , then there exists a smallest bad
prefix of comp(𝑠1 | | 𝑠𝑛, 𝛾). This prefix then allows for blaming at least one of the strategies 𝑠1
and 𝑠2 for the violation of 𝜑 and therefore for concluding that 𝑠1 | | 𝑠2 is dominant.

Liveness properties, however, do not have a bad prefix by definition since every finite prefix
can be extended such that the resulting infinite sequence satisfies the liveness property (see
Section 2.3). Thus, in particular, there does not exist some point in time at which a strategy
needs to show a specific behavior to be dominant. Hence, it might be the case that both 𝑝1
and 𝑝2 have to show a specific behavior eventually to satisfy the specification 𝜑 , but both can
postpone it indefinitely by waiting for the other process to show the behavior first. We cannot
blame any process for postponing this behavior since waiting for the other process is dominant.
If both processes do so, however, 𝜑 is violated while there might exist alternative strategies for
the full system 𝑝1 | | 𝑝2 that satisfy 𝜑 .
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Example 3.2. Consider the message-sending system from the running example. For system
process 𝑝𝑖 ∈ 𝑃−, let 𝑡𝑖 be a strategy that waits for receiving𝑚3−𝑖 before sending its own mes-
sage𝑚𝑖 . A finite-state Moore transducer representing such a strategy is depicted in Figure 3.1b.
This strategy is dominant for 𝑝𝑖 and 𝜑 : for input sequences 𝛾 ∈ (2{𝑚3−𝑖 })𝜔 in which𝑚3−𝑖 occurs
at some point in time, the computation comp(𝑡𝑖 , 𝛾) contains𝑚3−𝑖 as well. Therefore, it satisfies
𝑚3−𝑖 . Furthermore, 𝑡𝑖 sets𝑚𝑖 to true one step afterward. Therefore, comp(𝑡𝑖 , 𝛾) satisfies 𝑚𝑖

as well and hence comp(𝑡𝑖 , 𝛾) |= 𝜑 follows. For input sequences 𝛾 ′ ∈ (2{𝑚3−𝑖 })𝜔 in which𝑚3−𝑖
never occurs, the computation of ever strategy for 𝑝𝑖 on 𝛾 ′ does not contain any𝑚3−𝑖 , thus
violating 𝑚3−𝑖 and hence also violating 𝜑 . Therefore, 𝑡𝑖 is allowed to violated 𝜑 on 𝛾 ′.

The parallel composition of such strategies 𝑡1 and 𝑡2 for both processes, however, does not
send any message and thus violates 𝜑 . None of the strategies can be blamed for not sending the
corresponding message since there is no concrete time step at which 𝜑 enforces that one of the
processes needs to send its message in order to be dominant. Yet, there clearly exist strategies
for the entire system 𝑝1 | | 𝑝2 that satisfy 𝜑 , for instance a strategy that sends both𝑚1 and𝑚2 in
the very first time step. Hence, 𝑡1 | | 𝑡2 is not dominant. △
The parallel composition of dominant strategies is thus not guaranteed to be dominant for

liveness properties. Therefore, composing separately synthesized dominant strategies does
not necessarily yield a useful strategy for the overall system. Hence, synthesizing individual
dominant strategies is not sound for liveness properties. Therefore, the extension of the naïve
compositional synthesis algorithm with dominant strategies presented in the previous section
is not a suitable synthesis approach for general specifications.
Bounded dominance [DF14] is a variant of dominance that is compositional for both safety

and liveness properties. Intuitively, it reduces every specification 𝜑 to a safety property by
introducing a bound on the number of steps in which a strategy does not make progress with
respect to 𝜑 . The progress measure is not defined on the LTL formula 𝜑 itself but on a universal
co-Büchi automaton A𝜑 that accepts the same language as 𝜑 . The measure𝑚A𝜑

(comp(𝑠𝑖 , 𝛾, ))
of a strategy 𝑠𝑖 for system process 𝑝𝑖 ∈ 𝑃−on an input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 is then the supremum
of the number of rejecting states of the runs ofA𝜑 induced by comp(𝑠𝑖 , 𝛾). Slightly overloading
notation, we call the set of runs induced by all sequences comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ for 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , i.e.,
the set

{
𝑟 | 𝑟 ∈ Runs(A𝜑 , comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′) ∧ 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔

}
, also the set of runs induced by

comp(𝑠𝑖 , 𝛾). Given a bound 𝑛 ∈ N0, bounded dominance for 𝑛, which is also called 𝑛-dominance,
is then defined utilizing the measure𝑚A𝜑

:

Definition 3.1 (𝑛-Dominant Strategy [DF14]).
Let 𝑉 be a finite set of variables. Let 𝐼 ⊆ 𝑉 and 𝑂 ⊆ 𝑉 be finite sets of input and output
variables with 𝐼 ∩𝑂 = ∅. Let 𝑛 ∈ N0. Let 𝜑 be an LTL formula over atomic propositions𝑉 and
letA𝜑 be a universal co-Büchi automaton with L(A𝜑 ) = L(𝜑). Let 𝑠 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 be
a strategy. A strategy 𝑡 : (2𝐼∪𝑂 )∗×2𝐼 → 2𝑂 is 𝑛-dominated by 𝑠 if, and only if, for all 𝛾 ∈ (2𝐼 )𝜔
either𝑚A𝜑

(comp(𝑠,𝛾)) ≤ 𝑛 or𝑚A𝜑
(comp(𝑡, 𝛾)) > 𝑛 holds. Strategy 𝑠 is 𝑛-dominant for A𝜑

if, and only if, it 𝑛-dominates all alternative strategies 𝑡 : (2𝐼∪𝑂 )∗ × 2𝐼 → 2𝑂 .

Similar to remorsefree dominance, a bounded dominant strategy performs at least as good as
every other strategy. While, in remorsefree dominance, “good” refers to satisfying the specifica-
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Figure 3.2.: Dominant strategy 𝑡𝑖 for system process 𝑝𝑖 ∈ 𝑃− from the running example that
waits for receiving𝑚3−𝑖 before sending𝑚𝑖 and a co-Büchi automatonA𝜑 for 𝜑 = 𝑚1 ∧ 𝑚2.

tion, it is defined in terms of satisfying the specification with a small number of visits to rejecting
states for bounded dominance. Intuitively, visiting only few rejecting states corresponds to
satisfying the specification fast. For safety specifications, the notions of remorsefree dominance
and bounded dominance coincide. For liveness specifications, however, they differ.

Example 3.3. Consider the message-sending system from the running example. A universal
co-Büchi automatonA𝜑 with L(A𝜑 ) = L(𝜑) is depicted in Figure 3.2. Furthermore, reconsider
the strategy 𝑡𝑖 for system process 𝑝𝑖 ∈ 𝑃− that waits for receiving 𝑚3−𝑖 before sending its
own message𝑚𝑖 and the finite-state Moore transducer representing 𝑡𝑖 depicted in Figure 3.1b.
Consider system process 𝑝1 and the corresponding version 𝑡1 of strategy 𝑡𝑖 . Let 𝛾 ∈ (2{𝑚2})𝜔
be an input sequence for process 𝑝1 that models that 𝑝2 sends its message for the first time
at point in time ℓ ≥ 0, i.e., we have 𝛾ℓ = {𝑚2} and 𝛾 𝑗 = ∅ for all 𝑗 ≥ 0 with 𝑗 < ℓ . Then,
comp(𝑡1, 𝛾) neither contains𝑚1 nor𝑚2 up to point in time ℓ , contains only𝑚2 at point in time ℓ ,
and contains𝑚1 at point in time ℓ + 1. Hence, comp(𝑡1, 𝛾) induces a single run 𝑟 of A𝜑 that,
starting in 𝑞0, stays in 𝑞0 up to point in time ℓ − 1, then, reading𝑚2 but not𝑚1, moves to 𝑞2,
and then, reading 𝑚1, moves to 𝑞3 immediately afterward, where it stays forever. Since 𝑞0
and 𝑞2 are rejecting states while 𝑞3 is not, 𝑟 thus contains ℓ + 2 visits to rejecting states and thus
𝑚A𝜑

(comp(𝑡1, 𝛾)) = ℓ + 2 holds.
Consider an alternative strategy 𝑠1 for 𝑝1 that sends𝑚1 in the first time step, irrespective

of whether or not it receives 𝑚2. For input sequence 𝛾 described above, comp(𝑠1, 𝛾) then
contains𝑚1 at point in time 0 and𝑚2 at point in time ℓ . If ℓ = 0 holds, then comp(𝑠1, 𝛾) induces
the single run 𝑟 ′ that, starting in 𝑞0, immediately moves to 𝑞3 as it reads both𝑚1 and𝑚2 in the
very first time step and stays there forever. If ℓ > 0 holds, then comp(𝑠1, 𝛾) induces the single
run 𝑟 ′′ that, starting in 𝑞0, moves to 𝑞1 as it reads𝑚1 but not𝑚2, then stays in 𝑞1 up to point in
time ℓ1, and then, reading𝑚2, moves to 𝑞3, where it stays forever. Since 𝑞0 and 𝑞1 are rejecting
states while 𝑞3 is not, 𝑟 ′ contains a single visit to a rejecting state, while 𝑟 ′′ contains ℓ + 1 visits
to rejecting states and thus𝑚A𝜑

(comp(𝑠1, 𝛾)) = ℓ + 1 holds. Hence, for bound 𝑛 = ℓ + 1, we
have𝑚A𝜑

(comp(𝑠1, 𝛾)) = 𝑛, while𝑚A𝜑
(comp(𝑡1, 𝛾)) > 𝑛. Therefore, 𝑡1 does not 𝑛-dominate 𝑠1

on input 𝛾 for bound 𝑛 = ℓ + 1 and consequently 𝑡1 is not 𝑛-dominant, while it is remorsefree
dominant as outlined in Example 3.2. △
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A crucial disadvantage of bounded dominance is that it does not imply remorsefree domi-
nance [DF14]. There are specifications 𝜑 or, more precisely, automataA𝜑 for 𝜑 , with a minimal
measure𝑚 ∈ N, i.e., for all strategies, there exists some input sequence such that the resulting
computation has a measure of at least𝑚. When choosing a bound 𝑛 < 𝑚, every strategy is
trivially 𝑛-dominant for the automaton A𝜑 , even non-dominant ones. For the message-sending
system from the running example and the universal co-Büchi automaton depicted in Figure 3.2,
for instance, the minimal measure is 𝑚 = 1. A strategy for process 𝑝𝑖 that never sends its
message𝑚𝑖 is clearly not dominant; yet, it is trivially 0-dominant.
Therefore, the choice of the bound 𝑛 ∈ N0 is crucial for bounded dominance. However, it

is not obvious how to determine a good bound. On the one hand, it must be large enough to
avoid non-dominant strategies. On the other hand, as the bound has a huge impact on the
synthesis time, it cannot be chosen too large as otherwise synthesis becomes infeasible: in
order to synthesize bounded dominant strategies, we need to count the number of rejecting
states that already occurred during a run up to the bound 𝑛. Hence, the larger we choose 𝑛,
the higher we need to count and therefore the size of an automaton recognizing a bounded
dominant strategy grows tremendously for larger bounds. Especially for specifications with
several complex dependencies between processes, it is hard to determine a proper bound.
Hence, bounded dominance is not practically applicable to compositional synthesis for liveness
properties. In the remainder of this chapter, we introduce a different variant of dominance that
implies remorsefree dominance and ensures compositionality also for liveness properties.

3.2. Delay-Dominance
In this section, we introduce a new requirement for strategies, delay-dominance, which resembles
remorsefree dominance but ensures compositionality also for liveness properties. It builds on
the idea of bounded dominance to not only consider the satisfaction of the LTL specification 𝜑

but to measure progress based on an automaton representing 𝜑 . Similar to bounded dominance,
we utilize visits of rejecting states in a co-Büchi automaton to measure progress. Yet, we
use an alternating automaton instead of a universal one. Note that delay-dominance can be
equivalently formulated on universal co-Büchi automata, yet, using alternating automata allows
for more efficient synthesis algorithms for delay-dominant strategies as we will discuss later
in this chapter (see Section 3.4). Moreover, we do not require a fixed bound on the number
of visits to rejecting states; rather, we relate visits to rejecting states induced by the possibly
delay-dominant strategy to visits to rejecting states induced by the alternative strategy.

Intuitively, delay-dominance requires that, for every input sequence, every visit to a rejecting
state in the alternating co-Büchi automaton A𝜑 caused by the computation of the delay-
dominant strategy on this input sequence is matched with a visit to a rejecting state in A𝜑

caused by the computation of the alternative strategy on the same input sequence eventually. The
visits to rejecting states ofA𝜑 are closely related to the satisfaction of the LTL specification 𝜑 : if
infinitely many rejecting states are visited, then 𝜑 is not satisfied. Thus, delay-dominance allows
a strategy to violate the specification if all alternative strategies violate it as well in the same
situation. Defining delay-dominance on the rejecting states of A𝜑 instead of the satisfaction
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of 𝜑 allows for measuring the progress on satisfying the specification. Thus, we can distinguish
strategies that wait indefinitely for another process to act – and hence strategies that are critical
for compositionality – from those that do not. Intuitively, a strategy 𝑠 that waits for another
process to act first will visit a rejecting state later than a strategy 𝑡 that does not wait but tries
to meet its obligations as soon as possible. This visit to a rejecting state is then not matched
eventually with a visit to a rejecting state induced by 𝑡 , preventing delay-dominance of 𝑠 .

In the following, we formally define the strategy requirement of delay-dominance. Afterward,
we prove that every delay-dominant strategy is also remorsefree dominant.

3.2.1. The Delay-Dominance Game
Delay-dominance is a game-based notion. We thus introduce an infinite two-player game, the
so-called delay-dominance game, which is loosely inspired by the delayed simulation game for
alternating Büchi automata [FW05], to define delay-dominance.

Given an LTL specification𝜑 , an equivalent alternating co-Büchi automatonA𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 )
with L(A𝜑 ) = L(𝜑), two strategies 𝑠𝑖 and 𝑡𝑖 for a process 𝑝𝑖 ∈ P, an input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 ,
and an infinite sequence 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 fixing the valuations of the variables that 𝑝𝑖 cannot
observe, the delay-dominance game determines whether or not 𝑠𝑖 delay-dominates 𝑡𝑖 forA𝜑 on
input 𝛾 when additionally considering the sequence 𝛾 ′. Intuitively, the delay-dominance game
proceeds in rounds. At the beginning of each round, a pair (𝑝, 𝑞) of states 𝑝, 𝑞 ∈ 𝑄 of A𝜑 and
the number of the iteration 𝑗 ∈ N0 is given. Here, 𝑝 represents a state of A𝜑 that is visited by a
branch of a run tree of A𝜑 induced by comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′, while 𝑞 represents a state of A𝜑 that
is visited by a branch of a run tree of A𝜑 induced by comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′. We thus also call 𝑝 the
alternative state and 𝑞 the dominant state. For the sake of readability, let 𝜎𝑠𝑖 = comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′
and 𝜎𝑡𝑖 = comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′. The two players Duplicator and Spoiler, where Duplicator takes on
the role of Player 0, play as follows:

1. Spoiler chooses a set 𝑐 ∈ 𝛿 (𝑝, 𝜎𝑡𝑖
𝑗
).

2. Duplicator chooses a set 𝑐′ ∈ 𝛿 (𝑞, 𝜎𝑠𝑖
𝑗
).

3. Spoiler chooses a state 𝑞′ ∈ 𝑐′.
4. Duplicator chooses a state 𝑝′ ∈ 𝑐 .

The starting pair of the next round is then ((𝑝′, 𝑞′), 𝑗 +1). Beginning with the pair ((𝑞0, 𝑞0), 0),
the players construct an infinite play that determines the winner. Duplicator wins for a play if
every rejecting dominant state is eventually matched with a rejecting alternative state.
Both the possible delay-dominant strategy 𝑠𝑖 and the alternative strategy 𝑡𝑖 may control

the nondeterministic transitions of A𝜑 , while the universal ones are uncontrollable. Since,
intuitively, strategy 𝑡𝑖 is controlled by an opponent when proving that 𝑠𝑖 delay-dominates 𝑡𝑖 , we
thus have a change in control for 𝑡𝑖 : for process strategy 𝑠𝑖 , Duplicator controls the existential
transitions of A𝜑 and Spoiler controls the universal ones. For process strategy 𝑡𝑖 , in contrast,
Duplicator controls the universal transitions of A𝜑 and Spoiler controls the existential ones.
Note that the order in which the players Spoiler and Duplicator make their moves is crucial to
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𝑞0 𝑞1 𝑞2 𝑞3

𝑞4 𝑞5

𝑎

⊤

𝑎 ¬𝑎

𝑎

⊤

𝑏

¬𝑏
⊤

¬𝑎

¬𝑎

Figure 3.3.: Alternating co-Büchi automaton A𝜓 for𝜓 = 𝑎 ∨ 𝑏.

ensure that Duplicator wins the game when considering the very same process strategies. By
letting Spoiler move first, Duplicator is able to mimic – or duplicate – Spoiler’s moves. Formally,
the delay-dominance game is defined as follows:

Definition 3.2 (Delay-Dominance Game).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ) be an alternating
co-Büchi automaton withL(A𝜑 ) = L(𝜑). Based onA𝜑 , we define the sets 𝑆∃ = (𝑄×𝑄)×N0,
𝐷∃ = (𝑄 ×𝑄 × 2𝑄 ) × N0, 𝑆∀ = (𝑄 ×𝑄 × 2𝑄 × 2𝑄 ) × N0, and 𝐷∀ = (𝑄 ×𝑄 ×𝑄 × 2𝑄 ) × N0.
Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 be infinite sequences. The delay-dominance game (A𝜑 , 𝜎, 𝜎

′) is the game
G = (A,W) defined by A = (𝑃, 𝑃0, 𝑃1, 𝑣0, 𝐸) with 𝑃 = 𝑆∃ ∪ 𝐷∃ ∪ 𝑆∀ ∪ 𝐷∀ , 𝑃0 = 𝐷∃ ∪ 𝐷∀ , and
𝑃1 = 𝑆∃ ∪ 𝑆∀ as well as 𝑣0 = ((𝑞0, 𝑞0), 0) and

𝐸 =
{
(((𝑝, 𝑞), 𝑗), ((𝑝, 𝑞, 𝑐), 𝑗)) | 𝑐 ∈ 𝛿 (𝑝, 𝜎 𝑗 )

}
∪

{
(((𝑝, 𝑞, 𝑐), 𝑗), ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗)) | 𝑐′ ∈ 𝛿 (𝑞, 𝜎 ′𝑗 )

}
∪ {(((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗), ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗)) | 𝑞′ ∈ 𝑐′}
∪ {(((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗), ((𝑝′, 𝑞′), 𝑗 + 1)) | 𝑝′ ∈ 𝑐} ,

and the winning conditionW = {𝜌 ∈ 𝑃𝜔 | ∀𝑘 ∈ N0. 𝑓dom(𝜌𝑘 ) ∈ 𝐹 → ∃𝑘 ′ ≥ 𝑘. 𝑓alt (𝜌𝑘 ′) ∈ 𝐹 },
where 𝑓alt (𝑣) = #1(#1(𝑣)) and 𝑓dom(𝑣) = #2(#1(𝑣)), i.e., 𝑓alt (𝑣) and 𝑓dom(𝑣) map a position
𝑣 ∈ 𝑃 to the alternative state and the dominant state of 𝑣 , respectively.

The formal definition of a delay-dominance game thus follows thoroughly the intuitive
description of the game. The states of the game and in particular their assignment to the players
Spoiler and Duplicator match the choices occurring for Spoiler and Duplicator. Furthermore,
the set of edges is carefully designed to ensure the desired structure of the game, i.e., the order
in which the players make their moves.

Example 3.4. Let𝑉 = {𝑎, 𝑏} and consider the LTL formula𝜓 = 𝑎∨ 𝑏 over𝑉 . An alternat-
ing co-Büchi automaton A𝜓 with L(A𝜓 ) = L(𝜓 ) is depicted in Figure 3.3. Let 𝑝𝑖 be a process
with inputs 𝐼𝑖 = {𝑏} and outputs 𝑂𝑖 = {𝑎}. Let 𝑠𝑖 be a strategy for 𝑝𝑖 that does not output 𝑎 in
the very first time step but in all time steps afterward, i.e., we have comp(𝑠𝑖 , 𝛾) ∩𝑂𝑖 = ∅{𝑎}𝜔 for
all input sequences 𝛾 ∈ (2{𝑏})𝜔 . Let 𝑡𝑖 be a strategy for 𝑝𝑖 that outputs 𝑎 in every step, i.e., we
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(𝑞0, 𝑞0), 0 (𝑞0, 𝑞0, {𝑞1}), 0 (𝑞0, 𝑞0, {𝑞1}, {𝑞1, 𝑞2}), 0 (𝑞0, 𝑞0, {𝑞1}, 𝑞2), 0 (𝑞1, 𝑞2), 1

(𝑞0, 𝑞0, {𝑞1}, 𝑞1), 0 . . .

(𝑞1, 𝑞3), 2

. . .

(𝑞1, 𝑞3), 3

. . .

(𝑞1, 𝑞1), 1

. . .

(𝑞0, 𝑞0, {𝑞1}, {𝑞4}), 0 . . . (𝑞1, 𝑞4), 1 . . . (𝑞1, 𝑞5), 2 . . .

(𝑞0, 𝑞0, {𝑞4}), 0 (𝑞0, 𝑞0, {𝑞4}, {𝑞1, 𝑞2}), 0

(𝑞0, 𝑞0, {𝑞4}, {𝑞4}), 0

. . .

(𝑞4, 𝑞4), 1

. . .

(𝑞0, 𝑞0, {𝑞4}, 𝑞1), 0

(𝑞4, 𝑞1), 1

. . .

(𝑞0, 𝑞0, {𝑞4}, 𝑞2), 0

(𝑞4, 𝑞2), 1

. . .

Figure 3.4.: Partial game arena of the delay-dominance game G = (A𝜓 , comp(𝑡𝑖 , 𝛾), comp(𝑠𝑖 , 𝛾))
from Example 3.4. Positions controlled by Spoiler are depicted as rectangles, positions with
rounded edges are controlled by Duplicator. Parts of the game arena that are not consistent
with the winning moves of Spoiler are grayed out. Positions of the form ((𝑝, 𝑞), 𝑗) that are
critical for Duplicator are highlighted in blue.

have comp(𝑠𝑖 , 𝛾) ∩𝑂𝑖 = {𝑎}𝜔 for all input sequences 𝛾 ∈ (2{𝑏})𝜔 . Let 𝛾 ∈ (2{𝑏})𝜔 be some input
sequence for 𝑝𝑖 that does not contain any 𝑏, i.e., we have 𝛾 = ∅𝜔 . Consider the delay-dominance
game G = (A𝜑 , comp(𝑡𝑖 , 𝛾), comp(𝑠𝑖 , 𝛾)). Note here that since 𝐼𝑖 ∪𝑂𝑖 = 𝑉 holds, comp(𝑠𝑖 , 𝛾) and
comp(𝑡𝑖 , 𝛾) are indeed infinite sequences over 𝑉 . The relevant part of the game arena of G is
depicted in Figure 3.4. Positions controlled by Spoiler are depicted as rectangles. Positions with
rounded edges, in contrast, are controlled by Duplicator. Positions of the form ((𝑝, 𝑞), 𝑗) that
are critical for Duplicator are highlighted in blue. A position is critical if it is reachable in a play
with a rejecting dominant state in a round 𝑗 ′ ∈ N0 with 𝑗 ′ < 𝑗 that is not yet matched with a
rejecting alternative state up to round 𝑗 . A strategy ` for Spoiler in G or, more precisely, all
initial plays that are consistent with `, are depicted in black. All other parts of the game arena
are grayed out. In the first step of the game, Spoiler chooses the transition from 𝑞0 to 𝑞1 in the
alternative states; resulting in the successor set {𝑞1}.

First, suppose that Duplicator chooses the successor set {𝑞4} and thus the transition from 𝑞0
to 𝑞4 in the dominant states. Then, since both successor sets are singletons, both players do not
have further choices in the first round of the game and thus we obtain the node ((𝑞1, 𝑞4), 1).
Since, in the second time step, 𝑡𝑖 outputs 𝑎 while 𝛾 does not contain a 𝑏, Spoiler and Duplicator
do not have any choices: the alternative states stay in 𝑞1 while the dominant states move from 𝑞4
to 𝑞5, resulting in the node ((𝑞1, 𝑞5), 2). Since 𝑡1 further outputs 𝑎 in every following time step
and since state 𝑞5 only contains a self-loop, Spoiler and Duplicator do not have any choices in
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the remainder of the game: the alternative states always stay in 𝑞1 and the dominant states
always stay in 𝑞5. Thus, all following positions in a play in G are of the form ((𝑞1, 𝑞5), 𝑗). Note
here that 𝑞1 is non-rejecting while 𝑞5 is rejecting. Therefore, no play 𝜌 that is consistent with
Spoiler’s choice in the very first round of the game defined by ` as well as Duplicator’s choice
afterward considered in this case contains any rejecting alternative state, while it contains
infinitely many rejecting dominant state. Hence, we have 𝜌 ∉W for all such plays 𝜌 .
Second, suppose that Duplicator chooses the successor set {𝑞1, 𝑞2} in the first round of the

game. Then, ` defines that Spoiler chooses 𝑞2 as the successor of 𝑞0 in the dominant states.
Since the successor set {𝑞1} in the alternative states is a singleton, Duplicator does not have
any further choice; resulting in the node ((𝑞1, 𝑞2), 1). As in the case above, 𝑡𝑖 ensures that
the alternative states always stay in 𝑞1. Since 𝑠𝑖 outputs 𝑎 in the second time step, the only
successor set for the dominant states is {𝑞3}, resulting in the node ((𝑞1, 𝑞3), 2) since, due to the
fact that {𝑞3} is a singleton, Spoiler does not have any choice other than choosing 𝑞3. Due to
the structure of A𝜓 and, in particular, the fact that 𝑞3 is a sink state, i.e., it only has a self-loop,
the dominant states always stay in 𝑞3. Therefore, since the alternative states always stay in 𝑞1
as outlined above, all subsequent positions in a play in G are of the form ((𝑞1, 𝑞3), 𝑗). Therefore,
every play 𝜌 that is consistent with Spoiler’s choice in the very first round of the game defined
by ` as well as Duplicator’s choice afterward considered in this case contains no rejecting
alternative state at all since both 𝑞0 and 𝑞1 are non-rejecting, while it contains a rejecting
dominant state at the second time step, namely 𝑞2. Hence, we have 𝜌 ∉W for all such plays 𝜌 .

Thus, there exists a strategy ` for Spoiler inG such that we have 𝜌 ∉W for all initial consistent
plays 𝜌 ∈ Plays(G, `). Hence, Duplicator loses the game G, while Spoiler wins it. Moreover, for
an input sequence 𝛾 ∈ (2{𝑏})𝜔 , Duplicator has a winning strategy in the delay-dominance game
G′ = (A𝜓 , comp(𝑠𝑖 , 𝛾), comp(𝑡𝑖 , 𝛾)) due to a similar choice as the one of Spoiler defined by `

in G in the very first round of the game: in G′, Duplicator controls the existential transitions
in A𝜓 when reading comp(𝑡𝑖 , 𝛾). Hence, in particular, it is Duplicator’s choice to either let the
dominant states move from 𝑞0 to 𝑞1 or to 𝑞4. If it chooses 𝑞4, then it follows analogously to the
argument for game G that no initial consistent play will ever encounter any rejecting dominant;
resulting in the fact hat every initial consistent play satisfies the winning condition. △

Wenowdefine the notion of delay-dominance based on the delay-dominance game. Intuitively,
the winner of the game for the computations of two strategies 𝑠𝑖 and 𝑡𝑖 determines whether
or not 𝑠𝑖 delay-dominates 𝑡𝑖 on a given input sequence. Similar to remorsefree dominance, we
then lift this definition to delay-dominant strategies. Formally:

Definition 3.3 (Delay-Dominant Strategy).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating co-Büchi
automaton with L(A𝜑 ) = L(𝜑). Let 𝑠𝑖 and 𝑡𝑖 be strategies for process 𝑝𝑖 ∈ P. Then, 𝑠𝑖
delay-dominates 𝑡𝑖 on input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 for A𝜑 , denoted 𝑡𝑖 ⊴A𝜑 ,𝛾 𝑠𝑖 , if, and only
if, Duplicator wins the delay-dominance game (A𝜑 , comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′) for
all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . Strategy 𝑠𝑖 delay-dominates 𝑡𝑖 for A𝜑 , denoted 𝑡𝑖 ⊴A𝜑

𝑠𝑖 , if, and only
if, 𝑡𝑖 ⊴A𝜑 ,𝛾 𝑠𝑖 holds for all 𝛾 ∈ (2𝐼𝑖 )𝜔. Strategy 𝑠𝑖 is delay-dominant for A𝜑 if, and only if,
𝑡𝑖 ⊴A𝜑

𝑠𝑖 holds for every strategy 𝑡𝑖 for process 𝑝𝑖 .
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Similar to the definition of the satisfaction of specifications by computations of strategies, we
require a strategy to satisfy the delay-dominance condition, i.e., that Duplicator wins the delay-
dominance game, for all valuations of variables that the considered process cannot observe.
Intuitively, those variables are thus treated similarly to inputs, namely that an delay-dominant
strategy needs to delay-dominate every other strategy for all valuations of these variables.
However, they cannot be observed by the considered process, and thus, in particular, the
strategy cannot react to them. This matches the definition of architectures and, in general, the
intuition of unobservable variables. In the following, we illustrate delay-dominance and, in
particular, the concept of delay-dominant strategies with the running example.

Example 3.5. Consider the message-sending system from the running example and the co-
Büchi automaton A𝜑 from Figure 3.2, which describes the specification 𝜑 = 𝑚1 ∧ 𝑚2.
Although A𝜑 was constructed as a universal co-Büchi automaton, every universal automaton
can be seen as an alternating automatonwithout any nondeterministic choices. Furthermore,A𝜑

is, in fact, the alternating co-Büchi automaton that we obtain from the LTL formula 𝜑 when
utilizing standard algorithms for automaton construction. Therefore, we consider it to be an
alternating co-Büchi automaton in the remainder of this chapter.

Let 𝑠1 be a strategy for system process 𝑝1 that sends message𝑚1 in the first time step and let 𝑡1
be a strategy that waits for receiving message𝑚2 before sending𝑚1. To determine whether 𝑠1
delay-dominates 𝑡1 for A𝜑 on an input sequence (2{𝑚2})𝜔 , we consider the delay-dominance
game G = (A𝜑 , comp(𝑡1, 𝛾), comp(𝑠1, 𝛾)). Since A𝜑 is, in fact, deterministic, the computations
comp(𝑠1, 𝛾) and comp(𝑡1, 𝛾) both induce a single run tree with a single branch in A𝜑 for every
input sequence 𝛾 ∈ (2{𝑚2})𝜔 ). Hence, the players Spoiler and Duplicator do not have any
choices in any delay-dominance game for A𝜑 . Therefore, we do not provide the (partial) game
arena here, but only the unique sequence of state pairs (𝑝, 𝑞) of the delay-dominance game,
abstracting from all intermediate tuples.

First, consider an input sequence 𝛾 ∈ (2{𝑚2})𝜔 that contains message𝑚2 for the first time at
point in time ℓ ≥ 0. Then, the single branch of the single run tree ofA𝜑 induced by comp(𝑠1, 𝛾)
starts in 𝑞0, moves to 𝑞1 immediately if ℓ > 0, stays there up to the occurrence of𝑚2 and then
moves to 𝑞3, where it stays forever. If ℓ = 0, then the branch moves immediately from 𝑞0 to 𝑞3.
The single branch of the single run tree of A𝜑 induced by comp(𝑡1, 𝛾), in contrast, stays in 𝑞0
until𝑚2 occurs, then moves to 𝑞2 and then immediately to 𝑞3, where it stays forever. Thus, we
obtain the unique sequence

(𝑞0, 𝑞0) (𝑞0, 𝑞1)ℓ−1(𝑞2, 𝑞3) (𝑞3, 𝑞3)𝜔

of state pairs in the delay-dominance gameG = (A𝜑 , comp(𝑡1, 𝛾), comp(𝑠1, 𝛾)). The last rejecting
alternative state, i.e., a rejecting state induced by comp(𝑡1, 𝛾) occurs at point in time ℓ +1, namely
state𝑞2. In contrast, the last rejecting dominant state i.e., a rejecting state induced by comp(𝑠1, 𝛾),
occurs at point in time ℓ , namely state 𝑞1. Thus, 𝑡1 ⊴A𝜑 ,𝛾 𝑠1 holds. In fact, 𝑡 ′1 ⊴A𝜑 ,𝛾 𝑠1 holds for
all alternative strategies 𝑡 ′1 for 𝑝1 for such an input sequence 𝛾 since every strategy 𝑡 ′1 for 𝑝1
induces at least ℓ visits to rejecting states due to the structure of 𝛾 .

Second, consider an input sequence 𝛾 ′ ∈ (2{𝑚2})𝜔 that does not contain any message𝑚2, i.e.,
we have 𝛾 ′ = ∅𝜔 . Then, the single branch of the single run tree of A𝜑 induced a computation
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of any strategy 𝑡 ′1 for 𝑝1 on 𝛾 ′ never reaches 𝑞3 and thus only visits rejecting states. Hence,
every visit to a rejecting state induced by comp(𝑠1, 𝛾 ′) is matched with a visit to a rejecting state
induced by comp(𝑡 ′1, 𝛾 ′) for all strategies 𝑡 ′1 for 𝑝1. Thus, 𝑡 ′1 ⊴A𝜑 ,𝛾

′ 𝑠1 holds for all alternative
strategies 𝑡 ′1 as well. We can thus conclude that 𝑠1 is delay-dominant for A𝜑 , meeting our
intuition that 𝑠1 should be allowed to violate 𝜑 in situations in which it never receives𝑚2.

Strategy 𝑡1, in contrast, is remorsefree dominant for 𝑝1 and 𝜑 but not delay-dominant forA𝜑 :
consider again an input sequence 𝛾 ∈ (2{𝑚2})𝜔 that contains the very first𝑚2 at point in time ℓ .
For the delay-dominance game G′ = (A𝜑 , comp(𝑠1, 𝛾), comp(𝑡1, 𝛾)), we obtain the following
sequence of state pairs:

(𝑞0, 𝑞0) (𝑞1, 𝑞0)ℓ−1(𝑞3, 𝑞2) (𝑞3, 𝑞3)𝜔 .

It contains a rejecting dominant state, i.e., a visit to a rejecting state ofA𝜑 induced by comp(𝑡1, 𝛾),
at point in time ℓ + 1, while the last rejecting alternative state, i.e., a visit to a rejecting state
ofA𝜑 induced by comp(𝑠1, 𝛾), occurs at point in time ℓ . Hence, 𝑡1 does not delay-dominate 𝑠1 in
input sequence 𝛾 , preventing that it is delay-dominant to wait indefinitely for the other process
to send its message first. △

For the usefulness of the notion of delay-dominance and its applicability in compositional
synthesis, it is crucial that every strategy delay-dominates itself. Otherwise, no strategy at all
would be delay-dominant. This property is ensured by the design of the delay-dominance game
and, in particular, by the order in which the players make their moves:

Lemma 3.1. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating
co-Büchi automaton with L(A𝜑 ) = L(𝜑). Let 𝑠𝑖 be a strategy for process 𝑝𝑖 ∈ P and let 𝛾 ∈ (2𝐼𝑖 )𝜔
be some input sequence. Then, 𝑠𝑖 ⊴A𝜑 ,𝛾 𝑠𝑖 holds.

Proof. Let 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 be s sequence of valuations of variables that cannot be observed by 𝑝𝑖 .
Consider the delay-dominance game G = (A𝜑 , comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′). For the sake
of readability, let 𝜎 = comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′. We construct a winning strategy ` for Duplicator in the
game G by mimicking the respective moves of Spoiler. Since Spoiler moves first by construction
of the game, this is always possible. Formally, we construct the strategy ` as follows: let a ∈ 𝑃∗
be a finite sequence of positions of G and let 𝑣 ∈ 𝑃0 be a position that is assigned to Duplicator,
i.e., we have 𝑣 ∈ 𝐷∃ ∪ 𝐷∀ . First, suppose that 𝑣 ∈ 𝐷∃ holds, i.e., position 𝑣 is of the form
𝑣 = ((𝑝, 𝑞, 𝑐), 𝑗). By construction of G, we have 𝑐 ∈ 𝛿 (𝑝, 𝜎 𝑗 ). If 𝑝 = 𝑞 holds, we therefore define
` (a, 𝑣) = ((𝑝, 𝑞, 𝑐, 𝑐), 𝑗). Otherwise, we define ` (a, 𝑣) = ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗) for some 𝑐′ ∈ 𝛿 (𝑞, 𝜎 𝑗 ).
Second, suppose that 𝑣 ∈ 𝐷∀ holds, i.e., position 𝑣 is of the form 𝑣 = ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗). Moreover,
by construction of G, the last position of a is of the form a |a |−1 = ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗) and we have
𝑞′ ∈ 𝑐′. If 𝑐 = 𝑐′ holds, we therefore define ` (a, 𝑣) = ((𝑞′, 𝑞′), 𝑗 + 1). Otherwise, we define
` (a, 𝑣) = ((𝑝, 𝑞, 𝑝′, 𝑞′), 𝑗 + 1) for some 𝑝′ ∈ 𝑐 .
Let 𝜌 ∈ Plays(G, `) be some initial play that is consistent with `. Since 𝑣0 = ((𝑞0, 𝑞0), 0)

holds, where 𝑞0 is the initial state of A𝜑 , it follows inductively from the construction of `
and by definition of the delay-dominance game that we have both 𝑝 = 𝑞 for all positions
occurring in 𝜌 , irrespective of whether the positions are of the form ((𝑝, 𝑞), 𝑗), ((𝑝, 𝑞, 𝑐), 𝑗),
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((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗), or ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗), and 𝑐 = 𝑐′ for all positions of the form ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗) occurring
in 𝜌 . Thus, in particular, 𝑓alt (𝜌𝑘 ) = 𝑓dom(𝜌𝑘 ) holds for all iterations 𝑘 ∈ N0 and therefore
𝑓dom(𝜌𝑘 ) ∈ 𝐹 → 𝑓alt (𝜌𝑘 ) ∈ 𝐹 follows immediately for all 𝑘 ∈ N0. Therefore, 𝜌 ∈ W holds and
hence, since we chose the play 𝜌 ∈ Plays(G, `) arbitrarily, ` is indeed a winning strategy for
Duplicator in the delay-dominance game G. Consequently, 𝑠𝑖 ⊴A𝜑 ,𝛾 𝑠𝑖 holds. □

In the remainder of this section, we address one of the other two important properties of a
suitable dominance-like notion, namely that, in contrast to bounded dominance, it needs to
imply remorsefree dominance. More precisely, we show that every delay-dominant strategy is
also remorsefree dominant.

3.2.2. Delay-Dominance implies Remorsefree Dominance
Recall that one of the main weaknesses of bounded dominance is that every strategy, even a non-
dominant one, is 𝑛-dominant if the bound 𝑛 is chosen too small [DF14]: let 𝜑 be a specification
that requires a minimal bound 𝑚 ∈ N. Let A𝜑 be a universal co-Büchi automaton with
L(A𝜑 ) = L(𝜑). Then, in particular, we have𝑚A𝜑

(comp(𝑠𝑖 , 𝛾)) ≥ 𝑚 for all strategies 𝑠𝑖 and all
input sequences 𝛾 ∈ (2𝐼𝑖 )𝜔 . Let 𝑛 ∈ N0 be some bound. By definition, a process strategy 𝑠𝑖 is 𝑛-
dominant if, for all input sequences 𝛾 ∈ (2𝐼𝑖 )𝜔 , either𝑚A𝜑

(comp(𝑠𝑖 , 𝛾)) ≤ 𝑛 holds, or if we have
𝑚A𝜑

(comp(𝑡𝑖 , 𝛾)) > 𝑛 for all alternative strategies 𝑡𝑖 . Since𝑚 is the minimal bound of A𝜑 and
thus𝑚A𝜑

(comp(𝑠𝑖 , 𝛾)) ≥ 𝑚 for all strategies 𝑠𝑖 , we have, in particular,𝑚A𝜑
(comp(𝑠𝑖 , 𝛾)) > 𝑛

for all strategies 𝑠𝑖 if 𝑛 < 𝑚 holds. Hence, for all bounds 𝑛 ∈ N0 with 𝑛 < 𝑚, every strategy is
trivially 𝑛-dominant, even one that is not remorsefree dominant.

The main reason for this undesired result for bounded dominance is the need for an explicit
bound 𝑛 ∈ N0 and the fact that it is oftentimes challenging to determine a good bound for a
synthesis task: it should be high enough to avoid that non-dominant strategies are trivially 𝑛-
dominant, while it should be as small as possible to reduce the synthesis time. Delay-dominance
does not require an explicit bound and thus does not suffer from this problem. In fact, every
delay-dominant strategy is also remorsefree dominant. To prove this, we establish a relationship
between strategies in the delay-dominance game and run trees in the underlying alternating
co-Büchi automaton. To formalize the relationship conveniently, we first define a projected play
of the delay-dominance game:

Definition 3.4 (Projected Play).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let A𝜑 be an alternating co-Büchi
automaton with L(A𝜑 ) = L(𝜑). Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 . Let 𝜌 be some play in the delay-
dominance game G = (A𝜑 , 𝜎, 𝜎

′). The projected play 𝜌 ∈ (𝑄 ×𝑄)𝜔 is defined by 𝜌𝑘 = #1(𝜌4𝑘 )
for all 𝑘 ≥ 0. The projected dominant play 𝜌dom ∈ 𝑄𝜔 of 𝜌 and the projected alternative play
𝜌alt ∈ 𝑄𝜔 of 𝜌 are defined by 𝜌dom

𝑘
= #2(𝜌𝑘 ) and 𝜌alt

𝑘
= #1(𝜌𝑘 ) for all 𝑘 ≥ 0, respectively.

Intuitively, we obtain the projected play 𝜌 from the play 𝜌 by removing all positions that are
not of the form ((𝑝, 𝑞), 𝑗) and by projecting to the state tuple; thus removing the index 𝑗 . The
projected dominant play 𝜌dom is then obtained by further projecting to the dominant state of the
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state tuples of 𝜌 , i.e., to 𝑞 for a state tuple (𝑝, 𝑞), while we further project to the alternative state
in the projected alternative play 𝜌alt , i.e., to 𝑝 for a state tuple (𝑝, 𝑞). Utilizing projected plays,
we now establish the following correspondence between strategies in the delay-dominance
game and run trees: a strategy for player Duplicator in the delay-dominance game (A𝜑 , 𝜎, 𝜎

′)
corresponds to a run tree of A𝜑 induced by 𝜎 ′. Similarly, a strategy for player Spoiler in the
same game corresponds to run tree of A𝜑 induced by 𝜎 . Formally:

Lemma 3.2. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let A𝜑 be an alternating
co-Büchi automaton with L(A𝜑 ) = L(𝜑). Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 . Let G = (A𝜑 , 𝜎, 𝜎

′) be a delay-
dominance game and let ` and `′ be strategies for Duplicator and Spoiler, respectively, in G. Then,
there exist run trees 𝑟 ∈ Runs(A𝜑 , 𝜎) and 𝑟 ′ ∈ Runs(A𝜑 , 𝜎

′) of A𝜑 such that we have both
BranchesInf (𝑟 ) =

{
𝜌dom | 𝜌 ∈ Plays(G, `)

}
and BranchesInf (𝑟 ′) =

{
𝜌alt | 𝜌 ∈ Plays(G, `′)

}
.

Proof. Let A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ). First, we consider Duplicator’s strategy `. We construct a 𝑄-
labeled tree (T, ℓ) from the strategy ` as follows by defining the labeling of the root as well as
of the successors of all nodes. The labeling of the root Y of T is defined by ℓ (Y) = 𝑞0. Let 𝑥 ∈ T
be a node of T with depth 𝑘 = |𝑥 |. Let a = pref (T, 𝑥) be 𝑥 ’s prefix in T, i.e. the unique finite
sequence of nodes in T that, starting from Y, reaches 𝑥 . We define the labeling of the successor
nodes children(𝑥) of 𝑥 such that{

ℓ (𝑥 ′) | 𝑥 ′ ∈ children(𝑥)
}
=

{
𝜌dom
𝑘+1 | 𝜌 ∈ Plays(G, `) ∧ ∀0 ≤ 𝑘 ′ ≤ 𝑘. 𝜌dom

𝑘 ′ = ℓ (a𝑘 ′)
}

holds. Next, we show that (T, ℓ) is a run tree ofA𝜑 induced by 𝜎 ′. Let 𝑥 ∈ T be some node of T.
Then, by construction of the delay-dominance game, we know that Duplicator controls the
existential transitions of A𝜑 for 𝜎 ′, while the universal ones are controlled by Spoiler. Hence,
since ` is a strategy of Duplicator, ` defines the existential choices in A𝜑 for 𝜎 ′. Therefore, for
every round of the delay-dominance game and thus for every time step 𝑘 ≥ 0, there exists a
decision for the existential choices inA𝜑 for 𝜎 ′, namely the one defined by `, such that all initial
plays that are consistent with ` adhere to it. Moreover, as no strategy for Spoiler is given, for
every round of the game the set of initial plays that are consistent with `, i.e., the set Plays(G, `),
defines all possible universal choices in A𝜑 for 𝜎 that fit in with the existential choice defined
by ` as well as the history. Therefore, it follows that, for every node 𝑥 ∈ T and its depth 𝑘 = |𝑥 |,
the set

{
𝜌dom
𝑘+1 | 𝜌 ∈ Plays(G, `) ∧ ∀0 ≤ 𝑘 ′ ≤ 𝑘. 𝜌dom

𝑘 ′ = ℓ (a𝑘 ′)
}
satisfies the formula∨

𝑐′∈𝛿 (ℓ (𝑥 ),𝜎 ′
𝑘
)

∧
𝑞′∈𝑐′

𝑞′.

Thus, by construction of the labeling of the successor nodes of node 𝑥 defined above, the
set {ℓ (𝑥 ′) | 𝑥 ′ ∈ children(𝑥)} satisfies this propositional formula as well. Hence, by definition
of run trees, the 𝑄-labeled tree (T, ℓ) is indeed a run tree of A𝜑 induced by 𝜎 ′. Intuitively,
the dominant states of an initial play that is consistent with strategy ` thus evolve according
to a branch of a run tree of A𝜑 induced by 𝜎 ′. Furthermore, by construction of (T, ℓ), we
immediately obtain that BranchesInf (T, ℓ) =

{
𝜌dom | 𝜌 ∈ Plays(G, `)

}
holds. Therefore, (T, ℓ) is

the desired run tree of A𝜑 induced by 𝜎 ′.
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Similarly, we can construct a 𝑄-labeled tree (T′, ℓ ′) from Spoiler’s strategy `′, which only
differs slightly in the definition of the labeling of the successors of a node 𝑥 ∈ T′. Instead of
utilizing the projected dominant play 𝜌dom, we employ the projected alternative play 𝜌dom. Due
to the change of control for process strategy 𝑡𝑖 in the construction of the delay-dominance game,
Spoiler controls the existential transitions of A𝜑 for 𝜎 , while Duplicator controls the universal
ones. Therefore, it follows completely analogous to the first part of this proof that (T′, ℓ ′) is the
desired run tree of A𝜑 induced by 𝜎 . □

Vice versa, we can translate a run tree of an alternating co-Büchi automaton A𝜑 induced
by some sequence 𝜎 ∈ (2𝑉 )𝜔 of system variable valuations into a strategy for Spoiler in the
delay-dominance game (A𝜑 , 𝜎, 𝜎

′), where 𝜎 ′ ∈ (2𝑉 )𝜔 is some infinite sequence of valuations
of system variables. Similarly, a run tree of A𝜑 induced by 𝜎 ′ corresponds to a strategy for
Duplicator in the same delay-dominance game. Formally:

Lemma 3.3. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating co-
Büchi automaton with L(A𝜑 ) = L(𝜑). Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 . Let G = (A𝜑 , 𝜎, 𝜎

′) be a delay-
dominance game. Let 𝑟 ∈ Runs(A𝜑 , 𝜎

′) and 𝑟 ′ ∈ Runs(A𝜑 , 𝜎) be run trees of A𝜑 . Then, there
exist strategies ` and `′ for Duplicator and Spoiler, respectively, in the game G such that both
BranchesInf (𝑟 ) =

{
𝜌dom | 𝜌 ∈ Plays(G, `)

}
and BranchesInf (𝑟 ′) =

{
𝜌alt | 𝜌 ∈ Plays(G, `′)

}
hold.

Proof. LetA𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ). First, we consider the run tree 𝑟 ′ ofA𝜑 induced by 𝜎 . We construct
a strategy `′ for Spoiler in the delay-dominance game G from 𝑟 ′ as follows. Let a · 𝑣 be a finite
sequence of positions of G’s game arena with a ∈ 𝑃∗ and 𝑣 ∈ 𝑃 . We only define `′ explicitly
on sequences a · 𝑣 that can occur in the delay-dominance game G and where 𝑣 is controlled
by Spoiler; on all other sequences, we define `′(a, 𝑣) = 𝑣 ′ for some arbitrary position 𝑣 ′ ∈ 𝑃
that is a valid extension of a · 𝑣 . In the following, we thus assume that a · 𝑣 is a prefix of a
play that can occur in the game G and that 𝑣 is of the form ((𝑝, 𝑞), 𝑗) or ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗). We
map a · 𝑣 to a prefix of a branch of the run tree 𝑟 ′ if there is a compatible one: a compatible
branch 𝑏 of 𝑟 ′ agrees with the finite projected alternative play âalt up to point in time |a | − 1,
i.e., we have 𝑏𝑘 = âalt

𝑘
for all 𝑘 with 0 ≤ 𝑘 < |a |. Note here that, slightly misusing notation, we

apply the definition of a projected play also to the finite prefix a of a play. Moreover, no matter
whether 𝑣 is of the form ((𝑝, 𝑞, 𝑐), 𝑗) or ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗), we have 𝑏 |a | = 𝑝 in a compatible branch.
If there is no compatible branch in 𝑟 ′, we again define ` (a · 𝑣) = 𝑣 ′ for some arbitrary position
𝑣 ′ ∈ 𝑃 that is a valid extension of a · 𝑣 . Otherwise, the successors of 𝑝 in 𝑏 define the choice
of `: by definition, the set S of successors of the node labeled with 𝑝 in 𝑏 satisfies 𝛿 (𝑝, 𝜎 |a |).
Thus, there exists some set 𝑐 ∈ 𝛿 (𝑝, 𝜎 |a |) such that 𝑝′ ∈ S holds for all 𝑝′ ∈ 𝑐 . If 𝑣 is of the form
𝑣 = ((𝑝, 𝑞), 𝑗), we thus define `′(a · 𝑣) = ((𝑝, 𝑞, 𝑐), 𝑗). If 𝑣 is of the form 𝑣 = ((𝑝, 𝑞, 𝑐′, 𝑐), 𝑗), we
define `′(a · 𝑣) = 𝑣 ′ for some arbitrary position 𝑣 ′ ∈ 𝑃 that is a valid extension of a · 𝑣 . Note
here that choosing an arbitrary successor for a · 𝑣 for `′ is possible in this case since the choice
defines a successor state for the dominant state 𝑞. Hence, the choice does not influence the
projected alternative play. Since the existential choices in A𝜑 define the run tree, it follows
immediately from the construction of `′ that BranchesInf (𝑟 ′) =

{
𝜌alt | 𝜌 ∈ Plays(G, `′)

}
holds.

Similarly, we can construct a strategy ` for Duplicator in the delay-dominance game G from
the run tree 𝑟 of A𝜑 induced by 𝜎 ′. We define the compatibility of a branch analogously, yet,
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utilizing the projected dominant play âdom instead of the projected alternative one âalt . If there
exists a branch 𝑏 of 𝑟 that is compatible with the considered sequence a · 𝑣 , then, by definition,
the set S of successors of the node labeled with 𝑞 in 𝑏 satisfies 𝛿 (𝑞, 𝜎 ′|a |). Thus, similar to the
case above, there exists some 𝑐′ ∈ 𝛿 (𝑞, 𝜎 ′|a |) such that 𝑞′ ∈ S holds for all 𝑞′ ∈ 𝑐′. If 𝑣 is of the
form 𝑣 = ((𝑝, 𝑞, 𝑐), 𝑗), we therefore define ` (a · 𝑣) = ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗). In all other cases, i.e., if 𝑣
is of the form 𝑣 = ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗), if 𝑣 ∉ 𝑃0, if there is no compatible branch for a · 𝑣 , or if a · 𝑣
cannot occur in the game G, then we choose an arbitrary successor position 𝑣 ′ ∈ 𝑃 that is a
valid extension of a · 𝑣 . Since Duplicator controls the existential choices inA𝜑 for 𝜎 ′ and Spoiler
controls the existential choices in A𝜑 for 𝜎 , it follows analogously to the previous case that
BranchesInf (𝑟 ) =

{
𝜌alt | 𝜌 ∈ Plays(G, `)

}
holds. □

Utilizing the observations on the relationship between strategies in a delay-dominance game
and run trees in the underlying alternating co-Büchi automaton, we now show that every
strategy 𝑠𝑖 for a process 𝑝𝑖 ∈ P that is delay-dominant is also remorsefree dominant. The main
idea behind the result is that a winning strategy ` of Duplicator in the delay-dominance game
defines a run tree of the alternating co-Büchi automaton induced by a computation of 𝑠𝑖 such
that all branches either visit only finitely many rejecting states or such that all rejecting states
are matched eventually with a rejecting state in some branch of all run trees induced by an
alternative strategy. Thus, 𝑠𝑖 either satisfies the specification, or every alternative strategy does
not satisfy it either. Formally:

Theorem 3.2. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating
co-Büchi automaton with L(A𝜑 ) = L(𝜑). Let 𝑠𝑖 be a strategy for process 𝑝𝑖 ∈ P. If 𝑠𝑖 is delay-
dominant for A𝜑 , then 𝑠𝑖 is remorsefree dominant for 𝜑 .

Proof. Let A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ). Suppose that strategy 𝑠𝑖 is delay-dominant for 𝑝𝑖 A𝜑 , while 𝑠𝑖
is not remorsefree dominant for 𝜑 . Then, there exists an alternative strategy 𝑡𝑖 for process 𝑝𝑖
and two infinite sequences 𝛾 ∈ (2𝐼𝑖 )𝜔 and 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ̸ |= 𝜑 holds,
while we have comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑 . Furthermore, since strategy 𝑠𝑖 is delay-dominant for 𝑝𝑖
and A𝜑 by assumption, there exists, for every infinite sequence 𝛾 ′′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , a winning
strategy for Duplicator in the delay-dominance game (A𝜑 , comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′′, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′′).
Therefore, in particular, Duplicator has a winning strategy ` in the delay-dominance game
G = (A𝜑 , comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′).
First, by Lemma 3.2, there exists a run tree 𝑟 ∈ Runs(A𝜑 , comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′) of A𝜑 induced

by comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ that reflects the choices for the existential transitions of A𝜑 that occur
when reading comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ defined by Duplicator’s winning strategy ` in the game G. More-
over, we have BranchesInf (𝑟 ) =

{
𝜌dom | 𝜌 ∈ Plays(G, `)

}
. Since comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ̸ |= 𝜑 holds

by assumption, all run trees of A𝜑 induced by comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ contain a branch that con-
tains infinitely many visits to rejecting states. Thus, in particular, the run tree 𝑟 for which
BranchesInf (𝑟 ) =

{
𝜌dom | 𝜌 ∈ Plays(G, `)

}
holds contains a branch that visits rejecting states

infinitely often. Hence, there is an initial play 𝜌 ∈ Plays(G, `) in G that is consistent with Du-
plicator’s strategy ` such that 𝜌dom contains infinitely many visits to rejecting states. Therefore,
it follows from the definition of projected dominant plays that the play 𝜌 contains infinitely
many visits to rejecting dominant states.
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Next, since we have comp(𝑡𝑖 , 𝛾)∪𝛾 ′ |= 𝜑 , there exists a run tree 𝑟 ′ ∈ Runs(A𝜑 , comp(𝑡𝑖 , 𝛾)∪𝛾 ′)
of A𝜑 induced by comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′ whose branches all visit only finitely many rejecting states.
Then, by Lemma 3.3, there is a strategy `′ for Spoiler in the delay-dominance game G that
reflects the choices of 𝑟 ′ for the existential transitions of A𝜑 when reading comp(𝑡𝑖 , 𝛾) ∪ 𝛾 ′.
Moreover, we have BranchesInf (𝑟 ′) =

{
𝜌alt | 𝜌 ∈ Plays(G, `′)

}
. Thus, since all branches of 𝑟 ′

visit only finitely many rejecting states, it follows immediately from the construction of `′
that, for all initial plays 𝜌 ∈ Plays(G, `′) that are consistent with `′, we have that 𝜌alt visits
only finitely many rejecting states. Therefore, particularly for the unique initial play that is
consistent with both ` and `′, it holds that 𝜌alt visits only finitely many rejecting states. Hence,
by definition of projected alternative plays, 𝜌 visits only finitely many rejecting alternative
states. However, as shown above, 𝜌dom visits infinitely many rejecting states. Thus, there is a
point in time 𝑘 ∈ N0 such that 𝑓dom(𝜌𝑘 ) ∈ 𝐹 holds, while we have 𝑓alt (𝜌𝑘 ′) ∉ 𝐹 for all 𝑘 ′ ≥ 𝑘 .
However, then ` is not a winning strategy for Duplicator; yielding a contradiction. □

Thus, every delay-dominant strategy is also remorsefree dominant and hence the notion of
delay-dominance overcomes the main weakness of bounded dominance. Furthermore, recall
that, given a realizable LTL specification 𝜑 , every strategy that is remorsefree dominant for 𝜑 is
also winning for 𝜑 by Proposition 2.5. Together with Theorem 3.2 the same property follows
immediately also for delay-dominant strategies:

Corollary 3.1. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating
co-Büchi automaton with L(A𝜑 ) = L(𝜑). If 𝜑 is realizable, then every strategy that is delay-
dominant strategy for A𝜑 is winning for 𝜑 as well.

Thus, from the point of view of obtaining meaningful strategies for the individual system
processes, delay-dominance is amore suitable notion than bounded dominance. In compositional
synthesis, however, it is not only crucial to obtain a meaningful process strategy but also to
obtain a suitable strategy for the overall system when building the parallel composition of the
individual process strategies. In the following section, we thus study the compositionality of
delay-dominance for both safety and liveness properties.

3.3. Compositionality of Delay-Dominance
A critical shortcoming of remorsefree dominance is its non-compositionality for liveness proper-
ties. This restricts the usage of dominance-based compositional distributed synthesis algorithms
to safety specifications, which are, in many cases, not expressive enough to formalize the system
requirements. Delay-dominance, in contrast, is specifically designed to be compositional for
more properties. This heavily relies on two facts. First, delay-dominance is not defined using
the satisfaction of the given specification but on a more involved property on the visits of
rejecting states. Second, delay-dominance is defined using a two-player game, and thus we
require the existence of a strategy for Duplicator, i.e., determining which decisions to make for
the existential choices of the delay-dominant strategy and the universal ones for the alternative
strategy has to be possible without knowledge about the future input as well as the future
decisions for the other choices.
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More precisely, compositionality requires that whenever the parallel composition of two
strategies 𝑠1 and 𝑠2 for system processes 𝑝1 ∈ 𝑃− and 𝑝2 ∈ 𝑃−, respectively, does not satisfy the
strategy requirment – that is, for instance, remorsefree dominance, bounded dominance, or
delay-dominance – we are able to blame at least one of the processes for being responsible
for violating that strategy requirement. Otherwise, none of the processes ever behaves incor-
rectly with respect to the strategy requirement, and thus none of the processes violates the
strategy requirement. Hence, the parallel composition of two strategies that satisfy the strategy
requirement would then not necessarily satisfy it.

Example 3.6. Reconsider the message-sending system from the running example and the
strategy property remorsefree dominant. Furthermore, consider the strategies 𝑡1 and 𝑡2 that
wait to receive the respective other messages before sending their own one (see Figure 3.1b).
Their parallel composition 𝑡1 | | 𝑡2 never sends any message and thus violates the specification
𝜑 = 𝑚1 ∧ 𝑚2 on every input sequence. However, none of the processes can be blamed
for being responsible for violating the properties of remorsefree dominance: even if process 𝑝𝑖
would send its message𝑚𝑖 eventually, the specification is still not satisfied since message𝑚3−𝑖
has not been send yet. Thus, as long as 𝑝𝑖 did not receive𝑚3−𝑖 , it is not required to eventually
send𝑚𝑖 . The same, however, also holds for system process 𝑝3−𝑖 . Note here that it is crucial that,
although 𝑝𝑖 is required to send𝑚𝑖 eventually if it receives𝑚3−𝑖 , process 𝑝3−𝑖 is not required
to send𝑚3−𝑖 in the first place; resulting in the deadlock situation where both processes wait
on each other indefinitely. Nevertheless, both 𝑡1 and 𝑡2 are remorsefree dominant strategies:
the processes are not required to send their message when confronted with the behavior of the
other process defined by a computation of the parallel composition 𝑡1 | | 𝑡2 of 𝑡1 and 𝑡2, i.e., when
reading an input of the form comp(𝑡1 | | 𝑡2, 𝛾) ∩ 𝐼𝑖 . △

Let 𝑠1 and 𝑠2 be two strategies for processes 𝑝1 and 𝑝2, respectively, and suppose that their
parallel compositions 𝑠1 | | 𝑠2 does not satisfy the process requirement. Intuitively, we can
then blame at least one of the processes 𝑝1 and 𝑝2 for violating the strategy requirement if
there exists a bad prefix of a computation of their parallel composition 𝑠1 | | 𝑠2 for the strategy
requirement, i.e., a prefix of a computation of 𝑠1 | | 𝑠2 such that all of its infinite extensions
violate the strategy requirement. For remorsefree dominance, for instance, a bad prefix of a
computation comp(𝑠1 | |𝑠2, 𝛾) is a finite prefix [ of comp(𝑠1 | |𝑠2, 𝛾) such that all infinite extensions
𝜎 ∈ (2𝑉1∪𝑉2)𝜔 of [ that agree with 𝛾 on the inputs of 𝑝1 | | 𝑝2, i.e., for which 𝜎 ∩ 𝐼𝑝1 | |𝑝2 = 𝛾 ∩ 𝐼𝑝1 | |𝑝2
holds, violate the specification while there exists an alternative strategy 𝑡 for 𝑝1 | | 𝑝2 such that
comp(𝑡, 𝛾) satisfies the specification. Note here that since remorsefree dominance only considers
the satisfaction of a specification, the existence of a bad prefix for remorsefree dominance boils
down to the existence of a bad prefix for the considered specification. Since liveness properties
do not have bad prefixes by definition (see Section 2.3), there thus clearly do not exist bad
prefixes for remorsefree dominance for liveness properties.

Delay-dominance, in contrast, takes an alternating co-Büchi automaton, which describes the
system specification, into account and relates the visits of the automaton to rejecting states
induced by the computation of a delay-dominant strategy to those induced by a computation of
an alternative strategy. Thus, the non-existence of bad prefixes for liveness properties does not
necessarily result in the absence of bad prefixes for delay-dominance.
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Example 3.7. Reconsider the message-sending system from the running example and its
specification 𝜑 = 𝑚1 ∧ 𝑚2. Furthermore, consider the alternating co-Büchi automaton A𝜑

with L(A𝜑 ) = L(𝜑). depicted in Figure 3.2. Although L(𝜑) is a liveness property and thus
does not have a bad prefix by definition, the automaton A𝜑 ensures, intuitively, the existence
of bad prefixes for delay-dominance: let 𝑠𝑖 be a strategy for system process 𝑝𝑖 ∈ 𝑃− that is not
delay-dominant for A𝜑 . Then, there exists an input sequence 𝛾 ∈ (2{𝑚3−𝑖 })𝜔 and an alternative
strategy 𝑡𝑖 for 𝑝𝑖 such that Duplicator does not have a winning strategy in the delay-dominance
gameG = (A𝜑 , comp(𝑡𝑖 , 𝛾), comp(𝑠𝑖 , 𝛾)). As outlined in Example 3.5, for such an input sequence
𝛾 ∈ (2{𝑚3−𝑖 })𝜔 it holds that 𝑚3−𝑖 occurs in comp(𝑠𝑖 , 𝛾) before 𝑚𝑖 . Let 𝑘 ≥ 0 be the earliest
point in time at which𝑚3−𝑖 occurs in comp(𝑠𝑖 , 𝛾) while𝑚𝑖 did not occur so far. The prefix of
comp(𝑠𝑖 , 𝛾) up to the point in time 𝑘 , i.e., comp(𝑠𝑖 , 𝛾) |𝑘+1, is then a bad prefix of comp(𝑠𝑖 , 𝛾) for
delay-dominance in A𝜑 : since A𝜑 is deterministic, every play in the delay-dominance game
stays in state 𝑞0 in the dominant states up to the point in time 𝑘 at which𝑚3−𝑖 occurs and then
moves to either 𝑞1 or 𝑞2, depending on whether 𝑖 = 1 or 𝑖 = 2 holds. It then stays there until𝑚𝑖

occurs and moves to 𝑞3 afterward. An alternative strategy that outputs𝑚𝑖 on input sequence 𝛾
at point in time 𝑘 , i.e., at the exact same point in time at which𝑚3−𝑖 occurs in 𝛾 , induces a move
from 𝑞1 directly to 𝑞3, thus avoiding the visit of a rejecting state 𝑞1 or 𝑞2. Hence, no matter how
system process 𝑝1 behaves after entering 𝑞1 or 𝑞2, respectively, there is an alternative strategy
that causes Duplicator to lose the delay-dominance game for input sequence 𝛾 , namely the one
that, intuitively, predicts the point in time at which𝑚3−𝑖 is sent, and that sends𝑚𝑖 at the very
same point in time. Thus, behaving as 𝑠𝑖 on 𝛾 up to point in time 𝑘 always results in Duplicator
losing the delay-dominance game for some alternative strategy. Consequently, behaving as 𝑠𝑖
on 𝛾 up to point in time 𝑘 always results in not being delay-dominant for A𝜑 . △

In the following, we first establish that delay-dominance is indeed compositional if bad
prefixes exist. Afterward, we then study which properties the alternating co-Büchi automaton
needs to satisfy to allow for bad prefixes. Thus, we first define a property that formalizes the
existence of a bad prefix with respect to delay-dominance.

Definition 3.5 (Bad Prefixes for Delay-Dominance).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating co-Büchi
automaton with L(A𝜑 ) = L(𝜑). Then, A𝜑 ensures bad prefixes for delay-dominance if, and
only if, for all 𝑝𝑖 ∈ P, 𝛾 ∈ (2𝑉 \𝑂𝑖 )𝜔 , and 𝜎 ∈ (2𝑂𝑖 )𝜔 for which there exists some 𝜎 ′ ∈ (2𝑉𝑖 )𝜔
such that Duplicator loses the delay-dominance game (A𝜑 , 𝜎

′ ∪ 𝛾, 𝜎 ∪ 𝛾), there is some finite
prefix [ ∈ (2𝑂𝑖 )∗ of 𝜎 such that for all infinite extensions �̂� ∈ (2𝑂𝑖 )𝜔 of [, there is some
𝜎 ′′ ∈ (2𝑂𝑖 )𝜔 such that Duplicator loses the delay-dominance game (A𝜑 , 𝜎

′′ ∪ 𝛾, �̂� ∪ 𝛾).

If the considered alternating co-Büchi automaton A𝜑 satisfies the bad prefix property for
delay-dominance, then the notion of delay-dominance is indeed compositional, i.e., then the
parallel composition of two delay-dominant strategies is guaranteed to be delay-dominant
as well. The main idea of the proof is to utilize the bad prefix property to argue that, if the
parallel composition 𝑠1 | | 𝑠2 of two strategies is not delay-dominant, then at least one of the
processes can be blamed for being responsible for violating the properties of delay-dominance.
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No matter which of the processes is responsible – or even both – we can then conclude from
the properties of process strategies and the fact that they are represented by Moore transducers
that the strategy of the respective process cannot be delay-dominant:

Theorem 3.3. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating
co-Büchi automaton with L(A𝜑 ) = L(𝜑). Let 𝑝1, 𝑝2 ∈ P be processes and let 𝑠1 and 𝑠2 be strategies
for them. If both 𝑠1 and 𝑠2 are delay-dominant for A𝜑 and 𝑝1 and 𝑝2, respectively, and if A𝜑

ensures bad prefixes for delay-dominance, then 𝑠1 | | 𝑠2 is delay-dominant for A𝜑 and 𝑝1 | | 𝑝2.

Proof. For the sake of readability, let 𝐼1,2 = (𝐼1 ∪ 𝐼2) \ (𝑂1 ∪𝑂2) be the set of inputs of 𝑝1 | | 𝑝2,
let𝑂1,2 = 𝑂1 ∪𝑂2 be the set of outputs of 𝑝1 | | 𝑝2, and let𝑉1,2 = 𝐼1,2 ∪𝑂1,2 be the set of variables
of 𝑝1 | | 𝑝2. Let A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ). Suppose that 𝑠1 | | 𝑠2 is not delay-dominant for A𝜑 and
𝑝1 | | 𝑝2. Then, there is some sequence 𝛾 ′ ∈ (2𝑉 \𝑉1,2)𝜔 of variables that cannot be observed
by 𝑝1 | | 𝑝2, some alternative strategy 𝑡 for 𝑝1 | | 𝑝2, and some infinite input sequence 𝛾 ∈
(2𝐼1,2)𝜔 such that there is no winning strategy for Duplicator in the delay-dominance game
G = (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′).
By assumption A𝜑 ensures bad prefixes for delay-dominance and thus there exists a finite

prefix a ∈ (2𝑉 )∗ of comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′ such that for all infinite extensions �̂� ∈ (2𝑉 )𝜔 of a with
�̂� ∩ (𝑉 \𝑂1,2) = (comp(𝑠1 | | 𝑠2, 𝛾) ∪𝛾 ′) ∩ (𝑉 \𝑂1,2), there exists some sequence 𝜎 ′′ ∈ (2𝑉 )𝜔 with
�̂�∩ (𝑉 \𝑂1,2) = 𝜎 ′∩ (𝑉 \𝑂1,2) such that Duplicator loses the delay-dominance game (A𝜑 , 𝜎

′′, �̂�).
In particular, there thus exists a smallest, i.e., shortest, such bad prefix of comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′.
Let [ · 𝛿 ∈ (2𝑉 )∗ be this smallest such bad prefix, where [ ∈ (2𝑉 )∗ and 𝛿 ∈ 2𝑉 holds. Since [ · 𝛿
is a bad prefix for delay-dominance by construction, it holds that for all infinite extensions
�̂� ∈ (2𝑉 )𝜔 of [ · 𝛿 with �̂� ∩ (𝑉 \𝑂1,2) = (comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′) ∩ (𝑉 \𝑂1,2), there exists some
infinite sequence 𝜎 ′′ ∈ (2𝑉 )𝜔 with �̂� ∩ (𝑉 \𝑂1,2) = 𝜎 ′′∩ (𝑉 \𝑂1,2) such that Duplicator loses the
delay-dominance game (A𝜑 , 𝜎

′′, �̂�). Furthermore, since [ · 𝛿 is the smallest such prefix, there
exists an infinite extension �̃� ∈ (2𝑉 )𝜔 of [ with �̃�∩(𝑉 \𝑂1,2) = (comp(𝑠1 | |𝑠2, 𝛾)∪𝛾 ′)∩ (𝑉 \𝑂1,2)
such that Duplicator wins the delay-dominance game (A𝜑 , 𝜎

′′′, �̂� ′) for all 𝜎 ′′′ ∈ (2𝑉 )𝜔 with
�̂� ∩ (𝑉 \𝑂1,2) = 𝜎 ′′′ ∩ (𝑉 \𝑂1,2).

Suppose that [ ·𝛿 is the empty sequence. In that case, for all infinite sequences 𝜎 ′ ∈ (2𝑉 )𝜔 that
agree with 𝛾 ∪𝛾 ′ on the variables in𝑉 \𝑂1,2, Duplicator does not have a winning strategy in the
delay-dominance game (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, 𝜎 ′). However, then Duplicator particularly does
not have a winning strategy in the delay-dominance game (A𝜑 , comp(𝑡, 𝛾) ∪𝛾 ′, comp(𝑡, 𝛾) ∪𝛾 ′);
contradicting that every strategy delay-dominates itself by Lemma 3.1. Hence, [ · 𝛿 cannot be
the empty sequence and thus |[ · 𝛿 | > 0. Let𝑚 = |[ · 𝛿 | be the length of [ · 𝛿 . The last position 𝛿
of the prefix [ · 𝛿 – which is guaranteed to exist since [ · 𝛿 is not the empty sequence – contains
decisions of both processes 𝑝1 and 𝑝2 defined by their delay-dominant strategies 𝑠1 and 𝑠2,
respectively. We distinguish the following two cases:

1. There exists an infinite extension �̂� ∈ (2𝑉 )𝜔 of [ with 𝜎𝑚−1 ∩ (𝑉 \𝑂1) = 𝛿 ∩ (𝑉 \𝑂1) and
�̂�∩ (𝑉 \𝑂1,2) = 𝛾 ∪𝛾 ′ such that Duplicator has a winning strategy in the delay-dominance
game (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, �̂�). Hence, intuitively, it is the fault of process 𝑝1 and thus, in
particular, of its strategy 𝑠1, that Duplicator loses the game delay-dominance G. Let 𝑡 ′ be
a strategy for 𝑝1 | | 𝑝2 that produces the sequence �̂� ∩𝑉𝑖 on input sequence 𝛾 , i.e., a strategy
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with comp(𝑡 ′, 𝛾) ∪ 𝜎 = �̂� . For the sake of readability, let 𝛾𝑠2 = comp(𝑠1 | | 𝑠2, 𝛾) ∩𝑂2 and
let 𝛾𝑡 ′2 = comp(𝑡 ′, 𝛾) ∩𝑂2. Since we have 𝛿 ∩ (𝑉 \𝑂1) = 𝜎𝑚−1 ∩ (𝑉 \𝑂1) by assumption,
we obtain that [ · 𝛿 and �̂� |𝑚 agree on the variables in 𝑉 \𝑂1 and therefore, in particular,
the finite sequences comp(𝑠1 | | 𝑠2, 𝛾) |𝑚 and comp(𝑡 ′, 𝛾) |𝑚 agree on the variables in 𝑉 \𝑂1.
Hence, it follows from the construction of 𝛾𝑠2 and 𝛾𝑡 ′2 that (𝛾 ∪ 𝛾𝑠2) |𝑚 = (𝛾 ∪ 𝛾𝑡 ′2) |𝑚 holds.
Since strategies cannot look into the future,strategy 𝑠1 thus cannot behave differently on
input sequences (𝛾 ∪ 𝛾𝑠2) ∩ 𝐼1 and (𝛾 ∪ 𝛾𝑡

′
2) ∩ 𝐼1 up to point in time𝑚 − 1. For the sake

of readability, let 𝜌𝑠 , 𝜌𝑡 ′ ∈ (2𝑉 \𝑂1 ) )𝜔 be the infinite sequences of valuations of variables
outside the control of 𝑝1 defined by 𝜌𝑠 := 𝛾 ∪ 𝛾𝑠2 ∪ 𝛾 ′ and 𝜌𝑡

′ := 𝛾 ∪ 𝛾𝑡 ′2 ∪ 𝛾 ′. Then,

comp(𝑠1, 𝜌𝑠 ∩ 𝐼1) |𝑚 ∪ (𝜌𝑠|𝑚 ∩ (𝑉 \𝑉1)) = comp(𝑠1, 𝜌𝑡
′ ∩ 𝐼1) |𝑚 ∪ (𝜌𝑡

′

|𝑚 ∩ (𝑉 \𝑉1))

follows. Hence, since [ ·𝛿 is a finite prefix of comp(𝑠1 | |𝑠2, 𝛾)∪𝛾 ′ by definition and since we
have comp(𝑠1, 𝜌𝑠∩𝐼1)∪(𝜌𝑠∩(𝑉 \𝑉1)) = comp(𝑠1 | |𝑠2, 𝛾)∪𝛾 ′ by construction of𝛾𝑠2 and 𝜌𝑠 a
well as by definition of computations of strategies, comp(𝑠1, 𝜌𝑡

′ ∩ 𝐼1) ∪ (𝜌𝑡
′ ∩ (𝑉 \𝑉1)) is an

infinite extension of[ ·𝛿 . Furthermore, since clearly (comp(𝑠1 | |𝑠2, 𝛾)∪𝛾 ′)∩(𝑉 \𝑂𝑖) = 𝛾∪𝛾 ′
holds by definition of computations of strategies, it follows immediately that we have

(comp(𝑠1, 𝜌𝑡
′ ∩ 𝐼1) ∪ (𝜌𝑡

′ ∩ (𝑉 \𝑉1))) ∩ (𝑉 \𝑂1) = (𝛾 ∪ 𝛾 ′) ∩ (𝑉 \𝑂1),

i.e. that comp(𝑠1, 𝜌𝑡
′ ∩ 𝐼1) ∪ (𝜌𝑡

′ ∩ (𝑉 \𝑉1)) agrees with 𝛾 ∪ 𝛾 ′ on the variables in 𝑉 \𝑂1.
Therefore, by construction of the finite prefix [ · 𝛿 , Duplicator loses the delay-dominance
game G′ = (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, comp(𝑠1, 𝜌𝑡

′ ∩ 𝐼1) ∪ (𝜌𝑡
′ ∩ (𝑉 \ 𝑉1))). However, by

construction of the strategy 𝑡 ′, Duplicator has awinning strategy ` in the delay-dominance
game (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, comp(𝑡 ′, 𝛾) ∪ 𝛾 ′). Let 𝑡 ′1 be a strategy for process 𝑝1 such that
comp(𝑡 ′, 𝛾) ∩ 𝑉1 = comp(𝑡 ′1, 𝜌𝑡

′ ∩ 𝐼1) holds. Then, since 𝑠1 is delay-dominant for 𝑝1
and A𝜑 by assumption, 𝑠1 particularly delay-dominates 𝑡 ′1 on input 𝜌𝑡 ′ ∩ 𝐼1 for sequence
𝜌𝑡
′ ∩ (𝑉 \𝑉1) and therefore Duplicator has a winning strategy `′ in the delay-dominance

game (A𝜑 , comp(𝑡 ′1, 𝜌𝑡
′ ∩ 𝐼1) ∪ (𝜌𝑡

′ ∩ (𝑉 \𝑉1)), comp(𝑠1, 𝜌𝑡
′ ∩ 𝐼1) ∪ (𝜌𝑡

′ ∩ (𝑉 \𝑉1)). Since
comp(𝑡 ′1, 𝜌𝑡

′ ∩ 𝐼1) ∪ (𝜌𝑡
′ ∩ (𝑉 \𝑉1)) = comp(𝑡 ′, 𝛾) ∪𝛾 ′ holds by construction of the process

strategy 𝑡 ′1, we can thus combine the strategies ` and `′, i.e., the winning strategies
of Duplicator in the two delay-dominance games (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, comp(𝑡 ′, 𝛾) ∪ 𝛾 ′)
and (A𝜑 , comp(𝑡 ′1, 𝜌𝑡

′ ∩ 𝐼1) ∪ (𝜌𝑡
′ ∩ (𝑉 \ 𝑉1)), comp(𝑠1, 𝜌𝑡

′ ∩ 𝐼1) ∪ (𝜌𝑡
′ ∩ (𝑉 \ 𝑉1)), to a

strategy `′′ for Duplicator in the delay-dominance game G′. Furthermore, since ` and `′

are winning in the respective games, it follows immediately that for all initial plays
𝜌 ∈ Plays(G′, `′′,) that are consistent with Duplicator’s combined strategy `′′ it holds
that whenever 𝑓dom(𝜌𝑘 ) ∈ 𝐹 holds for a point in time 𝑘 ∈ N0, then there is a point in time
𝑘 ′ ∈ N0 with 𝑘 ′ ≥ 𝑘 such that 𝑓alt (𝜌𝑘 ′) ∈ 𝐹 holds. Thus, `′′ is a winning strategy for
Duplicator in the delay-dominance game G′; contradicting that Duplicator loses G′.

2. There is no infinite extension �̂� ∈ (2𝑉1,2)𝜔 of [ with �̂�𝑚−1 ∩ (𝑉 \𝑂1) = 𝛿 ∩ (𝑉 \𝑂1) and
�̂�∩ (𝑉 \𝑂1,2) = 𝛾 ∪𝛾 ′ such that Duplicator has a winning strategy in the delay-dominance
game (A𝜑 , comp(𝑡, 𝛾) ∪𝛾 ′, �̂�). Hence, intuitively, it is (at least also) the fault of process 𝑝2
and thus, in particular, of its strategy 𝑠2, that Duplicator loses the gameG. By construction
of the finite prefix [ · 𝛿 , there exists an infinite extension 𝜎 ′ ∈ (2𝑉 )𝜔 of [ such that
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Duplicator has a winning strategy in the delay-dominance game (A𝜑 , comp(𝑡, 𝛾) ∪𝛾 ′, 𝜎 ′).
Let 𝑡 ′ be a process strategy for 𝑝1 | | 𝑝2 that produces 𝜎 ′∩ (𝑉 \𝑉𝑖) on input 𝛾 , i.e., a strategy
with comp(𝑡 ′, 𝛾) ∪ 𝛾 ′ = 𝜎 ′. For the sake of readability, let 𝛾𝑠1 = comp(𝑠1 | | 𝑠2, 𝛾) ∩𝑂1 and
let 𝛾𝑡 ′1 = comp(𝑡 ′, 𝛾) ∩𝑂1. By definition of 𝑡 ′, the sequence comp(𝑡 ′, 𝛾) ∪ 𝛾 ′ is an infinite
extension of [. Thus, since [ · 𝛿 is a prefix of comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′ by definition, we have
comp(𝑡 ′, 𝛾) |𝑚−1 = comp(𝑠1 | | 𝑠2, 𝛾) |𝑚−1. Hence, it follows from the construction of 𝛾𝑠1
and 𝛾𝑡 ′1 that (𝛾 ∪ 𝛾𝑠1) |𝑚−1 = (𝛾 ∪ 𝛾𝑡 ′1) |𝑚−1 holds. Since strategies cannot look into the
future, 𝑠2 thus cannot behave differently on input sequences (𝛾 ∪𝛾𝑠1) ∩ 𝐼2 and (𝛾 ∪𝛾𝑡

′
1) ∩ 𝐼2

up to point in time𝑚 − 2. For the sake of readability, let 𝜌𝑠 , 𝜌𝑡 ′ ∈ (2𝑉 \𝑂2 ) )𝜔 be the infinite
sequences of valuations of variables outside the control of 𝑝2 defined by 𝜌𝑠 := 𝛾 ∪ 𝛾𝑠2 ∪ 𝜎
and 𝜌𝑡

′ := 𝛾 ∪ 𝛾𝑡 ′2 ∪ 𝜎 . Then,

comp(𝑠2, 𝜌𝑠 ∩ 𝐼2) |𝑚−1∪ (𝜌𝑠|𝑚−1∩ (𝑉 \𝑉2)) = comp(𝑠2, 𝜌𝑡
′ ∩ 𝐼2) |𝑚−1∪ (𝜌𝑡

′

|𝑚−1∩ (𝑉 \𝑉2))

follows. Hence, comp(𝑠2, 𝜌𝑡
′ ∩ 𝐼2) ∪ (𝜌𝑡

′ ∩ (𝑉 \𝑉2)) is an infinite extension of [ as well.
Since we consider process strategies that are represented by Moore transducers, 𝑠2 cannot
react directly to an input. In particular, 𝑠2 can thus, at point in time𝑚 − 1, not behave
differently when reading 𝜌𝑠 ∩ 𝐼2 and 𝜌𝑡

′ ∩ 𝐼2; even if 𝜌𝑠 ∩ 𝐼2 and 𝜌𝑡
′ ∩ 𝐼2 differ at point in

time𝑚 − 1. Consequently,

comp(𝑠2, 𝜌𝑠 ∩ 𝐼2)𝑚−1 ∩𝑂2 = comp(𝑠2, 𝜌𝑡
′ ∩ 𝐼2)𝑚−1 ∩𝑂2

holds. Furthermore, we have 𝜌𝑠 ∩ (𝐼1,2∪ (𝑉 \𝑉1,2) = 𝜌𝑡
′ ∩ (𝐼1,2∪ (𝑉 \𝑉1,2) by construction

of 𝜌𝑠 and 𝜌𝑡 ′ and thus, since 𝐼1,2∪(𝑉 \𝑉1,2) = 𝑉 \𝑂1,2 holds by definition of𝑉1,2 as well as by
definition of architectures, 𝜌𝑠 and 𝜌𝑡 ′ agree on the variables in𝑉 \𝑂1,2. Therefore, it follows
from the definition of computations of strategies that comp(𝑠2, 𝜌𝑠 ∩ 𝐼2)𝑚−1∪ (𝜌𝑠 ∩ (𝑉 \𝑉2))
and comp(𝑠2, 𝜌𝑡

′ ∩ 𝐼2)𝑚−1∪ (𝜌𝑡
′ ∩ (𝑉 \𝑉2)) agree on the variables in𝑉 \𝑂1,2. By definition

of𝑂1,2, we have (𝑉 \𝑂1,2) ∪𝑂2 = 𝑉 \𝑂1 and thus comp(𝑠2, 𝜌𝑠 ∩ 𝐼2)𝑚−1 ∪ (𝜌𝑠 ∩ (𝑉 \𝑉2))
and comp(𝑠2, 𝜌𝑡

′ ∩ 𝐼2)𝑚−1 ∪ (𝜌𝑡
′ ∩ (𝑉 \𝑉2)) agree on the variables in 𝑉 \𝑂1 as well. For

the sake of readability, let 𝛿 ′ = comp(𝑠2, 𝜌𝑡
′ ∩ 𝐼2))𝑚−1 ∪ (𝜌𝑡

′
𝑚−1 ∩ (𝑉 \𝑉2)). Then, since we

have 𝛿 = comp(𝑠2, 𝜌𝑠 ∩ 𝐼2)𝑚−1 ∪ (𝜌𝑠𝑚−1 ∩ (𝑉 \𝑉2)) holds by definition of the prefix [ · 𝛿
as well as by construction of 𝜌𝑠 , 𝛿 ′ ∩ (𝑉 \ 𝑂1) = 𝛿 ∩ (𝑉 \ 𝑂1) follows. Furthermore,
the sequence comp(𝑠2, 𝜌𝑡

′ ∩ 𝐼2)) ∪ (𝜌𝑡
′ ∩ (𝑉 \ 𝑉2)) is an infinite extension of [ · 𝛿 ′. By

construction of the strategy 𝑡 ′, Duplicator has awinning strategy ` in the delay-dominance
game (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, comp(𝑡 ′, 𝛾) ∪ 𝛾 ′). Let 𝑡 ′2 be a strategy for process 𝑝2 such that
comp(𝑡 ′, 𝛾) ∩ 𝑉2 = comp(𝑡 ′2, 𝜌𝑡

′ ∩ 𝐼1) holds. Then, since 𝑠2 is delay-dominant for 𝑝2
and A𝜑 by assumption, 𝑠2 particularly delay-dominates 𝑡 ′2 on input 𝜌𝑡 ′ ∩ 𝐼2 for sequence
𝜌𝑡
′ ∩ (𝑉 \𝑉2) and therefore Duplicator has a winning strategy `′ in the delay-dominance

game (A𝜑 , comp(𝑡 ′2, 𝜌𝑡
′ ∩ 𝐼2) ∪ (𝜌𝑡

′ ∩ (𝑉 \𝑉2)), comp(𝑠2, 𝜌𝑡
′ ∩ 𝐼2) ∪ (𝜌𝑡

′ ∩ (𝑉 \𝑉2))). Similar
to the previous case, we can combine ` and `′ to a winning strategy `′′ for Duplicator
in the delay-dominance game (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, comp(𝑠2, 𝜌𝑡

′ ∩ 𝐼2) ∪ (𝜌𝑡
′ ∩ (𝑉 \𝑉1)).

Thus, comp(𝑠2, 𝜌𝑡
′ ∩ 𝐼2) ∪ (𝜌𝑡

′ ∩ (𝑉 \ 𝑉1)) is an infinite extension �̂� ∈ (2𝑉 )𝜔 of [ with
�̂�𝑚−1 ∩ (𝑉 \𝑂1) = 𝛿 ∩ (𝑉 \𝑂1) and �̂� ∩ (𝑉 \𝑂1,2) = 𝛾 ∪𝛾 ′ such that Duplicator wins the
delay-dominance game (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, �̂�); contradicting the assumption that no
such infinite extension exists.
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𝑞0

𝑞1

𝑞5

𝑞2 𝑞3 𝑞4
𝑎

¬𝑎

⊤ ⊤

𝑎

⊤ ⊤

⊤

Figure 3.5.: Alternating co-Büchi automaton A over alphabet {𝑎, 𝑏} that does not ensure bad
prefixes for delay-dominance. Universal choices are depicted with a gray arc.

Hence, no matter which of the processes 𝑝1 and 𝑝2 can be blamed for being responsible for
Duplicator losing the delay-dominance game G, which determines whether or not 𝑠1 | | 𝑠2 delay-
dominates 𝑡 on input 𝛾 when considering 𝛾 ′, we obtain a contradiction. Thus, for all 𝛾 ∈ (2𝐼1,2)𝜔 ,
all 𝛾 ′ ∈ (2𝑉 \𝑉1,2)𝜔 , and all strategies 𝑡 for 𝑝1 | | 𝑝2, Duplicator has a winning strategy in the
respective delay-dominance game (A𝜑 , comp(𝑡, 𝛾) ∪ 𝛾 ′, comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′). Therefore, it
follows that 𝑠1 | | 𝑠2 is delay-dominant for A𝜑 and 𝑝1 | | 𝑝2; concluding the proof. □

We have thus shown that delay-dominance is compositional for all specifications given
as alternating co-Büchi automata that ensure bad prefixes for delay-dominance according
to Definition 3.5. From Theorems 3.2 and 3.3 it now follows immediately that the parallel
composition of two delay-dominant strategies is also remorsefree dominant if the considered
alternating co-Büchi automaton representing the specification ensures bad prefixes:

Corollary 3.2. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 be an alternating
co-Büchi automaton with L(A𝜑 ) = L(𝜑) that ensures bad prefixes for delay-dominance. Let 𝑠1
and 𝑠2 be delay-dominant strategies for A𝜑 and processes 𝑝1 and 𝑝2, respectively. Then, 𝑠1 | | 𝑠2 is
remorsefree dominant for 𝜑 and 𝑝1 | | 𝑝2.

Moreover, recall that, given a realizable LTL specification 𝜑 , every strategy that is delay-
dominant for an alternating co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑) is also winning
for 𝜑 by Corollary 3.1. Hence, together with Theorem 3.3, it follows that given a specification 𝜑
and an alternating co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑) that ensures bad prefixes for
delay-dominance, the parallel composition of delay-dominant strategies for A𝜑 and all system
processes of a distributed system is winning if 𝜑 is realizable. Hence, delay-dominance is a
notion that can be soundly used for dominance-based compositional synthesis approaches when
ensuring the bad prefix criterion.
As already pointed out above, there are many more properties for which there exists an

alternating co-Büchi automaton that ensures bad prefixes for delay-dominance than properties
that have a “classical” bad prefix. By definition, no liveness property has a classical bad prefix,
yet, for many of them, there exist alternating co-Büchi automata that ensure bad prefixes for
delay-dominance. In the following, however, we consider an alternating co-Büchi automaton
that does not ensure bad prefixes:
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𝑞0

𝑞1

𝑞2

𝑞2 𝑞3
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(a) Run tree induced by comp(𝑠𝑖 , 𝛾).

𝑞0

𝑞5

𝑞3 𝑞5

𝑞4
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𝑞3 𝑞5

𝑞4

...

. . .

(b) Run tree induced by comp(𝑡𝑖 , 𝛾).

Figure 3.6.: Run trees of the alternating co-Büchi automaton A depicted in Figure 3.5 induced
by comp(𝑠𝑖 , 𝛾) and comp(𝑡𝑖 , 𝛾) from Example 3.8, respectively.

Example 3.8. Let 𝑉 = {𝑎, 𝑏} be a set of variables. Consider the alternating co-Büchi automa-
ton A over alphabet 𝑉 depicted in Figure 3.5. Let 𝑝𝑖 be some process with inputs 𝐼𝑖 = {𝑏} and
outputs 𝑂𝑖 = {𝑎}. Let 𝑠𝑖 be a strategy for 𝑝𝑖 that outputs 𝑎 in the very first time step and never
outputs 𝑎 afterward. That is, irrespective of the input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 , the computation of 𝑠𝑖
is given by comp(𝑠𝑖 , 𝛾) = {𝑎}∅𝜔 . Let 𝑡𝑖 be an alternative strategy for 𝑝𝑖 that never outputs 𝑎,
i.e., comp(𝑡𝑖 , 𝛾) = ∅𝜔 holds for all 𝛾 ∈ (2𝐼𝑖 )𝜔 . The run trees of A induced by the computations
of 𝑠𝑖 and 𝑡𝑖 on any input sequence are depicted in Figure 3.6. Note that both comp(𝑠𝑖 , 𝛾) and
comp(𝑡𝑖 , 𝛾) induce only a single run tree in A. For an arbitrary input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 ,
consider the delay-dominance game G = (A, comp(𝑡𝑖 , 𝛾), comp(𝑠𝑖 , 𝛾)).
In the following, we illustrate that Duplicator does not have a winning strategy in G. We

present a strategy ` for Spoiler in G and show afterward that it is winning, irrespective of
Duplicator’s moves. Strategy ` is a memoryless game strategy, which performs its choices only
based on the current node of the game. It does not consider the history of the play. Thus, let
a ∈ 𝑃∗ be some finite history of a play in G. Due to the structure of A and the definition of 𝑡𝑖 ,
no existential transitions occur in A when reading comp(𝑡𝑖 , 𝛾). Consequently, Spoiler’s choices
for positions of the form ((𝑝, 𝑞), 𝑗) ∈ 𝑆∃ , are already fixed by the transition function 𝛿 of A.
More precisely, given position ((𝑝, 𝑞), 𝑗) ∈ 𝑆∃ , the set 𝛿 (𝑝, comp(𝑠𝑖 , 𝛾) 𝑗 ) is a singleton, i.e., we
have 𝛿 (𝑝, comp(𝑡𝑖 , 𝛾) 𝑗 ) = {𝑐} for some set 𝑐 ⊆ 𝑄 of states of A, and we define

` (a, ((𝑝, 𝑞), 𝑗)) = ((𝑝, 𝑞, 𝑐), 𝑗) .

For positions of the form ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗) ∈ 𝑆∀ , in contrast, Spoiler is, in some situations,
required to make choices regarding the successor node ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗) since, due to the structure
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(𝑞0, 𝑞0), 0 (𝑞0, 𝑞0, {𝑞5}), 0 (𝑞0, 𝑞0, {𝑞5}, {𝑞1}), 0 (𝑞0, 𝑞0, {𝑞5}, 𝑞1), 0 (𝑞5, 𝑞1), 1

(𝑞5, 𝑞1, {𝑞3, 𝑞5}), 1(𝑞5, 𝑞1, {𝑞3, 𝑞5}, {𝑞2}), 1(𝑞5, 𝑞1, {𝑞3, 𝑞5}, 𝑞2), 1(𝑞5, 𝑞2), 2

(𝑞3, 𝑞2), 2(𝑞5, 𝑞2, {𝑞3, 𝑞5}), 2

(𝑞5, 𝑞2, {𝑞3, 𝑞5}, {𝑞2, 𝑞3}), 2

(𝑞5, 𝑞2, {𝑞3, 𝑞5}, 𝑞2), 2

(𝑞5, 𝑞2, {𝑞3, 𝑞5}, 𝑞3), 2

(𝑞3, 𝑞3), 3 (𝑞5, 𝑞3), 3

. . . . . .(𝑞3, 𝑞2), 3

. . .

(𝑞5, 𝑞2), 3

. . .

(𝑞3, 𝑞2, {𝑞4}), 2 (𝑞3, 𝑞2, {𝑞4}, {𝑞2, 𝑞3}), 2

(𝑞3, 𝑞2, {𝑞4}, 𝑞3), 2 (𝑞3, 𝑞2, {𝑞4}, 𝑞2), 2

(𝑞4, 𝑞2), 3(𝑞4, 𝑞3), 3

. . .. . .

Figure 3.7.: Partial game arena of the delay-dominance game G = (A, comp(𝑡𝑖 , 𝛾), comp(𝑠𝑖 , 𝛾))
from Example 3.8. Positions controlled by Spoiler are depicted as rectangles, positions with
rounded edges are controlled by Duplicator. Parts of the game arena that are not consistent
with the winning moves of Spoiler are grayed out. Positions of the form ((𝑝, 𝑞), 𝑗) that are
critical for Duplicator are highlighted in blue.

of A and the definition of 𝑠𝑖 , universal transitions can occur in A when reading comp(𝑠𝑖 , 𝛾).
However, note that only a single universal transition can occur, namely the one from 𝑞2 to
both 𝑞2 and 𝑞3. Thus, whenever 𝑐′ is not a singleton, then we have 𝑐′ = {𝑞2, 𝑞3}. Given position
((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗) ∈ 𝑆∀ , we then define

` (a, ((𝑝, 𝑞, 𝑐, 𝑐′), 𝑗) =


((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗 + 1) if 𝑐′ = {𝑞′},
((𝑝, 𝑞, 𝑐, 𝑞3), 𝑗 + 1) if 𝑞3 ∈ 𝑐′ ∧ 𝑝 = 𝑞3

((𝑝, 𝑞, 𝑐, 𝑞2), 𝑗 + 1) if 𝑞2 ∈ 𝑐′ ∧ 𝑝 ≠ 𝑞5,

The relevant part of the game arena of the delay-dominance game G is depicted in Figure 3.7.
Parts that are not consistent with Spoiler’s strategy ` are grayed out. Starting from the initial
position ((𝑞0, 𝑞0), 0), neither Duplicator not Spoiler has any choice in the first round of G,
resulting in the successor position ((𝑞1, 𝑞5), 1). In the next round, the only choice is by Duplicator
and allows for deciding whether the alternative states stay in 𝑞5 or move to 𝑞3.
First, suppose that Duplicator chooses to let the alternative states move to 𝑞3. Then, we

obtain the successor node ((𝑞3, 𝑞2), 2). In the next round, no existential transitions are possible
due to the definition of strategy 𝑠𝑖 . Hence, the first decision of the round is by Spoiler, and it
can decide whether the dominant states stay in 𝑞2 or move to 𝑞3. Since the alternative states
are in 𝑞3, Spoiler chooses 𝑞3 for the dominant states according to its strategy `. Since there
is only a single outgoing transition from 𝑞3, Duplicator does not have any choice other than
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letting the alternative states move from 𝑞3 to 𝑞4, resulting in the successor node ((𝑞4, 𝑞3), 3).
Due to the structure of A, state 𝑞4 is a sink, i.e., it cannot be left again. Hence, the alternative
states will always stay in 𝑞4 from this round on. Furthermore, similar to the previous round
for the alternative states, Spoiler does not have any choice other than letting the dominant
states move from 𝑞3 to 𝑞4. Hence, we obtain the successor node ((𝑞4, 𝑞4), 4) and, in fact, all
subsequent positions in an initial play that is consistent with the choices of Duplicator and
Spoiler described above are of the from ((𝑞4, 𝑞4), 𝑗). Hence, every such initial consistent play
in G contains exactly two visits to rejecting dominant states – namely 𝑞1 in round 1 and 𝑞3 in
round 3 – and one visit to a rejecting alternative state – namely 𝑞3 in round 2. The visit to a
rejecting dominant state in round 3 is thus not matched with a visit to a rejecting alternative
state. Consequently, such an initial consistent play does not satisfy the winning condition of the
delay-dominance game. Hence, Duplicator’s choice to let the alternative states move from 𝑞5
to 𝑞3 in round 2 results in losing the delay-dominance game G.
Next, suppose that Duplicator chooses to let the alternative states stay in 𝑞5 in round 2,

yielding the successor node ((𝑞5, 𝑞2), 2). Due to the definition of 𝑠𝑖 and the structure of A,
no existential choices occur. Hence, the only choices Duplicator and Spoiler can make in the
following concern the universal transitions in the alternative and dominant states, respectively.
In each round, Spoiler moves first. According to Spoiler’s strategy `, it chooses to let the
dominant states stay in 𝑞2 as long as the alternative states are still in 𝑞5. As soon as the
alternative states move to 𝑞3, Spoiler chooses to let the alternative states move to 𝑞3 as well.
If Duplicator never chooses to let the alternative states move to 𝑞3, this results in a play in
which the alternative states always stay in 𝑞5, while the dominant states always stay in 𝑞2.
Then, no rejecting alternative state is visited. In contrast, a single rejecting dominant state
is visited – namely 𝑞1 in round 1. This visit is clearly not matched with a visit to a rejecting
alternative state. Thus the play does not satisfy the winning condition of the delay-dominance
game, resulting in Duplicator losing the game G. If Duplicator chooses to let the alternative
states move from 𝑞5 to 𝑞3 in some round 𝑗 ≥ 3, then we obtain the ending tuple ((𝑞3, 𝑞2), 𝑗) for
this round. In the next round, Spoiler can then decide to let the dominant states move from 𝑞2
to 𝑞3, while Duplicator does not have any choice other than letting the alternative states move
from 𝑞3 to 𝑞4 due to the structure of A. This results in the successor node ((𝑞4, 𝑞3), 𝑗 + 1) and,
similar to the very first case, in nodes of the form ((𝑞4, 𝑞4), 𝑗 ′) for all rounds 𝑗 ′ > 𝑗 +1. Hence, an
initial consistent play again contains exactly two visits to rejecting dominant states – namely 𝑞1
in round 1 and 𝑞3 in round 𝑗 – and one visit to a rejecting alternative state – namely 𝑞3 in round
𝑗 + 1. The visit to a rejecting dominant state in round 𝑗 is thus not matched with a visit to a
rejecting alternative state. Consequently, such an initial consistent play does not satisfy the
winning condition of the delay-dominance game. Duplicator thus also loses the game G for this
choice. Consequently, 𝑠𝑖 does not delay-dominate 𝑡𝑖 and therefore 𝑠𝑖 is not delay-dominant.

However, there does not exist a bad prefix of delay-dominance for 𝑠𝑖 : let 𝑘 ≥ 2 be some point
in time and let [ be the prefix of comp(𝑠𝑖 , 𝛾) up to point in time 𝑘 , i.e., let [ = comp(𝑠𝑖 , 𝛾) |𝑘+1. Let
𝜎 ∈ (2𝑉 )𝜔 be an infinite extension of [ with 𝑎 ∈ 𝜎𝑘 ′ for some point in time 𝑘 ′ ≥ 𝑘 and consider
the delay-dominance game G′ = (A, comp(𝑡𝑖 , 𝛾), 𝜎). We construct a winning strategy `′ for
Duplicator in G′ as follows: for the existential choice in 𝑞2 in round 𝑘 ′, i.e., in the round
corresponding to the point in time at which 𝑎 occurs, `′ chooses to let the dominant states
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move to 𝑞4. For the universal choice in 𝑞5, it chooses to let the alternative states stay in 𝑞5 up
to round 𝑘 ′ − 1 and to let them move to 𝑞3 afterward, i.e., in round 𝑘 ′. Then, `′ ensures the
visit to a rejecting alternative state after round 𝑘 ′, namely in round 𝑘 ′ + 1. However, we show
in the following that the last rejecting dominant state occurs before round 𝑘 ′. For an initial
play 𝜌 ∈ Plays(G′, `′) that is consistent with `′ and in which the dominant states are in 𝑞2
in round 𝑘 ′, Duplicator’s strategy `′ ensures that no rejecting dominant state is visited after
round 𝑘 ′. In fact, no rejecting dominant state is visited after round 1, in which the dominant
states visited 𝑞1, since, by construction of A, state 𝑞2 is non-rejecting, it is reached in round 2,
and staying in 𝑞2 is the only possibility to be in 𝑞2 in round 𝑘 ′. Since 𝑘 ≥ 2 and 𝑘 ′ ≥ 𝑘 holds
by construction, we clearly have 1 < 𝑘 ′ and thus the last rejecting dominant state occurs
before round 𝑘 ′. For an initial play 𝜌 ∈ Plays(G′, `′) that is consistent with `′ and in which the
dominant states move from 𝑞2 to 𝑞3 in some round 𝑘 ′′ < 𝑘 ′, it follows from the construction
of A that the last rejecting dominant state is visited in round 𝑘 ′′ + 1. Hence, since 𝑘 ′′ < 𝑘 ′

holds by construction of 𝑘 ′′, the last rejecting dominant state occurs before round 𝑘 ′. Thus, in
every initial play 𝜌 ∈ Plays(G′, `′) that is consistent with `′, every visit to a rejecting dominant
state is matched with a visit to a rejecting dominant state and thus 𝜌 ∈ W holds. Therefore, `′
is indeed a winning strategy for Duplicator in the delay-dominance game G′. Since we chose
𝑘 ≥ 2 arbitrarily, there thus does not exist a bad prefix for delay-dominance in A. △

Hence, there indeed exist alternating co-Büchi automata that do not ensure bad prefixes.
We identified the universal cycle structures of the automaton A depicted in Figure 3.5 to be
critical in general for the existence of bad prefixes. Let 𝑠𝑖 be a strategy for process 𝑝𝑖 that is not
delay-dominant. Let 𝑡𝑖 be the alternative strategy and let 𝛾 ∈ (2𝐼𝑖 )𝜔 be the input sequence such
that 𝑠 ⋬A,𝛾 𝑡 holds, i.e., such that Duplicator loses the game G = (A, comp(𝑡, 𝛾), comp(𝑠, 𝛾)).
First of all, note that if postponing the point in time at which a losing rejecting dominant state,
i.e., a rejecting dominant state that is never matched with a rejecting alternative state, is visited
is not possible, then there exists a bad prefix for delay-dominance: in particular, there then
exists a point in time 𝑘max ≥ 0 such that for all strategies ` of Duplicator in G, there exists an
initial play 𝜌 ∈ Plays(G, `) that is consistent with ` and a point in time 𝑘 ′ with 0 ≤ 𝑘 ′ ≤ 𝑘max
such that 𝑓alt (𝜌𝑘 ′) ∈ 𝐹 holds, while we have 𝑓dom(𝜌𝑘 ′′) ∉ 𝐹 for all 𝑘 ′′ ≥ 𝑘 ′. Then, the prefix of
length 𝑘max of comp(𝑠𝑖 , 𝛾) is clearly a bad prefix for delay-dominance.
If, in contrast, Duplicator can postpone the point in time at which a losing visit to reject-

ing dominant state is visited, then either (i) Duplicator can delay making visits to rejecting
dominant states losing indefinitely, or (ii) there is a point in time 𝑘alt from which on all visits
to rejecting dominant states are losing but Duplicator can delay visits to rejecting dominant
states indefinitely. If the latter is the case, then Duplicator would not lose the game G. Since the
automaton A has a finite number of states, postponing the visit to losing rejecting dominant
states indefinitely requires a cycle inA that allows Duplicator to choose at an arbitrary point in
time to let a play visit a losing rejecting states after point in time 𝑘alt . However, then Duplicator
is also able to enforce that a rejecting dominant state is never visited after 𝑘alt , resulting in a
winning strategy for Duplicator inG. Hence, (ii) cannot hold, and therefore Duplicator can delay
making visits to rejecting states losing indefinitely. Since visits to rejecting dominant states are
losing if they are not answered with a visit to a rejecting alternative state eventually, it thus
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(a) Universal cycle structure CS∀ .
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Figure 3.8.: Schematic illustration of both types of universal cycle structures, CS∃ and C
L
∀ . The

sets of states corresponding to the structures are highlighted in blue. The transition labels are
omitted for readability. The labels of violet transitions differ from those of black transitions.

follows that Duplicator can delay the point in time at which no rejecting alternative states are
visited anymore indefinitely. If Duplicator could enforce infinitely many rejecting alternative
states, then Duplicator would have a winning strategy in G. Hence, Duplicator can enforce the
visit to indefinitely many non-rejecting alternative states before the last rejecting alternative
state. Since A has only a finite number of states, this thus requires a cycle structure CS∀ in A
which is entered when reading comp(𝑡𝑖 , 𝛾) such that Duplicator can choose to either enforce
all plays to stay in the cycle structure in the alternative states or to leave it. Furthermore, all
states in the cycle structure are non-rejecting, while a finite number of rejecting states, but at
least one, is visited after leaving the cycle structure CS∀ . Since Duplicator controls the universal
transitions for the alternative strategy, the cycle structure is thus universal in the sense that the
transitions to either stay in the cycle structure or to leave it are universal. An illustration of
such a cycle structure is depicted in Figure 3.8a. In the automaton from Example 3.8 depicted in
Figure 3.5, state 𝑞5 represents such a cycle structure.
Furthermore, if there would be a point in time 𝑘 ≥ 0 such that Duplicator can enforce that

no rejecting dominant state is visited after this point in time 𝑘 , then Duplicator would clearly
win the game G since it could choose to let the alternative states stay in the cycle structure up
to point in time 𝑘 and to let them then leave the cycle structure, resulting in at least one visit to
a rejecting alternative state after point in time 𝑘 . Thus, Spoiler is able to delay the last visit to a
rejecting dominant state indefinitely as well. Therefore, there exists an analogous universal
cycle structure C∀ in the automaton, which is entered when reading comp(𝑠𝑖 , 𝛾). Furthermore,
there exists a pending visit to a rejecting dominant state, i.e., a visit to a rejecting dominant state
that has not been matched with a visit to a rejecting alternative state so far. Otherwise, it would
be winning for Duplicator to enforce that the alternative states stay in the cycle structure CS∀ ,
which is entered when reading comp(𝑡𝑖 , 𝛾), forever. In the automaton from Example 3.8 depicted
in Figure 3.5, state 𝑞2 represents such a cycle structure. As long as the cycle structure C∀ that is
reached when reading comp(𝑠𝑖 , 𝛾) cannot be left irrespective of the moves of Spoiler for some
infinite extension of a finite prefix of comp(𝑠𝑖 , 𝛾), i.e., as long as C∀ is of the form as the one
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depicted in Figure 3.8a, the bad prefix property for delay-dominance is still satisfied. Analogous
to the explicit case in Example 3.8, we can show that it is neither winning for Duplicator to
choose to let the alternative states stay in the cycle structure C∀ forever nor to let them leave
the cycle structure eventually. If, however, analogous to the transition with 𝑎 from 𝑞2 to 𝑞5
in the automaton from Example 3.8 depicted in Figure 3.5, there exists the possibility that
Duplicator enforces to leave the cycle structure and to visit only a finite number of rejecting
states afterward, the bad prefix property for delay-dominance is not guaranteed. Such a cycle
structure CL∀ is schematically depicted in Figure 3.8b. The violet transitions denote the possibility
for Duplicator to enforce to leave the cycle structure as they are labeled differently than the
black transitions. Similar to the transition with 𝑎 from 𝑞2 to 𝑞5 in Example 3.8, they thus allow
for infinite extensions of every finite prefix of comp(𝑠𝑖 , 𝛾) for which Duplicator has winning
strategy in the respective delay-dominance game.
Therefore, the combination of cycle structures as depicted in Figure 3.8 are critical for the

bad prefix property for delay-dominance. However, in many cases, such structures do not occur
in alternating co-Büchi automata that are constructed from an LTL formula with standard
algorithms. For instance, the automaton A from Figure 3.5 does not feature rejecting states
that lie in cycles. Thus, in particular, no branch of a run tree of A can contain infinitely many
visits to rejecting states, and consequently, A accepts every infinite word over 2{𝑎,𝑏} . More
precisely, A describes the LTL formula true. However, standard algorithms would never yield
such a peculiar automaton as A when constructing an alternating co-Büchi automaton for the
formula true. In particular, for every safety specification, there exists an alternating co-Büchi
automaton that ensures bad prefixes for delay-dominance:

Lemma 3.4. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . If 𝜑 is a safety property, then
there exists an alternating co-Büchi automatonA𝜑 with L(A𝜑 ) = L(𝜑) that ensures bad prefixes
for delay-dominance.

Proof. Suppose that 𝜑 is a safety property. Then, there exists an alternating co-Büchi automaton
A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ) with L(A𝜑 ) = L(𝜑) and a single rejecting sink, i.e., with a single state 𝑞 ∈ 𝑄
such that 𝐹 = {𝑞} and such that (𝑞, ], 𝑞) ∈ 𝛿 holds for all ] ∈ 2𝑉 , while we have (𝑞, ], 𝑞′) ∉ 𝛿 for
all ] ∈ 2𝑉 and all 𝑞′ ∈ 𝑄 with 𝑞 ≠ 𝑞′. Hence, a branch of a run tree of A𝜑 induced by an infinite
sequence 𝜎 ∈ 2𝑉 either visits no rejecting state at all or it visits infinitely many rejecting states.
Let 𝜎 ∈ 2𝑉 be some infinite sequence such that Duplicator loses the delay-dominance game
G = (A𝜑 , 𝜎

′, 𝜎) for some infinite sequence 𝜎 ′ ∈ (2𝑉 )𝜔 . Then, it follows from the structure ofA𝜑

that for all strategies ` of Duplicator, there exists some initial consistent play 𝜌 ∈ Plays(G, `)
such that 𝑓dom(𝜌𝑘 ) = 𝑞 holds for some point in time 𝑘 ≥ 0, while we have 𝑓alt (𝜌𝑘 ′) ≠ 𝑞 for all
𝑘 ′ ≥ 0. Hence, 𝜌 visits 𝑞 in its dominant states, while it never reaches 𝑞 in its rejecting states.
Since 𝑞 is a rejecting sink, 𝜌 thus visits infinitely many rejecting dominant states, while it does
not visit any rejecting alternative states. If there is no point in time 𝑘 ≥ 0 such that for all
strategies ` of Duplicator, there exists some initial consistent play 𝜌 ∈ Plays(G, `) such that
𝑓dom(𝜌𝑘 ) = 𝑞 holds, then Duplicator can delay visiting 𝑞 in the dominant states indefinitely.
Yet, since A𝜑 has a finite number of states, it thus follows that Duplicator can also enforce
that 𝑞 is never entered; contradicting that Duplicator loses the game G. Hence, there is a point
in time 𝑘 ≥ 0 such that for all strategies ` of Duplicator, there exists some initial consistent
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play 𝜌 ∈ Plays(G, `) such that 𝑓dom(𝜌𝑘 ) = 𝑞 holds. Let [ ∈ (2𝑉 )∗ be the prefix of 𝜎 up to
point in time 𝑘 , i.e., let [ = 𝜎 |𝑘+1. Since 𝑞 is a rejecting sink by construction of A𝜑 , it then
follows immediately that for all infinite extensions 𝜎 ′′ ∈ (2𝑉 )𝜔 of [ and all strategies ` of
Duplicator in the delay-dominance game G′ = (A𝜑 , 𝜎

′, 𝜎 ′′), there exists some initial consistent
play 𝜌 ∈ Plays(G′, `) that visits infinitely many rejecting states. Hence, Duplicator loses
the delay-dominance game G′ and therefore, since we chose the infinite extension 𝜎 ′′ of [
arbitrarily, A𝜑 ensures bad prefixes for delay-dominance. □

Furthermore, for many liveness specifications 𝜑 , there exists an alternating co-Büchi automa-
ton A𝜑 with L(A𝜑 ) = L(𝜑) that ensures bad prefixes for delay-dominance as well since, in
general, the existence of critical automaton structures is quite rare. Nevertheless, we cannot
exclude that there exist liveness specification that enforce such critical cycle structures and thus
enforce an alternating co-Büchi automaton that does not ensure bad prefixes. We, however,
have not encountered such a specification so far. Hence, delay-dominance is a suitable notion
of best effort for compositional synthesis: it is compositional for many properties and the bad
prefix criterion even allows us to determine whether or not the parallel composition of two
delay-dominant strategies will be delay-dominant before synthesizing and then composing them
by analyzing the specification automaton. Therefore, we introduce an automaton construction
for synthesizing delay-dominant strategies for individual processes in the following section,
which can then be utilized for compositional distributed synthesis.

3.4. Synthesizing Delay-Dominant Strategies
In this section, we introduce how delay-dominant strategies can be synthesized using existing
tools for synthesizing winning strategies. We focus on utilizing bounded synthesis [FS13] tools
such as BoSy [FFT17]. Mostly, we use bounded synthesis (see Section 2.8.1) as a black box
procedure throughout this section. A crucial observation regarding bounded synthesis that we
utilize, however, is that it translates the given specification 𝜑 into an equivalent universal co-
Büchi automatonA𝜑 , i.e., a universal co-Büchi automatonwithL(A𝜑 ) = L(𝜑) and then derives
a strategy such that, for every input sequence, the runs of A𝜑 induced by the computation of
the strategy on the input sequence visit only finitely many rejecting states.
To synthesize delay-dominant strategies instead of winning ones, we can thus use existing

bounded synthesis algorithms by replacing the universal co-Büchi automatonA𝜑 that represents
the specification 𝜑 with a universal co-Büchi automaton encoding delay-dominance, i.e., with
an automaton A𝑖,A𝜑

such that its runs induced by the computations of a delay-dominant
strategy on all input sequences visit only finitely many rejecting states. This idea is similar
to the approach for synthesizing remorsefree dominant strategies (see Section 2.8.2). The
automaton for recognizing delay-dominant strategies, however, differs inherently from the one
for recognizing remorsefree dominant strategies.
The automaton construction consists of several steps. An overview is given in Figure 3.9.

Since delay-dominance is not defined on the LTL specification 𝜑 itself but on an equivalent au-
tomaton, we first translate 𝜑 into an alternating co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑).
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Figure 3.9.: Overview of the construction of a universal co-Büchi automaton A𝑖,A𝜑
recognizing

delay-dominant strategies for the alternating co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑).
The lower parts of the boxes list the automaton type, i.e. alternating or universal, and the
alphabet, i.e., with or without primed variables.

For this, we utilize well-known algorithms for translating LTL formulas into equivalent alter-
nating Büchi automata as well as the duality of the Büchi and co-Büchi acceptance condition
and of nondeterministic and universal branching (see Section 2.5.2). Similarly, we construct
an alternating co-Büchi automaton A¬𝜑 with L(A¬𝜑 ) = L(¬𝜑) from ¬𝜑 . The centerpiece of
the automaton construction is an alternating co-Büchi automaton B𝑖,A𝜑

constructed from A𝜑

and A¬𝜑 that recognizes whether a strategy 𝑠𝑖 for process 𝑝𝑖 delay-dominates some alternative
strategy 𝑡𝑖 for 𝑝𝑖 forA𝜑 . Then, B𝑖,A𝜑

is translated into an equivalent universal co-Büchi automa-
tonU𝑖,A𝜑

with L(U𝑖,A𝜑
) = B𝑖,A𝜑

, for example with the Miyano-Hayashi algorithm [MH84].
Lastly, we translateU𝑖,A𝜑

into a universal co-Büchi automaton that accounts for requiring a
strategy 𝑠𝑖 to delay-dominate all other strategies 𝑡𝑖 for 𝑝𝑖 and not only a particular one utilizing
universal projection. In the remainder of this section, we describe all steps of the construction
in detail and prove their correctness.

3.4.1. Construction of the Basic ACA for Delay-Dominance
From the two alternating co-Büchi automata A𝜑 and A¬𝜑 , we construct an alternating co-
Büchi automaton B𝑖,A𝜑

that recognizes whether Duplicator has a winning strategy in the
delay-dominance game (A𝜑 , 𝜎, 𝜎

′) and thus, in particular, whether strategy 𝑠𝑖 for process 𝑝𝑖
delay-dominates an alternative strategy 𝑡𝑖 for 𝑝𝑖 on some input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 for A𝜑 .
The construction relies on the observation that Duplicator has a winning strategy in the delay-
dominance game G = (A𝜑 , 𝜎, 𝜎

′) if, and only if, either (i) 𝜎 violates 𝜑 or (ii) there exists a
winning strategy ` in the game G such that every initial play of G that is consistent with `

visits only finitely many rejecting dominant state.

Lemma 3.5. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ) be an
alternating co-Büchi automaton with L(A𝜑 ) = L(𝜑). Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 be sequences. Then,
Duplicator has a winning strategy in the delay-dominance game G = (A𝜑 , 𝜎, 𝜎

′) if, and only if,
either (i) we have 𝜎 ̸ |= 𝜑 , or (ii) there exists a winning strategy ` in the game G such that for
every initial play 𝜌 ∈ Plays(G, `) that is consistent with `, there is a point in time 𝑘 ≥ 0 such that
𝑓dom(𝜌𝑘 ′) ∉ 𝐹 holds for all 𝑘 ′ ≥ 𝑘 .
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Proof. First, assume that Duplicator has a winning strategy ` for in the delay-dominance game
G = (A𝜑 , 𝜎, 𝜎

′). If every initial play 𝜌 ∈ Plays(G, `) that is consistent with ` contains only
finitely many visits to rejecting dominant states, then (ii) holds and thus the claim follows.
Otherwise, we have infinitely many visits to rejecting dominant states for some initial play
𝜌 ∈ Plays(G, `) that is consistent with `. Let `′ be some strategy for Spoiler such that 𝜌 is
consistent with both ` and `′. Note that, by construction of the delay-dominance game, only
the part of `′ that defines the universal choices in A𝜑 that occur when reading 𝜎 ′ affects
whether or not 𝜌 contains infinitely many visits to rejecting dominant states. Let `′′ be a
strategy for only these choices that coincides with the ones defined by `′. Then, for all full
strategies ˆ̀ for Spoiler that coincide with `′′ on the universal choices in A𝜑 for 𝜎 ′, the initial
play 𝜌 ′ that is consistent with both ` and ˆ̀ contains infinitely many visits to rejecting dominant
states. Since ` is a winning strategy for Duplicator by assumption and by construction of the
delay-dominance game, it follows that every such initial play 𝜌 ′ contains infinitely many visits
to rejecting alternative states. Thus, intuitively, independent of the existential choices in A𝜑

for 𝜎 , strategy ` can enforce infinitely many rejecting alternative states.
By Lemma 3.2, for all such full strategies ˆ̀ for Spoiler, there exists a run tree 𝑟 of A𝜑

induced by 𝜎 that reflects the existential choices of A𝜑 for 𝜎 defined by ˆ̀. Moreover, we have
BranchesInf (𝑟 ) =

{
𝜌alt | 𝜌 ∈ Plays(G, ˆ̀)

}
. Thus, by definition of the projected alternative play,

we obtain that for all strategies ˆ̀ for Spoiler extending `′′, the initial play 𝜌 ′ that is consistent
with both ` and ˆ̀ is a branch of 𝑟 . Since 𝜌 ′ contains infinitely many rejecting alternative states,
it follows that all such run trees 𝑟 contain a branch with infinitely many visits to rejecting
states. Moreover, since `′′ does not fix any decision regarding the choices occurring in A𝜑

when reading 𝜎 , indeed every run tree of A𝜑 induced by 𝜎 contains a branch with infinitely
many visits to rejecting states. Therefore, by definition of alternating co-Büchi automata, A𝜑

rejects 𝜎 . Since L(A𝜑 ) = L(𝜑) holds by assumption, 𝜎 ̸ |= 𝜑 follows. Hence, (i) holds.
Second, let (i) or (ii) hold. If (ii) holds, then it follows immediately that Duplicator has a

winning strategy in the delay-dominance game G. Thus, let (i) hold, i.e., we have 𝜎 ̸ |= 𝜑 .
Then, since L(A𝜑 ) = L(𝜑) holds by assumption, A𝜑 rejects 𝜎 and hence for all run trees
of A𝜑 induced by 𝜎 , there exists a branch that visits infinitely many rejecting states. Let
𝑟 ∈ Runs(A𝜑 , 𝜎) be some run tree of A𝜑 induced by 𝜎 . By Lemma 3.3, there exists a strategy `

for Spoiler in the delay-dominance game G that reflects the existential choices in A𝜑 when
reading 𝜎 defined by `. Moreover, we have BranchesInf (𝑟 ) =

{
𝜌alt | 𝜌 ∈ Plays(G, `)

}
. Note that

only the part of ` controlling the existential choices of A𝜑 when reading 𝜎 is relevant for this
property. Thus, in fact, there are strategies `𝑟 for all run trees 𝑟 ofA𝜑 induced by 𝜎 that coincide
for the other part of a strategy for Spoiler, i.e., the universal choices of A𝜑 when reading 𝜎 ′.
LetM be the set of such strategies `𝑟 of all run trees 𝑟 ∈ Runs(A𝜑 , 𝜎). As shown above, the
sequences of alternative states in consistent plays of such strategies `𝑟 ∈ M coincide with
branches of 𝑟 . Thus, since every run 𝑟 contains a branch 𝑏 that visits infinitely many rejecting
states, there also exists an initial play 𝜌𝑟 ∈ Plays(G, `𝑟 ) of the delay-dominance game G that is
consistent with `𝑟 and which contains infinitely many rejecting alternative states. Note that
since the number of rejecting alternative states is only affected by the alternative states of the
play and since all strategies `𝑟 coincide on the universal choices of A𝜑 when reading 𝜎 ′, there
are, in particular, such plays 𝜌𝑟 that all coincide in the dominant states. Moreover, there is a
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set P of such plays such that for every two plays 𝜌, 𝜌 ′ ∈ P that coincide in the alternative
states up to point in time 𝑘 ≥ 0 as well as in the previous decisions for the alternative states in
the current round 𝑘 + 1 of the game G, the plays 𝜌 and 𝜌 ′ coincide on the universal decision
for the alternative state in round 𝑘 + 1 as well: suppose that this is not the case. Then, there
is a finite prefix a ∈ 𝑃𝜔 of a play that coincides with 𝜌 and 𝜌 ′ up to point in time |a | − 1 and
that requires a universal choice between options 𝑢 and 𝑢′ in the next step. Moreover, suppose
that 𝑢 is the correct extension of a for a play 𝜌 , while 𝑢′ is the correct one for a play 𝜌 ′, i.e., the
respective other choice does not yield a play with infinitely many rejecting alternative states.
But then, there is also the run tree 𝑟 that, depending on the universal choice 𝑢 vs. 𝑢′ makes the
existential choices that causes a play with only finitely many rejecting alternative states, i.e., 𝜌
for 𝑢′ and 𝜌 ′ for 𝑢. Since this is the case for all such situations and since there are run trees for
all possible combinations of existential choices, there thus exists a run tree whose branches
all visit only finitely many rejecting states; contradicting the assumption. Hence, there indeed
exists such a set P of plays of the delay-dominance game G such that (i) all plays 𝜌 ∈ P contain
infinitely many rejecting alternative states, (ii) all plays 𝜌 ∈ P coincide on the dominant states,
and (iii) where for every two plays 𝜌, 𝜌 ′ ∈ P that coincide in the alternative states up to point in
time 𝑘 ≥ 0 as well as in the previous decisions for the alternative states in the current round 𝑘 +1
of the game, 𝜌 and 𝜌 ′ coincide on the universal decision for the alternative state in round 𝑘 + 1
as well. Thus, in particular, for every finite prefix of a play in P, the next universal decision
of A𝜑 when reading 𝜎 can always be made solely based on the information about the history.
Hence, we construct a strategy `′ for the universal choices occurring in A𝜑 when reading 𝜎
from P by defining the respective choice defined by the plays in P for every finite prefix. But
then, since all plays in P contain infinitely many rejecting alternative states, every initial play
that is consistent with `′ does so as well. Since the existential choices occurring in A𝜑 when
reading 𝜎 ′ do not influence the alternative states of a play, it follows that for all strategies ` of
Duplicator that coincides with `′ on the universal choices occurring in A𝜑 when reading 𝜎 ,
all consistent initial plays contain infinitely many rejecting alternative states. Thus, all such
strategies ` are winning strategies for Duplicator in the game G and therefore Duplicator wins
the delay-dominance game G. □

Due to this observation, the alternating co-Büchi automaton B𝑖,A𝜑
consists of two parts, one

accounting for (i) and one accounting for (ii), and guesses nondeterministically in the initial
state which part is entered when reading some sequence 𝜎 ∈ (2𝑉 )𝜔 . The alternating co-Büchi
automaton A¬𝜑 with L(A¬𝜑 ) = L(¬𝜑) clearly accounts for (i). For (ii), we intuitively build
the product of two copies of the alternating co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑), one
for each of the considered process strategies 𝑠𝑖 and 𝑡𝑖 . Note that similar to the change of control
for 𝑡𝑖 in the delay-dominance game, we consider the dual transition function of A𝜑 , i.e., the
one where conjunctions and disjunctions are swapped, for the copy ofA𝜑 for 𝑡𝑖 . We keep track
of whether we encountered a situation in which a rejecting state was visited for 𝑠𝑖 while it was
not for 𝑡𝑖 . This allows for defining the set of rejecting states of B𝑖,A𝜑

.
Note that we need to allow for differentiating valuations of output variables computed by

strategies 𝑠𝑖 and 𝑡𝑖 on the same input sequence. Therefore, we extend the alphabet of B𝑖,A𝜑
.

In addition to the set 𝑉 of all variables of the system, we consider the set 𝑂 ′𝑖 := {𝑜 ′ | 𝑜 ∈ 𝑂𝑖}
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of primed output variables of system process 𝑝𝑖 ∈ 𝑃−, where every output variable is marked
with a prime to obtain a fresh symbol. The set 𝑉 ′𝑖 of primed variables of 𝑝𝑖 is then given by
𝑉 ′𝑖 := 𝐼𝑖 ∪ 𝑂 ′𝑖 . Intuitively, the output variables 𝑂𝑖 depict the behavior of the possibly delay-
dominant strategy 𝑠𝑖 , while the primed output variables𝑂 ′𝑖 depict the behavior of the alternative
strategy 𝑡𝑖 . The alphabet of B𝑖,A𝜑

is then given by𝑉 ∪𝑂 ′𝑖 . Note that this is equivalent to𝑉 ∪𝑉 ′𝑖
since the input variables are never primed to ensure that we consider the same input sequence
for both strategies. In the following, we use the functions pr : 𝑉𝑖 → 𝑉 ′𝑖 and unpr : 𝑉 ′𝑖 → 𝑉𝑖
to switch between primed variables and normal ones: given a valuation 𝑎 ∈ 𝑉𝑖 of variables,
pr (𝑎) replaces every output variable 𝑜 ∈ 𝑂𝑖 occurring in 𝑎 with its primed version 𝑜 ′. For a
valuation 𝑎 ∈ 𝑉 ′𝑖 , unpr (𝑎) replaces every primed output variable 𝑜 ′ ∈ 𝑂 ′𝑖 occurring in 𝑎 with its
regular unprimed version 𝑜 . We extend pr and unpr to finite and infinite sequences as usual.
The alternating co-Büchi automaton B𝑖,A𝜑

is then constructed as follows:

Definition 3.6.
Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let 𝑝𝑖 ∈ 𝑃− be some system process.
Let A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ) and A¬𝜑 = (𝑄𝑐 , 𝑞𝑐0, 𝛿

𝑐 , 𝐹𝑐) be alternating co-Büchi automata with
L(A𝜑 ) = L(𝜑) and L(A¬𝜑 ) = L(¬𝜑), respectively. For 𝑝𝑖 , we construct the alternating
co-Büchi automaton B𝑖,A𝜑

= (𝑄A, 𝑄A
0 , 𝛿

A, 𝐹A) with alphabet 𝑉 ∪𝑂 ′𝑖 as follows:

• 𝑄A := (𝑄 ×𝑄 × {⊤,⊥}) ∪𝑄𝑐

• 𝑄A
0 = (𝑞0, 𝑞0,⊤)

• 𝐹A = (𝑄 ×𝑄 × {⊥}) ∪ 𝐹𝑐

• 𝛿A : ((𝑄 ×𝑄 × {⊤,⊥}) ∪𝑄𝑐) × 2𝑉∪𝑂 ′𝑖 → (𝑄 ×𝑄 × {⊤,⊥}) ∪𝑄𝑐 with

𝛿A(𝑞𝑐 , ]̃) = 𝛿𝑐 (𝑞𝑐 , ]′) for 𝑞𝑐 ∈ 𝑄𝑐

𝛿A((𝑞0, 𝑞0,⊤), ]̃) = 𝛿𝑐 (𝑞0, ]′) ∨
∧

𝑐∈𝛿 (𝑞0,]′ )

∨
𝑐′∈𝛿 (𝑞0,] )

∧
𝑞′∈𝑐′

∨
𝑝′∈𝑐

𝜗 (𝑝′, 𝑞′,⊤)

𝛿A((𝑝, 𝑞,𝑚), ]̃) =
∧

𝑐∈𝛿 (𝑝,]′ )

∨
𝑐′∈𝛿 (𝑞,] )

∧
𝑞′∈𝑐′

∨
𝑝′∈𝑐

𝜗 (𝑝′, 𝑞′,𝑚)

where we have ] = ]̃ ∩𝑉 and ]′ = unpr (]̃ ∩𝑉𝑖) ∪ (]̃ ∩ (𝑉 \𝑉𝑖) as well as where we define
𝜗 : (𝑄 ×𝑄 × {⊤,⊥}) → 𝑄 ×𝑄 × {⊤,⊥} by

𝜗 (𝑝, 𝑞,𝑚) =


(𝑝, 𝑞,⊥) if 𝑝 ∉ 𝐹 , 𝑞 ∈ 𝐹 , and𝑚 = ⊤
(𝑝, 𝑞,⊥) if 𝑝 ∉ 𝐹 and𝑚 = ⊥
(𝑝, 𝑞,⊤) otherwise

Indeed, the alternating co-Büchi automaton B𝑖,A𝜑
constructed as defined above consists

of two parts: the one defined by states of the form (𝑝, 𝑞,𝑚), and the one defined by the
states of A¬𝜑 . By definition of 𝛿A, these parts are only connected in the initial state of B𝑖,A𝜑

,
where a nondeterministic transition to the respective successors in both parts ensures that
choosing nondeterministically whether (i) or (ii) will be satisfied is possible, i.e., whether (i) the



3.4. Synthesizing Delay-Dominant Strategies 93

alternative strategy 𝑡𝑖 violates 𝜑 on input sequence 𝛾 ∈ (2𝐼𝑖 ) or (ii) strategy 𝑠𝑖 delay-dominates
the alternative strategy 𝑡𝑖 on input sequence 𝛾 and for every initial play that is consistent with
Duplicator’s winning strategy, there exists a point in time such that no rejecting dominant
state is visited from this point in time on. For states of the form (𝑝, 𝑞,𝑚), the mark𝑚 ∈ {⊤,⊥}
determines whether there are pending visits to rejecting states in the copy ofA𝜑 for the possibly
delay-dominant strategy, i.e., the second component 𝑞 of (𝑝, 𝑞,𝑚). A pending visit to a rejecting
state is one that is not yet matched with a visit to a rejecting state in the copy of A𝜑 for the
alternative strategy. Therefore, the function 𝜗 defines that if a visit to a rejecting dominant
state that is not immediately matched with a rejecting alternative state is encountered, the
mark is set to ⊥. As long as no rejecting alternative state is visited, the mark stays set to ⊥.
If a matching rejecting alternative state occurs, however, the mark is reset to ⊤, indicating
that the pending visit to a rejecting visit has been matched and is thus not pending anymore.
States of B𝑖,A𝜑

marked with ⊥ are then defined to be rejecting states, ensuring that a visit to a
rejecting dominant state is not pending forever.
Including an alternating co-Büchi automaton A¬𝜑 that recognizes sequences satisfying the

negated specification into B𝑖,A𝜑
is necessary to, intuitively, allow a sequence 𝜎 to induce

visits to rejecting states that are not immediately matched with a rejecting state induced
by an alternative sequence 𝜎 ′, but that are matched eventually, infinitely often. In such a
case, both 𝜎 and 𝜎 ′ cause infinitely many visits to rejecting states in A𝜑 and, in particular,
Duplicator wins the delay-dominance game (A𝜑 , 𝜎

′, 𝜎) due to the definition of the winning
conditionW. Since the rejecting states induced by 𝜎 are not matched immediately, however,
the automaton B𝑖,A𝜑

contains rejecting states for the visits of rejecting states of A𝜑 caused
by 𝜎 due to the definition of 𝜗 . Since 𝜎 causes infinitely many visits to rejecting states in A𝜑 ,
the part of the automaton B𝑖,A𝜑

that does not represent A¬𝜑 thus also visits infinitely many
rejecting states when confronted with 𝜎 and 𝜎 ′, resulting in rejection. To accurately capture
delay-dominance, we thus add the part corresponding to A¬𝜑 , which recognizes such cases
and enforces acceptance, to B𝑖,A𝜑

.

Example 3.9. Consider the message-sending system from the running example and the alter-
nating co-Büchi automatonA𝜑 depicted in Figure 3.2, which describes the system specification.
An alternating co-Büchi automaton A¬𝜑 for the negated specification is similar to A𝜑 , yet, re-
jecting and non-rejecting states are interchanged. That is, states 𝑞0, 𝑞1, and 𝑞2 are non-rejecting
in A¬𝜑 while state 𝑞3 is rejecting. The (partial) alternating co-Büchi automaton B1,A𝜑

for
system process 𝑝1 constructed from A𝜑 and A¬𝜑 according to Definition 3.6 is depicted in
Figure 3.10. The part of B1,A𝜑

that corresponds to A¬𝜑 is omitted for the sake of readability.
Since the mark ⊤ or ⊥ of a state of the displayed part of B1,A𝜑

can be uniquely inferred from
the fact that a state is non-rejecting or rejecting, respectively, we omit it from the state names.
Note that the displayed part of B1,A𝜑

, i.e., the product automaton part, rejects a word
𝜎 ∈ (2{𝑚1,𝑚2,𝑚′1})𝜔 if, and only if, it contains𝑚2 at some point in time 𝑘 ≥ 0 and𝑚′1 at some
(possibly different) point in time 𝑘 ′ ≥ 0, while it does not contain 𝑚1 for all points in time
𝑘 ′′ ≥ 0 with 𝑘 ′′ ≤ max{𝑘, 𝑘 ′}. Furthermore, by construction, the part of B1,A𝜑

that corresponds
to A¬𝜑 rejects a word 𝜎 ∈ (2{𝑚1,𝑚2,𝑚′1})𝜔 if, and only if, 𝜎 |= 𝑚2 ∧ 𝑚′1 holds. Thus, A¬𝜑 is
more restrictive than the displayed part of B1,A𝜑

in the sense that it rejects all words that are
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𝑞0, 𝑞0

𝑞0, 𝑞1

𝑞1, 𝑞0

𝑞2, 𝑞3

𝑞3, 𝑞2

𝑞1, 𝑞1

𝑞2, 𝑞2

𝑞3, 𝑞3

𝑞3, 𝑞3

A¬𝜑

¬𝑚1 ∧ ¬𝑚2
∧¬𝑚′1

𝑚1 ∧𝑚2 ∧𝑚′1

𝑚1 ∧𝑚2 ∧ ¬𝑚
′
1

𝑚1 ∧ ¬
𝑚2 ∧𝑚

′
1

𝑚
1
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𝑚
2
∧ ¬

𝑚
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¬𝑚1 ∧𝑚2 ∧𝑚 ′1¬𝑚1 ∧𝑚2 ∧ ¬𝑚 ′
1

¬𝑚
1 ∧ ¬𝑚

2 ∧
𝑚 ′1

¬𝑚2 ∧ ¬𝑚′1
𝑚
2 ∧𝑚 ′

1

¬𝑚2 ∧𝑚 ′
1

𝑚
2 ∧ ¬

𝑚 ′1

¬𝑚1 ∧ ¬𝑚2

𝑚 1∧
𝑚 2

𝑚 1∧
¬𝑚 2

¬𝑚
1
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2

¬𝑚′1
𝑚 ′1

¬𝑚1

𝑚
1

¬𝑚2
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¬𝑚1 ∧ ¬𝑚′1

𝑚
1
∧𝑚
′ 1

¬𝑚1 ∧𝑚 ′1

𝑚
1 ∧ ¬𝑚 ′1

⊤

⊤

Figure 3.10.: Alternating co-Büchi automaton B1,A𝜑
for the running example. The part of the

automaton that corresponds to A¬𝜑 is omitted for the sake of readability. Since the mark ⊤
or ⊥ of a state of the displayed part of B1,A𝜑

can uniquely inferred from the fact that a state is
non-rejecting or rejecting, respectively, we omit it from the state names.

rejected by the displayed part of B1,A𝜑
as well as some additional words, namely those that

contain both𝑚2 and𝑚′1 but also contain𝑚1 before or at the same time as both𝑚2 and𝑚′1 have
occurred. Since both parts of B1,A𝜑

are only connected in the initial state and since we use
an existential transition for this connection, it thus follows that the overall automaton B1,A𝜑

rejects a word 𝜎 ∈ (2{𝑚1,𝑚2,𝑚′1})𝜔 if, and only if, it contains𝑚2 at some point in time 𝑘 ≥ 0
and𝑚′1 at some (possibly different) point in time 𝑘 ′ ≥ 0, while it does not contain𝑚1 for all
points in time 𝑘 ′′ ≥ 0 with 𝑘 ′′ ≤ max{𝑘, 𝑘 ′}; meeting our intuition that B1,A𝜑

accepts words
that satisfy the specification 𝑚1 ∧ 𝑚2 as fast as possible. △

The alternating co-Büchi automaton B𝑖,A𝜑
constructed from the alternating co-Büchi au-

tomata A𝜑 and A¬𝜑 according to Definition 3.6 is sound and complete in the sense that it
recognizes whether or not Duplicator has a winning strategy in an delay-dominance game. That
is, given a process 𝑝𝑖 and two infinite words 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 with 𝜎 ∩ (𝑉 \𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \𝑂𝑖),
the automaton B𝑖,A𝜑

accepts the infinite word 𝜎 ′ ∪ pr (𝜎 ∩𝑂𝑖) if, and only if, Duplicator wins
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the delay-dominance game G = (A𝜑 , 𝜎, 𝜎
′). The main reason for soundness and completeness

is that a run tree of B𝑖,A𝜑
induced by 𝜎 ′ can be translated into a strategy for Duplicator in

the delay-dominance game G and vice versa since, by construction, both define the existential
choices in A𝜑 for 𝜎 ′ and the universal choices in A𝜑 for 𝜎 . First, we focus on soundness. From
the above observation regarding the connection of run trees of B𝑖,A𝜑

and strategies in G, it
follows that for a run tree of B𝑖,A𝜑

whose branches all visit only finitely many rejecting states,
there exists a strategy for Duplicator in the delay-dominance game G that ensures that for all
consistent plays either 𝜎 ̸ |= 𝜑 holds or, by construction of 𝜗 and 𝛿A, every rejecting dominant
state is matched with a rejecting alternative state eventually. Formally:

Lemma 3.6. Let 𝜑 be an LTL formula over atomic propositions𝑉 . Let 𝑝𝑖 ∈ 𝑃− be a system process.
LetA𝜑 andA¬𝜑 be alternating co-Büchi automata with L(A𝜑 ) = L(𝜑) and L(A¬𝜑 ) = L(¬𝜑).
Let B𝑖,A𝜑

be the alternating co-Büchi automaton constructed from A𝜑 and A¬𝜑 according to
Definition 3.6. Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 be sequences with 𝜎 ∩ (𝑉 \𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \𝑂𝑖). If B𝑖,A′𝜑 accepts
𝜎 ′ ∪ pr (𝜎 ∩𝑂𝑖), then Duplicator wins the delay-dominance game (A𝜑 , 𝜎, 𝜎

′).

Proof. For the sake of readability, let �̂� = 𝜎 ′ ∪ pr (𝜎 ∩𝑂𝑖). Furthermore, let �̂� ′ ∈ (2𝑉 )𝜔 be the
sequence obtained from �̂� by removing all unprimed outputs of 𝑝𝑖 and by then making all
primed outputs of 𝑝𝑖 unprimed, i.e., �̂� ′ = (�̂� ∩ (𝑉 \𝑂𝑖)) ∪unpr (�̂� ∩𝑂 ′𝑖 ). Since B𝑖,A′𝜑 accepts �̂� by
assumption, there exists a run tree 𝑟 ∈ Runs(B𝑖,A𝜑

, �̂�) of B𝑖,A𝜑
induced by �̂� whose branches

all visit only finitely many rejecting states. By definition, 𝑟 defines the existential choices
occurring in B𝑖,A𝜑

when reading �̂� . Thus, in particular, 𝑟 defines the choice in the initial
state (𝑞0, 𝑞0,⊤) for, intuitively, either entering the alternating co-Büchi automaton A¬𝜑 for the
negated specification or for entering the product automaton part of B𝑖,A𝜑

.
First, suppose that 𝑟 defines to enter the alternating co-Büchi automaton A¬𝜑 . Then, by

construction of B𝑖,A𝜑
, there is a run tree 𝑟 of A¬𝜑 induced by �̂� ′ that only differs from 𝑟 in

the labeling of the root. In 𝑟 , the root is labeled with 𝑞0, while it is labeled with (𝑞0, 𝑞0,⊤)
in 𝑟 . Thus, by definition of the set 𝐹A of rejecting states of B𝑖,A𝜑

, all branches of the run tree 𝑟
visit only finitely many rejecting states as well. Hence, A¬𝜑 accepts �̂� ′ and thus we have
�̂� ′ ∈ L(A¬𝜑 ). Since L(A¬𝜑 ) = L(¬𝜑) holds by assumption, �̂� ′ ̸ |= 𝜑 follows. By definition
of �̂� , we have �̂� ∩ (𝑉 \𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \𝑂𝑖) and hence �̂� ∩ (𝑉 \𝑂𝑖) = 𝜎 ∩ (𝑉 \𝑂𝑖) follows since
𝜎 ∩ (𝑉 \ 𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \ 𝑂𝑖) holds by assumption. Furthermore, since �̂� ∩ 𝑂 ′𝑖 = pr (𝜎 ∩ 𝑂𝑖)
holds by definition of the sequence �̂� , we have unpr (�̂� ∩ 𝑂 ′𝑖 ) = 𝜎 ∩ 𝑂𝑖 . Thus, �̂� ′ = 𝜎 holds
and hence we have 𝜎 ̸ |= 𝜑 . Therefore, it follows with Lemma 3.5, that Duplicator wins the
delay-dominance game (A𝜑 , 𝜎, 𝜎

′).
Second, suppose that 𝑟 defines to enter the product automaton part of B𝑖,A𝜑

. Then, we
construct a strategy ` for Duplicator in the delay-dominance game G = (A𝜑 , 𝜎, 𝜎

′) from 𝑟 as
follows. Let a · 𝑣 be a finite sequence of positions with a ∈ 𝑃∗ and 𝑣 ∈ 𝑃 . We only define `

explicitly on sequences a · 𝑣 that can occur in the delay-dominance game G and where 𝑣 is
controlled by Duplicator; on all other sequences we define ` (a, 𝑣) = 𝑣 ′ for some arbitrary 𝑣 ′ ∈ 𝑃
that is a valid extension of a · 𝑣 . Thus, in the following we assume that a · 𝑣 is a prefix that can
occur in the game and that 𝑣 is of the form ((𝑝, 𝑞, 𝑐), 𝑗) or ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗). We map a ·𝑣 to a prefix
of a branch of the run tree 𝑟 if there is a compatible one: a compatible branch 𝑏 of 𝑟 agrees with
the finite projected play â up to point in time |a | − 1. Note her that, slightly misusing notation,
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we apply the definition of a projected play also to the finite prefix a of a play. Moreover, no
matter whether 𝑣 is of the form ((𝑝, 𝑞, 𝑐), 𝑗) or ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗), we have 𝑏 |a | = (𝑝, 𝑞,𝑚) for some
𝑚 ∈ {⊤,⊥}. If there is no compatible branch in 𝑟 , we again define ` (a, 𝑣) = 𝑣 ′ for some arbitrary
position 𝑣 ′ ∈ 𝑃 that is a valid extension of a · 𝑣 . Otherwise, the successors of (𝑝, 𝑞,𝑚) in 𝑏 define
the choice of `: by definition, the set S of successors of (𝑝, 𝑞,𝑚) satisfies 𝛿A((𝑝, 𝑞,𝑚), �̂� |a |).
Therefore, for all sets 𝑐 ∈ 𝛿 (𝑝, �̂� ′|a |), there is some set 𝑐′ ∈ 𝛿 (𝑞, �̂� |a | ∩𝑉 ) such that for all states
𝑞′ ∈ 𝑐′, there is some state 𝑝′ ∈ 𝑐 such that we have 𝜗 (𝑝′, 𝑞′,𝑚) ∈ S. Note here that we do
not distinguish between the initial state (𝑞0, 𝑞0,⊤) and other states (𝑝, 𝑞,𝑚) of B𝑖,A𝜑

since, by
assumption, the run tree 𝑟 defines the choice of entering the product automaton part of B𝑖,A𝜑

and thus the choice of the second disjunct for (𝑞0, 𝑞0,⊤) which coincides with 𝛿A for other
states (𝑝, 𝑞,𝑚). If 𝑣 = ((𝑝, 𝑞, 𝑐), 𝑗) holds, we thus define ` (a, 𝑣) = ((𝑝, 𝑞, 𝑐′𝑐), 𝑗), where the choice
of 𝑐′ is based on 𝑐 . If 𝑣 = ((𝑝, 𝑞, 𝑐, 𝑞′), 𝑗) holds, then we define ` (a, 𝑣) = ((𝑝′, 𝑞′), 𝑗 + 1), where
the choice of 𝑝′ is based on 𝑐 , 𝑐′, and 𝑞′. Since �̂� ∩𝑉 = 𝜎 and �̂� ′ = 𝜎 ′ hold, ` is indeed a strategy
for Duplicator in the delay-dominance game G.
It remains to show that ` is winning for Duplicator from the initial position 𝑣0 of G. Let

𝜌 ∈ Plays(G, `) be some initial play in G that is consistent with `. Then, by construction of `,
there is a branch 𝑏 of the run tree 𝑟 that coincides with the projected play 𝜌 in the states 𝑝 and 𝑞,
i.e., we have 𝜌 = 𝑏′, where 𝑏′ is the sequence obtained from 𝑏 when removing the mark𝑚 from
all states (𝑝, 𝑞,𝑚) of B𝑖,A𝜑

. By assumption, all branches of 𝑟 contain only finitely many visits to
rejecting states. Thus, in particular the branch 𝑏 with 𝑏′ = 𝜌 contains only finitely many visits
to rejecting states. Hence, by construction of B𝑖,A𝜑

and since, by assumption, we only consider
the product automaton part of B𝑖,A𝜑

, the branch 𝑏 thus contains only finitely many visits to
states of the form (𝑝, 𝑞,⊥). Furthermore, by definition of 𝜗 , we only have𝑚 = ⊥ for a state
(𝑝, 𝑞,𝑚) at point in time 𝑘 ≥ 0 in 𝑏 if either (i) 𝑝 ∉ 𝐹 and 𝑞 ∈ 𝐹 holds, or if (ii) 𝑝′ ∉ 𝐹 and 𝑞′ ∈ 𝐹
holds for (𝑝′, 𝑞′,𝑚′) at some point in time 𝑘 ′ < 𝑘 in 𝑏 and 𝑝′′ ∉ 𝐹 holds for (𝑝′′, 𝑞′′,𝑚′′) at all
points in time 𝑘 ′′ with 𝑘 ′ ≤ 𝑘 ′′ ≤ 𝑘 . Therefore, since 𝑏 visits only finitely many states of the
form (𝑝, 𝑞,⊥), there are only finitely many points in time, where 𝑏 visits a rejecting dominant
state while it does not visit a rejecting alternative state, and for all these points in time there
are only finitely many following steps until a rejecting alternative state is visited. Thus, in
particular, #2(𝑏′𝑘 ) ∈ 𝐹 → ∃𝑘 ′ ≥ 𝑘. #1(𝑏′𝑘 ′) ∈ 𝐹 holds for all points in time 𝑘 ≥ 0. Since we
have 𝑏′ = 𝜌 by construction, it thus follows that 𝜌 ∈ W holds. Therefore, Duplicator wins the
delay-dominance game (A𝜑 , 𝜎, 𝜎

′). □

Thus, if the alternating co-Büchi automaton B𝑖,A𝜑
constructed according to Definition 3.6

accepts some infinite sequence �̂� ∈ (2𝑉∪𝑂 ′𝑖 )𝜔 constructed from two sequences 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 that
only differ on outputs of process 𝑝𝑖 such that �̂� = 𝜎 ′ ∪ pr (𝜎 ∩𝑂𝑖) holds, then Duplicator wins
the delay-dominance game G = (A𝜑 , 𝜎, 𝜎

′), where A𝜑 is the alternating co-Büchi automaton
representing the LTL specification 𝜑 from which B𝑖,A𝜑

is constructed. Next, we consider
completeness of B𝑖,A𝜑

. Similarly to the main idea behind soundness, a winning strategy for
Duplicator in G can be translated into a run tree 𝑟 of B𝑖,A𝜑

. If 𝜎 |= 𝜑 holds, then 𝑟 visits only
finitely many rejecting states since only finitely many rejecting dominant states are visited. If
𝜎 ̸ |= 𝜑 holds, then there exists a run tree, namely one entering the part of B𝑖,A𝜑

that coincides
with A¬𝜑 , whose branches all visit only finitely many rejecting states. Formally:
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Lemma 3.7. Let 𝜑 be an LTL formula over atomic propositions𝑉 . Let 𝑝𝑖 ∈ 𝑃− be a system process.
LetA𝜑 andA¬𝜑 be alternating co-Büchi automata with L(A𝜑 ) = L(𝜑) and L(A¬𝜑 ) = L(¬𝜑).
Let B𝑖,A𝜑

be the alternating co-Büchi automaton constructed from A𝜑 and A¬𝜑 according to
Definition 3.6. Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 be sequences with 𝜎 ∩ (𝑉 \𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \𝑂𝑖). If Duplicator
wins the delay-dominance game (A𝜑 , 𝜎, 𝜎

′), then B𝑖,A′𝜑 accepts 𝜎 ′ ∪ pr (𝜎 ∩𝑂𝑖).

Proof. Let A𝜑 = (𝑄,𝑞0, 𝛿, 𝐹 ) and let B𝑖,A𝜑
= (𝑄A, 𝑞0

A, 𝛿A, 𝐹A). For the sake of readability, let
�̂� = 𝜎 ′ ∪ pr (𝜎 ∩ 𝑂𝑖). Furthermore, let �̂� ′ ∈ (2𝑉 )𝜔 be the infinite sequence obtained from �̂�

by removing all unprimed outputs of process 𝑝𝑖 and by then making all primed outputs of 𝑝𝑖
unprimed afterward, i.e., we have �̂� ′ = (�̂� ∩ (𝑉 \𝑂𝑖)) ∪ unpr (�̂� ∩𝑂 ′𝑖 ). Since Duplicator wins
the delay-dominance game G = (A𝜑 , 𝜎, 𝜎

′) by assumption, it follows with Lemma 3.5 that
either (i) 𝜎 |= 𝜑 holds or (ii) Duplicator has a winning strategy ` in the delay-dominance gameG
and for every initial play 𝜌 ∈ Plays(G, `) that is consistent with `, there is a point in time 𝑘 ≥ 0
such that 𝑓dom(𝜌𝑘 ′) ∉ 𝐹 holds for all 𝑘 ′ ≥ 𝑘 , i.e., 𝜌 does not contain any rejecting dominant states
from some point in time 𝑘 ≥ 0 on and thus it contains only finitely many visits to rejecting
dominant states. We distinguish two cases.
First, suppose that (i) holds. Then, we have 𝜎 ̸ |= 𝜑 and hence 𝜎 |= ¬𝜑 holds. Therefore,

we have 𝜎 ∈ L(¬𝜑) and thus, since L(A¬𝜑 ) = L(¬𝜑) holds by assumption, 𝜎 ∈ L(A¬𝜑 )
follows. Thus, there exists a run tree 𝑟 of A¬𝜑 induced by 𝜎 whose branches all contain only
finitely many visits to rejecting states. By construction of B𝑖,A𝜑

, there exists a corresponding
run tree 𝑟 of B𝑖,A𝜑

that only differs from 𝑟 in the labeling of the root. In 𝑟 , the root is labeled
with 𝑞0, while it is labeled with (𝑞0, 𝑞0,⊤) in 𝑟 . Hence, by definition of the rejecting states 𝐹A
of B𝑖,A𝜑

, all branches of the run tree 𝑟 contain only finitely many visits to rejecting states
as well. Moreover, since A¬𝜑 is an alternating co-Büchi automaton with alphabet 𝑉 and by
construction of the transition function 𝛿A of B𝑖,A𝜑

, the successors in 𝑟 only depend on the
valuations of the variables in (𝑉 \𝑂𝑖) ∪𝑂 ′𝑖 or, more precisely, on their unprimed versions, and
thus, in particular, are solely defined by 𝜎 . Therefore, all infinite sequences 𝜎 ′′ ∈ (2𝑉∪𝑂 ′𝑖 )𝜔 with
(𝜎 ′′ ∩ (𝑉 \𝑂𝑖)) ∪ unpr (𝜎 ′′ ∩𝑂 ′𝑖 ) = 𝜎 induce the run tree 𝑟 . Hence, in particular, the sequence �̂�
induces the run tree 𝑟 : by definition of �̂� , we have �̂� ∩ (𝑉 \𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \𝑂𝑖) and therefore
�̂� ∩ (𝑉 \𝑂𝑖) = 𝜎 ∩ (𝑉 \𝑂𝑖) follows since 𝜎 ∩ (𝑉 \𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \𝑂𝑖) holds by assumption.
Furthermore, �̂� ∩ 𝑂 ′𝑖 = pr (𝜎 ∩ 𝑂𝑖) holds by construction of �̂� and therefore we obtain that
unpr (�̂� ∩𝑂 ′𝑖 ) = 𝜎 ∩𝑂𝑖 holds. Hence, (�̂� ∩ (𝑉 \𝑂𝑖)) ∪unpr (�̂� ∩𝑂 ′𝑖 ) = 𝜎 follows. Consequently, �̂�
induces a run tree of B𝑖,A𝜑

that contains only finitely many visits to rejecting states, namely 𝑟 .
Therefore, B𝑖,A𝜑

accepts �̂� .
Second, suppose that (ii) holds. Then, Duplicator has a winning strategy ` in the delay-

dominance game G = (A𝜑 , 𝜎, 𝜎
′) and for every initial play 𝜌 ∈ Plays(G, `) that is consistent

with `, there is a point in time 𝑘 ≥ 0 such that 𝑓dom(𝜌𝑘 ′) ∉ 𝐹 holds for all 𝑘 ′ with 𝑘 ′ ≥ 𝑘 . Let
𝑓 : (𝑄 ×𝑄)𝜔 → (𝑄 ×𝑄 × {⊤,⊥})𝜔 be a function that, given an infinite sequence 𝜒 ∈ (𝑄 ×𝑄)𝜔
of state tuples (𝑝, 𝑞), returns an extended sequence 𝜒 ′ ∈ (𝑄 ×𝑄 ×{⊤,⊥})𝜔 that is incrementally
defined as follows: for the initial point in time, let 𝜒 ′0 := (𝑝, 𝑞,⊤) if 𝜒0 = (𝑝, 𝑞). For a point
in time 𝑘 > 0, let 𝜒 ′

𝑘
:= 𝜗 (𝑝′, 𝑞′,𝑚) if 𝜒 ′

𝑘−1 = (𝑝, 𝑞,𝑚) and 𝜒𝑘 = (𝑝′, 𝑞′). Here, 𝜗 denotes the
corresponding function used in Definition 3.6. We construct a 𝑄-labeled tree (T, ℓ) from ` as
follows by defining the labeling of the root as well as of the successors of all nodes. The labeling
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of the root Y of the tree T is defined by ℓ (Y) = (𝑞0, 𝑞0,⊤). Let 𝑥 ∈ T be a node of T and let 𝑘 = |𝑥 |
be its depth. Let a = pref (T, 𝑥) be 𝑥 ’s prefix in T, i.e. the unique finite sequence of nodes in T
that, starting from the root node Y, reaches node 𝑥 . We define the labeling of the successor
nodes children(𝑥) of 𝑥 such that

{ℓ (𝑥 ′) | 𝑥 ′ ∈ children(𝑥)} = {𝑓 (𝜌𝑘+1) | 𝜌 ∈ Plays(G, `) ∧ ∀0 ≤ 𝑘 ′ ≤ 𝑘. 𝑓 (𝜌𝑘 ′) = ℓ (a𝑘 ′)}

holds. Next, we show that (T, ℓ) is a run tree of B𝑖,A𝜑
that is induced by �̂� . Since it follows

immediately from the construction of (T, ℓ) that ℓ (Y) = (𝑞0, 𝑞0,⊤) holds, which is the initial state
of B𝑖,A𝜑

, it only remains to show that {ℓ (𝑥 ′) | 𝑥 ′ ∈ children(𝑥)} |= 𝛿 (ℓ (𝑥), �̂� |𝑥 |) holds for every
node 𝑥 ∈ T. Let 𝑥 ∈ T be a node of T and let 𝑘 = |𝑥 | be its depth. Let a = pref (T, 𝑥) be 𝑥 ’s prefix
in T, i.e. the unique finite sequence of nodes in T that, starting from the root node Y, reaches
node 𝑥 . Let S = {𝜌𝑘+1 | 𝜌 ∈ Plays(G, `) ∧ ∀0 ≤ 𝑘 ′ ≤ 𝑘. 𝑓 (𝜌𝑘 ′) = ℓ (a𝑘 ′)}. By construction of
the delay-dominance game, the alternative states of an initial play that is consistent with `

intuitively evolves according to a run of A𝑑
𝜑 induced by 𝜎 , where A𝑑

𝜑 is the alternating co-
Büchi automaton obtained from A𝜑 by dualizing the transition function 𝛿 , i.e., by swapping
conjunctions and disjunctions. The dominant states, in contrast, evolve according to a run
of A𝜑 induced by 𝜎 ′. Hence, formally, we know from the construction of the delay-dominance
game that S satisfies∧

𝑐∈𝛿 (𝑝,�̂� ′
𝑘
)

∨
𝑐′∈𝛿 (𝑞,�̂�𝑘∩𝑉 )

∧
𝑞′∈𝑐′

∨
𝑝′∈𝑐
(𝑝′, 𝑞′),

where 𝑝 := #1(ℓ (𝑥)) and 𝑞 := #2(ℓ (𝑥)). Furthermore, the function 𝑓 is defined such that it
accurately reflects the marks ⊤ and ⊥ assigned by the function 𝜗 in Definition 3.6. Hence, the
set S′ = {𝜌𝑘+1 | 𝜌 ∈ Plays(G, `) ∧ ∀0 ≤ 𝑘 ′ ≤ 𝑘. 𝑓 (𝜌𝑘 ′) = ℓ (a𝑘 ′)} satisfies∧

𝑐∈𝛿 (𝑝,�̂� ′
𝑘
)

∨
𝑐′∈𝛿 (𝑞,�̂�𝑘∩𝑉 )

∧
𝑞′∈𝑐′

∨
𝑝′∈𝑐

𝜗 (𝑝′, 𝑞′,𝑚),

where (𝑝, 𝑞,𝑚) = ℓ (𝑥). Therefore, (T, ℓ) is indeed a run tree of B𝑖,A𝜑
that is induced by �̂� .

Lastly, we show that all branches of the run tree (T, ℓ) contain only finitely many visits to
rejecting states. Since ` is a winning strategy for Duplicator in the delay-dominance game G
by assumption, we have 𝜌 ∈ W for all initial plays 𝜌 ∈ Plays(G, `) that are consistent with `.
Hence, for all such plays 𝜌 ∈ Plays(G, `) and all points in time 𝑘 ≥ 0, it holds that if we have
𝑓dom(𝜌𝑘 ) ∈ 𝐹 , then 𝑓alt (𝜌𝑘 ′) ∈ 𝐹 holds for some point in time 𝑘 ′ with 𝑘 ′ ≥ 𝑘 as well. Moreover,
since (ii) holds by assumption, for every initial play 𝜌 ∈ Plays(G, `) that is consistent with `,
there exists a point in time 𝑘 ≥ 0 such that 𝑓dom(𝜌𝑘 ′) ∉ 𝐹 holds for all 𝑘 ′ ≥ 𝑘 . Thus, there are
only finitely many points in time at which 𝜌 visits a rejecting dominant state and for all these
points in time it holds that a rejecting alternative state occurs in 𝜌 at the very same point in
time or at a later point in time. Therefore, by construction of (T, ℓ) and 𝑓 , we obtain that there
are only finitely many nodes 𝑥 ∈ T with #3(ℓ (𝑥)) = ⊥. Hence, since only states of the form
(𝑝, 𝑞,𝑚) are reached and since for these states the ones with mark ⊥ are the only rejecting ones
of B𝑖,A𝜑

, all branches of (T, ℓ) visit only finitely many rejecting states. Hence, since (T, ℓ) is a
run tree of B𝑖,A𝜑

induced by �̂� , it follows that B𝑖,A𝜑
accepts �̂� . □
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Thus, if Duplicator has a winning strategy in the delay-dominance game (A𝜑 , 𝜎, 𝜎
′) for two

sequences 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 that only differ on outputs of process 𝑝𝑖 , then the alternating co-Büchi
automaton B𝑖,A𝜑

constructed from A𝜑 and A¬𝜑 accepts the infinite sequence 𝜎 ′ ∪ pr (𝜎 ∩𝑂𝑖).
Therefore, it follows immediately from Lemmas 3.6 and 3.7 that the alternating co-Büchi
automaton B𝑖,A𝜑

constructed as described in Definition 3.6 is sound and complete in the sense
that it recognizes whether or not Duplicator wins the delay-dominance game:

Theorem 3.4. Let𝜑 be an LTL formula over atomic propositions𝑉 . Let 𝑝𝑖 ∈ 𝑃−be a system process.
LetA𝜑 andA¬𝜑 be alternating co-Büchi automata with L(A𝜑 ) = L(𝜑) and L(A¬𝜑 ) = L(¬𝜑).
Let B𝑖,A𝜑

be the alternating co-Büchi automaton constructed from A𝜑 and A¬𝜑 according to
Definition 3.6. Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 be sequences with 𝜎 ∩ (𝑉 \ 𝑂𝑖) = 𝜎 ′ ∩ (𝑉 \ 𝑂𝑖). Then, B𝑖,A′𝜑
accepts 𝜎 ′ ∪ pr (𝜎 ∩𝑂𝑖) if, and only if, Duplicator wins the delay-dominance game (A𝜑 , 𝜎, 𝜎

′).

Since B𝑖,A𝜑
thus determines whether or not Duplicator has a winning strategy in an delay-

dominance game, it follows immediately from the definition of delay-dominance that B𝑖,A𝜑
is

suitable alternating co-Büchi automaton for determining whether or not a process strategy 𝑠𝑖
for 𝑝𝑖 delay-dominates another process strategy 𝑡𝑖 for 𝑝𝑖 on some input sequence:

Corollary 3.3. Let𝜑 be an LTL formula over atomic propositions𝑉 . Let 𝑝𝑖 ∈ 𝑃−be a system process.
LetA𝜑 andA¬𝜑 be alternating co-Büchi automata with L(A𝜑 ) = L(𝜑) and L(A¬𝜑 ) = L(¬𝜑).
Let B𝑖,A𝜑

be the alternating co-Büchi automaton constructed from A𝜑 and A¬𝜑 according to
Definition 3.6. Let 𝑠𝑖 and 𝑡𝑖 be strategies for 𝑝𝑖 . Let 𝛾 ∈ (2𝐼𝑖 )𝜔 . Then, 𝑡𝑖 ⊴A𝜑 ,𝛾 𝑠𝑖 holds if, and only
if, B𝑖,A𝜑

accepts comp(𝑠𝑖 , 𝛾) ∪ pr (comp(𝑡𝑖 , 𝛾) ∩𝑂𝑖) ∪ 𝛾 ′ for all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 .

Yet, although B𝑖,A𝜑
recognizes whether or not a strategy 𝑠𝑖 delay-dominates another strat-

egy 𝑡𝑖 on some input sequence, it cannot directly be used for synthesizing delay-dominant
strategies. First, B𝑖,A𝜑

is an alternating co-Büchi automaton, while we require a universal
co-Büchi automaton for bounded synthesis. Second, it considers one particular alternative
strategy 𝑡𝑖 . For recognizing delay-dominance, however, we need to consider all alternative
strategies. In the remainder of this section, we thus describe how B𝑖,A𝜑

can be translated into a
universal co-Büchi automaton for bounded synthesis of delay-dominant strategies.

3.4.2. Construction of the UCA for Bounded Synthesis
Next, we translate the alternating co-Büchi automaton B𝑖,A𝜑

constructed as described in the
previous subsection to a universal co-Büchi automaton A𝑖,A𝜑

that can be utilized in existing
bounded synthesis frameworks for synthesizing delay-dominant strategies for a system process
𝑝𝑖 ∈ 𝑃−. As outlined before, we need to (i) translate B𝑖,A𝜑

into a universal co-Büchi automaton,
and (ii) ensure that the automaton considers all alternative strategies for process 𝑝𝑖 instead of a
particular one. Therefore, we proceed in two steps.
First, we translate the alternating co-Büchi automaton B𝑖,A𝜑

into an equivalent universal
co-Büchi automatonU𝑖,A𝜑

. We utilize the well-known Miyano-Hayashi algorithm [MH84] for
translating alternating Büchi automata into nondeterministic Büchi automata. It introduces an
exponential blowup: the resulting nondeterministic Büchi automaton is of exponential size in
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the number of states of the initial alternating Büchi automaton. Since we consider co-Büchi
rather than Büchi automata, we need a translation from an alternating co-Büchi automaton
to an equivalent universal co-Büchi automaton. Recall from Section 2.5 that the Büchi and
co-Büchi acceptance conditions as well as nondeterministic and universal branching are dual.
Utilizing this duality, we can reuse Miyano and Hayashi’s result for co-Büchi automata:

Lemma 3.8. Let A be an alternating co-Büchi automaton with𝑚 states. There exists a universal
co-Büchi automaton B with O(2𝑚) states such that L(A) = L(B) holds.

Proof. Let A = (𝑄,𝑄0, 𝛿, 𝐹 ). Let A𝑑 = (𝑄𝑑 , 𝑄𝑑
0 , 𝛿

𝑑 , 𝐹𝑑 ) be the dual automaton of A, i.e., the
alternating Büchi automaton with 𝑄𝑑 = 𝑄 , 𝑄𝑑

0 = 𝑄0, 𝐹𝑑 = 𝐹 , and 𝛿𝑑 (𝑢, 𝒊) = ∧
𝑐∈𝛿 (𝑢,𝒊)

∨
𝑢′∈𝑐 𝑢

′.
Then L(A𝑑 ) = L(A) holds due to the duality of nondeterministic and universal branch-
ing as well as of the Büchi and co-Büchi acceptance condition. As shown by Miyano and
Hayashi [MH84], there exists a nondeterministic Büchi automaton B′ with O(2 |𝑄𝑑 |) states
and with L(B′) = L(A𝑑 ). Let B be the dual automaton of B′, i.e., the universal co-Büchi
automaton that is a copy of B′, but where the nondeterministic transitions are interpreted as
universal ones and where the accepting states are interpreted as rejecting states. Then, B has
O(2 |𝑄𝑑 |) states and we have L(B) = L(B′). Since L(B′) = L(A𝑑 ) = L(A) holds, we obtain
L(B) = L(A). Thus, B is the desired universal co-Büchi automaton. □

Next, we construct the desired universal co-Büchi automaton A𝑖,A𝜑
that recognizes delay-

dominant strategies for A𝜑 and system process 𝑝𝑖 ∈ 𝑃−. For this sake, we need to adapt the
universal co-Büchi automatonU𝑖,A𝜑

to consider all alternative strategies for 𝑝𝑖 instead of a
particular one. Similar to the automaton construction for synthesizing remorsefree dominant
strategies [DF14, FP20a], we utilize universal projection (see Definition 2.22) as described in
Section 2.8.2. Intuitively, the projected automaton 𝜋𝑋 (A) for a universal co-Büchi automatonA
over alphabet Σ and a set 𝑋 ⊂ Σ contains the transitions of A for all possible valuations of the
variables in Σ \ 𝑋 . Hence, for a sequence 𝜎 ∈ (2𝑋 )𝜔 , all runs of A on sequences extending 𝜎
with some valuation of the variables in Σ \ 𝑋 are also runs of the projected automaton 𝜋𝑋 (A).
Since both A and 𝜋𝑋 (A) are universal automata, 𝜋𝑋 (A) thus accepts a sequence 𝜎 ∈ (2𝑋 )𝜔
if, and only if, A accepts all sequences extending 𝜎 with some valuation of the variables in
Σ \𝑋 (see Lemma 2.4). We utilize this property to obtain a universal co-Büchi automatonA𝑖,A𝜑

fromU𝑖,A𝜑
that considers all possible alternative strategies for 𝑝𝑖 instead of only a particular

one: we project to the unprimed variables of the alphabet ofU𝑖,A𝜑
, i.e., to𝑉 , thereby quantifying

universally over the alternative strategies. We thus obtain a universal co-Büchi automaton that
recognizes delay-dominant strategies for system process 𝑝𝑖 as follows:

Definition 3.7 (Delay-Dominance Automaton).
Let 𝜑 be an LTL formula over atomic propositions𝑉 . Let 𝑝𝑖 ∈ 𝑃−be a system process. LetA𝜑

and A¬𝜑 be alternating co-Büchi automata with L(A𝜑 ) = L(𝜑) and L(A¬𝜑 ) = L(¬𝜑).
Let B𝑖,A𝜑

be the alternating co-Büchi automaton constructed from A𝜑 and A¬𝜑 according
to Definition 3.6. LetU𝑖,A𝜑

be a universal co-Büchi automaton with L(B𝑖,A𝜑
) = L(U𝑖,A𝜑

).
The delay-dominance automaton A𝑖,A𝜑

for A𝜑 and 𝑝𝑖 is defined by A𝑖,A𝜑
= 𝜋𝑉 (U𝑖,A𝜑

).
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𝑞0

𝑞1

𝑞2

¬𝑚1 ∧ ¬𝑚2

𝑚1

¬𝑚1 ∧𝑚2

⊤

⊤

Figure 3.11.: Delay-dominance automaton A𝑖,A𝜑
for system process 𝑝1 constructed from A𝜑

depicted in Figure 3.2 for the running example after simplification.

Hence, the construction of the delay-dominance automaton A𝑖,A𝜑
indeed transforms the

intermediate alternating co-Büchi automaton B𝑖,A𝜑
introduced in Section 3.4.1 into a universal

co-Büchi automaton for recognizing delay-dominant strategies in two steps: first, we trans-
late B𝑖,A𝜑

into a universal automaton, namelyU𝑖,A𝜑
. Afterward, we consider all alternative

strategies instead of only a single one by projecting to the unprimed variables.

Example 3.10. Reconsider the message-sending system from the running example and the
alternating co-Büchi automaton A𝜑 from Figure 3.2 describing the specification. Furthermore,
consider the intermediate alternating co-Büchi automaton B1,A𝜑

for process 𝑝1 constructed
from depicted in Figure 3.10. After simplification, the delay-dominance automaton A𝑖,A𝜑

for 𝜑
and process 𝑝𝑖 is given by the universal co-Büchi automaton depicted in Figure 3.11.
It accepts an infinite word 𝜎 ∈ (2{𝑚1,𝑚2})𝜔 if, and only if, message𝑚1 occurs before or at

the same time as the first occurrence of message 𝑚2 in 𝜎 . In particular, it thus rejects the
computation of the strategy 𝑡1, which waits for the other message𝑚2 before sending its own
message (see Figure 3.1b), for all input sequences 𝛾 ∈ (2{𝑚2})𝜔 in which𝑚2 occurs at some
point in time, i.e., with 𝛾 ≠ ∅𝜔 . Since we model strategies with Moore transducers and since
strategies cannot look into the future by definition, a strategy for 𝑝1 cannot wait for𝑚2 and
immediately react with sending its own message. Instead, a strategy that waits for 𝑚2 will
always have a delay of at least one time step in sending𝑚1, such as, for instance, 𝑡1. Therefore,
since there is an input sequence that contains𝑚2 at the very first point in time, only strategies
that output their own message in the very first time step ensure that the automaton A1,A𝜑

accepts its computation on all input sequences. Thus, in particular, strategy 𝑠1, which sends𝑚1
in the very first time step and then never afterward (see Figure 3.1a) is recognized by A1,A𝜑

as
a delay-dominant strategy. This meets our intuition that a delay-dominant strategy needs to
satisfy the specification as fast as possible. △

Utilizing the previous results, we can now show soundness and completeness of the delay-
dominance universal co-Büchi automaton A𝑖,A𝜑

. From Theorem 3.4 and, in particular, from
Corollary 3.3, we know that B𝑖,A𝜑

recognizes whether or not a strategy 𝑠𝑖 for process 𝑝𝑖 ∈ 𝑃−
delay-dominates another strategy 𝑡𝑖 for 𝑝𝑖 forA𝜑 on an input sequence𝛾 ∈ (2𝐼𝑖 )𝜔 . By Lemma 3.8,
there exists a universal co-Büchi automaton U𝑖,A𝜑

with L(U𝑖,A𝜑
) = L(B𝑖,A𝜑

). With the
definition of the delay-dominance automaton as well as with Lemma 2.4, it then follows that the
universal co-Büchi delay-dominance automaton A𝑖,A𝜑

determines whether or not a strategy 𝑠𝑖
for process 𝑝𝑖 is delay-dominant for A𝜑 . Formally:
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Theorem 3.5. Let𝜑 be an LTL formula over atomic propositions𝑉 . Let 𝑝𝑖 ∈ 𝑃−be a system process.
Let A𝜑 be an alternating co-Büchi automaton with L(A𝜑 ) = L(𝜑). Let A𝑖,A𝜑

be the delay-
dominance automaton for A𝜑 and 𝑝𝑖 as constructed in Definition 3.7. Let 𝑠𝑖 be a process strategy
for 𝑝𝑖 . Then, 𝑠𝑖 is delay-dominant for A𝜑 if, and only if, the universal co-Büchi delay-dominance
automaton A𝑖,A𝜑

accepts comp(𝑠𝑖 , 𝛾) ∪ 𝜎 for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝜎 ∈ (2𝑉 \𝑉𝑖 )𝜔 .

Furthermore, the delay-dominance automaton A𝑖,A𝜑
is of convenient size: for an LTL for-

mula 𝜑 , there exists an alternating co-Büchi automaton A𝜑 with L(A𝜑 ) = L(𝜑) such that the
delay-dominance automaton A𝑖,A𝜑

constructed from A𝜑 is of exponential size in the squared
length of the formula 𝜑 . This follows from Lemma 3.8 and from the facts that (i) A𝜑 and A¬𝜑
both are of linear size in the length of the LTL formula 𝜑 (see Proposition 2.3), and (ii) universal
projection preserves the automaton size:

Lemma 3.9. Let 𝜑 be an LTL formula over atomic propositions𝑉 . Let 𝑝𝑖 ∈ 𝑃− be a system process.
There is an alternating co-Büchi automatonA𝜑 of sizeO(|𝜑 |) withL(A𝜑 ) = L(𝜑) and a universal
co-Büchi automatonA𝑖,A𝜑

of size O(2 |𝜑 |2) such that a strategy 𝑠𝑖 for 𝑝𝑖 is delay-dominant forA𝜑

if, and only if, A𝑖,A𝜑
accepts comp(𝑠𝑖 , 𝛾) ∪ 𝜎 for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝜎 ∈ (2𝑉 \𝑉𝑖 )𝜔 .

Proof. Given an LTL formula 𝜑 , there are alternating co-Büchi automat A𝜑 = (𝑄,𝑄0, 𝛿, 𝐹 ) and
A¬𝜑 = (𝑄𝑐 , 𝑄𝑐

0, 𝛿
𝑐 , 𝐹𝑐), both of size O(|𝜑 |), with L(A𝜑 ) = L(𝜑) and L(A¬𝜑 ) = L(¬𝜑) by

Proposition 2.3. By Theorem 3.4, the automaton A𝑖,A𝜑
constructed according to Definition 3.7

satisfies the property that a strategy 𝑠𝑖 for process 𝑝𝑖 is delay-dominant for A𝜑 if, and only
if, A𝑖,A𝜑

accepts comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . Let B𝑖,A𝜑
andU𝑖,A𝜑

be the intermediate automata from which A𝑖,A𝜑
is constructed. The alternating co-Büchi

automaton B𝑖,A𝜑
is of size O(|𝑄 |2 + |𝑄𝑐 |) by construction. By Lemma 3.8 and by construction,

the universal co-Büchi automaton U𝑖,A𝜑
is of size O(2𝑚), where 𝑚 is the number of states

of B𝑖,A𝜑
. Hence,U𝑖,A𝜑

has O(2 |𝑄 |2+|𝑄𝑐 |) states. Since the universal projection does not affect
the size of an automaton as it only alters the transition relation, A𝑖,A𝜑

has O(2 |𝑄 |2+|𝑄𝑐 |) states
as well. Since both A𝜑 and A¬𝜑 have O(|𝜑 |) states, the claim follows. □

Note here that utilizing an alternating co-Büchi automaton A𝜑 for representing the LTL
specification 𝜑 , i.e., with L(A𝜑 ) = L(𝜑), as starting point of the construction of the delay-
dominance automaton, is crucial for this result. If we would have started with a universal
co-Büchi automaton describing 𝜑 , then the delay-dominance automaton would be of size
O(22|𝜑 |

2
): constructing a universal automaton instead of an alternating automaton from 𝜑

introduces an exponential blowup. The construction of the automaton B𝑖,A𝜑
, however, yields

an alternating automaton irrespective of whetherA𝜑 is alternating or universal due to the need
of keeping track of two sequences in one copy ofA𝜑 and one copy of the dual automaton ofA𝜑 .
Hence, we need to translate B𝑖,A𝜑

to a universal co-Büchi automaton even if we started from
a universal automaton A𝜑 , introducing another exponential blowup. Hence, although delay-
dominance can be equivalently defined on universal co-Büchi automata instead of alternating
co-Büchi automata, utilizing alternating ones allows for avoiding an exponential blowup in the
size of the automaton recognizing delay-dominance and thus, as we will show in the following,
for more efficient synthesis of delay-dominant strategies.
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Since the automaton construction described in this section is sound and complete, the
universal co-Büchi automatonA𝑖,A𝜑

can be used for synthesizing a delay-dominant strategy for
system process 𝑝𝑖 ∈ 𝑃−In fact, the automaton construction immediately enables utilizing existing
bounded synthesis tools, which derive winning strategies, for the synthesis of delay-dominant
strategies by replacing the universal co-Büchi automaton recognizing winning strategies, i.e.,
the automaton that accepts the same language as 𝜑 with the delay-dominance automatonA𝑖,A𝜑

.
Similar to the universal co-Büchi automaton recognizing remorsefree dominance [DF14],

the delay-dominance automaton A𝑖,A𝜑
can be translated into a nondeterministic parity tree

automaton with an exponential number of colors and a doubly-exponential number of states
in the squared length of the formula. Synthesizing delay-dominant strategies thus reduces to
checking tree automata emptiness and, if the automaton is non-empty, to extracting a finite-
state transducer, which represents a delay-dominant process strategy, from an accepted tree.
This can be done in exponential time in the number of colors and in polynomial time in the
number of states [Jur00]. With Lemma 3.9, a doubly-exponential complexity for synthesizing
delay-dominant strategies thus follows:

Theorem 3.6. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let 𝑝𝑖 ∈ 𝑃− be a system
process. Let A𝜑 be an alternating co-Büchi automaton of size O(|𝜑 |) with L(A𝜑 ) = L(𝜑). If
there exists a delay-dominant strategy for A𝜑 , then it can be computed in 2EXPTIME.

It is well-known that synthesizing winning strategies is 2EXPTIME-complete [PR89a], see
also Theorem 2.1. Since there exists a universal co-Büchi automaton of exponential size in the
length of the formula, which recognizes remorsefree dominant strategies, dominant strategies
can also be synthesized in 2EXPTIME [DF14]. Synthesizing delay-dominant strategies rather
than winning or remorsefree dominant ones thus does not introduce any overhead. At the same
time, it allows for a simple compositional synthesis approach for distributed systems for many
safety and liveness specifications.

3.5. Compositional Synthesis with Delay-Dominance
In this section, we describe a compositional synthesis approach for distributed systems that
utilizes delay-dominant strategies. We extend the algorithm described in [DF14] from safety
specifications to general properties by synthesizing delay-dominant strategies instead of re-
morsefree dominant ones. Hence, given a distributed architecture and an LTL specification 𝜑 ,
the compositional synthesis algorithm proceeds in three steps. First, 𝜑 is translated into an
equivalent alternating co-Büchi automatonA𝜑 by constructing an alternating Büchi automaton
for ¬𝜑 with standard algorithms and by then dualizing the transitions as well as by interpreting
accepting states as rejecting states (see Proposition 2.3). Second, for each system process 𝑝𝑖 ∈ 𝑃−,
we construct the universal co-Büchi automatonA𝑖,A𝜑

that recognizes delay-dominant strategies
for A𝜑 and 𝑝𝑖 as described in Section 3.4. Note that although the initial automaton A𝜑 is the
same one for every process 𝑝𝑖 , the universal co-Büchi automata recognizing delay-dominant
strategies differ as, since the processes have different sets of output variables, already the
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alphabets of the intermediate alternating co-Büchi automaton B𝑖,A𝜑
differ for different pro-

cesses. Third, for each system process 𝑝𝑖 ∈ 𝑃−, a delay-dominant strategy 𝑠𝑖 is synthesized
from the respective universal co-Büchi automaton A𝑖,A𝜑

with bounded synthesis [FS13]. By
construction of the automata, we can employ standard bounded synthesis algorithms such
as, e.g., implemented in the tool BoSy [FFT17], for synthesizing delay-dominant strategies by
only exchanging the universal co-Büchi automaton that recognizes winning strategies, i.e., the
automaton that accepts the same language as 𝜑 , with the delay-dominance automaton A𝑖,A𝜑

.
If the initial alternating co-Büchi automaton A𝜑 ensures bad prefixes for delay-dominance,

then the parallel composition 𝑠1 | | . . . | | 𝑠𝑛 of the synthesized delay-dominant process strategies
is, by Theorem 3.3, delay-dominant again. Thus, the strategies 𝑠1, . . . , 𝑠𝑛 form a correct solution
for the distributed synthesis problem if A𝜑 ensures bad prefixes. Furthermore, if 𝜑 is realizable,
then 𝑠1 | | . . . | | 𝑠𝑛 is, by Corollary 3.1, winning for 𝜑 .

Note that even for realizable LTL formulas𝜑 , there does not necessarily exist a delay-dominant
strategy since delay-dominance is not solely defined on the satisfaction of 𝜑 but on the structure
of an equivalent alternating co-Büchi automatonA𝜑 . In certain cases,A𝜑 can thus “punish” the
delay-dominant strategy by introducing rejecting states at clever positions that do not influence
acceptance but delay-dominance, preventing the existence of a delay-dominant strategy. How-
ever, we experienced that an alternating co-Büchi automaton A𝜑 constructed with standard
algorithms from an LTL formula 𝜑 does not punish delay-dominant strategies since A𝜑 thor-
oughly follows the structure of𝜑 and thus often does not contain unnecessary rejecting states. In
particular, when constructing an alternating Büchi automaton for the negated specification with
standard algorithms, accepting states are only induced by negatedU-operators. Such operators,
however, usually also induce a self-loop in the respective state, thus yielding two runs that can
visit the accepting state infinitely often. When dualizing the alternating Büchi automaton to
obtain an alternating co-Büchi automaton for the initial specification 𝜑 (see Proposition 2.3), we
thus obtain an automaton with a run that visits the rejecting state infinitely often; hence possibly
influencing the acceptance. Therefore, rejecting states in automata constructed with standard
algorithms seem to contain unnecessary rejecting states rarely. Furthermore, we experienced
that alternating co-Büchi automata constructed with standard algorithms often ensure bad
prefixes for delay-dominance: in Section 3.3, we discussed under which circumstances the bad
prefix property is not satisfied and identify critical structures in alternating co-Büchi automata.
The critical structures can most likely be encoded into an LTL formula in the sense that we
obtain an alternating co-Büchi automaton with a critical structure when constructing it with
standard algorithms. However, we experienced that for meaningful specifications, such critical
structures rarely – if ever – exist in standard automata.
Simple optimizations such as removing rejecting states that do not lie in a cycle from the

set of rejecting states of the alternating co-Büchi automaton A𝜑 have a positive impact on
both the existence of delay-dominant strategies and on ensuring bad prefixes. Such states
cannot be visited infinitely often; thus, removing them from the set of rejecting states does
not alter the language. Nevertheless, rejecting states can enforce non-delay-dominance, and
thus removing unnecessary rejecting states can result in the automaton ensuring bad prefixes
and in more strategies being delay-dominant. For instance, it follows immediately with this
optimization that, for safety properties, the parallel composition of delay-dominant strategies is
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delay-dominant; extending the result from Lemma 3.4 that for safety properties there always
exists some alternating co-Büchi automaton that ensures bad prefixes for safety properties.
Thus, we experienced that, for an alternating co-Büchi automaton A𝜑 constructed from an
LTL formula 𝜑 with standard algorithms, it holds in many cases that (i) if 𝜑 allows for a
remorsefree dominant strategy, then A𝜑 allows for an delay-dominant strategy, and (ii) the
parallel composition of delay-dominance strategies forA𝜑 is delay-dominant as well. Therefore,
the compositional synthesis algorithm presented in this section is indeed applicable for many
LTL formulas and system architectures.

3.6. Summary
We have presented a new requirement for process strategies, delay-dominance, that allows a
strategy to violate a given specification in certain situations. It is thus a notion of best effort.
In contrast to the classical requirement of winning, delay-dominance can consequently be
used for individually synthesizing strategies for the processes in a distributed system in many
cases, enabling a simple compositional synthesis approach. Delay-dominance builds upon the
concept of remorsefree dominance, where a strategy is allowed to violate the specification as
long as no other strategy would have satisfied it in the same situation. However, remorsefree
dominance is only compositional for safety properties. For liveness properties, the parallel
composition of dominant strategies is not necessarily dominant. This restricts the use of
compositional synthesis algorithms based on remorsefree dominance to safety specifications,
which are often not expressive enough to state the system requirements. Delay-dominance, in
contrast, is specifically designed to be compositional for more properties while maintaining
desirable properties of remorsefree dominance such as that, if the specification is realizable,
every remorsefree dominant or delay-dominant strategy is winning.

We have introduced a game-based definition of delay-dominance, which builds upon specifi-
cations given as alternating co-Büchi automata. Furthermore, we establish a bad prefix criterion
on alternating co-Büchi automata such that, if the criterion is satisfied, compositionality of delay-
dominance is guaranteed, both for safety and liveness properties. We have shown that every
delay-dominant strategy is remorsefree dominant. Hence, for realizable system specifications,
the parallel composition of delay-dominant strategies for all system processes is guaranteed to
be winning for the entire system if the specification automaton satisfies the bad prefix criterion.
Thus, delay-dominance is a suitable notion for compositional synthesis algorithms. We have,
therefore, introduced a three-step automaton construction for recognizing delay-dominant
strategies. The resulting universal co-Büchi automaton can immediately be used to synthesize
delay-dominant strategies utilizing existing safraless synthesis approaches such as bounded
synthesis. The automaton is of single-exponential size in the squared length of the initial LTL
specification. Thus, synthesizing delay-dominant strategies is, as synthesis of winning and
remorsefree dominant strategies, possible in 2EXPTIME. Synthesizing delay-dominant strate-
gies for the individual system processes thus constitutes an efficient compositional synthesis
algorithm for distributed systems.





Chapter 4

Assume-Guarantee Contracts for
Distributed Synthesis

In the previous chapter, we have introduced delay-dominance as a best-effort notion for strate-
gies, which weakens the classical strategy requirement of winning. We presented a compo-
sitional synthesis algorithm for distributed systems based on delay-dominant strategies. The
algorithm utilized the implicit assumption induced by delay-dominance that other processes will
not maliciously violate the shared goal, i.e., the specification for the entire system. While this
allows for compositionally synthesizing strategies more often than with the naïve compositional
distributed synthesis approach, which tries to synthesize winning strategies for the processes
separately, it fails for systems with complex inter-process dependencies. Such systems often
require more explicit assumptions on the process’s concrete behavior.

In this chapter, we thus present a compositional synthesis algorithm for distributed systems,
called certifying synthesis, that considers explicit assumptions on the behavior of the other
system processes. Every system process provides a guarantee on its own behavior, a so-called
certificate. The other system processes can then rely on the process to not deviate from its
guaranteed behavior. The certificates define an assume-guarantee contract between the system
processes. A process’s strategy is then only required to realize the system specification if the
other processes do not deviate from their guaranteed behavior. This allows for considering
a system process independent from the other processes’ strategies while accounting for the
potential need for cooperation between the system processes via explicit assumptions. Certifying
synthesis automatically derives both strategies and certificates for all system processes from
a formal specification. It is an extension of bounded synthesis [FS13] that incorporates the
additional search for certificates into the synthesis task for the process strategies.
In addition to enabling a compositional synthesis algorithm for distributed systems, syn-

thesizing certificates has several benefits. First, observe that the assume-guarantee contract
is formed with the processes’ certificates rather than their strategies. Thus, while a process
may rely on the other processes to not deviate from their certificates, it does not obtain any
information about the other processes’ strategies apart from their guaranteed behavior. Once
the contract has been synthesized, particular process strategies can therefore be exchanged
safely with other strategies as long as they still respect the contract, i.e., as long as the certificate
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still matches the new strategy. This enables modularity of the system. If requirements that do
not affect the contract but only particular processes change, system strategies can be adapted
flexibly without the need for synthesizing a solution for the entire system again.

Furthermore, the certificates accurately capture which information a system process requires
about the other processes’ behavior to be able to realize the specification. Certificates thus
abstract from the behavior of other processes that is irrelevant from the considered process’s
point of view. Therefore, certifying synthesis allows for recognizing the system’s interconnections
by analyzing the certificates. Moreover, it enables a local analysis of the synthesized process
strategies. When considering the strategy of an individual process, we do not need to take the
other processes’ entire strategies, which frequently contain irrelevant behavior, into account,
but only their certificates. Both recognizing interconnections between system processes and
the possibility of local analysis of process strategies greatly improve the understandability of
the system and the derived strategies.

Lastly, bounded synthesis introduces a bound on the size of the desired strategy. This allows
for finding size-optimal solutions. Certifying synthesis introduces, in addition to the size bound
on the strategies in bounded synthesis, bounds on the sizes of the certificates. Consequently,
certifying synthesis bounds the size of the interface between the system processes, which is
shaped by the assume-guarantee contract. By starting with small certificate bounds and by only
increasing them if the specification is unrealizable for the given bounds, our algorithm restricts
synthesis to search for solutions with small interfaces, which are often preferred in practice.
Thus, certifying synthesis guides the synthesis procedure toward desirable solutions.

We introduce two representations of certificates, as LTL formulas and as deterministic and
complete finite-state transducers. We prove the soundness and completeness of our certifying
synthesis algorithm for both of them. While LTL certificates have the advantage that they
allow for nondeterminism, resulting in more compact certificates for certain specifications,
certificates modeled with finite-state transducers are easier to integrate into existing synthesis
algorithms. For the latter representation, we thus present a reduction of certifying synthesis to
a SAT constraint-solving problem, which integrates certificates into the SAT constraint system
for classical bounded synthesis [FFRT17]. The constraint system then immediately enables
distributed synthesis using certificates.

Furthermore, we extend the representation of certificates with finite-state transducers with
nondeterminism, thus taking advantage of the upside of LTL certificates. In particular, for certain
specifications for which only knowledge about parts of the other processes’ behavior is required,
permitting nondeterminism results in significantly smaller certificates than when considering
deterministic certificate transducers. We extend the SAT encoding of transducer-based certifying
synthesis to allow for nondeterministic certificates. Moreover, we present an optimization of
certifying synthesis that reduces the number of considered certificates by determining relevant
processes for each system process. The certificates of non-relevant processes then do not need
to be considered during the synthesis of the process’ strategy. Soundness and completeness of
certifying synthesis are preserved for all variants of certificates.
We implemented the certifying synthesis algorithm with certificates represented by finite-

state transducers, both deterministic and nondeterministic ones, and compared its performance
to an extension [Bau17] of the bounded synthesis tool BoSy [FFT17] to distributed systems as
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well as the compositional synthesis algorithm based on remorsefree dominant strategies [DF14].
The results clearly demonstrate the advantage of synthesizing certificates: if solutions with a
small interface between the system processes exist, our algorithm significantly outperforms
the other ones. Otherwise, the overhead of synthesizing certificates is small. Permitting
nondeterminism can reduce the strategy and certificate sizes notably.

Publications and Structure. This chapter is based on work published in the proceedings of
the 19th International Symposium on Automated Technology for Verification and Analysis [FP21a]
and in the Innovations in Systems and Software Engineering Journal [FP22a] as well as on the
extended version [FP21b] of the former publication. The author of this thesis is the lead author
of all three publications.
This chapter is structured as follows. After introducing a running example, which we

use throughout the chapter, we present the certifying synthesis algorithm with certificates
represented by LTL formulas in Section 4.2 and prove its soundness and completeness. In
Section 4.3, we introduce certifying synthesis with certificates represented by deterministic
and complete finite-state transducers. We show that incremental synthesis is also sound and
complete for this type of certificate. In Section 4.4, we present how certificates represented by
finite-state transducers can practically be synthesized alongside strategies for the processes. In
particular, we introduce a SAT encoding of certifying synthesis. We present an optimization of
certifying synthesis in Section 4.5 that identifies processes whose certificates are relevant to the
considered process. Afterward, we extend certifying synthesis to certificates represented by
nondeterministic and complete finite-state transducers in Section 4.6. We prove that soundness
and completeness are preserved and present the necessary changes in the SAT constraints
system with respect to certifying synthesis with deterministic transducers. Lastly, we provide an
experimental evaluation of certifying synthesis in general and a comparison of the performance
of certifying synthesis with deterministic and nondeterministic transducers.

4.1. Running Example
In this section, we illustrate the main concept of certifying synthesis with an example, which we
will use throughout this chapter. Autonomous robots are a crucial component in the production
line of many modern factories. The correctness of their implementation is essential; therefore,
they are a natural target for synthesis. A factory with several robots can be inherently seen as a
distributed system: each robot constitutes a process of the overall system.
We consider a factory with two autonomous robots that carry production parts from one

machine to another. In the factory, there is a crossing that is used by both robots. The robots
are required to prevent crashing into each other at the crossing. We formalize this with the
following LTL formula:

𝜑no_crash = ¬
( (
atCrossing1 ∧ go1

)
∧

(
atCrossing2 ∧ go2

) )
,

where, for 𝑖 ∈ {1, 2}, variable atCrossing𝑖 is an input variable denoting that robot 𝑟𝑖 arrived at
the crossing, and where go𝑖 is an output variable of robot 𝑟𝑖 denoting that 𝑟𝑖 moves one step
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ahead. Intuitively, 𝜑no_crash thus states that it should never be the case that both robots enter the
crossing at the very same point in time. Furthermore, to prevent that both robots wait at the
crossing forever and thus never arrive at the designated machines, both robots need to cross
the intersection at some point in time after arriving there. This requirement is formalized in
LTL for each robot 𝑟𝑖 with 𝑖 ∈ {1, 2} as follows:

𝜑cross𝑖 =
(
atCrossing𝑖 → go𝑖

)
.

In addition to these crossing-related requirements, both robots have further individual objec-
tives 𝜑add𝑖 , which are specific to their area of application. For instance, they may capture which
machines have to be approached by the robot 𝑟𝑖 in which order.

None of the robots can realize 𝜑no_crash ∧𝜑cross1 ∧𝜑cross2 alone: since whether or not the other
robot moves forward cannot be controlled, 𝜑cross3−𝑖 is not realizable for robot 𝑟𝑖 . Furthermore,
even if we restrict the specification to the parts concerning the output variables of 𝑟𝑖 , i.e., if we
only consider 𝜑no_crash ∧ 𝜑cross𝑖 for 𝑟𝑖 , no solution for individual synthesis tasks can be found.
No matter when 𝑟𝑖 enters the crossing after arriving there to ensure that 𝜑cross𝑖 holds, the other
robot 𝑟3−𝑖 may enter the crossing at the exact same point in time, yielding a crash and thus
violating 𝜑no_crash. While it is easy for humans to pinpoint this problem when only considering
the requirements concerning the crossing, the additional objectives 𝜑add1 and 𝜑add2 of the robots
may add much complexity to the specification, making it challenging to understand why the
overall specification is not met.
However, if the robots commit to their behavior at crossings, individual solutions can be

found. If, for instance, 𝑟2 guarantees to give always priority to 𝑟1 at crossings, a strategy for 𝑟1
that enters crossings regardless of 𝑟2 realizes 𝜑no_crash ∧ 𝜑cross1 : since 𝑟1 may assume that 𝑟2 will
not deviate from its certificate, it can rely on the fact that 𝑟2 will not move forward if both
robots are at the crossing. This ensures that 𝜑no_crash is satisfied no matter how 𝑟1 behaves.
However, a strategy for 𝑟1 that always enters the crossing if it arrives there might prevent the
existence of a strategy for robot 𝑟2 that realizes 𝜑cross2 : in the, in fact, quite unrealistic, scenario
that 𝑟1 is, from some point in time on, always at the intersection again directly after crossing
it – thus attempting to cross it immediately again in the other direction – 𝑟2 would always give
priority to 𝑟1 and would never be able to cross the intersection itself. Therefore, robot 𝑟1 needs
to guarantee not to block the crossing in this manner. For instance, 𝑟1 can ensure giving priority
to 𝑟2 at the crossing if it already waited there in the previous step. A strategy for 𝑟2 that enters
the crossing after it gave priority to 𝑟1, for instance, then realizes both 𝜑no_crash ∧ 𝜑cross2 . Note,
however, that 𝑟2 then cannot guarantee to always give priority to 𝑟1 at the intersection as it
does not in the step immediately after letting 𝑟1 enter the crossing. Thus, we need to slightly
adapt 𝑟2’s guarantee to this extent. Nevertheless, a strategy for 𝑟1 that gives priority to 𝑟2 if it
already waited at the crossing in the previous step still realizes 𝜑no_crash∧𝜑cross1 as long as 𝑟2 then
actually crosses the intersection as outlined above. The parallel composition of these strategies
for the robots then indeed realizes the whole specification 𝜑no_crash∧𝜑cross1∧𝜑cross2∧𝜑add1∧𝜑add2
as long as the strategies satisfy the additional requirements 𝜑add𝑖 as well.

Furthermore, we then know that the robots solely interfere at crossings since the assumptions
that the robots need to pose on the other robot’s behavior to be able to realize the specification
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only concern the behavior at the crossing. Thus, the certificates, i.e., the guaranteed behavior
of the robots, provide insight in the required communication of the robots and abstract away
the irrelevant behavior, i.e., the behavior aside from crossings, of the other robot. Especially for
large additional objectives 𝜑add𝑖 , this significantly increases the understandability of why 𝑟𝑖 ’s
strategy realizes the specification. Moreover, the certificates form a contract of safe behavior at
crossings: If 𝜑add𝑖 changes since, e.g., the order in which the machines should be approached
changes, it suffices to synthesize a new strategy for robot 𝑟𝑖 . As long as 𝑟𝑖 does not change its
behavior at crossings, 𝑟3−𝑖 ’s strategy can be left unchanged.

4.2. Compositional Synthesis with Certificates
In this section, we present a sound and complete compositional synthesis algorithm for dis-
tributed systems. The main idea is, as in the naïve compositional synthesis algorithm from Al-
gorithm 3.1, to synthesize strategies for the system processes separately. Note here that since
we are considering arbitrary system architectures, processes are allowed to observe and, in
particular, to react to the output variables of other processes. Therefore, similar to the previous
chapter, we need to consider process strategies that can be represented by Moore transducers
in compositional synthesis, as otherwise, it is not guaranteed that the parallel composition of
the process strategies is complete (see Section 2.6.1).
Furthermore, we simplify the specification 𝜑 for the entire system when considering the

individual processes. Intuitively, the simplified specification 𝜑𝑖 considered for an individual
process 𝑝𝑖 ∈ 𝑃−captures the parts of𝜑 that affect 𝑝𝑖 . Note that simplifying the specification is not
necessary for our compositional synthesis algorithm. However, it can reduce the complexity of
individual synthesis tasks. Simplifying specifications is not the main focus of this chapter; in fact,
our algorithm can be usedwith any simplification fulfilling the above requirement. While there is
work on obtaining small subspecifications – see, e.g. our specification decomposition algorithm
for monolithic systems presented in Chapter 5 – we use an easy specification simplification in
this chapter for simplicity:

Definition 4.1 (Specification Decomposition).
Let 𝜑 = b1 ∧ . . . ∧ b𝑘 be an LTL formula over atomic propositions 𝑉 with 𝑘 conjuncts.
The specification decomposition of 𝜑 is a vector ⟨𝜑1, . . . , 𝜑𝑛⟩ of LTL formulas for the system
processes 𝑝1, . . . , 𝑝𝑛 ∈ 𝑃− such that 𝜑𝑖 =

{
b 𝑗 ∈ 𝜑 | prop(b 𝑗 ) ∩𝑂𝑖 ≠ ∅ ∨ prop(b 𝑗 ) ∩𝑂− = ∅

}
.

A specification decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩ of an LTL formula 𝜑 thus splits 𝜑 into 𝑛 subfor-
mulas, one for each system process 𝑝𝑖 ∈ 𝑃−. Intuitively, a subformula 𝜑𝑖 contains all conjuncts
of 𝜑 that contain output variables of the process 𝑝𝑖 as well as all input-only conjuncts. Note that
if a conjunct of 𝜑 contains output variables of two system processes 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑃−with 𝑖 ≠ 𝑗 , then,
intuitively, both the behavior of 𝑝𝑖 and 𝑝 𝑗 may affect the satisfaction of the conjunct. Therefore,
it is contained in both subformulas 𝜑𝑖 and 𝜑 𝑗 . The satisfaction of input-only conjuncts, i.e.,
conjuncts that do not contain any output variables of system processes but only environment
outputs, cannot be affected by any system process. Nevertheless, input-only conjuncts can
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prevent the realizability of the full LTL formula 𝜑 . Thus we need to take them into account
when only considering the subformulas 𝜑𝑖 and not the full formula 𝜑 in compositional synthe-
sis. While it suffices to add input-only conjuncts to a single subformula, we add them to all
subformulas for simplicity of the definition of specification decomposition.

Example 4.1. Consider the two robots from the running example introduced in Section 4.1.
Assume for simplicity that none of them has additional requirements 𝜑add𝑖 , i.e., both robots are
only required to safely cross the intersection when they arrive there. Hence, the full system
specification is given by 𝜑 = 𝜑no_crash ∧ 𝜑cross1 ∧ 𝜑cross2 . Recall that the only output variable
of robot 𝑟𝑖 is go𝑖 , i.e., 𝑂𝑖 = {go𝑖}. Thus, both 𝜑no_crash and 𝜑cross𝑖 contain output variables of
robot 𝑟𝑖 , while 𝜑cross3−𝑖 does not. Therefore, we obtain the specification decomposition ⟨𝜑1, 𝜑2⟩
for 𝜑 with 𝜑𝑖 = 𝜑no_crash ∧ 𝜑cross𝑖 for 𝑖 ∈ {1, 2}. △

Although we decompose the specification, a system process 𝑝𝑖 usually cannot guarantee
the satisfaction of 𝜑𝑖 alone; rather, it depends on the cooperation of the other processes. For
instance, robot 𝑟1 from the running example from Section 4.1 cannot guarantee that no crash
will occur when entering the crossing since 𝑟2 can enter it at the very same point in time.
Thus, the compositional synthesis approach presented in this chapter, called certifying synthesis,
additionally derives a guarantee on the behavior of each system process, the so-called certificate.
The certificate then provides essential information to the other system processes: if system
process 𝑝𝑖 ∈ 𝑃− commits to a certificate, the other processes can rely on 𝑝𝑖 ’s strategy to not
deviate from this behavior. In particular, the other processes’ strategies only need to realize
the specification as long as 𝑝𝑖 sticks to the behavior formalized in its certificate. Hence, the
certificates constitute an assume-guarantee contract (see, e.g., [CH07]) between the system
processes. Therefore, in certifying synthesis, a system process is not required to react to all
behaviors of the other processes but only to those that truly occur when the processes interact.

In this section, we represent the certificate of a system process 𝑝𝑖 ∈ 𝑃− by an LTL formula𝜓𝑖

over atomic propositions 𝑉𝑖 . The requirements on a strategy 𝑠𝑖 for 𝑝𝑖 are twofold: the strat-
egy (i) may not deviate from 𝑝𝑖 ’s certificate, and (ii) needs to realize the subformula 𝜑𝑖 if the
other system processes stick to their certificates. Therefore, to ensure that (i) holds, we require 𝑠𝑖
to realize the LTL formula𝜓𝑖 representing 𝑝𝑖 ’s certificate. To establish (ii), we require 𝑠𝑖 to realize
the LTL formula Ψ𝑖 → 𝜑𝑖 , where Ψ𝑖 =

{
𝜓 𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
, i.e., Ψ𝑖 denotes the conjunction of

the certificates of the other system processes.

Example 4.2. Consider the two robots from Section 4.1 and assume for simplicity that none
of the robots has additional requirements 𝜑add𝑖 . Thus, the full system specification is given
by 𝜑 = 𝜑no_crash ∧ 𝜑cross1 ∧ 𝜑cross2 and, as outlined in Example 4.1, we obtain the specification
decomposition ⟨𝜑1, 𝜑2⟩ with 𝜑𝑖 = 𝜑no_crash ∧ 𝜑cross𝑖 for all 𝑖 ∈ {1, 2}. An LTL certificate for
robot 𝑟2 could, for instance, be given by

𝜓2 = ((¬atCrossing1 ∨ ¬atCrossing2) → go2)
∧ ((¬(atCrossing1 ∧ atCrossing2) ∧ (atCrossing1 ∧ atCrossing2)) → ¬go2)
∧ ((atCrossing1 ∧ atCrossing2 ∧ (atCrossing1 ∧ atCrossing2)) → go2)
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Intuitively, it formalizes that 𝑟2 always moves forward if one of the robots is not at the crossing.
If however, both robots are at the crossing, and not both of them have been there in the previous
step, then 𝑟2 waits, thus giving priority to 𝑟1. If both robots are at the contrast and both have
been at the crossing in the previous step as well, then 𝑟2 moves forward, ensuring to “take
its turn” in crossing the intersection. While a strategy for robot 𝑟1 that enters the crossing
regardless of 𝑟2 whenever not both robots have been at the crossing in the previous time step
clearly does not realize 𝜑1, it realizes𝜓2 → 𝜑1. △

Whether a strategy for a system process 𝑝𝑖 ∈ 𝑃− is valid for the subformula 𝜑𝑖 thus does
not only depend on 𝜑𝑖 but also on the certificates of the other system processes. Since the
other processes’ certificates range over their variables, the LTL formula Ψ𝑖 → 𝜑𝑖 ranges over all
variables𝑉 of the system and not only over 𝑝𝑖 ’s variables𝑉𝑖 . Note that a strategy for 𝑝𝑖 , however,
is still defined for 𝑝𝑖 ’s inputs and outputs, i.e., a computation of 𝑠𝑖 lies in (2𝑉𝑖 )𝜔 . Formally, we
can now define certifying synthesis as follows:

Definition 4.2 (Certifying Synthesis with LTL certificates).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩. Let
S = ⟨𝑠1, . . . , 𝑠𝑛⟩ and Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩ be vectors of strategies and LTL certificates, respectively,
for the system processes 𝑝1 . . . 𝑝𝑛 ∈ 𝑃−. Let Ψ𝑖 =

{
𝜓 𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
. If 𝑠𝑖 |= 𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)

holds for all 𝑝𝑖 ∈ 𝑃−, then we say that (S,Ψ) realizes 𝜑 . Certifying synthesis for 𝜑 derives
vectors S and Ψ such that (S,Ψ) realizes 𝜑 .

Classical algorithms for distributed synthesis directly search for strategies 𝑠1, . . . , 𝑠𝑛 for
the system processes such that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds. Hence, they reason globally about
the realization of the specification by the parallel composition of the synthesized strategies.
Certifying synthesis, in contrast, reasons locally about the realization of the subformulas for
the individual processes, i.e., without considering the composition of the strategies. Hence
the strategies can be considered separately. This greatly improves the understandability of the
synthesized solutions since it is possible to focus on a single process and its behavior.

Moreover, local reasoning as employed in certifying synthesis is sound and complete. Thus, if
certifying synthesis derives a pair (S,Ψ) for an LTL specification𝜑 , then the parallel composition
of the strategies inS realizes𝜑 . Furthermore, certifying synthesis derives a pair (S,Ψ) for all LTL
specifications that are realizable in the considered architecture. Intuitively, soundness follows
from the fact that every system process is required to realize its own certificate. Completeness
is obtained since every strategy can serve as its own certificate. Formally:

Theorem4.1. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of strategies for the system processes. Then, there exists a vector
Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩ of LTL certificates for the system processes such that (S,Ψ) realizes 𝜑 if, and
only if, 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Proof. Let T1, . . . T𝑛 be the deterministic and complete finite-state Moore transducers repre-
senting the strategies 𝑠1, . . . , 𝑠𝑛 . Let T = T1 | | . . . | | T𝑛 be their parallel compositions. Since
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all T𝑖 are deterministic and complete Moore transducers and since the sets of output vari-
ables of different components are disjoint by definition of architectures, T is determinis-
tic and complete by Lemma 2.1 as well. Hence, all traces of T are infinite and therefore
Traces(T ) =

{
𝜎 ∈ (2𝑉 )𝜔 | ∀𝑝𝑖 ∈ 𝑃−. 𝜎 ∩𝑉𝑖 ∈ Traces(T𝑖)

}
follows with Lemma 2.2.

First, suppose that there exists a vector Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩ of LTL certificates for the system
processes such that (S,Ψ) realizes 𝜑 . For process 𝑝 𝑗 ∈ 𝑃−, let Ψ𝑗 =

{
𝜓𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
.

Let 𝜎 ∈ Traces(T ) be a trace of T . Then, as shown above, 𝜎 ∩ 𝑉𝑖 ∈ Traces(T𝑖) holds for
all system processes 𝑝𝑖 ∈ 𝑃−. By assumption, (S,Ψ) realizes 𝜑 . Therefore, for all 𝑝𝑖 ∈ 𝑃−,
we have 𝑠𝑖 |= 𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖) and hence Traces(T𝑖) ∪ (𝑉 \ 𝑉𝑖) ⊆ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) holds.
Thus, (𝜎 ∩ 𝑉𝑖) ∪ 𝜎 ′ ∈ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) follows for all 𝜎 ′ ∈ 𝑉 \ 𝑉𝑖 . Hence, in particular,
𝜎 ∈ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) holds for all 𝑝𝑖 ∈ 𝑃− and therefore, by definition of conjunction, we
have 𝜎 ∈ L(∧𝑛

𝑖=1(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖))). Thus both 𝜎 ∈ L(∧𝑛
𝑖=1𝜓𝑖) and 𝜎 ∈ L(

∧𝑛
𝑖=1 Ψ𝑖 → 𝜑𝑖) hold

and hence 𝜎 ∈ L(∧𝑛
𝑖=1 𝜑𝑖) follows with the definition of Ψ𝑖 and the semantics of implication.

By definition of specification decomposition, we have
∧𝑛

𝑖=1 𝜑𝑖 = 𝜑 and therefore we obtain
𝜎 ∈ L(𝜑). Since we chose the trace 𝜎 ∈ Traces(T ) of T arbitrarily, Traces(T ) ⊆ L(𝜑) follows.
Thus, by definition of T , we have 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 .

Second, suppose that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds. We construct LTL certificates𝜓1, . . . ,𝜓𝑛 as fol-
lows:𝜓𝑖 describes exactly the behavior of 𝑠𝑖 for the variables in𝑉𝑖 , i.e., L(𝜓𝑖) = Traces(T𝑖) holds.
Since T𝑖 has, by construction, only finitely many states, such an LTL formula𝜓𝑖 can always be
constructed by encoding the transducer. Let Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩ and let Ψ𝑖 =

{
𝜓 𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
.

It remains to show that (S,Ψ) realizes 𝜑 , i.e., that 𝑠𝑖 |= 𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖) holds and thus that
we have Traces(T𝑖) ∪ (𝑉 \ 𝑉𝑖) ⊆ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) for all 𝑝𝑖 ∈ 𝑃−. Let 𝑝𝑖 ∈ 𝑃− be some
system process. Let 𝜎 ∈ Traces(T𝑖) ∪ (𝑉 \ 𝑉𝑖). By construction of the LTL certificates, we
clearly have 𝜎 ∈

{
𝜌 ∈ (2𝑉 )𝜔 | 𝜌 ∩𝑉𝑖 ∈ L(𝜓𝑖)

}
. If 𝜎 |= ¬Ψ𝑖 holds, then 𝜎 ∈ L(Ψ𝑖 → 𝜑𝑖)

follows immediately with the semantics of implication and since Ψ𝑖 → 𝜑𝑖 is an LTL formula
over atomic propositions 𝑉 . Thus, since 𝜎 ∈

{
𝜌 ∈ (2𝑉 )𝜔 | 𝜌 ∩𝑉𝑖 ∈ L(𝜓𝑖)

}
holds as shown

above, we obtain 𝜎 ∈ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) with the semantics of conjunction. Otherwise,
i.e., if 𝜎 |= Ψ𝑖 holds, then 𝜎 ∈ L(∧𝑛

𝑖=1𝜓𝑖) follows with the definition of Ψ𝑖 and since we
have 𝜎 ∈

{
𝜌 ∈ (2𝑉 )𝜔 | 𝜌 ∩𝑉𝑖 ∈ L(𝜓𝑖)

}
. Thus, 𝜎 ∩ 𝑉𝑖 ∈ Traces(T𝑖) holds for all system pro-

cesses 𝑝𝑖 ∈ 𝑃− by construction of the LTL certificates. Therefore, 𝜎 ∈ Traces(T ) follows
since we have Traces(T ) =

{
𝜎 ∈ (2𝑉 )𝜔 | ∀𝑝𝑖 ∈ 𝑃−. 𝜎 ∩𝑉𝑖 ∈ Traces(T𝑖)

}
as shown above. By

assumption, 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds and thus, by definition of T , we have Traces(T ) ⊆ L(𝜑).
Therefore, by definition of specification decomposition and by the semantics of conjunction,
Traces(T ) ⊆ L(𝜑𝑖) holds as well. Thus, 𝜎 ∈ L(𝜑𝑖) follows and hence, by the semantics of
implication, 𝜎 ∈ L(Ψ𝑖 → 𝜑𝑖) holds as well. Since 𝜎 ∈

{
𝜌 ∈ (2𝑉 )𝜔 | 𝜌 ∩𝑉𝑖 ∈ L(𝜓𝑖)

}
holds as

shown above, we obtain 𝜎 ∈ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) with the semantics of conjunction. Since we
chose 𝜎 ∈ Traces(T𝑖) ∪ (𝑉 \𝑉𝑖) arbitrarily, Traces(T𝑖) ∪ (𝑉 \𝑉𝑖) ⊆ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) follows.
Hence, 𝑠𝑖 |= 𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖) holds for all 𝑝𝑖 ∈ 𝑃− and therefore (S,Ψ) realizes 𝜑 . □

Certifying synthesis thus enables modularity and increases the understandability of the
system due to local reasoning while ensuring finding solutions for all specifications that are
realizable in the architecture. Moreover, the parallel composition of the synthesized strategies
serves as a correct solution for the entire system.
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There are several quality measures for certificates, for instance, their size. We focus on
certificates that are easy to synthesize in the sense that certifying synthesis can be integrated
into existing synthesis algorithms first. Therefore, in the subsequent section, we study how to
model certificates with finite-state transducers instead of LTL formulas.

4.3. Synthesis with Deterministic Certificates
In the previous section, we considered certificates in certifying synthesis to be LTL formulas
that describe the guaranteed behavior of the individual system processes. In the following, in
contrast, we focus on certificates that allow for simple integration of certifying synthesis into
existing synthesis algorithms and frameworks. Here, we focus on constraint-based bounded
synthesis [FS13, FFRT17] as, for instance, implemented in the tool BoSy [FFT17]. Therefore, in
this section, we introduce certifying synthesis with certificates represented by deterministic
finite-state transducers. First, we present how certificates can be modeled with transducers.
Afterward, we formulate certifying synthesis and, in particular, the satisfaction of a specification
in the presence of certificates represented by finite-state transducers. Lastly, we show soundness
and completeness of this variant of certifying synthesis.

4.3.1. Modeling Certificates
We model the certificate of a system process 𝑝𝑖 ∈ 𝑃− as a deterministic and complete finite-state
Moore transducer T𝐺

𝑖 , called guarantee transducer (GT), over input variables 𝐼𝑖 and guarantee
output variables 𝑂𝐺

𝑖 ⊆ 𝑂𝑖 . Only considering a subset of 𝑂𝑖 as output variables of the guarantee
transducers allows the certificate to abstract from outputs of 𝑝𝑖 whose valuation is irrelevant for
all other processes. In the following, we assume the guarantee output variables of 𝑝𝑖 to be both
an output of 𝑝𝑖 and an input of some other process, i.e., we define 𝑂𝐺

𝑖 := 𝑂𝑖 ∩ 𝐼− . Intuitively, a
variable 𝑣 ∈ 𝑂𝑖 \𝑂𝐺

𝑖 , which is an output of 𝑝𝑖 but not a guarantee output, cannot be observed
by any other system process. Thus, a guarantee on its behavior does not influence any process
and hence it can be omitted from the outputs of the guarantee transduce T𝐺

𝑖 . Since a guarantee
transducer T𝐺

𝑖 is both deterministic and complete by construction, it produces exactly one
infinite trace for every input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 , i.e., |Traces(T𝐺

𝑖 , 𝛾) | = 1 holds. Slightly
overloading notation, we call this single trace produced by T𝐺

𝑖 on input 𝛾 the computation
of T𝐺

𝑖 on 𝛾 , also denoted comp(T𝐺
𝑖 , 𝛾).

Example 4.3. Consider the robots from the running example introduced in Section 4.1. Guar-
antee transducers T𝐺

1 and T𝐺
2 for the robots 𝑟1 and 𝑟2 are depicted in Figure 4.1.

Intuitively, T𝐺
1 stays in state𝑢0 until both robots arrive at the crossing, always outputting go1.

If both robots arrive at the crossing, T𝐺
1 moves to𝑢1, ensuring that 𝑟1 can make use of its priority

in the next step and move forward. If at most one robot arrives at the crossing afterward, T𝐺
1

transitions back to𝑢0. Otherwise, it moves to𝑢2, ensuring that 𝑟1 does not block the crossing but
gives 𝑟2 the possibility of crossing the intersection. Thus, T𝐺

1 keeps track in its state whether
at most one robot arrives at the crossing (state 𝑢0), both robots arrive together at the crossing,
while not both of them have been at the crossing in the previous step (state 𝑢1), or whether
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𝑢0 𝑢1

𝑢2

¬atCrossing1 ∨
¬atCrossing2 | {go1}

atCrossing1 ∧
atCrossing2 | {go1}

¬atCrossing1 ∨
¬atCrossing2 | {go1}

atCrossing1 ∧
atCrossing2 | {go1}atCrossing1 ∧

atCrossing2 | ∅
¬atCrossing1 ∨
¬atCrossing2 | ∅

(a) Guarantee transducer T𝐺
1

𝑢0

𝑢1

¬atCrossing1 ∨
¬atCrossing2 | {go2}

atCrossing1 ∧
atCrossing2 | {go2}

true | ∅

(b) Guarantee transducer T𝐺
2

Figure 4.1.: Guarantee transducers for the robots 𝑟1 and 𝑟2 from the running example.

both robots arrive at the crossing in (at least) two consecutive time steps and we are currently
in an even one of these time steps (state 𝑢2).
Similar to T𝐺

1 , the guarantee transducer T𝐺
2 intuitively stays in state 𝑢0 until both robots

arrive at the crossing, always outputting go2. If both robots arrive at the crossing, T𝐺
2 moves

to 𝑢1, ensuring that 𝑟2 does not move forward in the next step to grant 𝑟1 priority. Afterward,
irrespective of the position of the robots, T𝐺

1 moves back to state𝑢0, ensuring that 𝑟2 outputs go2
in the next step to take its turn in crossing the intersection. Thus, T𝐺

2 keeps track of whether at
most one robot arrives at the crossing (state 𝑢0) or both robots arrive together at the crossing,
while not both of them have been at the crossing in the previous step (state 𝑢2). △

Since both strategy transducers and guarantee transducers – and thus all transducers we
are considering in this chapter – have Moore semantics, we omit the input from the labeling
relation in the remainder of this chapter. That is, slightly overloading notation, we assume the
labeling relation ℓ of a (2𝐼 , 2𝑂 )-transducer T = (𝑇,𝑇0, 𝜏, ℓ) to be of type ℓ : 𝑇 × 2𝑂 .
In the next section, we present how guarantee transducers can be utilized instead of LTL

certificates in certifying synthesis while still ensuring soundness and completeness.

4.3.2. Certifying Synthesis with Guarantee Transducers
In certifying synthesis, it is crucial that a strategy only needs to realize the specification if the
other processes do not deviate from their certificates. For certificates modeled as LTL formulas,
we use an implication in the local objective, which is again an LTL formula, to model this
(see Section 4.2). When representing certificates as finite-state transducers, however, it is no
longer possible to easily integrate the satisfaction of the other processes’ certificates into the
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local LTL specification without encoding the certificate as LTL formula and thus losing the
benefit of simple integrability into existing synthesis frameworks. Instead, we formalize that
a strategy only needs to realize the specification if the other processes do not deviate from
their certificates by slightly altering the notion of satisfaction of an LTL formula. Intuitively, a
strategy realizes an LTL formula 𝜑 if each of its computations either satisfies 𝜑 or could not
occur if the other processes stick to their certificates. Consequently, we need to identify whether
or not a sequence matches the other processes’ certificates in the sense that it could occur when
the processes interact if none of the processes deviates from its certificate. We formalize this
with so-called valid computations:

Definition 4.3 (Valid Computation and Valid History).
Let P ⊆ 𝑃− be a finite set of system processes. Let G be a finite set of guarantee transducers,
one for each of the processes in P. An infinite sequence 𝜎 ∈ (2𝑉 )𝜔 is called valid computation
for G if, and only if 𝜎 ∩𝑂𝐺

𝑖 = comp(T𝐺
𝑖 , 𝜎 ∩ 𝐼𝑖) ∩𝑂𝐺

𝑖 holds for all T𝐺
𝑖 ∈ G. The set of valid

computations for G is denoted withVG . A finite prefix 𝜌 ∈ (2𝑉 )∗ of length 𝑘 ≥ 0 of some
valid computation 𝜎 ∈ VG is called valid history of length 𝑘 for G. The set of all valid histories
of length 𝑘 for G is denoted withH𝑘

G .

Intuitively, a valid computation for a set G of guarantee transducers is an infinite sequence
that is a computation of all guarantee transducers in G. Thus, a valid computation can be
produced by all guarantee transducers in G, and therefore it can be produced by their parallel
composition. Consequently, a valid computation is a sequence that can occur in the interplay of
all processes whose guarantee transducers are contained in G as long as these processes do
not deviate from their guaranteed behavior. A valid history for G is then a finite prefix of a
computation of the parallel composition of the guarantee transducers in G.

Example 4.4. Consider the robots from the running example introduced in Section 4.1 and the
guarantee transducers depicted in Figure 4.1. As an example for valid computations, consider
robot 𝑟2 with its guarantee transducer T𝐺

2 from Figure 4.1b. Let𝛾 ∈ (2𝐼2)𝜔 be some infinite input
sequence or 𝑟2 with 𝛾𝑘 ≠ {atCrossing1, atCrossing2} for some point in time 𝑘 ≥ 0, denoting that
at most one of the robots arrives at the crossing at point in time 𝑘 . Irrespective of the nature of
the valuations of the input variables of 𝑝2 at the remaining points in time 𝑘 ′ ≥ 0 with 𝑘 ′ ≠ 𝑘 ,
the path 𝜋 ∈ Paths(T𝐺

2 , 𝛾) of T𝐺
2 on input sequence 𝛾 visits state 𝑢0 at point in time 𝑘 + 1, i.e.,

we have 𝜋𝑘+1 = (𝑢0, {go2}). Therefore, by definition of traces, 𝜎𝑘+1 ∩𝑂2 = {go2} holds for all
𝜎 ∈ Traces(T𝐺

2 , 𝛾). Furthermore, since 𝑂𝑖 ∩ 𝐼−{go2} holds, go2 is not only an output but also a
guarantee output of robot 𝑟2. Thus, we have 𝜎𝑘+1∩𝑂𝐺

2 = {go2} for all 𝜎 ∈ Traces(T𝐺
2 , 𝛾) as well.

Therefore, every infinite sequence 𝜌 ∈ (2𝑉 )𝜔 with either atCrossing1 ∉ 𝜌𝑘 or atCrossing2 ∉ 𝜌𝑘
but go2 ∉ 𝜌𝑘+1 for some point in time 𝑘 ≥ 0 is no valid computation for G = {T𝐺

2 }. △

Since the notion of valid computations determines whether or not a particular infinite
sequence can occur during the interaction of the processes whose guarantee transducers are
contained in the considered set G as long as these processes do not deviate from their certificates,
we use valid computations to define the slightly altered version of satisfaction which is required
for certifying synthesis with guarantee transducers: a strategy locally realizes an LTL formula
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for a finite set G of guarantee transducers if, for all input sequences, its computation either
classically satisfies the LTL formula or its computation is not valid and thus does not match the
guarantee transducers in G. Formally:

Definition 4.4 (Local Satisfaction and Local Realization).
Let 𝑝𝑖 ∈ 𝑃−be a system process and let P ⊆ 𝑃−\ {𝑝𝑖} be a set of other system processes. Let G
be a set of guarantee transducers, one for each of the processes in P. Let 𝜑𝑖 be an LTL formula
over atomic propositions 𝑉𝑖 . An infinite sequence 𝜎 ∈ (2𝑉 )𝜔 locally satisfies 𝜑𝑖 with respect
to G, denoted 𝜎 |=G 𝜑𝑖 , if, and only if, either 𝜎 |= 𝜑𝑖 or 𝜎 ∉ VG holds. A strategy 𝑠𝑖 for 𝑝𝑖 then
locally realizes 𝜑𝑖 with respect to G, denoted 𝑠𝑖 |=G 𝜑𝑖 , if, and only if, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=G 𝜑𝑖
holds for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 .

Intuitively, requiring a strategy to locally realize an LTL formula 𝜑𝑖 with respect to a set G
of guarantee transducers thus encodes the classical satisfaction of the local objective Ψ→ 𝜑𝑖 ,
where Ψ is an LTL formula encoding the computations of all guarantee transducers in G, as
used in certifying synthesis with LTL certificates. A sequence 𝜎 ∈ (2𝑉 )𝜔 satisfies Ψ→ 𝜑𝑖 if it
either satisfies 𝜑𝑖 or violates Ψ. If the former is the case, then 𝜎 clearly also locally satisfies 𝜑𝑖 .
If the latter is the case, then 𝜎 does not match the guaranteed behavior defined in Ψ, and thus,
by construction of Ψ, it does not match the computations of all guarantee transducers in G.
Thus, 𝜎 is then no valid computation for G, and therefore it locally satisfies 𝜑𝑖 as well.

Example 4.5. Consider the robots from the running example presented in Section 4.1. Further-
more, consider the guarantee transducer T𝐺

2 for robot 𝑟2 depicted in Figure 4.1b. If 𝑟2 does not
deviate from its guaranteed behavior defined by T𝐺

2 , then 𝑟1 can enter the crossing regardless
of 𝑟2 without risking a crash whenever both robots arrive at the crossing while at least one
of them was not at the crossing in the previous time step. Such a strategy 𝑠1 for 𝑟1 can, for
instance, be given by the same transducer as 𝑟1’s guarantee transducer depicted in Figure 4.1a.
In the following, we call this transducer T1.
A computation of 𝑠1 on some input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 only contains go1 at some point in

time 𝑘 ≥ 0 if the corresponding path 𝜋 ∈ Paths(T1, 𝛾) of T1 is in state 𝑢0 or 𝑢1 at point in time 𝑘 .
The path 𝜋 is only in state 𝑢0 at point in time 𝑘 if either 𝑘 = 0 holds or if at most one of the
robots arrives at the crossing at point in time 𝑘 − 1, i.e., if we have either atCrossing1 ∉ 𝛾𝑘−1 or
atCrossing2 ∉ 𝛾𝑘−1. Furthermore, 𝜋 is only in state 𝑢1 at point in time 𝑘 if both robots arrive at
the crossing at point in time 𝑘 − 1 and if 𝑘 − 1 is an odd position in the current sequence of
consecutive time steps at which both robots arrive at the crossing. Clearly, no crash can happen
whenever T1 is in state 𝑢0: it neither violates 𝜑no_crash if both robots move forward in the first
time step nor if at most one of the robots arrived at the crossing at the previous point in time.
Whenever T1 is in state 𝑢1, in contrast, a crash can potentially happen if 𝑟2 moves forward in
the very same time step, violating 𝜑no_crash. However, a trace of 𝑟2’s guarantee transducer T𝐺

2
does not contain go2 at a point in time 𝑘 > 0 if both robots arrive at the crossing at point in
time 𝑘 − 1 and if 𝑘 − 1 is an odd position in the current sequence of consecutive time steps at
which both robots arrive at the crossing. Hence, an infinite sequence that contains both go1
and go2 at some point in time 𝑘 ≥ 0 is no valid computation with respect to G = {T𝐺

2 }. and
therefore 𝑠1 locally realizes 𝜑no_crash with respect to G = {T𝐺

2 }, i.e., we have 𝑠1 |=G 𝜑no_crash.
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Furthermore, every computation of 𝑠1 classically satisfies 𝜑cross1 , i.e., 𝑠1 |= 𝜑cross1 holds: the
transducer T1 leaves the only state in which it does not output go1, i.e., state𝑢2, immediately after
arriving there, irrespective of the input sequence. That is, no path of T1 can loop indefinitely
in 𝑢2, and therefore the states in which T1 outputs go1 are visited infinitely often for every input
sequence. Hence, 𝑠1 outputs go1 infinitely often for every input sequence and, thus, in particular,
for every input sequence that contains atCrossing1 at some point in time. △

Since local satisfaction allows for formalizing that a strategy only needs to realize the speci-
fication if the other system processes do not deviate from their certificates, we employ local
satisfaction and local realization for defining certifying synthesis with certificates modeled with
guarantee transducers. However, recall that the requirements for strategies in certifying syn-
thesis are twofold. Additionally, strategies are not allowed to deviate from their own certificate.
When representing certificates with LTL formulas, we achieved this by requiring the strategy
to realize the LTL certificate (see Section 4.2). When considering guarantee transducers, in
contrast, we utilize transducer simulation for Moore transducers instead:

Definition 4.5 (Transducer Simulation).
Let 𝐼 , 𝑂1, and 𝑂2 be finite sets of input and output variables with 𝐼 ∩𝑂1 = ∅, 𝐼 ∩𝑂2 = ∅, and
𝑂1 ⊆ 𝑂2. Let T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1) and T2 = (𝑇2,𝑇2,0, 𝜏2, ℓ2) be a finite-state (2𝐼 , 2𝑂1)-transducer
and a finite-state (2𝐼 , 2𝑂2)-transducer, respectively. Then, T1 simulates T2, denoted T2 ⪯ T1, if,
and only if, there exists a simulation relation 𝑅 : 𝑇2 ×𝑇1 with

• (𝑡2,0, 𝑡1,0) ∈ 𝑅 for all 𝑡2,0 ∈ 𝑇2,0 and all 𝑡1,0 ∈ 𝑇1,0,
• for all (𝑡1, 𝑡2) ∈ 𝑅, we have {𝑜 | (𝑡1, 𝑜) ∈ ℓ1} = {𝑜 ∩𝑂1 | (𝑡2, 𝑜) ∈ ℓ2} and, for all ] ∈ 2𝐼
and all 𝑡 ′2 ∈ 𝑇2, if (𝑡2, ], 𝑡 ′2) ∈ 𝜏2 holds, then there exists some 𝑡 ′1 ∈ 𝑇1 such that both
(𝑡1, ], 𝑡 ′1) ∈ 𝜏1 and (𝑡 ′2, 𝑡 ′1) ∈ 𝑅 hold.

Intuitively, a finite-state transducer T1 thus simulates a finite-state transducer T2 if all traces
of T2 are, restricted to the variables 𝐼 ∪𝑂1 of T1, also traces of T1. In the following, we show
that this intuition indeed holds:

Proposition 4.1. Let 𝐼 , 𝑂1, and 𝑂2 be finite sets of input and output variables with 𝐼 ∩𝑂1 = ∅,
𝐼 ∩𝑂2 = ∅, and 𝑂1 ⊆ 𝑂2. Let T1 be a finite-state (2𝐼 , 2𝑂1)-transducer and let T2 be a finite-state
(2𝐼 , 2𝑂2)-transducer. If T2 ⪯ T1 holds, then 𝜎 ∩ (𝐼 ∪𝑂1) ∈ Traces(T1) holds for all 𝜎 ∈ Traces(T2).

Proof. Let T1 = (𝑇1, 𝑡1,0, 𝜏1, ℓ1) and let T2 = (𝑇2, 𝑡2,0, 𝜏2, ℓ2). Assume that T2 ⪯ T1 holds. Let
𝜎 ∈ Traces(T2) be a trace of T2 and let 𝜋 ∈ Paths(T2, 𝜎 ∩ 𝐼 ) be the corresponding path. Since
T2 ⪯ T1 holds by assumption, there exists a simulation relation 𝑅 that satisfies the properties of
transducer simulation defined in Definition 4.5.

By definition of paths, we have (#1(𝜋𝑘 ), 𝜎𝑘 ∩ 𝐼 , #1(𝜋𝑘+1)) ∈ 𝜏2 and (#1(𝜋𝑘 ), 𝜎𝑘 ∩ 𝐼 , #2(𝜋𝑘 )) ∈ ℓ2
for every point in time 𝑘 ≥ 0. Hence, by definition of the simulation relation 𝑅, there exists
an infinite sequence 𝜌 ∈ (𝑇1 × 2𝐼 × 2𝑂1 ×𝑇1)𝜔 such that (#1(𝜋𝑘 ), #1(𝜌𝑘 )) ∈ 𝑅, #2(𝜌𝑘 ) = 𝜎𝑘 ∩ 𝐼 ,
#3(𝜌𝑘 ) = (𝜎𝑘 ∩𝑂2) ∩𝑂1, and #4(𝜌𝑘 ) = #1(𝜌𝑘+1) as well as 𝜌𝑘 ∈ 𝜏1 holds for all points in time
𝑘 ≥ 0. Let 𝜋 ′ ∈ (𝑇1 × 2𝑂1)𝜔 be the infinite sequence such that 𝜋 ′ = (#1(𝜌𝑘 ), #3(𝜌𝑘 )) for all
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𝑢0 𝑢1 𝑢2

¬atCrossing1 ∨
¬atCrossing2) | {go1, go2}

atCrossing1 ∧
atCrossing2 | {go1, go2}

¬atCrossing1 ∨
¬atCrossing2 | {go1}

atCrossing1 ∧
atCrossing2 | {go1}

atCrossing1 ∧
atCrossing2 | {go2}

¬atCrossing1 ∨ ¬atCrossing2 | {go2}

Figure 4.2.: Parallel composition of the strategies of the robots from the running example.

points in time 𝑘 ≥ 0. By construction of 𝜌 , we clearly have 𝜋 ′ ∈ Paths(T1, 𝜎 ∩ 𝐼 ). Furthermore,
there exists a trace 𝜎 ′ ∈ Traces(T1, 𝜎 ∩ 𝐼 ) such that 𝜎 ′ = (𝜎 ∩ 𝐼 ) ∪ ((𝜎 ∩𝑂2) ∩𝑂1) holds. Since
𝑂1 ⊆ 𝑂2 holds by assumption, we have (𝜎 ∩ 𝑂2) ∩ 𝑂1 = 𝜎 ∩ 𝑂1 and thus 𝜎 ′ = 𝜎 ∩ (𝐼 ∪ 𝑂1)
follows. Therefore, 𝜎 ∩ (𝐼 ∪𝑂1) ∈ Traces(T1) holds. □

Hence, requiring that a strategy transducer T𝑖 for system process 𝑝𝑖 ∈ 𝑃− is simulated by the
guarantee transducer T𝐺

𝑖 of 𝑝𝑖 ensures that every trace produced by the strategy of 𝑝𝑖 is also
produced by 𝑝𝑖 ’s certificate. That is, intuitively, 𝑝𝑖 ’s strategy cannot perform actions that are
not captured by the certificate of 𝑝𝑖 and therefore the strategy of a process cannot deviate from
the process’s own certificate.
With local realization and transducer simulation, we have laid the foundations for utilizing

deterministic finite-state Moore transducers for representing certificates. In the following, we
thus lift certifying synthesis from certificates given as LTL formulas to certificates represented
by deterministic finite-state guarantee transducers with Moore semantics. First, we formally
define certifying synthesis with guarantee transducers:

Definition 4.6 (Certifying Synthesis with Guarantee Transducers).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩. Let
S = ⟨𝑠1, . . . , 𝑠𝑛⟩ and G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be vectors of strategies and guarantee transducers,

respectively, for the system processes. For 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. If

𝑠𝑖 |=G𝑖 𝜑𝑖 and T𝑖 ⪯ T𝐺
𝑖 , where T𝑖 is the deterministic and complete finite-state Moore

transducer representing 𝑠𝑖 , hold for all 𝑝𝑖 ∈ 𝑃−, then we say that (S,G) realizes 𝜑 . Certifying
synthesis for 𝜑 derives vectors S and G such that (S,G) realizes 𝜑 .

Certifying synthesis with guarantee transducers is thus, in general, similar to certifying
synthesis with LTL certificates. However, it seeks strategies and guarantee transducers instead
of strategies and LTL certificates. Moreover, it models the requirements that a strategy must not
deviate from its certificate and that a strategy only needs to satisfy the specification if the other
processes stick to their certificates with transducer simulation and local satisfaction rather than
with incorporating them into the LTL formula defining the processes objective.
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Example 4.6. Consider the robots 𝑟1 and 𝑟2 from the running example from Section 4.1 and their
guarantee transducers T𝐺

1 and T𝐺
2 depicted in Figure 4.1. Recall that the guarantee transducers

can also be interpreted as strategy transducers T1 and T2 for the two robots. Clearly, T𝑖 ⪯ T𝐺
𝑖

holds for all 𝑖 ∈ {1, 2}. As outlined in Example 4.5, we also have T1 |={T𝐺2 } 𝜑no_crash ∧ 𝜑cross1 .
Similarly, T2 |={T𝐺1 } 𝜑no_crash ∧ 𝜑cross2 follows. Therefore, the pair (⟨𝑠1, 𝑠2⟩, ⟨T𝐺

1 ,T𝐺
2 ⟩), where 𝑠𝑖

is the strategy represented by T𝑖 for 𝑖 ∈ {1, 2}, realizes 𝜑no_crash ∧ 𝜑cross1 ∧ 𝜑cross2 . The parallel
composition of T1 and T2 is depicted in Figure 4.2. It is a strategy that allows both robots to move
forward as long as at most one of them arrived at the crossing. Furthermore, starting with 𝑟1,
both robots take turns in crossing the intersection when both of them are at the crossing at
several consecutive time steps. Hence, T1 | | T2 realizes 𝜑no_crash ∧ 𝜑cross1 ∧ 𝜑cross2 as well. △

In the following, we prove soundness and completeness of certifying synthesis with guarantee
transducers by reducing the existence of LTL certificates to the existence of guarantee transduc-
ers and vice versa. Given vectors S and G of strategies and guarantee transducers for the system
processes, respectively, such that (S,G) realizes an LTL specification 𝜑 , we intuitively construct
a vector Ψ of LTL certificates that capture the exact behavior of the guarantee transducers.
Then, (S,Ψ) realizes 𝜑 as well.

Lemma 4.1. Let 𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S and G be vectors of strategies and guarantee transducers for the system processes, respectively.
If (S,G) realizes 𝜑 , then there is a vector Ψ of LTL certificates such that (S,Ψ) realizes 𝜑 .

Proof. Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩, G = ⟨T𝐺
1 , . . . ,T𝐺

𝑛 ⟩. For 𝑝 𝑗 ∈ 𝑃−, let G𝑗 :=
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
and let �̃�𝑗 =

⋃
𝑝𝑖 ∈𝑃−\{𝑝 𝑗 } 𝑉

𝐺
𝑖 . Let �̃� =

⋃
𝑝 𝑗 ∈𝑃−𝑉

𝐺
𝑗 Suppose that (S,G) realizes 𝜑 . We construct

LTL certificates as follows: for system process 𝑝𝑖 ∈ 𝑃−, let 𝜓𝑖 be an LTL formula over atomic
propositions 𝑉𝐺

𝑖 describing the exact behavior of 𝑝𝑖 ’s guarantee transducer T𝐺
𝑖 , i.e., 𝜓𝑖 is an

LTL formula over atomic propositions 𝑉𝐺
𝑖 with L(𝜓𝑖) = Traces(T𝐺

𝑖 ). Recall that a guarantee
transducer has finitelymany states. Therefore, such an LTL formula𝜓𝑖 can always be constructed
by encoding the guarantee transducer T𝐺

𝑖 . Since 𝑉𝐺
𝑖 ⊆ 𝑉𝑖 holds, 𝜓𝑖 then indeed matches the

form of an LTL certificate. Let Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩ and, for 𝑝 𝑗 ∈ 𝑃−, let Ψ𝑗 =
{
𝜓𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
.

We claim that (S,Ψ) realizes 𝜑 . Hence, we show in the following that 𝑠𝑖 |= 𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)
holds for all 𝑝𝑖 ∈ 𝑃−. More precisely, we show that 𝜎 ∈ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖)) holds for all 𝜎 ∈
Traces(T𝑖) ∪ (2𝑉 \𝑉𝑖 )𝜔 , where T𝑖 is the deterministic and complete finite-state Moore transducer
representing 𝑠𝑖 . Let 𝑝𝑖 ∈ 𝑃− and let 𝜎 ∈ Traces(T𝑖) ∪ (2𝑉 \𝑉𝑖 )𝜔 .
First, we prove that strategy 𝑠𝑖 does not deviate from 𝑝𝑖 ’s certificate 𝜓𝑖 , i.e., we show that

𝜎∩𝑉𝐺
𝑖 ∈ L(𝜓𝑖) holds. Since (S,G) realizes 𝜑 by assumption, T𝑖 ⪯ T𝐺

𝑖 holds. By definition, T𝑖 is
a (2𝐼𝑖 , 2𝑂𝑖 )-transducer, while T𝐺

𝑖 is a (2𝐼𝑖 , 2𝑂𝐺
𝑖 )-transducer. Moreover, by definition of guarantee

outputs, we have 𝑂𝐺
𝑖 ⊆ 𝑂𝑖 . Thus, by Proposition 4.1, we have 𝜎 ′ ∩ 𝑉𝐺

𝑖 ∈ Traces(T𝐺
𝑖 ) for all

𝜎 ′ ∈ Traces(T1) since 𝑉𝐺
𝑖 = 𝐼𝑖 ∪𝑂𝐺

𝑖 holds by definition. Clearly, we have 𝜎 ∩𝑉𝑖 ∈ Traces(T𝑖) by
construction of 𝜎 . Therefore, 𝜎 ∩𝑉𝐺

𝑖 ∈ L(𝜓𝑖) follows with the construction of𝜓𝑖 .
Next, we prove that 𝑠𝑖 realizes 𝜑𝑖 as long as all other system processes do not deviate from

their certificates, i.e., we show that 𝜎 ∈
{
𝜌 ∈ (2𝑉 )𝜔 | 𝜌 ∩ (�̃�𝑖 ∪𝑉𝑖) ∈ L(Ψ𝑖 → 𝜑𝑖)

}
holds. Since

(S,G) realizes 𝜑𝑖 by assumption, in particular 𝑠𝑖 |=G𝑖 𝜑𝑖 holds. We have 𝜎 ∩𝑉𝑖 ∈ Traces(T𝑖) by
construction of 𝜎 and thus, in particular, 𝜎 |=G𝑖 𝜑𝑖 holds. If 𝜎 ∈ VG𝑖 holds, then 𝜎 |= 𝜑𝑖 follows
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with the definition of local satisfaction. Thus, by the semantics of implication, we also have
𝜎 |= Ψ𝑖 → 𝜑𝑖 and therefore 𝜎 ∈

{
𝜌 ∈ (2𝑉 )𝜔 | 𝜌 ∩ (�̃�𝑖 ∪𝑉𝑖) ∈ L(Ψ𝑖 → 𝜑𝑖)

}
holds. Otherwise,

i.e., if 𝜎 is no valid computation for G𝑖 , then there exists a point in time 𝑘 ≥ 0 such that
𝜎𝑘 ∩𝑂𝐺

𝑗 ≠ comp(T𝐺
𝑗 , 𝜎 ∩ 𝐼 𝑗 ) holds for some guarantee transducer T𝐺

𝑗 ∈ G𝑖 . By definition, T𝐺
𝑗

is a deterministic and complete finite-state transducer and thus comp(T𝐺
𝑗 , 𝜎 ∩ 𝐼 𝑗 ) is the single

trace of T𝐺
𝑗 induced by 𝜎 ∩ 𝐼 𝑗 . Thus, we have 𝜎 ∩𝑂𝐺

𝑗 ∉ Traces(T𝐺
𝑗 , 𝜎 ∩ 𝐼 𝑗 ). Since 𝐼 𝑗 ∩𝑂𝐺

𝑗 = ∅
holds by definition of architectures and of guarantee outputs, 𝜎∩𝑂𝐺

𝑗 ∉ Traces(T𝐺
𝑗 ) follows with

the definition of traces. By construction of the LTL formula𝜓 𝑗 , we have L(𝜓 𝑗 ) = Traces(T𝐺
𝑗 )

and therefore 𝜎 ∩𝑂𝐺
𝑗 ∉ L(𝜓 𝑗 ). Since T𝐺

𝑗 ∈ G𝑖 holds, we have 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖} and thus𝜓 𝑗 ∈ Ψ𝑖
holds as well. Hence, 𝜎 ∩ �̃�𝑖 ∉ L(Ψ𝑖) follows with the semantics of conjunction. Thus, by the
semantics of implication, 𝜎 ∈

{
𝜌 ∈ (2𝑉 )𝜔 | 𝜌 ∩ (�̃�𝑖 ∪𝑉𝑖) ∈ L(Ψ𝑖 → 𝜑𝑖)

}
holds.

Therefore, for all processes 𝑝𝑖 ∈ 𝑃− and all traces 𝜎 ∈ Traces(T𝑖) ∪ (2𝑉 \𝑉𝑖 )𝜔 , we have both
𝜎 ∩ 𝑉𝐺

𝑖 ∈
{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩𝑉𝐺

𝑖 ∈ L(𝜓𝑖)
}
and 𝜎 ∈

{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩ (�̃�𝑖 ∪𝑉𝑖) ∈ L(Ψ𝑖 → 𝜑𝑖)

}
.

Clearly,𝑉𝐺
𝑖 ⊆ �̃� ∪𝑉𝑖 and �̃�𝑖 ⊆ �̃� ∪𝑉𝑖 hold. Thus, it follows with the semantics of conjunction that

𝜎 ∈
{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩ (�̃� ∪𝑉𝑖) ∈ L(𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖))

}
holds for all system processes 𝑝𝑖 ∈ 𝑃−

and all 𝜎 ∈ Traces(T𝑖) ∪ (2𝑉 \𝑉𝑖 )𝜔 as well. Hence, (S,Ψ) indeed realizes 𝜑 . □

Vice versa, we can construct a vector G of guarantee transducers from vectors S and Ψ
of strategies and LTL certificates for the system processes, respectively. If (S,Ψ) realizes an
LTL specification 𝜑 , then (S,G) realizes 𝜑 as well. Intuitively, we construct the guarantee
transducers from the strategies by restricting the strategies to the guarantee variables.

Lemma 4.2. Let 𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S and Ψ be vectors of strategies and LTL certificates for the system processes, respectively. If
(S,Ψ) realizes 𝜑 , then there is a vector G of guarantee transducers such that (S,G) realizes 𝜑 .

Proof. Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ and Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩. For 𝑝𝑖 ∈ 𝑃−, let Ψ𝑖 :=
{
𝜓 𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
.

Suppose that (S,Ψ) realizes 𝜑 . We construct guarantee transducers for the system processes
as follows: for 𝑝𝑖 ∈ 𝑃−, let T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) be the (2𝐼𝑖 , 2𝑂𝑖 )-transducer with Moore semantics
representing 𝑠𝑖 . The guarantee transducer T𝐺

𝑖 = (𝑇𝐺
𝑖 ,𝑇𝐺

𝑖,0, 𝜏
𝐺
𝑖 , ℓ

𝐺
𝑖 ) is then defined by

• 𝑇𝐺
𝑖 = 𝑇𝑖 ,

• 𝑇𝐺
𝑖,0 = 𝑇𝑖,0,

• (𝑡, ], 𝑡 ′) ∈ 𝜏𝐺𝑖 if, and only if, (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 , and

• (𝑡, 𝑜) ∈ ℓ𝐺𝑖 if, and only if, there exists some 𝑜 ′ ∈ 2𝑂𝑖 with 𝑜 ′ ∩𝑂𝐺
𝑖 = 𝑜 and (𝑡, 𝑜 ′) ∈ ℓ𝑖 .

Intuitively, T𝐺
𝑖 is thus a copy of T𝑖 , where the output of each state is restricted to the guarantee

outputs 𝑂𝐺
𝑖 . Since T𝑖 represents 𝑠𝑖 , it has a finite number of states, is both deterministic and

complete, and has Moore semantics. Thus, by construction, these attributes hold for T𝐺
𝑖 as well.

Let G = ⟨T𝐺
1 , . . . ,T𝐺

𝑛 ⟩ and, for 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. We claim that (S,G)

realizes 𝜑 . Hence, we show in the following that both 𝑠𝑖 |=G𝑖 𝜑𝑖 and T𝑖 ⪯ T𝐺
𝑖 hold for all system

processes 𝑝𝑖 ∈ 𝑃−. Let 𝑝𝑖 ∈ 𝑃− be some system process.
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First, we prove that T𝑖 ⪯ T𝐺
𝑖 holds. By construction of T𝐺

𝑖 , the two transducers T𝑖 and T𝐺
𝑖

only differ in the outputs of the states. The outputs of the states nevertheless agree on 𝑝𝑖 ’s
guarantee outputs, i.e., on the variables in𝑂𝐺

𝑖 . By definition, the guarantee outputs are the only
output variables that are shared between T𝑖 and T𝐺

𝑖 and, in particular, T𝐺
𝑖 ⊆ T𝑖 holds. Hence, it

follows immediately with the definition of transducer simulation that we have T𝑖 ⪯ T𝐺
𝑖 .

Next, we show that 𝑠𝑖 |=G𝑖 𝜑𝑖 holds. Thus, we prove that for all input sequences 𝛾 ∈ (2𝐼𝑖 )𝜔
and all sequences 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 of valuations of variables that 𝑝𝑖 cannot observe, we have
comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=G𝑖 𝜑𝑖 . Let 𝛾 ∈ (2𝐼𝑖 )𝜔 and let 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . By assumption, (S,Ψ) realizes 𝜑
and therefore 𝑠𝑖 |= 𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖) holds. By the semantics of conjunction and by the definition
of specification realization, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= Ψ𝑖 → 𝜑𝑖 thus holds. For the sake of readability,
let 𝜎 := comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′. If 𝜎 |= Ψ𝑖 holds, then since 𝜎 |= Ψ𝑖 → 𝜑𝑖 holds, 𝜎 |= 𝜑 ′ follows
immediately. Hence, 𝜎 |=G𝑖 𝜑𝑖 follows with the definition of local satisfaction. Otherwise,
i.e., if 𝜎 ̸ |= Ψ𝑖 holds, then there exists some 𝑝 𝑗 ∈ 𝑃− \ {𝑝𝑖} such that 𝜎 ̸ |= 𝜓 𝑗 holds. Since
(S,Ψ) realizes 𝜑𝑖 by assumption, we also have 𝑠 𝑗 |= 𝜓 𝑗 ∧ (Ψ𝑗 → 𝜑 𝑗 ). Thus, 𝑠 𝑗 |= 𝜓 𝑗 and
hence Traces(T𝑗 ) ∩𝑉𝐺

𝑗 ⊆ L(𝜓 𝑗 ) hold, where T𝑗 is the finite-state transducer representing 𝑠 𝑗 .
Since 𝜎 ̸ |= 𝜓 𝑗 and thus 𝜎 ∩ 𝑉𝐺

𝑗 ∉ L(𝜓 𝑗 ) holds by assumption, 𝜎 ∉ Traces(T𝑗 ) follows. By
definition of traces, we therefore have 𝜎 ∉ Traces(T𝑗 , 𝜎 ∩ 𝐼 𝑗 ). By construction of the guarantee
transducers, T𝐺

𝑗 is a copy of T𝑗 , which is the transducer representing 𝑠 𝑗 , where the outputs of
each state are restricted to𝑂𝐺

𝑗 . Therefore, we have Traces(T𝑗 , 𝜎 ∩ 𝐼 𝑗 ) ∩𝑉𝐺
𝑗 = Traces(T𝐺

𝑗 , 𝜎 ∩ 𝐼 𝑗 )
and thus 𝜎 ∩𝑉𝐺

𝑗 ∉ Traces(T𝐺
𝑗 , 𝜎 ∩ 𝐼 𝑗 ) holds. Since guarantee transducers are both deterministic

and complete, T𝐺
𝑗 produces exactly one trace on input sequence 𝜎∩𝐼 𝑗 , namely comp(T𝐺

𝑗 , 𝜎∩𝐼 𝑗 ).
Hence, 𝜎 ∩𝑉𝐺

𝑗 ≠ comp(T𝐺
𝑗 , 𝜎 ∩ 𝐼 𝑗 ) follows. Since 𝑂𝐺

𝑗 ⊆ 𝑉𝐺
𝑗 holds by definition, we thus have

𝜎 ∩𝑂𝐺
𝑗 ≠ comp(T𝐺

𝑗 , 𝜎 ∩ 𝐼 𝑗 ) ∩𝑂𝐺
𝑗 . Therefore, 𝜎 is no valid computation for G𝑖 , i.e., 𝜎 ∉ VG𝑖

holds. Consequently, 𝜎 |=G𝑖 𝜑𝑖 follows with the definition of local satisfaction. Since we chose
𝛾 ∈ (2𝐼𝑖 )𝜔 and 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 arbitrarily, 𝜎 |=G𝑖 𝜑𝑖 follows. □

Note that the construction of the guarantee transducers in the proof of Lemma 4.2 only
depends on the strategies, not on the LTL certificates. Hence, intuitively, we provide the
entire strategy as guaranteed behavior and do not make use of the possibly more concise LTL
certificates. However, this does not mean that guarantee transducers always represent the entire
strategy in general. Theremight exist more concise guarantee transducers that represent the very
same guaranteed behavior as the LTL certificates and still satisfy the requirements of certifying
synthesis with guarantee transducers. Yet, theoretically, an LTL certificate could be more
general than the strategy: consider two processes 𝑝1 and 𝑝2 with 𝐼1 = {𝑎}, 𝑂1 = {𝑏}, 𝐼2 = {𝑏},
and 𝑂2 = {𝑎} as well as specification (𝑎 ∨ 𝑏). Simple strategies for 𝑝1 and 𝑝2 are, for instance,
strategies that output 𝑏 and 𝑎, respectively, in every step. While LTL certificates 𝜓1 = 𝑎

and𝜓2 = 𝑏 suffice in this case, also the more general LTL certificates𝜓 ′1 = 𝜓 ′2 = true yield a
valid solution of certifying synthesis. Every transducer that captures exactly the guaranteed
behavior modeled by these LTL certificates is nondeterministic and thus, by definition, no
guarantee transducer. Lemma 4.2, however, only considers the existence of some guarantee
transducers such that the requirements of certifying synthesis are satisfied. Hence, we can
utilize the deterministic transducers representing the strategies.



124 4. Assume-Guarantee Contracts for Distributed Synthesis

Since for every solution of certifying synthesis with LTL certificates, there exists one with
guarantee transducers and vice versa, we can utilize the results from Section 4.2 to conclude
that certifying synthesis with certificates represented by deterministic finite-state transducers is
sound and complete. It follows immediately from Theorem 4.1 together with Lemmas 4.1 and 4.2
that there exist vectors of strategies and guarantee transducers realizing an LTL specification if,
and only if, the parallel composition of the strategies realizes the specification:

Theorem4.2. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of strategies for the system processes. Then, there exists a vector G
of guarantee transducers for the system processes such that (S,G) realizes 𝜑 if, and only if,
𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Proof. First, let there be a vector G of guarantee transducers such that (S,G) realizes 𝜑 . Then,
by Lemma 4.1, there exists a vector Ψ of LTL certificates such that (S,Ψ) realizes 𝜑 . Therefore,
by Theorem 4.1, 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Second, suppose that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds. Then, by Theorem 4.1, there exists a vector Ψ of
LTL certificates such that (S,Ψ) realizes 𝜑 . Thus, by Lemma 4.2, there also exists a vector G of
guarantee transducers such that (S,G) realizes 𝜑 . □

Hence, similar to LTL certificates, certifying synthesis with guarantee transducer allows for
local reasoning and thus enables modularity of the system. At the same time, it still ensures that
correct solutions are found for all realizable specifications. In particular, enforcing certificates
to be deterministic does not rule out strategies that can be obtained with certifying synthesis
with possibly nondeterministic LTL certificates. Nevertheless, nondeterministic certificates can
generally be more concise than deterministic ones. Therefore, we also study the advantages
and disadvantages of permitting nondeterminism in guarantee transducers in Section 4.6.
Since certifying synthesis with guarantee transducers is sound and complete, it is suitable

for compositional synthesis of distributed systems. In the following section, we thus describe
how strategies and certificates represented by guarantee transducers can be synthesized for the
system processes and hence how the distributed synthesis problem can be solved practically
with certifying synthesis.

4.4. Synthesizing Certificates
In this section, we present an algorithm for practically synthesizing strategies and certificates
represented by guarantee transducers. Our approach is based on bounded synthesis [FS13]
and incorporates the search for certificates and the local objectives formalized by certifying
synthesis into the existing framework.
In monolithic bounded synthesis, the size of the strategy is bounded and, starting from

one state, is only increased if no solution with this size is found (see Section 2.8.1). Thus,
bounded synthesis produces size-optimal solutions. Since we additionally synthesize certificates
represented by finite-state transducers, we bound the sizes of the certificates as well, allowing
for size-optimal solutions in either terms of strategies or certificates.
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In the following, we first present which formalisms of certifying synthesis with guarantee
transducers presented in Section 4.3 need to be slightly adapted to incorporate certifying synthe-
sis into existing bounded synthesis frameworks easily. We prove soundness and completeness
of certifying synthesis with these adaptions. Afterward, we introduce a SAT constraint system
that encodes the search for strategies and deterministic guarantee transducers that satisfy the
requirements of certifying synthesis.

4.4.1. Local Strategies
Like for classical bounded synthesis [FS13, FFRT17] for monolithic systems, we reduce the
search for a solution of certifying synthesis of a certain size to a constraint-solving problem.
We employ parts of the existing bounded synthesis algorithm, particularly the concept of valid
annotations of run graphs to determine whether or not a strategy realizes the given specification
(see Definition 2.21). Therefore, we need to slightly adapt the formalisms for certifying synthesis
with guarantee transducers presented in Section 4.3 in order to incorporate the local objectives
of certifying synthesis into the concept of valid annotations.
In Section 4.3, we utilized local satisfaction to formalize that, in certifying synthesis with

guarantee transducers, a strategy only needs to realize its specification if the other processes do
not deviate from their guaranteed behavior formalized in their certificates. Hence, we changed
the satisfaction condition with respect to classical notions. However, determining whether
or not a strategy classically realizes an LTL formula is the crucial part of existing bounded
synthesis frameworks and, in particular, the SAT constraint system [FFRT17] that encodes
the bounded synthesis problem. Therefore, we present a different formalization of certifying
synthesis with guarantee transducers in this section. It relies on classical satisfaction, thus
allowing for reusing parts of the SAT constraint system for monolithic bounded synthesis,
particularly valid annotations of run graphs, while still ensuring that a strategy only needs to
satisfy the specification if the other processes do not deviate from their certificates.

Recall that to determine whether or not a strategy 𝑠𝑖 for a system process 𝑝𝑖 ∈ 𝑃− realizes an
LTL formula 𝜑𝑖 in bounded synthesis, we first construct a universal co-Büchi automaton A𝑖

that accepts the language of 𝜑𝑖 , i.e., an automaton with L(A𝑖) = L(𝜑𝑖). Then, 𝑠𝑖 realizes 𝜑𝑖 if,
and only if,A𝑖 accepts comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . Hence, since the
acceptance of a universal co-Büchi automaton is determined by the number of visits to rejecting
states during a run, we check whether or not all runs of A𝑖 induced by some computation of 𝑠𝑖
contain only finitely many visits to rejecting states (see Section 2.8.1). Observe that a finite
run of a co-Büchi automaton can never visit rejecting states infinitely often. Consequently,
all finite runs are trivially accepting. Hence, by ensuring that A𝑖 produces finite runs on all
sequences that deviate from the certificate of some other system process, we can check local
satisfaction with the very same concept for determining classical satisfaction, namely by using
valid annotations for checking whether the runs of A𝑖 induced by the computations of 𝑠𝑖 visit
rejecting states only finitely often.

There are two possibilities for a universal co-Büchi automatonA𝑖 to produce finite runs on the
computation comp(𝑠𝑖 , 𝛾) of the strategy 𝑠𝑖 on some input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 . First, A𝑖 can be
incomplete, i.e., there can be a state 𝑞 ofA𝑖 that occurs in a run ofA𝑖 induced by the respective
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computation comp(𝑠𝑖 , 𝛾) of 𝑠𝑖 at point in time 𝑘 and that does not have any outgoing edge for
input valuation comp(𝑠𝑖 , 𝛾)𝑘+1, i.e., we have (𝑞, comp(𝑠𝑖 , 𝛾)𝑘+1, 𝑞′) ∉ 𝛿 for all 𝑞′ ∈ 𝑄 , where 𝑄
is the set of states of A𝑖 and 𝛿 is its transition relation. Second, the respective computation
comp(𝑠𝑖 , 𝛾) of 𝑠𝑖 can be finite. In classical bounded synthesis, A𝑖 accepts the language of 𝜑𝑖 , i.e.,
we have L(A𝑖) = L(𝜑𝑖). Thus, the former possibility requires altering the universal co-Büchi
automaton A𝑖 to incorporate the other system processes’ certificates, for instance, when using
LTL certificates. Consequently,A𝑖 depends on the certificates and is not fixed, which is a major
change with respect to classical bounded synthesis algorithms. The latter possibility, in contrast,
only requires altering the strategies. To ensure that the computation of 𝑠𝑖 is finite on input
sequences that do not match the other processes’ certificates, we can model strategies with
transition-incomplete transducers instead of complete ones. Since we synthesize the strategies or,
more precisely, the finite-state transducers representing them, in bounded synthesis anyhow,
we thus only need to slightly alter the encoding of the strategies we are searching for, which is
much less invasive than altering A𝑖 . The transducers representing strategies, however, are still
deterministic and labeling-complete.

Therefore, we focus on this possibility and model strategies with deterministic and labeling-
complete but transition-incomplete finite-state Moore transducers in the following. Intuitively,
their transition relation is defined such that the computation of a strategy is infinite if, and only
if, the other processes do not deviate from the behavior formalized in their certificates. Note that
system strategies defined according to Definition 2.13 cannot produce finite computations as they
are modeled with functions. Thus, representing system strategies with transition-incomplete
finite-state Moore transducers is, strictly speaking, not possible. Therefore, we define local
strategies, a variant of system strategies that can be modeled with transition-incomplete finite-
state Moore transducers, as follows:

Definition 4.7 (Local Strategy).
Let 𝑝𝑖 ∈ 𝑃− be some system process. Let P ⊆ 𝑃− \ {𝑝𝑖} be a set of other system processes
and let G be a set of guarantee transducers, one for each process in P. A local strategy
𝑠𝑖 : (2𝑉𝑖 )∗ × 2𝐼𝑖 ⇀ 2𝑂𝑖 for 𝑝𝑖 with respect to G is represented by a deterministic and labeling-
complete finite-state (2𝐼𝑖 , 2𝑂𝑖 )-transducer T̂𝑖 with Moore semantics. For all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all
𝜎 ∈ Traces(T̂𝑖 , 𝛾) it holds that (i) if 𝜎 is infinite, then there exists some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that
𝜎 ∪ 𝛾 ′ ∈ VG holds, and (ii) if 𝜎 is finite, then 𝜎 · (𝛾 |𝜎 | ∪ 𝑜) ∪ 𝛾 ′ ∉ H G|𝜎 |+1 holds for all 𝑜 ∈ 2

𝑂𝑖

and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )∗ with |𝛾 ′ | = |𝜎 | + 1.

Intuitively, a finite-state Moore transducer representing a local strategy thus omits all transi-
tions that are invoked by an input that may only occur if the other processes deviate from their
certificates, possibly resulting in labeling-incompleteness. For an input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 that
does not match the other processes’ guaranteed behavior, a local strategy 𝑠𝑖 thus encounters, at
some point in time 𝑘 , the situation that in the current state of the transducer T𝑖 representing 𝑠𝑖
there does not exist an outgoing transition that matches 𝛾𝑘+1. Since a local strategy is repre-
sented by a deterministic finite-state transducer, the current state at point in time 𝑘 is unique.
Therefore every run of the transducer representing 𝑠𝑖 ends at point in time 𝑘 , resulting in a
finite computation of the local strategy.
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𝑢0 𝑢1

𝑢2

go2 ∧ (¬atCrossing1 ∨
¬atCrossing2) | {go1}

go2 ∧ atCrossing1 ∧
atCrossing2 | {go1}

¬go2 ∧ (¬atCrossing1 ∨
¬atCrossing2) | {go1}

¬go2 ∧ atCrossing1 ∧
atCrossing2 | {go1}go2 ∧ atCrossing1 ∧

atCrossing2 | ∅

go2 ∧ (¬atCrossing1 ∨
¬atCrossing2) | ∅

Figure 4.3.: Local strategy T̂1 for robot 𝑟1 from the running example. Atomic propositions
denoting output variables of the other robot are highlighted in gray.

Example 4.7. Consider the robots 𝑟1 and 𝑟2 from the running example introduced in Section 4.1.
Furthermore, consider the guarantee transducers T𝐺

1 and T𝐺
2 for 𝑟1 and 𝑟2, respectively, depicted

in Figure 4.1. Recall that the guarantee transducers T𝐺
1 and T𝐺

2 can be interpreted as strategy
transducers T1 and T2 for the robots 𝑟1 and 𝑟2, respectively, as well. Local strategies T̂1 and T̂2 for
the robots 𝑟1 and 𝑟2 with respect to the sets {T𝐺

2 } and {T𝐺
1 }, which are based on the strategy

transducers T1 and T2, are depicted in Figures 4.3 and 4.4, respectively.
Robot 𝑟1’s local strategy T̂1, depicted in Figure 4.3, looks similar to T1, depicted in Figure 4.1a.

However, the transition labels contain restrictions on the output variable go2 of robot 𝑟2, which
match 𝑟2’s guaranteed behavior formalized in T𝐺

2 , depicted in Figure 4.1b. Thus, in particular, T̂1
does not define transitions that cannot be taken in the interplay of T1 and T𝐺

2 . For instance, T𝐺
2

ensures that go2 is played in the very first time step as well as every time at most one of the
robots arrived at the crossing. As T1 is always in state 𝑢0 in this situation, T̂1 does not have an
outgoing transition for ¬go2 in state 𝑢0.

Robot 𝑟2’s local strategy T̂2, depicted in Figure 4.4, differs from T2 in the number of states and
the transition structure. This is necessary to correctly incorporate 𝑟1’s guaranteed behavior:
in T2, we are not able to distinguish even and odd positions of a sequence of consecutive time
steps in which both robots arrive at the crossing. Therefore, we cannot accurately capture 𝑟1’s
guaranteed behavior, which differs in these situations, with a two-state transducer, and hence we
need to enlarge the state space. Nevertheless, T̂2 defines an analogous behavior as T2, yet having
no outgoing transitions for situations that cannot occur in the interplay of T2 and T𝐺

1 . △

Note that the requirements on the finiteness and infiniteness of computations posed by the
definition of local strategies ensure that a finite-state transducer representing a local strategy
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𝑢0 𝑢1

𝑢2

go1 ∧ (¬atCrossing1 ∨
¬atCrossing2) | {go2}

go1 ∧ atCrossing1 ∧
atCrossing2 | {go2}

go1 ∧ (¬atCrossing1 ∨
¬atCrossing2) | ∅

go1 ∧ atCrossing1 ∧
atCrossing2 | ∅¬go1 ∧ atCrossing1 ∧

atCrossing2 | {go2}

¬go1 ∧ (¬atCrossing1 ∨
¬atCrossing2) | {go2}

Figure 4.4.: Local strategy T̂2 for robot 𝑟2 from the running example. Atomic propositions
denoting output variables of the other robot are highlighted in gray.

has at least one initial state. Since the transducer is also deterministic by definition, it thus
follows that a labeling-incomplete finite-state Moore transducer representing a local strategy
has exactly one initial state:

Proposition 4.2. Let 𝑝𝑖 ∈ 𝑃− be some system process. Let P ⊆ 𝑃− \ {𝑝𝑖} be a set of other
system processes and let G be a set of guarantee transducers, one for each process in P. Let 𝑠𝑖 be
a local strategy for 𝑝𝑖 with respect to G and let T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖) be the finite-state transducer
representing 𝑠𝑖 . Then, |𝑇𝑖,0 | = 1 holds.

Proof. Let 𝑂𝐺
𝑖 =

⋃
𝑝 𝑗 ∈P 𝑂

𝐺
𝑗 . Let T = (𝑇,𝑇0,T , ℓ) be the parallel composition of the guarantee

transducers inG. Since guarantee transducers are deterministic and completeMoore transducers
and since the sets of output variables of different processes are disjoint by definition of system
architectures, T is deterministic and complete and has Moore semantics by Lemma 2.1 as well.
Hence, there exists a unique initial state 𝑡0 ∈ 𝑇0. Furthermore, there exists a unique valuation
𝑜 ∈ 2𝑂𝐺

𝑖 of the guarantee outputs of the processes in P such that (𝑡0, 𝑜) ∈ ℓ holds. Let 𝜌 ∈ (2𝑉 )𝜔
be some infinite sequence with 𝜌0∩𝑂𝐺

𝑖 = 𝑜 . Then, in particular, 𝜌0∩𝑂𝐺
𝑗 = comp(T𝐺

𝑗 , 𝜌∩𝐼 𝑗 )∩𝑂𝐺
𝑗

holds for all 𝑝 𝑗 ∈ P and thus, by definition of valid histories, we have 𝜌 |1 ∈ H G1 .
Since T̂𝑖 is deterministic by definition and thus, in particular, transition-deterministic, we

have |𝑇𝑖,0 | ≤ 1. Suppose that |𝑇𝑖,0 | = 0 holds. Then, |𝜎 | = 0 holds for the unique trace
𝜎 ∈ Traces(T̂𝑖 , 𝜌 ∩ 𝐼𝑖) of T̂𝑖 induced by 𝜌 ∩ 𝐼𝑖 . Since 𝑠𝑖 is a local strategy for 𝑝𝑖 with respect to G,
we thus have ((𝜌0 ∩ 𝐼𝑖) ∪ 𝑜) ∪ 𝛾 ′ ∉ H G1 for all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 with |𝛾 ′ | = 1 and all 𝑜 ∈ 2𝑂𝑖 . Thus,
in particular ((𝜌0 ∩ 𝐼𝑖) ∪ (𝜌𝑜 ∩ 𝑂𝑖)) ∪ (𝜌0 ∩ (𝑉 \ 𝑉𝑖) ∉∈ H G1 holds; contradicting 𝜌 |1 ∈ H G1 .
Hence, we have |𝑇𝑖,0 | ≠ 0 and, since |𝑇𝑖,0 | ≤ 1 holds, |𝑇𝑖,0 | = 1 follows. □
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Utilizing the notion of local strategies, we now reformulate the definition of certifying
synthesis with guarantee transducers from Section 4.3.

Definition 4.8 (Certifying Synthesis with Local Strategies).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩. Let
G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be a vector of guarantee transducers for the system processes and, for

𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ such that 𝑠𝑖 is a local strategy

for 𝑝𝑖 ∈ 𝑃−with respect to G𝑖 . Let T̂𝑖 be the deterministic and labeling-complete finite-state
Moore transducer representing 𝑠𝑖 . If T̂𝑖 ⪯ T𝐺

𝑖 holds and if, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 ,
either comp(𝑠𝑖 , 𝛾) is finite or comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑 holds, then we say that (Ŝ,G) realizes 𝜑 .
Certifying synthesis for 𝜑 derives vectors Ŝ and G such that (Ŝ,G) realizes 𝜑 .

Note here that the notion of transducer simulation for ensuring that a strategy does not
deviate from its own certificate does not need to be altered when using local strategies instead
of complete strategies: for T̂𝑖 ⪯ T𝐺

𝑖 to hold, transducer simulation requires a transition in
the guarantee transducer T𝐺

𝑖 whenever there is a matching one in T̂𝑖 . Hence, whenever the
local strategy does not have an outgoing transition for a specific input in the current state, i.e.,
whenever the local strategy is transition-incomplete, transducer simulation does not require
the existence of a transition in this situation either. Since guarantee transducers are complete,
however, this permits any behavior in the guarantee transducer in such situations. While this
differs from the previous definitions of certifying synthesis, both with guarantee transducers
and LTL certificates, it does not affect soundness or completeness since, intuitively, situations
in which a guarantee transducers’ behavior does not match the local strategy cannot occur in
the interplay of all strategies.

Certifying synthesis with local strategies indeed utilizes classical satisfaction instead of local
satisfaction. Thus, we can reuse existing bounded synthesis frameworks and, in particular, valid
annotations of run graphs (see Section 2.8.1), to determine whether a local strategy realizes an
LTL formula. In the following, we study the relationship between certifying synthesis with
local strategies as defined above (see Definition 4.8) and certifying synthesis with guarantee
transducers as introduced in Section 4.3. First, we introduce the notions of extending local
strategies and restricting complete strategies. This allows for comparing local strategies with
classical satisfaction to complete strategies with local satisfaction. Afterward, we then utilize
the concepts of strategy extension and restriction to show soundness and completeness of
certifying synthesis with local strategies.

4.4.2. Strategy Extension and Restriction
Given a local strategy 𝑠𝑖 for system process 𝑝𝑖 ∈ 𝑃− and a set G of guarantee transducers, we
can construct a complete strategy 𝑠𝑖 , i.e., a strategy according to Definition 2.13 represented by
a complete finite-state transducer, by, intuitively, extending 𝑠𝑖 with its own guaranteed behavior.
More precisely, 𝑠𝑖 behaves as 𝑠𝑖 up to the point in time 𝑘 ≥ 0 at which 𝑠𝑖 does not produce
any further valuation of output variables. From point in time 𝑘 on, 𝑠𝑖 then behaves as 𝑝𝑖 ’s
certificate, modeled by guarantee transducer T𝐺

𝑖 , does. Note that whenever 𝑠𝑖 produces an
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infinite computation, 𝑠𝑖 does not switch from 𝑠𝑖 to 𝑝𝑖 ’s guarantee but always behaves as 𝑠𝑖 does.
Formally, we construct a deterministic and complete finite-state Moore transducer modeling
the full strategy 𝑠𝑖 from 𝑠𝑖 as follows:

Definition 4.9 (Strategy Extension).
Let 𝑝𝑖 ∈ 𝑃−be a system process and let T𝐺

𝑖 be a guarantee transducer for 𝑝𝑖 . Let P ⊆ 𝑃−\ {𝑝𝑖}
be a set of other system processes and let G be a set of guarantee transducers, one for each
process in P. Let 𝑠𝑖 be a local strategy for 𝑝𝑖 with respect to G. Let T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖) be
the transition-incomplete finite-state (2𝐼𝑖 , 2𝑂𝑖 )-transducer representing 𝑠𝑖 . The extension
extend(𝑠𝑖 ,T𝐺

𝑖 ) of 𝑠𝑖 is represented by a finite-state (2𝐼𝑖 , 2𝑂𝑖 )-transducer T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖)
which we construct from T̂𝑖 and T𝐺

𝑖 as follows:

• 𝑇𝑖 = (𝑇𝑖 ∪ {⊥}) ×𝑇𝐺
𝑖 ,

• 𝑇𝑖,0 = 𝑇𝑖,0 ×𝑇𝐺
𝑖,0 and

• ((𝑡, 𝑡), ], (𝑡 ′, 𝑡 ′)) ∈ 𝜏𝑖 if, and only if, (𝑡, ], 𝑡 ′) ∈ 𝜏𝐺𝑖 and either (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 , or both 𝑡 ′ = ⊥
and ∀𝑡 ′′ ∈ 𝑇 . (𝑡, ], 𝑡 ′′) ∉ 𝜏𝑖 , or 𝑡 = ⊥ holds.

• ((𝑡, 𝑡), 𝑜) ∈ ℓ𝑖 if, and only if, either both 𝑡 ≠ ⊥ and (𝑡, 𝑜) ∈ ℓ̂𝑖 hold, or we have both
𝑡 = ⊥ and 𝑜 = 𝑝𝑖𝑐𝑘

({
𝑜 ∈ 2𝑂𝑖 | (𝑡, 𝑜 ∩𝑂𝐺

𝑖 ) ∈ ℓ𝐺𝑖
})
,

where 𝑝𝑖𝑐𝑘 (𝑀) picks one element from the non-empty set𝑀 .

Intuitively, the transducer representing extend(𝑠𝑖 ,T𝐺
𝑖 ) keeps track of both the behavior of

the possibly incomplete transducer T̂𝑖 representing the local strategy 𝑠𝑖 and the behavior of the
guarantee transducer T𝐺

𝑖 for system process 𝑝𝑖 ∈ 𝑃−. If, for some input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 , the
local strategy 𝑠𝑖 produces an infinite computation, i.e., if 𝑠𝑖 does not “get stuck” at some point
in time, the extended strategy extend(𝑠𝑖 ,G) always follows both 𝑠𝑖 and T𝐺

𝑖 and produces 𝑠𝑖 ’s
outputs. As soon as 𝑠𝑖 “gets stuck”, however, the extended strategy extend(𝑠𝑖 ,T𝐺

𝑖 ) cannot
follow 𝑠𝑖 anymore but only T𝐺

𝑖 . It then produces some extension of the outputs of T𝐺
𝑖 , which

are a subset of all output variables of 𝑝𝑖 , to the set 𝑂𝑖 of all output variables.
Since the transducer T𝑖 representing extend(𝑠𝑖 ,T𝐺

𝑖 ) is built from the deterministic transduc-
ers T̂𝑖 and T𝐺

𝑖 and since the transition relation of T𝑖 always follows one of them, T𝑖 is transition-
deterministic as well. Furthermore, T𝐺

𝑖 is complete, while T̂𝑖 might be transition-incomplete.
Since the transition relation of T𝑖 always follows T𝐺

𝑖 , however, T𝑖 is transition-complete as
well. Since T𝑖 ’s labeling relation follows T̂𝑖 for states (𝑡, 𝑡) with 𝑡 ≠ ⊥ and since T̂𝑖 is both
labeling-deterministic and labeling-complete, T𝑖 has exactly one output for such states as well.
For states (𝑡, 𝑡) with 𝑡 = ⊥, in contrast, T𝑖 ’s output is defined by a unique valuation of output
variables which, restricted to the guarantee outputs, is an output of T𝐺

𝑖 in state 𝑡 . Note here that
the set of all such valuations is non-empty since T𝐺

𝑖 is labeling-complete. In fact, the valuation
of the guarantee outputs is already uniquely defined by ℓ𝐺𝑖 since we consider T𝐺

𝑖 to be labeling-
deterministic here as well. However, the function 𝑝𝑖𝑐𝑘 would ensure labeling-determinism for
such states also if T𝐺

𝑖 would not be labeling-deterministic, Therefore, the transducer T𝑖 is both
labeling-deterministic and labeling-complete as well. Lastly, since both T̂𝑖 and T𝐺

𝑖 consist of a
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finite number of states, it follows immediately from the construction of T𝑖 that it has a finite
number of states as well. Thus, T𝑖 is a deterministic and complete finite-state transducer and
hence it indeed represents a complete strategy. Furthermore, 𝑠𝑖 and extend(𝑠𝑖 ,T𝐺

𝑖 ) agree on
input sequences on which 𝑠𝑖 produces infinite computations:

Lemma 4.3. Let 𝑝𝑖 ∈ 𝑃− be a system process and let T𝐺
𝑖 be a guarantee transducer for 𝑝𝑖 . Let

P ⊆ 𝑃−\ {𝑝𝑖} be a set of other system processes and let G be a set of guarantee transducers, one
for each process in P. Let 𝑠𝑖 be a local strategy for 𝑝𝑖 with respect to G. Let 𝑠𝑖 := extend(𝑠𝑖 ,T𝐺

𝑖 ).
Let 𝛾 ∈ (2𝐼𝑖 )𝜔 . Then, comp(𝑠𝑖 , 𝛾)𝑘 = comp(𝑠𝑖 , 𝛾)𝑘 holds for all 𝑘 with 0 ≤ 𝑘 < |comp(𝑠𝑖 , 𝛾) |.

Proof. LetT𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) and T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖) be the finite-state transducers representing 𝑠𝑖
and 𝑠𝑖 , respectively. By definition, T̂𝑖 is deterministic and labeling-complete. As outlined above,T𝑖
is both deterministic and complete. Let 𝛾 ∈ (2𝐼𝑖 )𝜔 . Let 𝜋 ∈ Paths(T𝑖 , 𝛾) and 𝜋 ∈ Paths(T̂𝑖 , 𝛾) be
the unique paths produced by T𝑖 and T̂𝑖 , respectively, on𝛾 . Then, it follows from the construction
of T𝑖 and thus from the definition of strategy extension, that for all 𝑘 with 0 ≤ 𝑘 < |comp(𝑠𝑖 , 𝛾) |,
if 𝜋𝑘 = (𝑡, 𝑜), then there exists some 𝑡𝐺 ∈ 𝑇𝐺

𝑖 such that 𝜋𝑘 = ((𝑡, 𝑡𝐺 ), 𝑜) holds. Thus, in particular,
#1(𝜋𝑘 ) = #1(#1(𝜋𝑘 )) and #2(𝜋𝑘 ) = #2(𝜋𝑘 ) hold for all 𝑘 with 0 ≤ 𝑘 < |𝜋 |. Let 𝜎 ∈ Traces(T𝑖 , 𝛾)
and �̂� ∈ Traces(T̂𝑖 , 𝛾) be the unique traces corresponding to 𝜋 and 𝜋 , respectively. Then, it
follows that 𝜎𝑘 = �̂�𝑘 for all 𝑘 with 0 ≤ 𝑘 < |�̂� | holds as well by definition of traces. Hence,
by definition of computations, comp(𝑠𝑖 , 𝛾)𝑘 = comp(𝑠𝑖 , 𝛾)𝑘 holds for all points in time 𝑘 with
0 ≤ 𝑘 < |comp(𝑠𝑖 , 𝛾) |. □

The extension of a local strategy 𝑠𝑖 for a set G𝑖 of guarantee transducers according to Defi-
nition 4.9 to a complete strategy then preserves realization: if the local strategy 𝑠𝑖 realizes an
LTL formula 𝜑𝑖 , then the complete strategy extend(𝑠𝑖 ,T𝐺

𝑖 ) locally realizes 𝜑𝑖 with respect to G𝑖 .
Furthermore, it follows from the construction of T𝑖 that T𝐺

𝑖 simulates T𝑖 . Lastly, the parallel
composition of the local strategies and the parallel composition of their extensions coincide.
Note that this immediately establishes that the parallel composition of the local strategies
produces a unique and infinite computation for every input sequence. Therefore, we can lift a
solution of certifying synthesis with local strategies to a solution of certifying synthesis with
local satisfaction using strategy extension:

Lemma 4.4. Let 𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be a vector of guarantee transducers for the system processes and, for

𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of local strategies for the

system processes such that 𝑠𝑖 is a local strategy for 𝑝𝑖 ∈ 𝑃−with respect to G𝑖 . Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩
such that 𝑠𝑖 = extend(𝑠𝑖 ,T𝐺

𝑖 ) holds for all 𝑝𝑖 ∈ 𝑃−. If (Ŝ,G) realizes 𝜑 , then (S,G) realizes 𝜑 as
well and Traces(T̂1 | | . . . | | T̂𝑛) = Traces(T1 | | . . . | | T𝑛) holds, where T𝑖 and T̂𝑖 are the finite-state
transducers representing 𝑠𝑖 and 𝑠𝑖 , respectively.

Proof. Let T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖), T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖), and T𝐺
𝑖 = (𝑇𝐺

𝑖 ,𝑇𝐺
𝑖,0, 𝜏

𝐺
𝑖 , ℓ

𝐺
𝑖 ). Let (Ŝ,G) realize𝜑 .

Then, by definition of certifying synthesis with local strategies, we have, for all 𝑝𝑖 ∈ 𝑃−, both
T̂𝑖 ⪯ T𝐺

𝑖 and, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , either comp(𝑠𝑖 , 𝛾) is finite or comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ |= 𝜑𝑖
holds. To prove that (S,G) realizes 𝜑 as well, we show that both 𝑠𝑖 |=G𝑖 𝜑𝑖 and T𝑖 ⪯ T𝐺

𝑖 hold
for all system processes 𝑝𝑖 ∈ 𝑃−. Let 𝑝𝑖 ∈ 𝑃− be some system process.
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First, we show that T𝑖 ⪯ T𝐺
𝑖 holds. Since (Ŝ,G) realizes 𝜑 by assumption, in particular

T̂𝑖 ⪯ T𝐺
𝑖 holds. Let 𝑅 : 𝑇𝑖 × 𝑇𝐺

𝑖 be the relation establishing the simulation. We construct a
relation 𝑅′ : 𝑇𝑖 ×𝑇𝐺

𝑖 establishing the simulation T𝑖 ⪯ T𝐺
𝑖 from 𝑅 as follows: ((𝑡, 𝑡), 𝑡𝐺 ) ∈ 𝑅 if,

and only if, 𝑡 = 𝑡𝐺 and either (𝑡, 𝑡𝐺 ) ∈ 𝑅 or 𝑡 = ⊥ holds It remains to show that 𝑅′ satisfies the
properties of a simulation relation. Clearly, (𝑡0, 𝑡𝐺0 ) ∈ 𝑅′ holds for all 𝑡0 ∈ 𝑇0 and all 𝑡𝐺0 ∈ 𝑇𝐺

0
by construction of T𝑖 and 𝑅′ and since 𝑅 satisfies the properties of a simulation relation. Let
((𝑡, 𝑡𝐺 ), 𝑡𝐺 ) ∈ 𝑅′. If 𝑡 = ⊥ holds, then

{
𝑜 | (𝑡𝐺 , 𝑜) ∈ ℓ𝐺𝑖

}
=

{
𝑜 ∩𝑂𝐺

𝑖 | ( (𝑡, 𝑡𝐺 ), 𝑜) ∈ ℓ𝑖
}
follows

immediately from the definition of strategy extension. If 𝑡 ≠ ⊥ holds, then we have (𝑡, 𝑡𝐺 ) ∈ 𝑅
by construction of 𝑅′ and thus, in particular,

{
𝑜 | (𝑡𝐺 , 𝑜) ∈ ℓ𝐺𝑖

}
=

{
𝑜 ∩𝑂𝐺

𝑖 | (𝑡, 𝑜) ∈ ℓ̂𝑖
}
holds.

Hence,
{
𝑜 | (𝑡𝐺 , 𝑜) ∈ ℓ𝐺𝑖

}
=

{
𝑜 ∩𝑂𝐺

𝑖 | ( (𝑡, 𝑡𝐺 ), 𝑜) ∈ ℓ𝑖
}
follows with the construction of ℓ𝑖 also

if 𝑡 ≠ ⊥ holds. Furthermore, there is only a transition ((𝑡, 𝑡), ], (𝑡 ′, 𝑡 ′)) ∈ 𝜏𝑖 in T𝑖 if there is a
transition (𝑡, ], 𝑡 ′) ∈ 𝜏𝐺𝑖 in T𝐺

𝑖 as well. Hence, the second requirement of simulation relations
for transducer simulation is satisfied as well and thus T𝑖 ⪯ T𝐺

𝑖 follows.
Second, we show that 𝑠𝑖 |=G𝑖 𝜑𝑖 holds, i.e., we prove that for all𝛾 ∈ (2𝐼𝑖 )𝜔 and all𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 ,

we have comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=G𝑖 𝜑𝑖 . Let 𝛾 ∈ (2𝐼𝑖 )𝜔 and 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . Since (Ŝ,G) realizes 𝜑 by
assumption, either comp(𝑠𝑖 , 𝛾) is finite or comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 holds. If comp(𝑠𝑖 , 𝛾) is infinite,
then, by Lemma 4.3, comp(𝑠𝑖 , 𝛾) = comp(𝑠𝑖 , 𝛾) holds. Furthermore, we have comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ |= 𝜑𝑖
and thus comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 follows. Hence, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=G𝑖 𝜑 holds. Otherwise, i.e.,
if comp(𝑠𝑖 , 𝛾) is finite, let 𝑘 := |comp(𝑠𝑖 , 𝛾) |. By definition of local strategies, we then have
comp(𝑠𝑖 , 𝛾) · (𝛾𝑘 ∪𝑜) ∪𝛾 ′′ ∉ H G𝑖𝑘+1 for all 𝑜 ∈ 2

𝑂𝑖 and all 𝛾 ′′ ∈ (2𝑉 \𝑉𝑖 )∗ with |𝛾 ′′ | = 𝑘 + 1. Thus, in
particular, comp(𝑠𝑖 , 𝛾) · (𝛾𝑘 ∪𝑜) ∪𝛾 ′|𝑘+1 ∉ H

G𝑖
𝑘+1 holds for all 𝑜 ∈ 2

𝑂𝑖 . Furthermore, by Lemma 4.3,
we have comp(𝑠𝑖 , 𝛾)𝑘 ′ = comp(𝑠𝑖 , 𝛾)𝑘 ′ for all points in time 𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 . Hence, we obtain
comp(𝑠𝑖 , 𝛾) |𝑘 = comp(𝑠𝑖 , 𝛾) and therefore comp(𝑠𝑖 , 𝛾) |𝑘 · (𝛾𝑘 ∪ 𝑜) ∪ 𝛾 ′|𝑘+1 ∉ H

G𝑖
𝑘+1 follows for all

𝑜 ∈ 2𝑂𝑖 . Thus, since we have comp(𝑠𝑖 , 𝛾) ∩ 𝐼𝑖 = 𝛾 by definition of computations, in particular
comp(𝑠𝑖 , 𝛾) |𝑘+1 ∪ 𝛾 ′|𝑘+1 ∉ H G𝑖

𝑘+1 holds. Therefore, we have comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VG𝑖 and thus, by
definition of local satisfaction, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=G𝑖 𝜑𝑖 follows.

Lastly, we show that Traces(𝑠1 | | . . . | |𝑠𝑛) = Traces(𝑠1 | | . . . | |𝑠𝑛) holds. For the sake of readability,
let T = T1 | | . . . | | T𝑛 and T̂ = T̂1 | | . . . | | T̂𝑛 as well as T = (𝑇,𝑇0, 𝜏, ℓ) and T̂ = (𝑇,𝑇0, 𝜏, ℓ̂). Let
𝛾 ∈ (2𝑂env )𝜔 be some input sequence of the full system. Let 𝜋 ∈ Paths(T , 𝛾) and 𝜋 ∈ Paths(T̂ , 𝛾)
be the paths of T and T̂ induced by 𝛾 , respectively. Let 𝜎 ∈ Traces(T , 𝛾) and �̂� ∈ Traces(T̂ , 𝛾)
be the corresponding traces. Let 𝑘 := |�̂� |. Since all transducers T𝑖 are deterministic and
complete and have Moore semantics by construction and since the sets of output variables of
different processes are disjoint by definition of architectures, T is deterministic and complete
by Lemma 2.1 as well. Therefore, both 𝜋 and 𝜎 are infinite. First, let 𝜋𝐺,𝑖 ∈ (𝑇𝐺

𝑖 × 2𝑂
𝐺
𝑖 )𝜔 be

the sequence such that #1(𝜋𝐺,𝑖

𝑘 ′ ) = #2(#𝑖 (#1(𝜋𝑘 ′))) and #2(𝜋𝐺,𝑖

𝑘 ′ ) = #2(𝜋𝑘 ′) ∩ 𝑂𝐺
𝑖 holds for all

𝑘 ′ ≥ 0. Hence, intuitively, 𝜋𝐺,𝑖 captures the part of 𝜋 that corresponds to the guarantee for
process 𝑝𝑖 . By definition of strategy extension, every transition in T𝑖 corresponds to a transition
in T𝐺

𝑖 . Furthermore, since T𝑖 ⪯ T𝐺
𝑖 holds as shown above, the labeling of a state of T𝑖 always

agrees with the labeling of the guarantee part on the variables in 𝑂𝐺
𝑖 , no matter which case of

the case distinction in the definition of the labeling function is applicable. Hence, 𝜋𝐺,𝑖 defines
a path in T𝐺

𝑖 . More precisely, it follows with the definition of the parallel composition of
finite-state transducers that 𝜋𝐺,𝑖 ∈ Paths(T𝐺

𝑖 , 𝜎 ∩ 𝐼𝑖) holds. Let 𝜎𝐺,𝑖 ∈ Traces(T𝐺
𝑖 , 𝜎 ∩ 𝐼𝑖) be
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the corresponding trace. Then, 𝜎𝑖,𝐺 = comp(T𝐺
𝑖 , 𝜎 ∩ 𝐼𝑖) holds for all 𝑝𝑖 ∈ 𝑃− since guarantee

transducers are deterministic. Thus, by construction of the 𝜋𝑖,𝐺 , we have 𝜎 ∈ VG𝑖 for all 𝑝𝑖 ∈ 𝑃−.
Utilizing this observation, we now show that 𝜋 is infinite and that #1(#𝑖 (#1(𝜋𝑘 ))) = #𝑖 (#1(𝜋𝑘 ))
holds for all 𝑝𝑖 ∈ 𝑃− and all points in time 𝑘 ≥ 0. Proof by induction on 𝑘 .

• 𝑘 = 0. By definition of strategy extension, we have 𝑇𝑖,0 = 𝑇𝑖,0 × 𝑇𝐺
𝑖,0 for all 𝑝𝑖 ∈ 𝑃−.

Thus, by definition of the parallel composition of finite-state transducers, the sets of
initial states of T̂ and T are given by 𝑇1,0 × . . . ×𝑇𝑛,0 and (𝑇1,0 ×𝑇𝐺

1,0) × . . . × (𝑇𝑛,0 ×𝑇𝐺
𝑛,0),

respectively. By Proposition 4.2 we have |𝑇𝑖,0 | = 1. Hence, |𝜋 | > 0 holds and, for all
𝑝𝑖 ∈ 𝑃−, we have both #𝑖 (#1(𝜋0)) ∈ 𝑇𝑖,0 and #1(#𝑖 (#1(𝜋0))) ∈ 𝑇𝑖,0. Since |𝑇𝑖,0 | = 1 holds,
#1(#𝑖 (#1(𝜋0))) = #𝑖 (#1(𝜋0)) thus follows for all system processes 𝑝𝑖 ∈ 𝑃−.

• 𝑘 > 0 and #1(#𝑖 (#1(𝜋𝑘 ′))) = #𝑖 (#1(𝜋𝑘 ′)) holds for all 𝑝𝑖 ∈ 𝑃−and all𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 . For
system process 𝑝𝑖 ∈ 𝑃−, let 𝜋𝑖 ∈ (𝑇𝑖 × 2𝑂𝑖 )∗ be the finite sequence with |𝜋𝑖 | = 𝑘 such that
both #1(𝜋𝑖

𝑘 ′) = #1(#𝑖 (#1(𝜋𝑘 ′))) and #2(𝜋𝑖
𝑘 ′) = #2(𝜋𝑘 ′) ∩𝑂𝑖 hold for all 𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 .

Since we have #1(#𝑖 (#1(𝜋𝑘 ′))) = #𝑖 (#1(𝜋𝑘 ′)) for all 𝑝𝑖 ∈ 𝑃− and all 𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 by
assumption, #1(#𝑖 (#1(𝜋𝑘−1))) ≠ ⊥ holds. Hence, it follows from the definition of strategy
extension that, for all 𝑝𝑖 ∈ 𝑃−, the finite sequence 𝜋𝑖 is a prefix of 𝜌𝑖 ∈ Paths(T̂𝑖 , 𝜎 ∩ 𝐼𝑖).
By definition of computations, 𝜎 |𝑘 ∩ 𝑉𝑖 is thus a prefix of comp(𝑠𝑖 , 𝜎 ∩ 𝐼𝑖). As shown
above, 𝜎 ∈ VG𝑖 holds for all 𝑝𝑖 ∈ 𝑃− and thus, in particular, we have 𝜎 |𝑘+1 ∈ H G𝑖𝑘+1 for all
𝑝𝑖 ∈ 𝑃−. Hence, since 𝑠𝑖 is a local strategy for 𝑝𝑖 and G𝑖 by definition, it follows from the
definition of local strategies that |comp(𝑠𝑖 , 𝜎 ∩ 𝐼𝑖) | > 𝑘 holds for all 𝑝𝑖 ∈ 𝑃−. Thus, for all
𝑝𝑖 ∈ 𝑃−, there exists a transition (#1(𝜋𝑖

𝑘−1), 𝜎𝑘−1 ∩ 𝐼𝑖 , #1(𝜌
𝑖
𝑘
)) ∈ 𝜏𝑖 . Therefore, there also

exist transitions (#𝑖 (#1(𝜋𝑘−1)), 𝜎𝑘−1 ∩ 𝐼𝑖 , #𝑖 (#1(𝜋𝑘 ))) ∈ T𝑖 for all 𝑝𝑖 ∈ 𝑃− and, in particular,
#1(#𝑖 (#1(𝜋𝑘 ))) = #1(𝜌𝑖𝑘 ) holds by definition of strategy extension. By construction of 𝜋𝑖 ,
we have #1(𝜋𝑖

𝑘−1) = #1(#𝑖 (#1(𝜋𝑘−1))). Thus, #1(𝜋𝑖
𝑘−1) = #𝑖 (#1(𝜋𝑘−1)) follows with the

assumption that #1(#𝑖 (#1(𝜋𝑘−1))) = #𝑖 (#1(𝜋𝑘−1)) holds for all 𝑝𝑖 ∈ 𝑃−. By definition of
paths and traces, we have 𝜎𝑘−1 = 𝛾𝑘−1 ∪ 𝑜 and �̂�𝑘−1 = 𝛾𝑘−1 ∪ 𝑜 , where 𝑜, 𝑜 ∈ 2𝑂𝑖 are
the unique outputs of T𝑖 and T̂𝑖 produced in state #1(𝜋𝑘−1) and #1(𝜋𝑘−1), respectively.
Since #1(#𝑖 (#1(𝜋𝑘−1))) = #𝑖 (#1(𝜋𝑘−1)) holds for all 𝑝𝑖 ∈ 𝑃−by assumption, it follows from
the definition of strategy extension that 𝑜 = 𝑜 holds. Hence, 𝜎𝑘−1 = �̂�𝑘−1 and therefore
(#𝑖 (#1(𝜋𝑘−1)), �̂�𝑘−1 ∩ 𝐼𝑖 , #1(𝜌𝑖𝑘 )) ∈ 𝜏𝑖 for all 𝑝𝑖 ∈ 𝑃

− as well. Thus, by definition of strategy
extension, #𝑖 (#1(𝜋𝑘 )) = #1(𝜌𝑖𝑘 ) holds and hence, since #1(#𝑖 (#1(𝜋𝑘 ))) = #1(𝜌𝑖𝑘 ) as shown
above, we have #1(#𝑖 (#1(𝜋𝑘 ))) = #𝑖 (#1(𝜋𝑘 )) for all 𝑝𝑖 ∈ 𝑃−.

Hence, we have #1(#𝑖 (#1(𝜋𝑘 ))) = #𝑖 (#1(𝜋𝑘 )) for all 𝑝𝑖 ∈ 𝑃− and all points in time 𝑘 ≥ 0. Thus,
by definition of the parallel composition of finite-state transducers as well as the definition
of paths, we have #2(𝜋𝑘 ) ∩ 𝑂𝑖 = #2(𝜋𝑘 ) ∩ 𝑂𝑖 and therefore, since

⋃
𝑝𝑖 ∈𝑃−𝑂𝑖 = 𝑂− holds by

definition, #2(𝜋𝑘 ) = #2(𝜋𝑘 ) follows. Hence, we also have 𝜎 = �̂� by construction of 𝜎 and �̂� as
well as by definition of traces. Since we chose 𝛾 ∈ (2𝑂env )𝜔 as well as 𝜎 ∈ Traces(T , 𝛾) and
�̂� ∈ Traces(T̂ , 𝛾) arbitrarily, Traces(𝑠1 | | . . . | | 𝑠𝑛) = Traces(𝑠1 | | . . . | | 𝑠𝑛) follows. □

Thus, since a solution of certifying synthesis with local strategies can be extended to a
solution of certifying synthesis with local satisfaction, we can utilize the results from Section 4.3
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to also reason about the version of certifying synthesis presented in this section. In particular,
it follows immediately from Theorem 4.2 and Lemma 4.4 that certifying synthesis with local
strategies and guarantee transducers is sound:

Corollary 4.1. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let ⟨𝜑1, . . . , 𝜑𝑛⟩ be its
decomposition. Let G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be a vector of guarantee transducers for the system processes

and, for 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of local strategies

for the system processes such that 𝑠𝑖 is a local strategy for 𝑝𝑖 ∈ 𝑃− and G𝑖 . If (Ŝ,G) realizes 𝜑 ,
then 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Vice versa, we can restrict a complete strategy to obtain a local strategy. The restriction is
based on a set of guarantee transducers and the local strategy is restricted to those sequences
that match computations of these guarantee transducers. Intuitively, the local strategy is a copy
of the complete one; yet, we delete all transitions that can only be taken if some of the other
(observable) system processes deviates from its certificates. Formally:

Definition 4.10 (Strategy Restriction).
Let 𝑝𝑖 ∈ 𝑃− be a system process. Let P ⊆ 𝑃− \ {𝑝𝑖} be a set of other system processes and
let G be a set of guarantee transducers, one for each process in P. Let 𝑠𝑖 be a strategy for 𝑝𝑖
and let T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) be the deterministic and complete finite-state (2𝐼𝑖 , 2𝑂𝑖 )-transducer
with Moore semantics representing 𝑠𝑖 . Let T = (𝑇,𝑇0, 𝜏, ℓ) be the parallel composition of
the guarantee transducers in G. We construct the restriction restrict(𝑠𝑖 ,G) of 𝑠𝑖 to G𝑖 by con-
structing a deterministic but possibly transition-incomplete finite-state (2𝐼𝑖 , 2𝑂𝑖 )-transducer
T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖) from T𝑖 and T as follows:

• 𝑇𝑖 := 𝑇𝑖 × 2𝑇 ,
• 𝑇𝑖,0 := 𝑇𝑖,0 × {{𝑡0} | 𝑡0 ∈ 𝑇0},
• ((𝑡, 𝑀), ], (𝑡 ′, 𝑀 ′)) ∈ 𝜏𝑖 if, and only if, (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 as well as𝑀 ′ ≠ ∅ hold, and the set𝑀 ′
is uniquely defined by

𝑀 ′ :=
{
𝑡 ′ ∈ 𝑇 | ∃𝑜 ∈ 2𝑂𝑖 . ∃𝑡 ∈ 𝑀. ∃𝑜 ∈ 2𝑂𝐺

𝑖 . (𝑡, 𝑜) ∈ ℓ ∧ (𝑡, 𝑜) ∈ ℓ𝑖

∧∃]′ ∈ 2𝐼𝐺𝑖 . ] ∩𝑂𝐺
𝑖 = 𝑜 ∩ 𝐼𝑖 ∧ ]′ ∩𝑂𝑖 = 𝑜 ∩ 𝐼𝐺𝑖

∧ ]′ ∩ 𝐼𝑖 = ] ∩ 𝐼𝐺𝑖 ∧ (𝑡, ]′, 𝑡 ′) ∈ 𝜏
}
,

where 𝐼𝐺𝑖 :=
⋃

𝑝 𝑗 ∈P 𝐼 𝑗 \
⋃

𝑝 𝑗 ∈P 𝑂 𝑗 and 𝑂𝐺
𝑖 =

⋃
𝑝 𝑗 ∈P 𝑂 𝑗 , and

• ((𝑡, 𝑀), 𝑜) ∈ ℓ̂𝑖 if, and only if, (𝑡, 𝑜) ∈ ℓ𝑖

Intuitively, a computation of restrict(𝑠𝑖 ,G𝑖) on input 𝛾 ∈ (2𝐼𝑖 )𝜔 follows both a computation
of the complete strategy 𝑠𝑖 on 𝛾 and a computation of the parallel composition of all guarantee
transducers in G on some matching input sequence. This allows for tracking whether or
not there exists some sequence 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∈ VG holds. The
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transducer representing restrict(𝑠𝑖 ,G𝑖) then only contains those transitions of the transducer
representing 𝑠𝑖 that are taken in comp(𝑠𝑖 , 𝛾) up to the point in time at which the properties of a
valid computation are satisfied for all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . In the following, we show formally that
restrict(𝑠𝑖 ,G) indeed satisfies the properties of a local strategy of 𝑝𝑖 with respect to G.

Lemma 4.5. Let 𝑝𝑖 ∈ 𝑃− be a system process. Let P ⊆ 𝑃−\ {𝑝𝑖} be a set of other system processes
and let G be a set of guarantee transducers, one for each process in P. Let 𝑠𝑖 be a strategy for 𝑝𝑖
and let 𝑠𝑖 := restrict(𝑠𝑖 ,G). Then, 𝑠𝑖 is a local strategy for 𝑝𝑖 with respect to G.

Proof. Let 𝐼𝐺𝑖 :=
⋃

𝑝 𝑗 ∈P 𝐼 𝑗 \
⋃

𝑝 𝑗 ∈P 𝑂 𝑗 , let 𝑂𝐺
𝑖 :=

⋃
𝑝 𝑗 ∈P 𝑂 𝑗 , and let 𝑉𝐺

𝑖 = 𝐼𝐺𝑖 ∪ 𝑂𝐺
𝑖 . Let

T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) and T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖) be the finite-state transducers representing 𝑠𝑖 and 𝑠𝑖 ,
respectively. Let T = (𝑇,𝑇0, 𝜏, ℓ) be the parallel composition the guarantee transducers in G.
By definition, T𝑖 is a deterministic and complete Moore transducer. Thus, it follows from the
definition of strategy restriction that T̂𝑖 is both labeling-deterministic and labeling-complete
and has Moore semantics. Furthermore, for each (𝑡, 𝑀) ∈ 𝑇𝑖 , there only exists a single 𝑡 ′ ∈ 𝑇𝑖
such that ((𝑡, 𝑀), ], (𝑡 ′, 𝑀 ′)) ∈ 𝜏𝑖 holds for some𝑀 ′ ∈ 2𝑇 . Hence, since𝑀 ′ is uniquely defined,
it follows from the construction of T̂𝑖 that T̂𝑖 is transition-deterministic as well.
Next, we show that 𝑠𝑖 satisfies the properties of a local strategy for 𝑝𝑖 with respect to G

regarding the finiteness and infiniteness of computations. Let 𝛾 ∈ (2𝐼𝑖 )𝜔 and let 𝜋 ∈ Paths(T̂𝑖 , 𝛾)
be the unique path produced by T̂𝑖 on input 𝛾 . Let �̂� ∈ Traces(T̂𝑖 , 𝛾) be the corresponding trace.
Let 𝑘 := |�̂� |. First, we show a fact regarding the connection of paths of T̂𝑖 and paths of T .
Afterward, we utilize this result to show that 𝑠𝑖 satisfies the properties of a local strategy.

Fact (A): For all 𝑘 ′ with 0 ≤ 𝑘 ′ ≤ 𝑘 , we have 𝑡 ∈ #2(#1(𝜋𝑘 ′)) if, and only if, there exists some
𝛾 ∈ (2𝐼𝐺𝑖 )𝜔 and some �̃� ∈ Paths(T , 𝛾) with #1(�̃�𝑘 ′) = 𝑡 such that 𝛾𝑘 ′′ ∩𝑂𝐺

𝑖 = (�̃�𝑘 ′′ ∩𝑂𝐺
𝑖 ) ∩ 𝐼𝑖 ,

𝛾𝑘 ′′ ∩ 𝑂𝑖 = (�̂�𝑘 ′′ ∩ 𝑂𝑖) ∩ 𝐼𝐺𝑖 , and 𝛾𝑘 ′′ ∩ 𝐼𝐺𝑖 = 𝛾𝑘 ′′ ∩ 𝐼𝑖 hold for all 𝑘 ′′ with 0 ≤ 𝑘 ′′ < 𝑘 ′, where
�̃� ∈ Traces(T , 𝛾) is the trace corresponding to �̃� . Proof by induction on the point in time 𝑘 ′.

• 𝑘 ′ = 0. By definition of strategy restriction, we have 𝑇𝑖,0 = 𝑇𝑖,0 × {{𝑡0} | 𝑡0 ∈ 𝑇0}. Hence,
in particular, #2(#1(𝜋0)) ∈ {{𝑡0} | 𝑡0 ∈ 𝑇0} holds by definition of paths. Furthermore, we
have #1(�̃�0) ∈ 𝑇0 for all �̃� ∈ Traces(T ). Since 𝑘 ′ − 1 < 0 holds, the claim thus follows.

• 0 < 𝑘 ′ ≤ 𝑘 and we have 𝑡 ∈ #2(#1(𝜋𝑘 ′−1)) if, and only if, there exist some 𝛾 ∈ (2𝐼𝐺𝑖 )𝜔
and some �̃� ∈ Paths(T , 𝛾) with #1(�̃�𝑘 ′) = 𝑡 such that 𝛾𝑘 ′′ ∩ 𝑂𝐺

𝑖 = (�̃�𝑘 ′′ ∩ 𝑂𝐺
𝑖 ) ∩ 𝐼𝑖 ,

𝛾𝑘 ′′ ∩𝑂𝑖 = (�̂�𝑘 ′′ ∩𝑂𝑖) ∩ 𝐼𝐺𝑖 , and 𝛾𝑘 ′′ ∩ 𝐼𝐺𝑖 = 𝛾𝑘 ′′ ∩ 𝐼𝑖 hold for all 𝑘 ′′ with 0 ≤ 𝑘 ′′ < 𝑘 ′ − 1,
where �̃� ∈ Traces(T , 𝛾) is the trace corresponding to �̃� . First, suppose that there exist
some 𝛾 ∈ (2𝐼𝐺𝑖 )𝜔 , some �̃� ∈ Paths(T , 𝛾), and some �̃� ∈ Traces(𝜋,𝛾) such that we have
𝛾𝑘 ′′∩𝑂𝐺

𝑖 = (�̃�𝑘 ′′∩𝑂𝐺
𝑖 )∩𝐼𝑖 , 𝛾𝑘 ′′∩𝑂𝑖 = (�̂�𝑘 ′′∩𝑂𝑖)∩𝐼𝐺𝑖 , and𝛾𝑘 ′′∩𝐼𝐺𝑖 = 𝛾𝑘 ′′∩𝐼𝑖 for all 𝑘 ′′ with

0 ≤ 𝑘 ′′ < 𝑘 ′ − 1. Then, by assumption, #1(�̃�𝑘 ′−1) ∈ #2(#1(𝜋𝑘 ′−1)) holds. Since guarantee
transducers are complete Moore transducers and since the sets of output variables of
different processes are disjoint, T is a complete Moore transducer by Lemma 2.1 as well.
Hence, there exists some transition (#1(�̃�𝑘 ′−1), 𝛾𝑘 ′−1, #1(�̃�𝑘 ′)) ∈ 𝜏 . By definition of paths
and traces, both (#1(�̃�𝑘 ′), �̃�𝑘 ′ ∩𝑂𝐺

𝑖 ) ∈ ℓ and (#1(𝜋𝑘 ′), �̂�𝑘 ′ ∩𝑂𝑖) ∈ ℓ̂𝑖 hold. Hence, we have
(#1(#1(𝜋𝑘 ′)), �̂�𝑘 ′ ∩𝑂𝑖) ∈ ℓ𝑖 by construction of T̂𝑖 as well. Therefore, it follows from the
assumption as well as from the definition of strategy restriction, in particular the definition
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of the set 𝑀 ′, that #1(�̃�𝑘 ′) ∈ #2(#1(𝜋𝑘 ′)) holds. Second, suppose that there do not exist
𝛾 ∈ (2𝐼𝐺𝑖 )𝜔 , �̃� ∈ Paths(T , 𝛾), and �̃� ∈ Traces(𝜋,𝛾) such that 𝛾𝑘 ′′ ∩𝑂𝐺

𝑖 = (�̃�𝑘 ′′ ∩𝑂𝐺
𝑖 ) ∩ 𝐼𝑖 ,

𝛾𝑘 ′′∩𝑂𝑖 = (�̂�𝑘 ′′∩𝑂𝑖)∩𝐼𝐺𝑖 , and𝛾𝑘 ′′∩𝐼𝐺𝑖 = 𝛾𝑘 ′′∩𝐼𝑖 hold for all 𝑘 ′′ with 0 ≤ 𝑘 ′′ < 𝑘 ′−1. Then,
by assumption, we have #1(�̃�𝑘 ′−1) ∉ #2(#1(𝜋0)). By definition of strategy restriction, it
thus follows that #1(�̃�𝑘 ′) ∉ #2(#1(𝜋𝑘 ′)) holds.

Utilizing fact (A), we show that 𝑠𝑖 satisfies the requirements of a local strategy for 𝑝𝑖 and G
regarding finiteness and infiniteness of computations, i.e., we show that if the trace �̂� is infinite,
then there exists some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that �̂� ∪ 𝛾 ′ ∈ VG holds and otherwise, if �̂� is finite,
then we have �̂� · (𝛾𝑘 ∪ 𝑜) ∪ 𝛾 ′ ∉ H G𝑘+1 for all 𝑜 ∈ 2

𝑂𝑖 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )∗ with |𝛾 ′ | = 𝑘 + 1.
First, let �̂� be infinite. Then, by definition of strategy restriction, in particular #2(#1(𝜋𝑘 ′)) ≠ ∅

holds for all points in time 𝑘 ′ ≥ 0. Hence, it follows with fact (A) that there exist some
𝛾 ∈ (2𝐼𝐺𝑖 )𝜔 and some �̃� ∈ Paths(T , 𝛾) with corresponding trace �̃� ∈ Traces(T , 𝛾) such that
𝛾𝑘 ′ ∩ 𝑂𝐺

𝑖 = (�̃�𝑘 ′ ∩ 𝑂𝐺
𝑖 ) ∩ 𝐼𝑖 , 𝛾𝑘 ′ ∩ 𝑂𝑖 = (�̂�𝑘 ′ ∩ 𝑂𝑖) ∩ 𝐼𝐺𝑖 , and 𝛾𝑘 ′ ∩ 𝐼𝐺𝑖 = 𝛾𝑘 ′ ∩ 𝐼𝑖 as well as

#1(�̃�𝑘 ′) ∈ #2(#1(𝜋𝑘 ′)) hold for all 𝑘 ′ ≥ 0. Note that 𝛾 = �̂� ∩ 𝐼𝑖 and 𝛾 = �̃� ∩ 𝐼𝐺𝑖 hold. Therefore,
(�̂�∩ 𝐼𝑖) ∩𝑂𝐺

𝑖 = (�̃�∩𝑂𝐺
𝑖 ) ∩ 𝐼𝑖 , (�̃�∩ 𝐼𝐺𝑖 ) ∩𝑂𝑖 = (�̂�∩𝑂𝑖) ∩ 𝐼𝐺𝑖 , and (�̂�∩ 𝐼𝑖) ∩ 𝐼𝐺𝑖 = (�̃�∩ 𝐼𝐺𝑖 ) ∩ 𝐼𝑖 follow.

Thus, �̂� and �̃� agree on all variables in (𝐼𝑖 ∩𝑂𝐺
𝑖 ) ∪ (𝑂𝑖 ∩ 𝐼𝐺𝑖 ) ∪ (𝐼𝑖 ∩ 𝐼𝐺𝑖 ). Since𝑂𝑖 ∩𝑂𝐺

𝑖 = ∅ follows
from the definition of𝑂𝐺

𝑖 as well as the disjointness of the sets of output variables of processes, �̂�
and �̃� further agree on all variables in𝑂𝑖∩𝑂𝐺

𝑖 . Therefore, �̂�∩(𝑉𝑖∩𝑉𝐺
𝑖 ) = �̃�∩(𝑉𝑖∩𝑉𝐺

𝑖 ) follows. By
construction of �̂� and �̃� , we have �̂� ∈ (2𝑉𝑖 )𝜔 and �̃� ∈ (2𝑉𝐺

𝑖 )𝜔 and hence �̂�∩𝑉𝑖 = 𝜎 and �̃�∩𝑉𝐺
𝑖 = �̃�

hold. Thus, �̂�∩𝑉𝐺
𝑖 = �̃�∩𝑉𝑖 follows and hence, in particular, (�̂�∪ (�̃�∩ (𝑉𝐺

𝑖 \𝑉𝑖))) ∩𝑉𝐺
𝑖 = �̃� holds.

Since �̃� is a trace of T , we have �̃� ∩𝑉𝑗 = comp(T𝐺
𝑗 , �̃� ∩ 𝐼 𝑗 ) for all 𝑝 𝑗 ∈ P by Proposition 4.1 and

thus (�̂� ∪ (�̃� ∩ (𝑉𝐺
𝑖 \𝑉𝑖))) ∩𝑉𝑗 = comp(T𝐺

𝑗 , (�̂� ∪ (�̃� ∩ (𝑉𝐺
𝑖 \𝑉𝑖))) ∩ 𝐼 𝑗 ) follows for all 𝑝 𝑗 ∈ P as

well. Thus, �̂� ∪ (�̃� ∩ (𝑉𝐺
𝑖 \𝑉𝑖)) ∈ VG holds since we have 𝑉𝑖 ∪𝑉𝐺

𝑖 = 𝑉 by construction. Hence,
there exists some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , namely 𝛾 ′ := �̃� ∩ (𝑉𝐺

𝑖 \𝑉𝑖), such that �̂� ∪ 𝛾 ′ ∈ VG holds.
Second, let �̂� be finite. Let 𝑘 = |�̂� |. By definition of strategy restriction, #2(#1(𝜋𝑘+1)) = ∅ holds.

Suppose that there are 𝑜 ∈ 2𝑂𝑖 and𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )∗ with |𝛾 ′ | = 𝑘+1 such that �̂� · (𝛾𝑘∪𝑜)∪𝛾 ′ ∈ H G𝑘+1
holds. Let 𝜌 := �̂� · (𝛾𝑘 ∪ 𝑜) ∪ 𝛾 ′|𝑘+1. Let 𝜌

′ ∈ (2𝑉𝐺
𝑖 )𝜔 be some infinite extension of 𝜌 . Then,

we have 𝜌𝑘 ′ ∩ 𝑉𝑗 = comp(T𝐺
𝑗 , 𝜌 ′ ∩ 𝐼 𝑗 )𝑘 ′ ∩ 𝑉𝑗 for all 𝑝 𝑗 ∈ P and all 𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 + 1.

Hence, similar to the proof of Proposition 4.1, it follows that 𝜌 is the prefix of some trace
of T . Furthermore, clearly 𝜌𝑘 ′′ ∩ 𝑉𝑖 = �̂�𝑘 ′′ ∩ 𝑉𝐺

𝑖 holds for all 𝑘 ′′ with 0 ≤ 𝑘 ′′ < 𝑘 . Thus,
in particular, (�̂�𝑘 ′′ ∩ 𝐼𝑖) ∩ 𝑂𝐺

𝑖 = (𝜌𝑘 ′′ ∩ 𝑂𝐺
𝑖 ) ∩ 𝐼𝑖 , (𝜌𝑘 ′′ ∩ 𝐼𝐺𝑖 ) ∩ 𝑂𝑖 = (�̂�𝑘 ′′ ∩ 𝑂𝑖) ∩ 𝐼𝐺𝑖 , and

(�̂�𝑘 ′′ ∩ 𝐼𝑖) ∩ 𝐼𝐺𝑖 = (𝜌𝑘 ′′ ∩ 𝐼𝐺𝑖 ) ∩ 𝐼𝑖 hold for all 𝑘 ′′ with 0 ≤ 𝑘 ′′ < 𝑘 + 1. Therefore, it follows with
fact (A) that we have #1(�̃�𝑘+1) ∈ #2(#1(𝜋𝑘+1)), where �̃� ∈ Paths(T , 𝜌 ′ ∩ 𝐼𝐺𝑖 ) is the unique path
produced by T on input 𝜌 ′ ∩ 𝐼𝐺𝑖 ; contradicting that #2(#1(𝜋𝑘+1)) = ∅ holds. □

Furthermore, the computation of restrict(𝑠𝑖 ,G) on some input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 agrees
with 𝑠𝑖 ’s computation comp(𝑠𝑖 , 𝛾) if comp(restrict(𝑠𝑖 ,G), 𝛾) is infinite. Otherwise, comp(𝑠𝑖 , 𝛾)
is an infinite extension of comp(restrict(𝑠𝑖 ,G), 𝛾). Additionally, it follows with the fact that
restrict(𝑠𝑖 ,G) is a local strategy for 𝑝𝑖 with respect to G that a computation of restrict(𝑠𝑖 ,G)
on 𝛾 is infinite if, and only if, there exists some valuation of the variables that are unobservable
for system process 𝑝𝑖 , together with comp(restrict(𝑠𝑖 ,G), 𝛾), build a sequence that matches the
guaranteed behavior of the system processes in P:
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Lemma 4.6. Let 𝑝𝑖 ∈ 𝑃− be a system process. Let P ⊆ 𝑃−\ {𝑝𝑖} be a set of other system processes
and let G be a set of guarantee transducers, one for each process in P. Let 𝑠𝑖 be a strategy for 𝑝𝑖
and let 𝑠𝑖 := restrict(𝑠𝑖 ,G). Let 𝛾 ∈ (2𝐼𝑖 )𝜔 . Then, comp(𝑠𝑖 , 𝛾)𝑘 ′ = comp(𝑠𝑖 , 𝛾)𝑘 ′ holds for all 𝑘 ′
with 0 ≤ 𝑘 ′ < |comp(𝑠𝑖 , 𝛾) | and all 𝛾 ∈ (2𝐼𝑖 )𝜔 . Furthermore, comp(𝑠𝑖 , 𝛾) is infinite if, and only if,
there exists some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∈ VG holds.

Proof. LetT𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) and T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖) be the finite-state transducers representing 𝑠𝑖
and 𝑠𝑖 , respectively. Let T = (𝑇,𝑇0, 𝜏, ℓ) be the parallel composition the guarantee transducers
in G. Let 𝛾 ∈ (2𝐼𝑖 )𝜔 be some input sequence. Let 𝜋 ∈ Paths(T𝑖 , 𝛾) and 𝜋 ∈ Paths(T̂𝑖 , 𝛾) be the
unique paths produced byT𝑖 and T̂𝑖 , respectively, on𝛾 . Let𝜎 ∈ Traces(T𝑖 , 𝛾) and �̂� ∈ Traces(T̂𝑖 , 𝛾)
be the corresponding unique traces. Let 𝑘 := |�̂� |. By definition of strategy restriction, every
transition (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 in T̂𝑖 is contained in T𝑖 as well, i.e., (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 holds. Thus, since
both T𝑖 and T̂𝑖 are deterministic by construction and by Lemma 4.5, respectively, and thus 𝜋
and 𝜋 are unique, we have 𝜋𝑘 ′ = 𝜋𝑘 ′ for all points in time 𝑘 ′ with 0 ≤ 𝑘 ′ < |𝜋 |. Hence,
comp(𝑠𝑖 , 𝛾)𝑘 ′ = comp(𝑠𝑖 , 𝛾)𝑘 ′ holds for all 𝑘 ′ with 0 ≤ 𝑘 ′ < |comp(𝑠𝑖 , 𝛾) | follows from the
definition of computations and the fact that |comp(𝑠𝑖 , 𝛾) | ≤ |𝜋 | holds by definition of traces.

First, let �̂� be infinite. Then, since 𝑠𝑖 is a local strategy for 𝑝𝑖 with respect to G by Lemma 4.5,
there exists some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that �̂� ∪ 𝛾 ′ ∈ VG holds. Furthermore, since comp(𝑠𝑖 , 𝛾) is
infinite, we have comp(𝑠𝑖 , 𝛾) = comp(𝑠𝑖 , 𝛾) as shown above and thus, in particular, 𝜎 = �̂� holds
since both T𝑖 and T̂𝑖 are deterministic by definition and by Lemma 4.5, respectively. Therefore,
it follows that there exists some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that 𝜎 ∪ 𝛾 ′ ∈ VG holds.

Second, let �̂� be finite. Then, since 𝑠𝑖 is a local strategy for 𝑝𝑖 with respect to G by Lemma 4.5,
we have �̂� · (𝛾𝑘∪𝑜)∪𝛾 ′ ∉ H G𝑘+1 for all 𝑜 ∈ 2

𝑂𝑖 and all𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )∗ with |𝛾 ′ | = 𝑘+1. Furthermore,
we have comp(𝑠𝑖 , 𝛾)𝑘 ′ = comp(𝑠𝑖 , 𝛾)𝑘 ′ for all 𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 as shown above and thus, in
particular 𝜎𝑘 ′ = �̂�𝑘 ′ for all 𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 since both T𝑖 and T̂𝑖 are deterministic by definition
and by Lemma 4.5, respectively. Hence, we have 𝜎 · (𝛾𝑘 ∪ 𝑜) ∪ 𝛾 ′ ∉ H G𝑘+1 for all 𝑜 ∈ 2

𝑂𝑖 and all
𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )∗ with |𝛾 ′ | = 𝑘 + 1 and thus 𝜎 ∪ 𝛾 ′ ∉ VG follows for all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . □

The existence of a transition in the finite-state transducer T̂𝑖 representing 𝑠𝑖 := restrict(𝑠𝑖 ,G𝑖),
however, might also depend on unobservable behavior of other system processes. The valuation
of variables outside of𝑉𝑖 cannot be observed by process 𝑝𝑖 . However, whether or not a transition
of the transducer T𝑖 representing thee full strategy 𝑠𝑖 is also contained in T̂𝑖 does not only depend
on the existence of an input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 and 𝑠𝑖 ’s behavior on 𝛾 but also on the existence
of a sequence 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . Hence, whenever there is some unobservable behavior of the other
system processes that matches their guaranteed behavior, a transition from T𝑖 is preserved in T̂𝑖
and thus, as shown in Lemma 4.6, the computations of 𝑠𝑖 and 𝑠𝑖 coincide on 𝛾 .
When determining whether or not 𝑠𝑖 realizes an LTL formula 𝜑𝑖 , we determine whether

for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 either comp(𝑠𝑖 , 𝛾) is finite or comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖
holds. Hence, we consider a concrete sequence 𝛾 ′ of valuations of unobservable variables.
However, whether comp(𝑠𝑖 , 𝛾) is infinite only depends on the existence of some sequence
of unobservable variables, not the concretely considered one. Thus, comp(𝑠𝑖 , 𝛾) might be
infinite although comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VG𝑖 holds. Hence, requiring 𝑠𝑖 |= 𝜑𝑖 then also requires
comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 to hold although comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VG𝑖 . This is in contrast to local
satisfaction, where comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=G𝑖 𝜑𝑖 holds if we have comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VG𝑖 .
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Therefore, not every solution of certifying synthesis with local satisfaction can be translated
into one for certifying synthesis with local strategies when utilizing strategy restriction as
defined in Definition 4.10. The former requires a strategy to realize the specification if all other
system processes do not deviate from their guaranteed behavior. The latter, in contrast, requires
a strategy to satisfy the specification if the observable behavior of all other system processes does
not deviate from their guaranteed behavior. Thus, if system process 𝑝𝑖 ∈ 𝑃− cannot observe
whether or not another system process 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖} deviates from its certificate, satisfaction
with local strategies requires the strategy to satisfy the specification while local satisfaction for
complete strategies does not. However, as long as the satisfaction of the specification does not
depend on unobservable variables, i.e., as long as prop(𝜑𝑖) ⊆ 𝑉𝑖 holds for all system processes
𝑝𝑖 ∈ 𝑃−, then the existence of some sequence 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖
holds implies that comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 holds for all such sequences 𝛾 ′. Hence, satisfaction of
local strategies can be concluded from local satisfaction for complete strategies when utilizing
strategy restriction for obtaining the local strategies:

Lemma 4.7. Let 𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ and G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be vectors of strategies and guarantee transducers for

the system processes. For 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ such that

𝑠𝑖 = restrict(𝑠𝑖 ,G𝑖) holds for all 𝑝𝑖 ∈ 𝑃−. If (S,G) realizes 𝜑 and if prop(𝜑𝑖) ⊆ 𝑉𝑖 holds for all
𝑝𝑖 ∈ 𝑃−, then (Ŝ,G) realizes 𝜑 as well.

Proof. Let T̂𝑖 = (𝑇𝑖 , 𝑡𝑖,0, 𝜏𝑖 , ℓ𝑖) and T𝑖 = (𝑇𝑖 , 𝑡𝑖,0, 𝜏𝑖 , ℓ𝑖) be the finite-state transducers representing 𝑠𝑖
and 𝑠𝑖 , respectively. Let T𝐺

𝑖 = (𝑇𝐺
𝑖 , 𝑡𝐺𝑖,0, 𝜏

𝐺
𝑖 , ℓ

𝐺
𝑖 ). Assume that (Ŝ,G) realizes 𝜑 . Then, by

definition of certifying synthesis with guarantee transducers and local satisfaction, we have
both 𝑠𝑖 |=G𝑖 𝜑𝑖 and T𝑖 ⪯ T𝐺

𝑖 for all 𝑝𝑖 ∈ 𝑃−. To prove that (Ŝ,G) realizes 𝜑 as well, we show
that both 𝑠𝑖 |= 𝜑𝑖 and T̂𝑖 ⪯ T𝐺

𝑖 hold for all 𝑝𝑖 ∈ 𝑃−. Let 𝑝𝑖 ∈ 𝑃− be some system process.
First, we show that T̂𝑖 ⪯ T𝐺

𝑖 holds. Since T𝑖 ⪯ T𝐺
𝑖 holds by assumption, there exists a

simulation relation 𝑅 : 𝑇𝑖 ×𝑇𝐺
𝑖 that establishes that T𝐺

𝑖 simulates T𝑖 . We construct a simulation
relation 𝑅 : 𝑇𝑖 ×𝑇𝐺

𝑖 that establishes T̂𝑖 ⪯ T𝐺
𝑖 as follows: ((𝑡, 𝑀), 𝑡𝐺 ) ∈ 𝑅 holds if, and only if, we

have (𝑡, 𝑡𝐺 ) ∈ 𝑅. Since 𝑡0 ∈ 𝑇𝑖,0 holds for all (𝑡0, 𝑀0) ∈ 𝑇𝑖,0 by definition of strategy restriction, it
follows immediately from the construction of 𝑅 and the fact that 𝑅 is a valid simulation relation
that (𝑡0, 𝑡𝐺0 ) ∈ 𝑅 holds for all 𝑡0 ∈ 𝑇𝑖,0 and all 𝑡𝐺0 ∈ 𝑇𝐺

𝑖,0. If ((𝑡, 𝑀), ], (𝑡 ′, 𝑀 ′)) ∈ 𝜏𝑖 holds, then, by
construction of T̂𝑖 , we have (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 as well. Hence, since T𝑖 ⪯ T𝐺

𝑖 holds by assumption,
it follows from the construction of 𝑅 that the second requirement of simulation relations for
transducer simulation is satisfied by 𝑅 as well. Thus, T̂𝑖 ⪯ T𝐺

𝑖 holds.
Second, we show that 𝑠𝑖 |= 𝜑𝑖 holds, i.e., we prove that for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 ,

either comp(𝑠𝑖 , 𝛾) is finite or comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑 holds. Let 𝛾 ∈ (2𝐼𝑖 )𝜔 and 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 .
Since we have 𝑠𝑖 |=G𝑖 𝜑𝑖 by assumption, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=G𝑖 𝜑𝑖 holds. Thus, we have either
comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ ∉ VG𝑖 or both comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ ∈ VG𝑖 and comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ |= 𝜑𝑖 hold. If the latter
holds, then it follows with Lemma 4.6 that comp(𝑠𝑖 , 𝛾) is infinite and that we have comp(𝑠𝑖 , 𝛾) =
comp(𝑠𝑖 , 𝛾). Since comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ |= 𝜑𝑖 holds by assumption, comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ |= 𝜑𝑖 thus holds as
well. If comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VG𝑖 holds, then, we distinguish two cases. If comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′′ ∉ VG𝑖
holds for all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , then comp(𝑠𝑖 , 𝛾) is finite by Lemma 4.6. Otherwise, i.e., if there is
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some 𝛾 ′′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′′ ∈ VG𝑖 holds, then comp(𝑠𝑖 , 𝛾) = comp(𝑠𝑖 , 𝛾)
holds by Lemma 4.6. Furthermore, since both comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′′ ∈ VG𝑖 and 𝑠𝑖 |=G𝑖 𝜑𝑖 hold by
assumption, we have comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′′ |= 𝜑𝑖 . Moreover, prop(𝜑𝑖) ⊆ 𝑉𝑖 holds by assumption and
therefore the satisfaction of 𝜑𝑖 does not depend on the variables in𝑉 \𝑉𝑖 . Thus, the satisfaction
of 𝜑𝑖 is independent of 𝛾 ′′. Hence, it follows that comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ |= 𝜑𝑖 holds for 𝛾 ′ as well. Since
we have comp(𝑠𝑖 , 𝛾) = comp(𝑠𝑖 , 𝛾) as shown above, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 follows. Hence, we
have shown that in both cases either comp(𝑠𝑖 , 𝛾) is finite or comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 holds. □

Thus, since a solution of certifying synthesis with local satisfaction and complete strategies
can be restricted to a solution of certifying synthesis with local strategies as long as prop(𝜑𝑖) ⊆ 𝑉𝑖
holds for all 𝑝𝑖 ∈ 𝑃−, we can utilize the results from Section 4.3 to reason about certifying
synthesis with local strategies. In particular, it follows from Theorem 4.2 and Lemma 4.7 that
certifying synthesis with local strategies is complete if prop(𝜑𝑖) ⊆ 𝑉𝑖 holds for all 𝑝𝑖 ∈ 𝑃−:

Corollary 4.2. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let ⟨𝜑1, . . . , 𝜑𝑛⟩ be its
decomposition. Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of strategies for the system processes. If, for all
𝑝𝑖 ∈ 𝑃−, both prop(𝜑𝑖) ⊆ 𝑉𝑖 and 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 hold, then there exist vectors G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩

and Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ of guarantee transducers and local strategies such that 𝑠𝑖 is a local strategy
for 𝑝𝑖 ∈ 𝑃− and G𝑖 , where G𝑖 =

{
T𝐺
𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
, and such that (Ŝ,G) realizes 𝜑 .

The slight difference between local strategies and local satisfaction yielding only conditional
completeness for certifying synthesis with local strategies is needed in order to technically
incorporate the requirements of certifying synthesis into the strategy and thus to be able to reuse
existing bounded synthesis frameworks. Although this is at general completenesses expanse,
we experienced that, in practice, many distributed systems indeed satisfy the condition that is
needed for completeness, i.e., that prop(𝜑𝑖) ⊆ 𝑉𝑖 holds for all 𝑝𝑖 ∈ 𝑃−. In fact, all benchmarks
described in Section 4.7 satisfy it.

Therefore, we utilize local strategies for certifying synthesis in the remainder of this chapter.
For practically synthesizing solutions for certifying synthesis, it is thus crucial to formalize
local strategies and, in particular, to identify valid computations only to construct strategies
that adhere to the definition of local strategies. In the following section, we present how this
identification can be carried out before we introduce the SAT encoding for certifying synthesis
with local strategies and guarantee transducers in Section 4.4.4.

4.4.3. Identifying Valid Computations
For synthesizing local strategies and guarantee transducers that satisfy the requirements of
certifying synthesis, it is crucial to determine whether an infinite sequence is a valid computation
with respect to a set of guarantee transducers as valid computations play a major role in the
definition of local strategies. To ensure that the encoding searches for Moore transducers that
adhere to the definition of local strategies, we thus need to identify whether computations of
transition-incomplete Moore transducers allow for valid computations.
To do so, we augment a local strategy for system process 𝑝𝑖 ∈ 𝑃−with additional associated

outputs. Such an associated output is a variable that is an input variable of 𝑝𝑖 and an output
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variables of some other system process 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}, i.e., the set𝑂𝐴
𝑖 of associated outputs of 𝑝𝑖

is defined by𝑂𝐴
𝑖 = 𝐼𝑖 ∩

⋃
𝑝 𝑗 ∈𝑃−\{𝑝𝑖 } 𝑂 𝑗 . An augmented local strategy then does not only produce

a valuation of output variables of 𝑝𝑖 but of outputs and associated outputs of 𝑝𝑖 . Furthermore,
we ensure that, intuitively, the sequence of associated outputs produced by an augmented local
strategy always matches the sequences produced by the guarantee transducers of the other
system processes. Lastly, an augmented local strategy has a transition with source state 𝑡 and
input ] if, and only if, the valuations of the associated outputs produced by the augmented local
strategy in 𝑡 match their valuations in ]. Intuitively, an augmented local strategy 𝑠𝑖 thus only
produces outputs on some input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 as long as the prefix of comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′
up to the current point in time is a valid history with respect to G𝑖 for some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 .
Thus, in particular, 𝑠𝑖 satisfies the same requirements regarding finiteness and infiniteness of
computations as local strategies. That is, given some input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 , if comp(𝑠𝑖 , 𝛾) is
infinite, then there exists some sequence 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that comp(𝑠𝑖 , 𝛾) ∪𝛾 ′ ∈ VG𝑖 holds. If
comp(𝑠𝑖 , 𝛾) is finite and of length 𝑘 , in contrast, then we have comp(𝑠𝑖 , 𝛾) · (𝛾𝑘 ∪ 𝑜) ∪ 𝛾 ′ ∉ H G𝑖𝑘+1
for all 𝑜 ∈ 2𝑂𝑖 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )∗ with |𝛾 ′ | = 𝑘 + 1.

Note that, although local strategies and thus also augmented local strategies can be transition-
incomplete, they are always labeling-deterministic and labeling-complete. Moreover, they have
Moore semantics. For the sake of readability, we thus depict their labeling relations as functions
that map a state to a unique valuation of output variables instead of relations in the remainder
of this section. Formally, we define augmented local strategies as follows:

Definition 4.11 (Augmented Local Strategy).
Let 𝑝𝑖 ∈ 𝑃− be some system process. Let P ⊆ 𝑃−\ {𝑝𝑖} be a set of other system processes and
let G be a set of guarantee transducers, one for each process in P. An augmented local strategy
𝑠𝑖 : (2𝑉𝑖 )∗×2𝐼𝑖 → 2𝑂𝑖∪𝑂𝐴

𝑖 for 𝑝𝑖 with respect to G is represented by a deterministic finite-state
(2𝐼𝑖 , 2𝑂𝑖∪𝑂𝐴

𝑖 )-transducer T𝑖 = (𝑇,𝑇0, 𝜏, ℓ) with Moore semantics. It holds that (i) for every
𝑡 ∈ 𝑇 and every ] ∈ 2𝐼𝑖 , there is some 𝑡 ′ ∈ 𝑇 with (𝑡, ], 𝑡 ′) ∈ 𝜏 if, and only if ℓ (𝑡) ∩𝑂𝐴

𝑖 = ] ∩𝑂𝐴
𝑖

holds, and (ii) for every 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖} with guarantee transducer T𝐺
𝑗 = (𝑇𝐺

𝑗 ,𝑇
𝐺
𝑗,0, 𝜏

𝐺
𝑗 , ℓ

𝐺
𝑗 ) such

that T𝐺
𝑗 ∈ G, there exists a relation 𝑆𝑖𝑗 : 𝑇𝐺

𝑗 ×𝑇 such that

• (𝑡𝐺0 , 𝑡0) ∈ 𝑆𝑖𝑗 for all 𝑡𝐺0 ∈ 𝑇𝐺
0 and all 𝑡0 ∈ 𝑇𝑖 , and

• for all (𝑡𝐺 , 𝑡) ∈ 𝑆𝑖𝑗 , we have ℓ𝐺𝑗 (𝑡𝐺 ) ∩𝑂𝐴
𝑖 = ℓ (𝑡) ∩𝑂𝐺

𝑗 and, for all ] ∈ 2𝐼 𝑗 , ]′ ∈ 2𝐼𝑖 with
] ∩ 𝐼𝑖 = ]′ ∩ 𝐼 𝑗 as well as ℓ𝑖 (𝑡) ∩𝑂𝐴

𝑖 = ]′ ∩𝑂𝐴
𝑖 , and all 𝑡𝐺 ′ ∈ 𝑇𝐺

𝑗 , if (𝑡𝐺 , ], 𝑡𝐺 ′) ∈ 𝜏𝐺𝑗 holds,
then there exists some 𝑡 ′ ∈ 𝑇𝑖 such that (𝑡, ]′, 𝑡 ′) ∈ 𝜏 and (𝑡𝐺 ′, 𝑡 ′) ∈ 𝑆𝑖𝑗 hold.

Although the sets of inputs and outputs of an augmented local strategy are not disjoint,
requirement (i) ensures that no paths with contradictory valuations of shared variables can be
produced. Therefore, traces of augmented local strategies are well-defined.

Furthermore, note that the relations 𝑆 𝑗 which are required in the definition of augmented local
strategies resemble simulation relations as defined for transducer simulation in Definition 4.5.
However, they do not require that the transducers have the same input variables but consider
all combinations of valuations of inputs that agree on shared input variables. Similarly, they do
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not require that the output variables of T𝐺
𝑖 are a subset of the outputs of T̂𝑖 but only require

that the two transducers agree on all shared output variables. The relations 𝑆 𝑗 can thus be seen
as a more general version of transducer simulation. However, the definition of the relations 𝑆 𝑗

further poses the additional restriction that ℓ𝑖 (𝑡) ∩𝑂𝐴
𝑖 = ]′∩𝑂𝐴

𝑖 holds in the second requirement.
This is due to the fact T𝐺

𝑖 is a complete Moore transducers while T̂𝑖 is not. When omitting this
restriction, then the second requirement would ensure that T̂𝑖 is complete as well as T̂𝑖 would
need to provide a matching transition for all transitions in T𝐺

𝑖 , even if the considered sequence
does not match a valid computation anymore. This would contradict that augmented local
strategies only have a transition if the input matches the associated outputs. Therefore, we add
the additional restriction that ensures that we only require a matching transition in T̂𝑖 if the
input indeed matches the associated outputs. We first show that augmenting a local strategy
with associated outputs indeed allows for determining whether or not the properties of local
strategies are satisfied. In particular, we show that an augmented local strategy 𝑠𝑖 satisfies the
same requirements as local strategies regarding finite and infinite computations:

Lemma 4.8. Let 𝑝𝑖 ∈ 𝑃− be some system process. Let P ⊆ 𝑃− \ {𝑝𝑖} be a set of other system
processes and let G be a set of guarantee transducers, one for each process in P. Let 𝑠𝑖 be an
augmented local strategy for 𝑝𝑖 ∈ 𝑃− with respect to G. Let T̃𝑖 be the finite-state transducer
representing 𝑠𝑖 . Then, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and all 𝜎 ∈ Traces(T̃𝑖 , 𝛾), it holds that (i) if 𝜎 is infinite,
then there exists some 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 such that 𝜎 ∪ 𝛾 ′ ∈ VG holds, and (ii) if 𝜎 is finite, then
𝜎 · (𝛾 |𝜎 | ∪ 𝑜) ∪ 𝛾 ′ ∉ H G|𝜎 |+1 holds for all 𝑜 ∈ 2

𝑂𝑖 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 with |𝛾 ′ | = |𝜎 | + 1.

Proof. For 𝑝 𝑗 ∈ P, let T𝐺
𝑗 = (𝑇𝐺

𝑗 ,𝑇
𝐺
𝑗,0, 𝜏

𝐺
𝑗 , ℓ

𝐺
𝑗 ) be the guarantee transducer contained in G and

let 𝑆𝑖𝑗 be the relation establishing that 𝑠𝑖 is an augmented local strategy with respect to 𝑝 𝑗 ’s
guarantee transducer T𝐺

𝑗 . Let T̃𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̃𝑖). Let 𝛾 ∈ (2𝐼𝑖 )𝜔 and let �̃� ∈ Paths(T̃𝑖 , 𝛾) be
the unique path produced by T̃𝑖 on input 𝛾 . Let �̃� ∈ Traces(T̃𝑖 , 𝛾) be the corresponding trace.
Let 𝑘 := |�̃� |. Let 𝜌 ∈ (2𝑉 )𝜔 be some infinite sequence such that 𝜌 ∩ 𝑉𝑖 = �̃� holds if �̃� is
infinite and such that both 𝜌 ∩ 𝐼𝑖 = 𝛾 and 𝜌𝑘 ′ ∩ 𝑉𝑖 = �̃�𝑘 ′ ∩ 𝑉𝑖 holds for all points in time 𝑘 ′
with 0 ≤ 𝑘 ′ < |�̃� | otherwise. We first show a fact on the relationship of traces of T̃𝑖 and valid
computations. Afterward, we utilize this result to show that T̃𝑖 satisfies the properties of a local
strategy regarding infinite computations.
Fact (A): For all 𝑝 𝑗 ∈ P, we have (#1(𝜋 𝑗

𝑘 ′), #1(�̃�𝑘 ′)) ∈ 𝑆𝑖𝑗 for all points in time 𝑘 ′ with
0 ≤ 𝑘 ′ < 𝑘 , where 𝜋 𝑗 ∈ Paths(T𝐺

𝑗 , 𝜌 ∩ 𝐼 𝑗 ). Proof by induction on 𝑘 ′.

• 𝑘 ′ = 0. By definition of the relations 𝑆𝑖𝑗 , we have, for all 𝑝 𝑗 ∈ P, that (𝑡𝐺𝑗,0, 𝑡𝑖,0) ∈ 𝑆𝑖𝑗 holds
for all 𝑡𝐺𝑗,0 ∈ 𝑇𝐺

𝑗,0 and all 𝑡𝑖,0 ∈ 𝑇𝑖,0. Thus, since #1(𝜋 𝑗

0 ) ∈ 𝑇𝐺
𝑗,0 and #1(�̃�0) ∈ 𝑇𝑖,0 hold by

definition of paths, we have (#1(𝜋 𝑗

0 ), #1(�̃�0)) ∈ 𝑆𝑖𝑗 .

• 0 < 𝑘 ′ < 𝑘 and (#1(𝜋 𝑗

𝑘 ′−1), #1(�̃�𝑘 ′−1)) ∈ 𝑆𝑖𝑗 holds for all 𝑝 𝑗 ∈ P. Since guarantee
transducers are complete, there exist transitions (#1(𝜋 𝑗

𝑘 ′−1), 𝜌𝑘 ′−1∩𝐼 𝑗 , #1(𝜋
𝑗

𝑘 ′)) ∈ 𝜏
𝐺
𝑗 for all

processes 𝑝 𝑗 ∈ P. Furthermore, since 𝑘 ′ < 𝑘 holds by assumption, there exists a transition
(#1(�̃�𝑘 ′−1), 𝛾𝑘 ′−1, #1(�̃�𝑘 ′)) ∈ 𝜏𝑖 . Moreover, since 𝑘 ′ < 𝑘 , we have 𝜌𝑘 ′−1 ∩𝑉𝑖 = �̃�𝑘 ′−1 and
thus, in particular, (𝜌𝑘 ′−1 ∩ 𝐼 𝑗 ) ∩ 𝐼𝑖 = 𝛾𝑘 ′−1 ∩ 𝐼 𝑗 holds. Hence, by condition (i) of the
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definition of augmented local strategies, we have ℓ̃ (#1(�̃�𝑘 ′−1)) ∩𝑂𝐴
𝑖 = 𝛾𝑘 ′ ∩𝑂𝐴

𝑖 . Since
(#1(𝜋 𝑗

𝑘 ′−1), #1(�̃�𝑘 ′−1)) ∈ 𝑆
𝑖
𝑗 holds for all 𝑝 𝑗 ∈ P by assumption, it thus follows with the

definition of the relations 𝑆𝑖𝑗 that (#1(𝜋
𝑗

𝑘 ′), #1(�̃�𝑘 ′)) ∈ 𝑆
𝑖
𝑗 holds for all 𝑝 𝑗 ∈ P.

Utilizing fact (A), we now show that T̃𝑖 indeed satisfies the properties of a local strategy
regarding (in)finiteness of computations.
First, let �̃� be infinite. Then, �̃� is infinite as well. For 𝑝 𝑗 ∈ P, let 𝜋 𝑗 ∈ Paths(T𝐺

𝑗 , �̃� ∩ 𝐼 𝑗 )
and let 𝜎 𝑗 ∈ Traces(T𝐺

𝑗 , �̃� ∩ 𝐼 𝑗 ) be the corresponding trace Then, it follows with fact (A) that
(#1(𝜋 𝑗

𝑘
), #1(�̃�𝑘 )) ∈ 𝑆𝑖𝑗 holds for all 𝑘 ≥ 0. Thus, by definition of the relations 𝑆𝑖𝑗 , in particular

ℓ𝐺𝑗 (#1(𝜋
𝑗

𝑘
)) ∩𝑂𝐴

𝑖 = ℓ̃𝑖 (#1(�̃�𝑘 )) ∩𝑂𝐺
𝑗 holds for all 𝑝 𝑗 ∈ P and all 𝑘 ≥ 0. Therefore, by definition

of paths, #2(𝜋 𝑗

𝑘
) ∩𝑂𝐴

𝑖 = #2(�̃�𝑘 ) ∩𝑂𝐺
𝑗 holds for all 𝑝 𝑗 ∈ P and all 𝑘 ≥ 0. Thus, with the definition

of traces (𝜎 𝑗 ∩𝑂𝐺
𝑗 ) ∩𝑂𝐴

𝑖 = (�̃� ∩𝑂𝐴
𝑖 ) ∩𝑂𝐺

𝑗 follows for all 𝑝 𝑗 ∈ P. Let 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 be an infinite
sequence such that 𝛾 ′ ∩ 𝑂𝐺

𝑗 = 𝜎 𝑗 ∩ (𝑂𝐺
𝑗 \ 𝑉𝑖) holds for all 𝑝 𝑗 ∈ P. Since the sets of output

variables of different processes are disjoint by definition, 𝛾 ′ ∩𝑂𝐺
𝑗 = 𝜎 𝑗 ∩ (𝑂𝐺

𝑗 \𝑂𝐴
𝑖 ) follows for

all 𝑝 𝑗 ∈ P with the definition of associated outputs. Thus, we obtain 𝜎 𝑗 ∩𝑂𝐺
𝑗 = (�̃� ∪ 𝛾 ′) ∩𝑂𝐺

𝑗

and hence (�̃� ∪ 𝛾 ′) ∩ 𝑂𝐺
𝑗 = comp(T𝐺

𝑗 , 𝜌 ∩ 𝐼 𝑗 ) follows for all 𝑝 𝑗 ∈ P with the definition of
computations and the construction of 𝜎 𝑗 . Therefore �̃� ∪ 𝛾 ′ ∈ VG holds.

Second, let �̃� be finite. Then, by condition (i) of the definition of augmented local strategies,
we have ℓ̃𝑖 (#1(�̃�𝑘−1))∩𝑂𝐴

𝑖 ≠ 𝛾𝑘−1∩𝑂𝐴
𝑖 . Furthermore, we have |�̃� | = max{0, 𝑘−1}. Let 𝜌 ∈ (2𝑉 )𝜔

be some sequence such that both 𝜌∩𝐼𝑖 = 𝛾 and 𝜌𝑘 ′∩𝑉𝑖 = �̃�𝑘 ′∩𝑉𝑖 hold for all 𝑘 ′ with 0 ≤ 𝑘 ′ < |�̃� |.
For 𝑝 𝑗 ∈ P, let 𝜋 𝑗 ∈ Paths(T𝐺

𝑗 , 𝜌 ∩ 𝐼 𝑗 ). Then, it follows with fact (A) that (#1(𝜋 𝑗

𝑘 ′), #1(�̃�𝑘 ′)) ∈ 𝑆
𝑖
𝑗

holds for all 𝑘 ′ with 0 ≤ 𝑘 ′ < 𝑘 and for all 𝑝 𝑗 ∈ P. Thus, we have (#1(𝜋 𝑗

𝑘−1), #1(�̃�𝑘−1)) ∈ 𝑆
𝑖
𝑗 . By

definition of the 𝑆𝑖𝑗 , we have ℓ𝐺𝑗 (#1(𝜋
𝑗

𝑘−1))∩𝑂
𝐴
𝑖 = ℓ̃𝑖 (#1(�̃�𝑘−1))∩𝑂𝐺

𝑗 for all 𝑝 𝑗 ∈ P. Since we have
ℓ̃𝑖 (#1(�̃�𝑘−1)) ∩𝑂𝐴

𝑖 ≠ 𝛾𝑘−1 ∩𝑂𝐴
𝑖 as shown above, ℓ𝐺𝑗 (#1(𝜋

𝑗

𝑘−1)) ∩𝑂
𝐴
𝑖 ≠ (𝛾𝑘−1 ∩𝑂𝐴

𝑖 ) ∩𝑂𝐺
𝑗 follows.

By definition of associated outputs and by construction of 𝛾 , thus ℓ𝐺𝑗 (#1(𝜋
𝑗

𝑘−1)) ∩ 𝐼𝑖 ≠ 𝛾𝑘−1 ∩𝑂𝐺
𝑗

holds. Hence, we have #2(𝜋 𝑗

𝑘−1) ∩ 𝐼𝑖 ≠ 𝛾𝑘−1 ∩𝑂𝐺
𝑗 by definition of paths and hence it follows

with the definition of computations that (comp(T𝐺
𝑗 , 𝜌 ∩ 𝐼 𝑗 ) ∩𝑂 𝑗 ) ∩ 𝐼𝑖 ≠ 𝛾𝑘−1 ∩𝑂𝐺

𝑗 holds for all
𝑝 𝑗 ∈ P. Therefore, we have �̃� · (𝛾𝑘−1 ∪ 𝑜) ∪ 𝛾 ′ ∉ H G𝑘 for all 𝑜 ∈ 2𝑂𝑖 and all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . □

Wenow define certifying synthesis with augmented local strategies and guarantee transducers.
It is similar to certifying synthesis with local strategies and guarantee transducers as presented
in Definition 4.8 but uses augmented local strategies instead of local ones. Note that when posing
the requirements such as satisfaction of the subspecification and that the strategy is simulated
by the guarantee transducer, we do not use the augmented local strategy itself but a slightly
modified version: local(𝑠𝑖) denotes the restriction of the augmented local strategy 𝑠𝑖 to the
output variables of process 𝑝𝑖 . That is, local(𝑠𝑖) is represented by a finite-state transducer that is
a copy of the finite-state transducer T̃𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̃𝑖) representing 𝑠𝑖 , but modifies the labeling
function to ℓ̃𝑖 (𝑡) ∩𝑂𝑖 . Since 𝑠𝑖 satisfies the properties of a local strategy regarding finiteness
and infiniteness of computations by Lemma 4.8, local(𝑠𝑖) is a local strategy. Furthermore,
since condition (i) of the definition of augmented local strategies ensures that augmented local
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strategies produce well-defined computations only, the computations of 𝑠𝑖 and local(𝑠𝑖) coincide
for all input sequences. Thus, it is not necessary to use local(𝑠𝑖) instead of 𝑠𝑖 for stating the
satisfaction of the subspecification. The definition of transducer simulation, however, requires
that the set of output variables of the transducer which is simulated by another transducer needs
to be a subset if the set of outputs of the simulating transducer. Hence, since𝑂𝑖 ∪𝑂𝐴

𝑖 ⊆ 𝑂𝐺
𝑖 does

not hold if 𝑂𝐴
𝑖 ≠ ∅, stating that a strategy does not deviate from its own guaranteed behavior

requires using local(𝑠𝑖). For ease of presentation, we then use local(𝑠𝑖) in the definition of
certifying synthesis with augmented local strategies for both requirements.

Definition 4.12 (Certifying Synthesis with Augmented Local Strategies).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩. Let
G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be a vector of guarantee transducers for the system processes. For 𝑝 𝑗 ∈ 𝑃−,

let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let S̃ = ⟨𝑠1, . . . , 𝑠𝑛⟩ such that 𝑠𝑖 is an augmented local strategy

for 𝑝𝑖 ∈ 𝑃−with respect to G𝑖 . Let T̂𝑖 be the deterministic and complete finite-state transducer
representing local(𝑠𝑖). If, for all 𝑝𝑖 ∈ 𝑃−, both T̂𝑖 ⪯ T𝐺

𝑖 and, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 ,
either comp(local(𝑠𝑖), 𝛾) is finite or comp(local(𝑠𝑖), 𝛾) ∪𝛾 ′ |= 𝜑 holds, then we say that (S̃,G)
realizes 𝜑 . Certifying synthesis for 𝜑 derives vectors S̃ and G such that (S̃,G) realizes 𝜑 .

In the following, we prove soundness and completeness of certifying synthesis with aug-
mented local strategies. Since the requirements of certifying synthesis are posed on the strategies
local(𝑠𝑖) instead of the strategies 𝑠𝑖 , it follows immediately from Lemma 4.8 and Corollary 4.1
that the parallel composition of the strategies local(𝑠𝑖) satisfies the specification 𝜑 if there
exist augmented local strategies 𝑠𝑖 and guarantee transducers T𝐺

𝑖 that constitute a solution of
certifying synthesis. Soundness then follows with the observation that the parallel composition
of the strategies local(𝑠𝑖) and 𝑠𝑖 coincide:

Lemma 4.9. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let ⟨𝜑1, . . . , 𝜑𝑛⟩ be its
decomposition. Let G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be a vector of guarantee transducers for the system processes

and, for 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let S̃ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of augmented

local strategies for the system processes such that 𝑠𝑖 is an augmented local strategy for 𝑝𝑖 ∈ 𝑃−with
respect to G𝑖 . If (S̃,G) realizes 𝜑 , then 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 .

Proof. For 𝑝𝑖 ∈ 𝑃−, let T̃𝑖 be the finite-state transducer representing 𝑠𝑖 and let T̂𝑖 be the finite-state
transducer representing local(𝑠)𝑖 . Let Ŝ = ⟨local(𝑠1), . . . , local(𝑠𝑛)⟩. By Lemma 4.8, augmented
local strategies satisfy the requirements of local strategies regarding finiteness and infiniteness
of computations. Thus, since 𝑠𝑖 is an augmented local strategy for 𝑝𝑖 ∈ 𝑃−with respect to G𝑖
by construction, it follows from its construction that local(𝑠𝑖) is a local strategy for 𝑝𝑖 with
respect to G𝑖 . Furthermore, since (S̃,G) realizes 𝜑 by assumption, for all 𝑝𝑖 ∈ 𝑃−, we have
both T̂𝑖 ⪯ T𝐺

𝑖 and, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , either comp(local(𝑠𝑖), 𝛾) is finite or
comp(local(𝑠𝑖), 𝛾) ∪ 𝛾 ′ |= 𝜑 holds. Thus, it follows immediately with the definition of certifying
synthesis with local strategies that (Ŝ,G) realizes 𝜑 as well. Therefore, by Corollary 4.1,
we have local(𝑠1) | | . . . | | local(𝑠𝑛) |= 𝜑 . Additionally, by Lemma 4.4, the traces produced by
T̂1 | | . . . | | T̂𝑛 coincide with the traces produced by the parallel composition of the transducers T𝑖
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representing the strategy extensions 𝑠𝑖 = extend(local(𝑠𝑖),T𝐺
𝑖 ) of the local strategies T̂𝑖 as

defined in Definition 4.9. Since T𝑖 is a deterministic and complete Moore transducer and since
the sets of output variables of different processes are disjoint, it follows with Lemma 2.1 that that
the parallel composition of the transducers representing the extended strategies is deterministic
and complete as well. Thus, for all 𝛾 ∈ (2𝑂env )𝜔 , we have |Traces(T1 | | . . . | | T𝑛, 𝛾) | = 1 and
therefore |Traces(T̂1 | | . . . | | T̂𝑛, 𝛾) | = 1 follows. Furthermore, since deterministic and complete
transducers only produce infinite traces, all traces produced by T1 | | . . . | | T𝑛 and thus also all
traces produced by T̂1 | | . . . | | T̂𝑛 are infinite.
Let 𝛾 ∈ (2𝑂env )𝜔 . Let 𝜎 ∈ Traces(T̂1 | | . . . | | T̂𝑛, 𝛾) be the unique trace produced by the

parallel composition of the local strategies local(𝑠𝑖) on input 𝛾 . Then, since 𝜎 is infinite as
shown above, 𝜎 ∩ 𝑉𝑖 ∈ Traces(T̂𝑖 , 𝜌 ∩ 𝐼𝑖) holds for all 𝑝𝑖 ∈ 𝑃− by Proposition 4.1. Therefore,
by construction of local(𝑠𝑖) and T̂𝑖 , we have 𝜎 ∩ 𝑉𝑖 ∈ Traces(T̃𝑖 , 𝜌 ∩ 𝐼𝑖) for all 𝑝𝑖 ∈ 𝑃− as
well. Hence, 𝜎 ∈ Traces(T̃1 | | . . . | | T̃𝑛) follows with Proposition 4.1 and thus, in particular
𝜎 ∈ Traces(T̃1 | | . . . | | T̃𝑛, 𝛾) holds. Since the sets output variables of different processes are
disjoint by the definition of archictures and since augmented local strategies are deterministic
Moore transducers, T̃1 | | . . . | | T̃𝑛 is a deterministic Moore transducer by Lemma 2.1 as well and
therefore 𝜎 is the unique trace produced by T̃1 | | . . . | | T̃𝑛 on input 𝛾 . Thus, for all 𝛾 ∈ (2𝑂env )𝜔 ,
we have Traces(T̂1 | | . . . | | T̂𝑛, 𝛾) = Traces(T̃1 | | . . . | | T̃𝑛, 𝛾). Since local(𝑠1) | | . . . | | local(𝑠𝑛) |= 𝜑

holds as shown above, it thus follows that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds as well. □

Hence, when obtaining a solution of certifying synthesis with augmented local strategies,
the parallel composition of the augmented local strategies restricted to the respective output
variables is guaranteed to realize the specification. Completeness is ensured as long as for every
system process 𝑝𝑖 ∈ 𝑃−, the behavior of the parallel composition of the guarantee transducers of
all other system processes is deterministic in the sense that the paths produced by the parallel
composition of the guarantee transducers are the same on input sequences that 𝑝𝑖 cannot
distinguish: an augmented local strategy needs to keep track of the matching traces in the
guarantee transducers of all other system processes for the relations 𝑆𝑖𝑗 to exist. If one of the
other processes behaves differently on two sequences 𝑝𝑖 cannot distinguish, then the definition
of the relation 𝑆𝑖𝑗 would require contradicting valuations of associated outputs in some state of
the augmented local strategy. We call this kind of determinism observation determinism and
define a slightly more general form as follows:

Definition 4.13 (Observation Determinism).
Let 𝑝𝑖 ∈ 𝑃− be some system process. Let 𝐼 ⊆ 𝑉 and 𝑂 ⊆ 𝑂− be finite sets of input and output
variables. Let P ⊆ 𝑃−\ {𝑝𝑖}. LetM be a set of complete finite-state transducers, one for each
𝑝 𝑗 ∈ P. Let 𝐼 =

⋃
𝑝 𝑗 ∈P 𝐼 𝑗 ∪

⋃
𝑝 𝑗 ∈P 𝑂 𝑗 . We callM observation-deterministic for 𝑝𝑖 if, and only

if, we have Paths(T , 𝛾) = Paths(T , 𝛾 ′) for all 𝛾,𝛾 ′ ∈ (2𝐼 )𝜔 with 𝛾 ∩𝑉𝑖 = 𝛾 ′ ∩𝑉𝑖 .

In the following completeness proof for certifying synthesis with augmented local strate-
gies, we require the strategies whose parallel composition realizes the specification to ensure
observation determinism for every process 𝑝𝑖 ∈ 𝑃− and the parallel composition of the other
strategies. Then, by Theorem 4.2 and, in particular, Lemma 4.2, there exist complete strategies
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and guarantee transducers that realize the specification. Furthermore, the construction of
the guarantee transducers Lemma 4.2 preserves observation determinism as the guarantee
transducers are copies of the strategies which are restricted to the guarantee outputs. Strategy
restriction as defined in Definition 4.10 then allows for constructing local strategies that, to-
gether with the very same guarantee transducers as before, realize 𝜑 as well (see Lemma 4.7).
Since, for each 𝑝𝑖 ∈ 𝑃−, the parallel composition of the guarantee transducers of the other
processes is observation-deterministic, it follows that in every state of the local strategy the
part which represents a set of states in the parallel composition of the guarantee transducers is
a singleton. We can thus utilize a slightly modified version of strategy restriction which also
preserves the outputs of the guarantee transducers to obtain augmented local strategies. Then,
in fact, the resulting transducer represents an augmented local strategy that (i) produces the
same traces when restricting them to the outputs of the considered system process and (ii) if
the local strategy is simulated by the guarantee transducer, then so is the augmented local
strategy constructed in this way. Hence, together with Corollary 4.2, we obtain the following
completeness result:

Lemma 4.10. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let ⟨𝜑1, . . . , 𝜑𝑛⟩ be its
decomposition. Let 𝑠1, . . . , 𝑠𝑛 be strategies for the system processes represented by finite-state
transducers T1, . . . ,T𝑛 . If we have prop(𝜑𝑖) ⊆ 𝑉𝑖 for all 𝑝𝑖 ∈ 𝑃−, and if, for all 𝑝𝑖 ∈ 𝑃−, the set{
T𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
is observation-deterministic for 𝑝𝑖 , and if 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds, then there

exists a vector G = ⟨T𝐺
1 , . . . ,T𝐺

𝑛 ⟩ of guarantee transducers for the system processes and a vector
S̃ = ⟨𝑠1, . . . , 𝑠2⟩ such that 𝑠𝑖 is an augmented local strategy for 𝑝𝑖 ∈ 𝑃−with respect to G𝑖 , where
G𝑖 =

{
T𝐺
𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
, such that (S̃,G) realizes 𝜑 .

Proof. Assume that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds and that, for all 𝑝𝑖 ∈ 𝑃−, the set
{
T𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
is observation-deterministic for 𝑝𝑖 . Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ and let T𝑖 be the finite-state transducer
representing 𝑠𝑖 . Then, by Theorem 4.2 there exists a vector G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ of guarantee

transducers such that (S,G) realizes 𝜑 . In particular, this holds for the guarantee transducers
which are copies of the transducers representing the corresponding strategy that are restricted to
the guarantee outputs since this construction is used in the completeness proof (see Lemma 4.2).
In the following, we assume that this vector of guarantee transducers is given, i.e., that, for
all 𝑝𝑖 ∈ 𝑃− and all 𝛾 ∈ (2𝐼𝑖 )𝜔 , we have both #1(𝜋𝑖,𝐺

𝑘
) = #1(𝜋𝑖

𝑘
) and #2(𝜋𝑖,𝐺

𝑘
) = #1(𝜋𝑖

𝑘
) ∩ 𝑂𝐺

2
for all paths 𝜋𝑖,𝐺 ∈ Paths(T𝐺

𝑖 , 𝛾) and 𝜋𝑖 ∈ Paths(T𝑖 , 𝛾) as well as all points in time 𝑘 ≥ 0. For
𝑝 𝑗 ∈ 𝑃−, let G𝑗 =

{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Since, for all 𝑝𝑖 ∈ 𝑃−, the set

{
T𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
is observation-deterministic for 𝑝𝑖 , it follows immediately that, for all 𝑝𝑖 ∈ 𝑃−, the set G𝑖 is
observation-deterministic for 𝑝𝑖 as well.
We construct augmented local strategies 𝑠𝑖 similar to the construction of local strategies from

complete strategies as defined in Definition 4.10. The only difference lies in the labeling function:
instead of defining the label of a state (𝑡, 𝑀) to be ℓ𝑖 (𝑡), we define it to be ℓ𝑖 (𝑡) ∪ (ℓ (𝑡 ′) ∩𝑂𝐴

𝑖 ),
where 𝑡 ′ ∈ 𝑀 . Note that, since for all 𝑝𝑖 ∈ 𝑃−, the set G𝑖 is observation-deterministic for 𝑝𝑖 , the
second component of a state in restrict(𝑠𝑖 ,G𝑖) is always a singleton. Hence, the labeling function
of the constructed augmented local strategy is well-defined. We show that the transducers
constructed T̃1, . . . , T̃𝑛 in this way indeed represent augmented local strategies. Since we only
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alter the labeling function in a well-defined way, finiteness of the set of states as well as
determinism and completeness of the transducers follow from the respective properties for
the local strategies obtained with strategy restriction. Next, for 𝑝𝑖 ∈ 𝑃−, let T̃𝑖 = (𝑇𝑖 , ˜𝑇𝑖,0, 𝜏𝑖 , ℓ̃𝑖),
let T𝐺

𝑖 = (𝑇𝐺
𝑖 ,𝑇𝐺

𝑖,0, 𝜏
𝐺
𝑖 , ℓ

𝐺
𝑖 ) and let T = (𝑇,𝑇0, 𝜏0, ℓ) be the transducer representing the parallel

composition of the guarantee transducers of the other processes. Let 𝑝𝑖 ∈ 𝑃−.
First, we show that condition (i) is satisfied. Let (𝑡, 𝑀) ∈ 𝑇𝑖 be a state of T̃𝑖 . As shown above,𝑀

is a singleton. Let𝑀 = {𝑡𝐺 }. Suppose that there exists some transition ((𝑡, 𝑀), ], (𝑡 ′, 𝑀 ′)) ∈ 𝜏𝑖 .
Then, by construction of 𝜏𝑖 , we have ] ∩𝑂− = ℓ (𝑡𝐺 ) ∩ 𝐼𝑖 . Furthermore, by construction of the
labeling function, ℓ̃𝑖 ((𝑡, 𝑀)) ∩ 𝑂𝐴

𝑖 = ℓ (𝑡𝐺 ) ∩ 𝑂𝐴
𝑖 holds. Since ℓ (𝑡𝐺 ) ∩ 𝐼𝑖 = ℓ (𝑡𝐺 ) ∩ 𝑂𝐴

𝑖 holds
by definition of associated outputs, ] ∩𝑂− = ℓ̃𝑖 ((𝑡, 𝑀)) ∩𝑂𝐴

𝑖 thus follows. Next, suppose that
there is some ] ∈ 2𝐼𝑖 such that ] ∩𝑂− = ℓ̃𝑖 ((𝑡, 𝑀)) ∩𝑂𝐴

𝑖 holds. Since T̃𝑖 is constructed from a
complete strategy 𝑠𝑖 , there exists a transition (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 , where 𝜏𝑖 is the transition relation of
the finite-state transducer representing 𝑠𝑖 . Moreover, there clearly exists some ]′ ∈ 2𝐼𝐺𝑖 , where
𝐼𝐺𝑖 =

⋃
𝑝 𝑗 ∈𝑃−\{𝑝𝑖 } 𝐼𝑖 \

⋃
𝑝 𝑗 ∈𝑃−\{𝑝𝑖 } 𝑂𝑖 , such that ] ∩ 𝐼𝐺𝑖 = ]′ ∩ 𝐼𝑖 and ]′ ∩ 𝑂𝑖 = ℓ𝑖 (𝑡) ∩ 𝐼𝐺𝑖 hold.

Since ] ∩𝑂− = ℓ̃𝑖 ((𝑡, 𝑀)) ∩𝑂𝐴
𝑖 holds by assumption, in particular, ] ∩𝑂𝐺

𝑖 = ℓ̃𝑖 ((𝑡, 𝑀)) ∩ 𝐼𝑖 holds
by definition of associated outputs, where 𝑂𝐺

𝑖 =
⋃

𝑝 𝑗 ∈𝑃−\{𝑝𝑖 } 𝑂𝑖 . Furthermore, since the sets
of output variables of different processes are disjoint by definition of architectures and since
guarantee transducers are complete Moore transducers, their parallel composition T is, by
Lemma 2.1, complete aswell and thus, in particular, there exists a transition (𝑡𝐺 , ]′, 𝑡𝐺 ′) ∈ 𝜏 . Thus,
by definition of 𝜏𝑖 , we have ((𝑡, 𝑀), ], (𝑡 ′, 𝑀 ′)) ∈ 𝜏𝑖 , where𝑀 ′ = {𝑡𝐺

′}. Hence, condition (i) of
the definition of augmented local strategies is satisfied.

Next, we construct relations 𝑆𝑖𝑗 for all 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖} as follows: (𝑡𝐺𝑗 , (𝑡, 𝑀)) ∈ 𝑆𝑖𝑗 if, and only
if, 𝑀 = {𝑡𝐺 } and #𝑚 (𝑡𝐺 ) = 𝑡𝐺𝑗 , where𝑚 = 𝑗 if 𝑗 < 𝑖 and𝑚 = 𝑗 − 1 otherwise, i.e., intuitively,
the part of 𝑡𝐺 which corresponds to 𝑝 𝑗 equals 𝑡𝐺𝑗 . Let 𝑝 𝑗 ∈ 𝑃− \ {𝑝𝑖}. Clearly, (𝑡𝐺𝑗,0, 𝑡0) ∈ 𝑆𝑖𝑗

holds for all 𝑡𝐺𝑗,0 ∈ 𝑇𝐺
𝑗,0 and all 𝑡0 ∈ 𝑇𝑖,0 by construction of T̃𝑖 . Next, let 𝑡𝐺𝑗 ∈ 𝑇𝐺

𝑗 and let 𝑡 ∈ 𝑇𝑖
be states such that (𝑡𝐺𝑗 , 𝑡) ∈ 𝑆𝑖𝑗 holds. Let ] ∈ 2𝐼 𝑗 and ]′ ∈ 2𝐼𝑖 such that both ] ∩ 𝐼𝑖 = ]′ ∩ 𝐼 𝑗 and
ℓ̃ (𝑡) ∩𝑂𝐴

𝑖 = ]′ ∩𝑂𝐴
𝑖 hold. Since (𝑡𝐺𝑗 , 𝑡) ∈ 𝑆𝑖𝑗 , we have #𝑚 (#2(𝑡)) = 𝑡𝐺𝑗 , where𝑚 = 𝑗 if 𝑗 < 𝑖 and

𝑚 = 𝑗 − 1 otherwise, by construction of 𝑆𝑖𝑗 . Thus, in particular ℓ𝐺𝑗 (𝑡𝐺 ) = ℓ (#2(𝑡)) ∩𝑂𝐺
𝑗 holds by

definition of the parallel composition of finite-state transducers. By construction of T̃𝑖 , we have
ℓ̃𝑖 (𝑡) ∩𝑂𝐺

𝑗 = ℓ (#2(𝑡)) ∩𝑂𝐺
𝑗 since 𝑂𝑖 ∩𝑂𝐺

𝑗 holds by definition of architectures and guarantee
outputs. Therefore, ℓ̃ (𝑡) ∩ 𝑂𝐺

𝑗 = ℓ𝐺𝑗 (𝑡𝐺𝑗 ) follows. Furthermore, since ℓ̃𝑖 (𝑡) ∩ 𝑂𝐴
𝑖 = ]′ ∩ 𝑂𝐴

𝑖

holds by assumption and since condition (i) of the definition of augmented local strategies is
satisfied as shown above, there exists a transition (𝑡, ]′, (𝑡, 𝑀)) ∈ 𝜏𝑖 for some (𝑡, 𝑀) ∈ 𝑇𝑖 . Thus,
by construction of T̃𝑖 , there also exists a transition (#1(𝑡), ]′, 𝑡) ∈ 𝜏𝑖 , where 𝜏𝑖 is the transition
relation of the finite-state transducer representing 𝑠𝑖 . If there exists a transition (𝑡𝐺𝑗 , ], 𝑡𝐺𝑗

′) ∈ 𝜏𝐺𝑗 ,
then it follows with the construction of T̃𝑖 and the fact that it is deterministic that we have
#𝑚 (𝑡𝐺

′) = 𝑡𝐺𝑗
′, where 𝑀 = {𝑡𝐺 ′} and𝑚 = 𝑗 if 𝑗 < 𝑖 and𝑚 = 𝑗 − 1 otherwise. Therefore, by

construction of 𝑆𝑖𝑗 , we have (𝑡𝐺𝑗
′
, (𝑡, 𝑀)) ∈ 𝑆𝑖𝑗 as well. Hence, 𝑆𝑖𝑗 satisfies the requirements stated

in the definition of augmented local strategies and thus condition (ii) holds.
Lastly, we show that the augmented local strategies 𝑠𝑖 indeed form a solution of certifying

synthesis. Let S̃ = ⟨𝑠1, . . . , 𝑠𝑛⟩. By construction of 𝑠𝑖 , we clearly have local(𝑠𝑖) = restrict(𝑠𝑖 ,G𝑖).



4.4. Synthesizing Certificates 147

Let Ŝ = ⟨local(𝑠1), . . . , local(𝑠𝑛)⟩. Hence, it follows with Lemma 4.7 that (Ŝ,G) realizes 𝜑 .
That is, for all 𝑝𝑖 ∈ 𝑃−, we have both T̂𝑖 ⪯ T𝐺

𝑖 and, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , either
comp(local(𝑠𝑖), 𝛾) is finite or comp(local(𝑠𝑖), 𝛾) ∪𝛾 ′ |= 𝜑 holds. Thus, by definition of certifying
synthesis with augmented local strategies, (S̃,G) thus realizes 𝜑 as well. □

Therefore, it follows from Lemma 4.9 and Lemma 4.10 that utilizing augmented local strategies
for certifying synthesis is sound and, under certain conditions, complete. In the following, we
thus introduce an encoding of the search for augmented local strategies and guarantee transduc-
ers that satisfy the requirements of certifying synthesis into a SAT constraint system. We focus
on synthesizing deterministic guarantee transducers that ensure observation determinism. As
outlined above, such guarantee transducers do not necessarily exist for all system architectures.
In the following sections, however, we introduce several optimizations of certifying synthesis,
one of them being to allow for nondeterministic guarantee transducers as well as transducers
that not ensure observation determinism.

4.4.4. Constraint System for Deterministic Certificates
Like for monolithic bounded synthesis [FS13], we encode the search for a solution of certifying
synthesis of a certain size into a SAT constraint system. We reuse the concepts of run graphs
and valid annotations (see Section 2.8.1). Therefore, we employ parts of the SAT constraint
system for bounded synthesis of monolithic systems presented in [FFRT17]. In particular, the
constraint system C𝒜,𝐵,𝜑 encoding certifying synthesis for some architecture 𝒜, a vector 𝐵
of size bounds for both augmented local strategies and guarantee transducers, and some LTL
specification 𝜑 consists, intuitively, of 𝑛 slightly modified copies of the SAT constraint system
for monolithic bounded synthesis, one for each system process of 𝒜. For each copy, we add
variables encoding the guarantee transducers representing the certificates as well as constraints
that ensure that the augmented local strategies and certificates indeed fulfill the requirements
of certifying synthesis with augmented local strategies and guarantee transducers.
First, we encode the finite-state transducers T𝑖 representing the augmented local strategies,

the finite-state transducers T𝐺
𝑖 representing the certificates, the universal co-Büchi automataA𝑖

representing the specifications 𝜑𝑖 , and the annotation function _. Furthermore, we encode the
simulation relations 𝑅𝑖 that establish that T𝑖 ⪯ T𝐺

𝑖 holds as well as the relations 𝑆𝑖𝑗 that establish
that T𝑖 is an augmented local strategy.

• Finite-state transducer T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖). We represent the transition relation 𝜏𝑖 by one
Boolean variable 𝜏𝑖

𝑡,],𝑡 ′ for each 𝑡, 𝑡
′ ∈ 𝑇𝑖 and ] ∈ 2𝐼𝑖 . Given 𝑡, 𝑡 ′ ∈ 𝑇𝑖 , ] ∈ 2𝐼𝑖 , and 𝑜 ∈ 2𝑂𝑖 , it

holds that 𝜏𝑖
𝑡,],𝑡 ′ is true if, and only if, (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 holds. Furthermore, we represent the

labeling relation ℓ𝑖 by one Boolean variable 𝑜𝑖𝑡,𝑜 for each 𝑡 ∈ 𝑇𝑖 and 𝑜 ∈ 2𝑂𝑖∪𝑂𝐴
𝑖 . Given

𝑡 ∈ 𝑇𝑖 and 𝑜 ∈ 𝑂𝑖 ∪𝑂𝐴
𝑖 , it holds that 𝑜𝑖𝑡,𝑜 is true if, and only if, 𝑜 ∈ ℓ𝑖 (𝑡) holds.

• Finite-state transducer T𝐺
𝑖 = (𝑇𝐺

𝑖 ,𝑇𝐺
𝑖,0, 𝜏

𝐺
𝑖 , ℓ

𝐺
𝑖 ). We represent the transition relation 𝜏𝐺𝑖

by one Boolean variable 𝜏𝐺,𝑖
𝑡,],𝑡 ′ for each 𝑡, 𝑡 ′ ∈ 𝑇𝐺

𝑖 and ] ∈ 2𝐼𝑖 . Given 𝑡, 𝑡 ′ ∈ 𝑇𝐺
𝑖 and ] ∈ 2𝐼𝑖 ,

it holds that 𝜏𝐺,𝑖
𝑡,],𝑡 ′ is true if, and only if, (𝑡, ], 𝑡 ′) ∈ 𝜏𝐺𝑖 holds. Furthermore, we represent
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the labeling relation ℓ𝐺𝑖 by one Boolean variable 𝑜𝐺,𝑖
𝑡,𝑜 for each 𝑡 ∈ 𝑇𝐺

𝑖 and 𝑜 ∈ 2𝑂𝐺
𝑖 . Given

𝑡 ∈ 𝑇𝐺
𝑖 and 𝑜 ∈ 𝑂𝐺

𝑖 , it holds that 𝑜
𝐺,𝑖
𝑡,𝑜 is true if, and only if, 𝑜 ∈ ℓ𝐺𝑖 (𝑡) holds.

• Universal co-Büchi automatonA𝑖 = (𝑄𝑖 , 𝑞𝑖,0, 𝛿𝑖 , 𝐹𝑖). We represent the transition relation 𝛿𝑖
by one propositional formula 𝛿𝑖

𝑞,𝑣,𝑞′ for each 𝑞, 𝑞
′ ∈ 𝑄𝑖 and 𝑣 ∈ 2𝑉𝑖 . Given 𝑞, 𝑞′ ∈ 𝑄𝑖 and

𝑣 ∈ 2𝑉𝑖 , it holds that 𝛿𝑖
𝑞,𝑣,𝑞′ is true if, and only if, (𝑞, 𝑣, 𝑞′) ∈ 𝛿𝑖 holds.

• Annotation function _𝑖 : 𝑇𝑖 ×𝑄𝑖 → N ∪ {⊥}. We split the encoding of _𝑖 into two parts,
one focusing on the reachability of a state of the run graph of T𝑖 andA𝑖 and one focusing
on the actual bound. We thus represent _𝑖 by one Boolean variable _B𝑖,𝑡,𝑞 for each 𝑡 ∈ 𝑇𝑖
and 𝑞 ∈ 𝑄𝑖 and one bit vector _#𝑡,𝑡,𝑞 for each 𝑡 ∈ 𝑇𝑖 and 𝑞 ∈ 𝑄𝑖 . Given 𝑡 ∈ 𝑇𝑖 and 𝑞 ∈ 𝑄𝑖 , it
holds that (i) _B𝑖,𝑡,𝑞 is true if, and only if, _𝑖 (𝑡, 𝑞) ≠ ⊥ and (ii) _#𝑖,𝑡,𝑞 represents the binary
encoding of the value _𝑖 (𝑡, 𝑞) if _𝑖 (𝑡, 𝑞) = 𝑘 ≠ ⊥.

• Simulation relation 𝑅𝑖 : 𝑇𝑖 ×𝑇𝐺
𝑖 . We represent the simulation relation by one propositional

formula 𝑅𝑖𝑡,𝑢 for each 𝑡 ∈ 𝑇𝑖 and 𝑢 ∈ 𝑇𝐺
𝑖 . Given 𝑡 ∈ 𝑇𝑖 and 𝑢 ∈ 𝑇𝐺

𝑖 , it holds that 𝑅𝑖𝑡,𝑢 is true
if, and only if, (𝑡,𝑢) ∈ 𝑅𝑖 holds.

• Relation 𝑆𝑖𝑗 : 𝑇𝐺
𝑗 × 𝑇𝑖 . We represent the relation by one propositions formula 𝑆𝑖, 𝑗𝑢,𝑡 for

each 𝑢 ∈ 𝑇𝐺
𝑗 and 𝑡 ∈ 𝑇𝑖 . Given 𝑢 ∈ 𝑇𝐺

𝑗 and 𝑡 ∈ 𝑇𝑖 , it holds that 𝑆𝑖, 𝑗𝑢,𝑡 is true if, and only if,
(𝑢, 𝑡) ∈ 𝑆𝑖𝑗 holds.

Next, we present the SAT constraint system C𝒜,𝐵,𝜑 encoding certifying synthesis with aug-
mented local strategies for an architecture 𝒜, a vector 𝐵 of size bounds, and an LTL formula 𝜑
with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩, where each 𝜑𝑖 is represented by a universal co-Büchi au-
tomaton A𝑖 with L(A𝑖) = L(𝜑𝑖). We first present the SAT constraints for a single system
process 𝑝𝑖 ∈ 𝑃−. Afterward, we assemble the constraints for the individual processes to the full
constraint system C𝒜,𝐵,𝜑 .
First, we encode the technical requirement that guarantee transducers must be both deter-

ministic and complete, i.e., that there exists exactly one outgoing transition for every source
state 𝑢 ∈ 𝑇𝐺

𝑖 and every input valuation ] ∈ 2𝐼𝑖 . The constraint is similar to the one encoding
determinism and completeness of strategies in the SAT constraint system CSAT

𝑏,𝜑
for classical

monolithic bounded synthesis [FS13, FFRT17].

∧
𝑢∈𝑇𝐺

𝑖

∧
]⊆𝐼𝑖

©«
∨

𝑢′∈𝑇𝐺
𝑖

𝜏
𝐺,𝑖
𝑢,],𝑢′ ∧

∧
𝑢′∈𝑇𝐺

𝑖

∧
𝑢′′∈𝑇𝐺

𝑖
\{𝑢′ }

¬
(
𝜏
𝐺,𝑖
𝑢,],𝑢′ ∧ 𝜏

𝐺,𝑖
𝑢,],𝑢′′

)ª®¬ (4.1)

Second, we encode that an augmented local strategy needs to adhere to its own certificate,
i.e., that T𝑖 ⪯ T𝐺

𝑖 holds. For this, we explicitly encode the existence of a simulation relation
𝑅 : 𝑇 × 𝑇𝐺 that establishes that T𝐺

𝑖 simulates T𝑖 . The constraint thus closely follows the
definition of transducer simulation presented in Definition 4.5. Note that due to the Moore
semantics of both augmented local strategies and guarantee transducers, both T𝑖 and T𝐺

𝑖 only
have a single initial state. Thus, instead of encoding that (𝑡𝑖,0, 𝑡𝐺𝑖,0) ∈ 𝑅𝑖 holds for all 𝑡𝑖,0 ∈ 𝑇𝑖,0 and
all 𝑡𝐺𝑖,0 ∈ 𝑇𝐺

𝑖,0, we simply encode that (𝑡𝑖,0, 𝑡𝐺𝑖,0) ∈ 𝑅𝑖 holds, where 𝑡𝑖,0 and 𝑡𝐺𝑖,0 represent the unique
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initial states of T𝑖 and T𝐺
𝑖 , respectively. Recall that transducers representing local strategies

have a unique initial state, although they can be transition-incomplete due to the requirements
on the finiteness and infiniteness of computations of local strategies (see Proposition 4.2). Since
augmented local strategies satisfy the same properties, T𝑖 has a unique initial state as well,
although it can be transition-incomplete.

𝑅𝑖
𝑡𝑖,0,𝑡𝐺𝑖,0
∧∧

𝑡 ∈𝑇𝑖

∧
𝑢∈𝑇𝐺

𝑖

©«𝑅𝑖𝑡,𝑢 → ©«
∧

𝑜∈𝑂𝐺
𝑖

𝑜𝐺,𝑖
𝑢,𝑜 ↔ 𝑜𝑖𝑡,𝑜 ∧

∧
]⊆𝐼𝑖

∧
𝑡 ′∈𝑇𝑖

©«𝜏𝑖𝑡,],𝑡 ′ →
∨

𝑢′∈𝑇𝐺
𝑖

(
𝜏
𝐺,𝑖
𝑢,],𝑢′ ∧ 𝑅

𝑖
𝑡 ′,𝑢′

)ª®¬ª®¬ª®¬
(4.2)

Third, we encode that T𝑖 adheres to condition (i) of the definition of augmented local strategies.
That is, we encode that for every state 𝑡 ∈ T𝑖 and every input ] ∈ 2𝐼𝑖 , there exists a transition
with source state 𝑡 for input ] if, and only if ] ∩𝑂𝐴

𝑖 = ℓ (𝑡) ∩𝑂𝐴
𝑖 holds. Moreover, we encode

that T𝑖 is deterministic, i.e., that for every state 𝑡 ∈ T𝑖 and every input ] ∈ 2𝐼𝑖 , there exists at
most one successor state.∧

𝑡 ∈𝑇𝑖

∧
]⊆𝐼𝑖

©«©«
∧
𝑜∈𝑂𝐴

𝑖

𝑜 ∈ ] ↔ 𝑜𝑖𝑡,𝑜
ª®¬↔

∨
𝑡 ′∈𝑇𝑖

𝜏𝑖𝑡,],𝑡 ′
ª®¬ ∧

∧
𝑡 ′∈𝑇𝑖

∧
𝑡 ′′∈𝑇𝑖\{𝑡 ′ }

¬
(
𝜏𝑖𝑡,],𝑡 ′ ∧ 𝜏𝑖𝑡,],𝑡 ′′

)
(4.3)

Next, we encode that T𝑖 further adheres to condition (ii) of the definition of augmented local
strategies. For this, we explicitly encode the existence of relations 𝑆𝑖𝑗 that satisfy the requirements
stated in the definition of augmented local strategies, i.e., in Definition 4.11. Similar to constraint
Equation (4.2), i.e., the constraint encoding the existence of a simulation relation establishing
that T𝑖 ⪯ T𝐺

𝑖 holds, we make use of the Moore semantics of both augmented local strategies
and guarantee transducers: instead of encoding that (𝑡𝐺𝑗,0, 𝑡𝑖,0) ∈ 𝑆𝑖𝑗 holds for all 𝑡𝐺𝑗,0 ∈ 𝑇𝐺

𝑗,0 and
all 𝑡𝑖,0 ∈ 𝑇𝑖,0, we encode that (𝑡𝐺𝑗,0, 𝑡𝑖,0) ∈ 𝑆𝑖𝑗 holds, where 𝑡𝐺𝑗,0 and 𝑡𝑖,0 represent the unique initial
states of T𝐺

𝑗 and T𝑖 , respectively.

𝑆
𝑗,𝑖

𝑡𝐺
𝑗,0,𝑡𝑖,0
∧

∧
𝑢∈𝑇𝐺

𝑗

∧
𝑡 ∈𝑇𝑖

©«𝑆
𝑗,𝑖
𝑢,𝑡 →

©«
∧

𝑜∈𝑂𝐴
𝑖
∩𝑂𝐺

𝑗

𝑜
𝐺,𝑗
𝑢,𝑜 ↔ 𝑜𝑖𝑡,𝑜 ∧

∧
]⊆𝐼 𝑗

∧
]′⊆𝐼𝑖

©«] ∩ 𝐼𝑖 = ]′ ∩ 𝐼 𝑗

∧
∧
𝑜∈𝑂𝐴

𝑖

𝑜 ∈ ]′ ↔ 𝑜𝑖𝑡,𝑜
ª®¬→

∧
𝑢′∈𝑇𝐺

𝑗

©«𝜏
𝐺,𝑗

𝑢,],𝑢′ →
∨
𝑡 ′∈𝑇𝑖

(
𝜏𝑖𝑡,]′,𝑡 ′ ∧ 𝑆

𝑗,𝑖

𝑢′,𝑡 ′

)ª®®¬
ª®®¬
ª®®¬

(4.4)

This constraint considers only a single other system process 𝑝 𝑗 ∈ 𝑃−\𝑉𝑖 , i.e., it only encodes
the existence of a single relation 𝑆𝑖𝑗 satisfying the requirements of local strategies. Hence, to
ensure that there does not only exist a relation 𝑆𝑖𝑗 for a single system process 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖} but
for all other system processes, we use one copy of this constraint for each system process that
is different from 𝑝𝑖 , i.e., we use

∧
𝑝 𝑗 ∈𝑃−\{𝑝𝑖 } (4.4).
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Lastly, we encode that the run graph of the local strategy represented by T𝑖 and the universal
co-Büchi automaton A𝑖 has a valid annotation. The constraint is similar to the one for classical
monolithic bounded synthesis [FS13, FFRT17].

_B𝑖,𝑡𝑖,0,𝑞𝑖,0∧∧
𝑞∈𝑄𝑖

∧
𝑡 ∈𝑇𝑖

©«_B𝑖,𝑡,𝑞 →
∧

𝑞′∈𝑄𝑖

∧
]⊆𝐼𝑖

(
𝛿𝑖𝑞,],𝑞′,𝑡 →

∧
𝑡 ′∈𝑇𝑖

(
𝜏𝑖𝑡,],𝑡 ′ →

(
_B𝑖,𝑡 ′,𝑞′ ∧ _#𝑖,𝑡 ′,𝑞′ ⊲𝑞′ _#𝑖,𝑡,𝑞

)))ª®¬
(4.5)

As in monolithic bounded synthesis, we use the notation 𝛿𝑖
𝑞,],𝑞′,𝑡 to denote that there exists a

transition in A𝑖 from 𝑞 to 𝑞′ with ] ∪ 𝑜 , where 𝑜 is the set of output variables of T𝑖 for every
transition with source state 𝑡 . That is, 𝛿𝑖

𝑞,],𝑞′,𝑡 is syntactic sugar for

𝛿𝑖𝑞,],𝑞′,𝑡 :=
∧
𝑜⊆𝑂𝑖

𝛿𝑖𝑞,]∪𝑜,𝑞′ ∧
∧
𝑣∈𝑂𝑖

𝑣 ∈ 𝑜 ↔ 𝑜𝑖𝑡,𝑜 .

Although T𝑖 is an augmented local strategy and thus outputs in every step a valuation of the
variables in 𝑂𝑖 ∪𝑂𝐴

𝑖 , we only consider the outputs of process 𝑝𝑖 , i.e., the variables in 𝑂𝑖 in the
definition of 𝛿𝑖

𝑞,],𝑞′,𝑡 and thus in constraint (4.5) encoding the existence of a valid annotation
of the run graph. Since condition (i) of the definition of augmented local strategies and thus
constraint (4.3) ensures that augmented local strategies only produce well-defined traces, this is
equivalent to considering the variables in 𝑂𝑖 ∪𝑂𝐴

𝑖 while yielding a smaller constraint systems.
Combining all these constraints, we obtain the following constraint system C𝒜,𝐵,𝜑 for certi-

fying synthesis with augmented local strategies and guarantee transducers:

∧
𝑝𝑖 ∈𝑃−

©«(4.1) ∧ (4.2) ∧ ©«
∧

𝑝 𝑗 ∈𝑃−\{𝑝𝑖 }
(4.4)ª®¬ ∧ (4.3) ∧ (4.5)ª®¬

Since the constraint systemC𝒜,𝐵,𝜑 explicitly encodes the search for augmented local strategies
and guarantee transducers that satisfy the requirements of certifying synthesis, it thus follows
from the soundness and completeness of certifying synthesis with augmented local strategies,
i.e., Lemma 4.9 and Lemma 4.10, that C𝒜,𝐵,𝜑 can be used to compositionally derive a solution
for the synthesis task for a distributed system.

Theorem 4.3. Let 𝒜 be an architecture, let 𝜑 be an LTL formula, and let 𝐵 be size bounds for
the strategies and certificates. There is a SAT constraint system C𝒜,𝐵,𝜑 such that (i) if C𝒜,𝐵,𝜑 is
satisfiable, then𝜑 is realizable in𝒜, and (ii) if𝜑 is realizable in𝒜 for the bounds 𝐵 and additionally
prop(𝜑𝑖) ⊆ 𝑉𝑖 holds for all 𝑝𝑖 ∈ 𝑃− and, for all 𝑝𝑖 ∈ 𝑃−, observation determinism of the strategies
of the other system processes can be ensured, then C𝒜,𝐵,𝜑 is satisfiable.

Note that we build a single constraint system for the whole certifying synthesis task. That is,
the augmented local strategies and certificates of the individual processes are not synthesized
entirely independently. This is one of the main differences between our approach and the
negotiation-based assume-guarantee synthesis algorithm [MMSZ20]. While this prevents
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separate synthesis tasks and thus parallelizability, it eliminates the need for a negotiation
between the processes. Moreover, it allows for completeness of the synthesis algorithm under
certain conditions on the architecture. Although the synthesis tasks for the individual system
processes are not fully separated, the constraint system C𝒜,𝐵,𝜑 is in most cases still significantly
smaller and easier to solve than the one of classical distributed synthesis.
In the following two sections, we present two further optimizations of certifying synthesis,

which allow, in many cases, for even smaller constraint systems and, thus, for finding solutions
for even more complex architectures and specifications. First, we reduce the number of cer-
tificates a process 𝑝𝑖 ∈ 𝑃−needs to consider by identifying processes that are relevant for 𝑝𝑖 ’s
strategy. In this way, we reduce the number of processes for which we need to add a copy of
constraint (4.4). Afterward, we permit nondeterminism in certificates, thus possibly reducing
the minimal number of states of a guarantee transducer.

4.5. Computing Relevant Processes
In all variants of certifying synthesis presented in the previous sections and, in particular, in the
SAT constraint system that encodes certifying synthesis with augmented local strategies and
guarantee transducers, we consider, for each system process 𝑝𝑖 ∈ 𝑃−, the certificates of all other
system processes when formulating 𝑝𝑖 ’s local objective. In many cases, however, it suffices only
to consider the certificates of a subset of the other system processes. Consider, for instance, the
robots from the running example presented in Section 4.1 and suppose that, in addition to 𝑟1
and 𝑟2, there is a third robot 𝑟3. The additional robot uses a different route through the factory
and thus never passes the crossing. Therefore, 𝑟3’s behavior does not influence whether or
not 𝑟1 or 𝑟2 can enter the crossing at a certain point in time. Thus, in particular, 𝑟3’s certificate
does not need to be considered in 𝑟1’s and 𝑟2’s local objective to be realizable.
Therefore, we present an optimization of certifying synthesis that reduces the number of

considered certificates in this section. For every system process 𝑝𝑖 ∈ 𝑃−, we compute a set
R𝑖 ⊆ 𝑃−\ {𝑝𝑖} of relevant processes. Certifying synthesis then only considers the certificates of
the relevant processes: let 𝜑 be an LTL formula over atomic propositions𝑉 with decomposition
⟨𝜑1, . . . , 𝜑𝑛⟩, and let S = ⟨𝑠1, . . . , 𝑠𝑛⟩, Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩, and G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be vectors of

strategies, LTL certificates, and guarantee transducers for the system processes respectively.
For every system process 𝑝 𝑗 ∈ 𝑃−, we define ΨR𝑗 :=

{
𝜓𝑖 | 𝑝𝑖 ∈ R 𝑗

}
and GR

𝑗
:=

{
T𝐺
𝑖 | 𝑝𝑖 ∈ R 𝑗

}
.

For certifying synthesis with LTL certificates, we then require that 𝑠𝑖 |= 𝜓𝑖 ∧ (ΨR𝑖 → 𝜑𝑖)
holds for every 𝑝𝑖 ∈ 𝑃−. For certifying synthesis with guarantee transducers and complete
strategies, both T𝑖 ⪯ T𝐺

𝑖 and 𝑠𝑖 |=GR
𝑖
𝜑𝑖 need to hold for every 𝑝𝑖 ∈ 𝑃−, where T𝑖 is the finite-

state transducer representing 𝑠𝑖 . For certifying synthesis with local strategies and guarantee
transducers, let Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector such that 𝑠𝑖 is a local strategy for 𝑝𝑖 ∈ 𝑃−with
respect to GR

𝑖
. We then require that, for all 𝑝𝑖 ∈ 𝑃−, we have T̂𝑖 ⪯ T𝐺

𝑖 , where T̂𝑖 is the finite-state
transducer representing 𝑠𝑖 , and, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , either comp(𝑠𝑖 , 𝛾) is finite or
comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑 holds. Similarly, for certifying synthesis with augmented local strategies
and guarantee transducers, let S̃ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector such that 𝑠𝑖 is an augmented local
strategy for 𝑝𝑖 ∈ 𝑃−with respect to GR

𝑖
. We then require that, for all 𝑝𝑖 ∈ 𝑃−, we have T̃𝑖 ⪯ T𝐺

𝑖 ,
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where T̃𝑖 is the finite-state transducer representing 𝑠𝑖 , and, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 ,
either comp(𝑠𝑖 , 𝛾) is finite or comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑 holds. Then, we say that (S,Ψ)R , (S,G)R ,
(Ŝ,G)R , and (S̃,G)R realize 𝜑 .
The construction of the sets of relevant processes needs to preserve soundness and complete-

ness of certifying synthesis. In the following, we introduce a syntactic definition of relevant
processes that does so. It excludes processes from 𝑝𝑖 ’s set of relevant processes R𝑖 whose output
variables do not occur in the subspecification 𝜑𝑖 :

Definition 4.14 (Relevant Processes).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩. Let
𝑝𝑖 ∈ 𝑃− be a system process. The relevant processes R𝑖 ⊆ 𝑃− \ {𝑝𝑖} of 𝑝𝑖 are defined by
R𝑖 = {𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖} | 𝑂 𝑗 ∩ prop(𝜑𝑖) ≠ ∅}.

Intuitively, since𝑂 𝑗 ∩ prop(𝜑𝑖) = ∅ holds for a system process 𝑝 𝑗 ∈ 𝑃−\ (R𝑖 ∪ {𝑝𝑖}), the LTL
formula 𝜑𝑖 does not restrict the valuations of 𝑝 𝑗 ’s output variables. Thus, if an infinite sequence
satisfies 𝜑𝑖 , then it does so for any valuations of the variables in 𝑂 𝑗 . Hence, 𝑝 𝑗 ’s guaranteed
behavior does not influence the satisfiability of 𝜑𝑖 and thus 𝑝𝑖 does not need to consider it.

Example 4.8. Consider the robots from the running example and, for simplicity, suppose that
the robots do not have additional objectives 𝜑add𝑖 . Hence, the objective of robot 𝑟𝑖 is given
by 𝜑𝑖 = 𝜑no_crash ∧ 𝜑cross𝑖 . Since both go1 and go2 occur in 𝜑no_crash, clearly 𝑟1 is relevant for 𝑟2
and vice versa. This meets our observation that none of the robots can realize both 𝜑no_crash
and 𝜑cross𝑖 without information about the other robot’s behavior. Suppose that there exists a
third robot 𝑟3 with output variable go3 that uses a different route through the factory and thus
never uses the crossing. Hence, we do not need to adapt 𝜑no_crash to specify that no crash occurs.
Then, go3 neither occurs in 𝜑no_crash nor in 𝜑cross𝑖 and thus 𝑟3 is not relevant for 𝑟1 or for 𝑟2. This
meets our observation that there exist strategies for 𝑟1 and 𝑟2 that realize 𝜑no_crash ∧ 𝜑cross1 and
𝜑no_crash ∧ 𝜑cross2 , respectively, without the need for taking 𝑟3’s certificate into account. △

By definition of relevant processes, we have R𝑖 ⊆ 𝑃−\ {𝑝𝑖} for every system process 𝑝𝑖 ∈ 𝑃−.
Thus, in particular, both ΨR

𝑖
⊆ Ψ𝑖 and GR𝑖 ⊆ G𝑖 hold for every 𝑝𝑖 ∈ 𝑃−. Hence, soundness of

certifying synthesis with complete strategies when only considering relevant processes, follows
from the corresponding results when considering all other system processes:

Lemma 4.11. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩, Ψ = ⟨𝜓1, . . . ,𝜓𝑛⟩, and G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be vectors of strategies, LTL

certificates, and guarantee transducers for the system processes, respectively. If either (S,Ψ)R
realizes 𝜑 or (S,G)R realizes 𝜑 , then 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Proof. For every 𝑝 𝑗 ∈ 𝑃−, we define Ψ𝑗 =
{
𝜓𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
, G𝑗 =

{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
,

ΨR
𝑗
=

{
𝜓𝑖 | 𝑝𝑖 ∈ R 𝑗

}
, and GR

𝑗
=

{
T𝐺
𝑖 | 𝑝𝑖 ∈ R 𝑗

}
. First, assume that (S,Ψ)R realizes 𝜑 . Then,

𝑠𝑖 |= 𝜓𝑖 ∧ (ΨR𝑖 → 𝜑𝑖) holds for all 𝑝𝑖 ∈ 𝑃−. By construction of the relevant processes, we
have R𝑖 ⊆ 𝑃− \ {𝑝𝑖} and thus ΨR

𝑖
⊆ Ψ𝑖 follows. Hence, since 𝑠𝑖 |= 𝜓𝑖 ∧ (ΨR𝑖 → 𝜑𝑖) holds,

𝑠𝑖 |= 𝜓𝑖 ∧ (Ψ𝑖 → 𝜑𝑖) follows with the semantics of conjunction and implication. Thus, (S,Ψ)
realizes 𝜑 as well and therefore 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 follows with Theorem 4.1.
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Second, assume that (S,G)R realizes 𝜑 . Then, we have both 𝑠𝑖 |=GR
𝑖
𝜑𝑖 and T𝑖 ⪯ T𝐺

𝑖 for all
𝑝𝑖 ∈ 𝑃−, where T𝑖 is the finite-state transducer representing 𝑠𝑖 . Hence, for all 𝛾 ∈ (2𝐼𝑖 )𝜔 and
all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , either comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 holds or we have comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VGR

𝑖
. Since

R𝑖 ⊆ 𝑃−\ {𝑝𝑖} holds, GR𝑖 ⊆ G𝑖 follows. Therefore, it follows immediately with the definition of
valid computations that, if comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VGR

𝑖
holds, then comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ ∉ VG𝑖 holds as

well. Thus, we have both 𝑠𝑖 |=G𝑖 𝜑𝑖 and T𝑖 ⪯ T𝐺
𝑖 for all 𝑝𝑖 ∈ 𝑃− and therefore (S,G) realizes 𝜑 .

Thus, 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 follows with Theorem 4.2. □

Next, we consider the variants of certifying synthesis with transition-incomplete strategies,
i.e., with local strategies and augmented local strategies. Intuitively, the fact that R𝑖 ⊆ 𝑃−\ {𝑝𝑖}
holds for every system process 𝑝𝑖 ∈ 𝑃− again allows for concluding soundness: local strategies
and augmented local strategies realize the specification for every input sequence on which
they produce infinite traces. They produce infinite traces on input sequences that match the
guaranteed behavior of the relevant processes and thus, in particular, they produce infinite
traces on all input sequences that match the guaranteed behavior of all other system processes.
Formally, however, we cannot simply use the local and augmented local strategies for certifying
synthesis when considering all other system processes again since they do not adhere to the
definition of local strategies with respect to all other guarantee transducers.
Hence, the soundness proofs for these types of certifying synthesis differ in their structure

from those for certifying synthesis with complete strategies. First, we focus on certifying
synthesis with local strategies. The main idea is to extend the local strategies with strategy
extension as described in Definition 4.9 to complete strategies. These strategies build a solution
to certifying synthesis with complete strategies, guarantee transducers, and relevant processes.
Furthermore, the computations of their parallel composition coincide with the computations
of the parallel composition of the local strategies. Thus, it follows with Lemma 4.11 that the
parallel composition of the local strategies realizes the specification. Formally:

Lemma 4.12. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be a vector of guarantee transducers for the system processes. For 𝑝 𝑗 ∈ 𝑃−,

let GR
𝑗

=
{
T𝐺
𝑖 | 𝑝𝑖 ∈ R 𝑗

}
. Let Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector such that 𝑠𝑖 is a local strategy for

𝑝𝑖 ∈ 𝑃−with respect to GR
𝑖
. If (Ŝ,Ψ)R realizes 𝜑 , then 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Proof. For 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝𝑖}

}
. Let T̂𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̂𝑖) be the finite-state

transducer representing 𝑠𝑖 . Assume that (Ŝ,Ψ)R realizes 𝜑 . Then, T̂𝑖 ⪯ T𝐺
𝑖 holds for all 𝑝𝑖 ∈ 𝑃−.

Furthermore, for all 𝑝𝑖 ∈ 𝑃− and all 𝛾 ∈ (2𝐼𝑖 )𝜔 , 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , either comp(𝑠𝑖 , 𝛾) is finite or
comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 holds. Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of complete strategies such that
𝑠𝑖 := extend(𝑠𝑖 ,T𝐺

𝑖 ) holds for all system processes 𝑝𝑖 ∈ 𝑃−, i.e., we use strategy extension as
defined in Definition 4.9 to extend each 𝑠𝑖 to a complete strategy 𝑠𝑖 . Let T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) be
the finite-state transducer 𝑠𝑖 . We claim that (S,G)R realizes 𝜑 . Let 𝑝𝑖 ∈ 𝑃−.
First, we show that T𝑖 ⪯ T𝐺

𝑖 holds. Note that the first part of the proof of Lemma 4.4, i.e.,
the part that proves transducer simulation there, does not make use of the fact that there is a
local strategy with respect to G𝑖 . Hence, since (Ŝ,Ψ)R realizes 𝜑 by assumption, we can show
similarly hat T𝑖 ⪯ T𝐺

𝑖 holds.
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Second, we show that 𝑠𝑖 |=G𝑖 𝜑𝑖 holds. Let 𝛾 ∈ (2𝐼𝑖 )𝜔 and 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 . If comp(𝑠𝑖 , 𝛾) is
infinite then comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 holds. Furthermore, by Lemma 4.3, we have comp(𝑠𝑖 , 𝛾) =
comp(𝑠𝑖 , 𝛾). Thus, comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |= 𝜑𝑖 follows. Otherwise, i.e., if comp(𝑠𝑖 , 𝛾) is finite, then we
can show similar to the proof of Lemma 4.4 that comp(𝑠𝑖 , 𝛾) ∪ 𝛾 ′ |=GR

𝑖
𝜑𝑖 holds.

Hence, (S,G)R indeed realizes 𝜑 and therefore 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 follows with Lemma 4.11. We
can show that Traces(T1 | | . . . | | T𝑛) = Traces(T̂1 | | . . . | | T̂𝑛) holds similar to the third part of the
proof of Lemma 4.4. In particular, the only difference is as follows: for 𝑝𝑖 ∈ 𝑃−, let 𝑠′𝑖 be the local
strategy with respect to G𝑖 used in the proof of Lemma 4.4. In the second case of the induction,
we use that 𝑠′𝑖 is a local strategy with respect to G𝑖 to conclude that |comp(𝑠′𝑖 , 𝜎 ∩ 𝐼𝑖) | > 𝑘 holds
from the fact that 𝜎 ∈ VG𝑖 holds. If 𝜎 ∈ VG𝑖 holds, however, then it follows immediately
from the construction of GR

𝑖
that 𝜎 ∈ VGR

𝑖
holds as well. Hence, we can also conclude that

|comp(𝑠𝑖 , 𝜎 ∩ 𝐼𝑖) | > 𝑘 holds. Since the remainder of the proof is not specific to local strategies
with respect to the guarantee transducers of all other system processes, we do not need to alter
it for local strategies with respect to the guarantee transducers of all relevant processes. Hence,
we have Traces(T1 | | . . . | | T𝑛) = Traces(T̂1 | | . . . | | T̂𝑛) and thus 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 follows. □

For certifying synthesis with augmented local strategies, recall that, by Lemma 4.8, an
augmented local strategy for a system process 𝑝𝑖 ∈ 𝑃−with respect to a set G of guarantee
transducers satisfies the same properties as a local strategy for 𝑝𝑖 with respect to G with respect
to finiteness and infiniteness of computations. Thus, as argued for the soundness of certifying
synthesis with augmented local strategies when considering the guarantee transducers of all
other system processes, it follows that the strategy local(𝑠𝑖), which is a copy of the augmented
local strategy 𝑠𝑖 with respect to G that restricts the output to 𝑂𝑖 , is a local strategy with respect
to G. Furthermore, simulation by the guarantee transducer for 𝑝𝑖 is preserved by construction
and, since augmented local strategies only produce well-defined traces, the computations of
the augmented local strategy 𝑠𝑖 and local(𝑠𝑖) agree for all input sequences. Therefore, the
computations of 𝑠1 | | . . . | | 𝑠𝑛 and local(𝑠1) | | . . . | | local(𝑠𝑛) agree as well by Proposition 4.1.
Thus, soundness of certifying synthesis with augmented local strategies and relevant processes
follows from Lemmas 4.8 and 4.12, and the above observation.

Lemma 4.13. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ be a vector of guarantee transducers for the system processes. For 𝑝 𝑗 ∈ 𝑃−,

let GR
𝑗

=
{
T𝐺
𝑖 | 𝑝𝑖 ∈ R 𝑗

}
. Let S̃ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector such that 𝑠𝑖 is an augmented local

strategy for 𝑝𝑖 ∈ 𝑃−with respect to GR
𝑖
. If (S̃,Ψ)R realizes 𝜑 , then 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Next, we consider completeness. Recall that when considering the certificates of all other
system processes in the previous sections, we showed that if 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds, then there
is a vector Ψ of LTL certificates and a vector G of guarantee transducers such that both (S,Ψ)
and (S,G) realize 𝜑 , where S = ⟨𝑠1, . . . , 𝑠𝑛⟩. When considering only the certificates of relevant
processes, however, we cannot prove this exact property: a strategy 𝑠𝑖 for system process 𝑝𝑖 ∈ 𝑃−
may make use of a certificate of a system process 𝑝 𝑗 ∈ 𝑃−\ (R𝑖 ∪ {𝑝𝑖}) outside of R𝑖 , i.e., it may
violate its specification 𝜑𝑖 on an input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 that deviates from 𝑝 𝑗 ’s guaranteed
behavior, although 𝜑𝑖 is satisfiable for this input. While 𝑠𝑖 is not required to satisfy 𝜑𝑖 on this
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input since only 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 needs to hold, a strategy for 𝑝𝑖 that may only consider the
certificates of relevant processes, in contrast, is. In this case, 𝑠𝑖 does not satisfy the requirements
of certifying synthesis when only considering relevant certificates.

However, we can show that if 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds, then there are some strategies 𝑠′1, . . . , 𝑠
′
𝑛

such that we can construct certificates that, together with S′ = ⟨𝑠′1, . . . , 𝑠′𝑛⟩, form a solution of
certifying synthesis for 𝜑 . The main idea is to construct a strategy 𝑠′𝑖 for the system processes
𝑝𝑖 ∈ 𝑃− that behaves on every input sequence as 𝑠𝑖 does on input sequences that can occur in the
parallel composition of all strategies. Since the parallel composition of all strategies realizes 𝜑
by assumption, the strategies 𝑠′𝑖 do so on all input sequences that match the relevant certificates.
Note, however, that this construction requires a slightly more restrictive assumption than
observation determinism: every process 𝑝𝑖 ∈ 𝑃−needs to be able to observe all environment
outputs or, if it does not, it needs to be able to observe all environment outputs that occur in
its specification and it may not have any relevant processes. First, we show completeness of
certifying synthesis with relevant processes for full strategies and guarantee transducers:

Lemma 4.14. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let 𝑠1, . . . , 𝑠𝑛 be strategies for the system processes represented by finite-state transducers T1, . . . ,T𝑛 .
Suppose that for all 𝑝𝑖 ∈ 𝑃− either (i) 𝑂env ⊆ 𝐼𝑖 holds, or (ii) we have R𝑖 = ∅ and 𝑂− ∩ 𝐼𝑖 = ∅. If
𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds, then there exist vectors S′, Ψ′ of strategies and LTL certificates for the
system processes such that (S′,Ψ′)R realizes 𝜑 .

Proof. Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩. For 𝑝 𝑗 ∈ 𝑃−, let T𝑗 = (𝑇𝑗 ,𝑇𝑗,0, 𝜏 𝑗 , ℓ𝑗 ) and G𝑗 =
{
T𝐺
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
.

Assume that 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds and let T = (𝑇,𝑇0, 𝜏, ℓ) be the transducer representing
𝑠1 | | . . . | | 𝑠𝑛 , i.e., we have T = T1 | | . . . | | T𝑛 . Then, by Theorem 4.1, there exists a vector G of
guarantee transducers for the system processes such that (S,G) realizes 𝜑 .
We construct strategies 𝑠′1, . . . , 𝑠′𝑛 represented by transducers T ′𝑖 = (𝑇 ′𝑖 , 𝑡 ′𝑖,0, 𝜏 ′𝑖 , ℓ ′𝑖 ) as follows:

for each system process 𝑝𝑖 ∈ 𝑃−with R𝑖 = ∅ and 𝑂− ∩ 𝐼𝑖 = ∅, let 𝑠′𝑖 be a copy of 𝑠𝑖 , i.e., the
transducer T ′𝑖 representing 𝑠′𝑖 is given by T ′𝑖 := (𝑇𝑖 ,𝑇𝑖,0, 𝜏, ℓ). For each system process 𝑝𝑖 ∈ 𝑃−
with either R𝑖 ≠ ∅ or 𝑂− ∩ 𝐼𝑖 ≠ ∅, let T ′𝑖 = (𝑇 ′𝑖 , 𝑡 ′𝑖,0, 𝜏 ′0, ℓ ′) be the transducer defined by

• 𝑇 ′𝑖 = 𝑇 ,

• 𝑇 ′𝑖,0 = 𝑇0,

• (𝑡, ], 𝑡 ′) ∈ 𝜏 ′𝑖 if, and only if, (𝑡, ] ∩𝑂env, 𝑡
′) ∈ 𝜏 holds, and

• (𝑡, 𝑜) ∈ ℓ ′𝑖 if, and only if, there exists some 𝑜 ′ ∈ 2𝑂− with 𝑜 ∩𝑂𝑖 = 𝑜 and (𝑡, 𝑜 ′) ∈ ℓ .

Note that since either R𝑖 ≠ ∅ or 𝑂− ∩ 𝐼𝑖 ≠ ∅ holds, we have 𝑂env ⊆ 𝐼𝑖 by assumption. Thus,
] ∩𝑂env defines the valuation of all environment outputs and therefore 𝜏 ′𝑖 is well-defined. Let
S′ := ⟨𝑠′1, . . . , 𝑠′𝑛⟩. Furthermore, for each 𝑝𝑖 ∈ 𝑃−, let T𝐺

𝑖

′ be the guarantee transducer that is a
copy of T ′𝑖 which restricts the output to the guarantee outputs of 𝑝𝑖 . Let G′ := ⟨T𝐺

1
′
, . . . ,T𝐺

𝑛

′⟩
and, for 𝑝 𝑗 ∈ 𝑃−, letG′R, 𝑗 :=

{
T𝐺
𝑖

′ | 𝑝𝑖 ∈ R 𝑗

}
. In the following, we show that (S′,G′)R realizes𝜑 ,

i.e., that both 𝑠′𝑖 |=G′R,𝑖 𝜑𝑖 and T
′

𝑖 ⪯ T𝐺
𝑖

′ hold for all 𝑝𝑖 ∈ 𝑃−. Let 𝑝𝑖 ∈ 𝑃−. It follows immediately
from the construction of T𝐺

𝑖

′ that T ′𝑖 ⪯ T𝐺
𝑖

′ holds. Next, let 𝛾 ∈ (2𝐼𝑖 )𝜔 , let 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , and
let 𝜎 := comp(𝑠′𝑖 , 𝛾) ∪ 𝛾 ′. If 𝜎 ∈ Traces(T ) holds, then, since 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 by assumption, it
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follows from the construction of T that we have 𝜎 |= 𝜑 . Thus, by definition of specification
decomposition and by the semantics of conjunction, 𝜎 |= 𝜑𝑖 holds as well. Otherwise, we have
𝜎 ∉ Traces(T ). We distinguish two cases:

First, suppose that R𝑖 = ∅ and 𝑂− ∩ 𝐼𝑖 = ∅ hold. Then, 𝑠′𝑖 is a copy of 𝑠𝑖 by construction.
Let 𝜎 ′ ∈ Traces(T ) be the trace of T such that 𝜎 ′ ∩𝑂env = 𝜎 ∩𝑂env holds. Since 𝑂− ∩ 𝐼𝑖 = ∅
holds by assumption, 𝑝𝑖 cannot react to the outputs of any other system process and thus, in
particular, 𝜎 ′ ∩ 𝐼𝑖 = 𝜎 ∩ 𝐼𝑖 holds as well. Hence, 𝜎 ∩𝑂𝑖 = 𝜎 ′ ∩𝑂𝑖 follows with the definition of
computations. Furthermore, since R𝑖 = ∅ holds, we have prop(𝜑𝑖) ∩𝑂 𝑗 = ∅ for all 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}
and thus prop(𝜑𝑖) ⊆ 𝑂env ∪ 𝑉𝑖 holds. Since 𝜎 and 𝜎 ′ agree on all variables in 𝑂env , in 𝐼𝑖 , and
in 𝑂𝑖 as shown above, we thus have 𝜎 ∩ prop(𝜑𝑖) = 𝜎 ′ ∩ prop(𝜑𝑖). By construction, we have
𝜎 ′ ∈ Traces(T ) and therefore, since 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds by assumption, we have 𝜎 ′ |= 𝜑 and
thus 𝜎 ′ |= 𝜑𝑖 . By definition, the satisfaction of 𝜑𝑖 is only affected by variables in prop(𝜑𝑖). Thus,
𝜎 |= 𝜑𝑖 follows and hence 𝜎 |= Ψ′R,𝑖 → 𝜑𝑖 holds by the semantics of implication as well.

Second, suppose that either R𝑖 ≠ ∅ or 𝑂− ∩ 𝐼𝑖 ≠ ∅ holds. Then, since 𝜎 ∩𝑉𝑖 ∈ Traces(T ′𝑖 )
by definition of 𝜎 , there exists, by construction of T ′𝑖 , some trace 𝜎 ′ ∈ Traces(T ) such that
𝜎 ∩𝑂env = 𝜎 ′ ∩𝑂env and 𝜎 ∩𝑂𝑖 = 𝜎 ′ ∩𝑂𝑖 hold. Furthermore, since 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds by
assumption, 𝜎 ′ |= 𝜑 and thus, in particular, 𝜎 ′ |= 𝜑𝑖 follows. The satisfaction of𝜑𝑖 is only affected
by variables occurring in 𝜑𝑖 . Hence, if 𝜎 ∩ prop(𝜑𝑖) = 𝜎 ′ ∩ prop(𝜑𝑖) holds, then we have 𝜎 |= 𝜑𝑖
as well and thus 𝜎 |=G′R,𝑖 𝜑𝑖 follows. Otherwise, 𝜎 and 𝜎 ′ disagree on some variable in prop(𝜑𝑖).
Since both 𝜎 ∩ 𝑂env = 𝜎 ′ ∩ 𝑂env and 𝜎 ∩ 𝑂𝑖 = 𝜎 ′ ∩ 𝑂𝑖 hold, 𝜎 and 𝜎 ′ disagree on a variable
𝑣 ∈ prop(𝜑𝑖)∩

⋃
𝑝 𝑗 ∈𝑃−\{𝑝𝑖 } 𝑂 𝑗 . By definition of relevant processes, we have𝑂 𝑗 ∩prop(𝜑𝑖) = ∅ for

all 𝑝 𝑗 ∈ 𝑃−\ (R𝑖 ∪{𝑝𝑖}) and thus 𝑣 ∈ prop(𝜑𝑖) ∩
⋃

𝑝 𝑗 ∈R𝑖 𝑂 𝑗 follows. Let 𝑝 𝑗 ∈ R𝑖 such that 𝑣 ∈ 𝑂 𝑗

holds. Then, in particular, 𝜎 ∩𝑂 𝑗 ≠ 𝜎 ′ ∩𝑂 𝑗 holds. Since 𝜎 ′ ∈ Traces(T ) holds by construction,
we have 𝜎 ′ ∩𝑉𝑗 ∈ Traces(T𝑗 ) by Proposition 4.1 and, in particular, 𝜎 ′ ∩𝑉𝑗 ∈ Traces(T𝑗 , 𝜎 ′ ∩ 𝐼 𝑗 ).
Since T𝑗 is deterministic, 𝜎 ∩𝑉𝑗 ∉ Traces(T𝑗 , 𝜎 ′ ∩ 𝐼 𝑗 ) follows. If we have R 𝑗 = ∅ and𝑂− ∩ 𝐼 𝑗 = ∅,
then, 𝑝 𝑗 ’s behavior is only affected by environment outputs. Since 𝜎 ∩𝑂env = 𝜎 ′ ∩𝑂env holds as
shown above, thus 𝜎 ∩𝑉𝑗 ∉ Traces(T𝑗 , 𝜎 ∩ 𝐼 𝑗 ) follows. By construction of T ′𝑗 and T𝐺

𝑗

′, we then
also have 𝜎 ∩𝑉𝑗 ∉ Traces(T𝐺

𝑗

′
, 𝜎 ∩ 𝐼 𝑗 ) and hence 𝜎 ∉ VG′R, 𝑗 follows since we have 𝑝 𝑗 ∈ R𝑖 by

construction. Hence, 𝜎 |=G′R, 𝑗 𝜑𝑖 holds. Otherwise, suppose that 𝜎∩𝑉𝑗 ∈ Traces(T ′𝑗 , 𝜎∩𝐼 𝑗 ) holds.
Then, by construction of T ′𝑗 , there exists some 𝜎 ′′ ∈ Traces(T ) such that 𝜎 ′ ∩𝑂env = 𝜎 ′′ ∩𝑂env
as well as 𝜎 ′∩𝑂 𝑗 = 𝜎 ′′∩𝑂 𝑗 holds. Since 𝜎∩𝑂env = 𝜎 ′∩𝑂env holds, we have 𝜎∩𝑂env = 𝜎 ′′∩𝑂env
as well. Since T is deterministic as shown above and since its set of input variables is given
by 𝑂env by construction, 𝜎 = 𝜎 ′′ follows. But then 𝜎 ∩𝑂 𝑗 = 𝜎 ′ ∩𝑂 𝑗 holds, contradicting that 𝜎
and 𝜎 ′ differ on some output variable of 𝑝 𝑗 . Hence, 𝜎 ∩ 𝑉𝑗 ∉ Traces(T ′𝑗 , 𝜎 ∩ 𝐼 𝑗 ) holds. Thus,
since T ′𝑗 is deterministic, we have 𝜎 ∩ 𝑉𝑗 ≠ comp(T ′𝑗 , 𝜎 ∩ 𝐼 𝑗 ). By construction of T𝐺

𝑗

′, thus
𝜎 ∩𝑉𝑗 ≠ comp(T𝐺

𝑗

′
, 𝜎 ∩ 𝐼 𝑗 ) holds and hence 𝜎 ∩𝑂 𝑗 ≠ comp(T𝐺

𝑗

′
, 𝜎 ∩ 𝐼 𝑗 ) ∩𝑂 𝑗 holds as well.

Therefore, 𝜎 ∉ VG′R,𝑖 and thus 𝜎 |=G′R,𝑖 𝜑𝑖 follows. □

Recall that, as shown in the proof of Lemma 4.1, a guarantee transducer T𝐺
𝑖 for system process

𝑝𝑖 ∈ 𝑃− can be translated into an LTL certificate𝜓𝑖 . Analogous to the proof of Lemma 4.1, we
can conclude that whenever a strategy 𝑠𝑖 for process 𝑝𝑖 ∈ 𝑃− realizes a specification 𝜑𝑖 with
respect to the set GR

𝑖
of guarantee transducers of the relevant processes of 𝑝𝑖 , then 𝑠𝑖 realizes
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the formula ΨR
𝑖
→ 𝜑𝑖 as well, where ΨR

𝑖
is the set of LTL certificates of the of the relevant

processes of 𝑝𝑖 constructed from the guarantee transducers. Hence, together with Lemma 4.14,
it follows that certifying synthesis is also conditionally complete for LTL certificates when only
considering the certificates of relevant processes:

Lemma 4.15. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let 𝑠1, . . . , 𝑠𝑛 be strategies for the system processes represented by finite-state transducers T1, . . . ,T𝑛 .
Suppose that for all 𝑝𝑖 ∈ 𝑃−, either (i) 𝑂env ⊆ 𝐼𝑖 holds, or (ii) we have R𝑖 = ∅ and 𝑂− ∩ 𝐼𝑖 = ∅.
If 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds, then there exist vectors S′, Ψ of strategies and LTL certificates for the
system processes such that (S′,Ψ)R realizes 𝜑 .

Next, recall that we can restrict complete strategies to local strategies with strategy restriction
as defined in Definition 4.10. Thus, in particular, we can restrict the full strategy 𝑠𝑖 for a
system process 𝑝𝑖 ∈ 𝑃− to the set GR

𝑖
of guarantee transducers of the relevant processes

of 𝑝𝑖 . By Lemma 4.5, the resulting strategy 𝑠𝑖 := restrict(𝑠𝑖 ,GR𝑖 ) is indeed a local strategy with
respect to GR

𝑖
. Furthermore, by construction, the transducer representing 𝑠𝑖 is simulated by

the guarantee transducer for 𝑝𝑖 as long as the transducer representing the full strategy 𝑠𝑖 is.
Analogous to the proof of Lemma 4.7, we can thus show that if the full strategy 𝑠𝑖 satisfies 𝜑
with respect to GR

𝑖
and if we have prop(𝜑𝑖) ⊆ 𝑉𝑖 holds, then 𝑠𝑖 realizes 𝜑𝑖 on all inputs on

which it produces infinite computations. Therefore, together with Lemma 4.14, it follows that
certifying synthesis is also conditionally complete for local strategies when only considering
the certificates of relevant processes:

Lemma 4.16. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let 𝑠1, . . . , 𝑠𝑛 be strategies for the system processes represented by finite-state transducers T1, . . . ,T𝑛 .
Suppose that for all 𝑝𝑖 ∈ 𝑃−, either (i) 𝑂env ⊆ 𝐼𝑖 holds, or (ii) we have R𝑖 = ∅ and 𝑂− ∩ 𝐼𝑖 = ∅.
If we have 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 and if prop(𝜑𝑖) ⊆ 𝑉𝑖 holds for all 𝑝𝑖 ∈ 𝑃−, then there exists a vector
G = ⟨T𝐺

1 , . . . ,T𝐺
𝑚 ⟩ of guarantee transducers and a vector Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ such that 𝑠𝑖 is a local

strategy for 𝑝𝑖 ∈ 𝑃− and GR𝑖 , where GR
𝑖

=

{
T𝐺
𝑗 | 𝑝 𝑗 ∈ R𝑖

}
, and such that (Ŝ,G)R realizes 𝜑 .

Lastly, recall that if observation determinism as formalized in Definition 4.13 is ensured, then
we can build an augmented local strategy from a complete strategy similar to strategy restriction,
yet, adding the associated outputs to the labeling function. In particular, similar to above, we
can use restriction to the set GR

𝑖
of guarantee transducers of the relevant processes of 𝑝𝑖 .

Similar to the proof of Lemma 4.10, it follows that the resulting transducers indeed represent
augmented local strategies. Furthermore, when restricting the transducers to the outputs of
the corresponding process, we obtain transducers that are identical to those constructed with
strategy restriction. Since we used these transducers for the proof of Lemma 4.16, they form a
solution of certifying synthesis with local strategies and relevant processes. Hence, analogous
as in the proof of Lemma 4.10, it follows that the augmented local strategies form a solution
of certifying synthesis with augmented local strategies and relevant processes as well. Thus,
conditional completeness follows. Note here that observation determinism is already ensured
by the requirement that 𝑂env ⊆ 𝐼𝑖 holds. Therefore we do not need to state it separately for
such system processes 𝑝𝑖 ∈ 𝑃−.
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Lemma 4.17. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let 𝑠1, . . . , 𝑠𝑛 be strategies for the system processes represented by finite-state transducers T1, . . . ,T𝑛 .
Suppose that for all 𝑝𝑖 ∈ 𝑃−, either (i) 𝑂env ⊆ 𝐼𝑖 holds, or (ii)

{
T𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
is observation-

deterministic for 𝑝𝑖 and we have R𝑖 = ∅ and 𝑂− ∩ 𝐼𝑖 = ∅. If 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds and
if we have prop(𝜑𝑖) ⊆ 𝑉𝑖 for all 𝑝𝑖 ∈ 𝑃−, then there exist vectors G = ⟨T𝐺

1 , . . . ,T𝐺
𝑚 ⟩ and

S̃ = ⟨𝑠1, . . . , 𝑠𝑛⟩ of guarantee transducers such that 𝑠𝑖 is a local strategy for 𝑝𝑖 ∈ 𝑃− and GR
𝑖
,

where GR
𝑖

=

{
T𝐺
𝑗 | 𝑝 𝑗 ∈ R𝑖

}
, and such that (S̃,G)R realizes 𝜑 .

Therefore, it is sound and, under certain conditions, complete to consider only the certificates
of relevant processes instead of the certificates of all other system processes in all variants of
certifying synthesis that we introduced in the previous sections. Considering the certificates of
only relevant processes can easily be integrated into the SAT constraint system from Section 4.4.4
that encodes the search for augmented local strategies and guarantee transducers satisfying the
conditions of certifying synthesis. The only difference is that we do not require, for each 𝑝𝑖 ∈ 𝑃−,
the existence of relations 𝑆𝑖𝑗 establishing that the strategy is an augmented local strategy for all
other system processes 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖} but only for the relevant processes 𝑝 𝑗 ∈ R𝑖 . In particular,
we thus do not add

∧
𝑝 𝑗 ∈𝑃−\{𝑝𝑖 } (4.4) for 𝑝𝑖 to the SAT constraint system but

∧
𝑝 𝑗 ∈R𝑖 (4.4). This

results in the following overall constraint system:∧
𝑝𝑖 ∈𝑃−

©«(4.1) ∧ (4.2) ∧ ©«
∧

𝑝 𝑗 ∈R𝑖
(4.4)ª®¬ ∧ (4.3) ∧ (4.5)ª®¬

Correctness of the SAT constraint system under the stated conditions then follows immedi-
ately from the soundness and completeness results for certifying synthesis with augmented
local strategies and relevant processes presented in this section, i.e., from Lemmas 4.13 and 4.17,
as well as from Theorem 4.3. Note here that soundness of the SAT constraint system holds
unconditionally, i.e., if the constraint system is satisfiable, then its solution defines augmented
local strategies whose parallel composition realizes the given specification. Unconditional
completeness, however, cannot be guaranteed: note that, as outlined in Section 4.4.1, moving
from complete strategies with local satisfaction to local strategies makes the requirement that,
for each process 𝑝𝑖 ∈ 𝑃−, all variables that are contained in 𝑝𝑖 ’s subspecification are observable
by 𝑝𝑖 . We experienced, however, that this condition is often satisfied.

Furthermore, completeness of certifying synthesis with augmented local strategies and rele-
vant processes and thus completeness of the SAT constraint system requires that every system
process 𝑝𝑖 ∈ 𝑃− can either observe all environment outputs or does not have relevant pro-
cesses. This ensures that the guarantee transducers of other system processes are completely
deterministic also from 𝑝𝑖 ’s point of view, or it is not necessary to consider other processes’
guarantees. While this limits the completeness result of the SAT constraint system to certain
architectures and specifications, we experienced again that this condition is often satisfied.
For instance, this is the case for all benchmarks considered in our experimental evaluation in
Section 4.7. Furthermore, we did not encounter a benchmark so far, where certifying synthesis
with relevant processes failed while classical certifying synthesis succeeded, even if the com-
pleteness condition on the architecture is violated. Hence, since the condition is only necessary
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𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
⊤ | {𝑎} ⊤ | {𝑎} ⊤ | ∅ ⊤ | {𝑎}

⊤ | {𝑎}

(a) Strategy 𝑠1.

𝑡1

⊤ | {𝑏}

(b) Strategy 𝑠2.

Figure 4.5.: Finite-state transducers representing the strategies 𝑠1 and 𝑠2 for the two system
processes 𝑝1 and 𝑝2 from Example 4.9.

for completeness – soundness of certifying synthesis with relevant processes is guaranteed
even if the condition is violated – trying to synthesize a solution with relevant processes only
and only considering all other system processes if certifying synthesis with relevant processes
fails still guarantees a correct solution.

4.6. Nondeterminism in Guarantee Transducers
In the previous sections, we focused on either LTL certificates or certificates represented by
deterministic guarantee transducers. As outlined in Section 4.3.1, the former are not suitable for
practical synthesis when aiming for integrating certifying synthesis into existing frameworks
for constraint-based bounded synthesis. The latter, in contrast, can be integrated into such
frameworks as presented in Section 4.4. While certifying synthesis with guarantee transducers
is sound and complete as well (see Theorem 4.2), requiring the guarantee transducers to be
deterministic can influence the conciseness of certificates.

Example 4.9. Consider a system with two system processes 𝑝1 and 𝑝2 with 𝑂1 = 𝐼2 = {𝑎}
and 𝑂2 = 𝐼1 = {𝑏}. Let 𝜑 = 𝑎 ↔ 𝑏 ∧ 𝑎 ∧ 𝑎 ∧ 𝑎 ∧ ¬𝑎 ∧ 𝑎. Then,
the decomposition of 𝜑 is given by ⟨𝜑1, 𝜑2⟩ with 𝜑1 = 𝜑 and 𝜑2 = 𝑎 ↔ 𝑏. To realize its
specification 𝜑1, process 𝑝1 only needs information about 𝑝2’s behavior in the very first time
step. The behavior in all other time steps is irrelevant. Similarly, 𝑝2 only needs information
about 𝑝1’s behavior in the very first time step. Suppose that both processes guarantee to set
their respective output variables to true in the first time step. Then an LTL certificate for 𝑝1
could be given by𝜓1 = 𝑎 and an LTL certificate for 𝑝2 by𝜓2 = 𝑏. These certificates only restrict
the processes’ behavior in the very first time step and is thus, in some sense, nondeterministic
for the other time steps. Nevertheless, a strategy 𝑠2 for 𝑝2 that sets 𝑏 to true in the very first
time step realizes both𝜓1 → 𝜑2 and𝜓2. A strategy 𝑠1 for 𝑝1 that sets 𝑎 to true in the first time
step and additionally ensures that the remaining parts of 𝜑1 are satisfied realizes both𝜓2 → 𝜑1
and𝜓1. Examples of transducers representing such strategies are depicted in Figure 4.5.

When modeling certificates with deterministic finite-state transducers, however, the guaran-
tee transducers need to uniquely determine the guaranteed behavior of the processes not only
in the very first step but in all steps. Since guarantee transducer T𝐺

𝑖 for process 𝑝𝑖 is required
to simulate the transducer representing strategy 𝑠𝑖 , it needs to explicitly spell out the behavior
of 𝑠1 regarding 𝑎 in all time steps, resulting in a much less concise certificate. △
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In this section, we, therefore, extend the notion of guarantee transducers with nondeter-
minism and adapt the notion of valid computation to nondeterministic guarantee transducers.
Afterward, we define certifying synthesis with nondeterministic guarantee transducers and
establish soundness and completeness. Lastly, we present a SAT constraint system for syn-
thesizing augmented local strategies and nondeterministic guarantee transducers that satisfy
the requirements of certifying synthesis. As part of the experimental evaluation of certifying
synthesis presented in Section 4.7, we investigate the trade-off between having more concise
nondeterministic certificates and the larger search space resulting from permitting multiple
transitions and labels for the same state and input.

4.6.1. Synthesizing Nondeterministic Guarantee Transducers
We model the certificate of a system process 𝑝𝑖 ∈ 𝑃−with a complete and possibly nondeter-
ministic finite-state Moore transducer T G

𝑖 , called nondeterministic guarantee transducer (NGT),
over input variables 𝐼𝑖 and guarantee output variables 𝑂𝐺

𝑖 . Since a nondeterministic guarantee
transducer is complete, it produces at least one trace for every infinite input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 ,
i.e., we have |Traces(T G

𝑖 , 𝛾) | ≥ 1. The concept of valid computations and valid histories for
nondeterministic guarantee transducers is similar to the respective notion for deterministic
guarantee transducers introduced in Section 4.3:

Definition 4.15 (Valid Computation and Valid History for NGTs).
Let P ⊆ 𝑃− be a finite set of system processes. Let G be a finite set of nondeterministic
guarantee transducers, one for each of the processes in P. An infinite sequence 𝜎 ∈ (2𝑉 )𝜔 is
called valid computation for G if, and only if 𝜎 ∩𝑂𝐺

𝑖 ∈ Traces(T G
𝑖 , 𝜎 ∩ 𝐼𝑖) ∩𝑂𝐺

𝑖 holds for all
T G
𝑖 ∈ G. The set of valid computations for G is denoted withVG . A finite prefix 𝜌 ∈ (2𝑉 )∗
of length 𝑘 ≥ 0 of some valid computation 𝜎 ∈ VG is called valid history of length 𝑘 for G.
The set of all valid histories of length 𝑘 for G is denoted withH𝑘

G .

The notions of local satisfaction and local realization (see Definition 4.4) then carry over
immediately when utilizing valid computations for nondeterministic guarantee transducers
instead of valid computations for deterministic ones. We can thus define certifying synthesis
with certificates represented by nondeterministic guarantee transducers similar to certifying
synthesis with deterministic guarantee transducers (see Definition 4.6). The only difference is
that we derive nondeterministic guarantee transducers instead of deterministic ones.

Example 4.10. Reconsider the system and the specification from Example 4.9. A deterministic
guarantee transducer T𝐺

1 for process 𝑝1 is shown in Figure 4.6a, a nondeterministic one T𝐺
𝑛,1 in

Figure 4.6b. Clearly, T𝐺
𝑛,1 is much more concise than T𝐺

1 .
The set of traces of T𝐺

𝑛,1 is given by
{
𝜌 ∈ (2{𝑎,𝑏})𝜔 | 𝜌0 ∩ {𝑎} = {𝑎}

}
, i.e., by the set of all

sequences where 𝑎 is set to true in the very first time step. Therefore, it follows immediately
that strategy 𝑠2 for process 𝑝2 depicted in Figure 4.5b satisfies 𝜑2 = 𝑎 ↔ 𝑏 with respect to T𝐺

𝑛,1,
i.e., we have 𝑠2 |={T𝐺

𝑛,1}
𝜑2. Furthermore, the relation 𝑅 = {(𝑡1, 𝑡1), (𝑡2, 𝑡2), (𝑡3, 𝑡2), (𝑡4, 𝑡2), (𝑡5, 𝑡2)}

establishes that T1 ⪯ T𝐺
𝑛,1 holds, where T1 is the finite-state transducer representing strategy 𝑠1
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𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
⊤ | {𝑎} ⊤ | {𝑎} ⊤ | ∅ ⊤ | {𝑎}

⊤ | {𝑎}

(a) GT T𝐺
1 for 𝑝1

𝑡1 𝑡2
⊤ | {𝑎}

⊤ | {𝑎} ∨ ∅

(b) NGT T𝐺
𝑛,1 for 𝑝1.

Figure 4.6.: Deterministic and nondeterministic guarantee transducers T𝐺
1 and T𝐺

𝑛,1 for process 𝑝1
from Examples 4.9 and 4.10.

depicted in Figure 4.5a. A (deterministic) guarantee transducer T𝐺
2 for 𝑝2 that is a copy of the

transducer T2 representing 𝑠2 clearly ensures that both T2 ⪯ T𝐺
2 and 𝑠1 |={T𝐺2 } 𝜑2 hold. Hence,

the strategies 𝑠1 and 𝑠2 from Figure 4.5 as well as the guarantee transducer T𝐺
2 described above

and the nondeterministic guarantee transducer depicted in Figure 4.6b constitute a solution of
certifying synthesis with nondeterministic guarantee transducers. △

A valid computation for nondeterministic guarantee transducers must match some trace of
every guarantee transducer of the other system processes. When requiring that a strategy 𝑠𝑖
locally realizes a specification 𝜑𝑖 , we thus require that 𝑠𝑖 satisfies 𝜑𝑖 on every input sequence that
can match the behavior of the guarantee transducers in the sense that it matches some of the
nondeterministic choices of the certificates. Employing nondeterministic guarantee transducers
instead of deterministic ones in certifying synthesis thus, intuitively, makes local realization
harder since a strategy needs to realize the specification irrespective of the actual nondeter-
ministic choices of the certificates. Hence, the strategy might need to realize the specification,
although it does not know to which concrete behavior the other processes commit.

Soundness of certifying synthesis with complete strategies and nondeterministic guarantee
transducers thus follows from this observation since, intuitively, a solution (S,G) of certify-
ing synthesis with nondeterministic guarantee transducers still ensures that every strategy 𝑠𝑖
from S realizes the specification 𝜑𝑖 on all sequences that can occur in the interplay of all pro-
cesses. Furthermore, since every guarantee transducer is, by definition, also a nondeterministic
guarantee transducer, completeness follows from Theorem 4.2. Formally:

Theorem4.4. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of strategies for the system processes. Then, there exists a vector G
of nondeterministic guarantee transducers for the system processes such that (S,G) realizes 𝜑 if,
and only if, 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds.

Proof. Let T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) be the deterministic and complete finite-state transducer repre-
senting strategy 𝑠𝑖 . Let G = ⟨T G

1 , . . . ,T G
𝑛 ⟩ and, for 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =

{
T G
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
.

First, observe that, by definition, every guarantee transducer is a nondeterministic guaran-
tee transducer as well. Thus, completeness of certifying synthesis with nondeterministic
guarantee transducers follows immediately from Theorem 4.2. Next, suppose that there ex-
ists a vector G = ⟨T G

1 , . . . ,T G
𝑛 ⟩ of nondeterministic guarantee transducers for the system

processes such that (S,G) realizes 𝜑 . Then, for each 𝑝𝑖 ∈ 𝑃−, we have both 𝑠𝑖 |=G𝑖 𝜑𝑖 and
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T𝑖 ⪯ T G
𝑖 . Let 𝜎 ∈ Traces(T1 | | . . . | | T𝑛). Then, by Proposition 4.1, we have 𝜎 ∩𝑉𝑖 ∈ Traces(T𝑖)

for all 𝑝𝑖 ∈ 𝑃−. Hence, since 𝑠𝑖 |=G𝑖 𝜑𝑖 holds by assumption, for all 𝛾 ′ ∈ (2𝑉 \𝑉𝑖 )𝜔 , either
(𝜎 ∩𝑉𝑖) ∪ 𝛾 ′ |= 𝜑𝑖 or (𝜎 ∩𝑉𝑖) ∪ 𝛾 ′ ∉ VG𝑖 holds. Thus, in particular, for every 𝑝𝑖 ∈ 𝑃−, we have
either 𝜎 |= 𝜑𝑖 or 𝜎 ∉ VG𝑖 . If 𝜎 ∉ VG𝑖 holds for some 𝑝𝑖 ∈ 𝑃−, however, then there exists some
𝑝 𝑗 ∈ 𝑃−\ {𝑝 𝑗 } such that 𝜎 ∩𝑂 𝑗 ∉ Traces(T G

𝑖 , 𝜎 ∩ 𝐼 𝑗 ) ∩𝑂 𝑗 holds. As shown above, however, we
have 𝜎∩𝑉𝑗 ∈ Traces(T𝑗 ). Furthermore, since (S,G) realizes 𝜑 by assumption, we have T𝑗 ⪯ T G

𝑗 .
Hence, 𝜎 ∩𝑉𝑗 ∈ Traces(G𝑗 ) follows with Proposition 4.1. By definition of traces, in particular
𝜎 ∩ 𝑉𝑗 ∈ Traces(G𝑗 , 𝜎 ∩ 𝐼 𝑗 ) holds and therefore we have 𝜎 ∩ 𝑂 𝑗 ∈ Traces(T G

𝑖 , 𝜎 ∩ 𝐼 𝑗 ) ∩ 𝑂 𝑗 ;
contradicting that 𝜎 ∉ VG𝑖 holds due to 𝑝 𝑗 . Since we chose both 𝑝𝑖 ∈ 𝑃− and 𝑝 𝑗 ∈ 𝑃− \ {𝑝𝑖}
arbitrarily, it thus follows that 𝜎 ∈ VG𝑖 holds for all 𝑝𝑖 ∈ 𝑃−. Hence, it follows that 𝜎 |= 𝜑𝑖
holds for all 𝑝𝑖 ∈ 𝑃− and thus we have 𝜎 |= ∧

𝑝𝑖 ∈𝑃−𝜑𝑖 . Therefore, by definition of specification
decomposition and by the semantics of conjunction, 𝜎 |= 𝜑 holds. □

To utilize existing bounded synthesis algorithms and frameworks, we introduced certifying
synthesis with local strategies in Section 4.4. Since the definition of local strategies (see Defini-
tion 4.7) is based on valid histories and valid computations, it carries over to nondeterministic
guarantees immediately when utilizing valid histories and valid computations for nondeter-
ministic guarantee transducers instead of the versions for deterministic ones. Hence, we can
define certifying synthesis with local strategies and certificates represented by nondeterministic
guarantee transducers similar to certifying synthesis with local strategies deterministic guar-
antee transducers (see Definition 4.8). The only difference is that we derive nondeterministic
guarantee transducers instead of deterministic ones.

Similar to the case with deterministic guarantee transducers, we can restrict complete strate-
gies to local ones, and extend local strategies to full ones. Note that strategy restriction as
defined in Definition 4.10 can already handle nondeterminism in guarantee transducers: the
restricted strategy keeps track of the guarantee transducers of the other system processes in the
second component of its state. For certain architectures, namely those where the current system
process 𝑝𝑖 ∈ 𝑃− cannot observe all input variables of the considered other processes in P, the
guaranteed behavior of the processes in P is already nondeterministic from 𝑝𝑖 ’s point of view,
although we only considered deterministic guarantee transducers in the previous parts of this
chapter. Therefore, the definition of strategy restriction already uses sets of states in which the
guarantee transducers can be in, and thus permitting actual nondeterminism in the guarantee
transducers does not yield the need for change in the construction. Furthermore, the proofs
of Lemmas 4.5 and 4.6 do not rely on the fact that guarantee transducers are deterministic.
Thus, the results carry over to certifying synthesis with local strategies and nondeterministic
guarantee transducers. Hence, completeness of certifying synthesis with local strategies follows
exactly as for deterministic guarantee transducers.

Lemma 4.18. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let S = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of strategies for the system processes. If prop(𝜑𝑖) ⊆ 𝑉𝑖 holds for all
𝑝𝑖 ∈ 𝑃−and if 𝑠1 | | . . . | |𝑠𝑛 |= 𝜑 holds, then there exist vectorsG = ⟨T G

1 , . . . ,T G
𝑛 ⟩ and Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩

of nondeterministic guarantee transducers and local strategies such that 𝑠𝑖 is a local strategy for
𝑝𝑖 ∈ 𝑃−with respect to G𝑖 , where G𝑖 =

{
T G
𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
, and such that (Ŝ,G) realizes 𝜑 .
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However, strategy extension as defined in Definition 4.9, utilizes the fact that guarantee
transducers are deterministic. The extended strategy for 𝑝𝑖 ∈ 𝑃− keeps track of both 𝑝𝑖 ’s local
strategy and 𝑝𝑖 ’s guarantee transducer. Since 𝑝𝑖 can clearly always observe all of the inputs that
are relevant for 𝑝𝑖 ’s guarantee transducer, the construction does not take care of nondeterminism
from 𝑝𝑖 ’s point of view such as strategy restriction does. Thus, when using the same construction
for strategy extension when considering nondeterministic guarantee transducers as when
considering deterministic ones, the resulting transducer can be nondeterministic. Hence, since
system strategies are required to be deterministic, it then does not represent a complete strategy.
Note, however, that using the behavior of 𝑝𝑖 ’s guarantee transducer to extend the local strategy
instead of some random behavior is only necessary to ensure that the extended strategy is
still simulated by the guarantee transducer. Whenever the extended strategy differs from
the behavior of the local strategy, the considered sequence does not match the guarantee
transducers of the other considered processes. Hence, by definition of local satisfaction, the
strategy’s computation does not need to satisfy the specification anyhow.

Therefore, we can alter the extension of the local strategy, i.e., the behavior of the extended
strategy whenever the local strategy does not contain transition anymore, to obtain a deter-
ministic strategy extension. As long as the extended strategy is simulated by the guarantee
transducer, the requirements of certifying synthesis with complete strategies are still satisfied.
In particular, we can thus pick one of the nondeterministic choices occurring in the nonde-
terministic guarantee transducer when building the strategy restriction. Intuitively, we thus
resolve the transducer’s nondeterminism while clearly maintaining the simulation. Then, the
extended strategy is deterministic even when considering nondeterministic choices, and, as
outlined above, the requirements of certifying synthesis with local strategies are still satisfied.
In particular, the proof of Lemma 4.3 does not change at all since it only considers the part of
the strategy extension that represents the local strategy, and the proof of Lemma 4.4 can be
carried out analogously when utilizing the slightly altered version of strategy extension. Hence,
soundness of certifying synthesis with local strategies follows exactly as for deterministic
guarantee transducers.

Lemma 4.19. Let𝜑 be an LTL formula over atomic propositions𝑉 with decomposition ⟨𝜑1, . . . , 𝜑𝑛⟩.
Let G = ⟨T G

1 , . . . ,T G
𝑛 ⟩ be a vector of nondeterministic guarantee transducers for the system

processes and, for 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T G
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let Ŝ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a vector of local

strategies for the system processes such that 𝑠𝑖 is a local strategy for 𝑝𝑖 ∈ 𝑃− and G𝑖 . If (Ŝ,G)
realizes 𝜑 , then 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 .

Next, recall that, in order to practically identify valid computations, we augmented local
strategies with associated output variables, i.e., the outputs of other processes that are also
inputs of the current process, in Section 4.4.3. In particular, an augmented local strategy for
process 𝑝𝑖 ∈ 𝑃− is represented by a (2𝐼𝑖 , 2𝑂𝑖∪𝑂𝐴

𝑖 )-transducer, while a local strategy is represented
by a (2𝐼𝑖 , 2𝑂𝑖 )-transducer. Since system strategies are deterministic, this construction inherently
enforces determinism of the guarantee transducers of the other processes and, in fact, even
determinism from the current processes point of view, i.e., observation determinism. In the
following, we thus slightly alter the definition of augmented local strategies. We represent an
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augmented local strategy 𝑠𝑖 for system process 𝑝𝑖 ∈ 𝑃− as a deterministic (2𝐼𝑖 , 2𝑂𝑖 )-transducer
T̃𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ̃𝑖) and equip it with an additional labeling function ℓ𝐴𝑖 : 𝑇𝑖 ×𝑂𝐴

𝑖 → {⊤,⊥, ?}
that determines for each state 𝑡 ∈ 𝑇 and each associated output 𝑣 ∈ 𝑂𝐴

𝑖 whether it is definitely
true in 𝑡 (encoded with ⊤), definitely false in 𝑡 (encoded with ⊥) or whether it can be both
true and false in 𝑡 (encoded with ?). For all 𝑡 ∈ 𝑇𝑖 and all ] ∈ 2𝐼𝑖 , we then require that there
is some 𝑡 ′ ∈ 𝑇𝑖 with (𝑡, ], 𝑡 ′) ∈ 𝜏𝑖 if, and only if, it holds for all 𝑣 ∈ 𝑂𝐴

𝑖 that (i) if 𝑣 ∈ ], then
we have ℓ𝐴 (𝑡, 𝑣) ⊆ {⊤, ?} and (ii) if 𝑣 ∉ ], then we have ℓ𝐴 (𝑡, 𝑣) ⊆ {⊥, ?}. Furthermore, we
again require the existence of relations 𝑆𝑖𝑗 for all other considered processes 𝑝 𝑗 . Consequently,
the definition of these relations is adapted in the straightforward manner to work with the
additional labeling ℓ𝐴𝑖 instead of the labeling ℓ̃𝑖 restricted to the associated outputs.
We can then show analogously to the proof of Lemma 4.8 that an augmented local strategy

as defined above satisfies the properties of local strategies for nondeterministic guarantee
transducers regarding finiteness and infiniteness of computations. Hence, in particular, the
transducer representing the augmented local strategy is a local strategy as well and therefore
soundness of certifying synthesis with augmented local strategies and nondeterministic guar-
antee transducers follows, as in the deterministic case, from the respective soundness result for
certifying synthesis with local strategies.

Lemma 4.20. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let ⟨𝜑1, . . . , 𝜑𝑛⟩ be its
decomposition. Let G = ⟨T G

1 , . . . ,T G
𝑛 ⟩ be a vector of nondeterministic guarantee transducers for

the system processes and, for 𝑝 𝑗 ∈ 𝑃−, let G𝑗 =
{
T G
𝑖 | 𝑝𝑖 ∈ 𝑃−\ {𝑝 𝑗 }

}
. Let S̃ = ⟨𝑠1, . . . , 𝑠𝑛⟩ be a

vector of augmented local strategies for the system processes such that 𝑠𝑖 is an augmented local
strategy for 𝑝𝑖 ∈ 𝑃−with respect to G𝑖 . Let T̃𝑖 be the finite-state transducer representing 𝑠𝑖 . If, for
all 𝑝𝑖 ∈ 𝑃−, both 𝑠𝑖 |= 𝜑𝑖 and T̃𝑖 ⪯ T𝐺

𝑖 hold, then 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 .

Furthermore, recall that the proof of completeness of certifying synthesis with augmented
local strategies and deterministic guarantee transducers, i.e., the proof of Lemma 4.10, constructs
augmented local strategies similar to the construction of strategy restriction. The proof relies on
the assumption that the strategies and the guarantee transducers are observation-deterministic,
which yields that in the construction, the second part of the state of the transducer T̃𝑖 represent-
ing the augmented local strategy is always a singleton. This, however, is only needed to ensure
that, for every state of T̃𝑖 , there exists a unique labeling to obtain a deterministic transducer.
Since the labeling of augmented local strategies as introduced in Section 4.4.3 contains the valua-
tions of the associated outputs, we thus require a unique valuation of associated outputs. Hence,
if the second part of the states of T̃𝑖 would not be a singleton, we might obtain contradicting
valuations of associated outputs. Outsourcing the associated outputs to an additional labeling
function now enables to also handle non-singleton sets of states of the parallel composition of
the guarantee transducers in the construction of the augmented local strategy without losing
determinism. Since strategy extension already allows for nondeterminism in the guarantee
transducers as outlined above, we can use the same construction and define the additional
labeling ℓ𝐴 in the straightforward manner. Note that the valuation of the associated outputs
in the labeling of a state of the augmented local strategy does not influence whether or not
it realizes a specification. Thus, we can show analogously to the proof of Lemma 4.10 that
the augmented local strategies constructed in this way indeed form a solution of certifying



4.6. Nondeterminism in Guarantee Transducers 165

synthesis with augmented local strategies and nondeterministic guarantee transducers, thus
proving completeness. Observe that the new definition of augmented local strategies allows for
dropping the requirement that the strategies are observation-deterministic.

Lemma 4.21. Let 𝜑 be an LTL formula over atomic propositions 𝑉 and let ⟨𝜑1, . . . , 𝜑𝑛⟩ be its
decomposition. Let 𝑠1, . . . , 𝑠𝑛 be strategies for the system processes represented by finite-state
transducers T1, . . . ,T𝑛 . If we have prop(𝜑𝑖) ⊆ 𝑉𝑖 for all 𝑝𝑖 ∈ 𝑃−, and if 𝑠1 | | . . . | | 𝑠𝑛 |= 𝜑 holds, then
there exists a vector G = ⟨T𝐺

1 , . . . ,T𝐺
𝑛 ⟩ of nondeterministic guarantee transducers for the system

processes and a vector S̃ = ⟨𝑠1, . . . , 𝑠2⟩ such that 𝑠𝑖 is an augmented local strategy for 𝑝𝑖 ∈ 𝑃−with
respect to G𝑖 , where G𝑖 =

{
T𝐺
𝑗 | 𝑝 𝑗 ∈ 𝑃−\ {𝑝𝑖}

}
, such that (S̃,G) realizes 𝜑 .

Hence, when altering the definition of augmented local strategies as presented above, aug-
mented local strategies can again be used to identify valid computations. Furthermore, certifying
synthesis is both sound and complete when considering nondeterministic guarantee transducers.
Therefore, we encode certifying synthesis with augmented local strategies and nondeterministic
guarantee transducers into a SAT constraint system in the following to practically synthesize
strategies and certificates in the following section.

4.6.2. Constraint System for Nondeterministic Certificates
To encode the search for augmented local strategies and nondeterministic guarantee transducers
that adhere to the requirements of certifying synthesis into a SAT constraint system, we reuse
most of the constraint system for the deterministic case presented in Section 4.4.4. We only
need to adapt a few variable encodings and constraints. To incorporate the slight change in the
definition of augmented local strategies, we first adapt the encoding of the labeling function
of the finite-state transducer T𝑖 = (𝑇𝑖 ,𝑇𝑖,0, 𝜏𝑖 , ℓ𝑖) representing the augmented local strategy as
follows: we represent ℓ𝑖 by one Boolean variable 𝑜𝑖𝑡,𝑜 for each 𝑡 ∈ 𝑇𝑖 and 𝑜 ∈ 2𝑂𝑖 . Given 𝑡 ∈ 𝑇𝑖
and 𝑜 ∈ 2𝑂𝑖 , it holds that 𝑜𝑖𝑡,𝑜 is true if, and only if, ℓ𝑖 (𝑡) = 𝑜 holds. Thus, since an augmented
local strategy is now a (2𝐼𝑖 , 2𝑂𝑖 )𝜔 -transducer instead of a (2𝐼𝑖 , 2𝑂𝑖∪𝑂𝐴

𝑖 )-transducer, we only have
Boolean variables for the outputs of 𝑝𝑖 .
Furthermore, we introduce variables to encode the additional labeling function ℓ𝐴𝑖 : we

represent ℓ𝐴𝑖 by two Boolean variables 𝑜𝑖,⊤𝑡,𝑜 and 𝑜𝑖,⊥𝑡,𝑜 for each 𝑡 ∈ 𝑇𝑖 and 𝑜 ∈ 𝑂𝐴
𝑖 . Given 𝑡 ∈ 𝑇𝑖

and 𝑜 ∈ 2𝑂𝐴
𝑖 , it holds that 𝑜𝑖,𝑥𝑡,𝑜 is true if, and only if, we have ℓ𝐴 (𝑡, 𝑜) ∈ {𝑥, ?}, where 𝑥 ∈ {⊤,⊥}.

Thus, intuitively, 𝑜𝑖,⊤𝑡,𝑜 encodes that 𝑜 can be set to true in state 𝑡 , i.e., either it is definitely true or
it can be both true and false. Similarly, 𝑜𝑖,⊥𝑡,𝑜 encodes that 𝑜 can be set to false in state 𝑡 . Hence, if
both 𝑜𝑖,⊤𝑡,𝑜 and 𝑜𝑖,⊥𝑡,𝑜 are true, then there is no unique valuation of 𝑜 in 𝑡 .
Next, we adapt the constraints to the new variable encodings. Constraint (4.1) encodes

determinism and completeness of guarantee transducers. Hence, we remove the conjunct that
ensures that there is at most one outgoing transition for every state and every valuation of
input variables; resulting in the following constraint:∧

𝑢∈𝑇𝐺
𝑖

∧
]⊆𝐼𝑖

∨
𝑢′∈𝑇𝐺

𝑖

𝜏
𝐺,𝑖
𝑢,],𝑢′ (4.6)
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Constraint (4.2) encodes the existence of a simulation relation that establishes that the
transducer representing the augmented local strategy for 𝑝𝑖 ∈ 𝑃− is simulated by the guarantee
transducer for 𝑝𝑖 . Since the simulation is only defined on the output variables of 𝑝𝑖 and not on
its associated outputs, the constraint does not need to be changed.

Constraint (4.3) encodes condition (i) of the definition of augmented local strategies as well
as determinism of the strategy. Hence, we adapt the conjunct for condition (i) to match the
formalization in the slightly altered definition of augmented local strategies when considering
nondeterministic guarantee transducers:

∧
𝑡 ∈𝑇𝑖

∧
]⊆𝐼𝑖

©«
∧
𝑜∈𝑂𝐴

𝑖

(
𝑜 ∈ ] → 𝑜

𝑖,⊤
𝑡,𝑜

)
∧

(
𝑜 ∉ ] → 𝑜

𝑖,⊥
𝑡,𝑜

)
↔

∨
𝑡 ′∈𝑇𝑖

𝜏𝑖𝑡,],𝑡 ′
ª®¬

∧
∧
𝑡 ′∈𝑇𝑖

∧
𝑡 ′′∈𝑇𝑖\{𝑡 ′ }

¬
(
𝜏𝑖𝑡,],𝑡 ′ ∧ 𝜏𝑖𝑡,],𝑡 ′′

) (4.7)

Constraint (4.4) encodes condition (ii) of the definition of augmented local strategies, i.e., the
existence of relations 𝑆𝑖𝑗 for all other considered system processes 𝑝 𝑗 . Hence, we again need
to adapt it to the slightly altered version of augmented local strategies for nondeterministic
guarantee transducers:

𝑆
𝑗,𝑖

𝑡𝐺
𝑗,0,𝑡𝑖,0
∧

∧
𝑢∈𝑇𝐺

𝑗

∧
𝑡 ∈𝑇𝑖

©«𝑆
𝑗,𝑖
𝑢,𝑡 →

©«
∧

𝑜∈𝑂𝐴
𝑖
∩𝑂𝐺

𝑗

(
𝑜 ∈ 𝑜𝐺,𝑗

𝑢,𝑜 → 𝑜
𝑖,⊤
𝑡,𝑜

)
∧

(
𝑜 ∉ 𝑜

𝐺,𝑗
𝑢,𝑜 → 𝑜

𝑖,⊥
𝑡,𝑜

)

∧
∧
]⊆𝐼 𝑗

∧
]′⊆𝐼𝑖

©«
∧
𝑜∈𝑂𝐴

𝑖

(
𝑜 ∈ ]′ → 𝑜

𝑖,⊤
𝑡,𝑜

)
∧

(
𝑜 ∉ ]′ → 𝑜

𝑖,⊥
𝑡,𝑜

)

∧ ] ∩ 𝐼𝑖 = ]′ ∩ 𝐼 𝑗
ª®¬ª®¬→

∧
𝑢′∈𝑇𝐺

𝑗

©«𝜏
𝐺,𝑗

𝑢,],𝑢′ →
∨
𝑡 ′∈𝑇𝑖

(
𝜏𝑖𝑡,]′,𝑡 ′ ∧ 𝑆

𝑗,𝑖

𝑢′,𝑡 ′

)ª®®¬
ª®®¬

(4.8)

Lastly, constraint (4.5) encodes the existence of a valid annotation of the run graph of the
universal co-Büchi automatonA𝑖 representing the specification 𝜑𝑖 and the strategy T𝑖 . Since the
constraint only considers the outputs of 𝑝𝑖 , the change in the encoding of the labeling function
does not affect this constraint. Hence, we do not need to alter it.

Combining all these constraints, we obtain the following constraint system C𝒜,𝐵,𝜑 for certi-
fying synthesis with augmented local strategies and guarantee transducers:

∧
𝑝𝑖 ∈𝑃−

©«(4.6) ∧ (4.2) ∧ ©«
∧

𝑝 𝑗 ∈𝑃−\{𝑝𝑖 }
(4.8)ª®¬ ∧ (4.7) ∧ (4.5)ª®¬

Recall that the new definition of augmented local strategies allows for dropping the require-
ment that the strategies allow for observation determinism while still ensuring completeness.
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Thus, redefining augmented local strategies immediately enables practical certifying synthesis
when considering architectures that do not allow for observation determinism. Thus, we can
use the constraint system introduced in this section also for synthesizing augmented local
strategies and deterministic guarantee transducers that adhere to the requirements of certifying
synthesis but violate observation determinism.

4.7. Experimental Evaluation
We have implemented certifying synthesis with augmented local strategies and both determin-
istic and nondeterministic guarantee transducers. Our implementation expects an LTL formula
and its decompositions as well as the system architecture and the bounds on the strategy and
certificate sizes as input. Our implementation extends BoSy [FFT17], a bounded synthesis tool
for monolithic systems, to certifying synthesis for distributed systems. In particular, we extend
and adapt BoSy’s SAT encoding [FFRT17] as described in Sections 4.4.4 and 4.6.2, respectively.
We evaluate our implementation in two lines of experiments. First, we compare certifying
synthesis with deterministic guarantee transducers to two different synthesis approaches for
distributed systems. Second, we compare the performance of our implementation of certifying
synthesis with deterministic guarantee transducers to the one of certifying synthesis with
nondeterministic guarantee transducers.

4.7.1. Distributed Synthesis
We compare our implementation of certifying synthesis with deterministic guarantee transduc-
ers to two extensions of BoSy [FFT17]: a non-compositional one for distributed systems [Bau17],
and one for synthesizing remorsefree dominant strategies separately, implementing the compo-
sitional synthesis algorithm presented in [DF14]. We used a machine with a 3.1 GHz Dual-Core
Intel Core i5 processor and 16 GB of RAM, and a timeout of 60 minutes. We use the SMT
encoding of the non-composition distributed version of BoSy since the other ones either do
not support most of our architectures (QBF), or cause memory errors frequently (SAT). Since
the running times of the underlying SMT solver vary immensely, we report on the average
running time over ten runs. Synthesizing dominant strategies separately is incomplete; thus,
we cannot report on results for all benchmarks. We could not compare our algorithm to the iter-
ative distributed synthesis tool Agnes [MMSZ20] since it currently is restricted to two-process
architectures with safety or deterministic Büchi objectives. It thus does not support most of our
system architectures and specifications.

First, we compare the performance of the implementations in terms of their running time on
five different scalable benchmarks. Four of them, the 𝑛-ary latch, the generalized buffer, the load
balancer, and shift, stem from the annual synthesis competition SyntComp [BEJ14, JBB+17b,
JBB+15, JBB+16, JB16, JBB+17a, JBC+19, JPA+22] and the fifth one describes a ripple-carry adder.
The latch is parameterized in the number of bits, the generalized buffer in the number of
senders, the load balancer in the number of servers, and the shift in the number of inputs. The
ripple-carry adder is parameterized in the number of bits.
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Figure 4.7.: System architectures of all considered benchmarks.

The system architectures are depicted in Figure 4.7. For the specifications of the 𝑛-ary latch,
the generalized buffer, the load balancer, and the shift, we refer to the benchmark descriptions
of the synthesis competition [JBC+19]. The ripple-carry adder adds two bit vectors, both with 𝑛
bits. The inputs are the very first carry bit 𝑐in and the bits of the two bit vectors, 𝑥0, . . . , 𝑥𝑛−1
and 𝑦0, . . . , 𝑦𝑛−1. The outputs are the sum bits 𝑠0, . . . , 𝑠𝑛−1 as well as the carry bits 𝑐0, . . . , 𝑐𝑛−1.
The specification 𝜑 is then given by 𝜑 := 𝜑init ∧

∧
0<𝑖<𝑛 𝜑𝑖 , where

𝜑init := ( 𝑐0 ↔ ((𝑥0 ∧ 𝑦0) ∨ (𝑐in ∧ ((𝑥0 ∧ ¬𝑦0) ∨ (¬𝑥0 ∧ 𝑦0)))))
∧ ( 𝑠0 ↔ ((𝑥0 ∧ ¬𝑦0 ∧ ¬𝑐in) ∨ (¬𝑥0 ∧ 𝑦0 ∧ ¬𝑐in)

∨ (¬𝑥0 ∧ ¬𝑦0 ∧ 𝑐in) ∨ (𝑥0 ∧ 𝑦0 ∧ 𝑐in)))
𝜑𝑖 := ( 𝑐𝑖 ↔ ((𝑥𝑖 ∧ 𝑦𝑖) ∨ (𝑐𝑖−1 ∧ ((𝑥𝑖 ∧ ¬𝑦𝑖) ∨ (¬𝑥𝑖 ∧ 𝑦𝑖)))))

∧ ( 𝑠𝑖 ↔ ((𝑥𝑖 ∧ ¬𝑦𝑖 ∧ ¬𝑐𝑖−1) ∨ (¬𝑥𝑖 ∧ 𝑦𝑖 ∧ ¬𝑐𝑖−1)
∨ (¬𝑥𝑖 ∧ ¬𝑦𝑖 ∧ 𝑐𝑖−1) ∨ (𝑥𝑖 ∧ 𝑦𝑖 ∧ 𝑐𝑖−1)))

The robots benchmarks describes the robots from the running example presented in Section 4.1.
The specification has two parameters, 𝑛1 and 𝑛2. The additional objectives of the robots state
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Table 4.1.: Results on scalable benchmarks. Reported is the parameter and the running time (in
seconds) for certifying synthesis with deterministic guarantee transducers, distributed BoSy,
and dominant strategy synthesis. The timeout is 60 minutes.

Benchmark Parameter Certifying Distributed Dominant
Synthesis BoSy Strategies

n-ary Latch 2 0.89 41.26 4.75
3 0.91 TO 6.40
4 0.92 TO 8.46
5 0.94 TO 10.74
6 12.26 TO 13.89
7 105.69 TO 15.06

Generalized Buffer 1 1.20 6.59 5.23
2 2.72 3012.51 10.53
3 122.09 TO 961.60

Load Balancer 1 0.98 1.89 2.18
2 1.64 2.39 –

Shift 2 1.10 1.99 4.76
3 1.13 4.16 7.04
4 1.14 TO 11.13
5 1.29 TO 13.68
6 2.20 TO 16.01
7 9.01 TO 16.08
8 71.89 TO 19.38

Ripple-Carry Adder 1 0.878 1.83 –
2 2.09 36.84 –
3 106.45 TO –

that robot 𝑟𝑖 needs to visit the machine it is responsible for in every 𝑛𝑖-th step, indicated with
the additional output variable𝑚𝑖 . The full specification 𝜑 of the benchmark is then given by
𝜑 := 𝜑no_crash ∧

∧
1≤𝑖≤2

(
𝜑cross𝑖 ∧ 𝜑add𝑖

)
, where

𝜑add𝑖 :=𝑚𝑖 ∧
(
𝑚𝑖 →

(
¬𝑚𝑖 ∧ 2 ¬𝑚𝑖 ∧ . . . 𝑛𝑖−1 ¬𝑚𝑖 ∧ 𝑛𝑖 𝑚𝑖

) )
and where 𝑥 is syntactic sugar for applying the -operator 𝑥-times.
The results of the experiments are shown in Table 4.1. Since remorsefree dominance only

makes implicit assumptions on the behavior of the other processes, dominance-based com-
position synthesis [DF14] does not always succeed. For instance, there are no independent
remorsefree dominant strategies for the load balancer and the ripple-carry adder. While certify-
ing synthesis performs better than the dominance-based compositional synthesis algorithm
for the generalized buffer, the overhead of synthesizing explicit certificates becomes clear for
the latch and the shift benchmarks: for larger parameters, synthesizing remorsefree domi-
nant strategies outperforms certifying synthesis. However, the implicit assumptions do not
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encapsulate the required interface between the processes, and thus they do not increase the
understandability of the system’s interconnections.

For the latch, the generalized buffer, the ripple-carry adder, and the shift benchmark, certifying
synthesis clearly outperforms the extension of BoSy to distributed systems [Bau17]. For these
benchmarks, the latter does not terminate within 60 minutes for many parameters, while
certifying synthesis solves the tasks in less than 13 seconds. Here, a process does not need
to know the full behavior of the relevant processes. Thus, the certificates are notably smaller
than the strategies. For instance, a process of the ripple-carry adder only needs information
about the carry bit of the previous process; the sum bit is irrelevant. In contrast, the load
balancer requires the certificates to contain the full behavior of the processes. Thus, the
benefit of the compositional approach lies solely in the specification decomposition. This
advantage suffices to produce a solution faster than distributed BoSy. However, for other
benchmarks with full certificates, the overhead of synthesizing certificates dominates the benefit
of specification decomposition for larger parameters, showcasing that certifying synthesis is
particularly beneficial if a small interface between the processes exists.
Next, we consider the parameterized version of the running example from Section 4.1 de-

scribing two robots in a factory. It is parameterized in the size of the additional objectives 𝜑add𝑖
of the robots 𝑟1 and 𝑟2. The robot benchmark is designed such that the interface stays small for
all parameters. Thus, it demonstrates the advantage of abstracting away irrelevant behavior.
We scale 𝜑add𝑖 , while 𝜑safe and 𝜑cross𝑖 are not changed: the parameter 𝑘𝑖 denotes that 𝑟𝑖 needs to
visit a machine in every 𝑘𝑖-th step. The results in terms of strategy sizes in the number of states
and running times in seconds are shown in Table 4.2.
Certifying synthesis clearly outperforms distributed BoSy on all instances. The size of the

solutions of certifying synthesis only depends on the parameter of the respective robot and
the size of the other robot’s certificate. For all parameters, the certificates are of size two:
the additional scalable requirements do not affect the other robot and thus do not constitute
guarantee outputs. Hence, the certificate only needs to contain information about the robot’s
behavior at crossings, which can be encoded in a two-state transducer. The size of the solution
with distributed BoSy, in contrast, depends on the parameters for both robots. Therefore, the
solution sizes and, thus, the running times do not grow in parallel for certifying synthesis and
distributed BoSy. The solution size, however, clearly has a great impact on the running time as
both the constraint system and the search space grow significantly when increasing the solution
size. Hence, this line of experiments demonstrates that certifying synthesis is highly beneficial
for specifications where small certificates exist. This directly corresponds to the existence of a
small interface between the processes of the system. Hence, bounding the size of the certificates
indeed guides the synthesis procedure in finding solutions fast.

4.7.2. Deterministic vs. Nondeterministic Certificates
In a third line of experiments, we compared our implementations of certifying synthesis with
deterministic guarantee transducers to our implementation of certifying synthesis with non-
deterministic guarantee transducers. First, we synthesized solutions with nondeterministic
guarantee transducers for the five benchmarks presented in Table 4.1, i.e., for the four SyntComp
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Table 4.2.: Results for the running example. Reported are the parameters, strategy sizes, and run-
ning times (in seconds) for certifying synthesis and distributed BoSy. The timeout is 60 minutes.

Parameter
Strategy Size Running Time

Cert. Synth. Dist. BoSy Cert. Synth. Dist. BoSy
2, 3 2, 6 6 1.59 2.91
2, 4 2, 4 4 1.18 2.43
2, 5 2, 10 10 3.97 299.11
2, 6 2, 6 6 1.40 3.25
2, 7 2, 14 14 76.32 TO
2, 8 2, 8 8 2.47 5.28
2, 9 2, 18 18 1832.53 TO
2, 10 2, 10 10 7.78 106.34
3, 4 6, 4 12 1.44 TO
3, 5 6, 10 30 32.83 TO
3, 6 6, 6 6 2.04 3.43
3, 7 6, 14 42 373.90 TO
3, 8 6, 8 24 8.82 TO
3, 9 6, 18 18 TO TO
3, 10 6, 10 30 30.92 TO
4, 5 4, 10 20 11.66 TO
4, 6 4, 6 12 2.04 TO
4, 7 4, 14 28 221.17 TO
4, 8 4, 8 8 3.28 6.06
4, 9 4, 18 36 2911.26 TO
4, 10 4, 10 20 7,93 TO
5, 6 10, 6 30 26.16 TO
5, 7 10, 14 35 TO TO
5, 8 10, 8 40 26.164 TO
5, 9 10, 18 45 TO TO
5, 10 10, 10 10 89.87 335.98

benchmarks 𝑛-ary latch, generalized buffer, load balancer, and shift as well as the ripple-carry
adder. For none of these benchmarks, permitting nondeterminism has a size advantage on the
guarantee transducers. That is, the minimal size of nondeterministic guarantee transducers
that satisfy the requirements of certifying synthesis is also the minimal size of deterministic
guarantee transducers. In contrast to deterministic guarantee transducers, the running times
vary widely when synthesizing nondeterministic guarantee transducers. Most likely, permitting
nondeterminism increases the degree of freedom, and thus the possibility for the underlying
SAT solver to “take a wrong path” during solving, yielding the varying running times. Hence,
we consider the average running time over ten runs. For smaller parameters, the running times
of certifying synthesis with nondeterministic guarantee transducers are similar to those with
deterministic ones. For larger parameters, the overhead increases. For the 7-ary latch, for
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Table 4.3.: Comparison of certifying synthesis with deterministic and nondeterministic GTs.
Reported is the parameter, the strategy sizes, and the running time (in seconds). The timeout
is 60 minutes.

Parameter
Strategy Size Running Time

deterministic nondeterministic deterministic nondeterministic
3 6, 6 4, 3 1.30 1.03
4 4, 4 4, 2 1.17 0.96
5 10, 10 6, 3 31.67 1.25
6 6, 6 6, 2 4.35 1.01
7 14, 14 8, 3 TO 1.23
8 8, 8 8, 2 TO 1.34
9 18, 18 10, 3 TO 1.91
10 10, 10 10, 2 TO 1.30
11 22, 22 12, 3 TO 3.44
12 12, 12 12, 2 TO 3.34
13 26, 26 14, 3 TO 13.88
14 14, 14 14, 2 TO 10.52
15 30, 30 16, 3 TO 30.48
16 16, 16 16, 2 TO 28.86
17 34, 34 18, 3 TO 398.56
18 18, 18 18, 2 TO 168.19
19 38, 38 20, 3 TO 299.80
20 20, 20 20, 2 TO 428.82

instance, we have an overhead of 12% in the running time. For the generalized buffer with
three senders, synthesizing nondeterministic guarantee transducers takes 11% more time than
synthesizing deterministic ones. For the shift-benchmark with eight inputs, the overhead in the
running time over the deterministic approach is 23%.

To analyze the advantage of permitting nondeterminism in guarantee transducers, we consider
a benchmark with two processes, where, similar to Example 4.9 in Section 4.6, the nondeter-
ministic guarantee transducers for process 𝑝1 stays small, while the size of the deterministic
guarantee transducers increases with the parameter. In particular, the benchmark is designed
such that the guarantee transducer of process 𝑝2 always consists of two states, irrespective of
the parameter and whether we synthesize deterministic or nondeterministic certificates. The
certificate sizes for 𝑝1, however, differ for different parameters and different kinds of guarantee
transducers. While a nondeterministic guarantee transducer with two states suffices for all
parameters, the size of the deterministic guarantee transducer grows with the parameter. In
fact, for parameter 𝑛, the deterministic guarantee transducer consists of 𝑛 states. Due to the
larger deterministic certificate, the strategy sizes for both processes 𝑝1 and 𝑝2 grow fast when
considering deterministic guarantee transducers. The detailed results in terms of strategy size
and running time are shown in Table 4.3.
Permitting nondeterminism has a clear benefit on the running time. With deterministic

guarantee transducers, certifying synthesis does not terminate within one hour from parameter
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𝑛 = 7 on, while we still synthesize a solution with nondeterministic guarantee transducers in
less than eight minutes up to parameter 𝑛 = 20. The fact that not only the certificate sizes but
also the strategy sizes increase when considering deterministic guarantee transducers has a
great impact on this significant difference. For benchmarks where only the certificate sizes differ,
the running times do not differ as much. Often, however, large certificates yield an increase in
the strategy size as well. Hence, the experiment demonstrates again that certifying synthesis is
particularly beneficial when solutions with small certificates exist.

4.8. Summary
We have presented a sound and complete synthesis algorithm that reduces the complexity of
distributed synthesis by decomposing the global system specification into local requirements on
the individual processes. It synthesizes additional certificates that capture a certain behavior a
system process commits to. The certificates then form an assume-guarantee contract, allowing
a process to rely on the other processes to not deviate from the guaranteed behavior formalized
in their certificate. The certificates increase the understandability of the system and the solution
since the certificates capture which agreements the processes have to establish. Moreover, the
certificates form a contract between the processes: the synthesized strategies can be exchanged
safely as long as the new strategy still complies with the contract, i.e., as long as it does not
deviate from the certificate, enabling modularity.
We have introduced two representations of the certificates, as LTL formulas and as deter-

ministic finite-state transducers. For the latter, we presented an encoding of the search for
strategies and certificates into a SAT constraint-solving problem. Furthermore, we extended the
representation of certificates with finite-state transducers with nondeterminism, allowing for
significantly smaller certificates than with deterministic transducers for certain specifications.
We presented how the SAT constraint system needs to be changed to permit nondeterminism.
Moreover, we have introduced a technique for reducing the number of certificates that a process
needs to consider by determining relevant processes. We have implemented the certifying syn-
thesis algorithm based on the two SAT encodings for certificates represented by deterministic
and nondeterministic finite-state transducers. We compared it to two extensions of the synthe-
sis tool BoSy to distributed systems. Furthermore, we analyzed the advantage of permitting
nondeterminism in the certificates represented by finite-state transducers. The results clearly
show the advantage of compositional approaches as well as of guiding the synthesis procedure
by bounding the size of the certificates. For benchmarks where small interfaces between the
processes exist, certifying synthesis outperforms the other algorithms significantly. If no so-
lution with small interfaces exists, the overhead of certifying synthesis is small. Permitting
nondeterminism can reduce the strategy and certificate sizes significantly.
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Chapter 5

System Decomposition for
Assumption-free Winning Strategies

In this chapter, we transfer classical compositional concepts to reactive synthesis of monolithic
systems. We present a modular synthesis algorithm for monolithic systems that, given a specifi-
cation and a decomposition of the single system process into several subspecifications, performs
separate synthesis tasks for the components induced by the subspecifications. Afterward, the
synthesized strategies are combined into a single strategy.

The main challenge in such compositional monolithic synthesis approaches is to decompose
the single system process into several components, for which synthesis subtasks can be per-
formed. For distributed systems, the system processes naturally serve as these components. For
monolithic systems, in contrast, suitable decomposition techniques that preserve realizability
and unrealizability of the initial monolithic synthesis task are necessary. Consequently, a crucial
part of modular synthesis is to determine which parts of the specification depend on each other
in the sense that considering them individually violates either soundness or completeness of
modular synthesis. Once the dependencies have been identified, independent components for
sound and complete modular synthesis can be constructed from them.

We present a criterion, the so-called independent sublanguages criterion, for subspecifications
that ensures soundness and completeness of modular synthesis. It determines for a given set of
subspecifications whether or not they are dependent, i.e., whether or not separate synthesis
tasks for them will preserve realizability or unrealizability of the initial specification. More
precisely, it determines whether or not it holds that (i) whenever the initial specification is
realizable, the individual synthesis tasks for the subspecifications will succeed, and (ii) whenever
the initial specification is unrealizable, at least one of the individual synthesis tasks will fail.
The criterion is purely language-based, i.e., it is defined on the language of the specification.
Hence, it is agnostic of the specification formalism used for synthesis.
Lifting the independent sublanguages criterion to the temporal logic level, we introduce an

approximate independence criterion for specifications given as LTL formulas. It allows for
determining whether or not subspecifications are independent on the LTL level, i.e., without
considering the respective languages. It is approximate in the sense that it may conclude
that two subspecifications are dependent although independent solutions can be synthesized.

177
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Thus, utilizing the LTL independence criterion might result in coarser decompositions than the
independent sublanguages criterion. Nevertheless, the criterion is sound. That is, whenever
two subspecifications indeed depend on each other, the LTL dependence criterion will conclude
dependence. Vaguely inspired by work on more scalable LTL model checking [DR18], the LTL
independence criterion is based on a syntactic analysis of the LTL formula. Intuitively, it labels
variables of the system as dependent if they occur in the same conjunct of the specification: the
valuations of the variables occurring in some conjunct𝜑𝑖 of an LTL specification𝜑 = 𝜑1∧. . .∧𝜑𝑚
may influence the satisfaction of 𝜑𝑖 and thus also the satisfaction of 𝜑 . The criterion then
concludes the dependence of two subspecifications if they contain dependent variables.
Since the LTL independence criterion heavily relies on analyzing the conjuncts of the spec-

ification of the entire system, it often unnecessarily concludes dependence of processes for
specifications given in the common assume-guarantee form 𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 , where the

formulas𝜑𝑖 are assumptions and the formulas𝜓 𝑗 are guarantees. When rewriting such a formula
into conjunctive form, every guarantee is equipped with all guarantees, yielding dependence
between all variables occurring in some assumption and the considered guarantee. However,
not all assumptions are necessary for the realizability of all conjuncts. Hence, dependencies
between conjuncts of the specification can sometimes be prevented.

Therefore, we present an optimization of the LTL independence criterion that utilizes so-called
assumption dropping. Before checking the dependence of variables by analyzing the conjuncts
of the specification, the optimized LTL independence criterion analyzes, for every conjunct of
the guarantees, the assumptions of the specification and drops those that do not influence the
satisfaction of the considered conjunct. We introduce criteria for dropping assumptions for LTL
specifications both in strict assume-guarantee form and in non-strict assume-guarantee form,
i.e., specifications that consist of several assume-guarantee conjuncts.
Modular synthesis can then immediately utilize the LTL independence criterion – and its

variants for assume-guarantee specification – for applying classical compositional approaches to
reactive synthesis. It determines independent subspecifications of the initial specifications using
the independence criterion. Then, the algorithm synthesizes strategies for the subspecifications
separately and composes the results. The soundness of the criterion ensures that both the
synthesis subtasks and the composition succeed as long as the system specification is realizable.
Otherwise, modular synthesis produces a counterstrategy.

In an experimental evaluation, we utilize the LTL decomposition algorithm as a preprocessing
technique for modular synthesis with the two monolithic synthesis tools BoSy [FFT17] and
Strix [MSL18]. We evaluate our approach on the publicly available benchmarks of the annual
synthesis competition SyntComp [BEJ14]. For all benchmarks, the decomposition algorithm
terminates in less than 26milliseconds. Thus, even for non-decomposable specifications the over-
head of decomposition is negligible. Both BoSy and Strix increase the number of successfully
synthesized benchmarks when running modularly and decrease their running time significantly
for many benchmarks for which multiple components have been identified, showcasing the
advantage of compositional techniques over classical ones. The developers of the synthesis
tool ltlsynt [MC18] recognized the potential of our modular synthesis approach based on LTL
decomposition to be a game changer for reactive monolithic synthesis and integrated it into
their newest release [RSDP22], which successfully competed in SyntComp 2022 [SYN22].
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Furthermore, we demonstrate that smart contract specifications can be decomposed into
independent parts describing the contract’s control flow and the effects of function calls. This
results gave rise to the development of an efficient synthesis tool that fully automatically
constructs Solidity code from temporal control flow specifications [FHKP23].

Publications and Structure. This chapter is based on work published in the proceedings
of the 13th NASA Formal Methods Symposium [FGP21a], and in the Innovations in Systems and
Software Engineering Journal [FGP22] as well as the extended version [FGP21b] of the former
publication. First ideas for modular synthesis and the independence criteria have been published
in Gideon Geier’s Bachelor’s thesis [Gei20], which was advised by the author of this thesis. The
concrete formulation of the criterion and, thus, all results and proofs have been adapted by the
author of this thesis for the conference and journal publications. Moreover, the author of this
thesis converted the strategy formalism to finite-state transducers for consistency in this thesis.
Section 5.7 is additionally based on work published in the following preprint [FHKP23].

This chapter is structured as follows. First, we introduce the modular synthesis algorithm and
show its soundness and completeness for proper decompositions. In Section 5.2, we formalize
the suitability of a decomposition by introducing the independent sublanguages criterion. We
prove soundness and completeness of modular synthesis for all decompositions that adhere to
the criterion. Afterward, in Section 5.3, we lift the language-based criterion to the temporal
logic level by introducing the approximate LTL independence criterion. We show soundness and
completeness of modular synthesis for all decompositions that respect the LTL independence
criterion. Moreover, we present a decomposition algorithm for LTL specifications that computes
decompositions that adhere to the criterion. Addressing the impreciseness of LTL decomposition
for formulas in assume-guarantee form, we introduce criteria for eliminating assumptions for
individual guarantees while preserving realizability and unrealizability in Sections 5.4 and 5.5.
In the former section, we focus on formulas in a strict assume-guarantee form. Afterward,
we extend it to a non-strict form in the latter section, thus allowing for LTL formulas that
consist of several assume-guarantee conjuncts. For both variants, we prove soundness and
completeness of modular synthesis. Furthermore, we present decomposition algorithms for LTL
specifications in the respective forms that identify droppable assumptions and decompose the
specification according to these results. In Section 5.6, we present an experimental evaluation
of the performance of our algorithms. Lastly, in Section 5.7, we demonstrate the applicability of
our decomposition algorithms to the domain of smart contracts.

5.1. Modular Monolithic Synthesis
In this section, we introduce a modular synthesis algorithm for monolithic systems that, given
a suitable decomposition algorithm, decomposes the single system process into independent
components and performs individual synthesis tasks for them. It then recomposes the obtained
solutions to either a strategy or a counterstrategy for the entire system. The algorithm thus
transfers classical concepts of compositionality from distributed systems, such as, for instance,
described in Part I of this thesis, to monolithic systems.
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Algorithm 5.1:Modular Synthesis for Monolithic Systems
Input: spec: Specification, I: List Variable, O: List Variable
Output :realizable: Bool, s: Strategy

1 components← decompose(spec, I, O)
2 subStrategies← []: List Strategy
3 foreach (compSpec, cInp, cOut) ∈ components do
4 (cRealizable, cStrategy)← synthesize(compSpec, cInp, cOut)
5 if cRealizable then
6 subStrategies.append(cStrategy)
7 else
8 counterstrategy← extendCounterstrategy(cStrategy, I, O)
9 return (false, counterstrategy)

10 strategy← compose(subStrategies)
11 return (true, strategy)

Algorithm 5.1 describes the modular synthesis approach for monolithic systems. It expects
sets of input and output variables of the system as well as the system specification as input. First,
the single system process is decomposed using an adequate decomposition algorithm (line 1).
The result is a list of components. A component 𝑐 = (𝐿𝑐 , 𝐼𝑐 ,𝑂𝑐) of the system consists of a
component specification 𝐿𝑐 of the initial specification and a component interface, represented by
sets 𝐼𝑐 and 𝑂𝑐 of input and output variables. Intuitively, the component interface captures the
inputs and outputs of the system that occur in the component’s specification 𝐿𝑐 . Thus, we have
𝐿𝑐 ⊆ (2𝐼𝑐∪𝑂𝑐 )𝜔 , 𝐼𝑐 ⊆ 𝐼 , and 𝑂𝑐 ⊆ 𝑂 . A system decomposition is then defined as follows:

Definition 5.1 (System Decomposition).
Let 𝐼 and 𝑂 be sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let 𝑉 = 𝐼 ∪ 𝑂 . A
decomposition D of (𝐼 ,𝑂) is a vector D = ⟨𝑐1, . . . , 𝑐𝑛⟩ of 𝑛 components with 𝑐𝑖 = (𝐿𝑖 , 𝐼𝑖 ,𝑂𝑖)
and 𝑉𝑖 = 𝐼𝑖 ∪𝑂𝑖 such that (i) 𝐼𝑖 ∩𝑂𝑖 = ∅ holds for all 𝑐𝑖 ∈ D and (ii) 𝑉 =

⋃
1≤𝑖≤𝑛𝑉𝑖 .

In contrast to the setting for distributed systems discussed in Part I, we require every compo-
nent to only observe input variables of the whole system. A component is thus not able to react
to the output variables of another component. Therefore, we do not restrict strategies to be
representable with Moore transducers in this chapter, as determinism and completeness of the
parallel composition of component strategies can also be ensured for Mealy transducers as long
as certain restrictions, which we discuss in detail in Section 5.2, are satisfied.
Deriving independent components of the single process of a monolithic system and thus

finding an adequate decomposition algorithm is the crucial aspect of modular synthesis. This
section, however, focuses on presenting the modular synthesis algorithm itself. Therefore, we
assume that some correct decomposition algorithm is used. In the remaining sections of this
chapter, we then present how independent components can be computed.
Once the system is decomposed, modular synthesis performs individual synthesis tasks for

all of the system’s components and stores the results (lines 3 to 4 of Algorithm 5.1). A synthesis
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result consists of two parts: a Boolean variable depicting whether the component specification is
realizable for the component and a strategy. If the component specification is realizable (line 5),
then, by construction, the strategy realizes the component specification, and thus it can be used
as a part of a strategy for the entire system. Hence, we store the strategy (line 6). If, for some
component, the component specification is unrealizable (line 7), however, the strategy returned
by the synthesis procedure is a counterstrategy. Intuitively, a counterstrategy is a strategy of
the components’ environment that prevents the satisfaction of the component specification
no matter how the system, in this case, the component, behaves. Formally, we represent a
counterstrategy as a transducer, the so-called counterstrategy transducer :

Definition 5.2 (Counterstrategy Transducer).
Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅ and let 𝑉 = 𝐼 ∪𝑂 . Let
𝐿 ⊆ (2𝑉 )𝜔 be a language. If 𝐿 is unrealizable, then there is a counterstrategy transducer for 𝐿. A
counterstrategy transducer is a deterministic and complete finite-state (2𝑂 , 2𝐼 )-transducer T 𝑐

such that Traces(T 𝑐) ⊆ (2𝑉 )𝜔 \ 𝐿 holds. If 𝐿 is unrealizable for Mealy transducers, then there
exists a Moore counterstrategy transducer for 𝐿. If 𝐿 is unrealizable for Moore transducers,
then there exists a Mealy counterstrategy transducer for 𝐿.

Modular synthesis checks whether some of the synthesis subtasks are unrealizable. If so,
it extends the corresponding counterstrategy to a counterstrategy for the whole system and
returns it (lines 8 to 9 of Algorithm 5.1). Intuitively, a component’s counterstrategy violates the
full system specification as well since it violates the parts of it that affect the component whose
component specification was unrealizable. A counterstrategy for the whole system, however,
needs to be defined on all variables of the system, not only the ones occurring in the component.
Since the system variables outside of the violating component do not affect the violation of
the component specification, by definition of components, the component counterstrategy can
be extended to counterstrategy for the whole system by, intuitively, ignoring output variables
outside the component and assigning an arbitrary valuation to input variables outside the
component. Formally, we first define the extension of transducers in general and then tailor it
to counterstrategy extension afterward:

Definition 5.3 (Transducer Extension).
Let 𝐼 , 𝐼1 and 𝑂 , 𝑂1 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅, 𝐼1 ⊆ 𝐼 , and
𝑂1 ⊆ 𝑂 . Let T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1) be a finite-state (2𝐼1, 2𝑂1)-transducer representing a strategy.
We construct a (2𝐼 , 2𝑂 )-transducer T = (𝑇,𝑇0, 𝜏, ℓ) from T1 as follows:

• 𝑇 = 𝑇1,

• 𝑇0 = 𝑇1,0, and

• (𝑡, ], 𝑡 ′) ∈ 𝜏 if, and only if, (𝑡, ] ∩ 𝐼1, 𝑡 ′) ∈ 𝜏1 holds, and
• (𝑡, ], 𝑜) ∈ ℓ if, and only if (𝑡, ], 𝑜 ∩𝑂1) ∈ ℓ1 and 𝑜 ∩ (𝑂 \𝑂1) = 𝑝𝑖𝑐𝑘 (2𝑂\𝑂1).

where 𝑝𝑖𝑐𝑘 (𝑀) picks one element from set𝑀 .
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Suppose that some deterministic and complete (2𝐼1, 2𝑂1)-transducer T1 realizes some language
𝐿1 ⊆ (2𝐼1∪𝑂1)𝜔 . Then, it follows that the extended transducer T constructed according to
Definition 5.3 realizes a language 𝐿 ⊆ (2𝐼∪𝑂 )𝜔 as well as long as 𝐿 is a part of 𝐿1, i.e., as long as
every word that lies in 𝐿1 also lies in 𝐿:

Lemma 5.1. Let 𝐼 , 𝐼1 and𝑂 , 𝑂1 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅, 𝐼1 ⊆ 𝐼 ,
and 𝑂1 ⊆ 𝑂 . Let 𝑉 = 𝐼 ∪𝑂 and 𝑉1 = 𝐼1 ∪𝑂1. Let 𝐿 ⊆ (2𝑉 )𝜔 be a language. Let 𝐿1 ⊆ (2𝑉1)𝜔 with
𝐿1 ⊆ {𝜎 ∩𝑉1 | 𝜎 ∈ 𝐿}. Let 𝐿1 be realizable and let T1 be a transducer realizing 𝐿1. The extended
transducer T constructed as in Definition 5.3 represents a strategy that realizes 𝐿.

Proof. By construction, T is a (2𝐼 , 2𝑂 )-transducer. Determinism and completeness of T , as
well as finiteness of T ’s set of states, follows immediately from the construction of T and the
fact that T1 is a deterministic and complete finite-state transducer. Note that it is crucial for
determinism of T to utilize the function 𝑝𝑖𝑐𝑘 , which chooses a single valuation of the variables
outside of 𝑉1. Furthermore, by the definition of transducer extension, T neither introduces
additional transitions with respect to T1 nor changes the valuation of the variables in𝑉1 defined
by the labeling relation of T1. Therefore, in particular, the semantics does not change when
extending a transducer, i.e., if T1 has Mealy semantics, then so does T and if T1 has Moore
semantics, then so does T . Thus, it remains to show that Traces(T ) ⊆ 𝐿 holds.

Let 𝜎 ∈ Traces(T ) be a trace of T . Then, by construction of T and by the definition of traces,
there exists some trace 𝜎 ′ ∈ Traces(T1) of T1 such that for all points in time 𝑘 ≥ 0, we have
𝜎𝑘 ∩ 𝐼1 = 𝜎 ′

𝑘
∩ 𝐼1 and 𝜎𝑘 ∩𝑂1 = 𝜎 ′

𝑘
∩𝑂1. Therefore, 𝜎𝑘 ∩𝑉1 = 𝜎 ′

𝑘
∩𝑉1 follows for all 𝑘 ≥ 0 with

the definition of 𝑉1. Since T1 is a (2𝐼1, 2𝑂1)-transducer, we have 𝜎 ′ ∈ (2𝑉1)𝜔and thus 𝜎 ∩𝑉1 = 𝜎 ′

follows. By assumption, 𝐿1 is realizable and T1 realizes 𝐿1. Therefore, Traces(T1) ⊆ 𝐿1 holds.
Since 𝜎 ′ ∈ Traces(T1) holds, 𝜎 ′ thus realizes 𝐿1, i.e., we have 𝜎 ′ ∈ 𝐿1. Hence, since 𝜎 ∩𝑉1 = 𝜎 ′

holds, 𝜎 ∩ 𝑉1 ∈ 𝐿1 follows. By assumption, we have 𝐿1 ⊆ {𝜎 ∩𝑉1 | 𝜎 ∈ 𝐿}. Hence, 𝜎 ∈ 𝐿

follows. Since we chose 𝜎 ∈ Traces(T ) arbitrarily, 𝜎 ∈ 𝐿 follows for all 𝜎 ∈ Traces(T ). Hence,
Traces(T ) ⊆ 𝐿 holds and therefore T realizes 𝐿. □

Based on transducer extension and the above realization result, we can now formalize the
extension of a counterstrategy for a component to a counterstrategy for the whole system.
The counterstrategy extension of a counterstrategy (2𝑂1, 2𝐼1)-transducer T 𝑐

1 for a language
𝐿1 ⊆ (2𝐼1∪𝑂1)𝜔 to sets 𝐼 ⊇ 𝐼1 and 𝑂 ⊇ 𝑂1 of input and output variables, respectively, is the
(2𝑂 , 2𝐼 )-transducer obtained by extending T 𝑐

1 with transducer extension, i.e., according to
Definition 5.3, to the sets 𝐼 and 𝑂 . Since T 𝑐

1 is a counterstrategy transducer for 𝐿1, all of its
traces violate 𝐿1, i.e., we have Traces(T 𝑐

1 ) ⊆ (2𝐼1∪𝑂1)𝜔 \ 𝐿1. Hence, it follows with Lemma 5.1
that the counterstrategy extension T is a counterstrategy transducer for a language 𝐿 ∈ (2𝐼∪𝑂 )𝜔
if ((2𝐼1∪𝑂1)𝜔 \ 𝐿1) ⊆

{
𝜎 ∩𝑉1 | 𝜎 ∈ ((2𝐼∪𝑂 )𝜔 \ 𝐿)

}
holds. Consequently, we obtain that T is a

counterstrategy transducer for 𝐿 if {𝜎 ∩ (𝐼1 ∪𝑂1) | 𝜎 ∈ 𝐿} ⊆ 𝐿1 holds.

Corollary 5.1. Let 𝐼 , 𝐼1 and 𝑂 , 𝑂1 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅,
𝐼1 ⊆ 𝐼 , and𝑂1 ⊆ 𝑂 . Let𝑉 = 𝐼 ∪𝑂 and𝑉1 = 𝐼1∪𝑂1. Let 𝐿 ⊆ (2𝑉 )𝜔 be a language. Let 𝐿1 ⊆ (2𝑉1)𝜔
with {𝜎 ∩𝑉1 | 𝜎 ∈ 𝐿} ⊆ 𝐿1. Let 𝐿1 be unrealizable and let T 𝑐

1 be a respective counterstrategy
transducer. The counterstrategy extension T 𝑐 of T 𝑐

1 is a counterstrategy transducer for 𝐿.
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Hence, if one of the synthesis tasks of modular synthesis fails due to unrealizability of the
component specification, then we construct a counterstrategy transducer for the entire system
with counterstrategy extension. As long as the decomposition algorithm ensures that the
component specifications are parts of the initial system specification in the sense that every
word that lies in the component specification also lies in the initial specification, Corollary 5.1
allows for concluding that the resulting strategy is indeed a counterstrategy for the full system
and the initial specification.
Otherwise, i.e., if all individual synthesis tasks in modular synthesis succeed, then derived

component strategies all have been stored in the list subStrategies. We then compose the
stored component strategies according to Definition 2.12, i.e., by building the parallel composi-
tion of the transducers representing the component strategies (lines 10 and 11 of Algorithm 5.1).
By construction, the resulting finite-state transducer represents a strategy for the entire system.
The decomposition algorithm is then required to ensure that the parallel composition of the
component strategies indeed satisfies the full system specification.
The soundness and completeness of modular synthesis clearly depend on the employed

decomposition algorithm. In the following, we describe how soundness and completeness
of modular synthesis can be violated due to an incorrect decomposition algorithm. First, re-
alizability and unrealizability of the initial synthesis task might not be preserved. Hence, a
component specification might be unrealizable in the respective component, although the initial
specification is realizable for the whole system. Vice versa, all component specifications might
be realizable in their respective components, although the initial specifications is unrealizable.
Second, even if realizability and unrealizability are preserved, the computed strategy or coun-
terstrategy might not be suitable for the entire system. More precisely, the counterstrategy
extension of a component’s counterstrategy might not be a counterstrategy for the initial
specification, or the parallel composition of the component strategies might violate the full
specification. Furthermore, already the composition of the component strategies might fail if
the synthesized component strategies can be contradictory.
In the remainder of this chapter, we thus focus on developing suitable decomposition al-

gorithms that ensure soundness and completeness of modular monolithic synthesis and thus
avoid the pitfalls outlined above. First, we derive a criterion for the dependence of component
specifications such that every decomposition that adheres to the criterion can be safely used
for modular synthesis. Afterward, we introduce an algorithm that, based on the independence
criterion, computes suitable decompositions from system specifications.

5.2. Language-based Independence Criterion
As a first step toward an algorithm for decomposing a monolithic system into several compo-
nents that ensures soundness and completeness of modular monolithic synthesis, we present a
language-based sound and complete criterion for determining whether or not subspecifications of
the initial specification depend on each other in this section. The subspecifications then induce
independent components of the single system process. With the goal of compositional synthesis
in mind, we intuitively consider subspecifications to be dependent if either synthesizing strate-
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gies for the respective components separately does not preserve realizability or unrealizability
of the original monolithic synthesis task or if deriving a strategy or counterstrategy, respectively,
from the results of the synthesis subtasks fails.
Whether or not strategies for components can be synthesized separately depends on three

requirements: (i) non-contradictory composability of the subresults, i.e., of the strategies for the
individual components, (ii) realization of the full system specification by the parallel compo-
sition of the subresults as well as violation of the full system specification by the extension
of a counterstrategy, and (iii) equirealizability of the initial specification and the component
specifications. Clearly, requirement (i) is a necessary condition for requirement (ii). Note that
these three conditions match the possible pitfalls of modular synthesis outlined in the previous
section: if the three conditions are satisfied, all of the pitfalls are eradicated.
In this section, we formalize these three requirements for soundness and completeness of

modular synthesis and study in which cases they are satisfied. We present a language-based
criterion that, if satisfied, ensures that all three requirements are satisfied for a given specification
and decomposition. Furthermore, we show that for specifications and decompositions satisfying
the criterion, the synthesis task for the initial specification can indeed be split into separate
synthesis tasks for the components.

We formalize the three requirements as follows. Let 𝐿 be a language defining the specification
of the overall system, and let D be a decomposition consisting of 𝑘 components. Let T1, . . . ,T𝑘
be deterministic and complete finite-state transducers representing the subresults of modular
synthesis. Note that these transducers can be both strategy transducers and counterstrategy
transducers, depending on the realizability of the respective synthesis subtask. Equirealizability
is given, i.e., requirement (iii) is satisfied, if 𝐿 is realizable for the whole system, if, and only, if
all component specifications are realizable for their respective components and consequently
if, and only if, all transducers T1, . . . ,T𝑘 are strategy transducers. If all synthesis subtasks
succeeded, i.e., if all transducers represent component strategies, then they are composable, i.e.,
they satisfy requirement (i), if their parallel composition T1 | | . . . | | T𝑘 represents a strategy for
the full system. As defined in Section 2.6.1, their parallel composition thus needs to have a finite
number of states and needs to be both deterministic and complete. Lastly, the subresults form a
solution of the initial synthesis task, i.e., they satisfy requirement (ii), if T1 | | . . . | | T𝑘 realizes 𝐿
if all transducers represent component strategies, and, if one of the transducers represents a
counterstrategy, its extension to the entire system is a counterstrategy for 𝐿.

Note that, if all of the transducers T1, . . . ,T𝑘 represent component strategies, finiteness of the
set of states of the parallel composition T1 | | . . . | | T𝑘 follows immediately from the definition of
the parallel composition of transducers (see Definition 2.12) and the fact that the transducers
T1, . . . ,T𝑘 all have a finite number of states. Furthermore, determinism of T1 | | . . . | | T𝑘 is ensured
by the construction of components. Intuitively, the parallel composition of two deterministic
transducers T1 and T2 can only be nondeterministic if some transition of T1 depends on the
output of T2 or vice versa. By construction, however, the inputs of a component are the inputs
of the overall system that occur in the component specification, and the component outputs are
the outputs of the overall system occurring in the component specification. Hence, the sets of
inputs of T𝑖 and outputs of T3−𝑖 are disjoint for 𝑖 ∈ {1, 2} and therefore a transition of T𝑖 cannot
depend on the output of T3−𝑖 . Formally, we show determinism of T1 | | T2 as follows:
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Lemma 5.2. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let
𝑉 = 𝐼 ∪ 𝑂 . Let 𝑉1 and 𝑉2 be finite sets such that 𝑉1,𝑉2 ⊆ 𝑉 holds. Let 𝐼1 = 𝐼 ∩ 𝑉1, 𝐼2 = 𝐼 ∩ 𝑉2,
𝑂1 = 𝑂 ∩ 𝑉1, and 𝑂2 = 𝑂 ∩ 𝑂2. Let T1 be a deterministic finite-state (2𝐼1, 2𝑂1)-transducer and
let T2 be a deterministic finite-state (2𝐼2, 2𝑂2)-transducer. Then, T1 | | T2 is deterministic.

Proof. Let T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1), T2 = (𝑇2,𝑇2,0, 𝜏2, ℓ2), and T1 | | T2 = (𝑇,𝑇0, 𝜏, ℓ). Since both T1 and T2
are deterministic by assumption, we have |𝑇1,0 | ≤ 1 and |𝑇2,0 | ≤ 1 and thus, by definition of
transducer composition, |𝑇0 | ≤ 1 holds. Let (𝑢, 𝑣), (𝑢′, 𝑣 ′) ∈ 𝑇 , let ] ∈ 2𝐼 , and let 𝑜 ∈ 2𝑂 such that
((𝑢, 𝑣), ], (𝑢′, 𝑣 ′)) ∈ 𝜏 and ((𝑢, 𝑣), ], 𝑜) ∈ ℓ hold. Then, by construction of 𝜏 , there exist 𝑜1 ∈ 2𝑂1

and 𝑜2 ⊆ 2𝑂2 with (𝑢, ]1, 𝑜1) ∈ ℓ1 and (𝑣, ]2, 𝑜2) ∈ ℓ1 such that (𝑢, ]1, 𝑢′) ∈ 𝜏1 and (𝑣, ]2, 𝑣 ′) ∈ 𝜏2
hold, where ]1 := (] ∪ 𝑜2) ∩ 𝐼1 and ]2 = (] ∪ 𝑜1) ∩ 𝐼2. Furthermore, we have (𝑢, ]1, 𝑜 ∩𝑂1) ∈ ℓ1
and (𝑣, ]2, 𝑜 ∩𝑂2) ∈ ℓ1 as well. Since T1 and T2 are deterministic by assumption, 𝑢′ and 𝑣 ′ are
the only successor states of 𝑢 and 𝑣 in T1 and T2 for input ]1 and ]2, respectively. Moreover, 𝑜1
and 𝑜2 are the only outputs of T1 and T2 in 𝑢 and 𝑣 for input ]1 and ]2, respectively. Thus, in
particular, 𝑜 ∩𝑂1 = 𝑜1 and 𝑜 ∩𝑂2 = 𝑜2 hold. By construction of 𝐼1, 𝐼2,𝑂1, and𝑂2, we have 𝐼𝑖 ⊆ 𝐼

and 𝑂𝑖 ⊆ 𝑂 for 𝑖 ∈ {1, 2}. Thus, since 𝐼 ∩ 𝑂 = ∅ holds, it follows that 𝐼𝑖 ∩ 𝑂 𝑗 = ∅ holds for
𝑖, 𝑗 ∈ {1, 2}. In particular, (] ∪𝑜3−𝑖) ∩ 𝐼𝑖 = ] ∩ 𝐼𝑖 holds for 𝑖 ∈ {1, 2}. Hence, 𝑢′ and 𝑣 ′ are the only
successors of 𝑢 and 𝑣 in T1 and T2 for ] ∩ 𝐼1 and ] ∩ 𝐼2, respectively, and therefore (𝑢′, 𝑣 ′) is the
only successor state of (𝑢, 𝑣) in T1 | | T2 for input ]. Furthermore, 𝑜1 and 𝑜2 are the only outputs
of T1 and T2 in 𝑢 and 𝑣 , for ] ∩ 𝐼1 and ] ∩ 𝐼2, respectively, and therefore, since 𝑜 ∩𝑂1 = 𝑜1 and
𝑜 ∩𝑂2 = 𝑜2 hold, 𝑜 is the only output of (𝑢, 𝑣) in T1 | | T2 for input ]. Thus, T is deterministic. □

Therefore, a criterion that, if satisfied, ensures that all three requirements of modular synthe-
sis are met only needs to ensure that (i) if all subresults represent component strategies, then
the parallel composition of the subresults is complete, (ii) if all component strategies represent
component strategies, then their parallel compositions realizes the initial specification and,
otherwise, the extension of the counterstrategy is a counterstrategy for the entire system and
the initial specification, and (iii) the initial specification is equirealizable to the component
specifications. In the remainder of this section, we define two conditions on the component
specifications – or, more precisely, on the components consisting of a specification and an
interface – which, if satisfied, ensure that the three requirements are satisfied. These condi-
tions, non-contradictory languages and independent sublanguages, then allow for defining an
independence criterion that can be utilized for defining a decomposition algorithm that ensures
soundness and completeness of modular synthesis.

5.2.1. Non-contradictory Languages
We first consider the requirement of non-contradictory composability of the component strate-
gies obtained from the synthesis subtasks in modular synthesis. Recall that composability
requires the parallel composition of the transducers representing the substrategies to have a
finite number of states and to be both deterministic and complete. As shown in the previous
section, finiteness of the number of states as well as determinism follows from the definition of
the parallel composition of transducers as well as the definition of component interfaces. Thus,
it remains to consider the completeness of the parallel composition of the transducers.
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Intuitively, the parallel composition of two deterministic and complete transducers can only
be incomplete if, for some input sequence, they produce output sequences that are contradictory
in the sense that they do not agree on shared output variables. Since the transducers represent
the individual component strategies of modular synthesis, they realize the respective component
specifications, and hence all traces produced by them satisfy the component specifications.
Therefore, we can formulate conditions on the traces of the transducers representing the
subresults as conditions on the languages of the component specifications. To relate the component
specification languages, we define the composition of languages. Intuitively, the composition of
two languages 𝐿 and 𝐿′ combines words contained in 𝐿 and 𝐿′ that agree on shared variables.
Formally, we define language composition as follows:

Definition 5.4 (Language Composition).
Let𝑉1 and𝑉2 be finite alphabets. Let 𝐿1 ⊆ (2𝑉1)𝜔 and 𝐿2 ⊆ (2𝑉2)𝜔 be languages. Their parallel
composition 𝐿1 | | 𝐿2 ⊆ (2𝑉1∪𝑉2)𝜔 is defined by

𝐿1 | | 𝐿2 := {𝜎 ∪ 𝜎 ′ | 𝜎 ∈ 𝐿1 ∧ 𝜎 ′ ∈ 𝐿2 ∧ 𝜎 ∩𝑉1 = 𝜎 ′ ∩𝑉1} .

Note that two infinite words 𝜎 ∈ 𝐿1 and 𝜎 ′ ∈ 𝐿2 that do not agree on shared variables are
not contained in the parallel composition 𝐿1 | | 𝐿2 of two languages 𝐿1 and 𝐿2. Then, 𝜎 and 𝜎 ′
define contradicting valuations of some shared variable at some point in time. Thus, in order to
combine 𝜎 and 𝜎 ′, one would need to choose one of the valuations of this variable to obtain
a well-defined infinite word. However, then the parallel composition 𝐿1 | | 𝐿2 may contain a
word that, restricted to the variables of one of the languages, does not lie in this language. More
precisely, if we choose the valuation defined by 𝜎 for the composition of 𝜎 and 𝜎 ′, then 𝐿1 | | 𝐿2
may contain a word 𝜎 ′′ ∈ (2𝑉1∪𝑉2)𝜔 , namely the composition of 𝜎 and 𝜎 ′, such that 𝜎 ′′ ∩𝑉2 ∉ 𝐿2
holds. To avoid this, we, therefore, pose the restriction that combined words need to agree on
shared variables. Indeed, every word in 𝐿1 | | 𝐿2 is then, restricted to the respective variables of
the language, contained in both 𝐿1 and 𝐿2:

Proposition 5.1. Let𝑉1 and𝑉2 be finite alphabets. Let 𝐿1 ⊆ (2𝑉1)𝜔 and 𝐿2 ⊆ (2𝑉2)𝜔 be languages.
Then, for every 𝜎 ∈ 𝐿1 | | 𝐿2, we have (𝜎 ∩𝑉1) ∈ 𝐿1 and (𝜎 ∩𝑉2) ∈ 𝐿2.

Language composition is a first step toward formulating a language-based condition that
ensures the non-contradictory composability of subresults of modular synthesis. By requiring
that, for every input sequence 𝛾 ∈ (2𝐼 )𝜔 of the overall system, there exists a word 𝜎 ∈ 𝐿1 | | 𝐿2
in the parallel composition of 𝐿1 and 𝐿2 that agrees with 𝛾 on the input variables of the system,
we ensure that for every input sequence, there exist matching words in 𝐿1 and 𝐿2 which agree
on shared variables and are thus non-contradictory.

However, while this requirement already ensures non-contradictory composability of words
produced by some strategies realizing 𝐿1 and 𝐿2 for every input sequence of the entire system,
it does not ensure non-contradictory composability of all strategies realizing 𝐿1 and 𝐿2 yet. The
languages 𝐿1 and 𝐿2 might allow for several output sequences for an input sequence, i.e., given
an input sequence 𝛾 ∈ (2𝐼 )𝜔 , there might exist two words 𝜎1, 𝜎 ′1 ∈ 𝐿1 and two words 𝜎2, 𝜎 ′2 ∈ 𝐿2
which all agree with 𝛾 on input variables. As long as one combination of these output sequences
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is non-contradictory in the sense that the words agree on shared variables, then this combination
is contained in 𝐿1 | | 𝐿2. For instance, 𝜎1 ∪ 𝜎2 ∈ 𝐿1 | | 𝐿2 but 𝜎 ′1 ∪ 𝜎 ′2 ∉ 𝐿1 | | 𝐿2 might hold. Since
one of the combinations is contained in 𝐿1 | | 𝐿2, the intuitive requirement presented above is
satisfied for input sequence 𝛾 . Nevertheless, not all strategies realizing 𝐿1 and 𝐿2 are composable
since the strategies producing the output sequences whose combination does not lie in 𝐿1 | | 𝐿2,
i.e., the strategies producing 𝜎 ′1 and 𝜎 ′2, respectively, for input sequence 𝛾 , do not produce
composable output sequences for 𝛾 . Therefore, we need to strengthen the above requirement to
also account for the case where the sublanguages allow for several output sequences for a given
input sequence. Intuitively, we can formulate non-contradictory composability of the subresults
in terms of language composition by requiring that all words in the sublanguages 𝐿1 and 𝐿2 that
agree on shared input variables need to constitute a word in the parallel composition 𝐿1 | | 𝐿2
of 𝐿1 and 𝐿2. Formally:

Definition 5.5 (Non-contradictory Languages).
Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let 𝑉 = 𝐼 ∪ 𝑂 .
Let 𝑉1,𝑉2 ⊆ 𝑉 be finite sets of variables. Let 𝐼1 = 𝐼 ∩𝑉1 and 𝐼2 = 𝐼 ∩𝑉2. Let 𝐿1 ⊆ (2𝑉1)𝜔 and
𝐿2 ⊆ (2𝑉2)𝜔 be languages. Then, 𝐿1 and 𝐿2 are called non-contradictory if, and only if

∀𝜎 ∈ 𝐿1. ∀𝜎 ′ ∈ 𝐿2. (𝜎 ∩ 𝐼2 = 𝜎 ′ ∩ 𝐼1) → 𝜎 ∪ 𝜎 ′ ∈ 𝐿1 | | 𝐿2.

Completeness of the parallel composition of the transducers representing the subresults
of modular synthesis follows immediately if the component specifications constitute non-
contradictory language. Recall that, intuitively, the parallel composition T1 | | T2 of two de-
terministic and complete transducers T1 and T2 realizing languages 𝐿1 and 𝐿2, respectively,
can only be incomplete if there exist traces of T1 and T2 that agree on shared inputs and thus
should be combined into a trace of T1 | | T2 but that do not agree on shared outputs, preventing
composability of the outputs at some point in time. If 𝐿1 and 𝐿2 are non-contradictory, however,
all traces of T1 and T2 lie in 𝐿1 and 𝐿2, respectively. Therefore, all traces of T1 and T2 that agree
on shared inputs also agree on shared outputs by definition of non-contradictory languages,
preventing incompleteness. Formally, completeness of T1 | | T2 can be shown as follows:

Lemma 5.3. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let
𝑉 = 𝐼 ∪ 𝑂 . Let 𝑉1 and 𝑉2 be finite sets with 𝑉1,𝑉2 ⊆ 𝑉 . Let 𝐿1 ⊆ (2𝑉1)𝜔 and 𝐿2 ⊆ (2𝑉2)𝜔
be realizable languages. Let T1 and T2 be deterministic and complete finite-state transducers
realizing 𝐿1 and 𝐿2, respectively. If 𝐿1 and 𝐿2 are non-contradictory, then T1 | | T2 is complete.

Proof. Let T1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1), T2 = (𝑇2,𝑇2,0, 𝜏2, ℓ2), and T1 | | T2 = (𝑇,𝑇0, 𝜏, ℓ2). Let 𝐼1 = 𝐼 ∩ 𝑉1,
𝐼2 = 𝐼 ∩𝑉2,𝑂1 = 𝑂 ∩𝑉1, and𝑂2 = 𝑂 ∩𝑉2. Let (𝑢, 𝑣) ∈ 𝑇 and ] ∈ 2𝐼 be some state of and some and
input valuation of T1 | | T2, respectively. Since both T1 and T2 are complete by assumption, there
exist 𝑢′ ∈ 𝑇1, 𝑣 ′ ∈ 𝑇2, 𝑜1 ∈ 2𝑂1 , and 𝑜2 ∈ 2𝑂2 such that (𝑢, ] ∩ 𝐼1, 𝑢′) ∈ 𝜏1 and (𝑣, ] ∩ 𝐼2, 𝑣 ′) ∈ 𝜏2
as well as (𝑢, ] ∩ 𝐼1, 𝑜1) ∈ ℓ1 and (𝑣, ] ∩ 𝐼2, 𝑜2) ∈ ℓ2 hold. By assumption, 𝐼 ∩ 𝑂 = ∅ holds and
thus, in particular, we have 𝐼𝑖 ∩𝑂 𝑗 = ∅ for all 𝑖, 𝑗 ∈ {1, 2} by construction of 𝐼1, 𝐼2, 𝑂1, and 𝑂2.
Thus, it follows with the definition of the parallel composition of finite-state transducers that
((𝑢, 𝑣), ], (𝑢′, 𝑣 ′)) ∈ 𝜏 holds and therefore T1 | | T2 is transition-complete.
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It remains to show that T1 | | T2 is also labeling-complete and thus, in particular, that there
exists some 𝑜 ∈ 2𝑂 such that ((𝑢, 𝑣), ], 𝑜) ∈ ℓ holds. Since we assume without loss of generality
that all states of a finite-state transducer occur in some of its paths (see Section 2.6.1), there
exists a path 𝜋 of T1 | | T2 that visits (𝑢, 𝑣). Let 𝛾 ∈ (2𝐼 )𝜔 such that 𝜋 ∈ Paths(T1 | | T2, 𝛾) holds
and let 𝜎 ∈ Traces(T1 | | T2, 𝛾) be the trace corresponding to 𝜋 . Similar to the second part
of the proof of Lemma 2.2, we can thus show that there exist paths 𝜋1 ∈ Paths(T1, 𝛾1) and
𝜋2 ∈ Paths(T2, 𝛾2) of T1 and T2 for inputs sequences 𝛾1 ∈ (2𝐼1)𝜔 , 𝛾2 ∈ (2𝐼2)𝜔 such that both
#1(𝜋1

𝑘
) = 𝑖 and #1(𝜋2

𝑘
) hold for some point in time 𝑘 ≥ 0. Furthermore, since 𝐼𝑖 ∩𝑂 𝑗 = ∅ holds

for all 𝑖, 𝑗 ∈ {1, 2} as observed above, it follows that 𝛾𝑖 = 𝛾 ∩ 𝐼𝑖 holds for all 𝑖 ∈ {1, 2}. Let
𝜎 ′ ∈ Traces(T1, 𝛾 ∩ 𝐼1) and 𝜎 ′′ ∈ Traces(T2, 𝛾 ∩ 𝐼2) be the traces corresponding to 𝜋1 and 𝜋2,
respectively. By definition of traces, we have 𝜎 ∩ 𝐼 = 𝛾 as well as 𝜎𝑖 ∩ 𝐼𝑖 = 𝛾 ∩ 𝐼𝑖 for 𝑖 ∈ {1, 2} and
therefore (𝜎 ′ ∩ 𝐼1) ∩ 𝐼2 = (𝜎 ′′ ∩ 𝐼2) ∩ 𝐼1 follows. Furthermore, we have 𝜎𝑖 ∈ (2𝑉𝑖 )𝜔 for 𝑖 ∈ {1, 2}
and thus 𝜎𝑖 ∩ 𝐼𝑖 = 𝜎 ∩ 𝐼 holds by construction of 𝐼𝑖 . Hence, (𝜎 ′ ∩ 𝐼 ) ∩ 𝐼2 = (𝜎 ′′ ∩ 𝐼 ) ∩ 𝐼1 holds and
therefore, since 𝐼1, 𝐼2 ⊆ 𝐼 holds by construction, we have 𝜎 ′ ∩ 𝐼2 = 𝜎 ′′ ∩ 𝐼1. By assumption, T𝑖
realizes 𝐿𝑖 and thus, in particular, 𝜎𝑖 ∈ 𝐿𝑖 holds for all 𝑖 ∈ {1, 2}. Furthermore, 𝐿1 and 𝐿2 are
non-contradictory languages by assumption and therefore 𝜎 ′∪𝜎 ′′ ∈ 𝐿1 | |𝐿2 follows immediately
from the definition of non-contradictory languages. Hence, 𝜎 ′∩𝑉2 = 𝜎 ′′∩𝑉1 holds by definition
of language composition. Thus, in particular, we have 𝜎 ′ ∩𝑂2 = 𝜎 ′′ ∩𝑂1 since𝑂𝑖 ⊆ 𝑉𝑖 holds for
𝑖 ∈ {1, 2} by construction. Therefore, (𝜎 ′ ∩𝑂1) ∩𝑂2 = (𝜎 ′′ ∩𝑂2) ∩𝑂1 follows and thus, since
𝜎 ′
𝑘
∩𝑂1 = 𝑜1 and 𝜎 ′′𝑘 ∩𝑂2 = 𝑜2 hold by construction of 𝜎 ′ and 𝜎 ′′, we have 𝑜1 ∩𝑂2 = 𝑜2 ∩𝑂1.

Hence, there exists some 𝑜 ∈ 2𝑂1∪𝑂2 such that 𝑜1 ∪ 𝑜2 = 𝑜 holds since 𝑜1 ∈ 2𝑂1 and 𝑜2 ∈ 2𝑂2

do not define contradictory valuations of shared output variables. Since 𝐼𝑖 ∩ 𝑂 𝑗 = ∅ holds
for all 𝑖, 𝑗 ∈ {1, 2} as observed above and since both (𝑢, ] ∩ 𝐼1, 𝑜1) ∈ ℓ1 and (𝑣, ] ∩ 𝐼2, 𝑜2) ∈ ℓ2
hold by construction, it follows from the definition of the parallel composition of finite-state
transducers that there is some 𝑜 ∈ 2𝑂1∪𝑂2 such that ((𝑢, 𝑣), ], 𝑜) ∈ 𝜏 holds. Therefore, T1 | | T2 is
labeling-complete as well. □

Hence, Lemmas 5.2 and 5.3 together allow for concluding that the parallel composition
of deterministic and complete finite-state transducers is deterministic and complete as well
and has a finite number of states as long as the languages that the individual transducers
realize are non-contradictory. Therefore, composability of the subresults in modular synthesis,
i.e., requirement (i) for soundness and completeness of modular synthesis, can be ensured by
requiring the languages of the component specifications to be non-contradictory.

5.2.2. Independent Sublanguages
Next, we consider the remaining two requirements, i.e., (ii) realization of the full system
specification by the parallel composition of the subresults if all subresults represent component
strategies and violating of the full system specification by the extension of a component’s
counterstrategy for all possible system behaviors otherwise, and (iii) equirealizability of the
initial specification and the subspecifications. We first focus on requirement (ii). Note that the
requirement of non-contradictory composability of the subresults is a necessary condition for
the first part of requirement (ii). If the subresults cannot be composed, they cannot realize the
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system specification. Consequently, the language-based conditions that ensure that the parallel
composition of the subresults realizes the system specification is closely related to the concept
of non-contradictory languages.

By construction of the modular synthesis approach, the subresults are component strategies
that realize the respective component specification if all synthesis subtasks succeed. Hence,
in this case, the synthesized component strategies produce only computations that lie in
the language of the respective component specification. We thus pose the condition that
the composition of the languages of the component specifications is exactly the language of
the whole system specification, i.e., that the languages of the subspecifications are so-called
sublanguages. Two languages 𝐿1 ⊆ (2𝑉1)𝜔 and 𝐿2 ⊆ (2𝑉2)𝜔 are called sublanguages of a
language 𝐿 ⊆ (2𝑉1∪𝑉2)𝜔 if, and only if, 𝐿1 | | 𝐿2 = 𝐿 holds.
Note that, in general, the fact that two languages 𝐿1 and 𝐿2 are sublanguages of another

language 𝐿 does not necessarily allow for concluding that the parallel composition of strategies 𝑠1
and 𝑠2 realizing 𝐿1 and 𝐿2, respectively, realizes 𝐿. There can be input sequences𝛾 , 𝛾 ′ for 𝑠1 and 𝑠2
that agree on shared input variables but on which 𝑠1 and 𝑠2 produce computations comp(𝑠1, 𝛾)
and comp(𝑠2, 𝛾 ′), respectively, that do not agree on shared output variables. By definition of
language composition, 𝐿1 | | 𝐿2 then does not contain a word that agrees with 𝛾 ∪𝛾 ′ on the input
variables. If 𝐿 does not contain such a word either, 𝐿 is unrealizable, and thus, in particular, the
parallel composition of 𝑠1 and 𝑠2 does not realize 𝐿. Yet, 𝐿1 and 𝐿2 can be sublanguages of 𝐿.
This situation occurs if 𝑠1 and 𝑠2 produce computations that do not agree on shared outputs,
i.e., if 𝑠1 and 𝑠2 are not composable. Hence, we further need to ensure that 𝐿1 and 𝐿2 are also
non-contradictory. Consequently, we define independent sublanguages as follows:

Definition 5.6 (Independent Sublanguages).
Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let 𝑉 = 𝐼 ∪ 𝑂 .
Let 𝑉1 and 𝑉2 be finite sets with 𝑉1,𝑉2 ⊆ 𝑉 . Let 𝐿1 ⊆ (2𝑉1)𝜔 , 𝐿2 ⊆ (2𝑉2)𝜔 , and 𝐿 ⊆ (2𝑉1∪𝑉2)𝜔
be languages. Then, 𝐿1 and 𝐿2 are called independent sublanguages of 𝐿 if, and only if, 𝐿1
and 𝐿2 are non-contradictory and 𝐿1 | | 𝐿2 = 𝐿 holds.

If the languages of the component specifications are independent sublanguages of the initial
specification, it follows immediately that their parallel composition is a strategy for the full
system that realizes the initial specification. Since the languages of the component specifications
are non-contradictory, the parallel composition of the component strategies is deterministic
and complete by Lemmas 5.2 and 5.3. Furthermore, every trace of the parallel compositions is,
restricted to the variables of the respective component, a trace of every component strategy
by Lemma 2.2. Since the component strategies realize the component specifications and since the
component specifications are sublanguages of the initial specification, the parallel composition
of the component strategies realizes the initial specification. Formally:

Lemma 5.4. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let
𝑉 = 𝐼 ∪𝑂 . Let𝑉1 and𝑉2 be finite sets such that𝑉1,𝑉2 ⊆ 𝑉 holds. Let 𝐿 ⊆ (2𝑉 )𝜔 be a language. Let
𝐿1 ⊆ (2𝑉1)𝜔 and 𝐿2 ⊆ (2𝑉2)𝜔 be realizable languages. Let T1 and T2 be deterministic and complete
finite-state transducers realizing 𝐿1 and 𝐿2, respectively. If 𝐿1 and 𝐿2 are independent sublanguages
of 𝐿, then T1 | | T2 realizes 𝐿.
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Proof. Since T1 and T2 are deterministic and complete finite-state transducers realizing 𝐿1 and 𝐿2,
respectively, and since 𝐿1 and 𝐿2 are independent and thus non-contradictory by assumption,
it follows with Lemmas 5.2 and 5.3 that T1 | | T2 is deterministic and complete as well. Hence,
it remains to show that Traces(T1 | | T2) ⊆ 𝐿 holds. Let 𝜎 ∈ Traces(T1 | | T2). By definition
of the parallel composition of transducers, T1 | | T2 is a (2(𝐼1∪𝐼2 )\(𝑂1∪𝑂2 ) , 2𝑂1∪𝑂2)-transducer
and thus Traces(T1 | | T2) ⊆ (2𝑉1∪𝑉2)𝜔 holds. Since T1 | | T2 is complete, it produces infinite
traces only. Furthermore, since 𝐼 ∩𝑂 = ∅ and both 𝑉1 ⊆ 𝑉 and 𝑉2 ⊆ 𝑉 hold by assumption,
𝜎 ∩𝑉1 ∈ Traces(T1) and 𝜎 ∩𝑉2 ∈ Traces(T2) follows with Lemma 2.2. Since T1 and T2 realize 𝐿1
and 𝐿2, respectively, we have (𝜎∩𝑉1) ∈ 𝐿1 and (𝜎∩𝑉2) ∈ 𝐿2. Let 𝜎 ′ := 𝜎∩𝑉1 and 𝜎 ′′ := 𝜎∩𝑉2. By
construction, 𝜎 ′ and 𝜎 ′′ agree on shared variables. Hence, by definition of language composition,
𝜎 ′ ∪ 𝜎 ′′ ∈ 𝐿1 | | 𝐿2 holds. Furthermore, we have 𝜎 = 𝜎 ′ ∪ 𝜎 ′′ since 𝜎 ∈ (2𝑉1∪𝑉2)𝜔 holds and
since 𝜎 ′ and 𝜎 ′′ agree on shared variables. Consequently, 𝜎 ∈ 𝐿1 | | 𝐿2 holds. Since 𝐿1 and 𝐿2
are independent sublanguages of 𝐿 by assumption, we have 𝐿1 | | 𝐿2 = 𝐿 and therefore 𝜎 ∈ 𝐿
follows. Since we chose the trace 𝜎 ∈ Traces(T1 | | T2) arbitrarily, we have Traces(T1 | | T2) ⊆ 𝐿.
Therefore, T1 | | T2 indeed realizes 𝐿. □

Hence, Lemma 5.4 together with Lemmas 5.2 and 5.3 allows for concluding that, if all synthesis
subtasks in modular synthesis succeed and thus produce finite-state transducers representing
component strategies, the subresults, i.e., the separately synthesized component strategies, are
composable without contradiction and that their parallel composition realizes the initial specifi-
cation as long as the languages of the component specifications are independent sublanguages
of the initial specification, i.e., as long as they are non-contradictory and their composition is
precisely the language of the initial specification. Therefore, requiring the languages of the
component specifications in modular synthesis to be independent sublanguages of the initial
specification ensures that both requirement (i) and the first part of requirement (ii) for soundness
and completeness of modular synthesis are satisfied.
Furthermore, if two languages 𝐿1 ∈ (2𝑉1)𝜔 and 𝐿2 ∈ (2𝑉2)𝜔 are independent sublanguages

of a language 𝐿 ∈ (2𝑉 )𝜔 , then it follows from the definition of language composition that
every word that lies in 𝐿 also lies, restricted to the variables of the respective sublanguage,
in 𝐿𝑖 for 𝑖 ∈ {1, 2}. Therefore, Corollary 5.1 allows for concluding that the counterstrategy
extension according to Definition 5.3 of a counterstrategy for one of the languages 𝐿1 and 𝐿2 is
a counterstrategy for the language 𝐿. Formally:

Lemma 5.5. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let
𝑉 = 𝐼 ∪𝑂 . Let𝑉1 and𝑉2 be finite sets such that𝑉1,𝑉2 ⊆ 𝑉 holds. Let 𝐿 ⊆ (2𝑉 )𝜔 , 𝐿1 ⊆ (2𝑉1)𝜔 , and
𝐿2 ⊆ (2𝑉2)𝜔 be languages. Suppose that language 𝐿𝑖 is unrealizable for some 𝑖 ∈ {1, 2} and let T 𝑐

1
be a counterstrategy transducer for 𝐿𝑖 . If 𝐿1 and 𝐿2 are independent sublanguages of 𝐿, then the
counterstrategy extension T 𝑐 of T 𝑐

𝑖 to 𝐼 and 𝑂 is a counterstrategy for 𝐿.

Proof. Let 𝜎 ∈ 𝐿 be some word that lies in 𝐿. Since 𝐿1 and 𝐿2 are independent sublanguages of 𝐿
by assumption, particularly 𝐿1 | | 𝐿2 = 𝐿 holds. Thus, we have 𝜎 ∈ 𝐿1 | | 𝐿2 as well. Hence, we
have, in particular, (𝜎 ∩𝑉𝑖) ∈ 𝐿𝑖 by Proposition 5.1. Since we chose the word 𝜎 ∈ 𝐿 arbitrarily,
{𝜎 ∩𝑉𝑖 | 𝜎 ∈ 𝐿} ⊆ 𝐿𝑖 follows. Hence, by Corollary 5.1, the counterstrategy extension T 𝑐

constructed according to Definition 5.3 is a counterstrategy transducer for 𝐿. □
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Thus, if a synthesis subtask in modular synthesis fails and a counterstrategy is computed,
then the extension of this counterstrategy to the full system is a counterstrategy for the initial
specification, i.e., it violates the initial specification for all possible system behavior, as long
as the component specifications are (independent) sublanguages of the initial specification.
Therefore, requiring the languages of the component specifications in modular synthesis to be
independent sublanguages of the initial specification further ensures that the second part of
requirement (ii) for soundness and completeness of modular synthesis is satisfied.
In the following, we consider requirement (iii) for soundness and completeness of modular

synthesis, i.e., equirealizability of the initial specification and all component specifications.
Relying on the previous results introduced for requirement (ii), we show that equirealizability
is insured if the languages of the component specifications are independent sublanguages of
the initial specification. Particularly, it then follows immediately from Lemma 5.4 that the
initial specification is realizable if the component specifications are. If, in contrast, one of the
component specifications is unrealizable, then Lemma 5.5 allows for concluding unrealizability
of the initial specification. Formally:

Lemma 5.6. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let
𝑉 = 𝐼 ∪ 𝑂 . Let 𝑉1 and 𝑉2 be finite sets such that 𝑉1,𝑉2 ⊆ 𝑉 . Let 𝐿 ⊆ (2𝑉 )𝜔 , 𝐿1 ⊆ (2𝑉1)𝜔 , and
𝐿2 ⊆ (2𝑉2)𝜔 be languages. If 𝐿1 and 𝐿2 are independent sublanguages of 𝐿, then 𝐿 is realizable if,
and only if, both 𝐿1 and 𝐿2 are realizable.

Proof. First, let both languages 𝐿1 and 𝐿2 be realizable. Then, there exist deterministic and
complete finite-state transducers T1 and T2 realizing 𝐿1 and 𝐿2, respectively. By Lemma 5.4, their
parallel composition T1 | | T2 realizes 𝐿 since 𝐿1 and 𝐿2 are independent sublanguages of 𝐿 by
assumption. Therefore, 𝐿 is realizable. Second, let 𝐿𝑖 be unrealizable for some 𝑖 ∈ {1, 2}. Then,
there exists a finite-state counterstrategy (2𝑉𝑖∩𝑂 , 2𝑉𝑖∩𝐼 )-transducer T 𝑐

𝑖 for 𝐿𝑖 . We extend T 𝑐
𝑖

to a (2𝑂 , 2𝐼 )-transducer T 𝑐 as described in Definition 5.3. By Lemma 5.5, the transducer T 𝑐

represents a counterstrategy transducer for 𝐿. Therefore, 𝐿 is unrealizable. □

Hence, requiring the languages of the component specifications in modular synthesis to
be independent sublanguages of the initial specification also ensures that requirement (iii) is
satisfied. Therefore, together with Lemmas 5.2 to 5.5 it follows that all three requirements for
soundless and completeness of modular synthesis are satisfied if the languages of the component
specifications are independent sublanguages of the initial specification.

5.2.3. Independence Criterion
Utilizing the language-based conditions introduced above, namely non-contradictory languages
and sublanguages, joined in the notion of independent sublanguages, we can now state the
language-based independence criterion for modular synthesis of monolithic systems. Recall that
a component 𝑐 = (𝐿𝑐 , 𝐼𝑐 ,𝑂𝑐) consists of a subspecification, here represented by a language 𝐿𝑐 , and
sets of component inputs 𝐼𝑐 and component outputs𝑂𝑐 . Note that, by definition of components,
𝐼𝑐 ∩ 𝑂𝑐 = ∅ holds and that 𝐿𝑐 is a specification over component inputs and outputs, i.e.,
𝐿𝑐 ⊆ (2𝑉𝑐 )𝜔 , where 𝑉𝑐 = 𝐼𝑐 ∪𝑂𝑐 . We define the independence of a decomposition as follows:
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Definition 5.7 (Independence Criterion).
Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅ and let 𝑉 = 𝐼 ∪𝑂 . Let
D = ⟨𝑐1, . . . , 𝑐𝑛⟩ be a decomposition of (𝐼 ,𝑂) with 𝑐𝑖 = (𝐿𝑖 , 𝐼𝑖 ,𝑂𝑖) for 𝑐𝑖 ∈ D. Let 𝐿 ⊆ (2𝑉 )𝜔
be a language. Then, D is called an independent decomposition if, and only if, 𝐿1, . . ., 𝐿𝑛 are
independent sublanguages of 𝐿.

In the previous sections, we have shown that if the languages component specifications
in modular synthesis are independent sublanguages of the initial specification, then (i) if all
component specifications are realizable, then component strategies realizing them are compos-
able, (ii) the parallel composition of the component strategies realizes the initial specification
if all component specifications are realizable and, otherwise, the extension of a component’s
counterstrategy is a counterstrategy for the initial specification, and (iii) the initial specification
and all component specifications are equirealizable. These three properties of the components
and their specifications eradicate the pitfalls in modular synthesis that can prevent soundness
and completeness. Therefore, modular synthesis as described in Algorithm 5.1 is sound and
complete if the decomposition adheres to the language-based independence criterion:

Theorem 5.1 (Soundness and Completeness). Let 𝒜 be a monolithic architecture with input
variables 𝐼 and output variables 𝑂 . Let 𝐿 ⊆ (2𝐼∪𝑂 )𝜔 be a language. Suppose that Algorithm 5.1
utilizes a decomposition algorithm producing an independent decomposition D according to the
language-based independence criterion. If modular synthesis returns (true, T ) on input 𝐿, 𝐼 , 𝑂 ,
then T realizes 𝐿. If it returns (false, T 𝑐 ), then T 𝑐 is a counterstrategy transducer for 𝐿.

Proof. First, suppose that modular synthesis returns (true, T ) on input 𝐿, 𝐼 , 𝑂 . Then, none of
the component specifications of the components in D is unrealizable as otherwise the return
statement in line 11 in Algorithm 5.1 is not reached. By assumption, the decomposition algorithm
produces a decomposition that adheres to the language-based independence criterion. Hence,
the component specifications are independent sublanguages of the initial specification. From
recursively applying Lemma 5.6 it thus follows that 𝐿 is realizable as well. Furthermore, since the
component strategies are deterministic and complete finite-state transducers by construction, it
follows from Lemma 5.4 that the parallel composition of the component strategies realizes 𝐿.
Since T is the parallel composition of all component strategies, T realizes 𝐿.

Second, suppose thatmodular synthesis returns (false, T 𝑐 ) on input𝐿, 𝐼 ,𝑂 . Then, there exists
a component 𝑐𝑖 ∈ D with unrealizable component specification 𝐿𝑖 . Since the decomposition
algorithm produces decompositions that adhere to the independence criterion by assumption,
the component specifications are independent sublanguages of the initial specification. Thus,
from recursively applying Lemma 5.6, it follows that 𝐿 is unrealizable as well. Moreover, we
obtain with Lemma 5.5 that extending the counterstrategy transducer T 𝑐

𝑖 for 𝐿𝑖 as described in
Definition 5.3, which is returned by Algorithm 5.1, is a counterstrategy transducer T 𝑐 for 𝐿. □

The language-based independence criterion from Definition 5.7 thus allows for characterizing
decompositions of a monolithic system that ensure soundness and completeness of modular
synthesis. Hence, as long as a decomposition algorithm produces components that are indepen-
dent according to the language-based independence criterion, i.e., as long as the component
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specifications are independent sublanguages of the initial system specification, the decomposi-
tion algorithm can be safely used in modular synthesis. In the following section, we introduce
an approximative variant of the independent sublanguages criterion that is specifically tailored
to specifications given as LTL formulas.

5.3. Independent LTL Specifications
In this section, we lift the language-based independence criterion to specifications given as LTL
formulas. Hence, we formulate the notion of independence directly on the LTL specification
and not on its language. This allows for determining whether or not a decomposition ensures
soundness and completeness of modular synthesis without computing the language of the
LTL specification. Afterward, we present a decomposition algorithm for LTL specifications
that produces decompositions that, by construction, adhere to the LTL independence criterion.
Thus, when utilizing this decomposition algorithm in modular synthesis for LTL specifications,
soundness and completeness are guaranteed.
The LTL independence criterion is vaguely inspired by Dureja and Rozier’s work on more

scalable LTL model checking [DR18]. They introduce a preprocessing algorithm for model
checking that analyzes dependencies between the properties that need to be checked. For
instance, they search for dependencies of the form 𝜑1 → 𝜑2, which allows them to cancel the
model checking task for𝜑2 if the one for𝜑1 succeeded. We lift the idea of analyzing dependencies
from model checking to synthesis. However, due to the different nature of compositional model
checking and synthesis, the dependency analysis in our approach differs inherently from the
one presented in [DR18] in both their goal and their realization.

For ease of presentation, we assume in the remainder of this chapter that the language L(𝜑)
of an LTL formula 𝜑 over atomic propositions 𝑉 reaches over prop(𝜑) ⊆ 𝑉 , i.e., the atomic
propositions that actually occur in 𝜑 , instead of the full set 𝑉 . Hence, L(𝜑) ⊆ (2prop (𝜑 ) )𝜔
holds. Note that such a language can easily be extended to a language 𝐿 ⊆ (2𝑉 )𝜔 that ranges
over the full set of atomic propositions: 𝐿 =

{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩ prop(𝜑) ∈ L(𝜑)

}
. Furthermore, a

transducer that realizesL(𝜑) can easily be extended to a transducer realizing 𝐿 using transducer
extension (see Definition 5.3), i.e., by, intuitively, ignoring inputs in 𝑉 \ prop(𝜑) and choosing
arbitrary valuations for outputs in 𝑉 \ prop(𝜑). Since clearly L(𝜑) = {𝜎 ∩ 𝐿 | 𝜎 ∈ 𝐿} holds by
construction of 𝐿, it follows with Lemma 5.1 that the extended transducer realizes 𝐿.

5.3.1. Syntactic LTL Independence
The main idea of the notion of independence for LTL specifications is to analyze the initial
LTL formula as well as the LTL component specifications syntactically in order to determine
whether or not a decomposition is independent. This eradicates the need of computing the
language of the LTL specification to determine whether or not a decompositions is independent
and thus, in particular, no checks for language containment are needed.

For the syntactic specification analysis, we focus on conjuncts of the LTL formula representing
the initial specification because of convenient properties of their semantics. Given a conjunctive
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LTL formula𝜑 = 𝜑1∧. . .∧𝜑𝑚 with𝑚 conjuncts, it follows from the semantics of conjunction that
the languages L(𝜑1), . . . ,L(𝜑𝑚) of the conjuncts of 𝜑 form sublanguages of the language L(𝜑)
of the initial specification 𝜑 . Formally:

Lemma 5.7. Let 𝜑 = 𝜑1 ∧ 𝜑2 be an LTL formula. Then, L(𝜑1) | | L(𝜑2) = L(𝜑).

Proof. First, let 𝜎 ∈ L(𝜑) be some infinite word satisfying 𝜑 . For all 𝑖 ∈ {1, 2}, the satisfaction
of conjunct 𝜑𝑖 of 𝜑 only depends on the variables occurring in 𝜑𝑖 and thus on the variables in the
set prop(𝜑𝑖). Thus, by the semantics of conjunction, 𝜎 ∩prop(𝜑𝑖) ∈ L(𝜑𝑖) holds for all 𝑖 ∈ {1, 2}.
Since clearly (𝜎 ∩ prop(𝜑1)) ∩ prop(𝜑2) = (𝜎 ∩ prop(𝜑2)) ∩ prop(𝜑1) holds, the sequences
𝜎 ∩ prop(𝜑1) and 𝜎 ∩ prop(𝜑2) do not define contradictory valuations for shared variables and
therefore (𝜎 ∩prop(𝜑1)) ∪ (𝜎 ∩prop(𝜑2)) ∈ L(𝜑1) | | L(𝜑2) follows. Furthermore, since we have
prop(𝜑1) ∪ prop(𝜑2) = prop(𝜑) by definition of 𝜑 , we have 𝜎 = (𝜎 ∩ prop(𝜑1)) ∪ (𝜎 ∩ prop(𝜑2)).
Therefore, 𝜎 ∈ L(𝜑1) | | L(𝜑2) follows. Since we chose the word 𝜎 ∈ L(𝜑) satisfying 𝜑

arbitrarily, we have L(𝜑) ⊆ L(𝜑1) | | L(𝜑2).
Next, let 𝜎 ∈ L(𝜑1) | | L(𝜑2). Then, there are infinite words 𝜎 ′ ∈ L(𝜑1) and 𝜎 ′′ ∈ L(𝜑2) with

𝜎 ′ ∩ prop(𝜑2) = 𝜎 ′′ ∩ prop(𝜑1) and 𝜎 = 𝜎 ′ ∪ 𝜎 ′′. Thus, in particular both 𝜎 ∩ prop(𝜑1) ∈ L(𝜑1)
and 𝜎 ∩ prop(𝜑2) ∈ L(𝜑2) hold. Therefore, 𝜎 ∈ L(𝜑1 ∧ 𝜑2) follows immediately with the
semantics of conjunction and thus 𝜎 ∈ L(𝜑) holds. Since we chose the word 𝜎 ∈ L(𝜑1) | | L(𝜑2)
arbitrarily, L(𝜑) ⊆ L(𝜑1) | | L(𝜑2) ⊆ L(𝜑) follows. □

Recall that the language-based independence criterion introduced in Section 5.2 further
requires that the languages of the component specifications are non-contradictory. In terms of
LTL formulas, non-contradictoriness of the languages of subspecifications can be guaranteed if
the formulas do not share output variables:

Lemma 5.8. Let 𝐼 and𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅. Let𝑉1 and𝑉2
be finite sets with𝑉1,𝑉2 ⊆ 𝐼 ∪𝑂 . Let 𝜑1 and 𝜑2 be LTL formulas over atomic propositions𝑉1 and𝑉2,
respectively. If prop(𝜑1) ∩ prop(𝜑2) ⊆ 𝐼 holds, then L(𝜑1) and L(𝜑2) are non-contradictory.

Proof. Let 𝐼1 = 𝐼 ∩ prop(𝜑1), 𝐼2 = 𝐼 ∩ prop(𝜑2), 𝑂1 = 𝑂 ∩ prop(𝜑1), and 𝑂2 = 𝑂 ∩ prop(𝜑2)
Let 𝜎 ∈ L(𝜑1) and 𝜎 ′ ∈ L(𝜑2) be infinite words satisfying 𝜑1 and 𝜑2, respectively. Since
prop(𝜑1) ∩ prop(𝜑2) ⊆ 𝐼 holds by assumption, 𝜎 and 𝜎 ′ do not share output variables and hence
𝜎 ∩ 𝑂2 = 𝜎 ′ ∩ 𝑂1 follows. If additionally 𝜎 ∩ 𝐼2 = 𝜎 ′ ∩ 𝐼1 holds, then 𝜎 and 𝜎 ′ thus agree
on all shared variables, i.e., 𝜎 ∩ prop(𝜑2) = 𝜎 ′ ∩ prop(𝜑1). Hence, by definition of language
composition, 𝜎∪𝜎 ′ ∈ L(𝜑1) | | L(𝜑2) and thereforeL(𝜑1) andL(𝜑2) are non-contradictory. □

Thus, if the conjuncts of an LTL specifications for the whole system do not share output
variables, then their languages are independent sublanguages according to Definition 5.6. They
are sublanguages of the initial specification by Lemma 5.7, and they are non-contradictory by
Lemma 5.8. We can thus lift the language-based independence criterion from Definition 5.7 to
specifications given as LTL formulas by requiring the component specifications to be conjuncts
of the specification for the whole system and to not share output variables. It then follows
immediately from Lemma 5.7 and Lemma 5.8 that a decomposition that ensures that the compo-
nent specifications are the conjuncts of the initial specification and if they do not share output
variables is independent according to the language-based independence criterion:
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Theorem 5.2. Let 𝐼 and𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅. Let 𝜑 be an
LTL specification over atomic propositions 𝐼 ∪𝑂 . Let D = ⟨𝑐1, . . . , 𝑐𝑛⟩ be a decomposition of (𝐼 ,𝑂)
with 𝑐𝑖 = (𝜓𝑖 , 𝐼𝑖 ,𝑂𝑖) for all 𝑐𝑖 ∈ D. If 𝜑 =

∧
1≤𝑖≤𝑛𝜓𝑖 and if 𝑂𝑖 ∩𝑂 𝑗 = ∅ holds for all 𝑖 ≠ 𝑗 with

1 ≤ 𝑖, 𝑗 ≤ 𝑛, then the decomposition D′ = ⟨𝑐′1, . . . , 𝑐′𝑛⟩ with 𝑐′𝑖 = (L(𝜓𝑖), 𝐼𝑖 ,𝑂𝑖) for all 𝑐′𝑖 ∈ D′ is
independent according to the language-based independence criterion.

Therefore, we also call decompositions of LTL formulas that satisfy the above syntactic
properties syntactically independent. Since syntactical independence implies language-based
independence, we can utilize the results from Section 5.2 to reason about such syntactic decom-
positions of specifications given as LTL formulas. In particular, it follows from Theorem 5.1
that modular synthesis is sound and complete for decompositions of LTL specifications that
ensure that the components do not share output variables and that their specifications are the
conjuncts of the initial specification:
Corollary 5.2 (Soundness and Completeness). Let𝒜 be a monolithic architecture with input
variables 𝐼 and output variables𝑂 . Let 𝜑 be an LTL formula over atomic proposition 𝐼 ∪𝑂 . Suppose
that Algorithm 5.1 utilizes a decomposition algorithm producing a decomposition D = ⟨𝑐1, . . . , 𝑐𝑛⟩
with 𝑐𝑖 = (𝜓𝑖 , 𝐼𝑖 ,𝑂𝑖) for all 𝑐𝑖 ∈ D such that 𝜑 =

∧
1≤𝑖≤𝑛𝜓𝑖 and 𝑂𝑖 ∩𝑂 𝑗 = ∅ holds for all 𝑖 ≠ 𝑗

with 1 ≤ 𝑖, 𝑗 ≤ 𝑛. If modular synthesis returns (true, T ) on input 𝐿, 𝐼 , 𝑂 , then T realizes 𝐿. If it
returns (false, T 𝑐 ), then T 𝑐 is a counterstrategy transducer for 𝐿.

There exist decompositions of LTL formulas that satisfy the language-based independence
criterion but not the syntactic independence criterion. Consider, for instance, for the LTL formula
𝜑 = 𝑜1∧ ((𝑜1∨¬𝑜1) → 𝑜2), where both𝑜1 and𝑜2 are output variables. The languagesL( 𝑜1)
and L( 𝑜2) form independent sublanguages of L(𝜑) since the conjunct ((𝑜1 ∨ ¬𝑜1) → 𝑜2)
is equivalent to 𝑜2. Syntactic independence, in contrast, does not take the equivalence into
account. Therefore, it would not detect that 𝑜1 and 𝑜2 are independent.
However, as LTL-based independence is, in contrast to language-based independence, a

purely syntactic criterion, it is easy to determine whether or not a decomposition is syntactically
independent. In particular, no language containment check is required. Hence, syntactic
LTL independence can be seen as a simple and efficient approximation of language-based
independence. In the following, we present a decomposition algorithm for specifications given
as LTL formulas that produces syntactically independent decompositions only.

5.3.2. LTL Decomposition Algorithm
A decomposition algorithm for LTL formulas that produces syntactically independent decom-
positions only needs to construct components such that the component specifications (i) are
conjuncts of the initial specification and (ii) do not share output variables. Hence, we present
a decomposition algorithm that determines which conjuncts of an LTL formula share output
variables and group them into component specifications. The component specifications are thus
conjuncts of conjuncts of the initial specification, and therefore the component specifications
can be seen as conjuncts of the initial formula as well. To determine which conjuncts of an
LTL formula 𝜑 = 𝜑1 ∧ . . . ∧ 𝜑𝑚 share output variables, we build the dependency graph of the
conjuncts of 𝜑 based on the output variables occurring in the conjuncts:
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Algorithm 5.2: LTL Decomposition Algorithm
Input: 𝜑 : LTL, I: List Variable, O: List Variable
Output :components: List (LTL, List Variable, List Variable)

1 𝜑 ← rewrite(𝜑)
2 formulas← removeTopLevelConjunction(𝜑)
3 dependencyGraph← buildDependencyGraph(𝜑 , O)
4 cc← dependencyGraph.connectedComponents()
5 subspecs← [|cc|+1]: List LTL // LTL list of length |cc|+1, initialized with true

6 foreach 𝜑𝑖 ∈ formulas do
7 propositions← getPropositions(𝜑𝑖)
8 foreach (𝜓 ,vars) ∈ zip(subspecs, cc ++ [I]) do
9 if propositions ∩ vars ≠ ∅ then

10 𝜓 ←𝜓 ∧ 𝜑𝑖
11 break
12 components← []: buildComponents(subspecs)
13 return components

Definition 5.8 (Conjunct Dependency Graph).
Let 𝐼 and𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅. Let 𝜑 = 𝜑1∧ . . .∧𝜑𝑚 be
an LTL formula over atomic propositions 𝐼 ∪𝑂 . The conjunct dependency graph D𝜑 = (V, E)
of 𝜑 is defined by V = 𝑂 and (𝑎, 𝑏) ∈ E if, and only if, 𝑎 ≠ 𝑏 and both 𝑎 ∈ prop(𝜑𝑖) and
𝑏 ∈ prop(𝜑𝑖) hold for some 1 ≤ 𝑖 ≤ 𝑚.

Hence, the output variables represent the nodes of the conjunct dependency graph D𝜑 .
Intuitively, two output variables 𝑎, 𝑏 ∈ 𝑂 are connected inD𝜑 if they occur in the same conjunct
of 𝜑 . Therefore, two output variables 𝑎, 𝑏 ∈ 𝑂 that are contained in the same connected
component ofD𝜑 depend on each other in the sense that they either occur in the same conjunct
of 𝜑 or that they occur in conjuncts that are “connected” by other output variables. Hence, to
ensure that component specifications do not share output variables, conjuncts containing 𝑎

or 𝑏 need to be assigned to the same component specification. If the output variables of two
conjuncts are contained in different connected components ofD𝜑 , however, they are not linked
via conjuncts. Therefore, they can be assigned to different components while still ensuring
that the components are independent according to the LTL independence criterion. Hence,
strategies for them can be synthesized separately.

Algorithm 5.2 describes how an LTL formula 𝜑 with inputs 𝐼 and outputs 𝑂 can decomposed
into independent components. First, the formula is rewritten in conjunctive form (line 1). This
can be done by, e.g., applying distributivity and pushing temporal operators inwards whenever
possible. The rewriting is done in order to maximize the number of top-level conjuncts since the
LTL decomposition algorithm only decomposes specifications at conjunctions. Note, however,
that the rewriting step is not necessary for the correctness of Algorithm 5.2; it only allows
for finding more fine-grained decompositions. Next, the rewritten formula is split into its
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conjuncts (line 2) which serve as potential subspecifications. Then, the dependency graph of
the conjuncts is built (line 3) and its connected components are computed (line 4). The former
follows a simple implementation of the construction of the conjunct dependency graph based
on Definition 5.8. The latter employs a standard depth-first search (DFS)-based algorithm for
finding connected components such as the one described by Hopcroft and Tarjan [HT73].
The LTL decomposition algorithm then proceeds with computing subspecifications that

do not share output variables from the list of conjuncts (lines 5 to 11). It iterates through all
conjuncts 𝜑𝑖 of 𝜑 (line 6) and computes its propositions prop(𝜑𝑖) (line 7). It then considers all
pairs of already computed subspecifications 𝜓 and variable sets vars of either a connected
component or all input variables (line 8). Note here that given two lists 𝑙 and 𝑙 ′ of length |𝑙 |
and |𝑙 ′ |, respectively, zip returns a list 𝑙 ′′ of tuples of elements of 𝑙 and 𝑙 ′ such that 𝑙 ′′𝑗 := (𝑙 𝑗 , 𝑙 ′𝑗 )
holds for all 1 ≤ 𝑗 ≤ min{|𝑙 |, |𝑙 ′ |}, where 𝑙 𝑗 denotes the 𝑗-th entry of a list 𝑙 . If the considered
variable set vars shares variables with prop(𝜑𝑖), then 𝜑𝑖 is added as a conjunct to the currently
considered subspecification and the iteration over the pairs is stopped (lines 9 to 11). Hence,
the two foreach-loops successively construct and refine subspecifications for all connected
components of the conjunct dependency graph D𝜑 of 𝜑 as well as all inputs by adding all
conjuncts containing propositions that lie in the respective connected component or that are an
input variable. We also consider the set of all input variables to ensure that conjuncts of 𝜑 that
do not contain output variables are contained in at least one subspecification. By construction of
the conjunct dependency graph, every conjunct can only share variables with a single connected
component. Yet, since we also consider all input variables, a conjunct can share variables with
both a connected component and the input variables. To ensure that every conjunct is contained
in at most one subspecification, we thus employ a break statement (line 11).
Lastly, Algorithm 5.2, defines the components according to the computed subspecifica-

tions (line 12). That is, for each subspecification 𝜓𝑖 , it computes the propositions prop(𝜓𝑖)
of𝜓𝑖 and, based on these, the inputs and outputs of the component. The component inputs 𝐼𝑖
are the input variables occurring in 𝜓𝑖 , i.e., 𝐼𝑖 = prop(𝜓𝑖) ∩ 𝐼 , and the component outputs 𝑂𝑖

are the output variables occurring in 𝜓𝑖 , i.e., 𝑂𝑖 = prop(𝜓𝑖) ∩ 𝑂 . The component is then de-
fined by (𝜓𝑖 , 𝐼𝑖 ,𝑂𝑖) After computing the full components from the subspecifications, the LTL
decomposition algorithm returns the list of components (line 13).

Example 5.1. Consider the LTL formula 𝜑 = (𝑖1 → 𝑜1) ∧ 𝑜2 ∧ (𝑜3U(𝑖2 ∧ 𝑜2)), where
𝐼 = {𝑖1, 𝑖2} and𝑂 = {𝑜1, 𝑜2, 𝑜3}. It is in conjunctive form and thus does no need to be rewritten. It
consists of the three conjuncts𝜑1 = (𝑖1 → 𝑜1), 𝜑2 = 𝑜2, and𝜑3 = 𝑜3U(𝑖2∧𝑜2). The conjunct
dependency graph has three nodes𝑜1, 𝑜2, and𝑜3 and there exists an edge between𝑜2 and𝑜3 due to
conjunct𝜑3. Hence, the connected components are given by {𝑜1} and {𝑜2, 𝑜3}. The only conjunct
that shares variables with the connected component {𝑜1} is 𝜑1 and thus the subspecification
for {𝑜1} is given by𝜓1 = (𝑖1 → 𝑜1). Both 𝜑2 and 𝜑3 share variables with {𝑜2, 𝑜3} and therefore
the subspecification for the second component is given by 𝜓2 = 𝑜2 ∧ (𝑜3U(𝑖2 ∧ 𝑜2)). This
results in the two components 𝑐1 = (𝜓1, {𝑖1}, {𝑜1}) and 𝑐2 = (𝜓2, {𝑖2}, {𝑜2, 𝑜3}). △

Algorithm 5.2 then indeed computes a decomposition of (𝐼 ,𝑂) that is syntactically inde-
pendent, i.e., that ensures that the components do not share output variables and that their
specifications are the conjuncts of the initial specification:
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Lemma 5.9. Let𝒜 be a monolithic architecture with input variables 𝐼 and output variables 𝑂 .
Let 𝑉 = 𝐼 ∪𝑂 . Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Suppose that Algorithm 5.2
terminates with a decomposition D = ⟨𝑐1, . . . , 𝑐𝑛⟩ for input 𝜑 , 𝐼 , 𝑂 with 𝑐𝑖 = (𝜓𝑖 , 𝐼𝑖 ,𝑂𝑖) for all
𝑐𝑖 ∈ D. Then, 𝜑 =

∧
1≤𝑖≤𝑛𝜓𝑖 and 𝑂𝑖 ∩𝑂 𝑗 = ∅ holds for all 𝑖 ≠ 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Proof. Observe that rewriting𝜑 into conjunctive form does not alter its language. Thus, we use𝜑
and the rewritten formula synonymously in the following. Algorithm 5.2 builds the conjunct
dependency graphD𝜑 according to Definition 5.8 and computes its connected components. The
algorithm then iterates over all conjuncts of 𝜑 and assigns them to the subspecifications mapped
to connected components and the set of input variables they share variables with. Thus, since
the output variables 𝑂 constitute the nodes of D𝜑 , it follows that every conjunct of 𝜑 is added
to at least one subspecification. Hence, since the conjuncts of 𝜑 are added to a subspecification
by adding them as a conjunct, 𝜑 =

∧
1≤𝑖≤𝑛𝜓𝑖 follows with the semantics of conjunction.

Next, we show that every conjunct of 𝜑 is added to at most one subspecification to ensure
disjointness of the output variables of the components. Clearly, every output variable is con-
tained in exactly one connected component since the output variables constitute the set of
nodes of D𝜑 . Moreover, by definition of D𝜑 , all output variables that are contained in the
same conjunct of 𝜑 are contained in the same connected component. Thus, every conjunct
can only share variables with a single connected component; therefore, every conjunct is only
added to a single subspecification assigned to a connected component. While a conjunct can
share variables with both some connected component and the set of input variables, the break
statement in line (line 11) ensures that no conjunct is added to both a subspecification assigned
to a connected component and the subspecification for input-only conjuncts. Hence, every
conjunct is added to at most one subspecification, and therefore every conjunct occurs in at
most one component specification. Thus, prop(𝜓𝑖) ∩ prop(𝜓 𝑗 ) ⊆ 𝐼 follows for all 𝑖 ≠ 𝑗 with
1 ≤ 𝑖, 𝑗 ≤ 𝑛. Since the component interface of component 𝑐𝑖 is defined by 𝐼𝑖 = prop(𝜓𝑖) ∩ 𝐼 and
𝑂𝑖 = prop(𝜓𝑖) ∩𝑂 , we obtain that 𝑂𝑖 ∩𝑂 𝑗 = ∅ holds for all 𝑖 ≠ 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛. □

Hence, since Algorithm 5.2 produces syntactically independent decompositions, soundness
and completeness of modular synthesis when using Algorithm 5.2 as decomposition algorithm
for LTL specifications follows with Corollary 5.2. However, while the LTL decomposition algo-
rithm is simple and ensures soundness and completeness of modular synthesis, its effectiveness
strongly depends on the structure of the LTL formula. Therefore, we consider optimizations
of the notion syntactic LTL independence for common classes of LTL formulas, for which
Algorithm 5.2 does not find fine-grained decompositions, in the subsequent sections.

5.4. Assumption Dropping for LTL Decomposition
In practice, LTL formulas in assume-guarantee form are very common. Assume-guarantee
formulas require that some guarantees are satisfied if certain assumptions are satisfied. Thus, an
assume-guarantee LTL formula is of the form 𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 , where the formulas 𝜑𝑖

are assumptions and the formulas 𝜓 𝑗 are guarantees. Such formulas allow, for instance, for
restricting the possible environment behavior by posing assumptions on input variables. The
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system is then only required to satisfy the guarantees as long as the environment behaves
according to the assumptions. Furthermore, formulas that fall into the well-known General-
ized Reactivity(1)-fragment of LTL, for which efficient polynomial-time symbolic synthesis
algorithms exists [PPS06, BJP+12], are in assume-guarantee form.
However, when rewriting an LTL formula 𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 in assume-guarantee

form into conjunctive form, we obtain
∧𝑚

𝑗=1
(∧ℓ

𝑖=1 𝜑𝑖 → 𝜓 𝑗

)
. While 𝜑 consists of𝑚 conjuncts

after rewriting, all conjuncts contain all ℓ assumptions. Suppose that an output variable 𝑎
occurs in some assumption 𝜑𝑖 of 𝜑 . Then, after rewriting 𝜑 into conjunctive form, all conjuncts
of 𝜑 feature output variable 𝑎. Thus, all conjuncts share the output variable 𝑎, and therefore
they depend on each other in the sense that the system cannot be decomposed into several
components. In fact, the basic LTL decomposition algorithm from Algorithm 5.2 described in
the previous section returns a single component, namely one with the rewritten form of 𝜑 as
component specification and the full input and output sets as component interface. However,
some guarantee𝜓 𝑗 of the initial formula 𝜑 might be realizable even if 𝜑𝑖 is violated. This can, for
instance, be the case if restricting the environment behavior is only necessary for a few parts of
the system requirements. Then, intuitively, assumption 𝜑𝑖 can be removed for guarantee 𝜓 𝑗

without altering realizability of the conjunct. Dropping 𝜑𝑖 eliminated the dependency between
the conjunct featuring𝜓 𝑗 and the other conjuncts due to 𝜑𝑖 , possibly resulting in independence
of the conjunct featuring𝜓 𝑗 from the other ones. A decomposition algorithm accounting for this
can yield a more fine-grained decomposition and thus smaller synthesis subtasks for modular
synthesis than the basic LTL decomposition algorithm presented in the previous section.

In this section, we introduce a criterion for dropping assumptions while ensuring equirealiz-
ablity of the resulting formula and the original formula. This allows for extending the results
from Sections 5.2 and 5.3 with assumption dropping. In particular, we show how to decompose
LTL formulas in assume-guarantee form utilizing assumption dropping while ensuring that the
three requirements (i) composability, (ii) realization and violation, respectively, and (iii) equire-
alizability, which ensure soundness and completeness of modular synthesis, are met. Afterward,
we present a decomposition algorithm for assume-guarantee LTL formulas that extends the
basic LTL decomposition algorithm from Section 5.3 with assumption dropping.

5.4.1. Criterion for Assumption Dropping
First, we study when an assumption can be removed from an LTL formula while maintaining
equirealizability of the original formula and the one without the dropped assumption. Intuitively,
given an LTL formula 𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 → 𝜓 , we can drop an assumption 𝜑𝑖 if it does not share

any variables with the guarantee𝜓 . However, if 𝜑𝑖 can be violated by the system, i.e., if ¬𝜑𝑖 is
realizable, equirealizability cannot be guaranteed when dropping𝜑𝑖 . As an example, consider the
LTL formula 𝜑 = (𝑖1∧𝑜1) → (𝑖2∧𝑜2) with inputs 𝐼 = {𝑖1, 𝑖2} and outputs𝑂 = {𝑜1, 𝑜2}. Note
that 𝜑 consists of a single assumption (𝑖1 ∧ 𝑜1) and a single guarantee (𝑖2 ∧ 𝑜2). Although
assumption and guarantee do not share any variables, the assumption cannot be dropped: a
strategy that never sets 𝑂1 to true realizes 𝜑 trivially since it violates the assumption. Yet, the
guarantee, is not realizable since 𝑖2 is an input variable: for all input sequences that do not set 𝑖2
to true at every point in time, (𝑖1 ∧ 𝑜2) is violated no matter how the system behaves.
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In addition, dependencies between input variables may yield unrealizability if an assumption
is dropped since information about the remaining inputs might get lost. As an example, consider
a system with inputs 𝐼 = {𝑖1, 𝑖2, 𝑖3, 𝑖4} and outputs 𝑂 = {𝑜}, and the LTL formula

𝜑 = (( 𝑖1 → 𝑖2) ∧ (¬ 𝑖1 → 𝑖3) ∧ (𝑖2 ↔ 𝑖4) ∧ (𝑖3 ↔ ¬𝑖4)) → ( 𝑖1 ↔ 𝑜) .

Clearly, the only guarantee 𝑖1 ↔ 𝑜 is not realizable since 𝑖1 is an input variable, and the system
would need to predict whether or not 𝑖1 will be set to true at every point in time in order to set
output 𝑜 to the correct valuation in the very first time step. The four assumptions of 𝜑 , however,
provide information on 𝑖1. If 𝑖1 is set to true at every point in time, then the assumptions are
only satisfied if 𝑖2 is set to true in the very first step (first assumption), if, consequently, 𝑖4 is also
set to true in the very first step (third assumption), and thus if 𝑖3 is set to false in the very first
step (fourth assumption). If 𝑖1 is not set to true at every point in time, then the assumptions are
only satisfied if 𝑖3 is set to true in the very first step (second assumption), if consequently 𝑖4 is
set to false in the very first step (fourth assumption), and thus if 𝑖2 is also set to false in the very
first step (third assumption). Hence, by observing the inputs 𝑖2, 𝑖3, and 𝑖4 in the very first step,
we can conclude whether or not sequences satisfying the assumptions set 𝑖1 to true in every
time step. Therefore, 𝜑 is realizable. However, none of the four assumptions can be dropped as
otherwise information on 𝑖1 gets lost. Clearly, the first two assumptions cannot be dropped as
they share 𝑖1 with the guarantee. If we drop the third assumption, then the connection of 𝑖2 with
both 𝑖3 and 𝑖4 is lost. If we drop the fourth assumption instead, we lose the connection of 𝑖3 with
both 𝑖2 and 𝑖4. Hence, the input behavior on the very first step is no unique identifier of whether
or not 𝑖1 will be set to true in every time step for all sequences that satisfy the assumptions
anymore. In both cases, the resulting formula is thus unrealizable, although 𝜑 is realizable.
We utilize these two observations as well as our initial intuition for when assumptions

can be removed for formulating a criterion for safely dropping assumptions in LTL formulas
𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 in strict assume-guarantee form:

Definition 5.9 (Assumption-Dropping Criterion for Strict Assume-Guarantee Formulas).
Let 𝐼 and 𝑂 be finite sets of inputs and outputs with 𝐼 ∩𝑂 = ∅. Let 𝜑 = (𝜑1 ∧ 𝜑2) → 𝜓 be an
LTL formula over atomic propositions 𝐼 ∪𝑂 . Then, 𝜑2 qualifies for dropping if, and only if

1. prop(𝜑1) ∩ prop(𝜑2) = ∅,
2. prop(𝜑2) ∩ prop(𝜓 ) = ∅, and
3. ¬𝜑2 is unrealizable.

Intuitively, an assumption thus qualifies for dropping if it neither shares variables with
the guarantees nor with the other assumptions and if it cannot be violated by the system.
This criterion indeed allows for safely dropping assumptions, i.e., if an assumption qualifies
for dropping according to the assumption-dropping criterion, then the original specification
and the one resulting from dropping the assumption are equirealizable. Intuitively, a strategy
realizing the formula that does not contain the droppable assumptions can easily be extended to
a strategy realizing the initial formula with transducer extension. If the formula resulting from
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assumption dropping is unrealizable, however, the counterstrategy does not directly extend
to a counterstrategy for the initial formula since dropping the assumption may have caused
unrealizability. Since the negation of the droppable assumption is unrealizable, however, we
can combine the counterstrategy for it with the counterstrategy for the obtained formula to a
counterstrategy for the initial formula:

Lemma 5.10. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let
𝑉 = 𝐼 ∪𝑂 . Let 𝜑 = (𝜑1 ∧ 𝜑2) → 𝜓 be an LTL formula over atomic propositions 𝑉 . If 𝜑2 qualifies
for dropping for 𝜑 , then 𝜑1 → 𝜓 is realizable if, and only if, 𝜑 is realizable.

Proof. Let𝜑 ′ := 𝜑1 → 𝜓 . Let𝑉1 := prop(𝜑 ′) and𝑉2 := prop(𝜑2). Let 𝐼1 := 𝑉1∩𝐼 , 𝐼2 := 𝑉2∩𝐼 ,𝑂1 :=
𝑉1 ∩𝑂 , and 𝑂2 := 𝑉2 ∩𝑂 . First, suppose that 𝜑 ′ is realizable. Then, there exists a deterministic
and complete finite-state (2𝐼1, 2𝑂1)-transducer realizing 𝜑 ′. Let T be the finite-state (2𝐼 , 2𝑂 )-
transducer obtained by extending T1 according to Definition 5.3 to the full sets 𝐼 and 𝑂 . In
the following, we show that L(𝜑 ′) ⊆ {𝜎 ∩𝑉1 | 𝜎 ∈ L(𝜑)} holds. By definition of 𝑉1, only the
variables in𝑉1 affect the satisfaction of 𝜑 ′. Hence, 𝜎 ∪𝜎 ′ ∈

{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩𝑉1 ∈ L(𝜑 ′)

}
holds

for all 𝜎 ∈ L(𝜑 ′) and all 𝜎 ′ ∈ (2𝑉2)𝜔 . By the semantics of conjunction and implication, we have{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩𝑉1 ∈ L(𝜑 ′)

}
⊆ L(𝜑). Thus, L(𝜑 ′) ⊆ {𝜎 ∩𝑉1 | 𝜎 ∈ L(𝜑)} holds as well and

therefore it follows with Lemma 5.1 that T realizes 𝜑 .
Next, suppose that 𝜑 ′ is unrealizable. Then, there exists a deterministic and complete finite-

state counterstrategy (2𝑂1, 2𝐼1)-transducer T 𝑐
1 for 𝜑 ′. Moreover, Since ¬𝜑2 is unrealizable

by assumption, there exists a counterstrategy (2𝑂2, 2𝐼2)-transducer T 𝑐
2 for ¬𝜑2. Thus, T 𝑐

1
and T 𝑐

2 realize ¬𝜑 ′ and 𝜑2, respectively. Since 𝜑2 qualifies for dropping for 𝜑 , we have both
prop(𝜑1) ∩ prop(𝜑2) = ∅ and prop(𝜑2) ∩ prop(𝜓 ) = ∅ by definition of the assumption-dropping
criterion. Thus,𝑉1 ∩𝑉2 = ∅ holds. Therefore, it follows immediately that L(¬𝜑 ′) and L(𝜑2) are
independent sublanguages of 𝐿 :=

{
𝜎 ∈ (2𝑉 )𝜔 | 𝜎 ∩𝑉1 ∈ L(¬𝜑 ′) ∧ 𝜎 ∩𝑉2 ∈ L(𝜑2)

}
. Hence,

by Lemma 5.4, T 𝑐
1 | | T 𝑐

2 realizes 𝐿. By the semantics of conjunction, 𝐿 = L(¬𝜑 ′ ∧ 𝜑2) holds.
Moreover, by definition of 𝜑 ′ as well as by the semantics of conjunction and implication, we
have L(¬𝜑 ′ ∧ 𝜑2) = L(¬𝜑). Hence, T 𝑐

1 | | T 𝑐
2 realizes ¬𝜑 . Furthermore, since T 𝑐

1 and T 𝑐
2 are

both counterstrategy transducers, they are of the same transducer type, i.e., they are either both
Mealy or Moore transducers. The parallel composition does not alter the transducer type if
both transducers are of the same type and hence, by definition of counterstrategy transducers,
T 𝑐
1 | | T 𝑐

2 is a counterstrategy transducer for 𝜑 . Thus, 𝜑 is unrealizable. □

Therefore, dropping assumptions if they qualify for dropping according to the assumption-
dropping criterion for strict assume-guarantee formulas, ensures equirealizability of the original
formula and the one resulting from dropping these assumptions. Hence, assumptions that
qualify for dropping are indeed not necessary for realizability of the original formula in the
sense that whether or not there exists a strategy for the system that realizes the specification
does not depend on the existence of the assumption.
We can thus immediately utilize the assumption-dropping criterion for decomposing LTL

specifications in strict assume-guarantee form, i.e., formulas of the form 𝜑 =
∧ℓ

𝑖=1 𝜑𝑖 →
∧𝑚

𝑗=1𝜓 𝑗 ,
in further cases. First, we rewrite the formula into the conjunctive form

∧𝑚
𝑗=1

(∧ℓ
𝑖=1 𝜑𝑖 → 𝜓 𝑗

)
.

Then, for each of the individual guarantees𝜓 𝑗 , we drop assumptions from the conjunction of
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assumptions
∧ℓ

𝑖=1 𝜑𝑖 whenever possible according to the assumption-dropping criterion. Note
that Lemma 5.10 guarantees equirealizability of the initial formula and the formula obtained
from assumption dropping. However, it does not guarantee language equivalence. In particular,
the conjunction of the conjuncts of 𝜑 after dropping assumptions is thus not necessarily
equivalent to 𝜑 . Therefore, when building a decomposition by grouping conjuncts that share
input variables similar to basic LTL decomposition after dropping assumptions, the languages
of the component specifications are not guaranteed to be sublanguages of L(𝜑). Hence, we
cannot directly reuse the results from the previous sections but show in the following that
due to the equirealizability of the initial formula and the formula obtained from assumption
dropping, the three requirements for soundness and completeness of modular synthesis are
nevertheless satisfied. First, we show that if the resulting conjuncts only share input variables
and are realizable, then the parallel composition of transducers realizing them realizes 𝜑 :

Lemma 5.11. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅. Let
𝜑 = (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → (𝜓1 ∧ 𝜓2) be an LTL formula over atomic propositions 𝐼 ∪ 𝑂 . Suppose
that 𝜑1 qualifies for dropping for (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → 𝜓2 and that 𝜑2 qualifies for dropping for
(𝜑1 ∧ 𝜑2 ∧ 𝜑3) → 𝜓1. Let 𝜑 ′ = (𝜑1 ∧ 𝜑3) → 𝜓1 and 𝜑 ′′ = (𝜑2 ∧ 𝜑3) → 𝜓2. Suppose that
prop(𝜑 ′) ∩ prop(𝜑 ′′) ⊆ 𝐼 holds. If both 𝜑 ′ and 𝜑 ′′ are realizable, then the parallel composition
T1 | | T2 of transducers T1 and T2 realizing 𝜑 ′ and 𝜑 ′′, respectively, realizes 𝜑 .

Proof. First, let both 𝜑 ′ and 𝜑 ′′ be realizable. Then, there exist deterministic and complete
finite-state transducers T1 and T2 realizing 𝜑 ′ and 𝜑 ′′, respectively. By assumption, we have
prop(𝜑 ′) ∩ prop(𝜑 ′′) ⊆ 𝐼 . It follows with Lemmas 5.7 and 5.8 and Definition 5.6 that L(𝜑 ′)
and L(𝜑 ′′) are independent sublanguages of L(𝜑 ′ ∧ 𝜑 ′′). Hence, by Lemma 5.4, the parallel
composition of T1 and T2, i.e., T1 | | T2, is deterministic and complete and realizes L(𝜑 ′ ∧ 𝜑 ′′).
Therefore, Traces(T1 | | T2) ⊆ L(𝜑 ′∧𝜑 ′′) holds. By the semantics of implication and conjunction
as well as by the definitions of 𝜑 , 𝜑 ′, and 𝜑 ′′, it then follows that Traces(T1 | | T2) ⊆ L(𝜑) holds
as well. Thus, T1 | | T2 realizes L(𝜑) and hence 𝜑 is realizable. □

If one of the formulas resulting from assumption dropping for the individual conjuncts
of

∧𝑚
𝑗=1

(∧ℓ
𝑖=1 𝜑𝑖 → 𝜓 𝑗

)
is unrealizable, in contrast, then there exists a counterstrategy trans-

ducer T 𝑐
1 for it. Similar to the equirealizability proof for assumption dropping in general, we

can utilize the counterstrategy transducer T 𝑐
2 for the negation of the droppable assumptions to

build a counterstrategy transducer for 𝜑 from T 𝑐
1 . The counterstrategy extension of the parallel

composition of T 𝑐
1 and T 𝑐

2 is then guaranteed to be a counterstrategy transducer for 𝜑 :

Lemma 5.12. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅. Let
𝜑 = (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → (𝜓1 ∧𝜓2) be an LTL formula over atomic propositions 𝐼 ∪𝑂 . Suppose that
𝜑1 qualifies for dropping for (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → 𝜓2. Let T 𝑐

2 be a counterstrategy transducer for ¬𝜑2.
Let 𝜑 ′ = (𝜑1 ∧ 𝜑3) → 𝜓1. If 𝜑 ′ is unrealizable, then the counterstrategy extension of T 𝑐

1 | | T 𝑐
2 ,

where T 𝑐
1 is a counterstrategy transducer for 𝜑 ′, is a counterstrategy transducer for 𝜑 .

Proof. Let 𝑉1 = prop(𝜑 ′), 𝐼1 = 𝑉1 ∩ 𝐼 , and 𝑂1 = 𝑉1 ∩𝑂 . Suppose that 𝜑 ′ is unrealizable. Then,
there exists a deterministic and complete finite-state counterstrategy (2𝑂1, 2𝐼1)-transducer T 𝑐

1
for 𝜑 ′. Since 𝜑2 qualifies for dropping by assumption, ¬𝜑2 is unrealizable and hence there is a
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deterministic and complete finite state counterstrategy (2𝑂∩prop (𝜑2 ) , 2𝐼∩prop (𝜑2 ) )-transducer T 𝑐
2

for ¬𝜑2. Thus, T 𝑐
1 realizes ¬𝜑 ′ and T 𝑐

2 realizes 𝜑2. Moreover, prop(𝜑2) ∩ prop(𝜑 ′) = ∅ holds
by the assumption-dropping criterion. It thus follows similarly to the second part of the
proof of Lemma 5.10 that T 𝑐

1 | | T 𝑐
2 is a counterstrategy transducer for ¬(¬𝜑 ′ ∧ 𝜑2): since we

have prop(𝜑2) ∩ prop(𝜑 ′) = ∅ and by the semantics of conjunction, L(¬𝜑 ′) and L(𝜑2) are
independent sublanguages of L(¬𝜑 ′ ∧ 𝜑2). Therefore, by Lemma 5.4, the transducer T 𝑐

1 | | T 𝑐
2

is deterministic and complete and realizes ¬𝜑 ′ ∧ 𝜑2. Moreover, since T 𝑐
1 and T 𝑐

2 are both
counterstrategy transducers, they are of the same transducer type, i.e., they are either both
Mealy or Moore transducers. The parallel composition does not alter the transducer type if
both transducers are of the same type and hence, by definition of counterstrategy transducers,
T 𝑐
1 | | T 𝑐

2 is a counterstrategy transducer for ¬(¬𝜑 ′ ∧𝜑2) and thus for 𝜑 ′ ∨¬𝜑2. By construction
of 𝜑 ′, we have 𝜑 ′ ∨ ¬𝜑2 = (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → 𝜓2. Hence, by the semantics of conjunction and
implication, we clearly have {𝜎 ∩ prop(𝜑 ′ ∨ ¬𝜑2) | 𝜎 ∈ L(𝜑)} ⊆ L(𝜑 ′ ∨ ¬𝜑2). Therefore, it
follows with Corollary 5.1 that the counterstrategy extension of T 𝑐

1 | | T 𝑐
2 is a deterministic and

complete finite-state counterstrategy transducer for 𝜑 . □

From these two observations formalized in Lemmas 5.11 and 5.12, it now follows immediately
that rewriting a strict assume-guarantee formula into conjunctive form and then dropping
assumptions for the individual conjuncts according to the assumption-dropping criterion ensures
that the initial formula 𝜑 is equirealizable to the constructed subformulas.

Corollary 5.3. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅ and let
𝑉 = 𝐼 ∪𝑂 . Let 𝜑 = (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → (𝜓1 ∧𝜓2) be an LTL formula over atomic propositions 𝑉 .
Suppose that 𝜑1 qualifies for dropping for (𝜑1∧𝜑2∧𝜑3) → 𝜓2 and that 𝜑2 qualifies for dropping for
(𝜑1∧𝜑2∧𝜑3) → 𝜓1. Let𝜑 ′ = (𝜑1∧𝜑3) → 𝜓1 and𝜑 ′′ = (𝜑2∧𝜑3) → 𝜓2. If prop(𝜑 ′)∩prop(𝜑 ′′) ⊆ 𝐼

holds, then 𝜑 is realizable if, and only if, both 𝜑 ′ and 𝜑 ′′ are realizable.

Analyzing assumptions thus allows for decomposing LTL formulas into independent com-
ponents in further cases. Nevertheless, it ensures the three requirements for soundness and
completeness of modular synthesis. We incorporate assumption dropping into the search for
independent conjuncts in the subsequent section.

5.4.2. LTL Decomposition with Assumption Dropping
In the following, we present an extension of the basic LTL decomposition algorithm presented in
Section 5.3.2 that incorporates assumption dropping into the search for independent conjuncts.
Note that the algorithm is only applicable to LTL formulas in strict assume-guarantee form,
i.e., formulas of the form 𝜑 =

∧ℓ
𝑖=1 𝜑 𝑗 →

∧𝑚
𝑗=1𝜓 𝑗 . In Section 5.5, we extend this algorithm to

formulas consisting of several assume-guarantee conjuncts.
Recall that we can incorporate the dropping of assumptions into the basic LTL decomposition

algorithm by first rewriting the strict assume-guarantee formula 𝜑 into conjunctive form. Note
that the conjuncts of the rewritten formula are again in strict assume-guarantee form. Then,
we drop as many assumptions as possible according to the assumption-dropping criterion for
strict assume-guarantee formulas (see Definition 5.9) for the individual conjuncts if 𝜑 . Lastly,
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we decompose the resulting conjuncts according to the results on LTL independence from
Section 5.3. By Lemmas 5.11 and 5.12 as well as Corollary 5.3, the three requirements for
soundness and completeness of modular synthesis are then satisfied.

To incorporate the elimination of assumptions according to the assumption-dropping criterion
for strict assume-guarantee LTL formulas into the decomposition algorithm, we first observe the
following implications of the requirements of Lemmas 5.11 and 5.12 as well as Corollary 5.3. First,
the two formulas𝜑 ′ and𝜑 ′′ resulting from dropping assumptions may only share input variables.
Hence, it follows immediately that shared assumptions may only contain input variables.
Consequently, assumptions that contain output variables may influence the decomposability of
the specification since they cannot be shared between component specifications. We thus call
output variables decomposition-critical.

Second, recall that assumptions cannot be dropped if (i) they share any variables with a non-
droppable assumption, (ii) they share any variables with the considered guarantees, or (iii) they
can be violated by the system for all input sequences. Therefore, also input variables that
occur in assumptions can prevent that assumptions can be dropped, and consequently, they
can constitute a dependency between two output variables. We thus call input variables that
are “connected” to output variables through assumptions decomposition-critical as well. The
set of decomposition-critical variables of an LTL formula 𝜑 in strict assume-guarantee form is
denoted with 𝑉 crit

𝜑 ⊆ 𝐼 ∪𝑂 . Note that both 𝑉 crit
𝜑 ⊆ 𝐼 ∪𝑂 and 𝑂 ⊆ 𝑉 crit

𝜑 hold by construction.
We call assumptions that do not contain any decomposition-critical variables free.

Example 5.2. It is crucial to recognize that input variables may introduce dependencies between
output variables in guarantee conjuncts via assumptions which may lead to non-separability of
guarantee conjuncts. As an example, consider the LTL formula

𝜑 = ( 𝑖2 ∧ (𝑜2 → ¬𝑖1)) → ( (𝑖2 → 𝑜1) ∧ (¬𝑜2 ∧ 𝑖2) ∧ (𝑖1 → ¬𝑜3) ∧ 𝑜3)

in strict assume-guarantee form with inputs 𝐼 = {𝑖1, 𝑖2} and outputs 𝑂 = {𝑜1, 𝑜2, 𝑜3}. The
formula is not realizable due to the last three guarantees: (𝑖1 → ¬𝑜3) and 𝑜3, are only
realizable simultaneously if input variable 𝑖1 is set to false at some point in time. The second
assumption, i.e., (𝑜2 → ¬𝑖1), allows for satisfying the last two guarantees if 𝑜2 is set to
true eventually. Then, either 𝑖1 is set to false in the next time step, satisfying the assumption
and allowing for fulfilling the last two guarantees, or the assumption is violated and thus the
formula is trivially satisfied. Yet, the third guarantee, i.e., (¬𝑜2 ∧ 𝑖2), prevents this.
In particular, the last three guarantee conjuncts of 𝜑 thus cannot be separated as only their

connection via the second assumption leads to unrealizability of the whole formula 𝜑 . This also
matches the assumption-dropping criterion and, in particular, the prerequisites of Corollary 5.3.
Since the last two guarantees of 𝜑 share output variables, they cannot be separated. Since the
second assumption of 𝜑 cannot be dropped for either (¬𝑜2 ∧ 𝑜2) or (𝑖1 → ¬𝑜3) as outlined
above, the second guarantee of 𝜑 cannot be separated from the third and fourth one. Hence, the
connection of these guarantees through the second assumption and, in particular, the connection
of the third guarantee with this assumption via an input variable needs to be taken into account
during decomposition of the initial specification 𝜑 Input 𝑖1 is thus decomposition-critical and
therefore assumption (𝑜2 → ¬𝑖1) is not free. △
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𝑖1 𝑖2

𝑜1 𝑜2 𝑜3

(a) Assumption dependency graph D𝐴
𝜑 .

𝑖1

𝑜1 𝑜2 𝑜3

(b) Assume-guarantee dependency graph D𝐴𝐺
𝜑 .

Figure 5.1.: Dependency graphs for the formula 𝜑 from Example 5.2.

Recall that we utilized a dependency graph in the basic LTL decomposition algorithm from
Section 5.3.2 to determine which conjuncts share output variables. In a similar fashion, we
determine decomposition-critical variables for LTL specifications in strict assume-guarantee
form. We build the so-called assumption dependency graph, which is based on the assumptions of
the formula – which are in conjunctive form – and not on the guarantees. Moreover, in contrast
to the conjunct dependency graph for basic LTL decomposition algorithm (see Definition 5.8),
all variables occurring in the formula serve as nodes of the graph, not only the output variables.
This implements the change from shared output variables in the basic LTL decomposition
algorithm to shared variables in general for decomposition-critical variables. An undirected
edge between two variables in the assumption dependency graph denotes that variables occur
in the same assumption. Formally:

Definition 5.10 (Assumption Dependency Graph).
Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅ and let 𝑉 = 𝐼 ∪ 𝑂 .
Let 𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 be an LTL formula over atomic propositions 𝑉 . The assumption

dependency graph D𝐴
𝜑 = (V, E) of 𝜑 is defined byV = 𝑉 and (𝑎, 𝑏) ∈ E if, and only if, 𝑎 ≠ 𝑏

and both 𝑎 ∈ prop(𝜑 𝑗 ) and 𝑏 ∈ prop(𝜑 𝑗 ) for some 1 ≤ 𝑗 ≤ ℓ .

Hence, the assumption dependency graph captures which variables, both inputs and outputs,
are shared in the assumptions of a strict assume-guarantee formula. If two variables are con-
tained in the same connected component, then they either occur in the same assumption or they
are connected via one or more assumptions. That is, intuitively, all assumptions that contain
variables that lie in the same connected component of the assumption dependency graph cannot
be separated in the sense that either none of them or all of them need to be dropped due to the
first requirement of the assumption-dropping criterion, namely that an assumption can only be
dropped if it does not share variables with any other assumption. Thus, all variables that lie in
the same connected component as an output variable are decomposition-critical.

Example 5.3. Reconsider the LTL formula 𝜑 with 𝐼 = {𝑖1, 𝑖2} and outputs 𝑂 = {𝑜1, 𝑜2, 𝑜3} from
Example 5.2. The assumption dependency graph D𝐴

𝜑 of 𝜑 is depicted in Figure 5.1a. It only
considers the assumption of 𝜑 , i.e., 𝑖2 and (𝑜2 → ¬𝑖1). Clearly, only the second assumption
contributes a single edge in D𝐴

𝜑 . All output variables are decomposition-critical by definition.
Moreover, since 𝑖1 and 𝑜2 lie in the same connected component of D𝐴

𝜑 , input variable 𝑖1 is
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decomposition-critical as well. This meets our expectations that, as illustrated in Example 5.2,
the connection of the second and third guarantee conjuncts of𝜑 via 𝑖1 and the second assumption
is crucial for the unrealizability of 𝜑 . Input variable 𝑖2, in contrast, does not share a connected
component with an output variable and is thus not decomposition-critical, resulting in the set
𝑉 crit
𝜑 = {𝑖1, 𝑜1, 𝑜2, 𝑜3} of decomposition-critical variables for the initial formula 𝜑 . △

The assumption dependency graph allows for determining non-separable assumptions and
for identifying decomposition-critical variables. For computing valid components of the initial
strict assume-guarantee LTL formula, we further need to take the guarantees into account. In
particular, we need to identify non-droppable assumptions for concrete guarantees to be able
to discover shared variables between conjuncts of

∧𝑚
𝑗=1

(∧ℓ
𝑖=1 𝜑𝑖 → 𝜓 𝑗

)
. The assumption de-

pendency graph already establishes connections via shared variables between the assumptions.
Hence, it remains to determine connections between guarantees and assumptions through
shared variables. Again, we utilize a dependency graph, the so-called assume-guarantee de-
pendency graph. It considers both assumptions and guarantees since it needs to establish
connections between them to identify non-droppable assumptions. Moreover, it determines
dependencies between guarantees together with their non-droppable assumptions to determine
valid components, i.e., components with specifications that do not share output variables. Since
assumptions are non-droppable if they share any variable with a guarantee, we cannot restrict
the assume-guarantee dependency graph to output variables as is done for the dependency
graph for basic LTL decomposition. Rather, it needs to take all decomposition-critical variables
into account. Hence, the assume-guarantee dependency graph is built over all decomposition-
critical variables, and there exists an edge between two variables if, and only if, they occur
either in the same assumption or in the same guarantee. Formally:

Definition 5.11 (Assume-Guarantee Dependency Graph).
Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩𝑂 = ∅ and let 𝑉 = 𝐼 ∪𝑂 . Let
𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 be an LTL formula over atomic propositions𝑉 . The assume-guarantee

dependency graph D𝐴𝐺
𝜑 = (V, E) of 𝜑 is defined byV = 𝑉 crit

𝜑 and (𝑎, 𝑏) ∈ E if, and only if,
𝑎 ≠ 𝑏 and both 𝑎 ∈ prop(b) and 𝑏 ∈ prop(b ′) hold for some b, b ′ ∈ ⋃ℓ

𝑖=1 𝜑𝑖 ∪
⋃𝑚

𝑗=1𝜓 𝑗 .

Note that the assume-guarantee dependency graph can be seen as an extension of the
assumption dependency graph: we add edges induced by guarantees, and we delete input
variables that are not decomposition-critical. Since the assume-guarantee dependency graph
includes dependencies introduced by both assumptions and guarantees and utilizes both input
and output variables, it allows for determining non-droppable assumptions for each guarantee
as well as dependencies between guarantees together with their non-droppable assumptions. If
an assumption and a guarantee contain variables that lie in the same connected component
of the assume-guarantee dependency graph, then they are not separable in the sense that
the assumption cannot be dropped for the guarantee according to the assumption-dropping
criterion. If two guarantees contain variables that lie in the same connected component, then
they share decomposition-critical variables. If they share output variables, their dependence
is immediate. If they only share input variables, their dependence is more implicit. For both
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guarantees, assumptions that contain the shared input variable cannot be dropped. Since the
input is decomposition-critical, it is connected to an output variable via assumptions. Since
droppable assumptions may not share any variables with non-droppable assumptions, it thus
follows that for both guarantees, assumptions containing the output variable cannot be dropped.
Therefore, the component specifications for the guarantees share output variables.

Example 5.4. Reconsider the LTL formula

𝜑 = ( 𝑖2 ∧ (𝑜2 → ¬𝑖1)) → ( (𝑖2 → 𝑜1) ∧ (¬𝑜2 ∧ 𝑖2) ∧ (𝑖1 → ¬𝑜3) ∧ 𝑜3)

from Example 5.2. The assume-guarantee dependency graphD𝐴𝐺
𝜑 of 𝜑 is depicted in Figure 5.1b.

It features the decomposition-critical variables 𝑉 crit
𝜑 of 𝜑 as nodes. As described in Example 5.3,

all output variables and input variable 𝑖1 are decomposition-critical, while input 𝑖2 is not. All
assumption conjuncts as well as all guarantee conjuncts of 𝜑 may induce edges inD𝐴𝐺

𝜑 . Since 𝑖2
is not decomposition-critical, however, the first assumption conjunct as well as the first two
guarantee conjuncts do not cause any edges. Moreover, since self-loops are not contained in the
dependency graph by definition, the last guarantee conjunct does not add edges. Hence, D𝐴𝐺

𝜑

contains the two edges between 𝑖1 and 𝑜2 as well as between 𝑖1 and 𝑜3 induced by the remaining
two conjuncts. This indicates that the outputs 𝑜2 and 𝑜3 depend on each other, and therefore
conjuncts containing 𝑜2 and 𝑜3 cannot be separated. Thus, in fact, the last three guarantees
of 𝜑 cannot be separated. This meets our expectations since otherwise the unrealizability of 𝜑
cannot be detected as illustrated in Example 5.2. △

We can thus utilize the assume-guarantee dependency graph of a given LTL formula in strict
assume-guarantee form to identify the decomposition of 𝜑 . Algorithm 5.3 describes how an
LTL formula 𝜑 in strict assume-guarantee form with inputs 𝐼 and outputs𝑂 is decomposed into
independent components based on an analysis of the connected components of the assume-
guarantee dependency graph. First, we separate assumptions and guarantees of 𝜑 (lines 1 and 2).
Note that both the assumptions and guarantees are in conjunctive form. Thus we obtain a list of
assumptions and guarantees, respectively, by simply removing the top-level conjunctions. We
then compute the decomposition-critical propositions of 𝜑 (line 3). This is done by first building
the assumption dependency graph D𝐴

𝜑 of 𝜑 , then computing the connected components, and
lastly identifying the propositions that lie in the same connected component as an output
variable. Based on the decomposition-critical propositions, we build the assumption-guarantee
dependency graph D𝐴𝐺

𝜑 of 𝜑 (line 4) and compute its connected components (line 5). We
identify free assumptions, i.e., assumptions that do not contain decomposition-critical variables,
(lines 9 to 11). Then, we refine the subspecifications with all other assumptions based on the
connected components and the shared propositions similar to the refinement with conjuncts
in Algorithm 5.2, i.e., the basic LTL decomposition algorithm (lines 13 to 16). Similarly, we
add the guarantees to the corresponding subspecifications (lines 17 to 22). Afterward, we
construct the components. For each subspecification, we add the necessary free assumptions
(line 23). Note that all free assumptions could be safely added to all subspecifications. To
obtain small subspecifications and thus also smaller synthesis subtasks, however, we only add
those free assumptions to a subspecification that are needed, i.e., those free assumptions that
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Algorithm 5.3: Decomposition Algorithm for Strict Assume-Guarantee Formulas
Input: 𝜑 : LTL, I: List Variable, O: List Variable
Output :components: List (LTL, List Variable, List Variable)

1 assumptions← getAssumptions(𝜑)
2 guarantees← getGuarantees(𝜑)
3 decCriticalProps← getDecompositionCriticalPropositions(𝜑)
4 agDependencyGraph← buildAGDependencyGraph(𝜑 , decCriticalProps)
5 cc← agDependencyGraph.connectedComponents()
6 subspecs← [|cc|+1]: List LTL // LTL list of length |cc|+1, initialized with true

7 freeAssumptions← []
8 foreach 𝜑𝑖 ∈ assumptions do
9 propositions← getPropositions(𝜑𝑖) ∩ decCriticalProps

10 if |propositions| = 0 then
11 freeAssumptions.append(𝜑𝑖)
12 else
13 foreach (spec,vars) ∈ zip(subspecs, cc ++ [I]) do
14 if propositions ∩ vars ≠ ∅ then
15 spec← spec.addAssumption(𝜑𝑖)
16 break
17 foreach𝜓𝑖 ∈ guarantees do
18 propositions← getPropositions(𝜓𝑖) ∩ decCriticalProps
19 foreach (spec,vars) ∈ zip(subspecs, cc ++ [I]) do
20 if propositions ∩ vars ≠ ∅ then
21 spec← spec.addGuarantee(𝜓𝑖)
22 break
23 subspecs.addNeededFreeAssumptions(freeAssumptions)
24 components← buildComponents(subspecs)
25 return components

feature variables that occur in the subspecification. Then, we construct the components, i.e.,
the component specifications as well as the component interfaces (line 24) as in the basic LTL
decomposition algorithm. Lastly, the components are returned (line 25).

Example 5.5. Reconsider the LTL formula

𝜑 = ( 𝑖2 ∧ (𝑜2 → ¬𝑖1)) → ( (𝑖2 → 𝑜1) ∧ (¬𝑜2 ∧ 𝑖2) ∧ (𝑖1 → ¬𝑜3) ∧ 𝑜3)

from Example 5.2 and the assume-guarantee dependency graphD𝐴𝐺
𝜑 depicted in Figure 5.1b and

described in Example 5.4, respectively. SinceD𝐴𝐺
𝜑 contains two connected components, namely

{𝑜1} and {𝑖1, 𝑜2, 𝑜3}, the Algorithm 5.3 yields two components 𝑐1 and 𝑐2, one for each of the
connected components Since the assumption (𝑜2 → ¬𝑖1) contains decomposition-critical
variables, it is added to the components it shares variables with, i.e., in this case 𝑐2. Similarly,
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the guarantees of 𝜑 are added to the components, resulting in (𝑖2 → 𝑜1) being assigned
to 𝑐1, while all three other guarantees are assigned to 𝑐2. Since 𝑖2 is a free assumption, it
is added to those components that share variables with the assumption. In this case, this is
only 𝑐1. All in all, we thus obtain the two components 𝑐1 = ( 𝑖2 → (𝑖2 → 𝑜1), {𝑖2}, {𝑜1}) and
𝑐2 = ( (𝑜2 → ¬𝑖1) → ( (¬𝑜2 ∧ 𝑖2) ∧ (𝑖1 → ¬𝑜3) ∧ 𝑜3), {𝑖1}, {𝑜2, 𝑜3}). △

Algorithm 5.3 then computes a decomposition of (𝐼 ,𝑂) that ensures that the resulting com-
ponent specifications do not share output variables. Moreover, the algorithm ensures that
assumptions that are not contained in a component specification neither share any variables
with the guarantees nor with the assumptions of the component specification:

Lemma 5.13. Let𝒜 be a monolithic architecture with input variables 𝐼 and output variables𝑂 . Let
𝜑 =

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 be an LTL formula over atomic propositions 𝐼∪𝑂 . Algorithm 5.3 terminates

with a decomposition D for input 𝜑 , 𝐼 , 𝑂 such that all 𝑐𝑘 ∈ D are of the form 𝑐𝑘 = (b𝑘 , 𝐼𝑘 ,𝑂𝑘 ),
where b𝑘 =

∧
b∈𝐴𝑘

b → ∧
b ′∈𝐺𝑘

b ′ with 𝐴𝑘 ⊆
⋃𝑚

𝑖=1 𝜑𝑖 and 𝐺𝑘 ⊆
⋃𝑛

𝑗=1𝜓 𝑗 . Moreover, we have

1. prop(b 𝑗 ) ∩ prop(b 𝑗 ) ⊆ 𝐼 for all 𝑐 𝑗 , 𝑐𝑘 ∈ D with 𝑐 𝑗 ≠ 𝑐𝑘 ,

2. prop(𝜑𝑖) ∩ prop(𝜓 𝑗 ) = ∅ for all 𝑐𝑘 ∈ D, all 𝜑𝑖 ∈
⋃𝑚

𝑖=1 𝜑𝑖 \𝐴𝑘 , and all𝜓 𝑗 ∈ 𝐺𝑘 , and

3. prop(𝜑𝑖) ∩ prop(𝜑 𝑗 ) = ∅ for all 𝑐𝑘 ∈ D, all 𝜑𝑖 ∈
⋃𝑚

𝑖=1 𝜑𝑖 \𝐴𝑘 , and all 𝜑 𝑗 ∈ 𝐴𝑘 .

Proof. The form of the component specifications follows immediately from their construction.
First, we show prop(b 𝑗 ) ∩ prop(b𝑘 ) ⊆ 𝐼 holds for all 𝑐 𝑗 , 𝑐𝑘 ∈ D. Let 𝑜 ∈ 𝑂 be an output
variable. By definition of the assume-guarantee dependency graph, 𝑜 is contained in exactly
one connected component. Furthermore, all conjuncts are assigned to the same subspecification
in lines 13 to 16 and lines 17 to 22, respectively. Thus, 𝑜 is part of the component specification
of exactly one component of the decomposition D. Hence, prop(b 𝑗 ) ∩ prop(b𝑘 ) ⊆ 𝐼 follows
immediately for all components 𝑐 𝑗 , 𝑐𝑘 ∈ D with 𝑐 𝑗 ≠ 𝑐𝑘 .

Next, we show that prop(𝜑𝑖) ∩prop(𝜓 𝑗 ) = ∅ holds for all 𝑐𝑘 ∈ D as well as all 𝜑𝑖 ∈
⋃𝑚

𝑖=1 𝜑𝑖 \𝐴𝑘

and all 𝜓 𝑗 ∈ 𝐺𝑘 holds. Let 𝑣 ∈ prop(𝜓 𝑗 ) be some variable that occurs in some guarantee 𝜓 𝑗

of 𝑐𝑘 ’s component specification. If 𝑣 is decomposition-critical, then it follows similar to the
first case that 𝑣 is contained in exactly one connected component of the assume-guarantee
dependency graph and thus all assumptions featuring 𝑣 are assigned to the same subspecification
in lines 13 to 16 as𝜓 𝑗 is assigned to in lines 17 to 22. Hence, (prop(𝜑𝑖) ∩ prop(𝜓 𝑗 )) ∩𝑉 crit

𝜑 = ∅
follows. If 𝑣 is not decomposition-critical, however, then it is not represented by a node in the
assume-guarantee dependency graph D𝐴𝐺

𝜑 . By construction, 𝑣 is an input variable. Moreover, 𝑣
is not connected via shared variables in assumptions to a decomposition-critical variable. Hence,
if 𝑣 ∈ prop(𝜑𝑖) holds, all variables in 𝜑𝑖 are not decomposition-critical and thus 𝜑𝑖 is free.
Therefore, 𝜑𝑖 is added to the same subspecification as𝜓 𝑗 is in line 23 and hence 𝜑𝑖 ∈ 𝐴𝑘 holds,
yielding a contradiction. Thus, we have 𝑣 ∉ prop(𝜑𝑖) and therefore, combining this result with
the one for decomposition-critical variables, (prop(𝜑𝑖) ∩ prop(𝜓 𝑗 )) = ∅ follows.

Lastly, prop(𝜑𝑖) ∩ prop(𝜑 𝑗 ) = ∅ for all 𝑐𝑘 ∈ D as well as all 𝜑𝑖 ∈
⋃𝑚

𝑖=1 𝜑𝑖 \𝐴𝑘 and all 𝜑 𝑗 ∈ 𝐴𝑘

follows analogously to the previous case since assumptions and guarantees are added to the
subspecifications in the same fashion. Hence, considering an assumption 𝜑 𝑗 ∈ 𝐴𝑘 instead of a
guarantee𝜓 𝑗 ∈ 𝐺𝑘 does not affect the proof. □
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However, the decomposition computed by Algorithm 5.3 does not necessarily guarantee
equirealizability with the initial specification since Algorithm 5.3 only preserves the first two
requirements of the assumption-dropping criterion for strict assume-guarantee formulas (see
Definition 5.9). It does not ensure that the dropped assumptions, i.e., assumptions that lie
in

⋃𝑚
𝑗=1𝜓 𝑗 \ 𝐺𝑘 , cannot be violated by the system for all input sequences. As outlined in

Section 5.4.1, however, unrealizability of the negation of the dropped assumption is a crucial
requirement for assumption dropping. Therefore, we need to incorporate such a check into
modular synthesis with the LTL decomposition algorithm with assumption dropping.

For this sake, observe that if the negation of all assumptions is unrealizable, then so are the
negations of the individual assumptions. Then, there exists a counterstrategy transducer T 𝑐 that
realizes the conjunction of all assumptions, i.e., it realizes

∧ℓ
𝑖=1 𝜑𝑖 . Using transducer restriction,

we can construct counterstrategy transducers from T 𝑐 for the individual negated assumptions.
Intuitively, the restriction of a transducer T to a subset𝑉1 ⊆ 𝑉 of the transducer’s variables𝑉 is
a copy of the transducer that ignores inputs outside of𝑉1 and restricts the outputs of a transition
to the outputs of 𝑉1. To obtain a deterministic transducer, it chooses one of the transitions of T
that are not distinguishable when only considering 𝑉1. Formally:

Definition 5.12 (Transducer Restriction).
Let 𝐼 , 𝐼1 and 𝑂 , 𝑂1 be finite sets of input and output variables with 𝐼1 ⊆ 𝐼 and 𝑂1 ⊆ 𝑂 .
Let 𝐿 ⊆ (2𝐼∪𝑂 )𝜔 be a realizable language and let T 𝑐 = (𝑇,𝑇0, 𝜏, ℓ) be a deterministic and
complete finite-state (2𝐼 , 2𝑂 )-transducer realizing 𝐿. We construct a (2𝐼1, 2𝑂1)-transducer
T 𝑐
1 = (𝑇1,𝑇1,0, 𝜏1, ℓ1) from T 𝑐 as follows:

• 𝑇1 = 𝑇 ,

• 𝑇1,0 = 𝑇0,

• (𝑡, ], 𝑡 ′) ∈ 𝜏1 if, and only if, (𝑡, ] ∪ ]′, 𝑡 ′) ∈ 𝜏 holds, and
• (𝑡, ], 𝑜) ∈ ℓ1 if, and only if, there exists some 𝑜 ′ ∈ 2𝑂 with 𝑜 ′∩𝑂1 = 𝑖 and (𝑡, ]∪ ]′, 𝑜 ′) ∈ ℓ .

where ]′ = 𝑝𝑖𝑐𝑘
(
2𝐼\𝐼1

)
and where 𝑝𝑖𝑐𝑘 (𝑀) picks one element of the non-empty set𝑀 .

In contrast to transducer extension (see Lemma 5.1), the restriction of a transducer T realizing
a language 𝐿 ∈ (2𝑉 )𝜔 to a subset 𝑉1 of T ’s variables 𝑉 then realizes a language 𝐿1 ⊆ (2𝑉1)𝜔
if 𝐿1 is stricter than 𝐿 in the sense that every word satisfying 𝐿1 also satisfies 𝐿:

Lemma 5.14. Let 𝐼 , 𝐼1 and 𝑂 , 𝑂1 be finite sets of inputs and outputs with 𝐼 ∩ 𝑂 = ∅, 𝐼1 ⊆ 𝐼 ,
and 𝑂1 ⊆ 𝑂 . Let 𝑉 = 𝐼 ∪𝑂 and 𝑉1 = 𝐼1 ∪𝑂1. Let 𝐿 ⊆ (2𝑉 )𝜔 be a language. Let 𝐿1 ⊆ (2𝑉1)𝜔 with
{𝜎 ∩𝑉1 | 𝜎 ∈ 𝐿} ⊆ 𝐿1. Let 𝐿 be realizable and let T be a transducer realizing 𝐿. The restricted
transducer T1 constructed as in Definition 5.12 from T represents a strategy that realizes 𝐿1.

Proof. By construction, T1 is a (2𝐼1, 2𝑂1)-transducer. Completeness of T1 and finiteness of T1’s
set of states follows immediately from the construction of T1 and the fact that T is a complete
finite-state transducer. Choosing only one valuation ]′ ∈ 2𝐼\𝐼1 of input variables outside of 𝐼1
ensures that, for all 𝑡 ∈ 𝑇1 and all ] ∈ 2𝐼1 , we only choose one successor state and one labeling
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of those that are defined by T for inputs that are not distinguishable when only considering
variables in𝑉1. Hence, determinism of T1 follows. Furthermore, T1 neither introduces additional
transitions nor labelings with respect to T and thus the transducer type is preserved. Therefore,
it remains to show that Traces(T1) ⊆ 𝐿1 holds. Let 𝜎 ∈ Traces(T1). By construction of T1 and by
definition of traces, there exists some trace 𝜎 ′ ∈ Traces(T ) of T such that 𝜎 ′ ∩𝑉1 = 𝜎 holds. By
assumption, T realizes 𝐿. Hence, 𝜎 ′ ∈ 𝐿 holds. Since {𝜎 ∩𝑉1 | 𝜎 ∈ 𝐿} ⊆ 𝐿1 holds by assumption
and since we have 𝜎 ′ ∩𝑉1 = 𝜎 , it thus follows that 𝜎 ∈ 𝐿1 holds. Since we chose 𝜎 ∈ Traces(T1)
arbitrarily, Traces(T1) ⊆ 𝐿1 follows and therefore T1 realizes 𝐿. □

Hence, if the negation of all assumptions is unrealizable, we can construct counterstrategy
transducers for the negations of the individual assumptions from the counterstrategy transducer
for the negation of all assumptions and consequently they are unrealizable as well. In particularly,
all assumptions that are potentially dropped according to Lemma 5.13 are thus unrealizable. If the
negation of all assumptions is realizable, in contrast, then the full formula 𝜑 is trivially realizable.
The transducer realizing the negation of all assumptions can be extended with transducer
extension to a transducer that, by the semantics of implication, satisfies the full formula by
ignoring inputs outside the assumption propositions and choosing arbitrary valuations for
outputs outside the assumption propositions. We call this strategy extension.

The above observations enable us to incorporate the check for unrealizability of the negation
of dropped assumptions directly into the modular synthesis algorithm, resulting in a modified
version of Algorithm 5.1 that is depicted in Algorithm 5.4. Before decomposition, we derive
the negated assumptions from the initial specification 𝜑 (line 1) and the corresponding inputs
and outputs (lines 2 and 3). We then perform synthesis for the negated assumptions (line 4). If
the negated assumptions are realizable, then we extend the synthesized strategy to a strategy
realizing the full specification 𝜑 with strategy extension (line 6) and return it (line 7). Otherwise,
i.e., if the negated assumptions are unrealizable, then we proceed with the usual modular
synthesis algorithm since then all individual negated assumptions are unrealizable as well.
Note, however, that we employ a slightly modified counterstrategy extension in line 17 that,
in addition to the counterstrategy for the unrealizable component specification, takes the
counterstrategy for the negated assumptions into account: we derive the counterstrategy for
the negated assumptions which have been dropped for the considered component specification
using transducer restriction. Lemma 5.12 then allows for concluding that the counterstrategy
extension of the parallel composition of T 𝑐 and the counterstrategy for the negated dropped
assumptions is then a counterstrategy transducer for 𝜑 .

Utilizing the results of this section, in particular Lemmas 5.11 to 5.14 as well as Corollary 5.3
and strategy extension and restriction, it follows that the modular synthesis algorithm with
assumption checking from Algorithm 5.4 is sound and complete when using the LTL decompo-
sition algorithm with assumption dropping from Algorithm 5.3 as decomposition algorithm.

Theorem 5.3 (Soundness and Completeness). Let 𝒜 be a monolithic architecture with input
variables 𝐼 and output variables𝑂 . Let 𝜑 be an LTL formula over atomic propositions 𝐼 ∪𝑂 . Suppose
that Algorithm 5.4 utilizes Algorithm 5.3 as decomposition algorithm. If modular synthesis returns
(true, T ) on input 𝜑 , 𝐼 , 𝑂 , then 𝜑 is realizable and T realizes 𝜑 . If it returns (false, T 𝑐 ), then 𝜑
is unrealizable and T is a counterstrategy transducer of 𝜑 .
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Algorithm 5.4:Modular Synthesis with Assumption Check
Input: 𝜑 : Specification, I: List Variable, O: List Variable
Output :realizable: Bool, s: Strategy

1 negatedAssumptions← getNegatedAssumptions(𝜑)
2 aInp← getPropositions(negatedAssumptions) ∩ I
3 aOut← getPropositions(negatedAssumptions) ∩ O
4 (aRealizable, aStrategy)← synthesize(negatedAssumptions, aInp, aOut)
5 if aRealizable then
6 strategy← extendStrategy(aStrategy, I, O)
7 return (true, strategy)
8 components← decompose(𝜑 , I, O)
9 subResults← []: List (Bool, Strategy)

10 subStrategies← []: List Strategy
11 foreach (subspec, cInp, cOut) ∈ components do
12 (cRealizable, cStrategy)← synthesize(subspec, cInp, cOut)
13 subResults.append((cRealizable, cStrategy))
14 subStrategies.append(cStrategy)
15 foreach (cRealizable, cStrategy) ∈ subResults do
16 if ! cRealizable then
17 counterstrategy← extendCounterstrategy(cStrategy, aStrategy, I, O)
18 return (false, counterstrategy)
19 strategy← compose(subStrategies)
20 return (true, strategy)

Proof. First, suppose that modular synthesis returns (true, T ) on input 𝜑 , 𝐼 ,𝑂 . Then, either the
negated assumptions are realizable or none of the component specifications of the components
in the decomposition D is unrealizable as otherwise neither the return statement in line 7 of
Algorithm 5.4, nor the one in line 20 is reached. First, suppose that the former is the case.
Let 𝜑 ′ capture the assumptions of 𝜑 and let 𝐼𝑎 and 𝑂𝑎 denote the input and output variables
of the assumptions 𝜑 ′, respectively. Then, there exists deterministic and complete finite-state
(2𝐼𝑎 , 2𝑂𝑎 )-transducer that realizes ¬𝜑 ′. We extend T𝑎 to a (2𝐼 , 2𝑂 )-transducer T with strategy
extension. Since 𝜑 ′ captures the assumptions of 𝜑 , we have L(¬𝜑 ′) ⊆ {𝜎 ∩𝑉1 | 𝜎 ∈ L(𝜑)}
by the semantics of implication. Thus, T realizes L(𝜑) by Lemma 5.1. Next, suppose that
the negated assumptions are unrealizable and that all component specifications of the compo-
nents in D are realizable. Then, there exists a counterstrategy transducer T 𝑐

𝑎 for all negated
assumptions. Hence, T 𝑐

𝑎 realizes 𝜑 ′. Since every word satisfying 𝜑 ′ also satisfies all individ-
ual conjuncts 𝜑 ′𝑖 of 𝜑 ′ by the semantics of conjunction, the transducer restriction of T 𝑐

𝑎 is
a counterstrategy transducer for 𝜑 ′𝑖 by Lemma 5.14 and hence ¬𝜑 ′𝑖 is unrealizable. Thus, by
Lemma 5.13, (i) the component specifications do not share output variables and (ii) for each
component specification b𝑖 , the assumptions of 𝜑 that are not contained in b𝑖 are droppable
according to the assumption-dropping criterion. Therefore, it follows by recursively applying
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Corollary 5.3 that 𝜑 is realizable as well and, by recursively applying Lemma 5.11, that the
parallel composition of all substrategies realizes 𝜑 . Thus, T realizes 𝜑 by construction of T .
Second, suppose that modular synthesis returns (false, T 𝑐 ) on input 𝜑 , 𝐼 , 𝑂 . Then, there

exists a component 𝑐𝑖 ∈ D with unrealizable component specification b𝑖 . Moreover, the negated
assumptions are unrealizable as otherwise the return statement in line 18 of Algorithm 5.4
is not reached. As outlined in the second part of the first case, we can construct a counter-
strategy transducer for the negated assumptions of 𝜑 that are not contained in b𝑖 from the
counterstrategy transducer for the negation of all assumptions with counterstrategy restriction.
Hence, the negation of the dropped assumptions for b𝑖 is unrealizable. Thus, by Lemma 5.13,
the component specifications do not share output variables and, for each component specifica-
tion b𝑖 , the assumptions of 𝜑 that are not contained in b𝑖 are droppable. Therefore, it follows
by recursively applying Corollary 5.3 that 𝜑 is unrealizable as well. Algorithm 5.4 extends the
parallel composition of counterstrategy transducer for b𝑖 and the counterstrategy transducer
for the dropped assumptions of b𝑖 , which it obtains from the counterstrategy for all negated
assumptions with transducer restriction, according to Definition 5.3 in line 17 to a transducer T
and returns it. Thus, T is a counterstrategy transducer for 𝜑 by Lemma 5.12. □

Analyzing whether assumptions can be safely removed during decomposition of LTL formulas
thus allows for finding more fine-grained decompositions. Nevertheless, the resulting LTL
decomposition algorithm presented in this section ensures soundness and completeness of
modular synthesis. However, the assumption-dropping criterion requires that the specification
has a top-level implication. Hence, the results cannot be applied to LTL formulas that are not
in strict assume-guarantee form. In the next section, we thus extend LTL decomposition with
assumption dropping to formulas consisting of several assume-guarantee-style conjuncts.

5.5. Non-Strict Assumption Dropping
Basic LTL decomposition as described in Section 5.3 is applicable to specifications consisting of
arbitrarily many conjuncts. Lemma 5.7, which establishes that conjuncts form sublanguages,
requires a top-level conjunction in the considered LTL formula. Hence, it can be applied recur-
sively to specifications consisting of more than two conjuncts. Moreover, neither Lemma 5.8,
which states that the languages of LTL formulas that do not share output variables are non-
contradictory, nor the language-based independence criterion from Section 5.2 restricts the
structure of the specification. Thus they can be applied recursively as well. In particular, basic
LTL decomposition is thus applicable to specifications with several assume-guarantee conjuncts,
i.e., LTL formulas of the form 𝜑 = (𝜑1 → 𝜓1) ∧ . . . ∧ (𝜑𝑘 → 𝜓𝑚). LTL decomposition with
assumption dropping, in contrast, is restricted to LTL specifications consisting of a single
assume-guarantee pair. The assumption-dropping criterion formalized in Definition 5.9 and
particularly the results in Lemmas 5.11 and 5.12 as well as Corollary 5.3, on which LTL decom-
position with assumption dropping as described in Section 5.4.2, relies, assumes a top-level
implication in the specification. Therefore, we cannot apply the results to specifications that are
not in strict assume-guarantee form, and thus, in particular, we cannot apply modular synthesis
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with LTL decomposition with assumption dropping as realized by Algorithms 5.3 and 5.4 to LTL
specifications that consist of several assume-guarantee conjuncts, i.e., several conjuncts that are
possibly in assume-guarantee form. In this section, we thus study how to extend the basic LTL
decomposition algorithm with assumption dropping also for assume-guarantee specifications
in non-strict form, i.e., LTL formulas consisting of several assume-guarantee conjuncts.

A naïve approach for this extension is to first consider all assume-guarantee conjuncts of the
specification separately and to eliminate unnecessary assumptions according to the assumption-
dropping criterion stated in Definition 5.9 before then decomposing the conjunction of the
resulting specifications using basic LTL decomposition, i.e., using Algorithm 5.2. In general,
however, this is not sound as the other assume-guarantee conjuncts of the specification may
introduce dependencies between assumptions and guarantees of the considered conjunct that
prevent that the assumption can be dropped. When considering the conjuncts during the
assumption-dropping phase separately, such dependencies are not detected. As an example,
consider, the LTL formula

𝜑 = ¬(𝑜1 ∧ 𝑜2) ∧ ¬(𝑖1 ↔ 𝑜1) ∧ (( 𝑖1) → 𝑜2)

with input variables 𝐼 = {𝑖1} and output variables𝑂 = {𝑜1, 𝑜2}. Note that the first two conjuncts
can be seen as assume-guarantee conjuncts with no assumptions. Clearly, 𝜑 is realizable by a
strategy that sets 𝑜1 to the same truth value as ¬𝑖1 and 𝑜2 to the same truth value as 𝑖1 at every
point in time. Since the first conjunct ¬(𝑜1 ∧ 𝑜2) of 𝜑 contains both output variables, 𝜑 is
not decomposable according to the basic LTL decomposition algorithm since LTL component
specifications are required to share input variables only. Thus, Algorithm 5.2 returns only a single
component, namely 𝑐 = (𝜑, 𝐼,𝑂). The naïve approach for incorporating assumption dropping
into LTL decomposition also for non-strict assume-guarantee formulas described above, in
contrast, considers the third conjunct ( 𝑖1) → 𝑜2 of 𝜑 separately and checks whether the
single assumption 𝑖1 can be dropped. Clearly, it can be dropped since it neither shares variables
with 𝑜2, nor is its negation realizable by the system. Thus, the assumption dropping phase
results in the formula 𝜑 ′ = ¬(𝑜1 ∧ 𝑜2) ∧ ¬(𝑖1 ↔ 𝑜1) ∧ 𝑜2. However, 𝜑 ′ is not realizable. If
input variable 𝑖1 is constantly set to false, then the second conjunct ¬(𝑖1 ↔ 𝑜1) enforces 𝑜1 to
be set to true at every point in time. The third conjunct 𝑜2 enforces that 𝑜2 is constantly set
to true, irrespective of the input 𝑖1. The first conjunct ¬(𝑜1 ∧ 𝑜2), however, requires one of
the output variables to be false in every time step. Thus, although the assumption 𝑖1 can be
dropped when considering ( 𝑖1) → 𝑜2 in isolation, it cannot be dropped in the context of
the other two conjuncts since the realizability of the full formula is not preserved. In particular,
the first conjunct ¬(𝑜1 ∧ 𝑜2) introduces a dependency between 𝑜1 and 𝑜2 while the second
conjunct ¬(𝑖1 ↔ 𝑜1) causes a dependency between 𝑖1 and 𝑜1. Therefore, there is a transitive
dependency between 𝑖1 and 𝑜2 due to which the assumption 𝑖1 cannot be dropped for the
third conjunct ( 𝑖1) → 𝑜2. This dependency is not detected when considering the conjuncts
separately during the assumption-dropping phase.

In the following, we thus introduce a more sophisticated extension of the LTL decomposition
algorithm with assumption dropping to LTL formulas in non-strict assume-guarantee form,
i.e., LTL formulas with several conjuncts which are possibly in assume-guarantee form, which



5.5. Non-Strict Assumption Dropping 215

is, in contrast to the naïve approach described above, sound. Similar to the naïve approach,
the main idea is to first check for assumptions that can be dropped in the different conjuncts
and to then perform basic LTL decomposition as described in Algorithm 5.2. However, the
assumption-dropping phase is not performed entirely separately for the individual conjuncts
but takes the other conjuncts into account. This ensures that possible transitive dependencies
between the assumptions and guarantees are detected.
First, we lift the results from Section 5.4.1 to the case where further conjuncts are present.

Afterward, we describe an LTL decomposition algorithm that incorporates assumption dropping
also for formulas consisting of several assume-guarantee conjuncts.

5.5.1. Assumption Dropping in the Presence of Conjuncts
A crucial first step for developing an extension of the LTL decomposition algorithm with
assumption dropping to LTL formulas in non-strict assume-guarantee form is to analyze when
assumptions can be dropped in the presence of other conjuncts. Recall that the assumption-
dropping criterion for strict assume-guarantee formulas requires droppable assumptions (i) not
to share any variables with other guarantees, (ii) not to share any variables with the guarantees,
and (iii) to have an unrealizable negation, ensuring that the system cannot violate the assumption
on its own. Clearly, all these requirements must be satisfied in the presence of other conjuncts
as well. Furthermore, to take transitive dependencies into account, we require an assumption
not to share any variables with the other conjuncts in order to qualify for dropping. This results
in the following criterion for dropping assumptions in non-strict formulas.

Definition 5.13 (Assumption-Dropping Criterion for Non-Strict Formulas).
Let 𝐼 and 𝑂 be finite sets of input and output variables, respectively, with 𝐼 ∩ 𝑂 = ∅. Let
𝜑 = 𝜓 ′ ∧ ((𝜑1 ∧ 𝜑2) → 𝜓 ) be an LTL formula over atomic propositions 𝐼 ∪𝑂 . Assumption 𝜑2
qualifies for non-strict dropping if, and only if,

1. prop(𝜑1) ∩ prop(𝜑2) = ∅,
2. prop(𝜑2) ∩ prop(𝜓 ′) = ∅,
3. prop(𝜑2) ∩ prop(𝜓 ) = ∅, and
4. ¬𝜑2 is unrealizable.

Intuitively, this criterion allows for safely dropping assumptions since preventing the shared
variables between the droppable assumption and the other conjunct intercepts any dependencies
between the other conjunct and the assumption. Thus, in particular, no transitive dependencies
can be introduced by the other conjunct. That is, if an assumption qualifies for non-strict
dropping, then the original specification and the one obtained from dropping the assumption
are equirealizable:

Lemma 5.15. Let 𝐼 and 𝑂 be finite sets of inputs and outputs with 𝐼 ∩𝑂 = ∅ and let 𝑉 = 𝐼 ∪𝑂 .
Let 𝜑 = 𝜓 ′ ∧ ((𝜑1 ∧ 𝜑2) → 𝜓 ) be an LTL formula over atomic propositions 𝑉 . If 𝜑2 qualifies for
non-strict dropping for 𝜑 , then𝜓 ′ ∧ (𝜑1 → 𝜓 ) is realizable if, and only if, 𝜑 is realizable.
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Proof. Let 𝑉1 := prop(𝜑1) ∪ prop(𝜓 ′) ∪ prop(𝜓 ) and 𝑉2 := prop(𝜑2). Let 𝐼1 := 𝑉1 ∩ 𝐼 , 𝐼2 := 𝑉2 ∩ 𝐼 ,
𝑂1 := 𝑉1∩𝑂 , and𝑂2 := 𝑉2∩𝑂 . Let 𝜑 ′ := 𝜓 ′∧(𝜑1 → 𝜓 ). First, suppose that 𝜑 ′ is realizable. Then,
there exists a deterministic and complete finite-state (2𝐼1, 2𝑂1)-transducer T1 realizing 𝜑 ′. Let T
be the finite-state (2𝐼 , 2𝑂 )-transducer obtained by extending T1 with transducer extension ac-
cording to Definition 5.3. As in the corresponding proof of the non-strict case, i.e., as in the proof
of Lemma 5.10, it follows from the construction of 𝜑 ′ and 𝑉1 that L(𝜑 ′) ⊆ {𝜎 ∩𝑉1 | 𝜎 ∈ L(𝜑)}
holds. Hence, by Lemma 5.1, the transducer T realizes 𝜑 . Consequently, 𝜑 is realizable.

Next, suppose that 𝜑 ′ is unrealizable. Then, there exists a deterministic and complete finite-
state counterstrategy (2𝑂1, 2𝐼1)-transducer T 𝑐

1 for 𝜑 ′. Since ¬𝜑2 is unrealizable by assumption,
there exists a counterstrategy (2𝑂2, 2𝐼2)-transducer T 𝑐

2 for ¬𝜑2. Since 𝜑2 qualifies for dropping
for 𝜑 , we have prop(𝜑1) ∩ prop(𝜑2) = ∅, prop(𝜑2) ∩ prop(𝜓 ′) = ∅, and prop(𝜑2) ∩ prop(𝜓 ) = ∅
by definition of the non-strict assumption-dropping criterion. Thus, 𝑉1 ∩𝑉2 = ∅ holds. Note
that, in contrast to the strict case considered in the proof of Lemma 5.10, the requirement
prop(𝜑2) ∩ prop(𝜓 ′) = ∅ is crucial to obtain 𝑉1 ∩𝑉2 = ∅ since 𝜑 ′ contains𝜓 ′ in the non-strict
case as well. Similar to the proof of Lemma 5.10, we can now conclude that T 𝑐

1 | | T 𝑐
2 is a

counterstrategy transducer for 𝜑 . Hence, 𝜑 is unrealizable. □

Similar to assumption dropping for LTL formulas in strict assume-guarantee form described
in the previous section, we utilize Lemma 5.15 for decomposing LTL formulas with several
assume-guarantee conjuncts while employing assumption dropping where possible. We rewrite
an LTL formula 𝜑 = 𝜓 ′∧∧ℓ

𝑖=1 𝜑𝑖 →
∧𝑚

𝑗=1𝜓 𝑗 into the conjunctive form𝜓 ′∧∧𝑚
𝑗=1(

∧ℓ
𝑖=1 𝜑𝑖 → 𝜓 𝑗 )

and then drop assumptions for the individual guarantees𝜓1, . . . ,𝜓𝑚 according to the assumption-
dropping criterion for non-strict formulas described in Definition 5.13. If the resulting conjuncts
only share input variables and are realizable, then the parallel composition of transducers
realizing them realizes the full formula 𝜑 :

Lemma 5.16. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅. Let
𝜑 = 𝜓 ′1∧𝜓 ′2∧ (𝜑1∧𝜑2∧𝜑3) → (𝜓1∧𝜓2) be an LTL formula over atomic propositions 𝐼 ∪𝑂 . Let 𝜑1
qualify for non-strict dropping for𝜓 ′1∧𝜓 ′2∧ (𝜑1∧𝜑2∧𝜑3) → 𝜓2 and 𝜑2 for non-strict dropping for
𝜓 ′1 ∧𝜓 ′2 ∧ (𝜑1 ∧𝜑2 ∧𝜑3) → 𝜓1. Let 𝜑 ′ = 𝜓 ′1 ∧ ((𝜑1 ∧𝜑3) → 𝜓1) and 𝜑 ′′ = 𝜓 ′2 ∧ ((𝜑2 ∧𝜑3) → 𝜓2).
Suppose that prop(𝜑 ′) ∩ prop(𝜑 ′′) ⊆ 𝐼 holds. If both 𝜑 ′ and 𝜑 ′′ are realizable, then the parallel
composition T1 | | T2 of transducers T1 and T2 realizing 𝜑 ′ and 𝜑 ′′, respectively, realizes 𝜑 .

Recall that the proof of the analogous lemma for strict formulas, i.e., the proof of Lemma 5.11,
relies on two properties: (i) prop(𝜑 ′) ∩ prop(𝜑 ′′) = ∅ needs to hold to conclude that L(𝜑 ′)
and L(𝜑 ′′) are independent sublanguages of L(𝜑 ′ ∧ 𝜑 ′′) which allows for the construction
of a transducer T realizing 𝜑 ′ ∧ 𝜑 ′′ and (ii) L(𝜑 ′ ∧ 𝜑 ′′) ⊆ L(𝜑) needs to hold to conclude
that T also realizes 𝜑 . Both these requirements are satisfied in the non-strict case as well by
construction of 𝜑 ′ and 𝜑 ′′ as well as by the assumption on the shared variables of 𝜑 ′ and 𝜑 ′′.
Thus, the proof of Lemma 5.16 is analogous to the proof of Lemma 5.11.

Vice versa, we can extend a counterstrategy transducer for one of the formulas resulting
from non-strict assumption dropping for the individual conjuncts of𝜓 ′

∧𝑚
𝑗=1

(∧ℓ
𝑖=1 𝜑𝑖 → 𝜓 𝑗

)
to

a counterstrategy transducer for the full formula 𝜓 ′ ∧∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 analogously to the

case where no other conjuncts are present, i.e., analogously to Lemma 5.12:
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Lemma 5.17. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅. Let
𝜑 = 𝜓 ′1 ∧𝜓 ′2 ∧ (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → (𝜓1 ∧𝜓2) be an LTL formula over atomic propositions 𝐼 ∪ 𝑂 .
Suppose that 𝜑2 qualifies for non-strict dropping for𝜓 ′1 ∧𝜓 ′2 ∧ (𝜑1 ∧ 𝜑2 ∧ 𝜑3) → 𝜓2. Let T 𝑐

2 be a
counterstrategy transducer for ¬𝜑2. Let 𝜑 ′ = 𝜓 ′1 ∧ ((𝜑1 ∧ 𝜑3) → 𝜓1). If 𝜑 ′ is unrealizable, then
the counterstrategy extension of T 𝑐

1 | | T 𝑐
2 , where T 𝑐

1 is a counterstrategy transducer for 𝜑 ′, is a
counterstrategy transducer for 𝜑 .

The proof of the analogous lemma for strict formulas and strict assumption dropping, i.e.,
the proof of Lemma 5.12, again relies on two properties. First, prop(𝜑2) ∩ prop(𝜑 ′) = ∅ needs to
hold to conclude that L(𝜑2) and L(¬𝜑 ′) are independent sublanguages of L(𝜑2 ∧ ¬𝜑 ′), which
then allows for concluding that the parallel composition of counterstrategy transducers for ¬𝜑2
and 𝜑 ′ realizes 𝜑2 ∧ ¬𝜑 ′. Second, every sequence satisfying 𝜑 also needs to satisfy ¬𝜑2 ∨ 𝜑 ′ in
order to conclude that the counterstrategy extension of T 𝑐

1 | | T 𝑐
2 is a counterstrategy transducer

for 𝜑 . Both these requirements are satisfied in the non-strict case as well by construction of 𝜑 ′
as well as by the definition of the non-strict assumption-dropping criterion. Thus, the proof of
Lemma 5.17 is analogous to the proof of Lemma 5.12.

From these two observations formalized in Lemmas 5.16 and 5.17, it now follows immediately
that rewriting a non-strict assume-guarantee formula into conjunctive form and then dropping
assumptions for the individual conjuncts according to the non-strict assumption-dropping
criterion preserves equirealizability:

Corollary 5.4. Let 𝐼 and 𝑂 be finite sets of input and output variables with 𝐼 ∩ 𝑂 = ∅. Let
𝜑 = 𝜓 ′1∧𝜓 ′2∧ (𝜑1∧𝜑2∧𝜑3) → (𝜓1∧𝜓2) be an LTL formula over atomic propositions 𝐼 ∪𝑂 . Let 𝜑1
qualify for non-strict dropping for𝜓 ′1∧𝜓 ′2∧ (𝜑1∧𝜑2∧𝜑3) → 𝜓2 and 𝜑2 for non-strict dropping for
𝜓 ′1 ∧𝜓 ′2 ∧ (𝜑1 ∧𝜑2 ∧𝜑3) → 𝜓1. Let 𝜑 ′ = 𝜓 ′1 ∧ ((𝜑1 ∧𝜑3) → 𝜓1) and 𝜑 ′′ = 𝜓 ′2 ∧ ((𝜑2 ∧𝜑3) → 𝜓2).
If prop(𝜑 ′) ∩ prop(𝜑 ′′) ⊆ 𝐼 holds, then 𝜑 is realizable if, and only if, both 𝜑 ′ and 𝜑 ′′ are realizable.

Taking all other conjuncts into account thus allows for dropping assumptions of assume-
guarantee conjuncts also in LTL specifications that are in non-strict assume-guarantee form
while still preserving equirealizability. Thus, it enables LTL decomposition in further cases
for non-strict formulas than basic LTL decomposition. Nevertheless, it ensures soundness and
completeness of modular synthesis. We incorporate non-strict assumption dropping into the
search for independent conjuncts in the subsequent section.

5.5.2. Non-Strict LTL Decomposition Algorithm
In the following, we extend the LTL decomposition algorithm with strict assumption dropping
from Section 5.4.2 to LTL specifications that do not follow a strict assume-guarantee form but
consist of multiple assume-guarantee conjuncts. The centerpiece of the algorithm is the bottom-
up construction of components similar to the LTL decomposition with assumption dropping
for strict assume-guarantee formulas (see Algorithm 5.3). However, it utilizes the non-strict
version of the assumption-dropping criterion instead of the string one. This construction is
formalized in Algorithm 5.5. In contrast to both other LTL decomposition algorithms presented
in this chapter, it expects, in addition to the initial LTL specification 𝜑 and the input and output
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Algorithm 5.5: Conjunct-based LTL Decomposition for Non-Strict Formulas
Input: 𝜑 : LTL, I: List Variable, O: List Variable, agConjunct: LTL
Output :components: List (LTL, List Variable, List Variable)

1 assumptions← getAssumptions(agConjunct)
2 guarantees← getGuarantees(agConjunct)
3 decCriticalProps← getDecompositionCriticalPropositions(agConjunct)
4 agDependencyGraph← buildAGDependencyGraph(𝜑 , decCriticalProps)
5 cc← agDependencyGraph.connectedComponents()
6 subspecs← [|cc|+1]: List LTL // LTL list of length |cc|+1, initialized with true

7 freeAssumptions← []
8 foreach 𝜑𝑖 ∈ assumptions do
9 propositions← getPropositions(𝜑𝑖) ∩ decCriticalProps

10 if |propositions| = 0 then
11 freeAssumptions.append(𝜑𝑖)
12 else
13 foreach (spec,vars) ∈ zip(subspecs, cc ++ [I]) do
14 if propositions ∩ vars ≠ ∅ then
15 spec← spec.addAssumption(𝜑𝑖)
16 break
17 foreach𝜓𝑖 ∈ guarantees do
18 propositions← getPropositions(𝜓𝑖) ∩ decCriticalProps
19 foreach (spec,vars) ∈ zip(subspecs, cc ++ [I]) do
20 if propositions ∩ vars ≠ ∅ then
21 spec← spec.addGuarantee(𝜓𝑖)
22 break
23 foreach𝜓 ∈ getConjuncts(𝜑 \ agConjunct) do
24 propositions← getPropositions(𝜓) ∩ decCriticalProps
25 foreach (spec,vars) ∈ zip(subspecs, cc ++ [I]) do
26 if propositions ∩ vars ≠ ∅ then
27 spec← spec.addConjunct(𝜓)
28 break
29 subspecs.addNeededFreeAssumptions(freeAssumptions)
30 components← buildComponents(subspecs)
31 return components

variables of the system, an assume-guarantee conjunct as input. This assume-guarantee formula
is expected to be a conjunct of 𝜑 with a top-level implication. Taking this additional input into
account is necessary due to the structure of the assumption-dropping criterion for non-strict
assume-guarantee formulas, as it is based on the choice of one particular assume-guarantee
conjunct. Hence, Algorithm 5.5 implements the construction of components based on one
particular assume-guarantee conjunct of the formula.
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Similar to the LTL decomposition algorithm with strict assumption dropping depicted in
Algorithm 5.3, we employ two dependency graphs, the assumption dependency graph and the
assume-guarantee dependency graph, to determine dependencies. Recall that the assumption
dependency graph is used to detect decomposition-critical variables, i.e., variables that are
connected to an output variable via assumptions. Since we only consider a single assume-
guarantee conjunct in Algorithm 5.5, we only consider a single set of assumptions. Therefore, we
build the assumption dependency graph and thus compute the decomposition-critical variables
based on the assume-guarantee conjunct and not based on the full LTL formula (line 3). The
assume-guarantee dependency graph, which is then used to determine independent components,
in contrast, includes dependencies induced by all conjuncts of the LTL formula 𝜑 , not only
the ones induced by the considered assume-guarantee conjunct (line 4). This is necessary
since the non-strict assumption-dropping criterion forbids shared variables also between the
assume-guarantee conjunct and the other conjuncts of 𝜑 . Intuitively, the remaining conjuncts
of 𝜑 are thus treated similarly to the guarantees of the assume-guarantee conjunct. This
similar treatment also carries over to constructing the component specifications. Assumptions
and guarantees of the assume-guarantee conjunct are added to the respective component
specification similar to Algorithm 5.3, i.e., they are added to the specification of the component
defined by a connected component of the assume-guarantee dependency graph they share
variables with (lines 8 to 22). Afterward, the remaining conjuncts of 𝜑 are added as additional
conjuncts to the respective component specifications in a similar fashion as the guarantees of
the assume-guarantee conjunct (lines 23 to 28). Lastly, the free assumptions are added (line 29)
and the components are built from the resulting subspecifications (line 30).

Algorithm 5.5 then ensures that the resulting component specifications do not share output
variables. Furthermore, for each component, the assumptions of the assume-guarantee conjunct
that served as an input that are not present in the considered component’s specification do not
share any variables with both the assumptions and guarantees that are present in the assume-
guarantee part of the component specification. Additionally, the non-present assumptions
further do not share any variables with other parts of the component specification:

Lemma 5.18. Let𝒜 be a monolithic architecture with input variables 𝐼 and output variables 𝑂 .
Let 𝜑 =

∧𝑘
ℓ=1𝜓

′
ℓ ∧ (

∧ℓ
𝑖=1 𝜑𝑖 →

∧𝑚
𝑗=1𝜓 𝑗 ) be an LTL formula over atomic propositions 𝐼 ∪𝑂 . Let

𝜑 ′ :=
∧ℓ

𝑖=1 𝜑𝑖 →
∧𝑚

𝑗=1𝜓 𝑗 . Algorithm 5.5 terminates with a decomposition D for input 𝜑 , 𝐼 , 𝑂 , 𝜑 ′

such that all 𝑐𝑘 ∈ D are of the form 𝑐𝑘 = (b𝑘 , 𝐼𝑘 ,𝑂𝑘 ), where b𝑘 = b ′′ ∧ (∧b∈𝐴𝑘
b → ∧

b ′∈𝐺𝑘
b ′)

with 𝐴𝑘 ⊆
⋃ℓ

𝑖=1 𝜑𝑖 and 𝐺𝑘 ⊆
⋃𝑚

𝑗=1𝜓 𝑗 . Moreover, we have

1. prop(b 𝑗 ) ∩ prop(b𝑘 ) ⊆ 𝐼 for all 𝑐 𝑗 , 𝑐𝑘 ∈ D with 𝑐 𝑗 ≠ 𝑐𝑘 ,

2. prop(𝜑𝑖) ∩ prop(𝜓 𝑗 ) = ∅ for all 𝑐𝑘 ∈ D, all 𝜑𝑖 ∈
⋃ℓ

𝑖=1 𝜑𝑖 \𝐴𝑘 , and all𝜓 𝑗 ∈ 𝐺𝑘 ,

3. prop(𝜑𝑖) ∩ prop(𝜑 𝑗 ) = ∅ for all 𝑐𝑘 ∈ D, all 𝜑𝑖 ∈
⋃ℓ

𝑖=1 𝜑𝑖 \𝐴𝑘 , and all 𝜑 𝑗 ∈ 𝐴𝑘 , and

4. prop(𝜑𝑖) ∩ prop(b ′′) = ∅ for all 𝑐𝑘 ∈ D and all 𝜑𝑖 ∈
⋃ℓ

𝑖=1 𝜑𝑖 \𝐴𝑘

Proof. The form of the component specifications follows immediately from their construction
in the algorithm. Furthermore, properties (1) to (3) follow from Lemma 5.13 and the fact that
Algorithm 5.5 does not differ from Algorithm 5.3 for the assume-guarantee conjunct 𝜑 ′ which
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Algorithm 5.6: Decomposition Algorithm for Non-Strict Formulas
Input: 𝜑 : LTL, I: List Variable, O: List Variable
Output :components: List (LTL, List Variable, List Variable)

1 components← [𝜑]
2 if 𝜑 .hasAGConjunct() then
3 agConjuncts← 𝜑 .getAllAGConjuncts()
4 foreach conj ∈ agConjuncts do
5 conjComponents← []: List (LTL, List Variable, List Variable)
6 foreach comp ∈ components do
7 compSpec← comp.getSpecification()
8 if compSpec.containsConjunct(conj) then
9 decomp← nonStrictLTLDecomposition(compSpec, I, O, conj)

10 conjComponents← conjComponents ++ decomp

11 components← conjComponents

12 return components

is provided as input to Algorithm 5.5 since it is in strict assume-guarantee form by definition.
Hence, it only remains to show that prop(𝜑𝑖) ∩ prop(b ′′) = ∅ holds for all 𝑐𝑘 ∈ D as well as all
𝜑𝑖 ∈

⋃ℓ
𝑖=1 𝜑𝑖 \𝐴𝑘 . The proof is analogous to the proof of property (2) of Lemma 5.13 since the

remaining conjuncts are added to the component specifications in lines 23 to 28 in Algorithm 5.5
exactly as the guarantees in lines 17 to 22 in Algorithm 5.3. □

The decomposition returned by Algorithm 5.5 and, in fact, the applicability of Lemma 5.16 as
well as Corollary 5.4, heavily relies on the considered assume-guarantee conjunct. Consequently,
to obtain small synthesis subtasks, we apply Algorithm 5.5 for all choices of assume-guarantee
conjuncts of the formula as otherwise possible decompositions might be missed. Therefore,
after decomposing an LTL specification with non-strict assumption dropping, we reapply
Algorithm 5.5 to the resulting components with the remaining assume-guarantee conjuncts.
The resulting algorithm for LTL decomposition with non-strict assumption dropping is depicted
in Algorithm 5.6 Note that Algorithm 5.5 only needs to be reapplied to components that indeed
contain the considered assume-guarantee conjunct.

Reapplying Algorithm 5.5 allows for finding all decompositions that are possible according to
the non-strict assumptions dropping criterion and thus according to Corollary 5.4. However, de-
compositions that can even be detected by the basic LTL decomposition algorithmwhich does not
take assumption dropping into account might still be missed. As an example, reconsider the LTL
formula 𝜑 = ( 𝑖2 ∧ (𝑜2 → ¬𝑖1)) → ( (𝑖2 → 𝑜1) ∧ (¬𝑜2 ∧ 𝑖2) ∧ (𝑖1 → ¬𝑜3) ∧ 𝑜3) in
strict assume-guarantee form with inputs 𝐼𝜑 = {𝑖1, 𝑖2} and outputs 𝑂𝜑 = {𝑜1, 𝑜2, 𝑜3} from Ex-
ample 5.2. Recall that 𝜑 can be decomposed into two components as described in Example 5.5.
Based on 𝜑 , we construct an LTL formula𝜓 = 𝜑 ∧ (𝑖1 → 𝑜4) in non-strict assume-guarantee
form with input variables 𝐼𝜓 = {𝑖1, 𝑖2} and output variables𝑂𝜓 = {𝑜1, 𝑜2, 𝑜3, 𝑜4}. When applying
Algorithm 5.5 to 𝜓 with the only assume-guarantee conjunct 𝜑 , then 𝜓 is decomposed into
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two components. Since 𝑖1 is decomposition-critical in 𝜑 (see Example 5.2), there exists an edge
between 𝑖1 and 𝑜4 in the assume-guarantee graph due to the conjunct (𝑖1 → 𝑜4) as well as
edges between 𝑖1 and both 𝑜2 and 𝑜3 due to 𝜑 . Hence, Algorithm 5.5 concludes that output 𝑜1
can be separated from the other three outputs, resulting in the two components. However, the
two conjuncts of𝜓 only share the input variable 𝑖1 and are thus separated by the basic LTL de-
composition algorithm into two components 𝑐1 = (𝜑, 𝐼𝜑 ,𝑂𝜑 ) and 𝑐2 = ( (𝑖1 → 𝑜1), {𝑖1}, {𝑜4})
for which separate synthesis tasks can be performed. Then, we can further decompose 𝑐1
with Algorithm 5.5, resulting in a total of three components. Hence, we miss an independent
component when applying Algorithm 5.5 to𝜓 directly.
Missing decompositions is not a problem introduced by the algorithm but already occurs

when simply applying the non-strict assumption-dropping criterion. To overcome this weak-
ness, modular synthesis performs decomposition in two steps. First, it decomposes the LTL
formula with the basic decomposition algorithm from Algorithm 5.2. Afterward, it applies LTL
decomposition with non-strict assumption dropping as depicted in Algorithm 5.6.
The decomposition computed by Algorithm 5.6, however, does not necessarily guarantee

equirealizability of the component specification with the initial specification. Similar to the LTL
decomposition algorithm for strict assume-guarantee formulas, Algorithm 5.6 only preserves
the first three requirements of the non-strict assumption-dropping criterion. It does not ensure
that the dropped assumptions cannot be violated by the system for all input sequences, i.e., that
the negation of the dropped assumptions is unrealizable for the system. Therefore, we again
need to incorporate such a check into modular synthesis when using the LTL decomposition
algorithm with non-strict assumption dropping.

Recall that Algorithm 5.4 is a slightly modified version of modular synthesis that first tries to
synthesize a strategy for the negation of the assumptions of the given strict assume-guarantee
formula. If synthesis succeeds, we extend the resulting strategy to the full system since we have
found a strategy that violates the assumptions for all environment inputs and thus trivially
realizes the initial specification. When considering LTL formulas in non-strict assume-guarantee
form, however, extending a strategy that realizes the negation of the assumptions of one of the
assume-guarantee conjuncts might not yield a strategy that realizes the initial specification. This
strategy is guaranteed to trivially realize one assume-guarantee conjunct of the formula, yet, it
might violate other conjuncts. Therefore, we employ a different assumption check in modular
synthesis when considering LTL decomposition with non-strict assumption dropping: if the
negation of the assumptions of some assume-guarantee conjunct of the initial specification is
realizable, then the synthesized strategy is first extended as in Algorithm 5.4. Afterward, it
is model checked against the remaining conjuncts. If the check succeeds, then the extended
strategy is indeed a strategy for the initial specification and is returned. Otherwise, the strategy
does not comply with some of the other conjuncts. Hence, it does not serve as a strategy for
the full formula; therefore, we do not return it. Instead, we proceed with modular synthesis for
the decompositions obtained with basic LTL decomposition only.

Utilizing the results of this section, in particular Lemma 5.18 and Corollary 5.4, it now follows
that the modular synthesis algorithm with modified assumption checking as described above is
sound and complete when using the LTL decomposition algorithm with non-strict assumption
dropping from Algorithm 5.6 as decomposition algorithm.
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Theorem 5.4 (Soundness and Completeness). Let 𝒜 be a monolithic architecture with input
variables 𝐼 and output variables𝑂 . Let 𝜑 be an LTL formula over atomic propositions 𝐼 ∪𝑂 . Suppose
that modular synthesis with modified assumption check utilizes Algorithm 5.6 as decomposition
algorithm. If modular synthesis returns (true, T ) on input 𝜑 , 𝐼 , 𝑂 , then 𝜑 is realizable and T
realizes 𝜑 . If it returns (false, T 𝑐 ), then T is a counterstrategy transducer of 𝜑 .

Proof. First, suppose that modular synthesis returns (true, T ) on input 𝜑 , 𝐼 ,𝑂 . Then, either the
negated assumptions of one of the conjuncts are realizable and the strategy realizing them can
be successfully extended, or all of the component specifications are realizable. First, suppose
that the former is the case. Since the extended strategy is verified against the initial specification
and only returned if the verification is successful, it follows immediately that the returned
strategy realizes 𝜑 . Next, suppose that all of the component specifications of the components
in the decomposition D are realizable. If only basic LTL decomposition has been applied,
then it follows exactly as in the proof of Lemma 5.9 that the decomposition is syntactically
independent. Thus, T realizes 𝜑 by Corollary 5.2. If further non-strict assumption dropping
has been applied, then it follows analogously to the proof of Theorem 5.3 but by employing the
respective non-strict results Lemmas 5.16 and 5.18 as well as Corollary 5.4 that T realizes 𝜑 .
Second, suppose that modular synthesis returns (false, T 𝑐 ) on input 𝜑 , 𝐼 , 𝑂 . Then, there

exists a component 𝑐𝑖 ∈ D with unrealizable component specification b𝑖 . If only basic LTL
decomposition has been applied, then it follows as in the proof of Lemma 5.9 that the decompo-
sition is syntactically independent. Thus, by Corollary 5.2, the transducer T is a counterstrategy
transducer for 𝜑 . If further non-strict assumption dropping has been applied, then it follows
analogously to the proof of Theorem 5.3 but by employing the respective non-strict results
Lemmas 5.17 and 5.18 that T is a counterstrategy transducer for 𝜑 . □

Utilizing Algorithms 5.5 and 5.6, we can thus incorporate assumption dropping also into the
decomposition of LTL specifications that are not in strict assume-guarantee form. Modular
synthesis in its slightly adapted form described above is nevertheless sound and complete. It thus
constitutes a compositional synthesis approach for monolithic systems with LTL specifications
based on a syntactic analysis of the specification.

5.6. Experimental Evaluation
We implemented the modular synthesis algorithm as well as the decomposition algorithm for
LTL specifications in non-strict assume-guarantee form. The LTL decomposition relies on the
tool SyFCo [JKS16] for formula transformations. We first decompose the LTL specification with
the decomposition algorithm for LTL formulas in non-strict assume-guarantee form described
in Section 5.5 and then run synthesis sequentially on the resulting subspecifications. Note
that parallelization of the synthesis tasks may further reduce the running time. We evaluate
modular synthesis with two state-of-the-art synthesis tools, BoSy [FFT17] and Strix [MSL18],
both in their 2019 release. BoSy implements the bounded synthesis [FS13] approach a Strix
implements a game-based synthesis approach, The experimental evaluation was performed on
a 3.6GHz quad-core Intel Xeon processor and 32GB of RAM.
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Table 5.1.: Distribution of the number of components for all 346 benchmarks for LTL decompo-
sition with assumption dropping for formulas in non-strict assume-guarantee form.

# components 1 2 3 4 5 6 7 8 9 10 11 12
# benchmarks 307 19 8 2 3 2 0 2 0 1 1 1

We evaluate our approach with the well-established benchmarks of the annual reactive synthe-
sis competition SyntComp [BEJ14, JBB+17b, JBB+15, JBB+16, JB16, JBB+17a, JBC+19, JPA+22]. In
particular, we consider the 346 publicly available LTL benchmarks from SyntComp 2020 [SYN20].
Note that only 207 of these benchmarks have more than one output variable and are, therefore,
realistic candidates for decomposition. The LTL decomposition algorithm for formulas in non-
strict assume-guarantee format as described in Section 5.5.2 terminates on all benchmarks in less
than 26 milliseconds. Hence, even for non-decomposable specifications, the overhead of trying
to perform decompositions first is negligible. The decomposition algorithm decomposes 39 LTL
formulas into several components. Most of the benchmarks yield two or three components, and
only a handful of formulas are decomposed into more than six components. The full distribution
of the number of resulting components for all benchmarks is shown in Table 5.1. When applying
only basic LTL decomposition algorithm as described in Section 5.3.2, in contrast, only 24 of the
benchmarks are decomposed into one or more components. By construction, all decompositions
found with the basic LTL decomposition algorithm are also found by the LTL decomposition
algorithm for non-strict assume-guarantee formulas. This shows that assumption dropping has
a considerable impact on the performance of the decomposition algorithm.
For all decomposable SyntComp benchmarks, we compare the synthesis running times for

non-compositional synthesis and modular synthesis with both BoSy and Strix. We used a time
out of 60 minutes. The results are shown in Figure 5.2. The plot relates the accumulated running
time of all benchmarks solved so far (y-axis) to the number of solved instances (x-axis). Note
that due to the negligible running time of specification decomposition, the plot looks similar
when considering all SyntComp benchmarks instead of only the decomposable ones.

For both BoSy and Strix, one can observe that modular synthesis generates a slight overhead
in the beginning and thus for small specifications. In general, however, modular synthesis
decreases the execution time significantly, often by order of magnitude or more, indicating that
it performs particularly well for larger and more complex benchmarks. To further study the
performance of modular synthesis, we depict the running times of both BoSy and Strix for
modular and non-compositional synthesis on exemplary SyntComp benchmarks as well as the
number of resulting components in Table 5.2. For modular synthesis, the accumulated running
time of all synthesis tasks is depicted. Interestingly, the non-compositional version of BoSy
outperforms all other approaches for the shift_8 and shift_10 benchmark, although eight and
ten components, respectively, can be found. Both benchmarks have a very simple structure and
can be solved efficiently with the original synthesis tools. Most likely, the overhead produced by
inducing eight and ten synthesis tasks, respectively, exceeds the advantage of smaller synthesis
tasks in this case. On all other benchmarks, both BoSy and Strix decrease their synthesis times
with modular synthesis notably compared to the original non-compositional approaches.
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Figure 5.2.: Comparison of the performance of modular and non-compositional synthesis with
BoSy and Strix on the decomposable SyntComp benchmarks for a timeout of 60 minutes. For
the modular approach, the accumulated time for all synthesis tasks is depicted.

Particularly noteworthy is the benchmark generalized_buffer_3. In the 2021 edition of the
reactive synthesis competition, SyntComp 2021, no competing tool was able to synthesize
a solution for it within one hour. With modular synthesis, however, BoSy yields a result
in less than 28 seconds. Note that the synthesis tool ltlsynt [MC18, RSDP22] solved the
generalized buffer benchmark up to parameter 6 in the 2022 edition of the reactive synthesis
competition [SYN22]. The developers of ltlsynt incorporated several optimizations into the
release that competed in SyntComp 2022, including utilizing our LTL decomposition approach
described in this chapter as a preprocessing technique. Our experimental results regarding the
reduction of BoSy’s runtime with modular synthesis for the benchmark generalized_buffer_3
indicate that our decomposition algorithm might have a considerable impact on ltlsynt’s
significant improvement for the generalized buffer benchmark series.

5.7. Toward Compositional Smart Contract Synthesis
In this section, we illustrate the applicability of the results on system decomposition for sound
and complete compositional monolithic synthesis of the previous sections of this chapter to the
domain of smart contracts. Smart contracts are small programs that implement digital contracts
constituting agreements between multiple parties. Typical smart contracts implement, for
instance, digital coins, auctions, or asset transfers. The code of smart contracts is deployed on
the blockchain. This eliminates the need for a trusted third party that establishes the correct
execution of the contract. Furthermore, a smart contract cannot be altered after deployment.
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Table 5.2.: Comparison of the synthesis time in seconds of BoSy and Strix for non-compositional
and modular synthesis on exemplary SyntComp benchmarks. The timeout is 60 minutes. For
modular synthesis, the accumulated running time of all synthesis tasks is depicted.

Benchmark
original modular

BoSy Strix BoSy Strix # comp.
Cockpitboard 1526.32 11.06 2.108 8.168 8
Gamelogic TO 1062.27 TO 25.292 4
LedMatrix TO TO TO 1156.68 3
Radarboard TO 126.808 3.008 11.04 11
Zoo10 1.316 1.54 0.884 2.744 2
generalized_buffer_2 70.71 534.732 4.188 7.892 2
generalized_buffer_3 TO TO 27.136 319.988 3
shift_8 0.404 1.336 2.168 3.6 8
shift_10 1.172 1.896 2.692 4.464 10
shift_12 4.336 6.232 3.244 5.428 12

While this increases trust, it implies that bugs cannot be fixed retrospectively. Most smart
contracts are written in the high-level programming language Solidity [Sol16] and are deployed
on the Ethereum blockchain [Eth23, Woo14].
Smart contracts often involve financial transactions. Numerous bugs in smart contracts

have thus led to huge monetary losses in recent history. As a consequence, there have been
extensive efforts to improve the trustworthiness of smart contracts. Especially due to their
usual conciseness and the criticality of their correctness, smart contracts are an inherent target
for formal methods and, in particular, synthesis.

In the following, we first describe how the behavior of typical smart contracts can be specified
with temporal logics. Afterward, we study how the decomposition techniques introduced in
the previous sections of this chapter can be applied to smart contract specifications to enable
compositional synthesis approaches.

5.7.1. Specifying Smart Contracts
Many smart contracts can be defined in terms of their control flow and the effect of function
calls. The control flow describes the order in which transactions can occur and is thus of an
inherent temporal nature. For instance, we can specify that, in an auction protocol, the function
bid, which allows a user of the contract to submit a bid, may not be called after the auction has
been closed via calling the function close. Furthermore, each function call results in specific
actions to perform, such as, for instance, transferring money from one user of the contract to
another. In the auction example, we can, for instance, specify that submitting a bid via function
bid should result in storing the bid.
Many recent approaches for applying formal methods to the domain of smart contracts

focus on modeling the control flow of a smart contract with a finite-state transducer (see,
e.g., [ML18, MLSD19, WLC+19]). Consequently, a contract’s control flow is a natural target for
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reactive synthesis. Intuitively, the control flow transducer progresses only when a function is
called. Furthermore, the effects of function calls are often instantaneous in the sense that they
happen as soon as the respective function has been called and before any further function calls
occur. Therefore, modeling a contract’s control flow with a finite-state transducer allows for
integrating function call effects.
In the following, we first elaborate on a suitable temporal logic for specifying the control

flow of smart contract’s as well as the effects of its function calls. Afterward, we describe the
general structure of such smart contract specifications.
In recent work [FHKP23], we have identified that the control flow requirements of smart

contracts can be formalized with Temporal Stream Logic (TSL) [FKPS19]. TSL is a temporal
logic that separates temporal control and pure data. It extends LTL with the concept of cells,
which, intuitively, allow for storing data of arbitrary type from possibly infinite domains, as
well as uninterpreted functions and predicates. In TSL, data is represented as infinite streams of
arbitrary type. The functions and predicates enable abstracting from concrete data points, thus
allowing for focusing on the temporal control. The temporal structure of the data is expressed
by temporal operators as in LTL.

In TSL, we can employ updates over arbitrary function terms to manipulate cells. For instance,
an update ⟦x↢ 𝑓 (y)⟧ denotes that the result of applying function 𝑓 to cell y is assigned to
cell x. Updates allow for specifying the evolution of cells, which can be seen as variables, over
time. Predicates then enable performing checks on data, both on the input data and on cells. A
TSL formula describes a system that receives an infinite input stream and produces an infinite
stream of cell updates.

We do not describe TSL and particularly its syntax and semantics in detail here as we mainly
focus on the structure of smart contract specifications, not on the particular characteristics
of TSL. For a formal definition of TSL, we refer to [FKPS19]. A crucial observation regarding
the semantics of TSL is, however, that functions and predicates are considered to be uninter-
preted. Hence, a system satisfies a TSL formula if, and only if, the formula evaluates to true
for all possible interpretations of the function and predicate symbols. While TSL has been
extended with several first-order theories [FHP21, FHP22], TSL’s original formulation with
uninterpreted functions and predicates has been proven to be particularly beneficial in reac-
tive synthesis [FKPS19, GHKF19], where the synthesis algorithm derives a control structure
while the implementation of the functions and predicates is left to the developer. In reactive
synthesis from TSL specifications, functions and predicates are consequently considered to be
uncontrollable, while cell updates are controllable.
We introduced the past-time fragment of TSL, called pastTSL in recent work [FHKP23]. It

is similar to the classical definition of TSL [FKPS19], yet, it employs LTL’s past-time temporal
operators instead of its future-time operators. So far, we only considered future-time operators
such as next or globally , which, in accordance with their name, reason about future time
steps (see Section 2.4) in this thesis. Past-time operators, in contrast, only reason about the
current and previous time steps. The operator historically , for instance, describes that its
operand needs to be satisfied in the current time step as well as in all previous time steps. Hence,
it can be seen as the past-time counterpart of the operator globally . For the formal definition
of pastTSL and all its temporal operators, we refer to [FHKP23].
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We identified that the control flow requirements of many typical smart contracts can be
expressed in the past-time fragment of TSL with an additional top-level -operator [FHKP23].
Intuitively, utilizing pastTSL allows for stating control flow requirements, for every function
call, in terms of restrictions on the history of function calls and other properties such as
access rights, i.e., that only a particular user, for instance, the contract’s owner, may call a
function, and timing restrictions, i.e., that a function can only be called before or after a certain
amount of time has passed since the contract’s initialization. In the auction example from
above, for instance, we state that whenever function bid is called, function close must not
have been called previously. Utilizing the past-time operator historically , this results in
the formula (bid (call) → ¬close(call)), where, bid (call) and close(call) are predicates
over input call, modeling that the contract’s functions bid and close, respectively, have been
called. Note that using the top-level -operator is required to ensure that the control flow
requirement for bid concerning previous calls to close is satisfied for calls to bid at every
point in time and not only in the very first time step.

All other control flow requirements for function bid can be easily integrated into the control
flow formula shown above by adding a further conjunct to the conclusion of the implication
inside the scope of the -operator. If, for instance, we want to further specify that bid may
only be called if function cancel has not been called previously, we obtain the overall formula
(bid (call) → ¬close(call) ∧ ¬cancel(call)), where cancel(call) is a predicate over

input call, modeling that the contract’s function cancel is called. In general, we thus obtain,
for each function 𝑓𝑖 of the smart contract, a single formula of the form

𝜑 𝑓𝑖 =

(
𝑓𝑖 (call) → 𝜑

req
𝑓𝑖 ,1 ∧ . . . ∧ 𝜑 req

𝑓𝑖 ,𝑚

)
,

where the formulas 𝜑 req
𝑓𝑖 ,1, . . . , 𝜑

req
𝑓𝑖 ,𝑚

denote the𝑚 control flow requirements that are associated
with the contract’s function 𝑓𝑖 . As control flow requirements can be stated with past-time
operators, it follows that all formulas 𝜑 req

𝑓𝑖 ,𝑖
fall into the past-time fragment with a single top-level

-operator. This allows us to determine for every point in time 𝑘 ≥ 0 and every function 𝑓𝑖
whether or not the control flow requirements permit calling 𝑓𝑖 at point in time 𝑘 solely by
analyzing the current and the past time steps; the future time steps are irrelevant.
However, whether or not a function of the contract is called in a particular time step is not

subject to the control of the smart contract. This is captured in our control flow specification by
modeling function calls with predicates over the input call. Hence, a smart contract cannot
enforce satisfaction of a control flow specification

∧
1≤𝑖≤𝑛 𝜑 𝑓𝑖 , which formalizes the allowed

order of function calls. Instead, it has to recognize situations in which the intended control flow
is violated. Utilizing Solidity’s rollback functionality revert, a prohibited function call and all
of its effects can then be undone. More precisely, when modeling function calls with predicates,
the specifications modeling the control flow properties are, in many cases, not realizable since
the formulas 𝜑 req

𝑓𝑖 ,1, . . . , 𝜑
req
𝑓𝑖 ,𝑚

usually describe previous function calls. Hence, we cannot utilize
the above specifications for stating the control flow requirements of a smart contract.
Instead, we utilize a cell error to model the control flow of a smart contract. For instance,

rather than stating that close may not have been called before bid, which would result in
unrealizability, we state that calling function bid after function close results in updating
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cell errorwith a constant raise(), indicating that the control flow has been violated. This results
in the formula ((bid (call) ∧¬( ¬close(call) ∧ ¬cancel(call))) → ⟦error↢ raise()⟧).
Furthermore, to accurately capture whether or not the control flow requirements have been
violated and, in particular, to prevent that a system strategy simply always updates the cell error
with the constant raise(), we state that whenever bid is called and error is updated with raise(),
one of the control flow requirements for the function bid has been violated, resulting in the
formula ((bid (call) ∧ ⟦error↢ raise()⟧) → ¬( ¬cancel(call) ∧ ¬close(call)).

In general, we obtain the following formula 𝜑ctrl
𝑓𝑖

that allows for recognizing whether or not
the control flow requirements for the contract’s function 𝑓𝑖 have been violated:

𝜑ctrl
𝑓𝑖

=

((
𝑓𝑖 (call) ∧ ¬

(
𝜑
req
𝑓𝑖 ,1 ∧ . . . ∧ 𝜑 req

𝑓𝑖 ,𝑚

))
→ ⟦error↢ raise()⟧

)
∧

(
(𝑓𝑖 (call) ∧ ⟦error↢ raise()⟧) → ¬

(
𝜑
req
𝑓𝑖 ,1 ∧ . . . ∧ 𝜑 req

𝑓𝑖 ,𝑚

))
.

The full specification of the control flow requirements of a smart contract with 𝑛 functions
𝑓1, . . . , 𝑓𝑛 is then given by

𝜑ctrlflow =
∧

1≤𝑖≤𝑛
𝜑ctrl
𝑓𝑖

.

In addition to the control flow requirements of a smart contract, we consider the effects of
individual function calls, such as storing a submitted bid in an auction. As outlined above,
these effects are often instantaneous in the sense that they happen in the same time step as the
respective function call and thus without delay. Due to this observation, specifications of the
effects of function calls have, apart from the usual -operator that ensures that the effect is not
only required in the very first time step but in all, no temporal operators. For specifying the
effects of a call of the contract’s function bid in the auction protocol, for instance, one would
consequently expect the formula (bid (call) → 𝜑store), where 𝜑store is a formula encoding the
particular effect of storing the submitted bid. However, this formula requires the storage of the
submitted bid even if submitting the bid was prohibited by the control flow requirements. If, for
instance, the auction was already closed and a user nevertheless submits a bid, then the user’s
call of bid violates the control flow specification. As outlined above, we cannot ensure that no
bid is submitted after the auction is closed. Nevertheless, we need to ensure that function calls
are only obliged to induce their effects if they adhere to the contract’s control flow. Otherwise,
realizability of the specification might not be guaranteed. Therefore, we include the control
flow requirements in the specification of the function effects, resulting in a formula

𝜑
eff
𝑓𝑖

=

((
𝑓𝑖 (call) ∧ 𝜑 req

𝑓𝑖 ,1 ∧ . . . ∧ 𝜑 req
𝑓𝑖 ,𝑚

)
→ 𝜑

eff
𝑓𝑖 ,1 ∧ . . . ∧ 𝜑eff

𝑓𝑖 ,ℓ

)
for function 𝑓𝑖 , where the formulas 𝜑eff

𝑓𝑖 ,1, . . . , 𝜑
eff
𝑓𝑖 ,ℓ

encode the ℓ effects of a call of 𝑓𝑖 . All in all,
smart contract specifications describing the control flow and the effects of function calls then
usually follow a simple pattern:

𝜑sc = 𝜑ctrlflow ∧
∧

1≤𝑖≤𝑛
𝜑
eff
𝑓𝑖
.
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Consequently, such smart contract specifications naturally qualify as an interesting domain
for specification decomposition, as introduced in the previous sections of this chapter, due to
their conjunctive nature. Therefore, we study the results of our decomposition approaches for
smart contract specifications in the following to determine whether smart contracts constitute
a suitable domain for compositional synthesis via specification decomposition.

5.7.2. Decomposition Smart Contract Specifications
In this section, we study whether smart contract specifications can be decomposed into several
components for compositional synthesis. Therefore, we first elaborate on TSL synthesis in
general. Afterward, we utilize these observations to apply the independence criteria introduced
in the previous sections to smart contract specifications.

In general, the realizability problem for TSL in its classical definition, i.e., without past-time
operators, and consequently also the synthesis problem for TSL, is undecidable [FKPS19]. Even
though past-time variants of temporal logics like LTL often lead to significantly easier algorithms
as they restrict the expressible properties to safety properties, we establish in [FHKP23] that the
realizability problem for pastTSL, and consequently also the synthesis problem for pastTSL, is
undecidable as well. However, inspired by Finkbeiner et al.’s result that the realizability problem
for TSL can be soundly approximated with the LTL realizability problem [FKPS19], we provide
a sound approximation of the pastTSL realizability problem with the realizability problem for
pastLTL specifications, i.e., the past-time fragment of LTL, in [FHKP23]. This allows for utilizing
existing synthesis algorithms for specifications given in (past-time) LTL.
Following the future-time counterpart, the main idea of the approximation is to replace

the predicate and update terms of the pastTSL formula with atomic propositions. Additional
conjuncts ensure that the semantics of cells are respected. In particular, the conjuncts formalize
that, for every cell, exactly one update is performed in every time step. For the formal definition
of the pastLTL approximation, we refer to [FHKP23]. The approximation is sound in the sense
that every strategy that realizes the approximated pastLTL formula can be translated into
one for the original pastTSL formula. However, it is not complete as the basic property of
function and predicates that they evaluate to the same value when applied to terms that evaluate
to the same value is lost. Therefore, unrealizability of the pastLTL approximation does not
necessarily result in unrealizability of the original pastTSL formula. This matches the respective
LTL approximation of future-time TSL formulas [FKPS19]. In practice, however, we never
encountered a realizable pastTSL specification with an unrealizable pastLTL specification.
Since pastTSL realizability and thus also pastTSL synthesis is approximated with pastLTL

realizability and synthesis, respectively, we study the decomposability of smart contract specifi-
cations on the respective pastLTL approximation. Hence, we assume in the following that the
formulas 𝜑sc , 𝜑ctrlflow , and 𝜑eff

𝑓𝑖
denote the pastLTL approximations of the respective pastTSL

formulas presented in the previous section. Furthermore, for each cell c occurring in the pastTSL
specification, let 𝜑c denote the formula ensuring that the semantics of cell c are respected. Note
that atomic propositions approximating updates serve as output variables in the synthesis prob-
lem since updates are intuitively controlled by the system. Atomic propositions approximating
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predicate terms, in contrast, constitute input variables since the evaluation of predicates is, due
to the use of uninterpreted functions and predicates, uncontrollable.
The inherent conjunctive nature of smart contract specifications presented in the previous

sections suggests decomposability into several components for synthesis. To substantiate this
intuition, we employ the language-based independence criterion from Section 5.2 and utilize
LTL-specific results from Section 5.3. Recall that, according to the language-based independence
criterion from Section 5.2, a specification can be decomposed into two subspecifications if they
form independent sublanguages. Two languages 𝐿1 and 𝐿2 are independent sublanguages of a
language 𝐿 if they are non-contradictory and if 𝐿1 | | 𝐿2 = 𝐿 holds (see Definition 5.6).
First observe that, by Lemma 5.7, we have L(𝜑1) | | L(𝜑2) = L(𝜑) for a conjunctive LTL

formula𝜑 = 𝜑1∧𝜑2. This result is not immediately applicable to our smart contract specifications
since the control flow requirements feature past-time temporal operators, which are not present
in the definition of LTL considered in Section 5.3. However, the proof of Lemma 5.7 only utilizes
the semantics of conjunction. In particular, it does not rely on 𝜑1 and 𝜑2 being future-time LTL
formulas. Therefore, the result carries over to our smart contract specifications. Consequently,
we obtain that

L(𝜑sc) = L(𝜑ctrlflow) | | L(𝜑eff
𝑓1
) | | . . . | | L(𝜑eff

𝑓𝑛
) | | L(𝜑error) | | L(𝜑c1) | | . . . | | L(𝜑c𝑗 )

holds, where c1, . . . , c𝑐 denote the 𝑐 cells apart from the cell error occurring in the original
pastTSL specification of the smart contract.
Second, we study whether the suggested sublanguages are non-contradictory according

to Definition 5.5. Recall that for two LTL formulas 𝜑1 and 𝜑2 with prop(𝜑1) ∩ prop(𝜑2) ⊆ 𝐼 ,
where 𝐼 is the set of input variables, the languages L(𝜑1) and L(𝜑2) are non-contradictory
by Lemma 5.8. Observe that the proof of this property again does not utilize the fact that 𝜑1
and 𝜑2 pure future-time LTL formulas. Rather, it only relies on 𝜑1 and 𝜑2 not sharing output
variables. Hence, although Lemma 5.8 is not immediately applicable to our smart contract
specifications due to the existence of past-time operators, the result carries over. Consequently,
we obtain that, for all of the contract’s functions 𝑓𝑖 , the languages L(𝜑ctrlflow) and L(𝜑eff

𝑓𝑖
) are

non-contradictory if the specifications do not share output variables.
Recall that only updates in the original pastTSL formula constitute output variables in

the pastLTL approximation. Furthermore, note that the pastLTL approximation introduces
additional conjuncts𝜑c that ensure that, for every cell c, exactly one update is performed in every
time step. Clearly, these additional conjuncts contain, for each cell, the atomic propositions of
all possible updates occurring in the entire smart contract specification. Consequently, all parts
of the smart contract specification that contain some update of cell c share output variables
with the additional conjunct 𝜑c. Hence, it follows that all conjuncts that contain an update of
cell c transitively share output variables with each other via conjunct 𝜑c.
The formula 𝜑ctrlflow , which specifies the control flow requirements of the smart contract,

contains updates of the cell error. Therefore, it can only be separated from other parts of the
smart contract specification if error is not updated in them. Fortunately, this is the case for the
formulas specifying the effect of function calls since we introduced the cell error artificially
in 𝜑ctrlflow to be able to recognize violations of the control flow requirements.
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Furthermore, during the course of specifying the control flow of ten common smart contracts
in [FHKP23], we never experienced that the control flow specification required any other cell
updates. While 𝜑ctrlflow might contain other cells, they were always embedded in predicate
or function terms. This is due to the intuition that cells represent variables of the contract.
Cell updates consequently represent variable assignments. For specifying the allowed order
of function calls, it might be necessary to argue about the value of cells. In the auction, for
instance, one could utilize a cell highestBid to store the current highest bid, and submitting a
new bid via function bid is only allowed if the new bid is higher than the current highest bid.
However, such properties are formalized with predicates over cells rather than cell updates. In
the analogy of variables in programs, one would rather require that a variable has a certain
value than require that a variable has been assigned a certain value.

Hence, we experienced that, in smart contract specifications, the conjunct 𝜑ctrlflow formalizing
the contract’s control flow requirements usually does not contain any cell updates other than the
update of the artificial cell error. Furthermore, the formulas specifying the effects of function
calls do not contain the cell error at all and thus, in particular, also no updates of cell error.
Therefore, it follows that the languages L(𝜑cf ) and L(𝜑ce), where

𝜑cf = 𝜑ctrlflow ∧ 𝜑error

𝜑ce =
∧

1≤𝑖≤𝑛
𝜑
eff
𝑓𝑖
∧

∧
1≤ 𝑗≤𝑐

𝜑c𝑗 ,

are non-contradictory. Due to the conjunctive nature of the specification, we further have
L(𝜑cf ) | | L(𝜑ce) = L(𝜑sc) as outlined above. Hence, L(𝜑cf ) and L(𝜑ce) form independent
sublanguages of L(𝜑sc). By Theorem 5.1, the modular synthesis algorithm from Algorithm 5.1
is sound and complete for decompositions that form independent sublanguages of the orig-
inal specification. In particular, it is guaranteed that the individual synthesis tasks for the
subspecifications succeed whenever the original specification is realizable.
Consequently, it follows that, for a realizable smart contract specification 𝜑sc , there exist

winning strategies for the subspecifications𝜑cf and𝜑ce describing the contract’s control flow and
the effects of its function calls, respectively. Hence, we can consider separate synthesis tasks for
the control flow and the function call effects. Since we only argued about the structure of smart
contract specifications outlined in the previous section and not about a concrete specification,
this result generalizes to all smart contract specifications that follow the respective specification
structure. Therefore, it is not necessary to analyze a specific smart contract specification to
determine whether or not it can be decomposed into a part describing the contract’s control
flow and a part describing the effects of its function calls, but decomposability is guaranteed by
the general specification structure.
This observation gave rise to the development of a synthesis algorithm for smart contract

control flows specified in pastTSL in the above manner, which constructs a state machine
realizing the control flow specification [FHKP23]. The approach focuses on the control flow
only and does not take the effects of function calls into account. This is possible without
sacrificing realizability of the specification as long as the specification follows the structure
described in the previous section due to the general decomposability results introduced above.
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The effects of function calls can then either, matching the conceptual context of compositional
synthesis of this thesis, be synthesized separately, or they can be integrated manually.
Focusing on the latter possibility, we developed the tool SCSynt that fully automatically

constructs Solidity code from a pastTSL control flow specification that adheres to the general
specification structure [FHKP23]. First, SCSynt derives the pastLTL approximation of the given
pastTSL specification. Then, making use of the past-time nature of smart contract specifications,
it utilizes an efficient BDD-based synthesis algorithm for constructing a finite-state transducer
that realizes the approximated specification. Afterward, it translates the transducer into Solidity
code, which can then manually be equipped with further functionality, such as the effects of
function calls, by the developer.
On a technical note, observe that we consider a slightly different specification structure

in [FHKP23] than in this thesis. There, we do not utilize an artificial cell error to recognize
situations in which the control flow requirements are violated. Instead, we include the initial
control flow formulas, i.e., the formulas 𝜑 𝑓𝑖 , as assumptions into the specification. In general, this
does not allow recognizing violations of the control flow requirements in a synthesized strategy,
as the strategy is not required to distinguish situations in which the control flow requirements
are violated from those in which they are not. The employed synthesis algorithm in SCSynt,
however, constructs an incomplete finite-state transducer that only produces infinite traces
for input sequences that match situations in which all control flow requirements are met. In
particular, in each state, it has an outgoing edge for some predicate representing a function
call if, and only if, the function call adheres to the control flow specification in this particular
time step and thus if, and only if, the cell error is not updated with raise(). Consequently,
the synthesized state machine also allows for recognizing situations in which the control flow
requirements are violated, yet, in a slightly different manner. The translation of the transducer
to Solidity can be implemented for both versions of the specification structure and only requires
minor changes to switch between the two variants. For more details on the slightly altered
specification structure and the employed synthesis algorithm, we refer to [FHKP23].
Focusing on a smart contract’s control flow enables efficient synthesis: we have synthe-

sized Solidity code for ten smart contracts from their control flow specifications formalized in
pastTSL with SCSynt, for all of which the synthesis procedure terminated in less than 13 sec-
onds [FHKP23]. This underlines the particular applicability of compositional techniques and,
especially, recognizing specification decomposability in certain domains such as smart contracts.
Specifically, the observations of this section and the very encouraging results on efficient smart
contract control flow synthesis of [FHKP23] suggest identifying more domains for which the
approaches introduced in this chapter are particularly beneficial.

5.8. Summary
We have presented a modular synthesis algorithm that applies compositional techniques to
reactive synthesis. It reduces the complexity of synthesis by first decomposition the specification
into several components in a preprocessing step and then performing independent synthesis
tasks for the components. We have introduced a language-based criterion for decomposition
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algorithms that, if satisfied, ensures soundness and completeness of modular synthesis. Focusing
on specifications given as LTL formulas, we have lifted the language-based criterion to the
temporal logic level utilizing a syntactic analysis of the formula. Based on the LTL independence
criterion, we have presented an LTL decomposition algorithm that ensures soundness and
completeness of modular synthesis. To optimize LTL independence for specifications in the
common assume-guarantee form, we have introduced a sound and complete criterion for
dropping assumptions from LTL formulas while ensuring equirealizability. This allows for more
fine-grained decompositions in many cases. We have incorporated assumption dropping into
the LTL decomposition algorithm. Furthermore, we have extended the assumption-dropping
criterion to LTL formulas in a non-strict assume-guarantee form, i.e., to LTL formulas that
consist of several conjuncts which are possibly in strict assume-guarantee form, and presented an
accordingly adapted version of the LTL decomposition algorithm, which still ensures soundness
and completeness of modular synthesis. We have implemented both modular synthesis and
the LTL decomposition algorithm and evaluated it on the publicly available benchmarks of the
reactive synthesis competition SyntComp. We have compared our approach for the state-of-
the-art synthesis tools BoSy and Strix to their non-compositional forms. Our experiments
clearly demonstrate a significant advantage of modular synthesis with LTL decomposition
over traditional synthesis algorithms. While the overhead introduced by decomposing the
specification is negligible, both BoSy and Strix are able to synthesize more solutions for more
benchmarks with modular synthesis than in their non-compositional form. Moreover, on
large and complex benchmarks, both tools improve their synthesis times notably. Lastly, we
have demonstrated that specifications of smart contracts can be decomposed into independent
parts describing the contract’s control flow and the effects of function calls, thus allowing
for compositional synthesis approaches. This indicates the particular applicability of our
decomposition algorithms to specific domains.





Chapter 6

Dependency-based Incremental
Synthesis of Dominant Strategies

In the previous chapter, we presented a modular synthesis algorithm that breaks down the
synthesis of a monolithic system into separate synthesis tasks for individual system components.
Furthermore, we introduced a suitable decomposition algorithm that, given an LTL specification,
identifies system components for which winning strategies can be synthesized independently.
Unfortunately, the decomposition approach only identifies more than a single independent
component for 39 out of the 346 publicly benchmarks of the annual synthesis competition
SyntComp [BEJ14]. For the vast majority of the benchmarks, our modular synthesis approach
does not have any influence on the synthesis time.
In this chapter, we thus build upon the idea of applying compositional techniques to mono-

lithic synthesis via decomposition. However, we sacrifice the conceptual simplicity of the
decomposition technique to obtain more fine-grained decompositions. For this sake, we con-
sider a weaker notion than winning as a strategy requirement for the individual synthesis tasks:
remorsefree dominance [DF11] allows for violating the component specification as long as no
other strategy would have satisfied it in the same situation. Synthesizing dominant strategies
rather than winning ones thus allows for implicitly assuming that the other processes will
not maliciously violate the shared goal. For safety specifications, remorsefree dominance is a
compositional notion, just like winning, i.e., the composition of two dominant strategies is again
dominant [DF14]. Furthermore, if a winning strategy exists, then all dominant strategies are
winning. This directly leads to a compositional synthesis approach that synthesizes individual
remorsefree dominant strategies [DF14], enabling modular synthesis for monolithic systems
similar to the one introduced in the previous section also for dominant strategies.

Although synthesizing remorsefree dominant strategies rather than winning ones allows for
finding solutions in more cases, the existence of a dominant strategy is not guaranteed. Often,
a component 𝑐𝑖 depends on the well-behavior of another component 𝑐 𝑗 in the sense that 𝑐𝑖
needs to anticipate some future action by 𝑐 𝑗 to determine the correct behavior for itself. In such
situations, there is no dominant strategy for 𝑐𝑖 as the decision of which strategy is best for 𝑐𝑖
depends on the specific strategy for 𝑐 𝑗 . Therefore, a suitable decomposition algorithm is needed
for modular synthesis when considering remorsefree dominant strategies as well.

235



236 6. Dependency-based Incremental Synthesis of Dominant Strategies

To further increase the number of system components, we address the synthesis problem
with an incremental approach rather than a purely compositional one. As in modular synthesis
introduced in the previous chapter, we split the system into components. However, we do not
try to find remorsefree dominant strategies for each component individually. Rather, we proceed
in an incremental fashion, thus considering components one after another. We call the order in
which strategies for the components are constructed the synthesis order. Instead of searching for
dominant strategies for all components, we then only require strategies to be dominant under
the assumption that the components with a lower rank in the synthesis order do not deviate from
their previously synthesized strategies. This enables the use of both implicit assumptions – by
utilizing dominant rather than winning strategies – and explicit assumptions – by providing
concrete strategies of components with a lower rank. Similar to modular synthesis with winning
strategies, incremental synthesis reduces the complexity of synthesis by decomposing the system
into components; additionally, it allows for more fine-grained decompositions by not performing
the individual synthesis tasks completely compositionally but incrementally.

The key question in incremental synthesis is how to find a suitable synthesis order that ensures
that all synthesis tasks in incremental synthesis succeed. We propose twomethods for computing
the synthesis order that offer different trade-offs between precision and computational cost. The
first technique is based on a semantic dependency analysis of the output variables of the system.
Intuitively, an output variable 𝑢 depends on another output variable 𝑣 if determining 𝑢’s correct
valuation at some point in time requires information about the valuation of 𝑣 at a future point
in time. We then build equivalence classes of output variables based on cyclic dependencies.
These equivalence classes constitute the components of the system: a component controls
all the system outputs that are contained in the respective equivalence class. The synthesis
order is then defined following the dependencies between the derived components. Therefore,
it resolves dependencies of a component 𝑐𝑖 to a component 𝑐 𝑗 that prevent the existence of
remorsefree dominant strategies for 𝑐𝑖 by assigning 𝑐 𝑗 a lower rank in the synthesis order. This
ensures that a strategy for 𝑐 𝑗 is synthesized prior to 𝑐𝑖 ’s synthesis task, allowing for taking
this strategy into account when synthesizing a remorsefree dominant strategy for 𝑐𝑖 , therefore
addressing 𝑐𝑖 ’s need for information about 𝑐 𝑗 ’s behavior at a future point in time.
Similar to the LTL decomposition algorithm introduced in the previous chapter, the second

technique is based on a syntactic analysis of the specification. Due to the different strategy
requirements, however, the analysis differs inherently from the one for winning strategies.
It thoroughly examines the structure of the LTL specification and takes the semantics of the
different kinds of temporal operators into account. While the syntactic decomposition approach
has less computational cost than the semantic one, it is less precise. In particular, it conservatively
overapproximates the semantic dependencies, resulting in coarser decompositions and thus
potentially less independent component. However, we introduce additional rules for simplifying
the specification that needs to be considered for the individual components during their synthesis
tasks, which allow for avoiding unnecessary syntactic dependencies in many cases. Realizability
and unrealizability of the synthesis task is preserved by the simplifications.
We have implemented a prototype of our incremental synthesis algorithm based on the

bounded synthesis tool BoSy [FFT17]. First, we integrated the synthesis of remorsefree dominant
strategies instead of winning ones as described in Section 2.8.2 into the tool. Afterward, we
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put the incremental approach into practice. We compare our prototype to BoSy in its classical
version, i.e., to the tool that non-compositionally synthesizes winning strategies for monolithic
systems, on scalable benchmarks. The results clearly demonstrate the advantage of incremental
synthesis over classical synthesis algorithms: incremental synthesis significantly outperforms
BoSy for larger but decomposable systems.

Publications and Structure. This chapter is based on work published in the proceedings of
the 18th International Symposium on Automated Technology for Verification and Analysis [FP20a]
and the extended version [FP20b] of this publication. The author of this thesis is the lead author
of both publications.
This chapter is structured as follows. After introducing a running example, which we use

throughout the chapter, we present the main concept of incremental synthesis and the synthesis
order in Section 6.2 and prove the soundness and completeness of incremental synthesis for a
particular class of synthesis orders. In Sections 6.3 and 6.4, we introduce the notions of semantic
and the syntactic dependencies, respectively. Furthermore, for both kinds of dependencies, we
present a decomposition algorithm based on an dependency analysis and show that sound-
ness and completeness of incremental synthesis are guaranteed when computing the system’s
component as well as the synthesis order with either the semantic or the syntactic component
selection algorithm. Afterward, we introduce rules for simplifying the specifications for individ-
ual synthesis tasks in incremental synthesis while preserving realizability and unrealizability in
Section 6.5. Lastly, in Section 6.6, we present an experimental evaluation of the performance of
incremental synthesis.

6.1. Running Example
In safety-critical systems such as autonomous cars, the correctness of the system’s implemen-
tation with respect to a given specification is crucial. Hence, they are an obvious target for
synthesis. An autonomous car, however, requires a vast amount of different functionalities,
leading to an enormous state space when all functionalities are considered and synthesized
as a single unit. While a compositional approach may reduce the complexity of synthesis, in
most scenarios, there are neither winning nor remorsefree dominant strategies for the separate
components due to the complex dependencies between the different functionalities. As an
example, consider a specification for two functionalities of an autonomous car, gearing and
acceleration. In the following, we call these functionalities the gearing unit and the acceleration
unit, respectively. The acceleration unit is required to decelerate before curves and not to
accelerate in curves. To prevent traffic jams, the autonomous car is additionally required to
accelerate eventually if no curve is ahead. In order to save fuel, it should not accelerate and
decelerate all the time. These requirements can be specified in LTL as follows:

𝜑acc = (ahead → dec) ∧ (in→ ¬acc) ∧ 𝑘𝑒𝑒𝑝

∧ ((¬in ∧ ¬ahead) → acc) ∧ ¬(acc ∧ dec)
∧ ¬(acc ∧ keep) ∧ ¬(dec ∧ keep) ∧ (acc ∨ dec ∨ keep),
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where ahead and in are input variables denoting whether a curve is ahead or whether the car
is in a curve, respectively. The output variables are acc and dec, denoting acceleration and
deceleration, respectively, and keep, denoting that the current speed is kept. For simplicity, we
assume that the car always moves forward irrespective of whether it decelerates, accelerates,
or keeps the current speed, i.e., it never stops. Note that 𝜑𝑎𝑐𝑐 is only realizable if we assume
that a curve is not followed by another one with only one step in between infinitely often.
Furthermore, we need assumptions that ensure that the road behaves realistic in the sense that,
for instance, the car will not stay in a curve forever.

The gearing unit can choose between two gears. It is required to use the smaller gear when
the car is accelerating and the higher gear if the car reaches a steady speed after accelerating.
This can be specified in LTL as follows:

𝜑gear = ((acc ∧ acc) → 𝑔1) ∧ ((acc ∧ keep) → 𝑔2)
∧ ¬(𝑔1 ∧ 𝑔2) ∧ (𝑔1 ∨ 𝑔2),

where 𝑔1 and 𝑔2 are output variables denoting whether the first or the second gear, respectively,
is used. A naïve compositional synthesis approach would try to synthesize strategies for the
acceleration unit, i.e., a system controlling acc, dec, and keep, and the gearing unit, i.e., a system
controlling 𝑔1 and 𝑔2, separately. However, there clearly do not exist winning strategies for the
acceleration unit or the gearing unit when considering the full specification 𝜑car = 𝜑acc ∧ 𝜑gear
of the autonomous car since it contains requirements on both acc, dec, keep and 𝑔1, 𝑔2.

When applying the syntactic LTL decomposition algorithm introduced in Chapter 5 to the full
specification 𝜑car = 𝜑acc∧𝜑gear of the autonomous car, we obtain dependencies between acc, dec,
and keep as well as between 𝑔1 and 𝑔2 due to the respective mutual exclusion requirements.
Furthermore, since the valuations of acc and dec affect the valuations of 𝑔1 and 𝑔2 due to the
requirements stated in 𝜑gear , namely that the car has to react with the correct gear if it either is
accelerating or reaches a steady speed after acceleration, the algorithm derives dependencies
between acc and 𝑔1 as well as between acc and 𝑔2 and keep and 𝑔2. Therefore, the dependency
graph contains only a single connected component, which contains all output variables of
the specification. Hence the syntactic LTL decomposition algorithm does not decompose the
specification into multiple components.
In fact, if we require components to not consider output variables of other components

as inputs – as we do in the approaches introduced in the previous chapter – we can never
separate the gears 𝑔1 and 𝑔2 from acc and keep due to the first two conjuncts of 𝜑gear . Therefore,
for a successful decomposition, we need to permit components that, similar to processes in
certain distributed architectures, can observe the outputs of other components and react to
them. However, the outputs of the other components are then considered to be adversarial.
Thus, in particular, we cannot separate the gears 𝑔1 and 𝑔2 from acc and keep. When searching
for a strategy controlling the gear, we need to take the situation into account in which acc
occurs at some point in time, followed by both acc and keep in the next step. Then, the gearing
unit needs to set both 𝑔1 and 𝑔2 to true in the next step due to the first two conjuncts of 𝜑gear ,
contradicting the mutual exclusion requirement for the gears.
Searching for a remorsefree dominant strategy [DF11] rather than a winning strategy for

the gearing unit overcomes this problem. In the interplay of a strategy for the gearing unit
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and the acceleration unit, it will never be the case that both acc and keep are true at the same
point in time due to their mutual exclusion requirement specified in 𝜑acc . Since no strategy
at all for the gearing unit can handle situations where both acc and keep co-occur, a remorse-
free dominant strategy is allowed to violate the specification in such situations. Due to the
properties of remorsefree dominance, this strategy is even a valid choice when not splitting the
specification into subspecifications but when taking the full specification 𝜑car into account. This
enables us, similar to the dominance-based compositional synthesis algorithm for distributed
systems [DF14], to perform compositional synthesis without the need for specification decom-
position. However, while there exists a remorsefree dominant strategy for the gearing unit, 𝜑car
is not admissible for the acceleration unit: as long as the car accelerates after a curve, the
conjunct ((¬in ∧ ¬ahead) → acc) is satisfied. If the gearing unit does not react correctly,
the specification is violated. Yet, an alternative strategy for the acceleration unit that accelerates
at a different point in time at which the gearing unit reacts correctly satisfies the specification.
Thus, neither a compositional approach using winning strategies nor one using remorsefree
dominant strategies is able to synthesize strategies for the acceleration unit and the gearing
unit of the autonomous car.
However, the lack of a dominant strategy for the acceleration unit is only due to the uncer-

tainty of whether the gearing unit will comply with the acceleration strategy. The only dominant
strategy for the gearing unit is to react correctly to the change in speed. Hence, providing this
knowledge to the acceleration unit by synthesizing the strategy for the gearing unit beforehand
and making it available, yields a remorsefree dominant – and even winning – strategy for the
acceleration unit. Thus, synthesizing the components incrementally instead of compositionally
allows for separate strategies even if there is a dependency between the components.

6.2. Incremental Synthesis
In this section, we introduce a synthesis algorithm based on remorsefree dominant strategies,
where, in contrast to compositional synthesis, the components are not necessarily synthesized
independently but one after another. The strategies that are already synthesized provide further
information to the one under consideration. Therefore, the specification is not required to
be admissible for all components individually. Recall, for instance, that there is no dominant
strategy for the acceleration unit for the autonomous car from Section 6.1. However, when
provided with a dominant gearing strategy, there is even a winning strategy for the acceler-
ation unit. Therefore, synthesizing strategies for the components incrementally rather than
compositionally allows us to synthesize a strategy for the autonomous car.
Similar to the previous chapter, a component 𝑐 = (𝜑𝑐 , 𝐼𝑐 ,𝑂𝑐) of the system consists of a

component specification 𝜑𝑐 , and a component interface, represented by sets 𝐼𝑐 and 𝑂𝑐 of input
and output variables. In contrast to the system components considered in Chapter 5, however,
we consider the full system specification 𝜑 as specification for all components. Therefore, we
sometimes omit it from the component description. Component inputs and outputs are disjoint,
i.e., we have 𝐼𝑐 ∩𝑂𝑐 . Furthermore, component outputs are a subset of the outputs of the entire
system, i.e., we have 𝑂𝑐 ⊆ 𝑂 . This coincides with the definition from the previous chapter.
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However, contrasting the previous component definition, component inputs are not required to
be a subset of the inputs of the entire system but also contain output variables of the system that
are not assigned to the considered component, i.e., we have 𝐼𝑐 = (𝐼 ∪𝑂) \𝑂𝑐 . Intuitively, this
models that components can observe the behavior of all other components, resulting in a perfect
information setting. As in the previous chapter (see Definition 5.1), a system decomposition D
of (𝐼 ,𝑂) is then a vector of components. The components capture the entire system, i.e., each
output variable is assigned to a component. Furthermore, we require that the components are
disjoint, i.e., they do not share output variables.
Note that permitting components to observe other components’ output variables and, in

particular, react to them, requires us to consider strategies represented with Moore transducers
only. Otherwise, the parallel composition of the resulting strategies is not guaranteed to be
complete (see Section 2.6.1). Thus, contrasting the setting from Chapter 5 but similar to the
setting for distributed systems in Part I, we always consider strategies to be representable by
Moore transducers in the remainder of this chapter.
In the following, we first introduce the so-called synthesis order, which assigns the com-

ponents a rank, defining the order in which the components are synthesized incrementally.
Afterward, we introduce the incremental synthesis algorithm.

6.2.1. Synthesis Order
Given a decomposition D = ⟨𝑐1, . . . , 𝑐𝑛⟩, that partitions the system into 𝑛 components, the
synthesis order <syn defines in which order the components of a system are considered in the
incremental synthesis algorithm. In particular, if 𝑐1 <syn 𝑐2 holds, then a strategy for 𝑐1 is
synthesized in incremental synthesis before one for 𝑐2. We model the synthesis order with a
function ranksyn : D→ N that assigns a rank to every component of the decomposition, i.e.,
to every 𝑐 ∈ D. Intuitively, we then aim at synthesizing strategies for components with lower
ranks before those with higher ranks, providing the strategies for components with lower ranks
to the following synthesis tasks. For the running example from Section 6.1, for instance, we
would choose a ranking function that assigns the gearing unit a lower rank than the acceleration
unit, ensuring that the synthesis task for the acceleration unit can rely on the results of the
previous synthesis task.

The ranking function ranksyn : D→ N can also assign the same rank to several components.
Strategies for these components with the same rank are then synthesized compositionally, i.e.,
entirely separately. Hence, intuitively, they do not depend on each other in the sense that they
do not need explicit information about their strategies. However, they might require the same
information about the strategies of other components, namely those with smaller ranks.
As discussed in Chapter 3 for the distributed case, synthesizing strategies completely sepa-

rately requires compositionality, i.e., that the parallel composition of the synthesized strategies
again satisfies the strategy requirement such as winning or dominance. While compositionality
is always guaranteed when seeking winning strategies, it is not for remorsefree dominant
strategies (see Chapter 3). Therefore, the synthesis order needs to ensure that it only assigns
the same rank to those components of the decompositions whose parallel composition is again
remorsefree dominant. We formalize this requirement explicitly as follows.
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Definition 6.1 (Compositionality-Preserving Synthesis Order).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D be a decomposition of (𝐼 ,𝑂). Let
ranksyn be a ranking function defining the synthesis order. We call ranksyn compositionality-
preserving if, and only if, for all components 𝑐1, 𝑐2 ∈ D with ranksyn(𝑐1) = ranksyn(𝑐2) it
holds that if 𝑠1 and 𝑠2 are dominant strategies for 𝜑 and 𝑐1 and 𝑐2, respectively, then 𝑠1 | | 𝑠2 is
dominant for 𝜑 and 𝑐1 | | 𝑐2.

In [DF14], Damm and Finkbeiner showed that compositionality is guaranteed in the dis-
tributed case for remorsefree dominance when considering safety specifications only (see also
Theorem 3.1). In the monolithic case, which is considered in this part of the thesis, the result
follows analogously when synthesizing strategies for the components of a decomposition of
the single process separately. In the following, we extend this result to specifications where
only a single component affects the liveness part. Intuitively, a violation of the liveness part
can then always be led back to the single component affecting it, contradicting the assumption
that its strategy is dominant. Formally:

Theorem 6.1. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D be a decomposition
of (𝐼 ,𝑂). Let 𝑠1 and 𝑠2 be dominant strategies for 𝜑 and components 𝑐1 ∈ D and 𝑐2 ∈ D, respectively.
If 𝜑 is either (i) a safety property, or (ii) the liveness part of 𝜑 is only affected by output variables
of 𝑐1, then 𝑠1 | | 𝑠2 is dominant for 𝜑 and 𝑐1 | | 𝑐2.

Proof. If (i) holds, i.e., if 𝜑 is a safety property, then compositionality follows analogously to the
distributed case proven in [DF14]. Next, let (ii) hold, i.e., the liveness part of 𝜑 is only affected
by output variables of 𝑐1. For the sake of readability, let 𝐼1 ⊆ 𝑉 and 𝐼2 ⊆ 𝑉 denote the inputs
of 𝑐1 and 𝑐2, respectively, while𝑂1 ⊆ 𝑉 and𝑂2 ⊆ 𝑉 denote the outputs of 𝑐1 and 𝑐2, respectively.
Let 𝑉1 = 𝐼1 ∪ 𝑂1 and 𝑉2 = 𝐼2 ∪ 𝑂2. Let 𝐼1,2 = (𝐼1 ∪ 𝐼2) \ (𝑂1 ∪ 𝑂2), let 𝑂1,2 = 𝑂1 ∪ 𝑂2, and let
𝑉1,2 = 𝐼1,2 ∪𝑂1,2 be the inputs, outputs, and variables of 𝑐1 | | 𝑐2, respectively. Suppose that 𝑠1 | | 𝑠2
is not remorsefree dominant for 𝜑 and 𝑐1 | | 𝑐2. Then, there exists an alternative strategy 𝑡 for
𝑐1 | | 𝑐2 and sequences 𝛾 ∈ (2𝐼1,2)𝜔 and 𝛾 ′ ∈ (2𝑉 \𝑉1,2)𝜔 such that comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′ ̸ |= 𝜑 holds,
while we have comp(𝑡, 𝛾) |= 𝜑 . Let 𝜑safe and 𝜑live be the LTL formulas describing the safety and
liveness properties 𝜑 can be disassembled into, i.e., such that 𝜑 ≡ 𝜑safe ∧ 𝜑live holds.
First, suppose that 𝑠1 | | 𝑠2 violates 𝜑safe on input 𝛾 when considering 𝛾 ′, i.e., that we have

comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′ ̸ |= 𝜑safe. In contrast, comp(𝑡, 𝛾) ∪ 𝛾 ′ |= 𝜑safe follows from the assumption
and the semantics of conjunction. Hence, 𝑠1 | | 𝑠2 is not remorsefree dominant for 𝜑safe and 𝑐1 | | 𝑐2.
Since 𝜑safe is a safety property, however, it follows immediately from the compositionality result
for safety properties from [DF14] that 𝑠1 and 𝑠2 cannot both be dominant for 𝜑 and 𝑐1 and 𝑐2,
respectively; yielding a contradiction.
Second, suppose that 𝑠1 | | 𝑠2 does not violate 𝜑safe on input 𝛾 when considering 𝛾 ′. Then, it

follows from the assumption that comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′ ̸ |= 𝜑 holds and from the semantics of
conjunction that we have comp(𝑠1 | | 𝑠2, 𝛾) ∪𝛾 ′ ̸ |= 𝜑live. By assumption, the liveness part of 𝜑 and
thus 𝜑live is only affected by the output variables of component 𝑐1. Hence, the violation of 𝜑live is,
intuitively, the fault of component 𝑐1. Let 𝛾𝑠2 = comp(𝑠1 | |𝑠2, 𝛾) ∩𝑂2 and let 𝛾𝑡2 = comp(𝑡, 𝛾) ∩𝑂2.
Let 𝑡1 be a strategy for component 𝑐1 such that comp(𝑡1, (𝛾 ∪ 𝛾𝑡2) ∩ 𝐼1) = comp(𝑡, 𝛾) ∩𝑉1 holds.
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Since comp(𝑡, 𝛾)∪𝛾 ′ |= 𝜑 holds by assumption, comp(𝑡1, (𝛾∪𝛾𝑡2)∩𝐼1)∪𝛾 ′∪𝛾𝑡2∪(𝛾∩(𝐼2\𝐼1)) |= 𝜑

thus follows. By assumption, strategy 𝑠1 is remorsefree dominant for 𝜑 and 𝑐1. Therefore, it
follows that comp(𝑠1, (𝛾∪𝛾𝑡2)∩𝐼1)∪𝛾 ′∪𝛾𝑡2∪(𝛾∩(𝐼2\𝐼1)) |= 𝜑 holds as well. By the semantics of
conjunction, we thus, in particular, have comp(𝑠1, (𝛾 ∪𝛾𝑡2) ∩ 𝐼1) ∪𝛾 ′ ∪𝛾𝑡2 ∪ (𝛾 ∩ (𝐼2 \ 𝐼1)) |= 𝜑live.
The liveness part of 𝜑 and thus 𝜑live is only affected by the outputs of 𝑐1 by assumption.
Hence, comp(𝑠1, (𝛾 ∪ 𝛾𝑡2) ∩ 𝐼1) ∩𝑂1 |= 𝜑live holds, i.e., the satisfaction of 𝜑live is guaranteed by
comp(𝑠1, (𝛾 ∪ 𝛾𝑡2) ∩ 𝐼1) ∩𝑂1 irrespective of the valuations of variables outside of 𝑂1. Since the
inputs and outputs of a component are disjoint by definition, we have 𝐼1 ∩𝑂1 = ∅ and thus, in
particular, comp(𝑠1, (𝛾 ∪𝛾𝑡2) ∩ 𝐼1) ∩𝑂1 = comp(𝑠1, (𝛾 ∪𝛾𝑠2) ∩ 𝐼1) ∩𝑂1 follows with the definition
of computations. Therefore, we have comp(𝑠1, (𝛾 ∪𝛾𝑠2) ∩ 𝐼1) ∩𝑂1 |= 𝜑live and thus, in particular,
comp(𝑠1, (𝛾 ∪ 𝛾𝑠2) ∩ 𝐼1) ∪ 𝛾 ′ ∪ 𝛾𝑠2 ∪ (𝛾 ∩ (𝐼2 \ 𝐼1)) |= 𝜑live holds. By definition of 𝛾𝑠2 , we have
comp(𝑠1 | |𝑠2, 𝛾)∩𝑂2 = 𝛾𝑠2 and hence comp(𝑠1, (𝛾∪𝛾𝑠2)∩𝐼1)∪𝛾𝑠2∪(𝛾∩(𝐼2\𝐼1)) = comp(𝑠1 | |𝑠2, 𝛾)
follows with the definition of computations. Thus, we have comp(𝑠1 | | 𝑠2, 𝛾) ∪ 𝛾 ′ |= 𝜑live,
contradicting the assumption that comp(𝑠1 | | 𝑠2, 𝛾) ̸|= 𝜑 , while comp(𝑠1 | | 𝑠2, 𝛾) |= 𝜑safe. □

Hence, if the considered specification is a safety property or if its liveness part is only
affected by one of the components, we can synthesize dominant strategies for these components
compositionally – and thus completely independently – while not losing remorsefree dominance
of the parallel composition of the individual strategies. Therefore, the ranking function ranksyn
may assign the same value to several components if the specification ensures the above criterion
for guaranteed compositionality.

In the following, we introduce the incremental synthesis algorithm that automatically derives
strategies for all components in the order defined by the ranking function ranksyn and thus
defined by the synthesis order. We assume that a compositionality-preserving synthesis order
is given and prove soundness of the algorithm under this assumption.

6.2.2. Incremental Synthesis Algorithm
In this section, we present the incremental synthesis algorithm. We assume that a decomposition
of the system into components and a synthesis order defined by a ranking function ranksyn are
given. The incremental synthesis algorithm is described in Algorithm 6.1.
It expects an LTL specification 𝜑 as well as an array of components, representing the de-

composition of the system, and a ranking function defining the synthesis order, i.e., mapping
components to ranks, as input. The incremental synthesis algorithm proceeds layer per layer.
A layer contains all components with the same rank in the synthesis order. The algorithm
starts with the layer of components with the lowest rank. Then it considers one layer after the
other in ascending order until reaching the layer with the highest rank in the synthesis order.
To do so, we first order all components according to their synthesis rank and store them in
the correct order in the array orderedComponents (line 1). The order of components of the
same layer is irrelevant, and therefore, an arbitrary order can be chosen for them. We use
variable assumed to store the parallel composition of all strategies that have been synthesized
beforehand, i.e., the strategies for components of lower layers, while variable layered stores
the parallel composition of all strategies on the same layer.
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Algorithm 6.1: Incremental Synthesis
Input: 𝜑 : LTL, C: Component[], rankSyn: (Component→ Int)
Output :admissible: Bool, strategy: Strategy

1 orderedComponents← orderComponents(C, rankSyn)
2 strategies← []: List Strategy
3 assumed← Null: Strategy // strategy, initialized with null

4 for 𝑖 = 0; 𝑖 < orderedComponents.𝑙𝑒𝑛𝑔𝑡ℎ(); 𝑖 = 𝑖 + 1 do
5 layered← Null: Strategy // strategy, initialized with null

6 foreach 𝑐 ∈ orderedComponents[𝑖] do
7 (adm, s)← synthDominant(𝜑 , 𝑐 .getInputs(), 𝑐 .getOutputs(), assumed)
8 if adm then
9 strategies[𝑐 .getIndex()]← s

10 if layered != Null then
11 layered← layered | | s
12 else
13 layered← s

14 else
15 return (false, Null)
16 if assumed != Null then
17 assumed← assumed | | layered
18 else
19 assumed← layered

20 strategy← compose(strategies)
21 return (true, strategy)

For each layer 𝑖 of the synthesis order, we synthesize strategies 𝑠𝑖1, . . . , 𝑠𝑖𝑘 for the𝑘 components
𝑐𝑖𝑘 , . . . , 𝑐𝑖𝑘 of layer 𝑖 such that, for each 𝑗 ∈ {𝑖1, . . . , 𝑖𝑘 }, the parallel composition of assumed
and 𝑠 𝑗 is remorsefree dominant for the specification 𝜑 and the parallel composition of all
components with lower ranks as well as the currently considered component 𝑐 𝑗 (line 7). If no
previously synthesized strategies exist, assumed is Null and therefore, we then synthesize a
strategy 𝑠 𝑗 for component 𝑐 𝑗 such that only 𝑠 𝑗 is remorsefree dominant for 𝜑 and component 𝑐 𝑗 .
We store the synthesized strategies at the corresponding positions of the array strategies
(line 9) and store their parallel composition 𝑠𝑖1 | | . . . | | 𝑠𝑖𝑘 in layered (lines 10 to 13). Afterward,
we store the parallel composition of assumed and layered in assumed to maintain the invariant
that assumed stores the parallel composition of all strategies of components with lower ranks
(lines 16 to 19). We continue until strategies for all components have been synthesized. If,
for some component, the synthesis task synthDominant fails, i.e., if it is not admissible, the
incremental synthesis algorithm aborts and indicates that the synthesis has failed with its return
tuple (line 15). Otherwise, it composes all synthesized strategies according to the definition of
the parallel composition of finite-state transducers (see Definition 2.12) and returns the resulting
strategy (lines 20 and 21).
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𝑡0 𝑡1acc ∧ ¬keep | {𝑔1}

keep ∨ ¬acc | {𝑔1}

keep ∨ ¬acc | {𝑔2}

acc ∧ ¬keep | {𝑔2}

Figure 6.1.: Strategy 𝑠gear for the gearing unit from the running example.

Intuitively, the incremental synthesis algorithm thus starts with synthesizing dominant
strategies 𝑠01, . . . , 𝑠0𝑘 for the 𝑘 components with the lowest rank. Since for these synthesis tasks
assumed is still the empty strategy, synthDominant produces strategies that are on their own
dominant, i.e., that do not rely on other strategies. Afterward, we synthesize dominant strategies
𝑠11, . . . , 𝑠1𝑘′ for the 𝑘 ′ components with the next rank under the assumption of the parallel
composition of 𝑠01, . . . , 𝑠0𝑘 , i.e., under the assumption of the composed strategy 𝑠01 | |. . .| |𝑠0𝑘 , which
is stored in assumed. In particular, we seek for strategies 𝑠11, . . . , 𝑠1𝑘′ such that 𝑠01 | | . . . | | 𝑠0𝑘 | | 𝑠1ℓ
is dominant for 𝜑 and 𝑐01 | | . . . | | 𝑐0𝑘 | | 𝑐1ℓ , where ℓ is an index with 1 ≤ ℓ ≤ 𝑘 ′. As the synthesized
strategies are always provided to the component with a higher rank via assumed, the algorithm
continues accordingly until either a strategy for the last component of the layer with the highest
rank is synthesized, or the synthesis task fails for some component.

Example 6.1. Reconsider the gearing unit and the acceleration unit of the autonomous car
from the running example introduced in Section 6.1. Suppose that the acceleration unit has a
higher rank than the gearing unit, i.e., we have ranksyn(𝑐gear) < ranksyn(𝑐acc). Assuming that
the acceleration and gearing units are the only ones of the autonomous car we are interested
in, Algorithm 6.1 starts with the gearing unit as the single process of the lowest rank in the
synthesis order. Since 𝑐gear is of the lowest rank, it does not assume any other strategies, and
hence the incremental synthesis algorithm synthesizes a strategy 𝑠gear for the gearing unit
such that 𝑠gear is dominant for the specification 𝜑gear ∧ 𝜑acc . Such a strategy adheres to the
gearing restrictions, i.e., it uses the smaller gear when the car is accelerating and the higher
one if it reaches a steady speed after accelerating. Figure 6.1 depicts a finite-state transducer
representing such a dominant gearing strategy. Since 𝑐gear is the only process of the lowest
rank, it is the only process on this layer, and hence we only store 𝑠gear in assumed.
Next, we consider the subsequent rank in the synthesis order, which is, since we are only

interested in the gearing unit and the acceleration unit, the rank of process 𝑐acc . Hence, Algo-
rithm 6.1 synthesizes a strategy 𝑠acc for 𝑐acc such that 𝑠gear | | 𝑠acc is dominant for 𝜑gear ∧ 𝜑acc . A
finite-state transducer representing such a strategy is depicted in Figure 6.2. Note that it is not
winning for 𝜑car . If, for instance, the autonomous car always senses a curve in front of it, then
the transducer will always stay in state 𝑡1, thus always outputting dec and hence violating the
requirement keep. Furthermore, the requirement ((¬in ∧ ¬ahead) → acc) can be
violated if curves follow one another with only one step in between as well as when a curve is
never left. This matches the observations about necessary assumptions for realizability of 𝜑acc
from Section 6.1. Hence, the strategy 𝑠acc is remorsefree dominant as it only violates the specifi-
cation in situations in which no strategy at all can satisfy it. Since 𝑐acc is the only component
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𝑡0 𝑡1

𝑡2 𝑡3

¬ahead ∧ in | {keep}
ahead | {keep}

¬ahead ∧
¬in | {keep}

¬ahead ∧ in | {dec}

ahead | {dec}

¬ahead ∧
¬in | {dec}¬ahead | {acc}

ahe
ad
| {ac

c}

¬ahead ∧ ¬in | {acc}

ahead | {keep}

¬in | {keep}

in | {keep}

Figure 6.2.: Strategy 𝑠acc for the acceleration unit from the running example.

of its rank, it is the only process on this layer, and therefore we only store the strategy 𝑠acc in
assumed. As no other processes are present in the considered model of the autonomous car, the
algorithm returns the parallel composition 𝑠acc | | 𝑠gear of the two strategies 𝑠gear and 𝑠acc for the
gearing unit and the acceleration unit. △

In the following, we consider the soundness of the incremental synthesis algorithm. Clearly,
due to the compositional synthesis of components with the same rank in the synthesis order,
soundness highly depends on the provided ranking function ranksyn. As long as the synthesis
order is compositionality-preserving as defined in the previous section, however, it follows from
the construction of the algorithm as well as from Theorem 6.1 that the parallel composition of
the strategies computed by Algorithm 6.1 is indeed dominant for 𝜑 and the overall system.

Theorem 6.2. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D = ⟨𝑐1, . . . , 𝑐𝑛⟩ be
a decomposition of (𝐼 ,𝑂). Let ranksyn be a compositionality-preserving function defining the
synthesis order. Suppose that Algorithm 6.1 terminates with (true, 𝑠) for input 𝜑 , D, and ranksyn.
Then, strategy 𝑠 is dominant for 𝜑 .

Proof. For the sake of readability, let prev(𝑖) denote the parallel composition of all components
𝑐 ∈ D with a smaller rank than the components on the layer of the ordered components with
index 𝑖 , i.e., with ranksyn(𝑐) < ranksyn(𝑐′) for component 𝑐′ on layer 𝑖 .

First, observe that since Algorithm 6.1 terminates with (true, 𝑠), line 15 is never reached and
thus for each component of the decomposition, the synthesis task in line 7 succeeds. Hence,
for each layer L of orderedComponents, the synthesized strategies of the components of L are
stored in layered by successively building the parallel composition (see line 11). These strategies
are then added to assumed by successively building the parallel composition (see line 17) and
therefore it follows that, whenever the counter of the for-loop in line 4 is incremented, i.e.,
whenever a new layer is considered, assumed contains the parallel composition of the strategies
of all components with a smaller rank.



246 6. Dependency-based Incremental Synthesis of Dominant Strategies

Next, by definition of the synthesis task in line 7, we know that for every layer L of
orderedComponents and every component 𝑐 𝑗 ∈ L, it follows for the synthesized strategy 𝑠 𝑗
that assumed | | 𝑠 𝑗 is dominant for 𝜑 and prev(𝑖) | | 𝑐 𝑗 , where 𝑖 is the index of layer L. Let
L = {𝑐 𝑗1, . . . , 𝑐 𝑗𝑘 }. Since the ranking function ranksyn is compositionality-preserving by assump-
tion, it follows that (assumed | | 𝑠 𝑗1) | | . . . | | (assumed | | 𝑠 𝑗𝑘 ) is remorsefree dominant for 𝜑 and
(prev(𝑖) | | 𝑐 𝑗1) | | . . . | | (prev(𝑖) | | 𝑐 𝑗𝑘 ). Hence, since both assumed and prev(𝑖) coincide for all
components 𝑐 𝑗𝑚 of layer L′ by construction of Algorithm 6.1 as well as by definition of prev(𝑖),
strategy assumed | | 𝑠 𝑗1 | | . . . | | 𝑠 𝑗𝑘 is dominant for 𝜑 and prev(𝑖) | | (𝑐 𝑗1 | | . . . | | 𝑐 𝑗𝑘 ).
Therefore, in particular for the layer L = {𝑐 𝑗1, . . . , 𝑐 𝑗𝑘 } with the highest rank, it holds that

assumed | | 𝑠 𝑗1 | | . . . | | 𝑠 𝑗𝑘 is remorsefree dominant for 𝜑 and prev(𝑖) | | (𝑐 𝑗1 | | . . . | | 𝑐 𝑗𝑘 ). As argued
above, assumed is the parallel composition of all strategies of components with a smaller rank
than 𝑐𝑘 , i.e., of all components 𝑐′ ∈ D with ranksyn(𝑐′) < ranksyn(𝑐𝑘 ). Since L is the layer with
the highest rank by assumption, assumed thus stores the parallel composition of the synthesized
strategies of all components that do not lie in the layer with the highest rank. Hence, it follows
immediately that the parallel composition of all synthesized strategies is dominant for 𝜑 and
the parallel composition of all components. Since the synthesized strategies are stored in
strategies, their parallel composition is stored in strategy. Since strategy is returned,
we thus obtain that the returned strategy 𝑠 , which is exactly 𝑠1 | | . . . | | 𝑠𝑛 , is thus remorsefree
dominant for 𝜑 and 𝑐1 | | . . . | | 𝑐𝑛 . □

While soundness of incremental synthesis is thus guaranteed as long as the chosen synthesis
order is compositionality-preserving, the success of incremental synthesis relies heavily on
the choice of components, i.e., on the decomposition of the system. Incremental synthesis
only terminates with a solution if all individual synthesis tasks succeed. Hence, the algorithm
is only able to compute strategies for all components if the synthesis order guarantees the
admissibility of every component when provided with the strategies of components with a lower
rank. Thus, a clever decomposition of the system into components that takes the requirement
of admissibility into account is crucial for the success and, in particular, the completeness of
incremental synthesis. In the following sections, we thus introduce techniques for component
selection that induce a synthesis order that ensure completeness of incremental synthesis.

6.3. Semantic Component Selection
In this section, we present an algorithm for selecting components as well as ordering themwhich
is based on semantic dependencies between the output variables of the overall system. The
algorithm directly induces a ranking function ranksyn defining a compositionality-preserving
synthesis order that ensures completeness of incremental synthesis.
We require specifications to be of the form (𝜑𝐴

1 ∧ · · · ∧ 𝜑𝐴
ℓ ) → (𝜑𝐺

1 ∧ · · · ∧ 𝜑𝐺
𝑚), where

the individual conjuncts 𝜑𝐴
𝑖 and 𝜑𝐺

𝑗 are conjunction-free and in negation normal form (NNF),
i.e., negation is only applied to atomic propositions, in the following. Thus, a specification
consists of assumptions, namely the formulas 𝜑𝐴

1 , . . . , 𝜑
𝐴
ℓ , and guarantees, namely the formulas

𝜑𝐺
1 , . . . , 𝜑

𝐺
𝑚 . It is commonly considered to be a modeling flaw if assumptions can be violated
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by the system [KP10, BEJK14]. Then, a system strategy can satisfy the overall specification by
violating the assumptions instead of satisfying the guarantees. Generally, however, assumptions
are used to model restrictions of the system environment and thus it should not be possible for
the system to violate them. In the following, we therefore suppose that an LTL specification
𝜑 = (𝜑𝐴

1 ∧ · · · ∧ 𝜑𝐴
ℓ ) → (𝜑𝐺

1 ∧ · · · ∧ 𝜑𝐺
𝑚) is designed such that the system cannot satisfy

it by violating the assumptions. In particular, we assume that if some strategy violates the
assumptions on some input sequence, then all strategies do so. Observe that when considering
dominant strategies instead of winning ones, assumptions can be treated as guarantees as long
as the system cannot satisfy the specification by violating the assumptions:

Lemma 6.1. Let 𝜑 = (𝜑𝐴
1 ∧ . . . ∧ 𝜑𝐴

ℓ ) → (𝜑𝐺
1 ∧ . . . ∧ 𝜑𝐺

𝑚) be an LTL formula over atomic
propositions 𝑉 . Suppose that for all 𝛾 ∈ (2𝐼 )𝜔 , either comp(𝑠,𝛾) |= 𝜑𝐴

1 ∧ . . . ∧ 𝜑𝐴
ℓ holds for all

strategies 𝑠 or comp(𝑠, 𝛾) ̸|= 𝜑𝐴
1 ∧ . . . ∧ 𝜑𝐴

ℓ holds for all strategies 𝑠 . Then, 𝜑 is admissible if, and
only if, 𝜑𝐴

1 ∧ · · · ∧ 𝜑𝐴
ℓ ∧ 𝜑𝐺

1 ∧ · · · ∧ 𝜑𝐺
𝑚 is admissible.

Proof. For the sake of readability, let 𝜑 ′ = 𝜑𝐴
1 ∧ · · · ∧ 𝜑𝐴

ℓ ∧ 𝜑𝐺
1 ∧ · · · ∧ 𝜑𝐺

𝑚 . First, let 𝜑 be
admissible. Then, there exists some dominant strategy 𝑠 for 𝜑 . We claim that 𝑠 is dominant
for 𝜑 ′ as well. Suppose that it is not. Then, there exists some input sequence 𝛾 ∈ (2𝐼 )𝜔 and
some alternative strategy 𝑡 such that comp(𝑠, 𝛾) ̸|= 𝜑 ′ holds, while we have comp(𝑡, 𝛾) |= 𝜑 ′. By
the semantics of conjunction and implication, it then follows that comp(𝑡, 𝛾) |= 𝜑 holds as well.
Since 𝑠 is dominant for 𝜑 by assumption, comp(𝑠,𝛾) |= 𝜑 follows. If comp(𝑠,𝛾) |= 𝜑𝐴

1 ∧ · · · ∧ 𝜑𝐴
ℓ

holds, then it follows from the semantics of implication as well as the fact that comp(𝑠, 𝛾) |= 𝜑

holds that we have comp(𝑠, 𝛾) |= 𝜑𝐺
1 ∧ · · · ∧ 𝜑𝐺

𝑚 as well, contradicting the assumption that
comp(𝑠, 𝛾) ̸|= 𝜑 ′ holds. Hence, we have comp(𝑠, 𝛾) ̸|= 𝜑𝐴

1 ∧ · · · ∧ 𝜑𝐴
ℓ . By assumption, we then

have comp(𝑡 ′, 𝛾) ̸|= 𝜑𝐴
1 ∧ · · · ∧ 𝜑𝐴

ℓ for all alternative strategies 𝑡 ′ as well. Thus, in particular,
comp(𝑡, 𝛾) ̸|= 𝜑𝐴

1 ∧ · · · ∧ 𝜑𝐴
ℓ holds. Consequently, comp(𝑡, 𝛾) ̸|= 𝜑 ′ follows with the semantics of

conjunction, contradicting the assumption that comp(𝑡, 𝛾) |= 𝜑 ′ holds.
Second, let 𝜑 ′ be admissible. Then, there exists some dominant strategy 𝑠 for 𝜑 ′. By definition

of remorsefree dominance, for every input sequence 𝛾 ∈ (2𝐼 )𝜔 , either comp(𝑠,𝛾) |= 𝜑 ′ holds
or we have comp(𝑡, 𝛾) ̸|= 𝜑 ′ for all alternative strategies 𝑡 . If the former is the case, it follows
immediately from the semantics of conjunction and implication that comp(𝑠,𝛾) |= 𝜑 holds as well.
Suppose that the latter holds. If there exists some strategy 𝑡 with comp(𝑡, 𝛾) ̸|= 𝜑𝐴

1 ∧ . . .∧𝜑𝐴
ℓ , then

we have comp(𝑠,𝛾) ̸|= 𝜑𝐴
1 ∧ . . .∧𝜑𝐴

ℓ for 𝑠 by assumption as well. By the semantics of conjunction,
it thus follows that comp(𝑠, 𝛾) |= 𝜑 holds. Otherwise, if we have comp(𝑡, 𝛾) |= 𝜑𝐴

1 ∧ . . . ∧ 𝜑𝐴
ℓ for

all strategies 𝑡 , then, it follows from the assumption that comp(𝑡, 𝛾) ̸|= 𝜑 ′ holds for all alternative
strategies 𝑡 as well as the semantics of conjunction that comp(𝑡, 𝛾) ̸|= 𝜑𝐺

1 ∧ . . . ∧ 𝜑𝐺
𝑚 holds for

all alternative strategies 𝑡 . But then we have comp(𝑡, 𝛾) ̸|= 𝜑 for all alternative strategies 𝑡 by
the semantics of implication as well. Hence, 𝑠 is also dominant for 𝜑 in this case. Consequently,
it follows that 𝑠 is remorsefree dominant for 𝜑 and hence 𝜑 is admissible. □

Thus, since admissibility is not influenced by replacing the implication with an conjunction
as long as the system is not able to satisfy the specification by violating the assumptions, we
assume in the following that specifications are of the form 𝜑𝐴

1 ∧ · · · ∧ 𝜑𝐴
𝑛 ∧ 𝜑𝐺

1 ∧ · · · ∧ 𝜑𝐺
𝑚 . That

is, a specification consists of conjunction-free conjuncts, which are in negation normal form.
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Based on this assumption, we introduce a decomposition algorithm that identifies equivalence
classes of variables based on semantic dependencies between them. These equivalence classes
then constitute the components. We first define two types of semantic dependencies between
variables. Afterward, we introduce a decomposition algorithm based on these dependencies
and study its soundness and completeness.

6.3.1. Semantic Dependencies
Intuitively, a variable 𝑢 ∈ 𝑉 depends on the current or future valuation of a variable 𝑣 ∈ 𝑉 if
changing the valuation of𝑢 yields a violation of the specification 𝜑 that can be fixed by changing
the valuation of 𝑣 at the exact same point in time or a strictly later point in time, respectively.
The change of the valuation of 𝑣 needs to be necessary for the satisfaction of 𝜑 in the sense that
not changing it would not yield the satisfaction of 𝜑 .

Formally, a semantic dependency is defined via so-called minimal satisfying change sets. For
a specification 𝜑 , a sequence 𝜎 ∈ (2𝑉 )𝜔 of variable valuations such that 𝜎 ̸ |= 𝜑 holds, a variable
𝑢 ∈ 𝑉 , and a point in time 𝑘 ≥ 0, a satisfying change set is a pair (𝑃, 𝐹 ) of subsets of output
variables. Intuitively, 𝑃 and 𝐹 capture the variables that need to be changed with respect to 𝜎 in
order to satisfy 𝜑 . Here, 𝑃 captures the output variables that need to be changed in 𝜎 at point in
time 𝑘 , while 𝐹 captures the output variables that need to be changed at a later point in time
𝑗 > 𝑘 . A minimal satisfying change set is then a satisfying change set (𝑃, 𝐹 ) such that for not
subsets 𝑃 ′, 𝐹 ′ of 𝑃 and 𝐹 the pair (𝑃 ′, 𝐹 ′) is a satisfying change set. Formally, minimal satisfying
change sets are defined as follows:

Definition 6.2 (Minimal Satisfying Change Set).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let 𝜎 ∈ (2𝑉 )𝜔 be an infinite sequence
such that 𝜎 ̸ |= 𝜑 holds. Let 𝑢 ∈ 𝑉 be a variable and let 𝑘 ≥ 0 be a point in time. For sets
𝑃 ⊆ 𝑉 \ {𝑢} and 𝐹 ⊆ 𝑉 , let Σ𝑃,𝐹 be the set of sequences 𝜎 ′ ∈ (2𝑉 )𝜔 such that

• 𝜎 ′𝑗 = 𝜎 𝑗 holds for all points in time 𝑗 with 0 ≤ 𝑗 < 𝑘 ,

• for all variables 𝑣 ∈ 𝑃 , we have 𝑣 ∈ 𝜎 ′
𝑘
if, and only if, 𝑣 ∉ 𝜎𝑘 holds,

• for all variables 𝑣 ∈ 𝑉 \ 𝑃 , we have 𝑣 ∈ 𝜎 ′
𝑘
if, and only if 𝑣 ∈ 𝜎𝑘 ,

• for all variables 𝑣 ∈ 𝐹 , there exists some point in time 𝑗 with 𝑗 > 𝑘 such that we have
𝑣 ∈ 𝜎 ′𝑗 if, and only if, 𝑣 ∉ 𝜎 𝑗 holds, and

• for all variables 𝑣 ∈ 𝑉 \ 𝐹 and all points in time 𝑗 with 𝑗 > 𝑘 , we have 𝑣 ∈ 𝜎 ′𝑗 if, and
only if, 𝑣 ∈ 𝜎 𝑗 holds.

If there is a sequence 𝜎 ′ ∈ Σ𝑃,𝐹 such that 𝜎 ′ |= 𝜑 holds, then (𝑃, 𝐹 ) is called satisfying change
set for 𝜑 , 𝜎 , 𝑢, and 𝑘 . If, additionally, for all 𝑃 ′ ⊆ 𝑃 and all 𝐹 ′ ⊆ 𝐹 , we have 𝜎 ′′ ̸ |= 𝜑 for all
𝜎 ′′ ∈ Σ𝑃 ′,𝐹 ′ , then (𝑃, 𝐹 ) is called minimal satisfying change set for 𝜑 , 𝜎 , 𝑢, and 𝑘 .

A minimal satisfying change set is not necessarily unique. Furthermore, a pair (𝑃, 𝐹 ) can be
a minimal satisfying change set although there exist smaller sets 𝑃 ′, 𝐹 ′, i.e., with |𝑃 ′ | < |𝑃 | and
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|𝐹 ′ | < |𝐹 |, but 𝑃 ′ ⊈ 𝑃 or 𝐹 ′ ⊈ 𝐹 such that (𝑃 ′, 𝐹 ′) is a satisfying change set. Hence, a minimal
satisfying change set is not necessarily minimal in its size but only in terms of subsets.
Based on minimal satisfying change sets, we now define semantic dependencies between

variables of the system. Intuitively, an output variable 𝑢 ∈ 𝑂 depends on all of its minimal
satisfying change sets (𝑃, 𝐹 ) if, first of all, changing the valuation of𝑢 at a single point in time in
a sequence satisfying the given LTL specification 𝜑 , yields a violation of 𝜑 . That is, if a sequence
𝜎 ∈ (2𝑉 )𝜔 satisfies 𝜑 , while a sequence 𝜎 ′ ∈ (2𝑉 )𝜔 obtained from solely changing the valuation
of𝑢 at a single point in time 𝑘 ≥ 0 violates 𝜑 , and if changing variables according to (𝑃, 𝐹 ) while
maintaining the valuations of the variables in all other situations results in satisfaction of 𝜑 ,
then 𝑢 depends on the pair (𝑃, 𝐹 ). Since 𝑃 defines the variables whose valuations need to be
changed at the particular point in time 𝑘 for which (𝑃, 𝐹 ) is a minimal satisfying change set, 𝑢
depends on the current valuation of all variables 𝑣 ∈ 𝑃 . Since 𝐹 defines the variables whose
valuations need to be changed at some later point in time, 𝑢 depends on the future valuation of
all variables 𝑣 ∈ 𝐹 . Formally, we define semantic dependencies as follows:

Definition 6.3 (Semantic Dependencies).
Let𝜑 be an LTL formula over atomic propositions𝑉 . Let𝑢 ∈ 𝑂 and let 𝑘 ≥ 0. Let 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔
be sequences such that 𝜎𝑘∩{𝑢} ≠ 𝜎 ′

𝑘
∩{𝑢} holds, while we have 𝜎𝑘∩(𝑉 \{𝑢}) = 𝜎 ′

𝑘
∩(𝑉 \{𝑢})

and while 𝜎 𝑗 = 𝜎 ′𝑗 holds for all 𝑗 ≥ 0 with 𝑗 ≠ 𝑘 , and such that we have 𝜎 |= 𝜑 and 𝜎 ′ ̸ |= 𝜑 .
LetM be the set of minimal satisfying change sets (𝑃, 𝐹 ) for 𝜑 , 𝜎 ′,𝑢, and 𝑘 . For all (𝑃, 𝐹 ) ∈ M
we say that 𝑢 depends semantically on (𝑃, 𝐹 ). If either (𝑃 ∪ 𝐹 ) ∩ 𝐼 = ∅ or (𝑃 ′ ∪ 𝐹 ′) ∩ 𝐼 ≠ ∅
holds for all (𝑃 ′, 𝐹 ′) ∈ M, then we say, for all variables 𝑣 ∈ 𝑃 , that 𝑢 depends semantically on
the current valuation of 𝑣 and, for all variables 𝑣 ∈ 𝑉 , that 𝑢 depends semantically on the future
valuation of 𝑣 . IfM ≠ ∅ and (𝑃 ′ ∪ 𝐹 ′) ∩ 𝐼 ≠ ∅ holds for all (𝑃 ′, 𝐹 ′) ∈ M, then we say that 𝑢
depends semantically on the input.

If an output variable 𝑢 ∈ 𝑂 depends semantically on the current valuation of another variable
𝑣 ∈ 𝑉 , we also call this a present dependency from 𝑢 to 𝑣 . If it depends semantically on the future
valuation of a variable 𝑣 ∈ 𝑉 , we also call this a future dependency from 𝑢 to 𝑣 . Note that an
output variable can also depend semantically on its own future valuation.

Example 6.2. Consider the autonomous car from the running example from Section 6.1 and
its specification 𝜑car . It induces, among others, a present dependency from variable acc to
variable dec: consider a scenario where the street does not contain any curve, i.e., neither ahead
nor in is ever set to true. Since the car is neither in a curve nor directly before a curve at any
point in time, the acceleration unit only needs to ensure mutual exclusion of acc, dec, and keep as
well as that always either acc, dec, or keep is true and that both acc and keep are played infinitely
often. Therefore, the sequence 𝜎 = {𝑔1, dec}({𝑔2, keep}{𝑔2, acc})𝜔 , for instance, satisfies 𝜑car
since it ensures the above requirements for the acceleration unit as well as the requirements of
the gearing unit defined by 𝜑gear and lies in the described scenario of a street that does contain
curves. Consider the sequence 𝜎 ′ = {𝑔1, dec, acc}({𝑔2, keep}{𝑔2, acc})𝜔 . It differs from 𝜎 solely
in the valuation of output variable acc in the very first time step. Furthermore, it violates mutual
exclusion of acc and dec. Hence, it violates the specification 𝜑acc of the acceleration unit, and
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therefore it also violates the full specification 𝜑car of the autonomous car. Yet, mutual exclusion
is the only requirement of the car that is violated by 𝜎 ′. Thus, setting dec to false in the first
time step yields a sequence 𝜎 ′′ = {𝑔1, dec, acc}({𝑔2, keep}{𝑔2, acc})𝜔 that again satisfies 𝜑car .
Therefore, for 𝑃 = {dec} and 𝐹 = ∅, the pair (𝑃, 𝐹 ) is a satisfying change set with respect
to 𝜑car , 𝜎 ′, acc, and 0. Furthermore, it is minimal since the only pair (𝑃 ′, 𝐹 ′) with 𝑃 ′ ⊆ 𝑃 and
𝐹 ′ ⊆ 𝐹 , namely (∅, ∅), does not allow for a sequence that satisfies 𝜑car as it does not permit
any changes in variable valuations. Thus, variable acc depends semantically on (𝑃, 𝐹 ), and, in
particular, acc depends semantically on the current valuation of variable dec.
Next, consider the sequence 𝜎 = {dec, 𝑔1}{in, acc, 𝑔1}{in, keep, 𝑔2}𝜔 . It is unrealistic as it

models that we are in a curve in the second time step without ever sensing that a curve is ahead.
However, as we did not exclude such unrealistic situations via assumptions in the specification of
the car for simplicity, 𝜎 is a valid input sequence. Clearly, 𝜎 satisfies that exactly one of 𝑔1 and 𝑔2
as well as acc, dec, and keep is set to true at each time step. Furthermore, keep occurs infinitely
often in 𝜎 . If the car is in a curve, it does not accelerate in the next time step. If it is neither in a
curve nor senses one, then it accelerates eventually. Since the car never senses that a curve is
ahead, the first conjunct of𝜑acc is also satisfied. Moreover, we use the second gear when reaching
a steady speed after accelerating and never accelerate for two consecutive steps. Hence, 𝜎
satisfies 𝜑car . Consider the sequence 𝜎 ′ = {dec, 𝑔1}{in, acc, keep, 𝑔1}{in, keep, 𝑔2}𝜔 , which differs
from 𝜎 only in the valuation of keep at the second point in time and clearly violates mutual
exclusion of acc and keep. Setting acc to false at the second point in time does not suffice to
satisfy 𝜑car again as then the car does not accelerate eventually after neither being in a curve,
nor sensing a curve in the very first time step. However, as the car is always in a curve from the
second point in time on – which is, again, not a realistic situation but which we did not exclude
and thus need to consider – the car is never allowed to accelerate after the second point in time.
Hence, 𝜑car can only be satisfied by changing the valuation of input variable in as well as output
variables acc and keep. For instance, sequence𝜎 ′′ = {dec, 𝑔1}{keep, 𝑔1}{in, acc, 𝑔2}{in, keep, 𝑔2}𝜔
satisfies 𝜑car again but differs from 𝜎 ′ in the valuations of both in and acc at the second point
in time as well as in the valuations of both keep and acc at the third point in time. As these
changes are minimal, we thus obtain present dependencies from keep to both in and acc as
well as future dependencies from keep to both keep and acc. Moreover, since a change in the
valuation of an input variable is required, keep depends on the input. △

If a variable 𝑢 ∈ 𝑉 depends semantically on some pair (𝑃, 𝐹 ) with 𝐹 ≠ ∅, then, intuitively, a
strategy that defines the behavior of 𝑢 most likely has to predict the future valuations of the
variables in 𝐹 to determine the correct valuation of 𝑢 at a certain point in time. Irrespective
of whether 𝑣 is an input or output variable of the overall system, this prevents the existence
of a dominant strategy for a component with output variable 𝑢 that does not also control all
variables in 𝐹 . Furthermore, in our setting, strategies cannot react directly to an input since we
model strategies with Moore transducers. Thus, the variables in 𝑃 may prevent admissibility as
well. Hence, if 𝑢 depends on either the current or the future valuation of some variable 𝑣 ∈ 𝑂
or on the input, then there might not exist a dominant strategy for the component controlling 𝑢
if it does not also control the variables 𝑢 depends on. If such dependencies do not exist, in
contrast, admissibility of the specification for the component controlling 𝑢 is guaranteed.
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To show this formally, we construct a dominant strategy for the behavior of 𝑢 by choosing
arbitrary output sequences for input sequences for which 𝜑 is not satisfiable and output se-
quences that yield satisfaction of 𝜑 for input sequences for which 𝜑 is satisfiable. In general,
these output sequences may not be computable by a strategy. However, this can only be the
case if a strategy needs to predict the valuations of variables outside its control, and this need is
precisely what is captured by semantic present and future dependencies:

Theorem 6.3. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let 𝑐𝑖 be some component of
the system with output variables𝑂𝑖 ⊆ 𝑂 . If, for all 𝑢 ∈ 𝑂𝑖 , variable 𝑢 does not depend semantically
on the current or future valuation of a variable 𝑣 ∈ 𝑉 \𝑂𝑖 , then 𝜑 is admissible for 𝑐𝑖 .

Proof. Let 𝛾 ∈ (2𝐼𝑖 )𝜔 be some infinite input sequence for 𝑐𝑖 . If 𝛾 ∪𝜐 ̸ |= 𝜑 holds for all 𝜐 ∈ (2𝑂𝑖 )𝜔 ,
then, intuitively, no strategy for 𝑐𝑖 at all can satisfy the specification 𝜑 on input 𝛾 . Thus, a
dominant strategy for 𝑐𝑖 may behave arbitrarily on input 𝛾 . Otherwise, there exists some
𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 such that 𝛾 ∪ 𝜐𝛾 |= 𝜑 holds. We claim that there exists a strategy 𝑠𝑖 for 𝑐𝑖 such that
we have comp(𝑠𝑖 , 𝛾) ∩𝑂𝑖 = 𝜐𝛾 for all input sequences 𝛾 ∈ (2𝐼𝑖 )𝜔 for which there exists some
𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 such that 𝛾 ∪ 𝜐𝛾 |= 𝜑 holds. If there are multiple sequences 𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 such that
𝛾 ∪ 𝜐𝛾 |= 𝜑 holds, then the strategy 𝑠𝑖 chooses one of these sequences.

Suppose that such a strategy does not exist. Then, by definition of strategies, it is not possible
to determine in each time step the correct output based on the history of in- and outputs. Hence,
there exist input sequences 𝛾,𝛾 ′ ∈ (2𝐼𝑖 )𝜔 with 𝛾 ≠ 𝛾 ′ and a point in time 𝑘 ≥ 0 such that 𝛾
and 𝛾 ′ agree up to point in time 𝑘 − 1, i.e., we have 𝛾 |𝑘 = 𝛾 ′|𝑘 , while for all 𝜐,𝜐

′ ∈ (2𝑂𝑖 )𝜔 with
𝛾 ∪𝜐 |= 𝜑 and 𝛾 ′ ∪𝜐′ |= 𝜑 , we have that 𝜐 and 𝜐′ disagree at point in time 𝑘 , i.e., we have 𝜐𝑘 ≠ 𝜐′

𝑘
.

Without loss of generality, we assume that 𝑘 is the smallest such point in time. Then, there
exist sequences 𝜐,𝜐′ ∈ (2𝑂𝑖 )𝜔 with 𝛾 ∪ 𝜐 |= 𝜑 and 𝛾 ′ ∪ 𝜐′ |= 𝜑 that agree up to point in time
𝑘 − 1 but disagree at point in time 𝑘 . Hence, we have 𝜐 |𝑘 = 𝜐′|𝑘 and 𝜐𝑘 ≠ 𝜐′

𝑘
. Let 𝜐 ∈ (2𝑂𝑖 )𝜔 and

𝜐′ ∈ (2𝑂𝑖 )𝜔 be these sequences. Then, by construction, we have 𝛾 ∪ 𝜐 |= 𝜑 , while 𝛾 ∪ 𝜐′ ̸ |= 𝜑

holds. Furthermore, since all sequences 𝜐′′ ∈ (2𝑂𝑖 )𝜔 with 𝛾 ′ ∪ 𝜐′′ |= 𝜑 disagree with 𝜐 at point
in time 𝑘 , the prefix of 𝜐′ of length 𝑘 , i.e., up to point in time 𝑘 cannot be extended such that it,
together with 𝛾 , satisfies 𝜑 . That is, for every 𝜐′′ ∈ (2𝑂𝑖 )𝜔 with 𝜐′′|𝑘 = 𝜐′|𝑘 , we have 𝛾 ∪ 𝜐

′′ ̸ |= 𝜑 .
Thus, by construction of 𝜐′, it holds that for every 𝜐′′ ∈ (2𝑂𝑖 )𝜔 that agrees with 𝜐 up to point in
time 𝑘 − 1 but disagrees with 𝜐 at point in time 𝑘 , we have 𝛾 ∪ 𝜐′′ ̸ |= 𝜑 .
Let 𝑢 ∈ 𝑂𝑖 be some output variable of component 𝑐𝑖 such that the sequences 𝜐 and 𝜐′ differ

on 𝑢 at point in time 𝑘 . By construction, we have 𝛾 ∪ 𝜐 |= 𝜑 . Let 𝜐′′ ∈ (2𝑂𝑖 )𝜔 be the sequence
that we obtain from 𝜐 by only changing the valuation of 𝑢, i.e., let 𝜐′′ be the sequence with
𝜐𝑘 ∩ {𝑢} ≠ 𝜐′′

𝑘
∩ {𝑢} as well as 𝜐𝑘 ∩ (𝑉 \ {𝑢}) = 𝜐′′ ∩ (𝑉 \ {𝑢}) and 𝜐𝑘 ∩ {𝑢} 𝜐 𝑗 = 𝜐′′𝑗 for all 𝑗 ≥ 0

with 𝑗 ≠ 𝑘 . Then, since every sequence of output variables that agrees with 𝜐 up to point in
time 𝑘 − 1 but disagrees with 𝜐 at point in time 𝑘 violates 𝜑 when combined with 𝛾 as shown
above, it follows immediately that 𝛾 ∪ 𝜐′′ ̸ |= 𝜑 holds.

Let 𝑃 ⊆ 𝑉 \ {𝑢} be the set of variables on which the input sequences 𝛾 ∪ 𝜐′′ and 𝛾 ′ ∪ 𝜐′ differ
at point in time 𝑘 , i.e., let 𝑃 =

{
𝑣 ∈ 𝑉 \ {𝑢} | (𝛾𝑘 ∪ 𝜐′′𝑘 ) ∩ {𝑣} ≠ (𝛾

′
𝑘
∪ 𝜐′

𝑘
) ∩ {𝑣}

}
. Similarly, let

𝐹 ⊆ 𝑉 be the set of variables on which 𝛾 ∪𝜐′′ and 𝛾 ′∪𝜐′ differ at some point in time 𝑘 ′ ≥ 0 with
𝑘 ′ > 𝑘 , i.e., let 𝐹 =

{
𝑣 ∈ 𝑉 | ∃𝑘 ′ > 𝑘. (𝛾𝑘 ′ ∪ 𝜐′′𝑘 ′) ∩ {𝑣} ≠ (𝛾

′
𝑘 ′ ∪ 𝜐

′
𝑘 ′) ∩ {𝑣}

}
. By construction
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of 𝛾 and 𝛾 ′ as well as of 𝜐′ and 𝜐′′, we have 𝛾 |𝑘 = 𝛾 ′|𝑘 as well as 𝜐
′
|𝑘 = 𝜐′′|𝑘 . Hence 𝛾 ∪𝜐

′′ and 𝛾 ′∪𝜐′
agree up to point in time 𝑘 − 1. Furthermore, by construction of 𝜐′ and 𝜐′′, these sequences
agree in the valuation of 𝑢 at point in time 𝑘 , i.e., we have 𝑢 ∈ 𝜐′

𝑘
if, and only if, 𝑢 ∈ 𝜐′′

𝑘
holds.

Additionally, we have 𝛾 ′ ∪ 𝜐′ |= 𝜑 by construction of 𝜐′. Therefore, if follows immediately
from Definition 6.2 that (𝑃, 𝐹 ) is a satisfying change set for 𝜑 , 𝛾 ∪ 𝜐′′, 𝑢, and 𝑘 . Without loss of
generality, we assume that 𝛾 ′ and 𝜐′′ are chosen such that (𝑃, 𝐹 ) is also minimal.

Furthermore, since 𝛾 ≠ 𝛾 ′ holds by assumption, we have (𝑃 ∪ 𝐹 ) ∩ 𝐼𝑖 ≠ ∅. Thus, there exists
some variable 𝑣 ∈ 𝐼𝑖 with either 𝑣 ∈ 𝑃 or 𝑣 ∈ 𝐹 . By definition of semantic dependencies, 𝑢 thus
depends semantically on either the current or the future valuation of 𝑣 . Since, by definition of
components, the set of input and output variables of 𝑐𝑖 are disjoint, 𝑣 ∈ 𝑉 \𝑂𝑖 holds, contradicting
that no output of 𝑐𝑖 semantically depends on a variable that is not output of 𝑐𝑖 .
Hence, there exists a strategy 𝑠𝑖 for 𝑐𝑖 such that we have comp(𝑠𝑖 , 𝛾) ∩𝑂𝑖 = 𝜐𝛾 for all input

sequences 𝛾 ∈ (2𝐼𝑖 )𝜔 for which there exists some 𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 such that 𝛾 ∪ 𝜐𝛾 |= 𝜑 holds. In
the following, we show that 𝑠𝑖 is dominant for 𝜑 and 𝑐𝑖 . Suppose that it is not. Then, there
exists an input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 such that comp(𝑠𝑖 , 𝛾) ̸|= 𝜑 holds, while there exists an
alternative strategy 𝑡𝑖 for 𝑐𝑖 with comp(𝑡𝑖 , 𝛾) |= 𝜑 . Clearly, 𝜑 can be satisfied by a sequence
that agrees with 𝛾 on the valuations of the variables in 𝐼𝑖 since comp(𝑡𝑖 , 𝛾) |= 𝜑 holds and
we have comp(𝑡𝑖 , 𝛾) ∩ 𝐼𝑖 = 𝛾 by definition of computations. Thus, by construction of 𝑠𝑖 , we
have comp(𝑠𝑖 , 𝛾) ∩ 𝑂𝑖 = 𝜐𝛾 , where 𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 is a sequence such that 𝛾 ∪ 𝜐𝛾 |= 𝜑 holds. By
definition of computations, however, we have comp(𝑠𝑖 , 𝛾) = 𝛾 ∪ (comp(𝑠𝑖 , 𝛾) ∩ 𝑂𝑖 and thus
comp(𝑠𝑖 , 𝛾) = 𝛾 ∪ 𝜐𝛾 holds; contradicting that we have comp(𝑠𝑖 , 𝛾) ̸|= 𝜑 . □

Utilizing the above result, we introduce an algorithm for identifying suitable components
for incremental synthesis as well as a corresponding ranking function ranksyn, which defines a
synthesis order, based on semantic dependencies in the subsequent section. The decomposition
and the synthesis order ensure soundness of incremental synthesis.

6.3.2. Semantic Decomposition Algorithm
The semantic decomposition algorithm is based on determining semantic dependencies between
output variables of the system. It then computes components by analyzing the dependencies
and by maximizing the number of components while maintaining admissibility. To determine
which output variables of the system need to be contained in the same component in order
to ensure admissibility, we build the semantic dependency graph of the variables of the system
based on their semantic dependencies:

Definition 6.4 (Semantic Dependency Graph).
Let 𝜑 be an LTL formula over atomic propositions 𝑉 . The semantic dependency graph Dsem

𝜑

of 𝜑 is defined by Dsem
𝜑 = (Vsem, Esem) with Vsem = 𝑉 and Esem = Esem

𝑃
∪ Esem

𝐹
∪ Esem

𝐼
,

where (𝑢, 𝑣) ∈ Esem
𝑃

holds if, and only if, 𝑢, 𝑣 ∈ 𝑂 and 𝑢 depends semantically on the current
valuation of 𝑣 , where (𝑢, 𝑣) ∈ Esem

𝐹
holds if, and only if, 𝑢, 𝑣 ∈ 𝑂 and 𝑢 depends semantically

on the future valuation of 𝑣 , and where (𝑢, 𝑣) ∈ Esem
𝐼

holds, if, and only if, 𝑢 ∈ 𝑂 , 𝑣 ∈ 𝐼 and 𝑢
depends semantically on 𝑣 .
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C1 C2

acc

keep

dec

𝑔1

𝑔2ahead

in

Figure 6.3.: Semantic dependency graph Dsem
𝜑car

induced by the specification 𝜑car of the running
example. Nodes representing input variables and their edges are depicted in gray. For the sake
of readability, we omit edges from dec and keep to in as well as edges from dec to in. Dashed
edges represent present dependencies, solid ones represent future dependencies. The strongly
connected components of the output variables are highlighted in blue.

To identify suitable components of the system for incremental synthesis, we now proceed in
two steps: first, we eliminate vertices of Dsem

𝜑 that represent input variables since only output
variables of the system define components. Second, we compute the set C of strongly connected
components of Dsem

𝜑 . The strongly connected components of Dsem
𝜑 then define the components

of the system: if C = {C1, . . . , C𝑛} holds, then we obtain 𝑛 components 𝑐1, . . . , 𝑐𝑛 such that, for
every 𝑐𝑖 , the set 𝑂𝑖 of output variables is defined by 𝑂𝑖 = C𝑖 .

Example 6.3. Consider the autonomous car from Section 6.1. Its specification 𝜑car induces
the semantic dependency graph Dsem

𝜑car
depicted in Figure 6.3. For the sake of readability, we

omit edges from dec and keep to in as well as edges from dec to in. Note, however, that there
also exist present and future dependencies from dec and keep to in as, for instance, due to the
present dependency from keep to in which is explained in Example 6.2. When only considering
the nodes representing output variables of the system, Dsem

𝜑car
contains two strongly connected

components C1 and C2 – highlighted in blue – and thus induces two components 𝑐1 and 𝑐2 with
𝑂1 = {acc, dec, keep} and𝑂2 = {𝑔1, 𝑔2}. Hence, we exactly identify the acceleration unit and the
gearing unit of the autonomous car as components. △

In addition to the decomposition, the semantic dependency graph also induces the synthesis
order by analyzing edges that connect strongly connected components and, thus, system
components. Let C be the set of strongly connected components of Dsem

𝜑 . Let C0 ⊆ C be the
set of strongly connected components such that, for all components C𝑗 ∈ C0 and all variables
𝑢 ∈ C𝑗 , we have 𝑣 ∈ C𝑗 for all variables 𝑣 ∈ Vsem with (𝑣,𝑢) ∈ Esem. That is, C0 is, intuitively,
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the set of all strongly connected components of the semantic dependency graph Dsem
𝜑 that

do not have any incoming edges. For 𝑖 ∈ N0 with 𝑖 > 0, let C𝑖 ⊆ C be the set of strongly
connected components such that (i) C𝑖 ∩ Cℓ = ∅ holds for all ℓ ∈ N0 with 0 ≤ ℓ < 𝑖 , and, (ii) for
all components C𝑗 ∈ C𝑖 and all variables 𝑢 ∈ C𝑗 , we have, for all variables 𝑣 ∈ Vsem with
(𝑣,𝑢) ∈ Esem, either 𝑣 ∈ C𝑗 or 𝑣 ∈ C𝑚 for some component C𝑚 with C𝑚 ∈ Cℓ , where ℓ ∈ N0
with 0 ≤ ℓ < 𝑗 . Hence, intuitively, C𝑖 is the set of all strongly connected components whose
incoming edges all originate from a node that lies in a strongly connected component with lower
index ℓ < 𝑖 and that do not already lie in a strongly connected component with a lower index.
Note that every strongly connected component C𝑗 ∈ C then lies in exactly one set C𝑖 ⊆ C.
We then obtain the synthesis order for the components as follows: we define a ranking

function ranksyn for the system components such that for all strongly connected components
C𝑖 , C𝑗 ∈ C representing system components 𝑐𝑖 and 𝑐 𝑗 , respectively, with C𝑖 ∈ C𝑘 and C𝑗 ∈ Cℓ ,
we have (i) if 𝑘 < ℓ holds, then we have ranksyn(𝑐𝑖) > ranksyn(𝑐 𝑗 ), and (ii) if 𝑘 > ℓ holds, then we
have ranksyn(𝑐𝑖) < ranksyn(𝑐 𝑗 ), and (iii) if 𝑘 = ℓ holds and 𝜑 is a safety property or only of the
components affects the liveness part of 𝜑 , then we have ranksyn(𝑐𝑖) = ranksyn(𝑐 𝑗 ), and (iv) other-
wise we choose an arbitrary ordering of 𝑐𝑖 and 𝑐 𝑗 , i.e., we choose either ranksyn(𝑐𝑖) < ranksyn(𝑐 𝑗 )
or ranksyn(𝑐 𝑗 ) < ranksyn(𝑐𝑖).
We can, for instance, compute a ranking function ranksyn that satisfies these properties as

follows. Let𝑚 ≥ 0 be the highest index of a non-empty subset constructed as above, i.e., let
𝑚 = max

{
𝑖 ≥ 0 | C𝑖 ≠ ∅

}
. We first check whether 𝜑 is a safety property or whether its liveness

part is only affected by a single component. If this is the case, then, for all strongly connected
components C𝑗 ∈ C and thus for all components 𝑐 𝑗 , we assign ranksyn(𝑐 𝑗 ) = 𝑚 − 𝑖 if C𝑗 ∈ C𝑖
holds. Since, as argued above, every strongly connected component lies in exactly one subset of
connected components, as computed above, the assignment is unique. Otherwise, i.e., if 𝜑 is a
liveness property, where the liveness part is affected by more than one component, then we
proceed as follows. For all non-empty subsets C𝑖 ⊆ C, we assign the ranks𝑚−𝑖+∑0≤ℓ<𝑖 ( |Cℓ |−1)
to𝑚 − 𝑖 + |C𝑖 | − 1 +∑

0≤ℓ<𝑖 ( |Cℓ − 1) | to the system components 𝑐 𝑗 representing the respective
strongly connected components C𝑗 ∈ C𝑖 . Which of the components receives which rank is
insignificant as, by construction of the components, they do not depend on each other.
Example 6.4. Reconsider the autonomous car from Section 6.1 with specification 𝜑car and its
semantic dependency graph Dsem

𝜑car
depicted in Figure 6.3. It induces two components 𝑐1 and 𝑐2

representing the strongly connected components C1 and C2. We obtain the subsets C0 = {C1}
and C1 = {C2}. Hence, the ranking function ranksyn ensures that ranksyn(𝑐1) > ranksyn(𝑐2)
holds and thus we obtain the synthesis order 𝑐2 <syn 𝑐1. This matches the observation from
Section 6.1 that a strategy for the gearing unit must be synthesized first. △
From the construction of the components as well as of the ranking function ranksyn, it

follows that the resulting synthesis order is compositionality-preserving since the semantic
decomposition algorithm only assigns the same rank to system components if either 𝜑 is a
safety property, or its liveness part is only affected by a single component:
Lemma 6.2. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D and ranksyn be the
decomposition and the ranking function computed with semantic decomposition algorithm. Then,
the synthesis order <syn induced by D and ranksyn is compositionality-preserving.
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Together with Theorem 6.2, it thus follows immediately that incremental synthesis is sound
when we compute the decomposition as well as the synthesis order with the semantic decom-
position algorithm described in this section:

Corollary 6.1. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D = ⟨𝑐1, . . . , 𝑐𝑛⟩ and
ranksyn be the decomposition and the ranking function computed with the semantic decomposition
algorithm. Suppose that Algorithm 6.1 returns (true, 𝑠) for input𝜑 ,D, and ranksyn. Then, strategy
𝑠 is dominant for 𝜑 .

In the following, we study completeness of incremental synthesis when computing the system
components and the synthesis order with the semantic decomposition algorithm. First, we
focus on LTL specifications that do not induce semantic dependencies of output variables 𝑢 ∈ 𝑂
to input variables 𝑣 ∈ 𝐼 of the system. For such specifications, the success of the individual
synthesis tasks in Algorithm 6.1 is guaranteed if the decomposition of the system and the
synthesis order are computed with the semantic decomposition algorithm:

Lemma 6.3. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D = ⟨𝑐1, . . . , 𝑐𝑛⟩ and
ranksyn be the decomposition and the ranking function computed with semantic decomposition
algorithm. If, for all 𝑢 ∈ 𝑂 , output 𝑢 does not depend semantically on an input variable 𝑣 ∈ 𝐼 , then
Algorithm 6.1 returns (true, 𝑠) for input 𝜑 , D, and ranksyn.

Proof. By construction, the components 𝑐1, . . . , 𝑐𝑛 obtained with the semantic decomposition
algorithm are built from the 𝑛 strongly connected components C1, . . . , C𝑛 of the semantic
dependency graph Dsem

𝜑 for 𝜑 . Thus, by definition of strongly connected components, there
are no cyclic dependencies between system components. Furthermore, by construction of
the ranking function ranksyn, we have C𝑖 ∈ C𝑚 for all components 𝑐𝑖 of the lowest rank, i.e.,
for all components 𝑐𝑖 ∈ L0, where𝑚 is the highest index of a non-empty subset constructed
as above, i.e., let𝑚 = max

{
𝑖 ≥ 0 | C𝑖 ≠ ∅

}
. Thus, by definition of the subsets Cℓ of strongly

connected components, no output variable of a component 𝑐𝑖 of the lowest rank is the source of
an edge in Esem to an output variable 𝑣 ∈ 𝑂 \𝑂𝑖 of the system that is no output of 𝑐𝑖 . Hence, in
particular, no output variable of 𝑐𝑖 depends semantically on an output variable of the system.
By construction, all output variables of components are output variables of the overall system.
Furthermore, no output variable of the system depends semantically on some input variable of
the system by assumption. Therefore, it follows that no output variable of a component 𝑐𝑖 of
the lowest rank depends semantically on any variable outside of 𝑂𝑖 , i.e., outside of the outputs
of 𝑐𝑖 , at any point in time. Consequently, 𝜑 is admissible for 𝜑 and for all components 𝑐𝑖 of the
lowest rank by Theorem 6.3.
Next, let 𝑐𝑖 be some component in D with non-lowest rank, i.e., a component of a layer L𝑗

with 𝑗 > 0. Let prev( 𝑗) denote the parallel composition of all components 𝑐ℓ with a smaller
rank than the components on the layer L𝑗 with index 𝑗 , i.e., with ranksyn(𝑐ℓ ) < ranksyn(𝑐𝑖).
Then, Algorithm 6.1 already computed strategies for all components 𝑐ℓ with smaller rank. Let
prevStrat (𝑖) denote their parallel composition. By construction of Algorithm 6.1, prevStrat (𝑖) is
dominant for 𝜑 and prev( 𝑗). By construction of the subsets C𝑥 ⊂ C of the strongly connected
components, all components 𝑐𝑘 for which there exists an edge (𝑢, 𝑣) ∈ Esem with 𝑢 ∈ 𝑐𝑖 and
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𝑣 ∈ 𝑐𝑘 , i.e., an edge from 𝑐𝑖 to 𝑐𝑘 , lie in the subset C𝑖+1 ⊆ C of strongly connected components.
Thus, by construction of the ranking function, we have ranksyn(𝑐𝑘 ) < ranksyn(𝑐𝑖) for all such
components 𝑐𝑘 . Hence, since no output variable of the system depends on an input variable of
the system by assumption, it thus follows that all output variables of component 𝑐𝑖 may only
depend semantically on output variables of components with a smaller rank. In Algorithm 6.1,
we try to synthesize a strategy 𝑠𝑖 for 𝑐𝑖 such that prevStrat (𝑖) | |𝑠 is dominant for𝜑 and prev( 𝑗) | |𝑐𝑖 .
As shown above and by construction of the sets C𝑥 ⊂ C, no output variable of the component
prev( 𝑗) | | 𝑐𝑖 depends semantically on a variable outside of the outputs of prev( 𝑗) | | 𝑐𝑖 . Thus, it
follows with Theorem 6.3 that 𝜑 is admissible for prev( 𝑗) | | 𝑐𝑖 .

Since Algorithm 6.1 restricts the dominant strategy for 𝜑 and prev( 𝑗) | | 𝑐𝑖 , however, by fixing
the strategies for the components in prev( 𝑗), it does not follow immediately that the synthesis
task for 𝑐𝑖 in line 7 succeeds. In particular, it remains to show that there also exists a strategy 𝑠𝑖
for 𝑐𝑖 such that prevStrat (𝑖) | | 𝑠𝑖 is dominant for 𝜑 and prev( 𝑗) | | 𝑐𝑖 . Let 𝑡 be a dominant strategy
for 𝜑 and prev( 𝑗) | | 𝑐𝑖 . Since 𝜑 is admissible for prev( 𝑗) | | 𝑐𝑖 , such a strategy is guaranteed to
exist. For the sake of readability, let 𝑂prev =

⋃
𝑐𝑘 ∈prev ( 𝑗 ) 𝑂𝑘 . Let 𝑡𝑖 be a strategy for 𝑐𝑖 such

that comp(𝑡𝑖 , 𝛾 ∪ 𝛾 ′) ∩ 𝑂𝑖 = comp(𝑡, 𝛾) ∩ 𝑂𝑖 holds for all sequences 𝛾 ∈ (2𝑉 \(𝑂𝑖∪𝑂prev )𝜔 and
𝛾 ′ ∈ (2𝑂prev )𝜔 . Hence, intuitively, 𝑡𝑖 produces the same outputs for component 𝑐𝑖 as 𝑡 does,
irrespective of the valuations of the output variables of the other processes. Similarly, let 𝑡prev
be a strategy for prev( 𝑗) such that comp(𝑡prev, 𝛾 ∪ 𝛾 ′) ∩𝑂prev = comp(𝑡, 𝛾) ∩𝑂prev holds for all
sequences 𝛾 ∈ (2𝑉 \(𝑂𝑖∪𝑂prev ) )𝜔 and 𝛾 ′ ∈ (2𝑂𝑖 )𝜔 .
We claim that prevStrat (𝑖) | | 𝑡𝑖 is dominant for 𝜑 and prev( 𝑗) | | 𝑐𝑖 . Suppose that it is not.

Then, there exists some input sequence 𝛾 ∈ (2𝑉 \(𝑂𝑖∪𝑂prev ) )𝜔 and some alternative strategy 𝑡 ′

for prev( 𝑗) | | 𝑐𝑖 such that comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) ̸|= 𝜑 holds, while we have comp(𝑡 ′, 𝛾) |= 𝜑 .
Since 𝑡 is a dominant strategy for 𝜑 by assumption, we then have comp(𝑡, 𝛾) |= 𝜑 as well. For
the sake of readability, let

𝛾𝑖 = comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) ∩𝑂𝑖

𝛾prev = comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) ∩𝑂prev

Then, comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) = comp(prevStrat (𝑖), 𝛾 ∪ 𝛾𝑖) holds by construction of 𝛾𝑖 and by
definition of computations of strategies. Therefore, comp(prevStrat (𝑖), 𝛾 ∪ 𝛾𝑖) ̸|= 𝜑 follows. As
shown above, strategy prevStrat (𝑖) is dominant for 𝜑 and prev( 𝑗) and therefore, in particular,
comp(𝑡prev, 𝛾 ∪ 𝛾𝑖) ̸|= 𝜑 holds as well. By construction of the strategy 𝑡prev , we have

comp(𝑡prev, 𝛾 ∪ 𝛾𝑖) ∩𝑂prev = comp(𝑡, 𝛾) ∩𝑂prev .

Furthermore, by definition of computations, comp(𝑡prev, 𝛾 ∪ 𝛾𝑖) ∩ (𝑉 \ 𝑂prev) = 𝛾 ∪ 𝛾𝑖 holds
and thus we obtain comp(𝑡prev, 𝛾 ∪ 𝛾𝑖) ∩ (𝑉 \𝑂𝑖) = comp(𝑡, 𝛾) ∩ (𝑉 \𝑂𝑖). Moreover, we have
comp(𝑡prev, 𝛾 ∪ 𝛾𝑖) ∩𝑂𝑖 = 𝛾𝑖 and hence

comp(𝑡prev, 𝛾 ∪ 𝛾𝑖) ∩𝑂𝑖 = comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) ∩𝑂𝑖

follows with the definition of the sequence 𝛾𝑖 . Note that comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) ∩𝑂𝑖 is defined
by strategy 𝑡𝑖 . Therefore, comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) ∩ 𝑂𝑖 = comp(𝑡𝑖 , 𝛾 ∪ 𝛾prev) ∩ 𝑂𝑖 holds by
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construction of the sequence 𝛾prev . Since we have comp(𝑡𝑖 , 𝛾 ∪ 𝛾prev) ∩𝑂𝑖 = comp(𝑡, 𝛾) ∩𝑂𝑖 by
definition of the strategy 𝑡𝑖 , it thus follows that

comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) ∩𝑂𝑖 = comp(𝑡, 𝛾) ∩𝑂𝑖

holds. Combining the results, we thus obtain comp(prevStrat (𝑖) | | 𝑡𝑖 , 𝛾) = comp(𝑡, 𝛾) and
therefore comp(𝑡, 𝛾) ̸|= 𝜑 follows; contradicting that comp(𝑡, 𝛾) |= 𝜑 holds.

Hence, for all components 𝑐𝑖 obtained with semantic component selection, the synthesis task
in line 7 of Algorithm 6.1 succeeds. Therefore, it follows immediately that Algorithm 6.1 returns
(true, 𝑠), where 𝑠 is the parallel composition of the 𝑛 strategies 𝑠1, . . . , 𝑠𝑛 synthesized for the
components 𝑐1, . . . , 𝑐𝑛 of the decomposition D. □

Therefore, incremental synthesis always yields strategies for all components if the decom-
position and the synthesis order are computed with the semantic decomposition algorithm
and if the specification does not induce semantic dependencies from output variables to input
variables of the system. This relies heavily on the fact that, in this setting, all existing semantic
dependencies induced by the specification are dependencies to output variables and can thus
be resolved by a clever selection of the components and a suitable definition of the ranking
function defining the synthesis order.

General LTL specifications, however, can induce semantic dependencies from output variables
to input variables of the system. Neither component selection nor the synthesis order can resolve
semantic dependencies to input variables, and therefore admissibility is not guaranteed for
such LTL specifications. Therefore, the individual synthesis tasks in line 7 of Algorithm 6.1
are not guaranteed to succeed, and hence incremental synthesis might not yield strategies for
all components. If the synthesis task for a component 𝑐𝑖 , which is the single component of
the highest rank, fails, however, it follows that the LTL specification 𝜑 is unrealizable for the
whole system. Note here that such a component can either be a component defined by the
decomposition or the parallel composition of components defined by the decomposition.

Theorem 6.4. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D and ranksyn be
the decomposition and the ranking function computed with semantic decomposition algorithm.
Let 𝑐𝑖 ∈ D be some component such that ranksyn(𝑐 𝑗 ) < ranksyn(𝑐𝑖) holds for all components 𝑐 𝑗 ∈ D.
If the synthesis task in line 7 of Algorithm 6.1 fails for 𝑐𝑖 while the synthesis tasks for all components
with lower rank succeeded, then 𝜑 is unrealizable for the whole system.

Proof. Suppose that the synthesis task in line 7 of Algorithm 6.1 fails for component 𝑐𝑖 while
the synthesis tasks for all components with lower rank succeeded. For the sake of readability,
let 𝑐𝑖 denote the parallel composition of all components of D except 𝑐𝑖 . Let 𝑡𝑖 be the parallel
composition of the strategies of all components of D except 𝑐𝑖 . Since 𝑐𝑖 is the only component
of highest rank by assumption, all these strategies have been synthesized previously and thus 𝑡𝑖
exists. Furthermore, by construction of Algorithm 6.1 as well as the fact that components of the
same rank are only synthesized separately if 𝜑 is a safety specification or its liveness part is
only affected by one of the components, it follows that 𝑡𝑖 is dominant for 𝑐𝑖 .
Suppose that 𝜑 is realizable for the full system. Then, 𝜑 is admissible for the full system

as well [DF14]: since 𝜑 is realizable, there exists a strategy 𝑠 for the entire system 𝑐𝑖 | | 𝑐𝑖



258 6. Dependency-based Incremental Synthesis of Dominant Strategies

such that 𝑠 |= 𝜑 holds. Hence, it follows immediately from the definition of remorsefree
dominance that 𝑠 is dominant for 𝜑 and 𝑐𝑖 | | 𝑐𝑖 as well. Therefore, we can show similar as
in the last part of the proof of Lemma 6.3 that the synthesis task for 𝑐𝑖 succeeds. Let 𝑠𝑖 be
the strategy for 𝑐𝑖 that always behaves as 𝑠 restricted to the output variables of 𝑐𝑖 , i.e., with
comp(𝑠, 𝛾) ∩𝑉𝑖 = comp(𝑠𝑖 , 𝛾 ∪ 𝛾 ′) ∩𝑉𝑖 for all 𝛾 ∈ (2𝐼 )𝜔 and all 𝛾 ′ ∈ (2𝑂𝑖 )𝜔 , where 𝑉𝑖 denotes
the variables of 𝑐𝑖 . Similarly, let 𝑠𝑖 be the strategy for 𝑐𝑖 that always behaves as 𝑠 restricted
to the outputs of 𝑐𝑖 , i.e., with comp(𝑠,𝛾) ∩ 𝑉𝑖 = comp(𝑠𝑖 , 𝛾 ∪ 𝛾 ′) ∩ 𝑉𝑖 for all 𝛾 ∈ (2𝐼 )𝜔 and all
𝛾 ′ ∈ (2𝑂𝑖 )𝜔 , where𝑂𝑖 denotes the outputs of 𝑐𝑖 . Since 𝑠 realizes 𝜑 by assumption, we then have
comp(𝑠𝑖 , comp(𝑠, 𝛾) ∩ 𝐼𝑖) |= 𝜑 for all 𝛾 ∈ (2𝐼 )𝜔 , where 𝐼𝑖 denotes the inputs of 𝑐𝑖 . Thus, since 𝑡𝑖
is dominant for 𝑐𝑖 by assumption, comp(𝑡𝑖 , comp(𝑠,𝛾) ∩ 𝐼𝑖) |= 𝜑 holds for all 𝛾 ∈ (2𝐼 )𝜔 as well.
But then strategy 𝑠𝑖 for 𝑐𝑖 is a strategy for 𝑐𝑖 such that 𝑡𝑖 | | 𝑠𝑖 |= 𝜑 , contradicting the assumption
that the synthesis task for 𝑐𝑖 fails. □

Thus, when encountering a component for which the synthesis task does not succeed in
incremental synthesis, we can immediately deduce non-realizability of the LTL specification 𝜑

if there is no component with a higher or equal rank in the synthesis order than the one
of the considered component. If synthesis in Algorithm 6.1 fails for other components, i.e.,
components of non-highest rank or if there are multiple components of highest rank, in contrast,
non-realizability of the specification does not follow in general:

Example 6.5. Consider the LTL formula 𝜑 = 𝑎∨(( 𝑏) ↔ ( 𝑖)), where 𝑖 is an input variable
and both 𝑎 and 𝑏 are output variables, i.e., we have 𝐼 = {𝑖} and 𝑂 = {𝑎, 𝑏}. Clearly, 𝑎 depends
semantically on the future valuation of 𝑏. Variable 𝑏, in contrast, does not depend semantically
on the current or future valuation of 𝑎. Hence, the semantic dependency graph Dsem

𝜑 of 𝜑
contains an edge from 𝑎 to 𝑏 but no edge from 𝑏 to 𝑎. The semantic decomposition algorithm
thus derives two components 𝑐1 and 𝑐2, where 𝑐1 controls 𝑎 and 𝑐2 controls 𝑏, i.e., we have
𝑂1 = {𝑎} and 𝑂2 = {𝑏}, and the ranking function ranksyn assigns 𝑐2 a lower value than 𝑐1,
i.e., we have ranksyn(𝑐2) < ranksyn(𝑐1). Therefore, Algorithm 6.1 tries to synthesize a strategy
for 𝑐2 first. Since 𝑐2 is of lowest rank, incremental synthesis seeks for a strategy 𝑠2 for 𝑐2 that is
dominant for 𝜑 and 𝑐2. Yet, 𝜑 is not admissible for 𝑐2 since a dominant strategy would need to
predict the future valuation of 𝑖 in order to determine the correct valuation for 𝑏. Hence, the
synthesis task for 𝑐2 fails and therefore Algorithm 6.1 returns (false,Null). Thus, incremental
synthesis does not yield a solution. However, 𝜑 is realizable for the whole system since a
strategy that sets output variable 𝑎 to true in the very first time step satisfies 𝜑 irrespective
of the valuations of 𝑏 and, in particular, the input variable 𝑖 . Thus, incremental synthesis
in its current form is not complete for specifications that induce semantic dependencies of
components of non-highest rank to input variables. △

Based on this observation, we extend the incremental synthesis algorithm as follows. When-
ever we encounter a component 𝑐𝑖 ∈ D of non-highest rank for which the synthesis task in line 7
of Algorithm 6.1 fails and which contains an output variable that semantically depends on an
input variable of the system, then we combine component 𝑐𝑖 with a component 𝑐 𝑗 ∈ D that is a
direct successor of 𝑐𝑖 in the synthesis order, i.e., we have ranksyn(𝑐𝑖) < ranksyn(𝑐 𝑗 ) and there does
not exist a component 𝑐ℓ ∈ D with ranksyn(𝑐𝑖) < ranksyn(𝑐ℓ ) < ranksyn(𝑐 𝑗 ). Hence, we obtain a
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component 𝑐𝑖, 𝑗 with outputs𝑂𝑖, 𝑗 = 𝑂𝑖 ∪𝑂 𝑗 and replace both components 𝑐𝑖 and 𝑐 𝑗 with 𝑐𝑖, 𝑗 . Fur-
thermore, we assign 𝑐𝑖, 𝑗 the same rank as 𝑐 𝑗 , i.e., we define ranksyn(𝑐𝑖, 𝑗 ) = ranksyn(𝑐𝑖). We then
consider 𝑐𝑖, 𝑗 exactly as all other components of the system. In particular, we try to synthesize a
strategy 𝑠𝑖, 𝑗 for 𝑐𝑖, 𝑗 such that prevStrat (𝑖) | | 𝑠𝑖, 𝑗 is dominant for 𝜑 and prev(ℓ), where prevStrat (𝑖)
denotes the parallel composition of the previously synthesizes strategies for components with
lower ranks, where ℓ is the index of the layer L in which 𝑐𝑖, 𝑗 lies, and where prev(ℓ) denotes the
parallel composition of all components with lower rank. If the synthesis task for 𝑐𝑖, 𝑗 succeeds, we
proceed with the other components as in the basic incremental synthesis algorithm. Otherwise,
we proceed with combining 𝑐𝑖, 𝑗 with a direct successor in the synthesis order until either a
component is obtained for which the synthesis task succeeds or only a single component is
left. For this extension of the incremental synthesis algorithms, completeness then follows
immediately from Lemma 6.3 and Theorem 6.4:

Theorem 6.5. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D and ranksyn be the
decomposition and the ranking function computed with semantic decomposition algorithm. If
the extended incremental synthesis algorithm returns (false,Null) for input 𝜑 , D, and ranksyn,
then 𝜑 is unrealizable.

Thus, analyzing semantic dependencies of the output variables of the system and computing
components as well as a ranking function based on these dependencies, ensures both soundness
and completeness of (extended) incremental synthesis. Therefore, semantic component selection
is a suitable decomposition algorithm for incremental synthesis with dominant strategies. In
the next section, we discuss a further optimization of the semantic decomposition algorithm
that allows for resolving present dependencies unidirectionally, thus possibly increasing the
number of components in the decomposition.

6.3.3. Resolving Present Dependencies
As outlined before, present dependencies may also yield non-admissibility of a component since,
in our setting, strategies are represented by Moore transducers, which are not able to react to
an input immediately. This modeling choice relies, among others, on the assumption that the
system components will be executed perfectly parallel. In many realistic systems, however,
perfect parallelism is often not achieved. Instead, the components are executed slightly time-
delayed in every time step, enabling components can to react to inputs immediately if the inputs
are produced by a component that is executed beforehand in this time step.

We call the order in which the components are executed within a single time step the imple-
mentation order and denote it with <impl . Hence, if 𝑐𝑖 <impl 𝑐 𝑗 holds, then 𝑐𝑖 is executed before 𝑐 𝑗 .
Intuitively, the implementation order defines the communication interface between the com-
ponents. It assigns a rank rankimpl (𝑐𝑖) to every component 𝑐𝑖 of the system. Let 𝑐𝑖 and 𝑐 𝑗 be
components with output variables 𝑂𝑖 and 𝑂 𝑗 , respectively. If rankimpl (𝑐𝑖) < rankimpl (𝑐 𝑗 ) holds,
then component 𝑐 𝑗 can, intuitively, observe the valuations of the variables in 𝑂𝑖 one step in
advance, i.e., it is able to directly react to them, modeling knowledge about these variables in the
whole system. The implementation order is not necessarily total. Slightly overloading notation,
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we also define the rank rankimpl (𝑢) of an output variable 𝑢 ∈ 𝑂 of the system in the implemen-
tation order. To ensure consistency, we define the rank of a component to be the maximum
rank of all of its output variables, i.e., we have rankimpl (𝑐𝑖) = max

{
rankimpl (𝑢) | 𝑢 ∈ 𝑂𝑖

}
.

The full implementation order or some parts of it might be fixed by the system design and,
in particular, technical necessities prior to synthesis. If the implementation order is not fully
defined, we can refine it during component selection, thereby resolving present dependencies
unidirectionally, as follows. Let 𝑢 ∈ 𝑂 be an output variable of the system that depends
semantically on the current valuation of a variable 𝑣 ∈ 𝑉 , i.e., let (𝑢, 𝑣) ∈ Esem

𝑃
hold, where

Dsem
𝜑 = (Vsem, Esem

𝑃
) is the semantic dependency graph induced by the LTL specification 𝜑 . If

rankimpl (𝑢) < rankimpl (𝑣) holds, then 𝑣 is already able to react to𝑢 immediately, and therefore we
can remove the edge (𝑢, 𝑣) from Esem

𝑃
. If rankimpl (𝑢) > rankimpl (𝑣) holds, then 𝑣 will not be able

to react to 𝑢 immediately, and therefore we keep the edge (𝑢, 𝑣) in Esem
𝑃

as the dependency can
affect admissibility. If neither rankimpl (𝑢) < rankimpl (𝑣) nor rankimpl (𝑢) > rankimpl (𝑣) is already
predefined in the implementation order, then we refine it: we add rankimpl (𝑢) < rankimpl (𝑣)
and remove the edge (𝑢, 𝑣) from Esem

𝑃
. Due to preserving consistency of the implementation

order while refining it, at most one of the present dependencies between two variables 𝑢 and 𝑣
with (𝑢, 𝑣), (𝑣,𝑢) ∈ Esem

𝑃
can be resolved in this way.

We can incorporate resolving present dependencies into the semantic decomposition algo-
rithm as follows. Similar to the original version, we first compute the semantic dependency
graph Dsem

𝜑 = (Vsem, Esem
𝑃
) of the specification 𝜑 and remove nodes that correspond to input

variables. Afterward, we remove present dependency edges if there exist analogous future
dependency edges. That is, if both (𝑢, 𝑣) ∈ Esem

𝑃
and (𝑢, 𝑣) ∈ Esem

𝐹
hold, then we remove

(𝑢, 𝑣) from Esem
𝑃

since, intuitively, future edges subsume present edges in the sense that they
cannot be resolved. Hence, resolving the present dependency from 𝑢 to 𝑣 – if possible – would
only unnecessarily restrict the implementation order, thereby possibly preventing that other
present dependencies can be resolved, while not increasing the number of components in the
decomposition. Once we have removed subsumed present edges, we resolve present dependen-
cies unidirectionally, as described above, by refining the implementation order. Based on the
resulting dependency graph, we then compute the components of the system as in the original
decomposition algorithm, i.e., by computing the strongly connected components and defining
the synthesis order according to the dependencies between the components.

Example 6.6. Consider the autonomous car from Section 6.1 and its dependency graph depicted
in Figure 6.3. With the new decomposition algorithm, we eliminate the present dependency
edges between acc, dec, and keep as they are subsumed by the respective future edges. Fur-
thermore, assuming that there are no contradictory restrictions by the system design, we can
resolve the present dependency between 𝑔1 and 𝑔2 in one direction by refining the imple-
mentation order. For instance, we can define rankimpl (𝑔2) < rankimpl (𝑔1) and eliminate the
present dependency edge from 𝑔1 to 𝑔2. The resulting dependency graph induces three compo-
nents 𝑐1, 𝑐2, and 𝑐3 with𝑂1 = {acc, dec, keep},𝑂2 = {𝑔1} and𝑂3 = {𝑔3}. Furthermore, we obtain
rankimpl (𝑐3) < rankimpl (𝑐2) and thus 𝑐3 <impl 𝑐2. Lastly, we obtain the following synthesis order
𝑐2 <syn 𝑐3 <syn 𝑐1, which still matches our intuition that a strategy for the gearing unit, and
thus for the outputs 𝑔1 and 𝑔2 representing the gearing unit, must be synthesized first. △
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As we do not alter the computation of the synthesis order, it is still guaranteed that the
synthesis order induced by this slight variation of the semantic decomposition algorithm is
compositionality-preserving (see Lemma 6.2). Hence, soundness of incremental synthesis
follows immediately (see Corollary 6.1). Next, we study completeness.
By Theorem 6.3, we know that a specification 𝜑 is admissible for a component 𝑐𝑖 if none of

the output variables of 𝑐𝑖 depends semantically on any variable outside of the control of 𝑐𝑖 . We
now extend it to the case where output variables of 𝑐𝑖 may depend on the current valuation of
variables outside of the control of 𝑐𝑖 as long as these dependencies can be resolved with the
implementation order:

Theorem 6.6. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let 𝑐𝑖 be some component of
the system with output variables𝑂𝑖 ⊆ 𝑂 . If, for all 𝑢 ∈ 𝑂𝑖 , variable 𝑢 neither depends semantically
on the current valuation of a variable 𝑣 ∈ 𝑉 \𝑂𝑖 if rankimpl (𝑐𝑖) ≤ rankimpl (𝑐 𝑗 ) holds, where 𝑐 𝑗
is the component with 𝑣 ∈ 𝑂 𝑗 , nor on the future valuation of a variable 𝑣 ∈ 𝑉 \ 𝑂𝑖 , then 𝜑 is
admissible for the component 𝑐𝑖 .

Proof. Let 𝛾 ∈ (2𝐼𝑖 )𝜔 be some infinite input sequence for 𝑐𝑖 . If 𝛾 ∪𝜐 ̸ |= 𝜑 holds for all 𝜐 ∈ (2𝑂𝑖 )𝜔 ,
then, intuitively, no strategy for 𝑐𝑖 at all can satisfy the specification 𝜑 on input 𝛾 . Thus,
a dominant strategy for 𝑐𝑖 may behave arbitrarily on input 𝛾 . Otherwise, there exists some
𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 such that𝛾∪𝜐𝛾 |= 𝜑 holds. As in the proof of Theorem 6.3, we claim that there exists
a strategy 𝑠𝑖 for 𝑐𝑖 such that we have comp(𝑠𝑖 , 𝛾) ∩𝑂𝑖 = 𝜐𝛾 for all input sequences 𝛾 ∈ (2𝐼𝑖 )𝜔 for
which there exists some 𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 such that 𝛾 ∪𝜐𝛾 |= 𝜑 holds. If there are multiple sequences
𝜐𝛾 ∈ (2𝑂𝑖 )𝜔 such that 𝛾 ∪ 𝜐𝛾 |= 𝜑 holds, then the strategy 𝑠𝑖 chooses one of these sequences.

Suppose that such a strategy does not exist. As we use the very same strategy as in the proof of
Theorem 6.3, we can show analogously that there exists a variable 𝑢 ∈ 𝑂𝑖 that either (i) depends
semantically on the current valuation of some variable 𝑣 ∈ 𝐼𝑖 , or (ii) depends semantically on the
future valuation of some variable 𝑣 ∈ 𝐼𝑖 . In the latter case, we immediately obtain a contradiction
to the assumption that no output of 𝑐𝑖 depends syntactically on the future valuations of any
variable outside of the control of 𝑐𝑖 since the set of input and output variable of 𝑐𝑖 are disjoint
and thus 𝑣 ∈ 𝑉 \ 𝑂𝑖 holds. In the former case, if rankimpl (𝑐𝑖) ≤ rankimpl (𝑐 𝑗 ) holds, then we
obtain a contradiction to the assumption that no output variable of 𝑐𝑖 depends on the output
valuation of a component 𝑐 𝑗 with higher rank in the implementation order. Otherwise, i.e., if
rankimpl (𝑐𝑖) > rankimpl (𝑐 𝑗 ) holds, then 𝑐𝑖 is able to react to the outputs of 𝑐 𝑗 immediately and
thus, in particular, it is able to react to the valuation of 𝑣 immediately. Therefore, a strategy
for 𝑐𝑖 can choose the correct valuation of 𝑢 for the considered input. If other, non-resolvable
dependencies exist, we obtain a contradiction, as shown above. Otherwise, the desired strategy
exists, contradicting the assumption that it does not exist.

Hence, all in all, the desired strategy 𝑠𝑖 for 𝑐𝑖 exists; therefore, we can show as in the proof of
Theorem 6.3 that 𝑠𝑖 is dominant for 𝜑 , concluding the proof. □

Consequently, admissibility of the given specification for the components is guaranteed when
computing the decomposition as well as the implementation order and the synthesis order
with the slightly modified semantic decomposition algorithm, which allows for unidirectionally
resolving present dependencies between variables, introduced above. Therefore, completeness



262 6. Dependency-based Incremental Synthesis of Dominant Strategies

of incremental synthesis for this semantic decomposition algorithm follows analogously to
the proof of Lemma 6.3 when considering specifications that do not induce any semantic
dependencies to input variables of the entire system.
Similar to the original version of the semantic decomposition algorithm, we can extend the

completeness result to general specifications (see Theorem 6.5) also for the modified semantic
decomposition algorithm by merging components with their direct successors in the synthesis
order whenever we encounter a component for which the synthesis task fails and that contains
a semantic dependency to an input variable. Therefore, we can add the possibility of resolving
present dependencies by refining the implementation order to the semantic component selection
algorithm while maintaining soundness and completeness of incremental synthesis.

Semantic component selection, in both its variants, is thus a suitable decomposition algorithm
for incremental synthesis with dominant strategies. However, computing semantic dependencies
is hard: the semantic definition of dependencies, i.e., Definition 6.3, is a hyperproperty [CS10], i.e.,
a property that relates multiple execution traces. In particular hyperproperties with quantifier
alternation, such as the definition of semantic variable dependencies, have been proven to
constitute a challenging class of properties. Computing semantic dependencies and, thus,
decomposing a system with the semantic decomposition algorithm is often not practical. In the
following chapter, we thus introduce a syntactical criterion for determining present and future
dependencies between variables more efficiently.

6.4. Syntactic Component Selection
In this section, we present an algorithm for selecting components as well as ordering them
which is based on syntactic dependencies between the output variables of the overall system.
Similar to the semantic decomposition algorithm, the syntactic one also directly induces a
ranking function ranksyn defining a compositionality-preserving synthesis order that ensures
completeness of incremental synthesis.
We first introduce a syntactic criterion for dependencies between variables of the system.

In the long term, syntactic dependencies are an overapproximation of semantic dependencies
in the sense that every semantic dependency also induces a syntactic dependency. Similar to
semantic component selection, we then introduce a syntactic decomposition algorithm that
identifies equivalence classes of output variables of the system based on syntactic dependencies,
which constitute the components of the system.

6.4.1. Syntactic Dependencies
Syntactic dependencies between output variables are determined by analyzing the structure
of the LTL specification 𝜑 . In contrast to semantic dependencies, which are based on minimal
satisfying change sets, it does not analyze which variables, or, more precisely, their valuations,
need to be changed in order to achieve satisfaction of 𝜑 when fixing the valuation of a certain
variable at some point in time, but deduces this information from the occurrences of the variables
at different positions in the LTL formula.
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Intuitively, we derive syntactic dependencies by analyzing the syntax tree of the LTL for-
mula bottom-up. Thereby, we collect information about the number of -operators under
which variables occur and whether they occur under any unbounded temporal operator, i.e.,
underU,W, , or . Furthermore, we capture which binary operators connect the variables
and group the variables accordingly.

Definition 6.5 (Syntactic Dependencies).
Let 𝜑 be an LTL formula in negation normal form over atomic propositions 𝑉 . Let T(𝜑) be
the syntax tree of 𝜑 . Let 𝑞 be a node of T(𝜑). If 𝑞 is a unary operator, let 𝑐 (𝑞) be its single
child. If 𝑞 is a binary operator, let 𝑙𝑐 (𝑞) be its left child and let 𝑟𝑐 (𝑞) be its right child. We
assign a dependency set D𝑞 ⊆ 2𝑉 ×N0×B to 𝑞 as follows:

• if 𝑞 is a leaf, then D𝑞 = {{(𝑞, 0, false)}},
• if 𝑞 = ¬, then D𝑞 = D𝑐 (𝑞)

• if 𝑞 = ∧, then D𝑞 = D𝑙𝑐 (𝑞) ∪ D𝑟𝑐 (𝑞) ,

• if 𝑞 = ∨, then D𝑞 =
⋃

𝑀∈D𝑙𝑐 (𝑞)

⋃
𝑀 ′∈D𝑟𝑐 (𝑞) {𝑀 ∪𝑀

′},
• if 𝑞 = , then D𝑞 =

⋃
𝑀∈D𝑐 (𝑞) {{(𝑢, 𝑥 + 1, 𝑦) | (𝑢, 𝑥,𝑦) ∈ 𝑀}},

• if 𝑞 = , then D𝑞 = D𝑐 (𝑞) ∪
⋃

𝑀∈D𝑐 (𝑞) {{(𝑢, 𝑥, true)} | (𝑢, 𝑥,𝑦) ∈ 𝑀},

• if 𝑞 = , then D𝑞 =

{⋃
𝑀∈D𝑐 (𝑞) {(𝑢, 𝑥, true), (𝑢, 𝑥, false) | (𝑢, 𝑥,𝑦) ∈ 𝑀}

}
,

• if 𝑞 = U or 𝑞 =W, then

D𝑞 =
⋃

𝑀∈D𝑙𝑐 (𝑞)

⋃
𝑀 ′∈D𝑟𝑐 (𝑞)

{𝑀 ∪𝑀 ′}

∪
⋃

𝑀∈D𝑙𝑐 (𝑞)

⋃
𝑀 ′∈D𝑟𝑐 (𝑞)

⋃
(𝑢,𝑥,𝑦) ∈𝑀

{{(𝑢, 𝑥, true)} ∪𝑀 ′}

∪


⋃
𝑀 ′∈D𝑟𝑐 (𝑞)

{(𝑢, 𝑥, true), (𝑢, 𝑥, false) | (𝑢, 𝑥,𝑦) ∈ 𝑀 ′}
 .

Let 𝑞 be the root node of T(𝜑) and let (𝑢, 𝑥,𝑦), (𝑣, 𝑥 ′, 𝑦′) ∈ 𝑀 for some 𝑀 ∈ D𝑞 , 𝑢, 𝑣 ∈ 𝑉 ,
𝑥, 𝑥 ′ ∈ N0, and 𝑦,𝑦′ ∈ B with (𝑢, 𝑥,𝑦) ≠ (𝑣, 𝑥 ′, 𝑦′). Then, we say that 𝑢 depends syntactically
on the current valuation of 𝑣 , if, and only if, 𝑢 ≠ 𝑣 and either 𝑦 = 𝑦′ = false and 𝑥 = 𝑥 ′, or
𝑦 = true and 𝑦′ = false and 𝑥 ≤ 𝑥 ′, or 𝑦 = false and 𝑦′ = true and 𝑥 ≥ 𝑥 ′, or 𝑦 = 𝑦′ = true.
Furthermore, we say that 𝑢 depends syntactically on the future valuation of 𝑣 , if, and only if,
either 𝑦′ = true, or 𝑦′ = false and 𝑥 < 𝑥 ′. The offset of the future dependency is ∞ in the
former case and 𝑥 ′ − 𝑥 in the latter case.

Dependency sets are sets of sets of triples (𝑢, 𝑥,𝑦), where 𝑢 ∈ 𝑉 is a variable, 𝑥 ∈ N0 is a
natural number (including zero), and𝑦 ∈ B is a Boolean flag. Intuitively, the second component 𝑥
of a triple (𝑢, 𝑥,𝑦) denotes the number of -operators under which variable 𝑢, which is defined
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by the first component, occurs. The third component 𝑦 is a Boolean flag that captures whether
variable𝑢 occurs under an unbounded temporal operator. A bounded temporal operator defines a
particular point in time at which the property needs to be satisfied. All other temporal operators
are unbounded. That is, is the only temporal operator that is bounded. All other temporal
operators, i.e., , ,U, andW, are unbounded.

Every set𝑀 ∈ D𝑞 that is contained in the dependency set of node 𝑞 of the syntax tree T(𝜑)
of 𝜑 defines dependencies between the variables in𝑀 . However, different sets𝑀,𝑀 ′ ∈ D𝑞 are
independent. That is, while there are dependencies between the variables in𝑀 and dependencies
between the variables in𝑀 ′, there are no dependencies from variables in𝑀 to variables in𝑀 ′ or
vice versa – unless these dependencies are defined within𝑀 or𝑀 ′ itself or within another set
𝑀 ′′ ∈ D𝑞 . The dependency sets are built recursively from the dependency sets of their children.
The dependency set of the root node 𝑞 of the syntax tree T(𝜑) of the given LTL formula 𝜑 then
defines the syntactic present and future dependencies.

First, we consider syntactic present dependencies between variables 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 . They
are induced by two triples (𝑢, 𝑥,𝑦), (𝑣, 𝑥 ′, 𝑦′) ∈ 𝑀 for some 𝑀 ∈ D𝑞 with 𝑢 ≠ 𝑣 . Clearly, 𝑢
depends on the current valuation of 𝑣 if both𝑢 and 𝑣 do not occur under an unbounded temporal
operator, i.e., if 𝑦 = 𝑦′ = false holds, and if they occur under the same number of -operators,
i.e., if 𝑥 = 𝑥 ′ holds, since then 𝜑 poses restrictions on 𝑢 and 𝑣 at the very same concrete time
step. If 𝑢 occurs under an unbounded temporal operator while 𝑣 does not, i.e., if 𝑦 = true and
𝑦′ = false holds, and if 𝑢 occurs under at most as many -operators as 𝑣 does, i.e., if 𝑥 ≤ 𝑥 ′

holds, then 𝑢 depends syntactically on the current valuation of 𝑣 as well: 𝜑 poses restrictions
on 𝑣 at some concrete time step 𝑘 ≥ 0, while it poses unbounded restrictions on 𝑢 at a point
in time 𝑗 ≥ 0 with 𝑗 ≤ 𝑘 . The unboundedness of the restrictions on 𝑢 yields that 𝜑 might also
pose restrictions on 𝑢 at point in time 𝑘 , thus possibly influencing the valuation of 𝑣 at point in
time 𝑘 . If 𝑣 occurs under an unbounded temporal operator while 𝑢 does not, i.e., if 𝑦 = false and
𝑦′ = true hold, and if 𝑢 occurs under at least as many -operators as 𝑣 does, i.e., if 𝑥 ≥ 𝑥 ′ holds,
then 𝑢 depends syntactically on the current valuation of 𝑣 as well: 𝜑 poses restrictions on 𝑢 at
some concrete time step 𝑘 ≥ 0, while it poses unbounded restrictions on 𝑣 at a point in time
𝑗 ≥ 0 with 𝑗 ≤ 𝑘 . The unboundedness of the restrictions on 𝑣 then yields, similar to the case
above, that 𝜑 might also pose restrictions on 𝑣 at point in time 𝑘 . Thus, 𝑢 can possibly influence
the valuation of 𝑣 at point in time 𝑘 . Lastly, 𝑢 depends syntactically on the current valuation of 𝑣
if both 𝑢 and 𝑣 occur under an unbounded temporal operator. Due to the unboundedness, 𝜑 can
thus pose restrictions on 𝑢 and 𝑣 at an arbitrary late point in time, and therefore, in particular,
the valuation of 𝑢 can influence the valuation of 𝑣 in the same time step.

Next, we consider syntactic future dependencies induced by triples (𝑢, 𝑥,𝑦), (𝑣, 𝑥 ′, 𝑦′) ∈ 𝑀 for
some𝑀 ∈ D𝑞 . Note that for future dependencies 𝑢 and 𝑣 do not necessarily differ. If 𝑣 occurs
under an unbounded temporal operator, i.e., if 𝑦′ = true holds, then 𝜑 can pose restrictions on 𝑣

at arbitrary late points in time. Hence, no matter under which operators 𝑢 occurs, the valuation
of 𝑢 at some point in time can influence the valuation of 𝑣 at a later point in time. Therefore, 𝑢
depends syntactically on the future valuation of 𝑣 . Since the valuation of 𝑣 can be influenced at
any infinitely late point in time, the offset of this dependency is∞. If, in contrast, 𝑣 does not
occur under an unbounded temporal operator, i.e., if 𝑦′ = false holds, and if 𝑢 occurs under less
-operators than 𝑣 does, i.e., if 𝑥 < 𝑥 ′ holds, then 𝜑 only poses restrictions on 𝑣 in a concrete
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time step. Irrespective of whether or not 𝑢 occurs under an unbounded temporal operator, 𝜑 can
pose restrictions on 𝜑 at an earlier point in time than on 𝑣 and therefore 𝑢 depends syntactically
on the future valuation of 𝑣 . Since the valuation of 𝑣 can only be influenced at a concrete point
in time, the offset of this dependency is defined by 𝑥 ′ − 𝑥 .

In the following, we explain all cases of the above definition of the dependency set of a node 𝑞
of T(𝜑) in detail. If 𝑞 is a leaf node, then, by definition of the syntax of LTL, 𝑞 is a atomic
proposition, and thus we have 𝑞 ∈ 𝑉 . Hence, in particular, when considering node 𝑞 to be the
root node, then variable 𝑞 neither occurs under any -operator nor under any temporal operator.
Hence, in this case, 𝑞 constitutes the single triple (𝑞, 0, false). A disjunction𝜓 ∨𝜓 ′ intuitively
introduces dependencies between the disjuncts𝜓 and𝜓 ′ since the satisfaction of𝜓 affects the
need of satisfaction of𝜓 ′ and vice versa. If one of the disjuncts is not satisfied, then the other
one needs to be satisfied in order to satisfy the disjunction. Vice versa, if one of the disjuncts is
satisfied, then the other one does not need to be satisfied. Hence, since the valuations of the
variables occurring in𝜓 influence whether or not𝜓 is satisfied, they indirectly also influence
whether or not𝜓 ′ needs to be satisfied in order to satisfy𝜓 ∨𝜓 ′ and therefore they may influence
the valuations of the variables occurring in𝜓 ′. Therefore, we combine the dependency sets of
the children of 𝑞 into a single dependency set if 𝑞 = ∨ holds. In a conjunction, in contrast, a
conjunct needs to be satisfied irrespective of the other conjuncts. Therefore a conjunction does
not introduce dependencies between the conjuncts. In order to satisfy a conjunction 𝜓 ∧𝜓 ′,
both conjuncts need to be satisfied. Thus, the valuation of the variables occurring in 𝜓 does
not influence the valuation of the variables occurring in 𝜓 ′ since 𝜓 ′ needs to be satisfied no
matter whether or not𝜓 is satisfied. Thus, if 𝑞 = ∧ holds, we keep the dependency sets of the
conjuncts separate.

If 𝑞 is the ¬-operator, then we utilize the assumption that 𝜑 is in negation normal form. Due
to this requirement, a negation can only occur in front of atomic propositions. Thus, a negation
does not influence any dependencies; therefore, a negation does not alter the dependency set
either. Similar to conjunction, the -operator does not introduce dependencies between the
variables occurring in the property. The formula 𝜓 is fulfilled if𝜓 is satisfied at every point in
time. Hence, irrespective of whether or not𝜓 is satisfied at some other point in time, it needs to
be satisfied at a considered point in time. Thus, the valuation of the variables occurring in𝜓
does not influence the valuation of the variables occurring in 𝜓 at some other point in time.
Hence, we do not merge the sets𝑀 ∈ D𝑐 (𝑞) of the dependency set of𝜓 if 𝑞 = but keep them.
Additionally, we include individual sets for all triples occurring inD𝑐 (𝑞), where we set the third
component to true since is an unbounded temporal operator. The -operator, in contrast, is
similar to a disjunction and thus introduces dependencies between the variables occurring in
the property. The formula 𝜓 is satisfied if𝜓 is fulfilled at some point in time. Hence, if𝜓 is not
satisfied at some point in time, then it needs to be satisfied at some other point in time. If𝜓 is
satisfied at some point in time, in contrast, then it does not need to be satisfied at another point
in time. Thus, similar to the dependencies from one disjunct to another in a disjunction, the
-operator induces dependencies from the variables in𝜓 to themselves. Therefore, we combine

all dependency sets of 𝑞 if 𝑞 = holds. Note here that it is necessary to include both triples
with 𝑦 = true and triples with 𝑦 = false to also obtain future dependencies from a variable to
itself if𝜓 only contains a single variable.
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∨

¬ ¬

acc dec

D𝑞

{{(acc, 0, false), (dec, 0, false)}}

{{(acc, 0, false)}} {{(dec, 0, false)}}

{{(acc, 0, false)}} {{(dec, 0, false)}}

Figure 6.4.: Syntax tree of 𝜑1 from Example 6.7 with dependency set annotations.

Both binary temporal operatorsU andW, introduce dependencies between the left and the
right component. If, for a property𝜓 U𝜓 ′ or𝜓W𝜓 ′, the component𝜓 is not satisfied at some
point in time, then component 𝜓 ′ needs to be satisfied either in the same point in time or at
an earlier point in time. If 𝜓 ′ is not satisfied at some point in time, then it either needs to be
satisfied at an earlier point in time or𝜓 needs to be satisfied at the same point in time. Thus,
similar to a disjunction, the variables in𝜓 influence the valuation of the variables in𝜓 ′ and vice
versa, and therefore we combine the dependency sets of the two components. Furthermore, the
operators introduce dependencies from the variables in the right component𝜓 ′ to themselves.
Suppose that the left component𝜓 is satisfied up to a point in time 𝑘 ≥ 0. If, at some point in
time 𝑘 ′ ≥ 0 with 𝑘 ′ < 𝑘 , the right component 𝜓 ′ is not satisfied, then it needs to be satisfied
at a later point in time 𝑘 ′′ ≥ 0 with 𝑘 ′ < 𝑘 ′′ ≤ 𝑘 + 1 to still ensure that 𝜓 U𝜓 ′ or 𝜓W𝜓 ′ is
satisfied. As for the -operator, we thus combine all dependency sets of the right child of 𝑞
and consider both triples with 𝑦 = true and with 𝑦 = false to obtain future dependencies from
a variable to itself if𝜓 ′ only contains a single variable. Lastly, there are future dependencies
from𝜓 ′ to𝜓 since whether or not𝜓 is satisfied in the future affects the need of satisfaction of𝜓 ′
in the current step. If𝜓 will not be satisfied at some point in time 𝑘 ≥ 0 in the future, then it
will need to be satisfied before or at point in time 𝑘 . Hence, the valuations of the variables in𝜓 ′
clearly influence the valuations of the variables in𝜓 . Therefore, we combine the dependency
sets of the nodes representing𝜓 and𝜓 ′, yet, in contrast to the very first part of the definition of
the dependency sets forU andW, we set the Boolean flag, which indicates whether or not
the variable occurs under an unbounded temporal operator, to true for the variables in𝜓 . This
captures the future dependency from𝜓 ′ to𝜓 . Note that we do not need to introduce further
future dependencies from𝜓 to𝜓 ′ since whether or not𝜓 is satisfied at some point in time only
affects the need for satisfaction of𝜓 ′ at the very same point in time, which is already captured
by the present dependencies between the operands introduced above.

Example 6.7. Reconsider the autonomous car from the running example from Section 6.1
and its specification 𝜑car = 𝜑acc ∧ 𝜑gear . Let 𝜑1 = ¬(acc ∧ dec) be the conjunct of 𝜑acc that
establishes mutual exclusion between acc and dec. When translating it into negation normal
form, we obtain (¬acc ∨ ¬dec). In the following, we assume that 𝜑1 denotes the translation
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∨

𝑔1

∨

¬

acc ¬

acc

{{(𝑔1, 0, false)}}

{{(𝑔1, 1, false)}}

{{(𝑔1, 2, false)}}

{{(acc, 0, false)}}

{{(acc, 0, false)}}

{{(acc, 1, false)}}

{{(acc, 0, false)}}

{{(acc, 0, false)}}

{{(acc, 0, false), (acc, 1, false)}}

{{(acc, 0, false), (acc, 1, false), (𝑔1, 2, false)}}

D𝑞

Figure 6.5.: Syntax tree of 𝜑2 from Example 6.7 with dependency set annotations.

into negation normal form, i.e., that 𝜑1 = (¬acc ∨ ¬dec) holds. The syntax tree T(𝜑1) of 𝜑1
with its dependency set annotations is depicted in Figure 6.4. Let 𝑞 be the root node of the
syntax tree T(𝜑1) of 𝜑1. We then obtain the dependency set

D𝑞 = {{(acc, 0, false), (dec, 0, false)}, {(acc, 0, true)}, {(dec, 0, true)}} .

Hence, 𝜑1 induces a syntactic present dependency from acc to dec and vice versa.
Next, let 𝜑2 = ((acc ∧ acc) → 𝑔1) be the conjunct of 𝜑gear that establishes that

the lower gear should be used while accelerating. When translating it into negation normal
form, we obtain ((¬acc ∨ ¬acc) ∨ 𝑔1). In the following, we assume that 𝜑2 denotes the
translation into negation normal form, i.e., that 𝜑2 = ((¬acc ∨ ¬acc) ∨ 𝑔1) holds. The
syntax tree T(𝜑1) of 𝜑1 with its dependency set annotations is depicted in Figure 6.5. Let 𝑞 be
the root node of the syntax tree T(𝜑2) of 𝜑2. We then obtain the dependency set

D𝑞 = {{(acc, 0, false), (acc, 1, false), (𝑔1, 2, false)},
{(acc, 0, true)}, {(acc, 1, true)}, {(𝑔1, 2, true)}}.

Hence, 𝜑2 induces a syntactic future dependency from acc to itself with offset 1 and two future
dependencies from acc to 𝑔1 with offsets 1 and 2, respectively. △

As long as semantic dependencies do not range over several conjuncts of the LTL formula 𝜑 ,
every semantic dependency is captured by a syntactic dependency as well. If there is a semantic
dependency from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 and if 𝜑 does not contain conjunctions, then 𝑢 and 𝑣 occur
in the same set 𝑀 ∈ 𝐷𝑞 , where 𝑞 is the root node of T(𝜑), by construction. With structural
induction on 𝜑 , it thus follows that every semantic dependency has a syntactic counterpart:
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Lemma 6.4. Let 𝜑 be a conjunction-free LTL formula in negation normal form over atomic
propositions 𝑉 . Let 𝑢, 𝑣 ∈ 𝑉 be variables. If 𝑢 depends semantically on the current valuation of 𝑣 ,
then 𝑢 depends syntactically on the current valuation of 𝑣 as well. If 𝑢 depends semantically on the
future valuation of 𝑣 , then 𝑢 depends syntactically on the future valuation of 𝑣 as well.

Proof. Let T(𝜑) be the syntax tree of 𝜑 and let 𝑞 denote its root node. Let 𝑢 depend semantically
on 𝑣 , either on the current valuation or on the future valuation. We first show that there is a set
𝑀 ∈ D𝑞 in 𝑞’s dependency set such that (𝑢, 𝑥,𝑦), (𝑣, 𝑥 ′, 𝑦′) ∈ 𝑀 holds for some 𝑥, 𝑥 ′ ∈ N0 and
some 𝑦,𝑦′ ∈ B. By the syntax of LTL, 𝑢 and 𝑣 need to be connected, directly or indirectly, in 𝜑

with a binary operator, i.e., with ∧, ∨,U, orW. Since 𝜑 does not contain any conjunction by
assumption, the only possible binary operators are ∨,U, andW. All three operators combine
the dependency sets of their operands. Thus, if 𝑢 and 𝑣 occur in different operands, they are
contained in the same set𝑀 after applying the binary operator Moreover, it is not possible to
split a set𝑀 of a dependency set again after establishing it. Thus, there is a set𝑀 ∈ D𝑞 such
that (𝑢, 𝑥,𝑦), (𝑣, 𝑥 ′, 𝑦′) ∈ 𝑀 holds for some 𝑥, 𝑥 ′ ∈ N0 and some 𝑦,𝑦′ ∈ B.
In the following, 𝑘 ≥ 0 denotes the point in time at which the valuation of 𝑢 was changed

in order to obtain a violation of 𝜑 , i.e., 𝑘 denotes the point in time at which 𝜎 and 𝜎 ′ differ.
Furthermore, 𝑘 ′ ≥ 0 denotes a point in time at which 𝑣 needs to be changed to obtain satisfaction
of 𝜑 again, i.e., 𝑘 ′ denotes a point in time such that changing the valuation of 𝑣 at point in
time 𝑘 ′ results in 𝑣 being part of a minimal satisfying change set. Note that 𝑘 ≤ 𝑘 ′ holds by
construction. Based on the above observation, we now show by structural induction on 𝜑 that 𝑢
depends syntactically on 𝑣 as well:

1. 𝑢 and 𝑣 both do not occur under any unbounded temporal operator. Then, a change in the
valuation of𝑢 at a single point in time 𝑘 may only cause a violation of𝜑 if𝑢 occurs under 𝑘
-operators. Analogously, a change in the valuation of 𝑣 at a point in time 𝑘 ′ with 𝑘 ′ ≥ 𝑘

may only cause the satisfaction of 𝜑 again if 𝑣 occurs under 𝑘 ′ -operators. Hence, there
exists a set𝑀 ∈ D𝑞 with (𝑢, 𝑥, false), (𝑣, 𝑥 ′, false) ∈ 𝑀 and 𝑘 = 𝑥 ≤ 𝑥 ′ = 𝑘 ′. If 𝑢 depends
semantically on the current valuation of 𝑣 , then 𝑘 = 𝑘 ′ needs to hold and therefore we
then have 𝑥 = 𝑥 ′ as well. Thus, there also exists a syntactic present dependency from 𝑢

to 𝑣 . If 𝑢 depends semantically on the future valuation of 𝑣 , then 𝑘 < 𝑘 ′ needs to holds
and hence we then have 𝑥 < 𝑥 ′ as well. Thus, there exists a syntactic future dependency
from 𝑢 to 𝑣 as well.

2. 𝑢 occurs under an unbounded temporal operator while 𝑣 does not. Then, there is a
set 𝑀 ∈ D𝜑 with (𝑢, 𝑥, true), (𝑣, 𝑥 ′, false) ∈ 𝑀 for some 𝑥, 𝑥 ′ ∈ N0. Since 𝑣 does not
occur under an unbounded temporal operator, it follows similar to the previous case that
changing the valuation of 𝑣 at point in time 𝑘 ′ can only cause the satisfaction of 𝜑 again
if 𝑣 occurs under 𝑘 ′ -operators. Variable 𝑢, in contrast, needs to occur under at most 𝑘
-operators as otherwise changing the valuation of 𝑢 at point in time 𝑘 cannot result

in the violation of 𝜑 . Hence, we have 𝑥 ≤ 𝑘 ≤ 𝑥 ′ = 𝑘 ′. If 𝑢 depends semantically on the
current valuation of 𝑣 , then 𝑘 = 𝑘 ′ holds and thus we have 𝑥 ≤ 𝑥 ′. Therefore, there then
exists a syntactic present dependency from 𝑢 to 𝑣 as well. If 𝑢 depends semantically on
the future valuation of 𝑣 , then 𝑘 < 𝑘 ′ holds and hence we obtain 𝑥 < 𝑥 ′. Thus, there
exists a syntactic future dependency from 𝑢 to 𝑣 as well.



6.4. Syntactic Component Selection 269

3. 𝑣 occurs under an unbounded temporal operator while 𝑢 does not. Then, there is a set
𝑀 ∈ D𝜑 with (𝑢, 𝑥, false), (𝑣, 𝑥 ′, true) ∈ 𝑀 for some 𝑥, 𝑥 ′ ∈ N0. Analogous to the previous
case, we obtain 𝑘 ′ ≤ 𝑥 ′ ≤ 𝑥 = 𝑘 . Hence, there is a syntactic present dependency from 𝑢

to 𝑣 . If 𝑢 also depends semantically on the current valuation of 𝑣 , then 𝑘 = 𝑘 ′ and thus
𝑥 ≤ 𝑥 ′ holds. Thus, there exists a syntactic present dependency from 𝑢 to 𝑣 as well.

4. 𝑢 and 𝑣 occur under different unbounded temporal operators, or 𝑢 and 𝑣 occur under the
same -operator, or 𝑢 and 𝑣 both occur on the right side of the sameU- orW-operator.
Then, there is a set 𝑀 ∈ D𝜑 with (𝑢, 𝑥, true), (𝑣, 𝑥 ′, true) ∈ 𝑀 for some 𝑥, 𝑥 ′ ∈ N0.
Hence, 𝑢 depends syntactically both on the current and the future valuation of 𝑣 .

5. 𝑢 and 𝑣 occur on different sides of the sameU- orW-operator. Let𝜓 be the left operand
and let 𝜓 ′ be the right operand of the temporal operator, where either 𝑢 occurs in 𝜓

and 𝑣 occurs in 𝜓 ′ or vice versa. In the former case, there exists a set 𝑀 ∈ D𝜑 with
(𝑢, 𝑥, true), (𝑣, 𝑥 ′, 𝑦′) ∈ 𝑀 for some 𝑥, 𝑥 ′ ∈ N0 and some 𝑦′ ∈ B. If there is some triple
(𝑣, 𝑥 ′, true) ∈ 𝑀 , then there exists a syntactic present dependency as well as a syntactic
future dependency from 𝑢 to 𝑣 . If 𝑦′ = false holds for all (𝑣, 𝑥 ′, 𝑦′) ∈ 𝑀 , then, by construc-
tion of the dependency sets,𝜓 ′ does not contain any unbounded temporal operator. Hence,
the existence of a syntactic present dependency or a syntactic future dependency from 𝑢

to 𝑣 , if there exists a matching semantic one, follows as in the second case. If 𝑣 occurs
in𝜓 and 𝑢 occurs in𝜓 ′, in contrast, there is a set𝑀 ∈ D𝜑 with (𝑢, 𝑥,𝑦), (𝑣, 𝑥 ′, true) ∈ 𝑀
for some 𝑥, 𝑥 ′ ∈ N0 and some 𝑦 ∈ B. Hence, there exists a syntactic future dependency
from 𝑢 to 𝑣 . Furthermore, if there is some triple (𝑢, 𝑥, true) ∈ 𝑀 , then there exists a
syntactic present dependency from 𝑢 to 𝑣 as well. Otherwise, i.e., if 𝑦 = false holds
for all (𝑢, 𝑥,𝑦) ∈ 𝑀 , then by construction of the dependency sets, 𝜓 ′ does not contain
any unbounded temporal operators and therefore the existence of a syntactic present
dependency, if there exists a matching semantic one, follows as in the third case.

6. 𝑢 and 𝑣 occur under the same -operator. Let𝜓 be the operand of the respective operator.
If 𝑢 or 𝑣 occurs in any other subformula of 𝜑 , then the existence of a syntactic present
dependency and a syntactic future dependency from 𝑢 to 𝑣 follows from the fourth case.
Otherwise, changing the valuation of 𝑢 at point in time 𝑘 may only cause a violation of 𝜑
if it cause a violation of 𝜓 at a point in time 𝑘 ′′ with 𝑘 ′′ ≤ 𝑘 . Similarly, changing the
valuation of 𝑣 at point in time 𝑘 ′ may only yield satisfaction of 𝜑 if it causes satisfaction
of 𝜓 at point in time 𝑘 . Hence, there is only a semantic present or future dependency
from 𝑢 to 𝑣 in 𝜑 if there is one in𝜓 . Thus, it follows from the induction hypothesis that
there are respective syntactic present or future dependencies from 𝑢 to 𝑣 .

7. 𝑢 and 𝑣 both occur on the left side of the same U- orW-operator. Let 𝜓 be the left
operand of the respective temporal operator. As in the previous case, the existence of both
a syntactic present dependency and a syntactic future dependency from 𝑢 to 𝑣 follows
immediately from the fourth case if 𝑢 or 𝑣 occurs in a different subformula of 𝜑 . If 𝑢
or 𝑣 occurs also in the right operand of theU- orW- operator, then existence of both
a syntactic present dependency and a syntactic future dependency from 𝑢 to 𝑣 , if there
exists a matching semantic one, follows from the fifth case. Otherwise, both 𝑢 and 𝑣 only
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occur on the left side of the binary temporal operator. But then changing the valuation
of 𝑢 at point in time 𝑘 may only cause a violation of 𝜑 if it causes a violation of 𝜓 at
a point in time 𝑘 ′ with 𝑘 ′′ ≤ 𝑘 . Analogously, changing the valuation of 𝑣 at point in
time 𝑘 ′ may only yield satisfaction of 𝜑 again if it causes satisfaction of 𝜓 at point in
time 𝑘 . Hence, there is only a semantic present or future dependency from 𝑢 to 𝑣 in 𝜑 if
there is one in𝜓 . Thus, it follows from the induction hypothesis that there are respective
syntactic present or future dependencies from 𝑢 to 𝑣 .

Thus, in all cases, every semantic present dependency is captured by a syntactic present
dependency as well. Furthermore, every semantic future dependency is captured by a syntactic
future dependency; proving the claim. □

Hence, syntactic dependencies overapproximate semantic dependencies as long as the spec-
ification is conjunction-free. Consequently, it follows immediately from Theorem 6.3 and
Lemma 6.4 that a conjunction-free LTL specification is admissible for a component 𝑐𝑖 if no
output variable of 𝑐𝑖 depends syntactically on a variable outside of the control of component 𝑐𝑖 .
Similar to semantic dependencies, this result enables a decomposition algorithm utilizing syn-
tactic dependencies for conjunction-free specifications. In general, however, the definition of
syntactic dependencies as stated in Definition 6.5 does not necessarily capture all semantic
dependencies. In particular, semantic dependencies that range over several conjuncts cannot be
detected. We say that a semantic dependency ranges over multiple conjuncts if the dependency
is not induced by the individual conjuncts but only when considering their conjunction.

Example 6.8. Consider a system with three output variables 𝑢, 𝑣,𝑤 ∈ 𝑂 and the LTL specifica-
tion 𝜑 = (𝑢 ∨ 𝑣) ∧ (¬𝑣 ∨𝑤). Then, 𝜑 induces the dependency set

D𝜑 = {{(𝑢, 0, false), (𝑣, 0, false)}, {(𝑣, 0, false), (𝑤, 0, false)}}.

Hence, there are syntactic present dependencies between𝑢 and 𝑣 and between 𝑣 and𝑤 . Yet, there
are further semantic dependencies. The sequence 𝜎 = {𝑢}∅𝜔 satisfies 𝜑 . Changing the valuation
of𝑢 at point in time 0 yields the sequence 𝜎 ′ = ∅𝜔 which violates𝜑 . The sequence 𝜎 ′′ = {𝑣,𝑤}∅𝜔
resulting from changing the valuation of both 𝑣 and 𝑤 at point in time 0 satisfies 𝜑 . Only
changing the valuation of one of the variables is not sufficient and thus (𝑃, 𝐹 ) with 𝑃 = {𝑣,𝑤}
and 𝐹 = ∅ is a minimal satisfying change set for 𝜑 , 𝜎 ′, 𝑢, and 0; inducing a semantic present
dependency from 𝑢 to𝑤 , which is not captured by the syntactic dependencies. △

In the next section, we thus introduce an algorithm for identifying suitable components
for incremental synthesis as well as a corresponding ranking function based on syntactic
dependencies that addresses this issue.

6.4.2. Syntactic Decomposition Algorithm
Similar to the algorithm for semantic component selection presented in Section 6.3.2, the
syntactic decomposition algorithm is based on determining syntactic dependencies between
output variables of the system and by analyzing them to compute suitable components. It
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tries to maximize the number of components while maintaining admissibility. To determine
which output variables of the system need to be contained in the same component in order to
ensure admissibility, we build, similar to the semantic decomposition algorithm, the syntactic
dependency graph of the variables of the system based on the syntactic dependencies:

Definition 6.6 (Syntactic Dependency Graph).
Let𝜑 be an LTL formula over atomic propositions𝑉 . The syntactic dependency graphDsyn

𝜑 of𝜑
is defined by Dsyn

𝜑 = (Vsyn, Esyn) withVsyn = 𝑉 and Esyn = Esyn
𝑃
∪ Esyn

𝐹
, where (𝑢, 𝑣) ∈ Esyn

𝑃

holds if, and only if, 𝑢 depends syntactically on the current valuation of 𝑣 , and (𝑢, 𝑣) ∈ Esyn
𝐹

holds if, and only if, 𝑢 depends syntactically on the future valuation of 𝑣 . Edges in Esyn
𝐹

are annotated with the offset of the corresponding syntactic dependency. Edges in Esyn
𝑃

are
annotated with 0. We refer to the annotation of edge (𝑢, 𝑣) ∈ Esyn

𝐹
with 𝑎(𝑢, 𝑣).

The syntactic dependency graph thus captures the syntactic dependencies induced by the
specification. Note here that, in contrast to the semantic dependency graph, we do not distin-
guish edges to output variables and edges to input variables since the definition of syntactic
dependencies, as opposed to the one for semantic dependencies, does not differ for them.

As outlined in the previous section, not all semantic dependencies necessarily have a syntactic
counterpart. Hence, there might be semantic dependencies that are not represented by any
edges in the syntactic dependency graph Dsyn

𝜑 of an LTL formula 𝜑 that contains conjunctions.
If we directly proceed as in the semantic case with removing inputs and computing strongly
connected components, which then define the components, admissibility of the computed
components is thus not necessarily guaranteed for LTL specifications containing conjunctions.
Therefore, we first build the transitive output closure over output variables of the syntactic
dependency graph Dsyn

𝜑 of the LTL specification 𝜑 :

Definition 6.7 (Transitive Output Closure).
Let 𝜑 be an LTL formula over atomic propositions𝑉 . LetDsyn

𝜑 = (Vsyn, Esyn) be the syntactic
dependency graph of 𝜑 with Esyn = Esyn

𝑃
∪Esyn

𝐹
. The transitive output closure C(Dsyn

𝜑 ) ofD
syn
𝜑

is the graph C(Dsyn
𝜑 ) = (Vsyn,C(Esyn)) with C(Esyn) = C(Esyn

𝑃
) ∪ C(Esyn

𝐹
), where

• (𝑢, 𝑣) ∈ C(Esyn
𝑃
) if, and only if, 𝑢, 𝑣 ∈ 𝑂 and either (𝑢, 𝑣) ∈ Esyn

𝑃
or, for some𝑚 ∈ N0

with𝑚 > 0, there exist outputs 𝑢1, . . . , 𝑢𝑚 ∈ 𝑂 with (𝑢,𝑢1) ∈ Esyn𝑃
, (𝑢𝑚, 𝑣) ∈ Esyn𝑃

, and
(𝑢𝑖 , 𝑢𝑖+1) ∈ Esyn for all 𝑖 ∈ N0 with 1 ≤ 𝑖 ≤ 𝑚. The edge (𝑢, 𝑣) is annotated with 0.

• (𝑢, 𝑣) ∈ C(Esyn
𝐹
) if, and only if, 𝑢, 𝑣 ∈ 𝑂 and either (𝑢, 𝑣) ∈ Esyn

𝐹
or, for some𝑚 ∈ N0

with𝑚 > 0, there exist outputs 𝑢1, . . . , 𝑢𝑚 ∈ 𝑂 with (𝑢,𝑢1) ∈ Esyn, (𝑢𝑚, 𝑣) ∈ Esyn, and
(𝑢𝑖 , 𝑢𝑖+1) ∈ Esyn for all 𝑖 ∈ N0 with 1 ≤ 𝑖 < 𝑚, and either (𝑢,𝑢1) ∈ Esyn𝐹

, (𝑢𝑚, 𝑣) ∈ Esyn𝐹
,

or (𝑢𝑖 , 𝑢𝑖1) ∈ E
syn
𝐹

for some 𝑖 ∈ N0 with 1 ≤ 𝑖 < 𝑚. If (𝑢, 𝑣) ∈ Esyn
𝐹

, then we annotate the
corresponding edge in C(Esyn

𝐹
) with 𝑎(𝑢, 𝑣). If (𝑢, 𝑣) ∉ Esyn

𝐹
and if there are 𝑗, ℓ ∈ N0

with 𝑗 < ℓ and 1 ≤ 𝑗 < 𝑚 such that 𝑢 𝑗 = 𝑢ℓ and (𝑢𝑖 , 𝑢𝑖+1) ∈ Esyn𝐹
holds for all 𝑖 ∈ N0

with 𝑗 ≤ 𝑖 < ℓ , then we annotate (𝑢, 𝑣) in C(Esyn
𝐹
) with∞. Otherwise, we annotate the

edge (𝑢, 𝑣) in C(Esyn
𝐹
) with 𝑎(𝑢,𝑢1) + 𝑎(𝑢𝑚, 𝑣) +

∑
1≤𝑖<𝑚 𝑎(𝑢𝑖 , 𝑢𝑖+1).
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Intuitively, we thus add edges between output variables between which no syntactic depen-
dency exists but which are connected via syntactic dependencies of other output variables to
the dependency graph by building the transitive output closure. We obtain additional present
edges if all of the connecting dependencies are present dependencies. Otherwise, we obtain
additional future edges. The annotation of the future edges is computed from the annotations
of the connecting edges. If the connecting edges contain a cycle of solely future edges, then
the annotation is∞ as the effect of changing the valuation of the variable represented by the
source node of the edge can be delayed indefinitely. Otherwise, the annotation is the sum of the
annotations of all connecting edges.

Example 6.9. Reconsider the autonomous car from the running example in Section 6.1 and
its specification 𝜑car . Recall that, as outlined in Example 6.7, the specification 𝜑car induces,
among others, syntactic present dependencies between acc and dec as well as a a syntactic
future dependency from acc to itself with offset 1 and two future dependencies from acc to 𝑔1
with offsets 1 and 2, respectively. These dependencies constitute present and future edges in
the syntactic dependency graph Dsyn

𝜑car = (Vsyn, Esyn). Building the transitive output closure
C(Dsyn

𝜑car ) of the syntactic dependency graph Dsyn
𝜑car adds the following edges: two future edges

(dec, 𝑔1) ∈ C(Esyn𝐹
) with annotations𝑎(dec, 𝑔1) = 1 and𝑎(dec, 𝑔1) = 2, respectively, a future edge

(acc, acc) ∈ C(Esyn
𝐹
) with annotation 𝑎(acc, acc) = ∞, a future edge (acc, 𝑔1) ∈ C(Esyn𝐹

) with
annotation 𝑎(acc, 𝑔1) = ∞, a future edge (acc, dec) ∈ C(Esyn𝐹

) with annotation 𝑎(acc, dec) = ∞,
a future edge (dec, acc) ∈ C(Esyn

𝐹
) with annotation 𝑎(dec, acc) = ∞, and, lastly, a future edge

(dec, 𝑔1) ∈ C(Esyn𝐹
) with annotation 𝑎(dec, 𝑔1) = ∞. Except the first two edges from dec to 𝑔1,

all transitive edges are annotated with∞ since the edge sequences from which they are built
contain the future edge from acc to itself and thus a cycle. Note that when considering the
full syntactic dependency graph induced by the specification 𝜑car and not only a few of its
edges, some of the edges derived with transitivity above might already be contained in the
initial graph due to dependencies induced by other conjuncts. Then, they are not added during
the transitive closure and we will not refer to them as transitive edges in the following but as
original dependency edges. △

The transitive output closure C(Dsyn
𝜑 ) of the syntactic dependency graph Dsyn

𝜑 of an LTL
specification 𝜑 reflects the syntactic dependencies induced by 𝜑 as well as the immediate
transitive dependencies resulting from the syntactic dependencies. Transitive dependencies are
a first step toward recognizing semantic dependencies that range over multiple conjuncts.

In a second step, we further capture the synergies of dependencies. Intuitively, synergies arise
if two variables 𝑢, 𝑣 ∈ 𝑉 both depend syntactically on the future valuation of a third variable
𝑤 ∈ 𝑉 . Then, further dependencies between 𝑢 and 𝑣 , which are not derived by the transitive
output closure, can exist. If a change in the valuation of 𝑢 at a point in time 𝑘 ≥ 0 requires a
change in the valuation of 𝑤 at a later point in time 𝑘 ′ with 𝑘 ′ > 𝑘 , this might, for instance,
induce the need for a change of the valuation of 𝑣 at a point in time 𝑘 ′′ with 𝑘 ≤ 𝑘 ′′ ≤ 𝑘 ′.

Example 6.10. Consider a system with three output variables 𝑢, 𝑣,𝑤 ∈ 𝑉 and the LTL specifi-
cation 𝜑 = (𝑢 → 𝑤) ∧ ( 𝑤 → 𝑣). It is clearly satisfied by the sequence 𝜎 = ∅𝜔 , while
it is violated by the sequence 𝜎 ′ = {𝑢}∅𝜔 since 𝜎 ′ ̸ |= (𝑢 → 𝑤) holds. The only possibility
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to satisfy the first conjunct of 𝜑 is to set 𝑤 to true in the second time step. Then, however, 𝑣
needs to be set to true in the first time step as well. Hence, 𝑃 = {𝑣}, 𝐹 = {𝑤} is a minimal
satisfying change set for 𝜑 , 𝜎 ′, 𝑢, and 0 and therefore 𝑢 also depends semantically on the current
valuation of 𝑣 . Hence, we need to derive a further dependency to capture this synergy between
the dependencies from 𝑢 to𝑤 and from 𝑣 to𝑤 . △

The synergies arising from two such dependencies depend on the scope of the dependencies
in the sense of whether the dependencies are due to bounded or unbounded temporal operators.
Therefore, the synergies depend on the annotation of the respective edges since the annotations
accurately capture the “distance” of the dependency, which is given by∞ for unbounded opera-
tors and by the number of -operators otherwise. Formally, we derive further dependencies
between variables based on existing edges in the transitive closure of the syntactic dependency
graph as follows:

Definition 6.8 (Extended Syntactic Dependency Graph).
Let 𝜑 be an LTL formula over atomic propositions𝑉 . LetDsyn

𝜑 = (Vsyn, Esyn) be the syntactic
dependency graph of 𝜑 and let C(Dsyn

𝜑 ) = (Vsyn,C(Esyn) with C(Esyn) = C(Esyn
𝑃
) ∪C(Esyn

𝐹
)

be its transitive output closure. The extended syntactic dependency graph Dxsyn
𝜑 is defined

by Dxsyn
𝜑 = (Vsyn, Exsyn) with Exsyn = Exsyn

𝑃
∪ Exsyn

𝐹
, where we have C(Esyn

𝑃
) ⊆ Exsyn

𝑃
and

C(Esyn
𝐹
) ⊆ Exsyn

𝐹
. Furthermore, we add edges to Exsyn

𝑃
and Exsyn

𝐹
as follows. Let 𝑢, 𝑣,𝑤 ∈ Vsyn

with 𝑢,𝑤 ∈ 𝑂 and either 𝑢 ≠ 𝑣 or 𝑢 ≠ 𝑤 such that (𝑢,𝑤), (𝑣,𝑤) ∈ C(Esyn
𝐹
) holds.

• If 𝑎(𝑢,𝑤) = ∞, then add (𝑢, 𝑣), (𝑣,𝑢) ∈ Exsyn
𝑃

and add (𝑢, 𝑣), (𝑣,𝑢) ∈ Exsyn
𝐹

, both future
transitions annotated with∞ and the present edge annotated with 0.

• If 𝑎(𝑢,𝑤) = 𝑎(𝑣,𝑤) ≠ ∞ holds, then add (𝑢, 𝑣), (𝑣,𝑢) ∈ Esyn
𝑃

with annotation 0.

• If∞ ≠ 𝑎(𝑢,𝑤) < 𝑎(𝑣,𝑤) ≠ ∞ holds, then add (𝑣,𝑢) ∈ Exsyn
𝐹

with annotation 𝑦 − 𝑥 .
• If∞ ≠ 𝑎(𝑢,𝑤) > 𝑎(𝑣,𝑤) ≠ ∞ holds, then add (𝑢, 𝑣) ∈ Exsyn

𝐹
with annotation 𝑥 − 𝑦.

The extended syntactic dependency graph thus also captures dependencies between two
variables that stem from shared dependencies of these two variables to a third variable. Hence, it
captures implicit dependencies, which arise from the synergies of several syntactic dependencies,
allowing for recognizing semantic dependencies that range over multiple conjuncts. Afterward,
we then build the transitive output closureC(Dxsyn

𝜑 ) of the extended syntactic dependency graph
of the LTL specification 𝜑 . We proceed with deriving further edges according to Definition 6.8
and building the transitive output closure afterward until a fixpoint is reached, i.e., until neither
of the techniques yields new edges. Slightly overloading notation, we denote the resulting
dependency graph with C(Dxsyn

𝜑 ) as well.

Example 6.11. Consider the autonomous car from the running example described in Section 6.1
and its specification 𝜑car . The transitive output closure C(Dxsyn

𝜑 ) of the extended syntactic
dependency induced by 𝜑car is depicted in Figure 6.6. Dashed edges represent present dependen-
cies; solid edges represent future dependencies. Since all present edges are annotated with 0 by
construction, we omit the annotations of present edges for the sake of readability. Furthermore,
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C1 C2
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keep
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1,∞

∞

∞
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1,∞

1
∞

1,∞

1
∞ ∞

1, 2,∞

1, 2,∞

∞

∞

∞

∞1
∞

∞

1,∞

∞

Figure 6.6.: Transitive output closure C(Dxsyn
𝜑 ) of the extended syntactic dependency graph

induced by the specification 𝜑car of the running example. Nodes representing input variables
are depicted in gray. Dashed edges represent present edges; solid ones represent future edges.
We omit the annotation 0 for present edges for readability and merge future edges with the
same source and successor but different annotations into a single one with multiple annotations.
Black edges are induced by syntactic dependencies, violet ones are obtained by transitivity, and
green ones are derived edges. For readability, we omit derived edges between acc, dec and keep
as well as derived edges from dec to in and from keep to both in and ahead. Furthermore, we
omit edges obtained with transitivity after derivation. The strongly connected components of
the output variables are highlighted in blue.

we merge future edges with the same source and successor node but different annotations into
a single future edge with multiple annotations. The edges are highlighted in different colors,
depending on in which step of the construction of C(Dxsyn

𝜑 ) they are added. Black edges denote
syntactic dependencies, i.e., they represent dependencies that are already contained in the
syntactic dependency graphDsyn

𝜑 . Violet edges are added to the graph by building the transitive
output closure of Dsyn

𝜑 , i.e., they represent dependencies that are already contained in C(Dsyn
𝜑 ).

Green edges are derived edges, i.e., they represent dependencies that are already contained in
the extended syntactic dependency graph Dxsyn

𝜑 . For the sake of readability, we omit derived
edges between acc, dec and keep as well as derived edges from dec to in and from keep to both in
and ahead. Furthermore, we omit edges obtained from transitivity after derivation. Unlike the
semantic dependency graph induced by the car’s specification 𝜑car depicted in Figure 6.3, the
transitive output closure C(Dxsyn

𝜑 ) of the extended syntactic dependency contains outgoing
edges from nodes representing input variables of the system, i.e., from the nodes representing in
and ahead. While such dependencies are irrelevant for component selection and thus do not
constitute semantic dependencies, they are needed to derive dependencies to input variables
with the syntactic component selection technique. Observe that, after derivation, the transitive
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output closure C(Dxsyn
𝜑 ) of the extended syntactic dependency contains all edges that are con-

tained in the semantic dependency graph depicted in Figure 6.3. Before derivation, however, it
misses dependencies from output variables to input variables. △

Utilizing the transitive output closure of the extended syntactic dependency graph of the
LTL formula 𝜑 , i.e., the graph C(Dxsyn

𝜑 ), we now identify suitable components and the ranking
function ranksyn, which defines the synthesis order, as for semantic dependencies. That is, we
eliminate vertices of C(Dxsyn

𝜑 ) that represent input variables, then compute the set of strongly
connected components, which constitute the components, and then define the ranking function
ranksyn according to the edges between the strongly connected components. For the autonomous
car from the running example, for instance, we obtain the very same two components from the
dependency graph depicted in Figure 6.6 as with the semantic decomposition approach, namely
one component controlling acc, dec, and keep, i.e., a component modeling the acceleration unit,
and a component controlling 𝑔1 and 𝑔2, i.e., a component modeling the gearing unit. The gearing
unit has a lower rank in the synthesis order than the acceleration unit.
Note here that we can additionally resolve present dependencies as in the semantic decom-

position approach (see Section 6.3.3) before building the strongly connected components of
the output variables. In particular, we utilize the implementation order to eliminate present
dependency edges unidirectionally whenever possible. For instnace, in the transitive output
closure of the extended dependency graph for the autonomous car depicted in Figure 6.6, we
can resolve one of the present edges between 𝑔1 and 𝑔2, allowing for splitting the gearing unit
into two separate parts, one controlling 𝑔1 and one controlling 𝑔2.
Clearly, as we do not alter the computation of the ranking function ranksyn defining the

synthesis order with respect to the semantic approach, the resulting ranking function for both
variants of the syntactic decomposition technique is compositionality-preserving as well:

Lemma 6.5. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D and ranksyn be the
decomposition and the ranking function computed with syntactic decomposition algorithm. Then,
the synthesis order <syn induced by D and ranksyn is compositionality-preserving.

Therefore, soundness of incremental synthesis when deriving the components as well as
the ranking function with the syntactic decomposition algorithm follows, as for the semantic
decomposition algorithm, from Lemma 6.5 and Theorem 6.2.

Corollary 6.2. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D = ⟨𝑐1, . . . , 𝑐𝑛⟩ and
ranksyn be the decomposition and the ranking function computed with the syntacitc decomposition
algorithm. Suppose that Algorithm 6.1 returns (true, 𝑠) for input 𝜑 , D, and ranksyn. Then,
strategy 𝑠 is dominant for 𝜑 .

Next, we consider completeness of incremental synthesis for the syntactic decomposition
algorithm. After deriving further dependencies from the syntactic dependencies constituting
edges in the syntactic dependency graph Dsyn

𝜑 of the specification 𝜑 via transitive output
closure, building the extended dependency graph, and repeating derivation and transitivity
until a fixpoint is reached, every semantic dependency has a syntactic counterpart – even if
it ranges over multiple conjuncts. Intuitively, the properties of a minimal satisfying change
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set, which then constitutes a semantic dependency, induce several syntactic present and future
dependencies that only affect single conjuncts of the specification. Utilizing Lemma 6.4, the
claim then follows by induction on the number of these separate dependencies.

Theorem 6.7. Let 𝜑 be an LTL formula over atomic propositions𝑉 . Let C(Dxsyn
𝜑 ) = (𝑉 ,C(Exsyn))

with C(Exsyn) = C(Exsyn
𝑃
) ∪ C(Exsyn

𝐹
) be the transitive output closure of the extended syntactic

dependency graph of 𝜑 . Let 𝑢 ∈ 𝑉 . If 𝑢 depends semantically on the current valuation of a
variable 𝑣 ∈ 𝑂 , then we have (𝑢, 𝑣) ∈ C(Exsyn

𝑃
). If 𝑢 depends semantically on the future valuation

of a variable 𝑣 ∈ 𝑂 , then we have (𝑢, 𝑣) ∈ C(Exsyn
𝐹
). If 𝑢 depends semantically on the input, then

there exist variables𝑤 ∈ 𝑂 ,𝑤 ′ ∈ 𝐼 such that (𝑤,𝑤 ′) ∈ C(Exsyn) holds.

Proof. First, suppose that𝑢 depends semantically on the current or future valuation of an output
variable 𝑣 ∈ 𝑂 . Then, there exists a point in time 𝑘 ≥ 0 and sequences 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 such that
𝜎𝑘 ∩ {𝑢} ≠ 𝜎 ′

𝑘
∩ {𝑢} holds, while we have 𝜎𝑘 ∩ (𝑉 \ {𝑢}) = 𝜎 ′

𝑘
∩ (𝑉 \ {𝑢}) and while 𝜎 𝑗 = 𝜎 ′𝑗

holds for all 𝑗 ≥ 0 with 𝑗 < 𝑘 , and such that we have 𝜎 |= 𝜑 and 𝜎 ′ ̸ |= 𝜑 . Thus, there exists a
conjunct 𝜑𝑖 of 𝜑 that is violated by 𝜎 ′, while it is satisfied by 𝜎 . Furthermore, there are sets
𝑃 ⊆ 𝑉 \ {𝑢} and 𝐹 ⊆ 𝑉 such that (𝑃, 𝐹 ) is a minimal satisfying change set for 𝜑 , 𝜎 ′, 𝑢, and 𝑘 and
we have 𝑣 ∈ 𝑃 ∪ 𝐹 . Therefore, by definition of satisfying change sets, there exists a sequence
𝜎 ′′ ∈ (2𝑉 )𝜔 that adheres to the requirements defined in Definition 6.2 and that satisfies 𝜑 .
Hence, the violation of conjunct 𝜑𝑖 by 𝜎 ′ can intuitively be fixed by changing the valuations of
the variables in 𝑃 at point in time 𝑘 and the valuations of the variables in 𝐹 at their respective
points in time 𝑗 ≥ 0 with 𝑗 > 𝑘 . Note that not all of these changes are necessarily needed to
obtain satisfaction of 𝜑𝑖 . Rather, satisfying 𝜑𝑖 may introduce violations of different conjuncts 𝜑 𝑗

of the full specification 𝜑 , which would yield a violation of 𝜑 , and which need to be averted by
further changes of variable valuations.
We, therefore, introduce the notion of violation clusters. A violation cluster 𝐶 is a set of

conjuncts of 𝜑 where all conjuncts are violated by the same change in the valuation of a variable.
In particular, the cluster 𝐶1 contains all conjuncts 𝜑1

1, . . . 𝜑
1
𝑚1 that are violated by 𝜎 ′, while they

are satisfied by 𝜎 . To satisfy these conjuncts again, changes in variables are needed that may
introduce violations of different conjuncts. The cluster𝐶1·𝑖 contains the conjuncts 𝜑1·𝑖

1 , . . . , 𝜑1·𝑖
𝑚1·𝑖

that are violated by the changes needed to satisfy 𝜑1
𝑖 and so on. This induces a tree-like structure

of violation clusters. A conjunct of 𝜑 may occur in different violation clusters.
For the formal definition of violation clusters, we utilize a slightly modified version of

a minimal satisfying change set. It is defined by a triple (𝐻, 𝑃, 𝐹 ) for a specification 𝜑 ′, a
sequence 𝜎 ′′′′ ∈ (2𝑉 )𝜔 , a variable 𝑢′ ∈ 𝑉 , and a point in time 𝑘 ′ ≥ 0. It poses similar
requirements as a minimal satisfying change set. However, it does not require a sequence
to agree with 𝜎 ′′′′ up to point in time 𝑘 ′, but only to point in time 𝑘 , i.e., the point in time
at which 𝜎 differs from 𝜎 ′ in 𝑢. Furthermore, the change of 𝑢 at point in time 𝑘 needs to be
preserved. All variables that change their valuations between points in time 𝑘 and 𝑘 ′ − 1 are
then captured in 𝐻 . Hence, the set 𝐻 intuitively captures history dependencies. We call such a
triple (𝐻, 𝑃, 𝐹 ) a history-adapting satisfying change set for 𝜑 ′, 𝜎 ′′′′, 𝑢′, and 𝑘 ′. We denote the
set of all sequences 𝜎 ∈ (2𝑉 )𝜔 that satisfy the requirements of a history-adapting satisfying
change set (𝐻, 𝑃, 𝐹 ) with Σ𝐻,𝑃,𝐹 .
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More precisely, we define violation clusters as follows. The initial violation cluster 𝐶1 is
defined by𝐶1 = {𝜑𝑖 ∈ 𝜑 | 𝜎 |= 𝜑 ∧ 𝜎 ′ ̸ |= 𝜑𝑖}. Recall here that we also represent conjunctive LTL
formulas as the set containing all their conjuncts, and thus 𝜑𝑖 ∈ 𝜑 denotes that 𝜑𝑖 is a conjunct
of 𝜑 . For every conjunct 𝜑1

𝑖 ∈ 𝐶1, there then exists a minimal history-adapting satisfying change
set (𝐻 1

𝑖 , 𝑃
1
𝑖 , 𝐹

1
𝑖 ) for 𝜑1

𝑖 , 𝜎 ′, 𝑢, and 𝑘 such that 𝑃1
𝑖 ⊆ 𝑃 and 𝐹 1𝑖 ⊆ 𝐹 holds. Note that since we

consider the point in time 𝑘 here, which is also the point in time at which 𝜎 differs from 𝜎 ′

in 𝑢, we have 𝐻 1
𝑖 = ∅. Let S be the set of those minimal history-adapting satisfying change sets.

Based on S, we define the violation cluster 𝐶1·𝑖 as

𝐶1·𝑖 =
{
𝜑 𝑗 ∈ 𝜑 | 𝜎 |= 𝜑 𝑗 ∧ ∃(𝐻 1

𝑖 , 𝑃
1
𝑖 , 𝐹

1
𝑖 ) ∈ S. ∃𝜎 ′′ ∈ Σ𝐻

1
𝑖
,𝑃1

𝑖
,𝐹 1
𝑖 . 𝜎 ′′ |= 𝜑1

𝑖 ∧ 𝜎 ′′ ̸ |= 𝜑 𝑗

}
.

Given a violation cluster𝐶 𝑗 = {𝜑 𝑗

1, . . . , 𝜑
𝑗
𝑚 𝑗
} with 𝑗 = ℓ ·𝑖′, we define its successor for conjunct

𝜑
𝑗

𝑖
∈ 𝐶 𝑗 as follows. Let 𝜎 𝑗 ∈ (2𝑉 )𝜔 be a sequence with 𝜎 𝑗 ∈ Σ𝐻 ℓ

𝑖′ ,𝑃
ℓ
𝑖′ ,𝐹

ℓ
𝑖′ such that 𝜎 𝑗 |= 𝜑 ℓ

𝑖′ holds
while we have 𝜎 𝑗 ̸ |= 𝜑

𝑗

1 ∨ . . . ∨ 𝜑
𝑗
𝑚 𝑗

. Let 𝑢 𝑗

𝑖
∈ 𝐻 ℓ

𝑖′ ∪ 𝑃 ℓ
𝑖′ ∪ 𝐹 ℓ

𝑖′ be some variable and let 𝑘 𝑗

𝑖
be

some point in time with 𝑘 𝑗

𝑖
≥ 𝑘 that establishes that 𝑢 𝑗

𝑖
is part of the minimal history-adapting

satisfying change set (𝐻 ℓ
𝑖′, 𝑃

ℓ
𝑖′, 𝐹

ℓ
𝑖′), i.e., 𝜎 𝑗 differs from the sequence 𝜎 ℓ , from which (𝐻 ℓ

𝑖′, 𝑃
ℓ
𝑖′, 𝐹

ℓ
𝑖′)

is built. Note that there exists some 𝜎 𝑗 ∈ Σ𝐻 ℓ
𝑖′ ,𝑃

ℓ
𝑖′ ,𝐹

ℓ
𝑖′ such that there exists a sequence �̃� 𝑗,𝑖 such

that �̃� 𝑗,𝑖 differs from 𝜎 𝑗 only in the valuation of the variable 𝑢 𝑗

𝑖
with 𝑢 𝑗

𝑖
∈ 𝐻 ℓ

𝑖′ ∪ 𝑃 ℓ
𝑖′ ∪ 𝐹 ℓ𝑖′ , which

is used for constructing the violation cluster 𝐶 𝑗 ·𝑖 , and such that �̃� 𝑗,𝑖 |= 𝜑 holds. By assumption,
there exists a sequence that satisfies all conjuncts, and thus, in particular, there is one that
satisfies all conjuncts of previous violation clusters as well as 𝜑𝑖 . Suppose that there is no
sequence that differs from 𝜎 𝑗 only in one variable valuation at a single point in time. LetM be
a minimal set of changes that need to performed to obtain a sequence �̂� from 𝜎 𝑗 that satisfies 𝜑 𝑗

𝑖
.

Then, performing only a subset of the reverse changes on �̂� cannot result in satisfaction of 𝜑 𝑗

𝑖
as

otherwiseM would not be minimal. However, in particular, a sequence that is obtained from �̂�

by only performing a single reverse change of the changes inM violates 𝜑 𝑗

𝑖
; yielding that either

(𝐻 ℓ
𝑖′, 𝑃

ℓ
𝑖′, 𝐹

ℓ
𝑖′) is not minimal – if we do not need to perform changes defined by (𝐻 ℓ

𝑖′, 𝑃
ℓ
𝑖′, 𝐹

ℓ
𝑖′) – or

that there exists another sequence in Σ𝐻
ℓ
𝑖′ ,𝑃

ℓ
𝑖′ ,𝐹

ℓ
𝑖′ that violated 𝜑 𝑗

𝑖
and thus constitutes that 𝜑 𝑗

𝑖
lies

in 𝐶 𝑗 – if all changes are addressed, but the variable of the single change lies either in 𝐻 ℓ
𝑖′ or

in 𝐹 ℓ
𝑖′ and thus allows for changes at several positions.

Let𝜎 𝑗 be such a particular sequencewith𝜎 𝑗 ∈ Σ𝐻 ℓ
𝑖′ ,𝑃

ℓ
𝑖′ ,𝐹

ℓ
𝑖′ and let �̃� 𝑗,𝑖 be the respective sequence

with �̃�𝑖, 𝑗 |= 𝜑 . Then, there is a minimal history-adapting satisfying change set (𝐻 𝑗

𝑖
, 𝑃

𝑗

𝑖
, 𝐹

𝑗

𝑖
) for

𝜑
𝑗

𝑖
, 𝜎 𝑗 , 𝑢 𝑗

𝑖
, and 𝑘 𝑗

𝑖
such that (𝐻 𝑗

𝑖
, 𝑃

𝑗

𝑖
, 𝐹

𝑗

𝑖
) respects (𝑃, 𝐹 ) in the sense that all variables that require

changes at point in time 𝑘 are contained in 𝑃 and that all variables that require changes at a
later point in time are contained in 𝐹 . Let S be the set of such minimal satisfying change sets.
Similar to 𝐶1·𝑖 , we then define the violation cluster 𝐶 𝑗 ·𝑖 as

𝐶 𝑗 ·𝑖 =
{
𝜑 𝑗 ∈ 𝜑 | 𝜎 ℓ |= 𝜑 𝑗 ∧ ∃(𝑃 𝑗

𝑖
, 𝐹

𝑗

𝑖
) ∈ S. ∃𝜎 ′′ ∈ Σ𝑃

𝑗

𝑖
,𝐹

𝑗

𝑖 . 𝜎 ′′ |= 𝜑
𝑗

𝑖
∧ 𝜎 ′′ ̸ |= 𝜑 𝑗

}
.

Note that a sequence 𝜎 ′′ ∈ Σ𝐻
𝑗

𝑖
,𝑃

𝑗

𝑖
,𝐹

𝑗

𝑖 might rely on changing variable valuations that have
already been changed with respect to 𝜎 to obtain the sequence 𝜎 𝑗 . Then, however, these variables
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have to be contained in either 𝐻 𝑗

𝑖
, 𝑃 𝑗

𝑖
or 𝐹 𝑗

𝑖
, depending on the point in time at which the change

occurs. Hence, the change set (𝐻 𝑗

𝑖
, 𝑃

𝑗

𝑖
, 𝐹

𝑗

𝑖
) also premits the initial changes. Furthermore, since

there exists a sequence that satisfies all conjuncts of 𝜑 by assumption, namely one from the
set Σ𝑃,𝐹 , we can choose 𝜎 𝑗 ∈ Σ𝐻 ℓ

𝑖′ ,𝑃
ℓ
𝑖′ ,𝐹

ℓ
𝑖′ such that only changing the variable valuations back

while not performing the changes that yield satisfaction of 𝜑 𝑗

𝑖
while keeping the already

performed changes with respect to 𝜎 is not minimal.
If all branches of the tree-like structure induced by change of the valuation of 𝑢 at point in

time 𝑘 in 𝜎 end since the successor violation cluster is empty, we check whether all conjuncts
of 𝜑 are contained in a violation cluster. If not, we proceed as follows. LetV ⊆ 𝜑 be the set of all
conjuncts of 𝜑 that are contained in one of the violation clusters. Let �̃� ∈ (2𝑉 )𝜔 be a sequence
obtained from incorporating all the variable changes performed in the sequence of the violation
clusters. Since there exists a sequence that satisfies all conjuncts by assumption and sinceV
is a subset of all conjuncts, the existence of such a sequence �̃� is guaranteed. Let 𝜑2

𝑖 ∈ 𝜑 \ V
be a conjunct that is not contained in any violation cluster. If �̃� |= 𝜑2

𝑖 , then nothing has to be
done in this construction step. Otherwise, let �̃�2,𝑖 ∈ (2𝑉 )𝜔 be a sequence such that �̃�2,𝑖 |= 𝜑 and
such that �̃�2,𝑖 differs from �̃� only in the valuation of a variable, that has been changed from 𝜎

to �̃� at a single point in time. Similar to the fact that sequences �̃� 𝑗,𝑖 with these properties are
guaranteed in the first construction round, it follows that such a sequence is guaranteed to exist.
The violation cluster𝐶2 then contains all conjuncts 𝜑𝑖 ∈ 𝜑 \V , which are violated by �̃� , as well
as by some sequence �̃�2,𝑖 with the above properties. We proceed with constructing violation
clusters of the form 𝐶2·𝑖 analogous to those of the form 𝐶1·𝑖 , i.e., those constructed in the first
round. Moreover, we proceed with constructing cluster 𝐶3, 𝐶4 etc. until all conjuncts of 𝜑 are
contained in one of the violation clusters.
We now show by induction that for every violation cluster 𝐶 𝑗 ·𝑖 and its associated minimal

history-adapting satisfying change set (𝐻 𝑗

𝑖
, 𝑃

𝑗

𝑖
, 𝐹

𝑗

𝑖
) it holds that if 𝑘𝑖𝑗 = 𝑘 , then there exist edges

(𝑢,𝑤) ∈ C(Exsyn
𝑃
) for all𝑤 ∈ 𝑃 𝑗

𝑖
and edges (𝑢,𝑤) ∈ C(Exsyn

𝐹
) for all𝑤 ∈ 𝐹 𝑗

𝑖
, and, if 𝑘𝑖𝑗 > 𝑘 holds,

then there exist edges (𝑢,𝑤) ∈ C(Exsyn
𝐹
) for all𝑤 ∈ 𝐻 𝑗

𝑖
∪ 𝑃 𝑗

𝑖
∪ 𝐹 𝑗

𝑖
and edges (𝑢,𝑤) ∈ C(Exsyn

𝐹
)

for all𝑤 ∈ 𝐻 𝑗

𝑖
that are changed at point in time 𝑘 :

• 𝑗 = 1. Then, for every 𝜑𝑖 ∈ 𝐶1, the triple (𝐻 1
𝑗 , 𝑃

1
𝑖 , 𝐹

1
𝑖 ) is a minimal history-adapting

satisfying change set for 𝜑1
𝑖 , 𝜎 ′,𝑢, and 𝑘 . Thus, in particular,𝐻 1

𝑗 = ∅ holds. Furthermore, 𝜎
and 𝜎 ′ only differ in the valuation of𝑢 at point in time 𝑘 . Thus, since𝜑1

𝑖 is a single conjunct
of 𝜑 and since, by assumption, conjunctions of 𝜑 itself are conjunction-free, it follows
immediately with Lemma 6.4 that (𝑢,𝑤) ∈ Esyn

𝑃
holds for all variables 𝑤 ∈ 𝑃1

𝑖 and
(𝑢,𝑤) ∈ Esyn

𝐹
holds for all variables 𝑤 ∈ 𝐹 1𝑖 . Since transitive output closure as well as

deriving further edges in the extended syntactic dependency graph always only add edges
but never delete edges, it follows that (𝑢,𝑤) ∈ C(Exsyn

𝑃
) holds for all variables 𝑤 ∈ 𝑃1

𝑖

and (𝑢,𝑤) ∈ C(Exsyn
𝐹
) holds for all variables𝑤 ∈ 𝐹 1𝑖 .

• 𝑗 = ℓ with ℓ ≠ 1. Then, for every conjunct 𝜑𝑖 ∈ 𝐶 𝑗 , the triple (𝐻 𝑗

𝑖
, 𝑃

𝑗

𝑖
, 𝐹

𝑗

𝑖
) is a minimal

history-adapting satisfying change set for 𝜑1
𝑖 , 𝜎 𝑗 , 𝑢 𝑗

𝑖
, and 𝑘 𝑗

𝑖
. Furthermore, 𝑢 𝑗

𝑖
is a variable

that lies in the change set (𝐻 ℓ
𝑖′, 𝑃

ℓ
𝑖′, 𝐹

ℓ
𝑖′) defining the violation cluster𝐶 𝑗 . Thus, by induction
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hypothesis, we have either (𝑢,𝑢 𝑗

𝑖
) ∈ C(Exsyn

𝑃
) or (𝑢,𝑢 𝑗

𝑖
) ∈ C(Exsyn

𝐹
), depending on

whether 𝑘 𝑗

𝑖
= 𝑘 or 𝑘 𝑗

𝑖
> 𝑘 holds. We distinguish two cases:

– First, suppose that 𝑘 𝑗

𝑖
= 𝑘 holds. Then, it follows immediately that 𝑢 𝑗

𝑖
∈ 𝑃 ℓ

𝑖′ holds.
Therefore, there exists a present edge (𝑢,𝑢 𝑗

𝑖
) ∈ C(Exsyn

𝑃
). Moreover, by construction

of the violation clusters as well as their associated sequences, variables, and points
in time, we have �̃� 𝑗,𝑖 |= 𝜑𝑖 , while 𝜎 𝑗 ̸ |= 𝜑𝑖 holds and �̃� 𝑗,𝑖 and 𝜎 𝑗 only differ on the
valuation of 𝑢 𝑗

𝑖
at a single point in time 𝑘 𝑗

𝑖
. Hence 𝑢 𝑗

𝑖
depends semantically on the

current valuation of all variables𝑤 ∈ 𝑃 𝑗

𝑖
, and it depends semantically on the future

valuation of all variables𝑤 ∈ 𝐹 𝑗

𝑖
. Therefore, it follows immediately with Lemma 6.4

that (𝑢 𝑗

𝑖
,𝑤) ∈ Esyn

𝑃
holds for all variables 𝑤 ∈ 𝑃1

𝑖 and (𝑢 𝑗

𝑖
,𝑤) ∈ Esyn

𝐹
holds for all

variables𝑤 ∈ 𝐹 1𝑖 . Since transitive output closure as well as deriving further edges
in the extended syntactic dependency graph always only adds edges but never
delete edges, it follows that (𝑢 𝑗

𝑖
,𝑤) ∈ C(Exsyn

𝑃
) holds for all variables 𝑤 ∈ 𝑃 𝑗

𝑖
and

(𝑢 𝑗

𝑖
,𝑤) ∈ C(Exsyn

𝐹
) holds for all variables 𝑤 ∈ 𝐹

𝑗

𝑖
. Since we build the transitive

output closure of the syntactic dependency graph as well as the extended syntactic
dependency graph, we thus have (𝑢,𝑤) ∈ C(Exsyn

𝑃
) for all variables 𝑤 ∈ 𝑃

𝑗

𝑖
and

(𝑢,𝑤) ∈ C(Exsyn
𝐹
) for all variables𝑤 ∈ 𝐹 𝑗

𝑖
.

– Second, suppose that𝑘 𝑗

𝑖
> 𝑘 holds. Then,𝑢 𝑗

𝑖
∈ 𝐹 ℓ

𝑖′ holds and hence (𝑢,𝑢
𝑗

𝑖
) ∈ C(Exsyn

𝐹
)

follows. Moreover, by construction of the violation clusters as well as their associated
sequences, variables, and points in time, we have �̃� 𝑗,𝑖 |= 𝜑𝑖 , while 𝜎 𝑗 ̸ |= 𝜑𝑖 holds
and �̃� 𝑗,𝑖 and 𝜎 𝑗 only differ on the valuation of 𝑢 𝑗

𝑖
at a single point in time 𝑘 𝑗

𝑖
. We

distinguish three cases. First, let 𝑤 ∈ 𝑃 𝑗

𝑖
. Then, by definition of history-adapting

satisfying change sets, the valuation of 𝑤 is changed at point in time 𝑘 𝑗

𝑖
. Thus,

there exists a semantic present dependency from 𝑢
𝑗

𝑖
to𝑤 . Therefore, (𝑢 𝑗

𝑖
,𝑤) ∈ Esyn

𝑃

follows with Lemma 6.4 and hence (𝑢 𝑗

𝑖
,𝑤) ∈ C(Exsyn

𝑃
) holds as well. Since we

build the transitive output closure of the extended syntactic dependency graph,
(𝑢,𝑤) ∈ C(Exsyn

𝐹
) follows. Next, let 𝑤 ∈ 𝐹

𝑗

𝑖
. Then, the valuation of 𝑤 is changed

at a point in time 𝑘 ′ ≥ 0 with 𝑘 ′ > 𝑘
𝑗

𝑖
. Thus, there exists a semantic future

dependency from 𝑢
𝑗

𝑖
to 𝑤 . Therefore, (𝑢 𝑗

𝑖
,𝑤) ∈ Esyn

𝐹
follows with Lemma 6.4 and

hence (𝑢 𝑗

𝑖
,𝑤) ∈ C(Exsyn

𝐹
) holds as well. Since we build the transitive output closure

of the extended syntactic dependency graph, (𝑢,𝑤) ∈ C(Exsyn
𝐹
) follows. Lastly,

let 𝑤 ∈ 𝐻
𝑗

𝑖
. Then, the valuation of 𝑤 is changed at a point in time 𝑘 ′ ≥ 0 with

𝑘 ≤ 𝑘 ′ < 𝑘
𝑗

𝑖
. Hence, there exists a semantic future dependency from𝑤 to 𝑢 𝑗

𝑖
: there

is a sequence that lies in Σ𝐻
𝑗

𝑖
,𝑃

𝑗

𝑖
,𝐹

𝑗

𝑖 that satisfies 𝜑 𝑗

𝑖
. This sequence contains both

the changes for 𝑢 𝑗

𝑖
and𝑤 . The sequence obtained from reverting the change of𝑤

violates 𝜑 𝑗

𝑖
as otherwise, the change in 𝑤 would not be necessary. Reverting the

change of 𝑢 𝑗

𝑖
as well – possibly together with more changes – yields sequence �̃� 𝑗

𝑖

which satisfies 𝜑 𝑗

𝑖
. Thus, 𝑢 𝑗

𝑖
lies in the future-set of a minimal satisfying change set

for𝑤 and 𝜑 𝑗

𝑖
, and thus the existence of a semantic future dependency from𝑤 to 𝑢 𝑗

𝑖
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follows. Thus, by Lemma 6.4, there exists a future edge (𝑤,𝑢
𝑗

𝑖
) ∈ Esyn

𝐹
and therefore

we have (𝑤,𝑢
𝑗

𝑖
) ∈ C(Exsyn

𝐹
) as well. Since there are semantic future dependencies

from 𝑢 to 𝑢 𝑗

𝑖
and from𝑤 to 𝑢 𝑗

𝑖
, the valuations of 𝑢 and𝑤 affect the future valuation

of 𝑢 𝑗

𝑖
. Furthermore, by construction of the semantic dependencies, they both affect

the valuation of 𝑢 𝑗

𝑖
at the same point in time. If𝑤 affects the future valuation of 𝑢 𝑗

𝑖

due to an unbounded temporal operator, then we have 𝑎(𝑤,𝑢
𝑗

𝑖
) = ∞ by definition

of syntactic dependencies and since the semantic dependency from 𝑤 to 𝑢
𝑗

𝑖
is

induced by the conjunction-free conjunct 𝜑 𝑗

𝑖
. Thus, since𝑤,𝑢

𝑗

𝑖
∈ 𝑂 , as otherwise 𝑢

would depend on the input, and since we have both (𝑢,𝑢 𝑗

𝑖
), (𝑤,𝑢

𝑗

𝑖
) ∈ C(Exsyn

𝐹
)

and since 𝑎(𝑤,𝑢
𝑗

𝑖
) = ∞ holds, we derive further syntactic edges according to

Definition 6.8, namely future edges (𝑢,𝑤), (𝑤,𝑢) ∈ C(Exsyn
𝐹
) as well as present

edges (𝑢,𝑤), (𝑤,𝑢) ∈ C(Exsyn
𝑃
). Thus, irrespective of whether the valuation of 𝑤

needs to be changed at point in time 𝑘 or at a point in time 𝑘 ′ with 𝑘 < 𝑘 ′ < 𝑘
𝑗

𝑖
, we

derive the required edge. Otherwise,𝑤 affects the future valuation of 𝑢 𝑗

𝑖
only due

to -operators. If, in contrast, 𝑢 affects the future valuation of 𝑢 𝑗

𝑖
due to unbounded

temporal operators, then there exists some conjunct of 𝜑 that establishes that some
of the variables that build the link between𝑢 and𝑢 𝑗

𝑖
are connected via an unbounded

temporal operator. Hence, it follows similarly to the previous case that this conjunct
then induces a syntactic future dependency with offset∞. Since the transitive output
closure preserves the annotation∞, we thus have 𝑎(𝑢,𝑢 𝑗

𝑖
) = ∞. Therefore, as in the

previous case, we derive both (𝑢,𝑤), (𝑤,𝑢) ∈ C(Exsyn
𝐹
) and (𝑢,𝑤), (𝑤,𝑢) ∈ C(Exsyn

𝑃
).

Thus, irrespective of whether the valuation of 𝑤 needs to be changed at point in
time 𝑘 or at a point in time 𝑘 ′ with 𝑘 < 𝑘 ′ < 𝑘

𝑗

𝑖
, we derive the required edge. If 𝑢

also does not affect the future valuation of 𝑢 𝑗

𝑖
due to unbounded temporal operators

but only due to -operators, the effect of the change of a valuation of 𝑢 or𝑤 on the
valuation of 𝑢 𝑗

𝑖
is limited to the number of -operators. This number, however, is

accurately captured by the offset of syntactic dependencies, which is represented by
the annotation of the respective edge, and the accuracy of the edge annotations is
clearly preserved by transitive output closure as well as derivation. Thus, both edges
(𝑢,𝑢 𝑗

𝑖
) and (𝑤,𝑢

𝑗

𝑖
) are annotated with a natural number that captures the number

of -operators inducing the semantic dependency. If the valuation of𝑤 needs to
be changed at point in time 𝑘 , then, since both dependencies affect the valuation
of 𝑢 𝑗

𝑖
at the same point in time, both dependencies are due to the same number of

-operators and therefore 𝑎(𝑢,𝑢 𝑗

𝑖
) = 𝑎(𝑤,𝑢

𝑗

𝑖
) holds. Hence, we derive, according

to Definition 6.8, present edges (𝑢,𝑤), (𝑤,𝑢) ∈ C(Exsyn
𝑃
). Thus, in particular, we

derive the required edge for the present dependency from 𝑢 to𝑤 . Otherwise, the
valuation of𝑤 needs to be changed at a point in time 𝑘 ′ with 𝑘 < 𝑘 ′ < 𝑘

𝑗

𝑖
. Hence, the

dependency from𝑤 to𝑢 𝑗

𝑖
is due to less -operators than the dependency from𝑢 to𝑢 𝑗

𝑖
.

Therefore, holds 𝑎(𝑤,𝑢𝑖𝑗 ) < 𝑎(𝑢,𝑢 𝑗

𝑖
) for the annotations of the edges (𝑤,𝑢

𝑗

𝑖
) and

(𝑢,𝑢 𝑗

𝑖
). Consequently, we derive, according to Definition 6.8, the future dependency

edge (𝑢,𝑤) ∈ C(Exsyn
𝐹
), which is the required future edge from 𝑢 to𝑤 .
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By construction of the violation clusters, every variable𝑤 ∈ 𝑃 ∪𝐹 is contained in the minimal
history-adapting satisfying change set of at least one violation cluster. Thus, in particular, there
exists a violation cluster 𝐶 𝑗 ·𝑖 such that 𝑣 ∈ 𝐻 𝑗

𝑖
∪ 𝑃 𝑗

𝑖
∪ 𝐹

𝑗

𝑖
holds. If 𝑣 ∈ 𝑃 holds, then it follows

immediately from the property shown above that there exists an edge (𝑢, 𝑣) ∈ C(Exsyn
𝑃
). If 𝑣 ∈ 𝐹

holds, then there exists an edge (𝑢, 𝑣) ∈ C(Exsyn
𝐹
).

Next, suppose that 𝑢 depends semantically on the current or future valuation of an input
variable. Then, there exists a point in time 𝑘 ≥ 0 and sequences 𝜎, 𝜎 ′ ∈ (2𝑉 )𝜔 such that
𝜎𝑘 ∩ {𝑢} ≠ 𝜎 ′

𝑘
∩ {𝑢} holds, while we have 𝜎𝑘 ∩ (𝑉 \ {𝑢}) = 𝜎 ′

𝑘
∩ (𝑉 \ {𝑢}) and while 𝜎 𝑗 = 𝜎 ′𝑗

holds for all 𝑗 ≥ 0 with 𝑗 < 𝑘 , and such that we have 𝜎 |= 𝜑 and 𝜎 ′ ̸ |= 𝜑 . Furthermore, we have
(𝑃 ∪ 𝐹 ) ∩ 𝐼 ≠ ∅ for all minimal satisfying change sets (𝑃, 𝐹 ) for 𝜑 , 𝜎 ′, 𝑢, and 𝑘 , i.e., there is no
minimal satisfying change set that does not contain at least one input variable. Let (𝑃, 𝐹 ) be
some minimal satisfying change set for 𝜑 , 𝜎 ′, 𝑢, and 𝑘 . Then, there exists a sequence 𝜎 ′′ ∈ Σ𝑃,𝐹
such that 𝜎 ′′ |= 𝜑 holds. If there exists a conjunct 𝜑𝑖 ∈ 𝜑 that is violated by 𝜎 ′ and that contains
an input variable, then it follows immediately that 𝑢 dependents semantically on some input
variable𝑤 ∈ 𝐼 when only considering the single conjunct 𝜑𝑖 . Hence, then (𝑢,𝑤) ∈ Esyn holds
by Lemma 6.4 and thus (𝑢,𝑤) ∈ C(Exsyn

𝐹
) follows. Otherwise, we construct violation clusters

as in the first case. Similarly, it follows that we have edges (𝑢,𝑤) ∈ C(Exsyn) for all output
variables 𝑤 ∈ 𝑂 with 𝑤 ∈ 𝐻 𝑗

𝑖
∪ 𝑃 𝑗

𝑖
∪ 𝐹

𝑗

𝑖
for some violation cluster 𝐶 𝑗 ·𝑖 that did not require a

change in any input variable beforehand. That is, for all predecessors of 𝐶 𝑗 ·𝑖 , the respective
minimal history-adapting satisfying change sets do not contain any input variable. As soon as
we encounter an input variable, we cannot utilize the above result since we do not build the
transitive output closure over input variables. Nevertheless, we still obtain that there exists
an edge (𝑤,𝑤 ′) from the last output variable 𝑤 ∈ 𝑂 to the first input variable 𝑤 ′ ∈ 𝐼 with
(𝑤,𝑤 ′) ∈ C(Exsyn); proving the claim. □

Thus, since all semantic dependencies have a syntactic counterpart, completeness of incre-
mental synthesis, when using syntactic decomposition for deriving the components and the
ranking function defining the synthesis order, for LTL specifications 𝜑 that do not induce any
edge (𝑢, 𝑣) in C(Dxsyn

𝜑 ) from an output variable 𝑢 ∈ 𝑂 of the system to an input variable 𝑣 ∈ 𝐼 of
the system, follows from Lemma 6.3, and Theorem 6.7. When utilizing the version of syntactic
decomposition that allows for resolving present dependencies, then the result follows from
Theorem 6.7 and the respective version of Lemma 6.3, which is based on Theorem 6.6 rather
than on Theorem 6.3, for the similarly modified version of semantic decomposition.

Lemma 6.6. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D and ranksyn be the
decomposition and the ranking function computed with syntactic decomposition algorithm. If, for
all 𝑢 ∈ 𝑂 , output 𝑢 does not depend semantically on an input variable 𝑣 ∈ 𝐼 , then Algorithm 6.1
returns (true, 𝑠) for input 𝜑 , D, and ranksyn.

Furthermore, we can utilize the same extension of incremental synthesis as for the semantic
decomposition algorithm to obtain completeness for general LTL formulas. That is, whenever
we encounter a component of non-highest rank for which the synthesis task fails and which
contains an output variable that is the source node of an edge inC(Dxsyn

𝜑 ) to a node representing
an input variable, we combine the component with a direct successor in the synthesis order.
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We proceed with combining components until either the synthesis task succeeds or until
only a single component is left. For this extension of the incremental synthesis algorithms,
completeness when utilizing the syntactic decomposition algorithms, in both its versions, then
follows immediately from Theorems 6.5 and 6.7, or the respective variant of Theorem 6.5 for
the modified semantic decomposition algorithm.

Theorem 6.8. Let 𝜑 be an LTL formula over atomic propositions 𝑉 . Let D and ranksyn be the
decomposition and the ranking function computed with semantic decomposition algorithm. If
the extended incremental synthesis algorithm returns (false,Null) for input 𝜑 , D, and ranksyn,
then 𝜑 is unrealizable.

However, the syntactic analysis is a conservative overapproximation of the semantic de-
pendencies. This can be easily seen when comparing the semantic and syntactic dependency
graphs for the self-driving car shown in Figures 6.3 and 6.6 respectively. For instance, there is a
present edge from acc to in in the syntactic graph, while there is no such semantic dependency.
Particularly the derivation rule is blamable for the overapproximation. Therefore, the syntactic
decomposition algorithm may yield coarser decompositions. Nevertheless, as the syntactic
analysis is much cheaper than the semantic one, decomposing the system with the syntactic
approach and applying incremental synthesis to the derived components is an adequate first step.
In many cases, the syntactic decomposition will already yield sufficiently small components
for which solutions can be synthesized in reasonable time. If incremental synthesis does not
terminate in reasonable time, however, one can then use the semantic decomposition technique
to identify components of the system and, if the decomposition is more fine-grained, rerun
incremental synthesis with the semantic decomposition.

We introduce rules for simplifying specifications in the next section to reduce the synthesis
time for the individual components further. In particular, we identify in which cases conjuncts of
the specification can be omitted when considering an individual component while maintaining
soundness and completeness of incremental synthesis.

6.5. Specification Simplification
In this section, we study in which cases the given LTL specification 𝜑 for the whole system can
be simplified for the individual components that we derived with either the semantic or the
syntactic decomposition algorithm introduced in the previous two sections. In particular, we
identify conjuncts of 𝜑 that are not relevant for the component 𝑐𝑖 under consideration to reduce
the size of the specification for 𝑐𝑖 ’s synthesis task.

In general, omitting conjuncts of𝜑 for a component 𝑐𝑖 is not sound since the missing conjuncts
may invalidate admissibility of the specification [DF14]: consider, for instance, the LTL formula
𝜑 = (𝑖 ↔ 𝑜1) ∧ (𝑜1 ↔ 𝑜2), where 𝑖 is an input variable, and both 𝑜1 and 𝑜2 are output
variables, i.e., we have 𝐼 = {𝑖} and 𝑂 = {𝑜1, 𝑜2}. Individually, both conjuncts (𝑖 ↔ 𝑜1) and
(𝑜2 ↔ 𝑜1) are admissible for the full system. For conjunct (𝑖 ↔ 𝑜1), a strategy that

sets 𝑜1 to true if, and only if, 𝑖 is true in the previous time step is dominant and even winning.
For conjunct (𝑜2 ↔ 𝑜1), a strategy that, for instance, never sets 𝑜1 or 𝑜2 to true is winning.
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However, the full specification 𝜑 is not admissible as a strategy would need to predict the
valuation of 𝑖 in order to set the valuation of 𝑜2 correctly [DF14]. However, non-admissible
conjuncts of an LTL formula cannot become admissible by leaving out conjuncts that do not
refer to output variables of the system:

Theorem 6.9 ([DF14]). Let 𝜑 be an LTL formula over atomic propositions 𝑉 with 𝜑 = 𝜓 ∧𝜓 ′,
where𝜓 is an LTL formula over atomic propositions𝑉 and where𝜓 ′ is an LTL formula over atomic
propositions 𝑉 \𝑂 . If𝜓 is admissible, then 𝜑 is admissible as well.

Intuitively, this monotonicity property holds since𝜓 ′ does not range over output variables of
the system and thus its truth value is solely determined by input variables of the system. In
particular, a strategy for the system thus cannot influence the satisfaction of𝜓 ′. A strategy 𝑠 ,
however, can only be dominant for𝜓 but not dominant for 𝜑 if there is some input sequence
on which the strategy satisfies 𝜓 and violates 𝜑 , while there exists an alternative strategy 𝑡

that satisfies 𝜑 on this input sequence. By construction of 𝜑 , then 𝑠 needs to violate 𝜓 ′ on
this input sequence, while 𝑡 does not, contradicting that a strategy for the system cannot
influence the satisfaction of𝜓 ′. For more details on this monotonicity property and the proof
of its correctness, we refer to [DF14]. In the following, we extend this simplification result to
individual components of the system:

Lemma 6.7. Let 𝑐𝑖 be a component with output variables 𝑂𝑖 . Let 𝜑 be an LTL formula over
atomic propositions 𝑉 with 𝜑 = 𝜓 ∧𝜓 ′, where 𝜓 is an LTL formula over atomic propositions 𝑉
and where𝜓 ′ is an LTL formula over atomic propositions 𝑉 \𝑂𝑖 . Let 𝑠𝑖 be a strategy for 𝑐𝑖 . If 𝑠𝑖 is
dominant for𝜓 and 𝑐𝑖 , then 𝑠𝑖 is dominant for 𝜑 and 𝑐𝑖 as well.

Proof. Suppose that 𝑠𝑖 is not dominant for 𝜑 . Then, there exists an input sequence 𝛾 ∈ (2𝐼𝑖 )𝜔 and
an alternative strategy 𝑡𝑖 for 𝑐𝑖 such that comp(𝑠𝑖 , 𝛾) ̸|= 𝜑 holds, while we have comp(𝑡𝑖 , 𝛾) |= 𝜑 .
Since𝜓 ′ is an LTL formula over atomic propositions 𝑉 \𝑂𝑖 , it only refers to variables outside
of the control of 𝑐𝑖 . Hence, its truth value is solely determined by the valuations of the input
variables of 𝑐𝑖 . Therefore, in particular, we have comp(𝑠𝑖 , 𝛾) |= 𝜓 ′ if, and only if, comp(𝑡𝑖 , 𝛾) |= 𝜓 ′

holds. Hence, since comp(𝑡𝑖 , 𝛾) |= 𝜑 holds by assumptions and thus comp(𝑡𝑖 , 𝛾) |= 𝜓 ′ follows
with the semantics of conjunction, we have comp(𝑠𝑖 , 𝛾) |= 𝜓 ′ as well. Therefore, comp(𝑠𝑖 , 𝛾) ̸|= 𝜓

follows from the assumption that comp(𝑠𝑖 , 𝛾) ̸|= 𝜑 holds. But then we have comp(𝑠𝑖 , 𝛾) ̸|= 𝜓 ,
while comp(𝑡𝑖 , 𝛾) |= 𝜓 follows from the assumption that comp(𝑡𝑖 , 𝛾) |= 𝜑 holds and the definition
of 𝜑 , contradicting that 𝑠𝑖 is dominant for𝜓 and 𝑐𝑖 . □

For components that do not depend syntactically on any variables outside their control, i.e.,
neither on input variables of the system, nor on output variables of other components, omitting
such conjuncts is even complete. That is, whenever the full specification is admissible, so is the
one obtained from omitting conjuncts. This relies on the fact that the conjunct of an LTL formula
can never have more dependencies than the full LTL formula when deriving dependencies with
the syntactic decomposition approach, i.e., with computing syntactic dependencies and then
deriving further edges in the syntactic dependency graph. Note here that for completeness
it is not required that the omitted specification does not range over output variables of the
considered component:
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Lemma 6.8. Let 𝑐𝑖 be a component with output variables𝑂𝑖 . Let 𝜑 be an LTL formula over atomic
propositions 𝑉 with 𝜑 = 𝜓 ∧ 𝜓 ′. Let C(Dxsyn

𝜑 ) = (Vsyn,C(Exsyn)) be the transitive closure of
the extended syntactic dependency graph of 𝜑 . If, for all 𝑢 ∈ 𝑂𝑖 and all 𝑣 ∈ 𝑉 \ 𝑂𝑖 , we have
(𝑢, 𝑣) ∉ C(Exsyn), then𝜓 is admissible for 𝑐𝑖 .

Proof. Let (𝑢, 𝑣) ∉ C(Exsyn) hold for all 𝑢 ∈ 𝑂𝑖 and all 𝑣 ∈ 𝑉 \𝑂𝑖 . Then, since, by construction
of the dependency graph in the syntactic decomposition algorithm, dependencies are never
removed, neither by adding conjuncts nor in one of the later steps, i.e., transitive closure or
deriving dependencies, it follows immediately from the construction of 𝜑 that there do not exist
edges (𝑢, 𝑣) for any 𝑢 ∈ 𝑂𝑖 and any 𝑣 ∈ 𝑉 \𝑂𝑖 in the transitive closure of the extended syntactic
dependency graph of 𝜓 . Then, it follows from Theorem 6.7, 𝜓 does not induce any semantic
dependencies from an output 𝑢 ∈ 𝑂𝑖 to a variable 𝑣 ∈ 𝑉 \𝑂𝑖 . Therefore,𝜓 is admissible for 𝑐𝑖
by Theorem 6.3. □

Hence, together with Lemma 6.7, it follows immediately that for components that do not
have any edges from one of their output variables to any variable outside their control in the
transitive closure of the extended syntactic dependency graph of the original LTL specification𝜑 ,
conjuncts of 𝜑 that do not contain any output variable of the considered component can be
omitted without losing admissibility. Furthermore, it is guaranteed that every dominant strategy
for the simplified specification is dominant for the original one as well.

Corollary 6.3. Let 𝑐𝑖 be a component with output variables 𝑂𝑖 . Let 𝜑 be an LTL formula over
atomic propositions 𝑉 with 𝜑 = 𝜓 ∧ 𝜓 ′. Let C(Dxsyn

𝜑 ) = (Vsyn,C(Exsyn)) be the transitive
closure of the extended syntactic dependency graph of 𝜑 , where𝜓 is an LTL formula over atomic
propositions 𝑉 and where𝜓 ′ is an LTL formula over atomic propositions 𝑉 \𝑂𝑖 . If, for all 𝑢 ∈ 𝑂𝑖

and all 𝑣 ∈ 𝑉 \ 𝑂𝑖 , we have (𝑢, 𝑣) ∉ C(Exsyn), then 𝜓 is admissible for 𝑐𝑖 and every dominant
strategy for𝜓 and 𝑐𝑖 is also dominant for 𝜑 and 𝑐𝑖 .

For the autonomous car from the running example from Section 6.1, for instance, we identified
a component describing the gearing unit, i.e., a component controlling the variables 𝑔1 and 𝑔2
with the syntactic decomposition algorithm. This component does not contain variables that
depend semantically on any variable outside the control of the component (see Example 6.7).
Furthermore, none of the conjuncts of the conjunct 𝜑acc of the car’s specification 𝜑car contains
variable 𝑔1 or variable 𝑔2. Therefore, it follows from Corollary 6.3 that it suffices to use 𝜑gear as
the specification for the synthesis task of the component describing the gearing unit instead of
the full specification 𝜑car with 𝜑car = 𝜑acc ∧ 𝜑gear .
Moreover, it follows immediately from the results of the previous chapter – in particular

Sections 5.2 and 5.3 – that if a specification with two conjuncts that induces two components
such that the conjuncts do not range over the outputs of the other component is realizable, then
there are winning strategies for the components for the respective conjuncts:

Theorem 6.10. Let 𝜑 = 𝜓 ∧𝜓 ′ be an LTL formula over atomic propositions 𝑉 that induces two
components 𝑐𝑖 and 𝑐 𝑗 with output variables 𝑂𝑖 and 𝑂 𝑗 , respectively, and such that 𝜓 and𝜓 ′ are
LTL formula over atomic propositions 𝑉 \𝑂 𝑗 and 𝑉 \𝑂𝑖 , respectively. If 𝜑 is realizable, then there
are winning strategies 𝑠𝑖 and 𝑠 𝑗 for 𝑐𝑖 and 𝑐 𝑗 for𝜓 and𝜓 ′, respectively, such that 𝑠𝑖 | | 𝑠 𝑗 |= 𝜑 .
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Proof. Let 𝜑 be realizable. By construction of the specification, L(𝜓 ) | | L(𝜓 ′) = L(𝜑) follows
with Lemma 5.7. Furthermore, by construction of the decomposition algorithms, we have
𝑂 = 𝑂1 ∪𝑂 𝑗 and𝑂𝑖 ∩𝑂 𝑗 = ∅. Thus,𝑉 \𝑂 𝑗 = 𝐼 ∪𝑂𝑖 and𝑉 \𝑂𝑖 = 𝐼 ∪𝑂 𝑗 holds. Therefore, since
we have prop(𝜓 ) ⊆ 𝑉 \ 𝑂 𝑗 and prop(𝜓 ′) ⊆ 𝑉 \ 𝑂𝑖 by constructions, prop(𝜓 ) ∩ prop(𝜓 ′) ⊆ 𝐼

follows. Hence, by Lemma 5.8, L(𝜓 ) and L(𝜓 ′) are non-contradictory and therefore L(𝜓 )
and L(𝜓 ′) are independent sublanguages according to Definition 5.6. Thus, since 𝜑 is realizable
by assumption, it follows with Lemma 5.6, that both𝜓 and𝜓 ′ are realizable for 𝑐𝑖 and 𝑐 𝑗 as well.
Let 𝑠𝑖 and 𝑠 𝑗 be strategies for 𝑐𝑖 and 𝑐 𝑗 , respectively, such that 𝑠𝑖 |= 𝜓 and 𝑠 𝑗 |= 𝜓 ′ holds. Then,
since we represent strategies by deterministic and complete finite-state transducers, 𝑠𝑖 | | 𝑠 𝑗 |= 𝜑

holds by Lemma 5.4. □

Furthermore, in incremental synthesis, the strategies of components with a lower rank in the
synthesis order are provided to the component 𝑐𝑖 under consideration. Hence, if these strategies
are winning for a conjunct of the specification, then the conjunct may be eliminated from the
specification for 𝑐𝑖 since its satisfaction is already guaranteed:

Theorem 6.11. Let 𝜑 be an LTL formula over atomic propositions 𝑉 with 𝜑 = 𝜓 ∧ 𝜓 ′. Let D
be a decomposition of (𝐼 ,𝑂) and let 𝑐𝑖 ∈ D be a component. Let 𝑐 be the parallel composition of
the components 𝑐 𝑗 ∈ D with 𝑐 𝑗 <syn 𝑐𝑖 and let 𝑠 be the parallel composition of their synthesized
strategies. If 𝑠 is winning for𝜓 ′, then there is a strategy 𝑠𝑖 for 𝑐𝑖 such that 𝑠 | | 𝑠𝑖 is dominant for𝜓
and 𝑐 | | 𝑐𝑖 if, and only if there is a strategy 𝑠𝑖 for 𝑐𝑖 such that 𝑠 | | 𝑠𝑖 is dominant for 𝜑 and 𝑐 | | 𝑐𝑖 .

Proof. Let𝑂prev denote the outputs of 𝑐 , i.e., let𝑂prev =
⋃

𝑐 𝑗 ∈C 𝑂 𝑗 , where the set of all components
of D with a lower rank in the synthesis order than 𝑐𝑖 is denoted with C =

{
𝑐 𝑗 ∈ D | 𝑐 𝑗 <syn 𝑐𝑖

}
.

Let 𝑠 be winning for𝜓 ′. Then, we have comp(𝑠,𝛾) |= 𝜓 ′ for every𝛾 ∈ (2𝑉 \𝑂prev )𝜔 . Thus, in partic-
ular, comp(𝑠 | | 𝑠𝑖 , 𝛾) |= 𝜓 ′ holds for every strategy 𝑠𝑖 for 𝑐𝑖 and every 𝛾 ∈ (2𝑉 \(𝑂prev∪𝑂𝑖 ) )𝜔 . Hence,
by construction of 𝜑 , it holds that for every strategy 𝑠𝑖 for 𝑐𝑖 and every 𝛾 ∈ (2𝑉 \(𝑂prev∪𝑂𝑖 ) )𝜔 , we
have comp(𝑠 | | 𝑠𝑖 , 𝛾) |= 𝜑 if, and only if comp(𝑠 | | 𝑠𝑖 , 𝛾) |= 𝜓 holds.

First, let there exist a strategy 𝑠𝑖 for 𝑐𝑖 such that 𝑠 | |𝑠𝑖 is dominant for𝜓 and 𝑐 | |𝑐𝑖 . Suppose that 𝑠𝑖
is not dominant for 𝜑 and 𝑐 | |𝑐𝑖 . Then, there exists an input sequence 𝛾 ∈ (2𝑉 \(𝑂prev∪𝑂𝑖 ) )𝜔 and an
alternative strategy 𝑡 for 𝑐 | |𝑐𝑖 such that comp(𝑠 | |𝑠𝑖 , 𝛾) ̸|= 𝜑 holds, while we have comp(𝑡𝑖 , 𝛾) |= 𝜑 .
As shown above, we then have comp(𝑠 | | 𝑠𝑖 , 𝛾) ̸|= 𝜓 as well. However, by construction of 𝜑 and
by the semantics of conjunction, we also have comp(𝑡𝑖 , 𝛾) |= 𝜓 , contradicting the assumption
that 𝑠 | | 𝑠𝑖 is dominant for𝜓 and 𝑐 | | 𝑐𝑖 .
Second, let there exist a strategy 𝑠𝑖 for 𝑐𝑖 such that 𝑠 | | 𝑠𝑖 is dominant for 𝜑 and 𝑐 | | 𝑐𝑖 .

Suppose that 𝑠𝑖 is not dominant for 𝜓 and 𝑐 | | 𝑐𝑖 . Then, there exists an input sequence 𝛾 ∈
(2𝑉 \(𝑂prev∪𝑂𝑖 ) )𝜔 and an alternative strategy 𝑡 for 𝑐 | | 𝑐𝑖 such that comp(𝑠 | | 𝑠𝑖 , 𝛾) ̸|= 𝜓 holds, while
we have comp(𝑡𝑖 , 𝛾) |= 𝜓 . As shown above, we then have comp(𝑡𝑖 , 𝛾) |= 𝜑 as well. However,
by construction of 𝜑 and by the semantics of conjunction, we also have comp(𝑠 | | 𝑠𝑖 , 𝛾) ̸|= 𝜑 ,
contradicting the assumption that 𝑠 | | 𝑠𝑖 is dominant for 𝜑 and 𝑐 | | 𝑐𝑖 . □

Hence, we can simplify the specifications for the individual synthesis tasks in incremental
synthesis under certain conditions outlined in this section. In particular, omitting conjuncts
that do not range over output variables of the considered component is always sound. That is,
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as long as the omitted conjuncts do not contain output variables of the considered component,
a strategy synthesized for the simplified specification is guaranteed to be dominant for the
full specification as well. Therefore, even if none of the conditions needed for completeness of
specification simplification is satisfied, it is valid to try to omit such conjuncts. If the synthesis
task for the simplified specification succeeds, then the strategy is guaranteed to be correct for
the full specification as well. Even though we cannot conclude non-admissibility of the full
specification if the synthesis task for the simplified one fails, we can iteratively add conjuncts
until either the synthesis task succeeds or the full specification is reached.

For instance, omitting conjuncts for a component 𝑐𝑖 that do not contain any output variables
of 𝑐𝑖 often succeeds even if for some output variable of 𝑐𝑖 , there exists an edge to some input
variable of the whole system in the transitive closure of the extended dependency graph, as
long as no edges to output variables of the system outside of 𝑐𝑖 ’s control exist. Although
admissibility of the simplified formula is then not guaranteed, there exist dominant strategies
for the specifications obtained from this kind of simplification in all our benchmarks (see
Section 6.6), where it was applicable. This is partly due to the observation that dependencies to
input variables that do not prevent admissibility of the full specification, also do not prevent
admissibility of conjuncts in many cases.

6.6. Experimental Evaluation
We have implemented a prototype of the incremental synthesis algorithm. It expects an LTL
specification as well as a decomposition of the system and a synthesis order as input. Our
prototype extends the bounded synthesis tool BoSy [FFT17] to the synthesis of dominant
strategies. Particularly, it utilizes Steiger’s rewriting-based approach [Ste13] as described in
Section 2.8.2. Furthermore, it converts the synthesized strategy from the Aiger circuit produced
by our extension of BoSy into an equivalent LTL formula that is added to the specification of the
next component. This encodes the synthesis task in line 7 of Algorithm 6.1 into the framework
of monolithic synthesis. The implementation order has been realized in the monolithic synthesis
framework by encoding a corresponding delay into the LTL specification.

We compare our prototype to the original version of BoSy on four scalable benchmarks. The
results are presented in Table 6.1. We used a machine with a 3.1 GHz Dual-Core Intel Core
i5 processor and 16 GB of RAM and a timeout of 60 minutes. The first two benchmarks, the
𝑛-ary latch and the generalized buffer, stem from the annual reactive synthesis competition
SyntComp [BEJ14, JBB+17b, JBB+15, JBB+16, JB16, JBB+17a, JBC+19, JPA+22]. The latch is
parameterized in the number of bits. The generalized buffer is parameterized in the number
of receivers. For a more detailed description of these benchmarks, we refer to [JBC+19]. For
the 𝑛-ary latch, both the semantic and the syntactic component selection algorithms identify 𝑛
separate components, one for each bit of the latch. For the generalized buffer, both decomposition
techniques identify two components, one for the communication with the senders and one
for the communication with the receivers. After simplifying the specifications by omitting
conjuncts that do not contain output variables of the considered component, we are able to
synthesize separate winning strategies for the components for both benchmarks, making use
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Table 6.1.: Experimental results on four scalable benchmarks. Reported is the parameter and
the synthesis time in seconds. The timeout is 60 minutes.

Benchmark Parameter BoSy Incremental Synthesis
n-ary Latch 2 2.61 4.76

3 3.66 6.58
4 11.55 8.74
5 TO 10.98
6 TO 12.52
. . . . . . . . .
1104 TO 3599.04

Generalized Buffer 1 37.04 5.08
2 TO 6.21
3 TO 66.03

Sensors 2 1.99 6.08
3 2.31 8.79
4 6.99 11.73
5 92.79 16.99
6 TO 43.50
7 TO 2293.85

Robot Fleet 2 2.49 6.25
3 TO 10.51
4 TO 269.09

of Theorem 6.10. Note that both the specification for the latch and the one for the buffer
induce dependencies to input variables. Thus, omitting the conjuncts is not complete in general.
For these specifications, however, it succeeds. The incremental synthesis approach clearly
outperforms BoSy’s classical bounded synthesis approach for the generalized buffer in all cases.
Particularly noteworthy is parameter 𝑛 = 2, for which BoSy does not terminate within one
hour, while incremental synthesis synthesizes a solution in less than seven seconds. For the
𝑛-ary latch, the advantage of incremental synthesis becomes clear from parameter 𝑛 = 4 on.
Encouragingly, incremental synthesis succeeds up to parameter 𝑛 = 1104, while BoSy already
fails in synthesizing a solution for parameter 𝑛 = 5 within one hour.

In addition to the𝑛-ary latch and the generalized buffer, we consider a benchmark describing𝑛
sensors and a managing unit. The latter requests and collects sensor data. The managing unit
may receive the direction to check the data of all sensors, denoted with the input variable check.
It may request the 𝑖-th sensor data using the output variable request𝑖 . The 𝑖-th sensor may
send data to the managing unit using the output variable data𝑖 . Hence, the system consists of a
single input variable, namely check, and 2𝑛 output variables, where the 𝑛 variables request𝑖 are
controlled by the managing unit, and the 𝑛 variables data𝑖 are controlled by the corresponding
sensors. Whenever the system receives the direction to check the data of all sensors, request𝑖
must be set to true eventually for all sensors. However, mutual exclusion of the requests needs
to be ensured as the managing unit utilizes a single wire for communicating from the managing
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unit to all sensors. Once sensor 𝑖 receives the direction to check its data via request𝑖 , it must
send its data eventually, utilizing output variable data𝑖 . Lastly, data can only be sent one step
after a request has been received. This ensures that data is not sent without request and,
together with the mutual exclusion of the requests, that mutual exclusion of data is guaranteed
as well, accounting for the existence of only a single communication wire from all sensors to
the managing unit. We formalize these requirements in the following LTL specification 𝜑 for a
system with 𝑛 sensors and their managing unit:

𝜑 =
∧

1≤𝑖≤𝑛

∧
1≤ 𝑗≤𝑛
𝑖≠𝑗

(request𝑖 → ¬requestj) ∧
∧

1≤𝑖≤𝑛
(check → request𝑖)

∧
∧

1≤𝑖≤𝑛
(request𝑖 → data𝑖) ∧

∧
1≤𝑖≤𝑛

(( data𝑖) → request𝑖),

For the sensor specification, the semantic decomposition algorithm identifies 𝑛 separate
components for the sensors as well as a component for the managing unit that depends on the
other components. For this decomposition, the incremental synthesis approach outperforms
BoSy from parameter 𝑛 = 5 on, i.e., if we consider five or more sensors. Most notably, for
parameter𝑛 = 6, incremental synthesis derives a solution in less than 45 secondswhileBoSy does
not terminate within one hour. The syntactic component selection technique, however, does not
identify the separability of the sensors from the managing unit due to the overapproximation
in the transitivity and derivation rules.
Lastly, we consider a benchmark describing a fleet of 𝑛 robots that must not collide with

another robot crossing their way. Upon receiving the starting signal, denoted with the input
variable ready, the additional robot starts moving. The 𝑖-th robot in the fleet may stop, move
left, or move right, denoted with the output variables stopi, lefti, or righti, respectively. The
additional robot outside the fleet may notify the 𝑖-th robot of the fleet, denoted with the output
variable robot_aheadi, that a collision is ahead if the fleet robot does not change its course. We
used the LTL specification 𝜑 = ( ¬ready) → 𝜓 for the robot fleet benchmark with 𝑛 robots
in the fleet and one additional robot, where

𝜓 =
∧

1≤𝑖≤𝑛
¬stopi ∧

∧
1≤𝑖≤𝑛

¬stopi ∧
∧

1≤𝑖≤𝑛
¬(lefti ∧ righti)

∧
∧

1≤𝑖≤𝑛
(ready → robot_aheadi)

∧
∧

1≤𝑖≤𝑛
(robot_aheadi → (lefti ∨ righti ∨ stopi)) .

The first two conjuncts ensure that the fleet robots start moving in the very first step and that
they move infinitely often. Mutual exclusion between moving left and right is established by
the third conjunct. Upon receiving the starting signal, a collision between the additional robot
and each fleet robot is ahead eventually, formalized by the fourth conjunct. This models that
the additional robot starts moving and crosses the way of each fleet robot. The fifth conjunct
then ensures that the fleet robots react by either moving left, moving right, or stopping if a
collision with the additional robot is ahead.
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Both the semantic and the syntactic techniques identify 𝑛 separate components for the robots
in the fleet as well as a component for the additional robot. The latter component depends on
the former ones. Incremental synthesis clearly outperforms BoSy from parameter 𝑛 = 3 on.
Most notably, it still synthesizes a solution in less than 10 seconds for parameter 𝑛 = 4, while
BoSy does not terminate within one hour anymore.

All in all, the results of our experimental evaluation clearly demonstrate the advantage of in-
cremental synthesis over classical monolithic synthesis approaches. Our prototype significantly
outperforms the bounded synthesis approach implemented in BoSy when the specifications
grow. Incremental synthesis is particularly beneficial for parameterized specifications, in which
increasing the parameter results in an increased number of components.

6.7. Summary
We have presented an incremental synthesis algorithm that reduces the complexity of syn-
thesis by decomposing large monolithic systems into several components. Unlike classical
compositional approaches, which aim at synthesizing strategies for the components completely
independently, our algorithm proceeds in an incremental fashion. In addition to the decom-
position of the system into components, it computes the order in which strategies for the
components should be synthesized. The synthesis task of a component can then rely on the
components with a lower rank in the synthesis order do not deviate from their strategies,
which have been synthesized previously. This allows for applying incremental synthesis also to
systems with more interconnected specifications for which the fully compositional synthesis
approach introduced in the previous chapter fails.
We have introduced two algorithms to select the components, one based on a semantic

dependency analysis of the output variables of the system and one based on a syntactic analysis
of the specification. Both decomposition techniques further define the order in which strategies
for the components are synthesized. Soundness and completeness of incremental synthesis are
guaranteed for the decomposition and synthesis order computed with both the semantic and
the syntactic decomposition algorithm. Furthermore, we have presented rules for simplifying
the specifications for the individual components while maintaining correctness of incremental
synthesis and, in particular, success of the individual synthesis tasks. We have implemented a
prototype of the incremental synthesis algorithm and compared it to the monolithic bounded
synthesis tool BoSy. Our experiments clearly demonstrate the advantage of incremental syn-
thesis over classical synthesis for larger systems as our prototype significantly outperforms
BoSy when the specifications grow.





Chapter 7

Conclusions

In this thesis, we have developed automated techniques for the compositional synthesis of both
distributed and monolithic reactive systems. Our algorithms automate the extensive manual
interventions that have so far been required from the developer for applying compositional
concepts to reactive synthesis.

Summary. For distributed systems, pinpointing what system processes need to know about
other processes and their behavior in order to be able to satisfy the specification is fundamental.
So far, identifying this knowledge and incorporating it into the synthesis tasks of the individual
processes has been primarily a manual task. We developed two approaches for automatically
deriving the required assumptions about other processes. For the first algorithm, we introduced
delay-dominance, a new requirement for strategies. Delay-dominance is a best-effort notion for
strategies that, in contrast to winning strategies, permits the violation of the specification in
certain situations. Intuitively, delay-dominance allows every process to implicitly assume that
the other processes will not maliciously violate the shared goal. We proved that it overcomes the
shortcomings of existing variants of dominance and is thus a suitable notion for compositional
synthesis. We presented a synthesis algorithm for delay-dominant strategies for monolithic
systems and extended it to a compositional synthesis approach for distributed systems. The
second algorithm relies on explicit assumptions on the concrete behavior of other processes.
It is thus suitable also for distributed systems with more complex inter-process dependencies.
Our approach automatically constructs valid assume-guarantee contracts between the system
processes, which provide essential information for the synthesis tasks of the individual processes.
The behavioral guarantees additionally enable modularity of the synthesized system, allowing
for safely exchanging process strategies as long as they still meet the contract.

For monolithic systems, one of the key challenges is to identify a suitable decomposition of
the single process of the system into several components that then constitute synthesis subtasks.
Until now, such independent components had to be recognized manually by the developer.
Therefore, we introduced two approaches for automatically identifying decompositions of
monolithic systems that ensure both soundness and completeness of their respective synthesis
algorithms. The first approach identifies completely independent components, i.e., components
for which separate synthesis tasks succeed without the need for making assumptions about
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the behavior of other components. Hence, an individual synthesis task is a classical monolithic
synthesis problem. Therefore, our decomposition algorithm can be seen as a preprocessing
technique for a wide range of existing synthesis approaches and tools. Furthermore, we demon-
strated the applicability of our approach to specifications of smart contracts, indicating that
our algorithms are particularly beneficial for specific domains. The second approach allows for
finding more fine-grained decompositions of a monolithic system than the first one. Similar to
our first approach for compositional distributed systems, it seeks dominant strategies rather
than winning ones, thus allowing for implicitly assuming that the other components will not
maliciously violate the shared goal. Furthermore, we employ an incremental rather than a
fully compositional synthesis algorithm. In incremental synthesis, we synthesize a dominant
strategy for a component under the assumption that previously synthesized components do
not deviate from their synthesized strategies. Hence, our second approach combines implicit
assumptions from dominant strategies with explicit assumptions on previously synthesized
components. The decomposition algorithm takes both the dominance of the desired strategies
and the incremental nature of the employed synthesis algorithm into account.
Our experimental evaluation shows that our compositional algorithms for both distributed

and monolithic synthesis automate the manual efforts that have previously been required
for compositional synthesis. Hence, they constitute fully automated compositional synthesis
algorithms. Furthermore, our approaches significantly outperform classical, non-compositional
synthesis algorithms on scalable benchmarks.

Conclusions and Future Directions. The algorithms introduced in this thesis are a fun-
damental step toward the compositional and, thus, more scalable synthesis of distributed and
monolithic reactive systems. They lay theoretical foundations in the areas of best-effort strate-
gies and assumption generation, as well as in sound and complete system decomposition for
different types of synthesis algorithms. Our prototype implementations demonstrate the prac-
tical potential of our algorithms. In particular, the fact that our decomposition algorithm for
entirely compositional synthesis of monolithic systems has been integrated into the most recent
release of state-of-the-art reactive synthesis tool ltlsynt [MC18, RSDP22] as a preprocessing
technique showcases the relevance of our work.
However, this thesis clearly does not complete the massive undertaking of compositional

reactive synthesis: none of the approaches introduced in this thesis is the one compositional
synthesis algorithm. Instead, all of them have their advantages and disadvantages and excel for
different system types and specification classes. Automatically constructing assume-guarantee
contracts for compositional distributed synthesis, for instance, is particularly beneficial for
systems with complex inter-process dependencies but small interfaces between the processes.
Utilizing delay-dominance for compositional synthesis of distributed systems, in contrast, is
fitting for large systems with many but not too complex inter-process dependencies. For
monolithic systems, decomposing the system into independent components for which winning
strategies can be synthesized separately only has an advantage over classical monolithic synthe-
sis algorithms if the system’s specification contains completely independent parts. Incremental
synthesis with dominant strategies, in contrast, allows for finding decompositions of specifica-
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tions that contain dependencies. However, both the decomposition and synthesis algorithms
are more complex than in the purely compositional monolithic synthesis approach. Hence,
which algorithm to choose highly depends on the considered system and its specification.

Consequently, identifying classes of systems and specifications for which the algorithms
introduced in this thesis perform particularly well is a logical next step. For instance, one could
think of identifying specific system architectures or LTL fragments that allow for efficient
usage of one of our compositional synthesis algorithms. Ideally, this can result in a guide-
line for developers on how they should design their system and how they should specify the
system requirements in order to allow for successful compositional synthesis. Furthermore,
restricting the specification to specific fragments, e.g., safety specifications or the GR(1) frag-
ment [PPS06, BJP+12, KP10] of LTL, has proven to result in more efficient non-compositional
synthesis procedures. Following this successful idea, the restriction of compositional synthesis
to particular system types and specification classes might allow for more targeted algorithms,
thus further increasing the efficiency and scalability.

In a similar direction, recognizing domains for which compositional synthesis approaches are
beneficial is a crucial step toward the applicability of synthesis and particularly compositional
synthesis in practice. Doubtlessly, there will always be large and highly interconnected systems
for which compositional synthesis approaches are not applicable in the sense that they do not
have an advantage over classical synthesis methods. However, there are, most likely, domains
for which compositional synthesis excels. For instance, we observed in our experimental
evaluation of the decomposition algorithm for monolithic systems that identifies completely
independent components that it performs particularly well on those benchmarks that stem from
the Syntroids [GHKF19] case study, the fully synthesized realization of an arcade game on an
FPGA. This indicates that hardware components might be a promising candidate for a suitable
domain for compositional synthesis. Similarly, as illustrated in Section 5.7, certain classes of
smart contracts frequently exhibit a natural decomposition into their temporal control flow and
the required actions for particular function calls.
An intriguing open research question is the existence of a semantic notion of dominance-

style strategies that ensures compositionality also for liveness properties. Both bounded dom-
inance [DF14] and delay-dominance, presented in this thesis, are syntactic notions as they
are defined on the structure of an 𝜔-automaton representing the specification. This has the
disadvantage that, for an LTL specification, there is not necessarily a unique answer to the
question of whether or not a strategy is bounded dominant or delay-dominant, respectively, as
this depends on the considered automaton. A semantic notion overcomes this weakness and
has thus the potential to induce a more elegant compositional synthesis approach.
Furthermore, research on the practical synthesis of remorsefree dominant strategies has,

so far, been limited. While algorithms for synthesizing such strategies exist [DF14, Ste13],
they rely on altering the automaton used for synthesis to recognize remorsefree dominant
rather than winning strategies. The automaton construction is easy to implement as it heavily
utilizes algorithms for constructing 𝜔-automata from LTL formulas, for which well-engineered
tools such as Spot [DLF+16, DRC+22] exist. However, it produces large intermediate automata
during construction, which can negatively affect the construction’s efficiency. Avoiding the
intermediate automata by immediately incorporating the concept of dominance into the au-
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tomaton construction instead of first making a detour over automata for winning strategies and
then obtaining dominance by universal projection might boost the performance of synthesis of
dominant strategies, which has an immediate impact on the performance of our incremental
synthesis algorithm for monolithic systems.

In summary, while this thesis lays the foundations for fully automated compositional synthesis
algorithms for distributed and monolithic systems, this line of research is far from complete.
Compositional synthesis is a mammoth task, and putting it into practice will require plenty
of further research. Exploring the research directions mentioned above, as well as advancing
the underlying tools for reactive synthesis and automata translations and manipulations, can
significantly increase the performance and the applicability of automatic compositional methods
for distributed and monolithic synthesis.
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