COMPOSITIONAL SYNTHESIS
OF REACTIVE SYSTEMS

A dissertation submitted towards the degree
Doctor of Natural Sciences (Dr. rer. nat.)
of the Faculty of Mathematics and Computer Science
of Saarland University

Noemi Estrid Passing

Saarbriicken, 2023

ii

Date of the Colloquium
Dean of the Faculty
Chair of the Committee

Examination Board

Academic Assistant

July 4, 2023
Prof. Dr. Jurgen Steimle
Prof. Dr. Benjamin Kaminski

Prof. Bernd Finkbeiner, Ph.D.
Prof. Dr. Werner Damm
Dr. Anne-Kathrin Schmuck

Dr. Hadar Frenkel

ABSTRACT

Synthesis is the task of automatically deriving correct-by-construction implementations from
formal specifications. While it is a promising path toward developing verified programs, it is
infamous for being hard to solve. Compositionality is recognized as a key technique for reducing
the complexity of synthesis. So far, compositional approaches require extensive manual effort.
In this thesis, we introduce algorithms that automate these steps.

In the first part, we develop compositional synthesis techniques for distributed systems.
Providing assumptions on other processes’ behavior is fundamental in this setting due to inter-
process dependencies. We establish delay-dominance, a new requirement for implementations
that allows for implicitly assuming that other processes will not maliciously violate the shared
goal. Furthermore, we present an algorithm that computes explicit assumptions on process
behavior to address more complex dependencies.

In the second part, we transfer the concept of compositionality from distributed to single-
process systems. We present a preprocessing technique for synthesis that identifies indepen-
dently synthesizable system components. We extend this approach to an incremental synthesis
algorithm, resulting in more fine-grained decompositions. Our experimental evaluation shows
that our techniques automate the required manual efforts, resulting in fully automated compo-
sitional synthesis algorithms for both distributed and single-process systems.

il

/ZUSAMMENFASSUNG

Synthese ist die Aufgabe korrekte Implementierungen aus formalen Spezifikation abzuleiten.
Sie ist zwar ein vielversprechender Weg fiir die Entwicklung verifizierter Programme, aber
auch dafiir bekannt schwer zu 16sen zu sein. Kompositionalitat gilt als eine Schliisseltechnik
zur Verringerung der Komplexitat der Synthese. Bislang erfordern kompositionale Ansatze
einen hohen manuellen Aufwand. In dieser Dissertation stellen wir Algorithmen vor, die diese
Schritte automatisieren.

Im ersten Teil entwickeln wir kompositionale Synthesetechniken fiir verteilte Systeme. Auf-
grund der Abhéangigkeiten zwischen den Prozessen ist es in diesem Kontext von grundlegender
Bedeutung, Annahmen iiber das Verhalten der anderen Prozesse zu treffen. Wir etablieren
Delay-Dominance, eine neue Anforderung fiir Implementierungen, die es erméglicht, implizit
anzunehmen, dass andere Prozesse das gemeinsame Ziel nicht boswillig verletzen. Dariiber
hinaus stellen wir einen Algorithmus vor, der explizite Annahmen tiber das Verhalten anderer
Prozesse ableitet, um komplexere Abhingigkeiten zu beriicksichtigen.

Im zweiten Teil ibertragen wir das Konzept der Kompositionalitat von verteilten auf Einzel-
prozesssysteme. Wir préasentieren eine Vorverarbeitungmethode fiir die Synthese, die unab-
héangig synthetisierbare Systemkomponenten identifiziert. Wir erweitern diesen Ansatz zu
einem inkrementellen Synthesealgorithmus, der zu feineren Dekompositionen fithrt. Unsere ex-
perimentelle Auswertung zeigt, dass unsere Techniken den erforderlichen manuellen Aufwand
automatisieren und so zu vollautomatischen Algorithmen fiir die kompositionale Synthese
sowohl fur verteilte als auch fiir Einzelprozesssysteme fithren.

ACKNOWLEDGEMENTS

I am very grateful to my advisor Bernd Finkbeiner for introducing me to the fascinating topic of
compositional reactive synthesis. I deeply appreciate his guidance and valuable advice during
the last few years as well as his insightful views on my research. The countless hours of thriving
discussions did not only shape this thesis but also let me grow personally.

I want to thank Bernd Finkbeiner, Gideon Geier, Philippe Heim, Jana Hofmann, Florian Kohn,
Kaushik Mallik, Stefan Oswald, Malte Schledjewski, Anne-Kathrin Schmuck, and Maximilian
Schwenger for the fruitful collaboration during our joint research endeavors. Many thanks go
to my colleagues Jan Baumeister, Raven Beutner, Norine Coenen, Arthur Correnson, Matthias
Cosler, Peter Faymonville, Hadar Frenkel, Michael Gerke, Christopher Hahn, Jesko Hecking-
Harbusch, Jana Hofmann, Swen Jacobs, Felix Klein, Florian Kohn, Sabine Nermerich, Niklas
Metzger, Mouhammad Sakr, Christa Schéfer, Malte Schledjewski, Frederik Schmitt, Maximilian
Schwenger, Julian Siber, Leander Tentrup, Hazem Torfah, Alexander Weinert, and Martin
Zimmermann from the Reactive Systems Group for all the discussions, coffee breaks, lunch
breaks, and delicious cakes. I am particularly thankful to my office mates Maximilian and
Matthias for all the fun and the shared love for office plants. I want to thank Werner Damm
and Anne-Kathrin Schmuck for their time and effort in reviewing this thesis and I sincerely
appreciate their constructive feedback.

I am grateful to Alexandra, Azin, Carolyn, Clara, Jana, Kathrin, Nathalie, Norine, and Sebastian
for making my time in Saarbriicken such a wonderful experience. Thank you for the countless
Tatort nights, girl’s nights, theatre visits, iCoffee breaks, knitting afternoons, walks at Staden,
dinners at St. Johanner Markt, and all the joint cooking events. Thank you for always having
my back and cheering me up when needed. Furthermore, I want to thank Anja, Jana, Kathrin,
and Susanne for almost twenty years of friendship and for never getting tired of asking what
my Ph.D. is about in almost every call.

I want to express my gratitude to my family for supporting me in every possible way and for
always believing in me. Finally, I owe special thanks to Jesko. Thank you for your unconditional
love and support through all these years. Thank you for your patience with me working late,
for listening to me when I desperately needed to talk about crazy cycle structures in alternating
co-Biichi automata on a Sunday evening, and for being the best rubber duck I can imagine. Your
never-ending encouragement was crucial for bringing this thesis into existence.

vii

CONTENTS

1. INTRODUCTION

2.

3.

1.1. The Reactive Synthesis Problem
1.2. Compositionality
1.3. Contributions
1.4. Publications
1.5. RelatedWork.,
1.6. Structure of This Thesis
FouNDATIONS
2.1. Notation,
2.2. Monolithic and Distributed Systems
2.3. Linear-time Properties
2.4. Linear-time Temporal Logic
25. w-Automatao oo 0oL
2.5.1. Nondeterministic and Universal w-Automata
2.5.2. Alternating w-Automata
2.5.3. Biichi and co-Biichi Acceptance Conditions .
2.6. System Models and Strategies
2.6.1. Finite-State Transducers
2.6.2. System Strategies
2.6.3. Winning and Dominant System Strategies . .
2.7. InfiniteGames
2.8. Reactive Synthesis 0oL
2.8.1. Bounded Synthesis
2.8.2. Synthesizing Remorsefree Dominant Strategies

DISTRIBUTED SYSTEMS

SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES
Compositional Synthesis with Dominance

3.1.

3.1.1.

Compositionality of Dominance for Safety Properties

—_ 00 A

14
21

25
25
25
27
28
28
29
30
31
34
34
40
42
43
45
45
49

ix

4.

II.

3.1.2. Dominant Strategies and Liveness Properties
3.2. Delay-Dominance
3.2.1. The Delay-Dominance Game
3.2.2. Delay-Dominance implies Remorsefree Dominance
3.3. Compositionality of Delay-Dominance
3.4. Synthesizing Delay-Dominant Strategies
3.4.1. Construction of the Basic ACA for Delay-Dominance
3.4.2. Construction of the UCA for Bounded Synthesis
3.5. Compositional Synthesis with Delay-Dominance
3.6, SUMMATY o C o e e e e e e e e e e e e

ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS
4.1. Running Example
4.2. Compositional Synthesis with Certificates
4.3. Synthesis with Deterministic Certificates
43.1. Modeling Certificates
4.3.2. Certifying Synthesis with Guarantee Transducers
4.4. Synthesizing Certificates L Lo
44.1. Local Strategies
4.4.2. Strategy Extension and Restriction
4.4.3. Identifying Valid Computations
4.4.4. Constraint System for Deterministic Certificates
4.5. Computing Relevant Processes
4.6. Nondeterminism in Guarantee Transducers
4.6.1. Synthesizing Nondeterministic Guarantee Transducers
4.6.2. Constraint System for Nondeterministic Certificates
4.7. Experimental Evaluation
4.7.1. Distributed Synthesis oL
4.7.2. Deterministic vs. Nondeterministic Certificates
4.8, SUMMATY oo e e e e e e

MONOLITHIC SYSTEMS

SYSTEM DECOMPOSITION FOR ASSUMPTION-FREE WINNING STRATEGIES

5.1. Modular Monolithic Synthesis

5.2. Language-based Independence Criterion
5.2.1. Non-contradictory Languages
5.2.2. Independent Sublanguages.
5.2.3. Independence Criterion

5.3. Independent LTL Specifications
5.3.1. Syntactic LTL Independence
5.3.2. LTL Decomposition Algorithm

61
64
65
71
75
88
39
99
103
105

107
109
111
115
115
116
124
125
129
139
147
151
159
160
165
167
167
170
173

5.4. Assumption Dropping for LTL Decomposition
5.4.1. Criterion for Assumption Dropping
5.4.2. LTL Decomposition with Assumption Dropping
5.5. Non-Strict Assumption Dropping
5.5.1. Assumption Dropping in the Presence of Conjuncts
5.5.2. Non-Strict LTL Decomposition Algorithm
5.6. Experimental Evaluation
5.7. Toward Compositional Smart Contract Synthesis.
5.7.1. Specifying Smart Contracts
5.7.2. Decomposition Smart Contract Specifications
5.8, SUMMATY e e e e e e e e

6. DEPENDENCY-BASED INCREMENTAL SYNTHESIS OF DOMINANT STRATEGIES
6.1. Running Example
6.2. Incremental Synthesis
6.2.1. SynthesisOrder
6.2.2. Incremental Synthesis Algorithm
6.3. Semantic Component Selection
6.3.1. Semantic Dependencies,
6.3.2. Semantic Decomposition Algorithm
6.3.3. Resolving Present Dependencies
6.4. Syntactic Component Selection L L.
6.4.1. Syntactic Dependencies
6.4.2. Syntactic Decomposition Algorithm
6.5. Specification Simplification Lo o o
6.6. Experimental Evaluation
6.7. SUMMATY o ittt e e e e e e e
7. CONCLUSIONS
BIBLIOGRAPHY
INDEX

235
237
239
240
242
246
248
252
259
262
262
270
282
286
289

291

295

317

Xi

Chapter 1

INTRODUCTION

Over the last decades, computer systems have evolved into a part of the fabric of life. Nowadays,
we are surrounded by digital systems and interact with them on numerous occasions every day.
We greatly benefit from the tremendous technological advances as they allow us, for instance, to
place our lives in the hand of medical systems such as heart-lung machines or cardiac pacemaker
devices, to fly with airplanes that allow the pilot to rely on the support of an extensive autopilot
system, and to even let the vision of the far-reaching use of self-driving vehicles seem realistic.
As most of our critical infrastructure depends on computer systems today, the dependability
and robustness of such safety-critical systems are indispensable.

More and more of these systems are of a reactive nature. Instead of receiving a single input
and computing an output based on it, they continually interact with their environment and
run for an indefinite time, resulting in an infinite input-output-behavior. Typical examples for
such reactive systems [HP84] are hardware circuits, embedded devices, and communication
protocols. The infinite behavior and, in particular, the possible need for both repeating tasks
and attending to tasks only triggered by inputs renders the development of correct reactive
systems particularly challenging [HP84].

Formal methods are a branch of computer science that addresses the provable correctness of
systems, including reactive systems. It aims at developing automated techniques for proving
that a system satisfies specific properties — called verifying a system — as well as for constructing
systems that inherently satisfy specific properties — called synthesizing a system. Synthesis is
an up-and-coming technique for developing formally verified programs as it eliminates the
need for manual, and thus error-prone, implementation tasks. It allows a developer to focus
on what a system should do instead of how it should be done. Furthermore, synthesis is able
to detect contradictory system specifications, which prevent the existence of an implementa-
tion that realizes them, early in the design process. In such situations, synthesis provides a
counterexample, which can guide the developer in refining the specification.

Naturally, synthesis is thus one of the grand visions of computer science. It was first formu-
lated by Alonzo Church in the late 1950s [Chu57] and has been an intriguing challenge ever since.
In the last decade, there have been breakthroughs in terms of practical applications of synthesis,
such as the synthesis of a controller for the AMBA AHB bus protocol [BGJ*07, Job07, GCH13,
BJP*12], an industrial standard for the on-chip communication of functional blocks in system-

2

1. INTRODUCTION

on-a-chip devices. Moreover, several tools (see, e.g., [FFRT17, MSL18, MC18, RSDP22, Kha21])
that automatically construct correct implementations from formal specifications have been
developed. Since 2014, these synthesis tools compete in the annual reactive synthesis com-
petition SynTComp [BEJ14] on, today, roughly 1000 standard benchmarks. Until today, the
synthesis competition heavily facilitates the development of synthesis tools. Despite these
recent advances, the vision of synthesis is far from becoming a reality: the success stories
are limited to relatively small systems, and currently available synthesis tools do not scale to
complex system designs as commonly used in today’s practice.

Verification, in contrast, scales to much larger and more complex systems. Consequently, it
has already proven its applicability in industry (see, e.g., [HSLL97, BDG*04, CGP02, JGK*15]).
Compositionality has long been recognized as the key technique that makes a “significant differ-
ence” [dRLP98] for the scalability of verification algorithms. Compositional approaches break
down the analysis of a complex system into several smaller tasks over individual components,
which can then be solved independently. Afterward, the individual analysis results can be
recomposed into a solution for the entire system. Naturally, applying compositional techniques
to synthesis is thus a promising path to pursue.

In synthesis, however, developing successful compositional algorithms has proven much
more challenging. In a nutshell, synthesis seeks an implementation that satisfies the given
specification for all behaviors of the system’s environment. In compositional synthesis, we seek
an implementation of an individual system component that satisfies the specification for all
behaviors of the component’s environment. The component’s environment also includes the
remaining components of the system. Thus, we consider the other components to be adversarial.
However, a component implementation that satisfies the specification for all behaviors of
the component’s environment rarely exists: such an implementation needs to guarantee the
satisfaction of all system requirements — even of those that specify the behavior of other parts
of the system — irrespective of whether or not the other components cooperate in the goal
of satisfying the system specification. In practice, the satisfaction of the requirements for the
whole system usually cannot be guaranteed by one component alone but requires collaboration
between several components. For successful compositional synthesis, it is, therefore, crucial to
identify the connections between system components and their dependencies induced by the
system requirements. The critical question is what a component needs to know about other
components and their behavior in order to be able to satisfy the specification for all behaviors
of its environment. So far, identifying this knowledge and including it in the synthesis tasks for
the individual components has been a manual task. We develop techniques that automate the
extensive manual effort and address the question from two angles.

In the first part of this thesis, we focus on distributed systems, i.e., systems that inherently
consist of several components, so-called processes. The distributed synthesis problem seeks
implementations for all processes such that their composition satisfies the given system specifi-
cation. Due to the challenges outlined above, synthesizing implementations for the individual
processes separately often does not succeed. Therefore, classical distributed synthesis algo-
rithms rely on directly synthesizing an implementation for the whole system, thus considering
the composition of the processes. We introduce two approaches that, in contrast, enable compo-
sitionality for distributed synthesis. The first technique relies on weakening the requirement

posed on implementations. Instead of implementations that satisfy the given specification in
every situation, we are interested in best-effort implementations, which are allowed to violate
the specification in certain situations. Intuitively, such an implementation “gives its best” to
meet the goal but is not guaranteed to do so. When carefully designing best-effort notions,
the satisfaction of the overall system specification can still be ensured when using best-effort
implementations for all processes. We introduce a notion of best effort for implementations,
called delay-dominance, together with an automaton-based criterion such that whenever the
criterion is satisfied, the best-effort notion induces a sound compositional synthesis algorithm
for distributed systems. Utilizing best-effort implementations allows for posing an implicit as-
sumption on the other processes, namely that they will not maliciously violate the specification.
As the strategies for all processes are best-effort strategies, this implicit assumption is satisfied.
For systems with complex interconnections between the processes, however, this implicit as-
sumption does not suffice. Instead, more sophisticated assumptions on the concrete behavior of
other processes might be necessary. We thus introduce a second technique for compositional
distributed synthesis that automatically derives additional guarantees on the behavior of every
process. These guarantees, so-called certificates, then provide essential information for the
individual synthesis tasks: an implementation is only required to satisfy the specification if the
other processes do not deviate from their guaranteed behavior.

In the second part of this thesis, we transfer the concept of compositional synthesis from
distributed systems to systems consisting of a single process, so-called monolithic systems. The
most challenging task in compositional monolithic synthesis is the decomposition of the system
into smaller components. For distributed systems, the individual processes naturally serve as
these components. For monolithic systems, however, suitable decomposition algorithms are
necessary. As the success of compositional synthesis highly depends on the decomposition, we
introduce two algorithms for selecting components. The first technique focuses on computing
a decomposition such that, given a realizable specification for the system, the synthesis tasks
for the individual components are guaranteed to succeed. For unrealizable specifications, our
approach guarantees that the synthesis task for at least one component fails. The decomposition
thus preserves both realizability and unrealizability. Moreover, our approach does not utilize any
assumptions about the other components’ behavior whatsoever. Therefore, the synthesis tasks
for the resulting components can be performed immediately by classical monolithic synthesis al-
gorithms. Due to its potential of revolutionizing monolithic reactive synthesis, the developers of
the synthesis tool LTLsYNT [MC18] have integrated our decomposition algorithm into their most
recent release [RSDP22], which successfully competed in the synthesis competition SyNTCOMP.
However, our decomposition algorithm only identifies multiple components if the specification
consists of separate parts without any dependencies between each other. To also enable the
use of compositional methods for monolithic synthesis for more complex specifications, we
introduce a second decomposition algorithm that again utilizes best-effort implementations.
This allows for finding independent implementations in more cases. Furthermore, we base
the second approach on an incremental rather than a fully compositional synthesis algorithm,
allowing components to rely on concrete implementations for previously synthesized compo-
nents. The technique thus combines implicit assumptions on other components, stemming from
the use of best-effort implementations, with explicit assumptions on the concrete behavior of

4

1. INTRODUCTION

previously synthesized components, stemming from the incremental nature of the synthesis
algorithm. Combining both assumption types increases the number of individual components
derived by the algorithm, thus resulting in more fine-grained system decompositions.

For both distributed and monolithic systems, the algorithms and techniques introduced in
this thesis automate the manual efforts that have previously been required for compositional
synthesis. We, therefore, obtain fully automated compositional synthesis approaches for dis-
tributed and monolithic systems, which render the developer’s manual intervention obsolete. In
an experimental evaluation, we show that our compositional approaches outperform classical,
non-compositional synthesis algorithms significantly.

This thesis builds upon a range of concepts, such as reactive synthesis in both its distributed
and monolithic form and compositionality. We elucidate these concepts in the following sections
to highlight the main contributions of this thesis in more detail afterward.

1.1. THE REACTIVE SYNTHESIS PROBLEM

Synthesis is one of the pillars of formal methods. It is the task of automatically deriving a
correct-by-construction implementation for a system from a formal system specification. As it
eliminates the need for manual, and thus error-prone, implementation tasks, it has the potential
to revolutionize the process of developing correct systems. First formulated by Alonzo Church
more than 60 years ago [Chu57], synthesis never lost its fascination and is still considered to be
the grand vision of formal methods.

Formally, the synthesis problem asks whether there exists an implementation that satisfies
a given formal specification and, if so, derives such an implementation. A synthesized imple-
mentation is correct by construction, i.e., it inherently satisfies the specification in all possible
situations. If no implementation exists, a counterexample, which prevents the existence of any
realizing implementation, is derived. This allows for detecting contradictory specifications early
in the design process and guides the developer in refining the specification.

In this thesis, we focus on a particular class of systems, so-called reactive systems [HP84].
They continually interact with their environment and run for an indefinite amount of time. The
interface of a reactive system is defined by a set of inputs, which model the environment behavior,
and a set of outputs, which model the system behavior. Typical examples of reactive systems
are hardware circuits, embedded controllers, and communication protocols. Consequently, we
consider reactive synthesis, which seeks implementations of reactive systems that inherently
satisfy the given formal specification, in the following. In general, we distinguish between
distributed systems, which consist of several components, so-called processes, and monolithic
systems, which consist of a single process. While we consider both types of reactive systems in
this thesis, the remainder of this section focuses on monolithic systems as the reactive synthesis
problem and its early solutions have been developed with single-process systems in mind.

The reactive synthesis problem was solved independently by Biichi and Landweber [BL69],
utilizing a game-based approach, and Rabin [Rab72], utilizing an automata-based approach.
In this thesis, we focus on the former one. It relies on the observation that synthesis can
be conceived as a game between a system player and an environment player. The system

1.1. THE REACTIVE SYNTHESIS PROBLEM

player tries to satisfy the specification, while the environment player tries to violate it. The
environment is thus interpreted to be adversarial. It is not limited other than in the alphabet of
the inputs. The game proceeds in rounds. In each round of the game, the environment player
first produces a valuation of the system’s input variables to which the system has to react. Then,
the system player chooses a valuation of the output variables in response to the inputs. Playing
the game round by round results in an infinite sequence of valuations of both input and output
variables. If this sequence satisfies the specification, then the system player wins. Otherwise,
the environment player wins. Both players can observe the history of valuations played in the
previous round and may base their decisions on these. The synthesis task is then to construct a
strategy for the system player that defines how to choose the valuations of output variables
in each step such that, for every behavior of the environment player, the system player wins
the game. Such a strategy is called winning. A finite representation of a winning strategy then
implements the reactive system. The specification is realizable for the considered system if a
winning strategy for the system player exists. Otherwise, it is unrealizable.

In this thesis, we focus on specifications given in linear-time temporal logic (LTL) [Pnu77],
arguably one of the most standard logics for describing reactive systems. Fur such system
specifications, early synthesis algorithms relying on the game-based synthesis approach employ
explicit game-solving. First, the LTL specification is translated into an equivalent nondeter-
ministic Biichi automaton [VW94]. Afterward, the automaton is determinized [Saf88] and
translated into an infinite two-player game between the system and the environment. There,
every state is controlled by either the environment player or the system player and represents
their possible choices of valuations of input or output variables, respectively. Environment
states and system states alternate. Solving the two-player game determines whether the system
player has a winning strategy. Whenever such a strategy exists, the system player also has a
memoryless winning strategy, i.e., a strategy independent of the game’s history except for the
last state [EJ91]. Memoryless strategies are finitely representable. Hence, if the system player
wins the game, it also has a winning strategy from which an implementation of the reactive
system that inherently satisfies the specification can be derived.

While the vision of synthesis is tantalizing and elegant theoretical solutions exist, the syn-
thesis problem is infamous for being hard to solve. For LTL specifications, for instance, it is
known to be 2EXPTIME-complete [PR89a]. Despite the high complexity, there has been tremen-
dous progress toward practical solutions. Several optimizations of the automaton construction
have been introduced [SB00, GO01, BKRS12]. Exploiting the structure of the specification to
construct relevant parts of the game on the fly and to reuse previous inconclusive solution
attempts [MSL18, LMS20] has improved the performance of explicit game-based synthesis ap-
proaches significantly. Orthogonally, the development of safraless decision procedures [KV05],
which avoid Safra’s complicated determinization procedures for automata, has given rise to
symbolic synthesis tools [Ehl11, BBF*12]. They represent the state space of the game sym-
bolically with, for instance, bounded decision diagrams (BDDs) [Ehl12] or antichains [FJR09].
Bounded synthesis [FS13] further improves the safraless approaches by bounding the size of the
implementation to be synthesized and by iteratively increasing the bound until an implementa-
tion that realizes the specification is found. This ensures that size-optimal implementations
are synthesized. Additionally bounding the number of cycles in the implementation to be

6

1. INTRODUCTION

synthesized yields structurally simpler results and thus improves the understandability of the
synthesized implementations [FK16, FK17]. A different line of research focused on restricting
the type of specification to fragments of LTL that allow for efficient synthesis algorithms. Most
successfully, the GR(1) fragment [PPS06, BJP*12, KP10], which assumes the LTL formula to be
split into a set of assumptions and a set of guarantees and for which polynomial time synthesis
algorithms exist, has found many applications in practice.

The extensive research on reactive synthesis has led to a broad landscape of tools for synthesis
from LTL specifications (see, e.g., BoSy [FFRT17], STrix [MSL18], LTLSYNT [MC18, RSDP22],
and spr-HoA [Kha21]). Since 2014, the annual reactive synthesis competition SynTComp [BE]14,
JBB*17b, JBB*15, JBB*16, JB16, JBB*17a, JBC*19, JPA*22], in which the participating tools
compete on, today, roughly 1000 standard benchmarks, facilitated the development of synthesis
tools. Furthermore, synthesis has been successfully applied to industrial systems such as the
AMBA AHB bus protocol, an industrial standard for the on-chip communication of functional
blocks in system-on-a-chip designs [BGJ*07, Job07, GCH13, BJP*12].

Despite these milestones, however, the reactive synthesis tools lack scalability for large and
complex systems. Furthermore, the success stories in practical synthesis applications are limited
to selected, rather small examples whose specifications fall into “synthesis-friendly” fragments
of LTL. For more detailed introductions to the reactive synthesis problem and the history of its
solutions, see, for example, [Tho09, Fin16, BCJ18].

Synthesis of Distributed Systems. Given the advances in monolithic reactive systems, it is
a natural next step to consider more complex multi-process systems. Distributed systems consist
of several processes that repeatedly interact with each other and the system’s environment. The
system’s processes cooperate to achieve a shared goal: ensuring that the requirements for the
entire system are satisfied. The cooperation might be based on limited local knowledge about
the global state of the system. The processes of a distributed system and their communication
interfaces, i.e., which processes can communicate with each other through which variables,
are defined by an architecture. In particular, an architecture thus defines which system and
environment variables a process can observe. In monolithic synthesis, the specification refers
to the inputs and outputs of a single-process system. By definition, the outputs are controlled
by the system and the inputs are observable. This results in a game with perfect information. In
distributed synthesis, in contrast, a process might not be able to observe all global system input
but only a subset of them, resulting in a game with incomplete information [KV00].
Distributed synthesis is a generalization of monolithic synthesis. Given a specification of the
behavior of the whole system, the task is to derive a set of implementations, one for each system
process, such that their parallel composition satisfies the overall system specification. The
distributed synthesis problem was introduced by Pnueli and Rosner, who also showed that the
problem is, in general, undecidable [PR90]. The undecidability result has been extended to spec-
ifications that fall into the syntactic safety and reachability fragments of LTL [Sch14]. However,
distributed synthesis is known to be decidable for some architectures such as pipelines [PR90],
chains, and one-way rings [KV01]. The architecture-specific decidability results have been
generalized to a comprehensive criterion, the existence of so-called information-forks, that

1.1. THE REACTIVE SYNTHESIS PROBLEM

characterizes all architectures with an undecidable synthesis problem [FS05]. Intuitively, an in-
formation fork is a situation in which two processes receive information from the environment,
directly or indirectly, such that they cannot completely deduce the information received by the
other process. Thus, thee processes cannot be ordered according to their informedness.

Both automata-based [KV01] and game-based [MWO03] synthesis algorithms have been pro-
posed for pipeline and ring architectures. More generally, for architectures without information
forks, the distributed synthesis problem can be solved by iteratively eliminating processes
from the architecture in the order of growing informedness. However, the complexity of this
approach is nonelementary in the number of processes [FS05]. Despite the theoretical solutions,
there thus do not exist tools that are capable of automatically synthesizing implementations for
the processes of a distributed system from general LTL specifications until now.

In the classical Pnueli/Rosner setting considered above, the processes of a distributed system
run synchronously, i.e., all processes make their moves simultaneously. Alternatively, one can
consider an asynchronous setting [PR89b], in which each process can progress at an individual
rate and can wait for other processes for synchronization when needed. Commonly, processes
interact through shared variables in the synchronous setting, while a causal memory model is con-
sidered in the asynchronous setting. In the causal memory model [GLZ04a, GLZ04b, MTY05], all
processes that are involved in a synchronization via a shared event exchange their entire causal
history. Therefore, the involved processes have the exact same information in the particular
moment of synchronization. All other processes remain uninformed. Distributed synthesis for
asynchronous systems with causal memory is often formalized with games [GGMW 13] based on
Zielonka’s asynchronous automata [Zie87], to which we refer as control games in the following.
In control games, actions are either controllable or uncontrollable and can thus be restricted
by all or none of the involved players. The players aim at fulfilling an objective against all
possible unrestricted behavior together. For the special case of acyclic architectures, distributed
synthesis with control games is decidable [MW14]. However, as in the synchronous setting, the
complexity is nonelementary in the number of processes. Decidability results for control games
have also been obtained for restrictions on the synchronization behavior [MT02, MTY05] or on
the dependencies of actions [GLZ04b], and for decomposable games [Gim17]. Recently, general
undecidability has been shown for six processes [Gim22].

Petri games [FO17] are a variant of the distributed synthesis problem for asynchronous
systems with causal memory, where the processes of the distributed system are tokens on a
Petri net (see, e.g., [NPW81, Rei85, Old91]). The processes synchronize when they participate
in joint transitions. Similar to control games, the processes share their entire causal past,
including previous synchronizations, upon synchronization. The environment is also modeled
with tokens, and a system process can learn about the history of an environment process
when synchronizing with the corresponding environment token. The equivalence of control
games and Petri games has been established, and exponential upper and lower bounds for the
translation in both directions have been provided [BFH19]. For safety objectives and systems
with either a single environment token and a bounded number of system tokens [FO17] or
a single system token and a bounded number of environment tokens [FG17], the synthesis
problem for Petri games is decidable. Further decidability and undecidability results have been
obtained for Petri games with global winning conditions [FGHO22].

8

1. INTRODUCTION

The concept of bounded synthesis, i.e., searching for size-optimal solutions, has also been
applied to Petri games [Fin15, FGHO17]. Bounded synthesis has been extended to true concur-
rency, which allows for utilizing the concurrent nature of Petri games [HM19]. There exists an
online interface for bounded synthesis for Petri games [GHY21]. In this thesis, however, we
focus on the synchronous Pnueli/Rosner setting for distributed synthesis.

1.2. COMPOSITIONALITY

In many fields of computer science, the principle of compositionality has proven to be an
essential technique to obtain scalability. Compositional approaches break down a complex
problem into smaller subproblems that are easier to solve. The solutions for the subproblems
are then combined into a solution for the entire system. Already in the 1940s, divide-and-
conquer algorithms such as the famous merge sort, invented by John von Neumann (see, e.g.,
[Knu73]), utilized the concept of compositionality. The advantages of compositionality have
been recognized, for instance, in the design of cyber-physical systems [Tri16] as well as security
protocols [Cre04]. Researchers extensively study and discuss the concept of compositionality
as well as its applicability to and impact on various fields of computer science until today. For
instance, dedicated workshops on compositionality in computer vision [JKA*20] and artificial
intelligence [MM22] exist, to name just a few.

In the area of formal methods, compositionality had a strong influence on the applicability
of formal verification in practice. It has long been recognized that compositionality is the
key technique that makes a “significant difference” [dRLP98] for the scalability of verification
algorithms. The main idea of compositional verification is to break down the analysis of a
large and complex system into multiple smaller verification tasks (see, e.g., [GNP18, dRABH"01,
CLM89]). A local task then examines a single component of the system, abstracting the rest
of the system into an assumption. The key technique of compositional verification is assume-
guarantee reasoning [MC81, Jon83, Pnu84], which, given a decomposition of the system into
components, associates each component with an assumption on its input and a guarantee on its
output. The assumptions capture the connections and interdependencies between the system
components. Although identifying a suitable decomposition as well as the assumptions and
guarantees by hand has proven to be challenging (see, e.g., [Lam97]), it has been a manual task
for decades. More recently, algorithms for automatic system decomposition [MWW08] and
assumption generation [CGP03, GPB02, NMA08, SC07, GMF08, FSB06, FPS08] for compositional
verification via assume-guarantee reasoning have been developed.

There has been extensive research on compositional verification in different settings. Composi-
tional verification techniques has been considered for finite-state hardware controllers [CLM91]
but also for infinite-state systems [McM99, DGMO03]. There exist algorithms for composition-
ally verifying, for instance, concurrent [dRABH"01, LT91, LMM21], real-time [Ho091, dRH89,
CMP94, LL95], hybrid [Pla11, ABB16], parameterized [FMS97, BR06, NT16], and probabilis-
tic [LS92, FKP10] systems as well as protocols [LM92, ZH95, ACG*08]. Success stories of
compositional verification include model-checking a processor microarchitecture [JM01], the
parameterized verification of the FLASH cache coherence protocol via compositional model

1.2. COMPOSITIONALITY

checking [McMO01], the verification of a communication protocol for remotely operated vehi-
cles [GM09], and, in combination with bounded model checking [BCCZ99, Bie21], discovering
bugs in widely deployed software [CDS13].

Compositional Synthesis. Inspired by the success of compositional verification, applying
compositional techniques to synthesis is naturally a promising path to pursue. However, devel-
oping successful compositional algorithms has proven much more challenging in synthesis than
in verification. Recall that synthesis seeks a winning strategy for the system player in the game
against the system’s environment. Hence, if the system behaves according to a synthesized
strategy, then it satisfies the specification for every environment behavior. In compositional
synthesis, we consider individual components of the system in their environment. A compo-
nent’s environment particularly includes, in addition to the entire system’s environment, the
remaining components of the system. Therefore, we aim for a winning strategy for the player
that controls the component’s parts of the system in the game against not only the system’s
environment but also the remaining system components. Consequently, we consider the other
components of the system to be adversarial.

However, a winning strategy in the synthesis task of an individual system component rarely
exists: such a component strategy needs to guarantee the satisfaction of all system requirements
for the entire system — even of those that specify system behavior outside of the control of
the considered component - irrespective of whether or not the other system components
cooperate in the goal of satisfying the full system specification. In practice, the satisfaction of
the requirements for the entire system usually cannot be guaranteed by one component alone
but requires collaboration between several components. Therefore, the individual components
need to rely on assumptions about the other behavior of the other system components to be
able to ensure that all requirements for the system are satisfied.

Based on this observation, Chatterjee and Henzinger introduced assume-guarantee synthe-
sis [CHO7] in 2007. It relies on the concept of assume-guarantee contracts, which establish
an agreement between the system components on their behavior. A component provides a
guarantee on its own behavior and, in return, makes an assumption on the behavior of the other
components of the system. A strategy for a component is then required to satisfy the specifi-
cation under the hypothesis that the other components respect the established assumptions
formalized in the assume-guarantee contract while not deviating from its own guarantee. If such
strategies exist for all system components, and if, for each component, its guarantee implies the
assumptions made by other components on the behavior of the considered component, then a
solution for the whole system is found. The parallel composition of all component strategies is
then guaranteed to satisfy the specification of the entire system.

The concept of assume-guarantee synthesis has ignited plenty of research on synthesis with
assume-guarantee contracts. There exist several algorithms for different variants of assume-
guarantee synthesis [CH07, GK13, AMT15, BCJK15, BRS17, AKRV17]. Most of them, however,
rely on the user to provide the assume-guarantee contracts or require that a strategy profile, on
which the components can synchronize, is constructed prior to synthesis. Therefore, extensive
manual efforts are required to use most assume-guarantee synthesis algorithms. Assume-

10

1. INTRODUCTION

guarantee distributed synthesis [MMSZ20], in contrast, circumvents the manual efforts by
utilizing the concept of environment assumptions [CH07], which was initially introduced in
the context of centralized reactive synthesis. This algorithm for assume-guarantee synthesis
for distributed systems negotiates the assume-guarantee contract iteratively. In each iteration,
it computes minimal environment assumptions according to [CHO07] for each process of the
distributed system and uses these assumptions as additional constraints on the behavior of
the other components. In this way, the assumptions and guarantees of the system processes
are refined until a valid assume-guarantee contract is found. The negotiation procedure is not
guaranteed to terminate. In this assume-guarantee approach, assumptions are restricted to
safety formulas describing the concrete behavior of the other system processes.

Preventing the need for constructing explicit assumptions on the other processes’ behavior,
synthesis with weaker strategy requirements than winning has been considered [FKL10, KPV14,
CFGR16, DF11, DF14, DFR16, BRS17, AK20, LTVZ21]. In this thesis, we focus on the notion of
remorsefree dominance [DF11]. Instead of requiring a strategy to satisfy the given specification
in every situation, remorsefree dominance only requires a strategy to satisfy the specification
in situations that are realistic in the sense that they might actually occur when components
that all do their best to ensure the shared goal interact. More precisely, a remorsefree dominant
strategy is allowed to violate the specification as long as no other strategy would have satisfied
in the same situation, i.e., for the same environment behavior. In other words, if the violation of
the specification is the fault of the component’s environment, we do not blame the component
for preventing the fulfillment of the shared goal of satisfying the overall system requirements.
Hence, remorsefree dominance is a notion of best effort for strategies. A remorsefree dominant
strategy, intuitively, “gives its best” to satisfy the specification; however, the satisfaction of the
specification is not necessarily guaranteed. This corresponds to posing implicit assumptions on
other components, namely that they will not maliciously violate the specification.

For safety specifications, a specific type of formal specifications that intuitively capture that
“nothing bad happens” [Lam77], it has been shown that the parallel composition of remorsefree
dominant strategies is again remorsefree dominant [DF14]. This property is called the com-
positionality of remorsefree dominance for safety properties. This observation immediately
induces a compositional synthesis algorithm [DF14] for safety specifications that synthesizes
remorsefree dominant strategies for the processes of a distributed system separately and then
composes them to obtain a strategy for the entire system. Since remorsefree dominance is
compositional for safety properties, the resulting system strategy is guaranteed to be remorse-
free dominant. If the system specification is realizable, it follows that the compositionally
synthesized strategy is also winning. However, the existence of remorsefree dominant strategies
for the components is not always guaranteed. Furthermore, for more general specifications,
soundness of the compositional synthesis algorithm cannot be guaranteed.

Bounded dominance [DF14] is a variant of remorsefree dominance that ensures compositional-
ity not only for safety specifications but also for liveness specifications, which intuitively capture
that “something good eventually happens” [Lam77]. Intuitively, bounded dominance reduces
every specification to a safety property by introducing a measure of the strategy’s progress
with respect to the specification and by bounding the number of non-progress steps, i.e., steps
in which no progress is made. While bounded dominance thus induces a sound compositional

1.3. CONTRIBUTIONS

synthesis algorithm for general specifications, it has two major disadvantages. First, it requires
a concrete bound on the number of non-progress steps, which is often challenging to determine.
Second, not every bounded dominant strategy is dominant. If the bound is chosen too small,
every strategy, also a non-dominant one, is trivially bounded dominant. Hence, it cannot be
guaranteed that, for realizable specifications, the parallel composition of individually synthe-
sized bounded dominant strategies is winning. Consequently, bounded dominance is not an
optimal notion for compositional distributed synthesis.

1.3. CONTRIBUTIONS

In this thesis, we develop fully automated techniques for the compositional synthesis of reactive
systems. They render the extensive manual efforts, which have been required for utilizing com-
positional concepts in synthesis so far, unnecessary and circumvent the disadvantages of existing
approaches. In the first part of this thesis, we focus on distributed systems and introduce algo-
rithms for automatically deriving implicit and explicit assumptions on process behavior. In the
second part of this thesis, we transfer the concept of compositional synthesis from distributed
systems to monolithic systems and present suitable decomposition algorithms. We introduce
approaches based on winning and best-effort strategies for both types of systems.

Implicit Assumptions for Distributed Synthesis. We present a new requirement for
system strategies, called delay-dominance, that formalizes a notion of best effort while circum-
venting the weaknesses of both remorsefree dominance and bounded dominance. It introduces
a progress measure on strategies with respect to a specification given as an alternating co-
Biichi automaton. Based on this measure, delay-dominance then relates non-progress steps
in a delay-dominant strategy to non-progress steps in an alternative strategy. We show that
every delay-dominant strategy is also remorsefree dominant, resulting in the crucial property
that, for realizable specifications, every delay-dominant strategy is winning. Furthermore,
we introduce a criterion for specifications given as alternating co-Biichi automata such that
compositionality of delay-dominance is guaranteed if the criterion is satisfied. We present a
three-step construction of a universal co-Biichi automaton from an LTL formula that recognizes
delay-dominant strategies. We show that the resulting automaton is of single-exponential size
in the squared length of the LTL formula and can be used immediately for safraless synthesis
approaches [KPV06] to synthesize delay-dominant strategies, yielding the result that synthesis
of delay-dominant strategies is in 2EXPTIME. Based on delay-dominance, we introduce a com-
positional synthesis algorithm for distributed systems that utilizes implicit assumptions on the
behavior of other system processes.

Explicit Assumptions for Distributed Synthesis. We introduce a compositional synthesis
algorithm, called certifying synthesis, that, in addition to the strategies for the system processes,
automatically derives guarantees, so-called certificates, on the behavior of every process. The
certificates of the system processes constitute an assume-guarantee contract, thus providing
essential information to the synthesis tasks for the individual processes. Our algorithm is an

11

12

1. INTRODUCTION

extension of bounded synthesis for monolithic systems [FS13] that incorporates the additional
search for certificates into the synthesis task for the individual process strategies. We introduce
two representations of certificates, as LTL formulas and finite-state machines. We prove the
soundness and completeness of our synthesis algorithm for both of them. Furthermore, we
present an approach for determining which processes are relevant for the considered one in the
sense that assumptions on their behavior are required for a successful synthesis task. In this
way, the number of considered certificates is reduced for each system process while soundness
and completeness of certifying synthesis are preserved. Focusing on certificates represented
by finite-state machines, both deterministic and nondeterministic ones, we reduce certifying
synthesis to a SAT constraint-solving problem. We have developed a prototype of certifying
synthesis and compared it to non-compositional distributed synthesis algorithms, showcasing
the significant advantage of certifying synthesis for larger systems.

Assumption-free Decomposition for Monolithic Synthesis. We present an approach
for decomposing a monolithic system into independent components. It is based on identifying
independent parts of the system specification, which then define the components and their
requirements’. Given a realizable specification for the system, winning strategies for the indi-
vidual components can be synthesized independently. For an unrealizable system specification,
the synthesis task of at least one component is unrealizable as well. Hence, the decomposition
preserves both realizability and unrealizability of the monolithic synthesis task. The component
synthesis tasks are classical monolithic synthesis task. We establish a sound and complete
language-based criterion for determining whether two subspecifications are independent. We
lift the independence criterion to temporal logics by introducing an approximate independence
criterion for LTL formulas. We develop a decomposition algorithm for LTL formulas, which is
based on a syntactic dependency analysis of the formula according to the independence criterion.
We present two optimizations of the decomposition algorithm for formulas in assume-guarantee
form, which identifies assumptions that can be dropped for the considered set of guarantees
while preserving realizability and unrealizability. We have developed a prototype of our LTL
decomposition algorithm and have evaluated it on top of state-of-the-art synthesis tools. The
decomposition is nearly instantaneous and the synthesis time is reduced significantly if multiple
components have been derived. The decomposition algorithm can thus be seen as a prepro-
cessing technique for reactive synthesis algorithms and has already been integrated into the
newest release [RSDP22] of the synthesis tool LTLsYNT [MC18] by its developers. Furthermore,
we illustrate the applicability of our specification decomposition algorithm for compositional
synthesis to the domain of smart contracts.

Assumption-based Decomposition for Monolithic Synthesis. We introduce an incremen-
tal synthesis approach for monolithic systems based on remorsefree dominant strategies and the
computation of a suitable system decomposition. In incremental synthesis, for every component,
a remorsefree dominant strategy is synthesized under the assumption that the components that

IDecomposition algorithms for specifications have also been studied as part of Gideon Geier’s Bachelor’s thesis at
Saarland University in 2020 [Gei20], which the author of this thesis supervised.

1.4. PUBLICATIONS

have been considered previously do not deviate from their already synthesized strategies. This
allows for making both implicit assumptions, stemming from the use of remorsefree dominant
strategies, and explicit assumptions, stemming from the incremental nature of the synthesis
algorithm, about the other processes’ behavior. We propose two techniques for identifying the
components of the system as well as the order in which they are synthesized. The approaches
offer different trade-offs between precision and computational cost. The first decomposition
method is based on a semantic dependency analysis of the output variables of the system. The
second one relies on a syntactic analysis of the structure of the specification. Both the semantic
and syntactic decomposition approaches ensure the soundness and completeness of incremental
synthesis. Furthermore, we present rules for simplifying the specification for the individual com-
ponents by omitting irrelevant conjuncts while preserving realizability and unrealizability of
the synthesis tasks. We have developed a prototype of the incremental synthesis algorithm and
compared it to classical monolithic synthesis tools, demonstrating the advantage of incremental
synthesis for larger but decomposable system.

1.4. PUBLICATIONS

This thesis is based on the following peer-reviewed publications:

[FP20a] Bernd Finkbeiner and Noemi Passing. Dependency-based compositional synthesis.
In Automated Technology for Verification and Analysis - 18th International Sympo-
sium, ATVA 2020, Proceedings, Vol. 12302 of Lecture Notes in Computer Science, pp.
447-463. Springer, 2020. por: 10.1007/978-3-030-59152-6_25

[FGP21a] Bernd Finkbeiner, Gideon Geier, and Noemi Passing. Specification decomposition
for reactive synthesis. In NASA Formal Methods - 13th International Symposium,
NFM 2021, Proceedings, Vol. 12673 of Lecture Notes in Computer Science, pp. 113-130.
Springer, 2021. po1: 10.1007/978-3-030-76384-8_8

[FP21a] Bernd Finkbeiner and Noemi Passing. Compositional synthesis of modular systems.
In Automated Technology for Verification and Analysis - 19th International Sympo-
sium, ATVA 2021, Proceedings, Vol. 12971 of Lecture Notes in Computer Science, pp.
303-319. Springer, 2021. po1: 10.1007/978-3-030-88885-5_20

[FGP22] Bernd Finkbeiner, Gideon Geier, and Noemi Passing. Specification decomposition
for reactive synthesis. Innov. Syst. Softw. Eng., 2022. por1: 10.1007/s11334-022-00462-6

[FP22a] Bernd Finkbeiner and Noemi Passing. Compositional synthesis of modular systems.
Innov. Syst. Softw. Eng., 18(3):455-469, 2022. por1: 10.1007/s11334-022-00450-w

[FP22b] Bernd Finkbeiner and Noemi Passing. Synthesizing dominant strategies for live-
ness. In 42nd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2022, Proceedings, Vol. 250 of LIPIcs,
pp. 37:1-37:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022. por:
10.4230/LIPIcs.FSTTCS.2022.37

13

https://doi.org/10.1007/978-3-030-59152-6_25
https://doi.org/10.1007/978-3-030-76384-8_8
https://doi.org/10.1007/978-3-030-88885-5_20
https://doi.org/10.1007/s11334-022-00462-6
https://doi.org/10.1007/s11334-022-00450-w
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.37

14

1. INTRODUCTION

[FHKP23] Bernd Finkbeiner, Jana Hofmann, Florian Kohn, and Noemi Passing. Reactive syn-
thesis of smart contract control flows. In Automated Technology for Verification and
Analysis - 21st International Symposium, ATVA 2023, Proceedings, 2023. (To appear)

Furthermore, this thesis contains material published in the following technical reports:

[FP20b] Bernd Finkbeiner and Noemi Passing. Dependency-based compositional synthesis
(full version). 2020, arXiv: 2007.06941

[FGP21b] Bernd Finkbeiner, Gideon Geier, and Noemi Passing. Specification decomposition
for reactive synthesis (full version). 2021, arXiv: 2103.08459

[FP21b] Bernd Finkbeiner and Noemi Passing. Compositional synthesis of modular systems
(full version). 2021, arXiv: 2106.14783

[FHKP22] Bernd Finkbeiner, Jana Hofmann, Florian Kohn, and Noemi Passing. Reactive
synthesis of smart contract control flows. 2022, arXiv: 2205.06039

[FP22c] Bernd Finkbeiner and Noemi Passing. Synthesizing dominant strategies for liveness
(full version). 2022, arXiv: 2210.01660

1.5. RELATED WORK

In this section, we discuss work closely related to the approaches introduced in this thesis.
First, we consider compositional algorithms for the synthesis of distributed systems, partic-
ularly focusing on approaches that fall into the class of assume-guarantee synthesis as well
as approaches that rely on best-effort strategies or environment assumptions. Afterward, we
discuss compositional synthesis algorithms for monolithic systems and the use of specification
decomposition in monolithic reactive synthesis tools.

Compositional Distributed Synthesis. There are several compositional approaches for the
synthesis of distributed systems. In this paragraph, we only focus on those that do not fall into
the class of assume-guarantee synthesis and that neither rely on environment assumptions nor
best-effort strategies. We address the other algorithms in separate paragraphs.

Finkbeiner et al. introduce a compositional synthesis algorithm based on information-flow
assumptions between the processes of a distributed system [FMM22]. Information-flow as-
sumptions are hyperproperties [CS10], i.e., properties that relate multiple execution traces, that
describe differences in the behavior of a system process that specific other system processes
can observe. In contrast to the assumptions considered in this thesis and the assume-guarantee
style algorithms by Majumdar et al. [MMSZ20] and Alur et al. [AMT15], which we address in
the subsequent paragraph, information-flow assumptions are not behavioral, i.e., they do not
restrict the behavior of other processes, but capture the information that a process can deduce
from other processes. Computing information-flow assumptions for compositional synthesis
can thus be seen as an orthogonal approach to deriving behavioral assumptions.

http://arxiv.org/abs/2007.06941
http://arxiv.org/abs/2103.08459
http://arxiv.org/abs/2106.14783
http://arxiv.org/abs/2205.06039
http://arxiv.org/abs/2210.01660

1.5. RELATED WORK

Semi-automatic distributed synthesis [SF07] is a compositional synthesis approach for dis-
tributed systems that heavily relies on the assistance of the developer. The authors show that it
is possible to decompose a realizable specification into a conjunction of local properties that the
individual processes of the distributed system can guarantee. The synthesis of a strategy for
an individual system process can thus be done automatically once local properties are derived.
The composition of the separately synthesized strategies then serves as a strategy for the entire
system and is guaranteed to satisfy the full system specification. Strengthening the specification
into a conjunction of such local specifications, however, remains a manual task.

In the setting of controller synthesis, Alur et al. propose a compositional synthesis algorithm
for dynamically-decoupled multi-agent systems [AMT18]. Assuming that the specification is
given in a conjunctive form, they exploit the observation that conjuncts usually only concern
a small subset of agents. For each conjunct, a maximally permissive strategy is synthesized
for the agents involved in the conjunct. Such a strategy does not unnecessarily fix a particular
agent behavior. The resulting strategies for all conjuncts are intersected to identify potential
conflicts. For conflict resolution, constraints on local subproblems, which must be satisfied to
avoid conflict, are identified. These constraints are provided to the respective subproblems, and
synthesis of a maximally permissive strategy is performed again with the updated objective.
This process is repeated until a fixpoint in the strategies is reached.

Assume-Guarantee Synthesis. Chatterjee and Henzinger introduced the concept of assume-
guarantee synthesis first [CHO07]. It considers the synthesis of two-process systems with
individual specifications such that the parallel composition of the process strategies realizes the
conjunction of the specifications. In Chatterjee and Henzinger’s formulation, the processes can
be considered conditionally competitive, as they primarily try to realize their own objective and
will only secondarily try to violate the other processes’ objective. Each process assumes that
the other process does not violate its own specification. The synthesis problem is then solved
by computing a secure equilibrium [CHJ06], which ensures that the strategies for the processes
realize their objectives and that differing from this strategy to violate the other process’s
objective can be penalized by the latter process violating the objective of the former process.
Assume-guarantee synthesis has, among others, been extended to the setting of concurrent
reactive programs with partial information [BCJK15], i.e., where variables can be local to a
process and thus non-observable for other processes, and to a quantitive setting [AKRV17], in
which the specification formalism is multi-valued, and the goal is to generate a system that
maximizes the satisfaction value of the specification.

In a similar line of research, Brenguier et al. introduce assume-admissible synthesis [BRS17]
based on the notion of admissible strategies [Ber07, Faec09, BRS14, BPRS17]. Admissibility is
a common concept of best effort for strategies, which we further discuss in the respective
paragraph on best-effort strategies. In assume-admissible synthesis, each process of the consid-
ered two-process system assumes that the other process plays an admissible strategy. Based
on this assumption, the synthesis algorithm derives, for each process, an admissible strategy
that is winning for its objective against all admissible strategies of the other process. Both
assume-guarantee synthesis and assume-admissible synthesis are sound in the sense that the

15

16

1. INTRODUCTION

composition of synthesized strategies for the individual system processes is guaranteed to
satisfy the conjunction of all system requirements.

Outside the setting of assume-guarantee synthesis, Chatterjee et al. present an algorithm for
computing minimally restrictive assumptions on the environment behavior to obtain realizabil-
ity of a given unrealizable specification [CHJ08]. In a similar direction, Alur et al. introduce a
pattern-based refinement algorithm for unrealizable LTL formula in the GR(1) fragment [PPS06,
BJP*12] by adding assumptions on the behavior of the environment [AMT13]. Both algorithms
have been used for assume-guarantee-style synthesis algorithms [MMSZ20, AMT15]. Majum-
dar et al. [MMSZ20] introduce assume-guarantee distributed synthesis based on minimally
restrictive environment assumptions [CHJ08]. They synthesize assume-guarantee contracts
using a negotiation algorithm. In each round of the negotiation, minimal assumptions are
constructed for each process and then added as additional constraints to the synthesis tasks
of the other processes. The assumptions and guarantees are refined iteratively until a valid
assume-guarantee contract is found. The negotiation procedure is not guaranteed to termi-
nate. The synthesis algorithm only considers assume-guarantee contracts consisting of safety
assumptions and guarantees. The approach is implemented in the tool AGNES [Mal20], which
currently only supports safety and deterministic Biichi objectives.

Alur et al. utilize their previous work [AMT13] on refining unrealizable GR(1) formulas for
assume-guarantee-style compositional synthesis [AMT15]. The approach is only applicable to
two-process systems with local specifications and an architecture with a serial connection of the
processes, such as pipelines. Hence, for one process of the system, its local specification needs to
be realizable irrespective of the behavior of the other process. The core of the synthesis algorithm
is to refine the local process specifications by generating assumptions and guarantees for the
two processes of the system to obtain realizability of the local objectives. The authors propose
three different algorithms for using pattern-based refinement in the context of compositional
synthesis based on the amount of information about the strategies of the process with realizable
local objectives shared between the processes.

Greenyer and Kindler propose an assume-guarantee-style synthesis algorithm for monolithic
systems [GK13]. As this paragraph focuses on distributed systems, we discuss their approach
in more detail in paragraph compositional monolithic systems.

Synthesis of Best-Effort Strategies. There are several notions of best effort in strategies.
Rationality is a requirement that is often posed on strategies [FKL10, KPV14, CFGR16]. Rational
agents are assumed to satisfy their own local objectives. Fisman et al. introduce rational
synthesis, where the system is assumed to be monolithic but where the environment consists of
several partially controllable components, which are assumed to be rational agents [FKL10].
Rational synthesis then derives a strategy for the considered monolithic system and a profile of
strategies that suggests a behavior of the environment components. The composition of the
system strategy and the strategy profile is required to satisfy the system’s objective. Furthermore,
the strategy profile should be an equilibrium in the sense that the environment agents do
not have an incentive to deviate from the strategy profile. The authors propose solutions to
the rational synthesis problem for three common notions in algorithmic game theory, Nash

1.5. RELATED WORK

equilibria, dominating strategies, and subgame-perfect Nash equilibria (see, e.g., [NRTV07]).
Kupferman et al. extend rational synthesis as introduced by Fisman et al., in which agents
are rational and cooperative, to the rational but non-cooperative setting [KPV14]. They show
2EXPTIME-completeness for rational synthesis in both the cooperative and the non-cooperative
case. Furthermore, they extend the approach to quantitive system objectives. Condurache et al.
study the complexity of rational synthesis in both the cooperative and the non-cooperative
setting in more detail [CFGR16]. They provide tight complexity results for different kinds of
system objectives — safety, reachability, Biichi, co-Biichi, parity, Streett, Rabin, and Muller as
well as full LTL - and for both fixed and unfixed numbers of players.

The notion of admissibility of strategies [Ber07, Fae09, BRS14, BPRS17] is based on the
classical game theoretical concept of weakly dominated strategies. Intuitively, a strategy
weakly dominates another strategy if it performs as least as good as the dominated strategy
in all situations and if there exists a situation in which it performs strictly better than the
dominated strategy (see, e.g., [NRTV07]). A strategy is admissible if it is not weakly dominated
by any other strategy. Berwanger lifts the admissibility notion to games played on graphs and
provides existence results for admissible strategies in infinite multi-player games [Ber07]. Faella
studies admissible strategies in infinite two-player games and their required memory [Fae09].
He shows that admissible strategies may require an unbounded amount of memory even
for objectives for which memoryless strategies exist and introduces necessary and sufficient
conditions for objectives to have memoryless admissible strategies. Furthermore, he presents
an efficient way of computing admissible strategies from winning and cooperative strategies.
Brenguier et al. build upon Berwanger’s results [Ber07] and study the complexity of iterated
elimination of dominated strategies in different types of w-regular games [BRS14]. Additionally,
they present the construction of an w-automaton that recognizes all possible outcomes of
admissible strategies, i.e., those strategies that survive the iterated elimination of dominated
strategies. The automaton construction enables, for instance, solving the model-checking
under admissibility problem. Assume-admissible synthesis [BRS17] is a compositional synthesis
algorithm based on synthesizing admissible strategies for the individual processes, which we
discuss in the paragraph on assume-guarantee synthesis.

Similar to admissibility, remorsefree dominance, which has first been introduced for reactive
synthesis by Damm and Finkbeiner [DF11], relies on the notion of dominating strategies.
Domination in remorsefree dominance, however, is defined in a slightly different manner than
weak domination in admissibility: while it also requires a dominating strategy to perform
at least as good as the dominated one, it does not require the former strategy to perform
strictly better in some situation. A strategy is remorsefree dominant if it dominates all other
strategies. Remorsefree dominance is thus strictly stronger notion than admissibility, i.e., every
remorsefree dominant strategy is admissible while not every admissible strategy is remorsefree
dominant [BRS17]. For realizable specifications, remorsefree dominant strategies are guaranteed
to be winning. Remorsefree dominant strategies have been utilized for the compositional
synthesis of distributed systems for safety specifications by computing remorsefree dominant
strategies for the system processes separately [DF14]. This synthesis approach is restricted to
safety specifications as, for liveness specifications, it is not guaranteed that the composition of
two remorsefree dominant strategies is again remorsefree dominant.

17

18

1. INTRODUCTION

Bounded dominance [DF14] is a variant of remorsefree dominance that addresses this problem.
Intuitively, bounded dominance reduces a liveness specification to a safety property. It utilizes
a progress measure on strategies and introduces a bound on the number of steps in which a
strategy does not make progress with respect to the specification. While it is guaranteed that
the composition of two bounded dominant strategies is again bounded dominant, it requires
a concrete bound on the number of non-progress steps. Furthermore, a bounded dominant
strategy is not necessarily remorsefree dominant. If the bound is chosen too small, every
strategy, even one that unnecessarily violates the specification, is bounded dominant. Therefore,
in contrast do remorsefree dominance, bounded dominant strategies are even for realizable
specifications not necessarily winning,.

Damm et al. generalize the compositional synthesis algorithm based on remorsefree dominant
strategies [DF14] to settings where remorsefree dominant strategies only exist under certain
assumptions about the future behaviors of other system processes [DFR16]. They propose
an incremental synthesis algorithm based on automatically constructing such assumptions.
The approach is only applicable for systems in which the processes can be ordered by their
criticality. Less critical processes are then required to change their behavior to guarantee that
the assumptions needed by more critical processes are satisfied.

Good-enough strategies [AK20] are similar to remorsefree dominant strategies [DF11] and
only require a strategy to satisfy the specification for input sequences for which there exists an
output sequence that satisfies the specification, i.e., only in situations in which the specification
can be satisfied. The concept of good-enough strategies has been extended to a multi-valued cor-
rectness notion, allowing for specifying system quality [AK20]. Furthermore, Li et al. [LTVZ21]
study good-enough strategies for LTL specifications over finite-traces [GV13], called LTL
specifications. They propose two synthesis algorithms for good-enough strategies for system
specifications given as LTL¢ formulas, one via good-enough strategies for LTL specifications
and one via a reduction to solving games played on deterministic Biichi automata.

Furthermore, the synthesis of best-effort strategies has been considered in the setting,
where additional LTL assumptions on the environment behavior are provided to the synthesis
task [AGL*20, AGR21]. Due to the existence of environment assumptions in the approach, we
discuss it in the subsequent paragraph.

Synthesis under Environment Assumptions. Similar to the best-effort notions for strate-
gies discussed in the previous paragraph, synthesis under environment assumptions aims at
relaxing the requirements on a system strategy. In contrast to best-effort strategies, explicit
assumptions on the environment are added to the synthesis task. We discuss different flavors of
such assumptions restricting the environment behavior.

The approach of Chatterjee et al. for synthesizing minimally restrictive environment as-
sumptions [CHJ08] and the pattern-based refinement of GR(1) formulas [AMT13], both already
mentioned in the paragraph on assume-guarantee synthesis, construct LTL formulas that re-
strict the possible environment behavior. These formals can then be used as assumptions in the
synthesis task to limit the possible input sequences. Similarly, Li et al. mine assumptions for syn-
thesis from counterexamples obtained during synthesis for unrealizable specifications [LDS11].

1.5. RELATED WORK

Similar to [AMT13], they use template-based assumptions. To the best of our knowledge,
assumption mining, as introduced in [LDS11], has not been used for compositional synthesis.
The challenges of synthesis under environment assumptions formulated as LTL formulas are
discussed in [BEJK14]. The authors propose four goals that should be met when considering
synthesis under environment assumptions, casually formulated as “Be Correct!”, “Don’t Be
Lazy!”, “Never Give Up!”, and “Cooperate!”.

Aminof et al. propose to see environment assumptions as non-empty sets of strategies
instead of sets of traces [AGMR18]. Furthermore, they define the synthesis problem for LTL
specifications under environment assumptions represented by sets of environment strategies.
This concept is utilized in [AGL*20], where the environment is formalizes by two distinct
models and thus two environment assumptions, one capturing expected behavior and one that
also includes exceptional behavior. The environment assumptions are again formalized as LTL
formulas. A strategy is then required to win against the expected environment behaviors, and,
in addition, it should try to satisfy the exceptional behaviors as far as possible. Note that this
again resembles a notion of best effort, yet, in a different setting. The authors show that if
a winning strategy exists against the expected environment behavior, then there is also one
that additionally makes the best effort against the exceptional ones. Aminof et al. then show
that computing such a strategy that is winning against expected environment behavior and a
best-effort strategy against exceptional environment behavior is 2EXPTIME-complete and thus
not harder than classical synthesis [AGR21].

Instead of formalizing explicit environment behavior, assumptions on the environment
can also be conceptual such as assuming the environment to behave rational [FKL10, KPV14,
CFGR16]) or admissible [Ber07, Fae09, BRS14, BPRS17]. We refer to the previous paragraph for
more information on rational and admissible strategies and their synthesis problems.

Compositional Monolithic Synthesis. Compositional approaches to monolithic synthesis
have been studied from different angles. Kupferman et al. introduce a compositional synthesis
algorithm, extending their safraless synthesis algorithm [KV05], that is designed for incremen-
tally adding requirements to a specification during system design [KPV06]. They reduce the
LTL realizability problem to an emptiness problem of a nondeterministic Biichi tree automaton.
Given a specification consisting of several conjuncts, their approach first checks realizability
for the individual conjuncts. Then it reuses results from isolated realizability checks to reduce
the state space of the automaton for the full specification. As their approach was developed
with the incremental refinement of specifications in mind, it is only applicable to specifications
in conjunctive form, i.e., conjuncts of LTL subspecifications.

Filiot et al. introduce a compositional algorithm to solve the LTL realizability and synthesis
problems [FJR10, FJR11]. It relies on the author’s previous results that the LTL realizability
problem can be reduced to solving a safety game [FJR09]. The authors show that the safety
game for the realizability of an LTL formula in conjunctive form can be solved by solving safety
games for the conjuncts of the formula independently. For each subspecification, a separate
safety game is constructed, and a so-called master plan is computed. A master plan subsumes
all winning strategies. The algorithm then composes the master plans for the subspecifications,

19

20

1. INTRODUCTION

resulting in a master plan for the full specification from which an implementation can then be
extracted. For LTL formulas that are not in conjunctive form but consist of a set of assumptions
and a set of guarantees, the formula is translated into conjunctive form. Hence, we obtain several
conjuncts, one for each guarantee, which all contain all assumptions, resulting in an enormous
blow-up of the specification length. The authors propose a simple yet incomplete heuristic
for eliminating unnecessary assumptions for the individual subspecifications. Realizability of
the subspecifications might get lost when eliminating assumptions according to the heuristic.
The main algorithm for LTL formulas in conjunctive form has been implemented in the tool
Acacia+ [BBF*12], which is unfortunately not available anymore.

Kulkarni and Fu present a compositional distributed synthesis approach for LTL formulas in
conjunctive form [KF18]. The algorithm is restricted to LTL formulas that can be expressed with
deterministic finite-state automata, immediately enabling the use of safety games for synthesis.
The approach is thus not applicable to liveness properties. Similar to the compositional synthesis
algorithm by Filiot et al. [FJR10, FJR11], Kulkarni and Fu make use of the conjunctive nature of
many LTL specifications and propose to systematically construct the winning regions of the
safety games for the individual conjuncts separately. Furthermore, they introduce a method to
compute the winning region of the safety game for the synthesis task of the entire system by
combining the winning regions of the individual processes.

In a similar direction, Bansal et al. propose a compositional synthesis approach for specifica-
tions in Safety LTL [CMP92], a syntactic fragment of LTL that only allows safety properties, in
conjunctive form that synthesizes a strategy for each conjunct separately and then composes
them one by one [BGS*22]. The authors show that, for Safety LTL formulas, it suffices to
consider a partial game arena instead of the exact one to ensure the satisfaction of the formula
when building the conjunction with other formulas. This reduces the state space for subsequent
operations. The algorithm derives a deterministic safety automaton for each Safety LTL conjunct
separately. The authors propose two variants of splitting each automaton into a winning part
and a losing part, allowing for reducing the size of the automaton by clustering the losing part
into a single state. Lastly, the resulting automata are composed iteratively.

Independent of our specification decomposition algorithm for the compositional synthesis of
monolithic systems [FGP21a, FGP22], which is presented in Chapter 5, Mavridou et al. [MKG*21]
introduced a compositional realizability analysis in FRET [GPM*20, NAS20], a publicly available
tool for writing, understanding, formalizing, and analyzing requirements by NASA’s Ames
Research Center. Their approach is based on similar ideas as our LTL decomposition algorithm,
i.e., on identifying independent parts of the requirements by computing dependencies between
individual requirements, building a dependency graph, and computing the strongly connected
components. As specifications are written in FRETisaH [GPM*20], the requirement language of
FRET, in their setting, however, the dependency analysis differs. The optimized handling of
assumptions in specifications that consist of sets of assumptions and guarantees of our LTL
decomposition technique cannot be easily integrated into their approach for FRET. For a more
detailed comparison of both approaches, we refer to [MKG*21].

For specifications given as Live Sequence Charts [DHO01], an expressive specification format
that distinguishes between behaviors that may happen and that must happen, Kugler and Segall
present two compositional synthesis approaches [KS09]. The first algorithm implements the

1.6. STRUCTURE OF THIS THESIS

sound composition of two synthesized strategies for subspecifications of the system specification.
It is not complete, as it requires the existence of individual strategies for the subspecifications,
regardless of any interconnections. The second approach computes an overapproximation of
the maximal winning strategy, a so-called optimistic strategy, for each subspecification and
then utilizes the first algorithm for composing them. Optimistic strategies follow a similar
idea as master plans in [FJR10], yet, they may violate liveness constraints while master plans
do not. The resulting composed strategy is again an optimistic strategy. However, it might
not be a valid strategy since the choices of the system and environment are not guaranteed to
alternate. In particular, the strategy might rely on entering an infinite loop of system events.
While the authors briefly describe a sound and complete extension of their algorithms, they
neither formalize nor implement it.

In the context of controller synthesis, Greenyer and Kindler propose a compositional mono-
lithic synthesis algorithm from specifications given as Modal Sequence Charts [HMO08] based
on assume-guarantee contracts [GK13]. The approach heavily relies on manual interventions.
In particular, it requires the developer to identify a suitable decomposition of the system into
component and an assume-guarantee contract consisting of small enough properties so that
compositional synthesis has an advantage over classical monolithic synthesis. In the same
setting, Baier et al. present an algorithm for incrementally synthesizing most general controllers
for LTL specifications in conjunctive form [BKK11]. The already synthesized most-general
controllers are provided for the later synthesis tasks. The authors only show the existence of
most general controllers for the individual synthesis tasks for safety and co-safety objectives.

Specification Decomposition in Reactive Synthesis Tools. Several reactive synthesis
tools for monolithic systems decompose the given system specification into subspecifications.
The game-based tool STRix [MSL18] uses decomposition to identify suitable automaton types
for internal representation. Furthermore, it recognizes isomorphic parts of the specification to
avoid redundant synthesis tasks. The synthesis tools UNBEAST [Ehl11] and SAFETY-FIRST [SS13],
in contrast, analyze the specification to identify safety subspecifications, which can be syn-
thesized more efficiently. All three tools do not perform fully independent synthesis tasks for
the derived subspecifications. Therefore, they do not implement compositional monolithic
synthesis approaches. As outlined in the previous paragraph, Acacia+ [BBF*12] implements the
compositional synthesis approach by Filiot et al. [FJR10, FJR11], yet, it is not available anymore.
The developers of the synthesis tool LTLsYNT [MC18] included our specification decomposition
approach for monolithic synthesis [FGP21a, FGP22], presented in Chapter 5, as an optimization
in their most recent release [RSDP22].

1.6. STRUCTURE OF THIS THESIS

This thesis is structured into two parts. The former presents compositional synthesis algorithms
for distributed systems, utilizing both implicit and explicit assumptions on the behavior of
other system processes. The latter introduces decomposition techniques for monolithic systems,
thus enabling compositional monolithic synthesis. As the problems considered in both parts

21

22

1. INTRODUCTION

have the same origin, the required foundations coincide. Therefore, they are jointly presented
in Chapter 2. We particularly focus on system architectures and specifications as well as the
representation of system strategies and implementations. Furthermore, we formalize both the
monolithic and distributed reactive synthesis problem and present synthesis approaches for
both winning and remorsefree dominant strategies. Both parts of this thesis are sufficiently
self-contained to be read independently. We conclude the thesis in Chapter 7 with a discussion
of the results of this thesis and open problems.

PartI: Distributed Systems. In Chapter 3, we present the compositional distributed synthesis
algorithm based on implicit assumptions. First, we present existing approaches to compositional
synthesis that utilize variants of remorsefree dominance as a best-effort notion for strategies
and discuss their unsuitability for liveness specifications. Afterward, we introduce delay-
dominance as a new strategy requirement with a game-based definition and show that every
delay-dominant strategy is also remorsefree dominant. We establish a criterion for alternating co-
Biichi automata and prove that, if the criterion is satisfied, compositionality of delay-dominance
is guaranteed. Then, we introduce a three-step construction of a universal co-Biichi automaton
that can be immediately used for synthesizing delay-dominant strategies with safraless synthesis
algorithms. Lastly, we present a compositional synthesis approach for distributed systems based
on synthesizing separate delay-dominant strategies for the system’s processes.

In Chapter 4, we introduce a compositional synthesis algorithm for distributed systems that
automatically derives guarantees on the behavior of the processes, so-called certificates, which
constitute an assume-guarantee contract. We introduce a running example, which we will use
throughout the chapter. Afterward, we introduce the main concept of compositional synthesis
with certificates, focusing on certificates formalized with LTL formulas, and prove its soundness
and completeness. Next, we establish how certificates can be modeled with deterministic finite-
state machines and show soundness and completeness of the resulting synthesis algorithm. Then,
we present a reduction of compositional synthesis with certificates represented by deterministic
finite-state machines to a SAT constraint-solving problem. We introduce two optimizations
of the synthesis algorithm. First, we present a criterion for identifying which certificates are
relevant for a process and prove that soundness and completeness are preserved when only
considering relevant certificates. Second, we permit nondeterminism in certificates represented
by finite-state machines. We show soundness and completeness of the resulting approach
and discuss the necessary changes in the SAT encoding. Lastly, we present an experimental
evaluation of our approach.

Part II: Monolithic Systems. In Chapter 5, we present a decomposition algorithm for
monolithic systems that ensures, given a realizable system specification, realizability of the
resulting synthesis subtasks for all derived components. For an unrealizable system specification,
unrealizability of the synthesis subtasks of at least one component is guaranteed. First, we
introduce the concept of modular monolithic synthesis. Afterward, we establish a language-
based independence criterion for subspecifications and prove that soundness and completeness
of modular monolithic synthesis are guaranteed for decompositions satisfying the criterion.

1.6. STRUCTURE OF THIS THESIS

Next, we lift the language-based criterion to the temporal logic level by introducing a syntactic
independence criterion for LTL specifications that approximates the language-based criterion in
the sense that it might yield coarser decompositions than necessary. We prove that, nevertheless,
soundness and completeness of modular synthesis are guaranteed. We present an algorithm
for identifying system components based on the LTL independence criterion. Afterward, we
introduce optimizations of the algorithm for specifications in both strict and non-strict assume-
guarantee forms. We present an experimental evaluation of our approach, utilizing it as a
preprocessing technique for state-of-the-art synthesis tools. Lastly, we present the applicability
of our decomposition algorithm to smart contract specifications.

In Chapter 6, we introduce an incremental synthesis algorithm for distributed systems based
on the synthesis of remorsefree dominant strategies. After presenting a running example,
which we use throughout the chapter, we introduce the incremental synthesis algorithm. Next,
we present the concept of semantic dependencies between output variables and prove that
the absence of such dependencies guarantees the success of the individual synthesis tasks
in incremental synthesis. Consequently, we introduce a decomposition algorithm based on
semantic dependencies, ensuring soundness and completeness of incremental synthesis, and an
optimization, which allows for even more fine-grained decompositions, next. Afterward, we
present the concept of syntactic dependencies, which conservatively overapproximate semantic
dependencies, and a corresponding syntactic decomposition algorithm. We show that the
absence of syntactic dependencies again ensures the success of the individual synthesis tasks in
incremental synthesis and that hence soundness and completeness of incremental synthesis are
preserved. Next, we introduce rules for simplifying the specifications for the individual synthesis
tasks for the components by omitting conjuncts that do not affect the resulting strategies or
their existence. Lastly, we present an experimental evaluation of our approach.

23

Chapter 2

FOUNDATIONS

In this section, we lay the foundations and fix the notations for the remainder of this thesis. We
introduce the type of systems that we consider as well as concepts for specifying requirements
on them. We present formalisms for modeling system strategies and introduce reactive synthesis
as a mechanism to derive such strategies from a system specification automatically.

2.1. NOTATION

Given an alphabet %, we denote the set of infinite words over 2* with (2%) and the set of finite
words over 2* with (2%)*. We define (2%)™ = (2*)* U (2%)® to be the set of finite and infinite
words over 2*. The length of a finite word o € (2*)* is denoted with |o|. The length of an
infinite word o € (2%)“ is co.

For a finite or infinite word o € (2*)* and k € N, with k < |o|, we denote the symbol of &
at point in time k with oy. Note that the first symbol of ¢ is 0y and thus o_; denotes the k-th
symbol of . Given a word ¢ € (2*)* and k € Ny with k < ||, the prefix of length k of ¢
is denoted with ojx = 0y ...0x_;. We denote the set of all prefixes of o of arbitrary length
with Pref (o). Given words o € 3* and ¢’ € 3% with |o’| > 0, the concatenation of ¢ and ¢’
is defined by o - 0’ = 0y ... 0510y - - - GIIG’I—l' If o’ € " holds, then we have ¢ - 0/ € X* with
|o - 0’| =|o| +|0’|. Otherwise, o - ¢’ € X holds. Irrespective of the alphabet, we represent the
empty word with e and ¢ - ¢ = o holds for all o € (2%)*.

For a word ¢ € (2%)® and a set X C X%, we define c N X = (op N X) (61 N X) ... (016)-1 N X).
We have 0 N X € (2X)®. For two words o € (2%)® and ¢/ € (2)® with 3 N3 = 0 and
|o| = |o’|, we define c U0’ = (o U o)) (o1 U0)) ... (015-1 U O'|,CT|*1)' We have o Uo’ € (22V%)*.

For a k-tuple a = (ay, . . ., ax) we define the projection to the i-th component of a as #;(a) = a;.

2.2. MONOLITHIC AND DISTRIBUTED SYSTEMS

In this thesis, we consider reactive systems [HP84]. Such systems continually receive inputs
from their environment and react to them by producing outputs. Furthermore, they run for an
indefinite amount of time, i.e., they do not terminate. Thus, a reactive system has an infinite

25

26

2. FOUNDATIONS

input/output behavior. Since we only consider reactive systems, we call reactive systems
simply systems in the remainder of this thesis. Every system consists of n system processes
P1, - - -» Pn, Which may interact with each other as well, and a process p.,, modeling the system’s
environment. We capture the design of a system with its architecture:

Definition 2.1 (System Architecture).

An architecture o/ is a tuple o/ = (P, V, I, 0), where P is a set of processes consisting of the
environment process pen, and a set P~ = P \ {peny} of n system processes, V is a finite set of
variables, I = (I3, ..., I,) assigns a set I; C V of inputs to each system process p; € P~, and
O =(0y,...,0,) assigns a set O; C V of outputs to each process p; € P. For every p; € P,
the inputs and outputs are disjoint, i.e., I; N O; = 0. The processes have pairwise disjoint
output variables, i.e., O; N O; = 0 holds for all p;, p; € P with i # j. The variables V of the
whole system are the inputs and outputs of all processes, i.e., V = Up,ep-Ii U Up,ep O:.

Given an architecture o = (P, V, I, O), we denote all variables of a system process p; € P~ with
Vi = I; U O;. Intuitively, a system process controls its outputs and can observe its inputs. All
other variables of the system, however, are unobservable. Thus, all variables a system process
pi € P™ can interact with are captured in its variables V;. We denote all system output variables
with O™ = J,,ep- O; and all system input variables with I™ = ([, cp- L.

For an architecture & = (P,V,I,0) with |P7| > 2, the parallel composition p, || p, of two
system processes py, p2 € P is a process with inputs I, ||, = (I U Iz) \ (O; U Oz) and outputs
Op,|1p, = 01U 0. Although such composed processes are not directly part of the architecture <,
we call them processes in the remainder of this thesis as well. Whenever the context is clear,
we do not distinguish between composed processes and system processes. We denote the set of
all system processes and all processes composed from one or more system processes with P.
That is, we define P = {pil . piy, | {Pis- s pi, €287\ (D}. For all processes p; € P, we
denote their sets of variables, inputs, and outputs with V;, I, and O;, respectively, irrespective
of whether p; is a system process or a process composed from one or more system processes.
While this introduces ambiguity in general, it is, in this thesis, always clear from the context
whether the sets V;, I;, and O; refer to the variables, inputs, and outputs, respectively, of the i-th
system process p; € P~ or of the i-th process p; € P.

We call an architecture of = (P,V, I, O) distributed if |[P7| > 1 holds, i.e., if it contains at least
two system processes. Otherwise, it is called monolithic. In the remainder of this thesis, we
assume that an architecture, either distributed (Part I) or monolithic (Part II), is given.

Example 2.1. In Figure 2.1, two distributed architectures &/; and &/, are depicted. Both consist
of three system processes pi, P2, and Ps3 and the environment process pepy. Furthermore, we
have I = {a} and O = {b, ¢, d} for both architectures. For architecture &/; depicted in Figure 2.1a,
we obtain the sets I; = {a}, I, = {b}, and I; = {c} of input variables of the system processes
as well as the sets O; = {b}, Oz = {c}, and O3 = {d} of outputs. For architecture o/, depicted
in Figure 2.1b, we obtain the sets I; = {a,d}, I, = {b}, and I5 = {c} of input variables of the
system processes as well as the sets O; = {b}, O, = {c}, and O3 = {d} of outputs. Clearly,
in both architectures, the sets of inputs and outputs of a system process are disjoint and the

2.3. LINEAR-TIME PROPERTIES

d
a Yb oY () 4 a N b N ¢
emo [-=+{ 21 }=~(2 (1} emo |-=+{ 21 J=~(2 (1)
(a) Pipeline architecture oy (b) One-way ring architecture </,

Figure 2.1.: Two distributed system architectures &/; and </5.

system processes do not share output variables. The parallel compositions p; || ps of the two
system processes p, of p3 of &/ is defined by the set I,,,|,, = {b} of input variables and the set
Op,1p, = {c,d} of output variables. A

2.3. LINEAR-TIME PROPERTIES

Linear-time properties describe requirements of a system. Given a finite set of atomic proposi-
tions ¥, a linear-time property P is an w-language over 2%, i.e., it is a set of infinite words over 2.
Hence, P C (2%)® holds. In the following, we consider two types of linear-time properties.

A safety property is a linear-time property that intuitively describes that “nothing bad hap-
pens” [Lam77]. A typical safety property is, for instance, that a system never reaches an unsafe
state. Formally, safety properties are defined as follows:

Definition 2.2 (Safety Property).
A safety property is a linear-time property P C (2%)® such that for all words o € (2%)® \ P,
there exists a finite prefix € (2%)* of o such that

PN {o" e (29 |ne Pref(o')} =0.

Thus, for every word o € (2%)® that does not lie in P, there exists a finite prefix n € (2%)*
of ¢ such that all infinite extensions of 7, i.e., sequences 6 € (2%)® with 6y G|p|-1 =1, do not
lie in P either. We call 5 a bad prefix for o.

In contrast, a liveness property is a linear-time property that, intuitively, describes that
“something good eventually happens” [Lam77]. A typical liveness property is, for instance, that
a system eventually terminates. Formally, liveness properties are defined as follows:

Definition 2.3 (Liveness Property).
A liveness property is a linear-time property P C (2*)® such that

{n e (2”)* | 3o € P.n € Pref(0)} = (2%)".

Hence, for every finite sequence 1 € (2%)* there exists an infinite extension o € (2%)® of 5
that lies in P. Not every linear-time property is a safety or liveness property. However, for every
linear-time property P C (2%)®, there exists an equivalent linear-time property P’ C (2%)® that
is a conjunction of a safety and a liveness property [AS87].

27

28

2. FOUNDATIONS

2.4. LINEAR-TIME TEMPORAL LOGIC

Linear-time temporal logic (LTL) [Pnu77] is a common specification language for linear-time
properties. For a finite set of atomic propositions X and a € %, the syntax of LTL is given by

o,y =qtruelal-p oV |Ool|leUY.

We derive the usual Boolean operators false = g—true, pAY = g= (=@ V), ¢ — ¥ = gV,
and g & ¢y = (¢ =) A (¥ — ¢). In addition to the temporal operators next O ¢ and until
© U, we use the derived operators eventually & ¢ = qtrue U ¢, globally O ¢ = g— < —e, and
weak until g Wy =qOe V (9 UY).

The satisfaction relation o, k £ ¢ for an infinite word o € (2%)?, a point in time k € Ny, and
an LTL formula ¢ is defined by

o,k |= true

o,klEa iff ac€ox

ok E-y ift o kY

okEevy iff okEgorakEy

okEQe iff o k+lf¢

okEeUYy iff Fj>k.o,jEyYAVELLLj oo

An infinite word ¢ € (2*)® satisfies and LTL formula ¢ if, and only if, 0,0 | ¢ holds. We also
write o |= ¢ for 0,0 |= ¢. The language L(¢) of an LTL formula ¢ is the set of infinite words
that satisfy ¢, i.e., L(¢) = {0 € (2°)® | 0 | ¢}. We denote the set of atomic propositions
occurring in an LTL formula ¢ with prop(¢) C 3. The length of an LTL formula ¢ is denoted
with |@|. We represent a conjunctive LTL formula ¢ = 95 A ¢, A ... A ; also by the set of its
conjuncts, i.e., by {1, 2, ...,¥;}. In the remainder of this thesis, we only consider systems
whose requirements are described with LTL formulas. Therefore, we use the terms specification
and LTL formula as synonyms.

Example 2.2. Consider the LTL formula ¢ = &a A b over atomic propositions {a, b}. It
describes that both atomic propositions a and b need to be set to true eventually. The infinite
words o = 00{a, b}0® and ¢’ = {a}{b}0“ both satisfy ¢, i.e., we have ¢ = ¢ and ¢’ |= ¢. The
infinite word ¢”’ = {a}?, in contrast, violates ¢, i.e., we have ¢’’ [£ ¢. The language L(¢) of ¢
is a liveness property. A

2.5. w-AUTOMATA

Automata are another concept for expressing system requirements. Since we consider reactive
systems and thus need to specify infinite temporal behavior, we utilize w-automata. In this
thesis, we consider both alternating automata and non-alternating automata. For the latter, we
consider both nondeterministic and universal branching. Moreover, we consider two different
types of acceptance conditions of w-automata: Biichi and co-Biichi acceptance.

2.5. w-AUTOMATA

First, we introduce nondeterministic and universal w-automata. Afterward, we present
alternating w-automata, permitting both types of branching. Although non-alternating automata
are technically special cases of alternating automata, we define them separately for ease of
presentation. Lastly, we present the Biichi and co-Biichi acceptance conditions.

2.5.1. NONDETERMINISTIC AND UNIVERSAL w-AUTOMATA

Intuitively, w-automata are similar to finite automata but read infinite sequences instead of
finite ones. Consequently, the acceptance condition of an w-automaton is also defined on
infinite sequences. In the following, we focus on non-alternating w-automata. We use the
terms w-automaton and non-alternating w-automation as synonyms. Formally, non-alternating
w-automata are defined as follows.

Definition 2.4 (Non-Alternating w-Automaton).

Let X be a finite alphabet. An w-automaton over ¥ is a tuple A = (Q, qo, J, Acc), where Q is a
finite set of states, qo € Q is the designated initial state, § : Q X 2% % Q is a transition relation,
and Acc € Q is an acceptance condition.

An w-automaton A = (Q, qo, I, Acc) is called complete if, and only if, there is at least one
successor state for every source state and every valuation of variables, i.e., for all ¢ € Q and
1 € 2%, there is some q' € Qwith (g,1,q") € 0. It is called deterministic if, and only if, there is
at most one successor state for every source state and every valuation of variables, i.e., for all
g€ Qand: € 2% wehave g’ = q” forall ¢, ¢’ € Q with both (¢,1,¢’) € § and (q,1,q”") € .

If A is not deterministic, we distinguish two branching types: nondeterministic branching
and universal branching. A non-alternating w-automaton has either purely nondeterministic
or purely universal branching. We call an w-automaton with nondeterministic branching also
nondeterministic w-automaton. An w-automaton with universal branching is also called universal
w-automaton. Depending on the branching type of the automaton, we interpret the choice
for a successor state to be either existential or universal. Therefore, we define the runs of
both automata types similarly, namely as sequences, and interpret them differently, namely as
sequences and trees, respectively, when characterizing the acceptance of a word:

Definition 2.5 (Run of a non-Alternating w-Automaton).

Let A = (Q, qo, 3, Acc) be a non-alternating w-automaton with alphabet . Let o € (2%)® be
a sequence. A run of A induced by o is a sequence r = qyq; - .. € Q% with (g, ok, gr+1) €
for all k > 0 with k + 1 < |o|. A run r is accepting if, and only if, r € Acc holds.

The runs produced by a complete w-automaton on an infinite sequence are also infinite.

An infinite word ¢ € (2%)® can induce several runs for both nondeterministic and universal
w-automata A. The set of all such runs is denoted with Runs(A, o). In order to accept an
infinite word o € (2*)“, a nondeterministic w-automaton A is required to have some accepting
run for o. For a universal w-automaton, in contrast, all runs of A induced by ¢ need to be
accepting. Formally, a nondeterministic w-automaton A accepts a word o € (2%)® if, and only

29

30

2. FOUNDATIONS

if, there exists a run r € Runs(A, o) that is accepting. A universal w-automaton A accepts
aword o € (2%)? if, and only if, all runs r € Runs(A, o) are accepting. Irrespective of the
branching type, the language L(A) of an w-automaton A is the set of all accepted words, i.e.,
L(A) = {0 € (2%)¢ | A accepts 0}. To further distinguish nondeterministic and universal
w-automata, we often interpret the set of runs of a universal automaton as a single tree. We
formalize trees when introducing alternating w-automata in the next section.

2.5.2. ALTERNATING w-AUTOMATA

An alternating w-automaton allows for both existential and universal choices. Intuitively,
existential choices can be seen as “or”-choices that allow for choosing one of the possible
successor states as the actual successor, while universal choices are “and”-choices, where all of
the possible successor states constitute an actual successor. Therefore, the transition function
of an alternating automaton yields a positive Boolean formula over the set of states.

The positive Boolean formulas over a set X, denoted B*(X), are the formulas built from
elements of X, conjunction, disjunction, true, and false. A set Y C X satisfies a positive Boolean
formula ¢ € B*(X), denoted Y [&, if, and only if, the truth assignment which assigns true to all
variables in Y and false to all variables in X \ Y satisfies £&. We assume that the elements of B*(X)
are given in disjunctive normal form (DNF), i.e., as a disjunction of one or more conjunctions
of literals of X. Since every propositional formula can be converted into an equivalent one in
disjunctive normal form, this assumption does not restrict the possible elements of B*(X). We
represent a propositional formula \/; A\ ; ¢; ; in disjunctive normal form also in its set notation
U; {U I {c,-,]}} Formally, an alternating w-automaton is then defined as follows:

Definition 2.6 (Alternating w-Automaton).

Let X be a finite alphabet. An alternating w-automaton over ¥ is a tuple A = (Q, qo, 3, Acc),
where Q is a finite set of states, g is the designated initial state, § : Q X X — B*(Q) is a
transition function, and Acc € Q® is an acceptance condition.

Since alternating w-automata allow for universal choices, their runs form trees instead of
sequences. Intuitively, a run tree’s branching then represents the automaton’s universal choices.
Note that due to the existence of additional existential choices, every alternating w-automaton
induces a set of run trees on every input sequence. Formally, a tree is defined as follows:

Definition 2.7 (X-labeled Tree).

Let ¥ be a finite alphabet and let D be a set of directions. A tree T over D is a prefix-closed subset
of D* i.e., T € D* holds and if we have x - d € T then x € T holds as well. We refer to the
elements x € T of T as nodes. The depth of a node x is denoted with |x|. The empty sequence ¢
is called the root. The children of a node x € T are the nodes children(x) = {x-d € T | d € D}.
A X-labeled tree (T,) over D consists of a tree T over directions D and a labeling function
¢ : T — 3. A branch of (T,) is a maximal sequence £(x)¢(x1) ... € * with xy = ¢ and
Xjs1 € children(x;) for every j € N.

2.5. w-AUTOMATA

For every node x € T of a tree T, there exists a unique finite sequence of nodes in T that,
starting from the root ¢ of T, reaches node x. We call this sequence the prefix of x in T and denote
it with pref (T, x,). Furthermore, we denote the set of all branches of a X-labeled tree (T, ¢) with
Branches(T, £) and the set of infinite branches of (T, £) with Branchesy,s (T, ¢).

A run tree of an alternating w-automaton A = (Q, qo, J, acc) is then a tree that is labeled
in the states of A, i.e,, in Q. The labeling function is defined according to A’s transition
function é. Intuitively, every universal choice in A defined by ¢ yields a new branch in the run
tree, while every existential choice induces a new run tree. Formally, a run tree of an alternating
w-automaton is defined as follows:

Definition 2.8 (Run of an Alternating «w-Automaton).

Let A = (Q, qo, 5, Acc) be an alternating w-automaton with alphabet . Let o € (2%)® be an
infinite sequence. A run tree of A induced by o is a Q-labeled tree (T, ¢) with ¢(¢) = go and
{€(x") | x" € children(x)} | 6(£(x), 0|x|) for all x € T. A run tree (T, ¢) is accepting if, and
only if, b € Acc holds for all of (T, £)’s branches b.

An alternating w-automaton (A over alphabet ¥ induces several run trees on a single infinite
sequence o € (2%)¢ if existential choices occur during a run of A on o. Slightly overloading
notation, we denote the set of all such run trees by Runs(A, o). In order to accept an infinite
word ¢ € (2%)®, an alternating w-automata is only required to induce some accepting run
tree for o. Formally an alternating w-automaton A over alphabet X accepts an infinite word
o € (2%)? if, and only if, there exists a run tree r € Runs(A, o) of A induced by o that is
accepting. The language L(A) of an alternating w-automaton A over alphabet ¥ is the set of
all accepted words, i.e., we have L(A) = {0 € (2%)® | A accepts cr}.

2.5.3. BUcHI AND co-BticHI ACCEPTANCE CONDITIONS

There are several types of acceptance conditions for w-automata. In this thesis, we focus on
the Biichi and co-Biichi conditions. Both these acceptance conditions are defined over the set
Inf(r) € Q of states of the automaton A = (Q, qo, J, Acc) that occur infinitely often in a run r
of A. Formally, Inf(r) is given by Inf(r) = {q €Q|Vk>203k<j<|rl.rj= q}. We now
define both Biichi and co-Biichi acceptance based on Inf(r).

Intuitively, the Biichi acceptance condition states that a certain set F C Q of so-called accepting
states needs to be visited infinitely often. Formally:

Definition 2.9 (Buchi Acceptance Condition).

Let A = (Q, qo, 5, Acc) be an w-automaton over alphabet X. Let F C Q be a set of accepting
states. A run r of A is accepted by the Biichi condition if, and only if, F N Inf(r) # 0 holds.
Hence, we define

Accpicni(F) = {r € Q% | FNInf(r) # 0} .

By definition of Inf(r), a finite run can never visit any state infinitely often. Hence, a finite
run only satisfies the Biichi acceptance condition if the set of accepting states is empty. We call

31

32

2. FOUNDATIONS

an alternating, nondeterministic, or universal w-automaton with Biichi acceptance condition
alternating Biichi automaton (ABA), nondeterministic Biichi automaton (NBA), or universal Biichi
automaton (UBA), respectively.

Specifications given as LTL formulas can be translated into alternating and nondeterministic
Biichi automata with a linear and exponential blow-up in the automaton size, respectively:

Proposition 2.1 ([MSS88]). Let ¢ be an LTL formula. There exists an alternating Biichi automa-
ton A, with O(|g|) states such that L(A,) = L(¢) holds.

Proposition 2.2 ([KV05]). Let ¢ be an LTL formula. There exists a nondeterministic Biichi
automaton A, with 0(2!?1) states such that L(A,) = L(¢) holds.

The co-Biichi condition, in contrast, intuitively requires that a certain set F C Q of so-called
rejecting states must be visited only finitely many times. Formally:

Definition 2.10 (Co-Biichi Acceptance Condition).

Let A = (0Q, qo, 5, Acc) be an w-automaton over alphabet 3. Let F C Q be a set of rejecting
states. A run r of A is accepted by the co-Biichi condition if, and only if, F N Inf(r) = @ holds.
Hence, we define

Acceo-iichi(F) = {r € Qoo | Fn Inf(r) = (D} .

By definition of Inf(r), a finite run can never visit any state infinitely often. Hence, a finite
run trivially satisfies the co-Biichi acceptance condition for any set of rejecting states. We call
an alternating, nondeterministic, or universal w-automaton with co-Biichi acceptance condition
alternating co-Biichi automaton (ACA), nondeterministic co-Biichi automaton (NCA), or universal
co-Biichi automaton (UCA), respectively.

Similar to Biichi automata, LTL formulas can also be translated into alternating and universal
co-Biichi automata with a linear and exponential blow-up in the automaton size, respectively.
These results follow from Propositions 2.1 and 2.2, i.e., the respective results for Biichi au-
tomata, and the observation that the Biichi and co-Biichi acceptance conditions, as well as
nondeterministic and universal branching, are dual:

Proposition 2.3. Let ¢ be an LTL formula. There exists an alternating co-Biichi automaton A,
with O(|¢|) states such that L(A,) = L(¢) holds.

Proof. There exists an alternating Biichi automaton 8-, = (Q, qo, 8, Accpichi(F)) with O(|-¢])
states such that £(8-,) = L(—¢) holds by Proposition 2.1. We construct an alternating co-
Biichi automaton A, from B, as follows: A, = (O, qo, 5", Accco-piichi(F)), where & is the
transition function obtained from § when replacing all conjunctions with disjunctions and
vice versa. Hence, A, is a copy of B_, with dual transition function and, as the accepting
states of B_,, are interpreted as rejecting states in A, with dual acceptance condition. Due to
the duality of the Biichi and co-Biichi acceptance conditions as well as nondeterministic and
universal branching, £L(A,) = L(—¢) = L(¢) follows. Since O(|-¢|) = O(|¢|) holds, the

universal co-Biichi automaton A, has O(|¢]) states. O

2.5. w-AUTOMATA

(a) Biichi automaton A, for ¢ = Sa A b (b) Co-Biichi automaton Ay, for y =0 a Vv Ob.

Figure 2.2.: Non-alternating Biichi automaton A, and alternating co-Biichi automaton Ay.

Proposition 2.4. Let ¢ be an LTL formula. There exists a universal co-Biichi automaton A, with
O0(2!¢ly states such that L(A,) = L(¢) holds.

Proof. There is a nondeterministic Biichi automaton 8-, = (Q, qo, 8, Accpiichi (F)) with O(|-¢])
states such that £(8-,) = L(—¢) holds by Proposition 2.2. We construct a universal co-Biichi
automaton A, from B_,, as follows: A, = (Q, qo, 6, Accco-Bichi(F)). Hence, A, is a copy of B_,,
where nondeterministic transitions are interpreted as universal ones and accepting states as
rejecting ones. Therefore, due to the duality of the Biichi and co-Biichi acceptance conditions
as well as nondeterministic and universal branching, £L(A,) = L(—¢) = L(¢) follows. Since

O(|-¢]) = O(lg|) holds, A, has O(|g]) states. m|

In the remainder of this thesis, we only consider w-automata with Biichi and co-Biichi
acceptance conditions. For ease of presentation, we, therefore, denote the acceptance condition
simply with the set F of accepting or rejecting states, respectively, whenever the acceptance
type is clear from the context. We represent an alternating or non-alternating w-automaton
A = (Q,qo0, 6, F) over alphabet X~ with Biichi or co-Biichi acceptance as a directed graph
with vertex set Q and a symbolic representation of the transition relation § as propositional
formulas B(X). In alternating w-automata, we depict universal choices by connecting the
transitions with a gray arc. In both alternating and non-alternating w-automata, the accepting
or rejecting states in F are marked with double circles.

Example 2.3. First, consider the LTL formula ¢ = & a A < b, which describes that both atomic
propositions a and b need to be set to true eventually. Consider the non-alternating Biichi
automaton A, shown in Figure 2.2a. It is deterministic and thus induces for each infinite
sequence o € (21%%})® only a single run. The only accepting state is g3, which is a sink state,
i.e., once entering it, it can never be left again. Thus, all runs that do not enter g3 eventually
are rejecting. Clearly, all sequences o € (2{%?})® for which a and b are set to true eventually
induce a run that enters g3. Hence, A, accepts the same language as ¢.

Next, consider the LTL formula ¢y = (0 a vV Ob. It requires that either atomic proposition b
is set to true in the next time step or atomic proposition a is set to true infinitely often. Consider
the alternating co-Biichi automaton A, depicted in Figure 2.2b. It contains both existential and

33

34

2. FOUNDATIONS

universal transitions. First, consider a sequence o € (2{“’17 })¢ with b € oy, i.e., where b is set
to true in the second time step. Among others, ¢ induces a run tree with a single branch in
which we, starting from ¢, move to g4 and then to gs;. The non-rejecting state gs is never left.
Hence, an accepting run tree of A, induced by such sequences o exists. Second, consider a
sequence o € (2{%?})® with ¢ E [0 a and o [Ob. Note that although ¢ induces a run tree
with a single branch that moves from gy to g4 in the first time step, this run tree is rejecting
since b ¢ oy holds by assumption and therefore the run tree enters the rejecting sink gs. Since
an alternating co-Biichi automaton only requires the existence of some accepting run tree, this
particular run tree does not result in Ay rejecting o. In the following, we can thus ignore
this run tree and focus on the upper part of the automaton. Note that this part contains only
universal choices and thus induces only a single run tree, yet, with possibly multiple branches.
This run tree can only be rejecting if it contains a branch that visits g infinitely often. This can
only be the case if a is always set to false from some point in time on. Hence, such a branch
cannot be induced by a o. Since sequences that violate (1 a set a to false from some point on,
such sequences, in contrast, only induce run trees that contain at least one rejecting branch.
Thus, for a word o € (2{“’17})“’ with o £ O a vV Ob, all run trees of Ay induced by o are
rejecting while, for a word o € (2{#}) with ¢ | [1<>a vV O b induces some accepting run tree.
Therefore, Ay accepts the same language as . A

2.6. SYSTEM MODELS AND STRATEGIES

We model a reactive system with a finite-state transducer. Transducers are a particular type of
finite-state machines that read infinite sequences over input variables and, in every step, change
their internal state and produce a valuation of output variables. A system strategy defines the
behavior of a reactive system. It maps a history of valuations of input variables to a valuation of
output variables. We first introduce finite-state transducers as our model for reactive systems.
Afterward, we formalize system strategies and connect them with our system model.

2.6.1. FINITE-STATE TRANSDUCERS

We consider finite-state transducers as a model for reactive systems. Thus, we consider trans-
ducers that read infinite sequences of valuations of input variables I of the system and output
valuations of output variables O of the system in every step. Formally, we define finite-state
(T, Y)-transducers for finite sets ', Y, where in our context I’ = 2/ and Y = 2°.

Definition 2.11 (Finite-state (T, Y)-Transducer).

Let " and Y be finite input and output alphabets, respectively. A finite-state (T, Y)-transducer
T = (T, Ty, 7, £) consists of a finite set of states t, a designated set of initial states Ty C T, a
transition relation 7 : T X I' X T, and a labeling relation £ : T X T' X Y.

In the remainder of this thesis, we assume, without loss of generality, that all states of a
finite-state transducer are reachable. A finite-state (I, Y)-transducer 7 = (T, Ty, 7, £) is called

2.6. SYSTEM MODELS AND STRATEGIES

transition-deterministic if, and only if, | Ty| < 1 holds and if for all states t € T and all inputs: € T,
there exists at most one state t’ € T such that (¢,1,t") € t holds. It is called labeling-deterministic
if, and only if, for all states t € T and all inputs ¢ € T, there exists at most one output o € Y such
that #(¢,1) = o holds. If 7 is both transition-deterministic and labeling-deterministic, then we
call it simply deterministic. The finite-state transducer 7~ is called transition-complete if |Ty| > 1
holds and if for all states t € T and all inputs 1 € T, there exists at least one state t’ € T such
that (¢,1,t') € 7 holds. It is called labeling-complete if for all states t € T and all inputs: € T,
there exists some output o € Y such that (t,1,0) € £ holds. If 7™ is both transition-complete and
labeling-complete, then we call it simply complete.

We distinguish between two types of finite-state transducers, Moore transducers and Mealy
transducers. For the former, the labeling depends only on the state, not on the input. Formally,
for all statest € T, we have {o € Y | (t,1,0) € £} ={0o € Y | (t,/,0) € £} for all input valuations
1, € T. Slightly misusing notation, we thus consider the labeling relation ¢ for a Moore
transducers 7 = (T, To, 7, £) to be of type T X Y. Furthermore, for labeling-deterministic Moore
transducers, we then also write £(t) = o instead of (t,0) € f. For Mealy transducers, in
contrast, the labeling of a transition may also depend on the input valuation, i.e., we might have
{oeXY | (t,,0) €t} #{oeX|(t, 1, 0) € ¢} for input valuations 1,/ € T with 1 # /.

Given an infinite input word y = yoy1 - . . € I'“, a finite-state (T, Y)-transducer 7~ = (T, Ty, 7,)
defines a set Paths(7,y) of finite or infinite sequences m = (ty, vo)(t1,01) ... € (T X Y)® of
states and outputs of 7~ that describes the possible internal changes of states of 7~ as well as its
outputs when reading y, the so-called paths:

Paths(T,y) = q{(to,v0)(t1,v1) ... € (TXYX)® |ty € Ty A
Vk > 0. (tk, Yis tks1) € T A (s Yo Uk) € £}

Note that if 7 produces a finite path 7 € (T X Y)* on input sequences y € T', then 7 is
incomplete. The finiteness of 7 can be due to both transition-incompleteness and labeling-
incompleteness. If 7 ends at point in time k due to transition-incompleteness, then the last pair
(tk, vk) of 7 is built from the target state of the last successful transition as well as its labeling.
If 7 ends at point in time k due to labeling-incompleteness, then (tx, yx) is built from the target
state of the last successful transition that has a labeling.

In this thesis, however, we consider labeling-complete transducers only. Hence, whenever
the transducer 7~ produces a finite path 7 on y, then 7 is finite due to transition-incompleteness.
Therefore, in particular, the last pair (, vx) of 7 is always built from the target state of the last
successful transition as well as its labeling.

For every path 7 € Paths(7,y) of 7 induced by y € T® with & = (o, v)(t1,v1) ..., there
exists a sequence p = (yo, Vo) (y1,v1) - .. € (I X I')® of valuations of input and output variables
that captures the inputs of all successful transitions together with the outputs of the respective
source states. Hence, intuitively, p combines y with the output sequence of 7~ defined by 7.
Note, however, that if a path 7 € Paths(7,y) is finite, the last pair state f; occurring in 7
is the target state of the last successful transition since we only consider labeling-complete
transducers. Thus, in particular, it is not the source state of a further successful transition.
Therefore, for a finite path 7, the corresponding sequence p only considers the labelings of the

35

36

2. FOUNDATIONS

710
T | {a} o\ (ay T | {a}
()
T | {b} o @Qﬂwv{a}
(a) Deterministic (2¢¢}, 2{@b})-trans- (b) Nondeterministic (2%}, 214})-transducer 7; with Mealy
ducer 77 with Moore semantics. semantics.

Figure 2.3.: Finite-state transducers 71 and 7;. Both are complete.

states up to point in time || — 2 and hence |p| = max {0, || — 1} if 7 is finite. If 7 is infinite,
in contrast, p is clearly infinite as well. The sequence p is called trace. Formally, the set of all
traces of 7 for input y € T'? is defined by

Traces(T,y) =q{p € ([xY)® | 3n € Paths(T,y).V0 < k < |x| — 1. px = (v, #2(7x))} .

In our context, where we have I' = 2! and Y = 29, we merge the input y; and output vy
of a trace p € Traces(7,y) of T at a point in time k > 0 with 0 < k < |p| into a single set
Ok =Yr Uk € 210 Since I N O = 0 holds by definition of architectures, yx and vy are always
non-contradictory, and thus building their union is uniquely possible. Slightly overloading
notation, we call the merged trace simply trace as well and define

Traces(7,y) = q{o € (T UY)® | 3r € Paths(T,y).Y0 < k < || — 1. o = yx U #2(7m) }

directly. The set of all infinite traces produced by 7~ on some infinite input sequence is defined
by Traces(7") = U, ere Traces(7,y).

We depict a finite-state (27, 29)-transducer 7~ = (T, Ty, 7, £) as a directed graph with vertex
set T and a symbolic representation of the transition relation 7 as propositional formula B(I).
The labeling relation is depicted on the edges of the graph as well: for a transition (t,1,t") € T,
we add the disjunction of all 0 € 29 with (t,1,0) € ¢ to the respective edge representing a
transition (f,1,t") € 7. The labeling is separated from the propositional formula describing the
transition — and thus the input valuations - using a gray pipe.

Example 2.4. In Figure 2.3, two complete finite-state transducers are shown. Figure 2.3a
depicts the (2{0},2{“’b})—transducer T = (T, Ty, 1y, £1) with Ty = {to, 11}, Tio = {to}, both
(to,1,t1) € 71 and (1,1, 1) € 7 for all 1 € 2%¢}, and both (o, 1, {a}) € £ and (t1,1,{b}) € &
for all 1 € 21¢}, Clearly, 771 is deterministic and has Moore semantics. Furthermore, its set of
traces is given by Traces(7)) = ({a}{b})® U (2{¢1)®. Figure 2.3b illustrates the (2{%}, 2{e})-
transducer 7, = (T, T, 12, £2) With T, = {to, t1, L2, 13}, Too = {to} as well as (ty,1,t1) € 1,
(to, 1, 12) € T2, (E2,1,12) € T, (13,4, 13) € To, (b, 1, D) € b3, (2,1, {a}) € £, and both (3,1, 0) € &,
and (t5,1, {a}) € ¢ for all 1 € 212} and (1,,0,t,) € 15, (t1, {b}.t3) € 15, (t1,0,{a}) € &, and
(t1,{b},0) € &,. Clearly, 7, is nondeterministic, for instance due to the transitions with source
state ¢y, and has Mealy semantics due to the labeling in state t,. A

2.6. SYSTEM MODELS AND STRATEGIES

We defined system models, and thus transducers, irrespective of the system’s architecture.
For a monolithic architecture o = (P, V, I, 0), we consider a finite-state (21, 2°1)-transducer
modeling the single system process p; € P~. For a distributed architecture &/ = (P,V,1,0),
we consider finite-state (277, 29)-transducer modeling all respective system processes p; € P~.
Moreover, we are interested in a finite-state (29, 2°") transducer that models the entire
system, i.e., the interplay of all system processes. Note that the transducer for the whole system
reads infinite words of output variables of the environment process p.n, and is labeled in the
union of the output variables of all system processes.

To model distributed systems with several processes, we often only model the processes indi-
vidually, i.e., with individual finite-state (2%, 29)-transducers 7;. To argue about the behavior
of the entire system and thus to obtain the finite-state (ZO”W, 207) transducer 7 that models the
full system, we, therefore, need to compose the individual transducers 7;. In the following, we
present how such a joined transducer 7 can be constructed: we define the parallel composition
of two finite-state transducers.

Definition 2.12 (Parallel Composition of Finite-State Transducers).

Let I, I, O1, and O; be finite sets of input and output variables with ; NO; = @ and N O, = 0.
Let 71 = (Ty, T1 0, 71, £1) be a finite-state (25, 291)-transducer and let 7; = (T3, Ty, 72, t2) be a
finite-state (2%, 292)-transducer. The parallel composition of 77 and 73, denoted 77 || 73, is the
finite-state (2(hV2)\(O1V02) 90102 transducer 773 = (T, To, 7, £) with

e T=T) X1,
o To = Tio X Tpp,

((u,v), 1, (u',v’)) € rif, and only if, there are 0; € 2091 and 0, C 292 with (u, 11,01) € &
and (v, 15, 02) € £ such that (u, 11, u’) € 71 and (v, 15,0”) € 15 hold, where 1; = (1Uo0;) NI}
and 1, = (tUoy) NI, and

« ((4,0),1,0) € tif,and only if, (u, tU0)NI;,0NO01) € £ and (v, (1U0) NI, 0N O,) € 4.

Without loss of generality, we assume in the remainder of this thesis that unreachable states
are removed from 77 || 7;. Intuitively, the parallel composition 77 || 72 of two finite-state
transducers 77 and 7; is the product of 77 and 7;. Note that the output variables of one of
the transducers can be the input variables of the other one. This is carefully handled in the
definition of the transition and labeling relations of 77 || 7.

Example 2.5. Reconsider the nondeterministic finite-state (2{%}, 2{¢})-transducer 7; with Mealy
semantics from Figure 2.3b. Furthermore, consider the deterministic finite-state (2{¢}, 2{0})-
transducer 73 with Mealy semantics depicted in Figure 2.4a. The parallel composition 73 || 73
of 73 and 75 is shown in Figure 2.4b. It is a nondeterministic finite-state (2{¢}, 2{#b})_transducer
with Mealy semantics. A

Note that the parallel composition 77 || 7z of two finite-state transducers 7; and 7; can be
nondeterministic or incomplete even if 77 and 7; are both deterministic and complete; for
instance, if both 71 and 7; have Mealy semantics and one of 77’s outputs is an input of 7; and

37

38

2. FOUNDATIONS

—al| 0 -c|0

\aw/é - \Q) @ 7\/{0} -C | {a}
— _’ T {a}
e

T (o)
c¢|{a b}

(a) Deterministic (2{¢}, 2{})-trans- (b) Nondeterministic (2{¢}, 2{¢b})_transducer 7; || 75 with Mealy

ducer 75 with Mealy semantics. semantics, parallel composition of 7; and 75.

Figure 2.4.: Finite-state transducer 75 and the parallel composition with 7; from Figure 2.3b.

vice versa. If both 77 and 7; are Moore transducers, however, their parallel composition is
guaranteed to be deterministic as long as they both are deterministic. Furthermore, 71 || 77 is
complete as long as both 77 and 7; are complete:

Lemma 2.1. Let I1, I, Oy, and O, be finite sets with]; N O; = 0 and I, N Oz = 0. Let 71 be a
finite-state (211, 201)-transducer and let 7; be a finite-state (2%, 292)-transducer. Let both 71 and 7,
have Moore semantics. Then 77 || 7z has Moore semantics as well. If 7{ and T, are deterministic,
then so is 71 || T2. If 71 and T; are complete, then Ty || 72 is transition-complete. If T; and T3 are
labeling-complete and O; N O, = O holds, then 71 || 73 is labeling-complete as well.

Proof. Let 71 = (T1, Th0, 11, 1), T2 = (15, Tz, 72, £2), and 71 || 72 = (T, Ty, 7, £). For the sake of
readability, let I = (I; U I) \ (O U Oz) and let O = O; U O,. Since both 77 and 7; have Moore
semantics by assumption, it follows immediately from the definition of the labeling relation ¢
that 7 has Moore semantics as well.

First, let both 77 and 7; be deterministic. Then, we have |Tjo| < 1 and |T5y| < 1 and thus,
by definition of transducer composition, |Ty| < 1 holds. Let (u,0), (u/,v’) € T and let 1 € 2!
such that ((4,0),, (v/,0")) € 7 holds. Then, by construction of z, there exist 0; € 201 and
0, C 292 with (u,11,01) € £ and (v, 13,05) € £ such that (u,11,u’) € 7, and (v, 15,0") € 73 hold,
where 11 = (1Uo02) NI and 1, = (1 U 01) N L. Since 77 and 7; are deterministic by assumption
and thus, in particular, transition-deterministic, u* € Ty and v’ € T, are the only successor
states of u and v in 77 and 7; for input 1; and 1;, respectively. Since 77 and 7; have Moore
semantics by assumption, their labeling relations are independent of the input. Since they are
labeling-deterministic, the labeling relations assign only a single valuation of output variables
to the respective state. Hence, 0; and o, are the only valuations of output variables that can
satisfy (u, 11,01) € £ and (v, 1, 02) € ;. Therefore, 11 and 1, are unique for (u,v) and ¢ and hence
(u',v") € T is the only successor state of (u,0) for ¢ in 7. Thus, 7 is deterministic.

Second, let both 77 and 7; be labeling-complete. Then, we have |T;o| > 1 and |T;o| > 1
and thus, by definition of transducer composition, |Ty| > 1 holds. Let (#,0) € T and let
1 € 21, Since both 77 and 7; are labeling-complete and since they have Moore semantics by
assumption, there are outputs o; € 201 and 0, € 29 such that (u,01) € ¢ and (v,0;) € & holds.
If O1 N O, = 0 holds, then clearly 0, U 0, is well-defined, i.e., it is non-contradictory, and thus,
by definition of transducer composition, we have ((u,v),1,0; Uo,) € £ forall 1 € 2! Hence, T

2.6. SYSTEM MODELS AND STRATEGIES

is then labeling-complete as well. If both 77 and 7; are, in addition to labeling-completeness,
also transition-complete, then there exist transitions (u, 11, u’) € 71 and (v, 15,0”) € 75, where
11 = (tUoy) NI and 1 = (1Uo01) N I. Thus, by definition of transducer composition, there exists
a state (u’,0’) € T such that ((u,v), 1, (u’,0")) € 7 holds. Hence, 7 is then transition-complete
as well, even if O; N O3 # 0 holds. m]

Furthermore, if the parallel composition 77 || 7; of two complete finite-state transducers 77
and 7; produces infinite traces only, then its traces o € Traces(7; || 72) are, restricted to the
respective variables, traces of both 77 and 7; as well:

Lemma 2.2. Let I, I, Oq, and O, be finite sets withI; N O; = 0 and I, N O; = (0. Let 71 be a
complete finite-state (211, 201)-transducer and let T; be a complete finite-state (2%, 2°?)-transducer.
LetVi =1, U0, V, =1, U Oy, andV =V, UV, If all traces of 71 || T are infinite, then we have

Traces(7{ || 72) = {a e (2V)? | onV; € Traces(T) Ao NV; € Traces(7§)} .

Proof. Let 7 = (Tl, Tl,O, T1» fl), T, = (Tz, TZ,Oa T2, fZ), and T || T = (T, Ty, T, f) First, let o € (ZV)a)
be an infinite sequence such that both o N V; € Traces(77) and o NV, € Traces(7;) hold. Let
y=on((I;UL)\ (01 U0y)),lety! = o NIy, and let y? = 6 N I,. Then, since both transducers
71 and 7; are complete by assumption, it holds that, for all i € {1, 2}, transducer 7; produces
an infinite path 7' € Paths(7;,y") for input sequence y’ such that #2(7{;;) = ok N O; holds for
all points in time k > 0. Based on the paths 7! and 7%, we construct an infinite sequence
7 € (T,201902)@ of pairs of states of 77 || 7z and output valuations as follows:

M = ((#1(7[/1)),#1(71',3)),#2(71',1) U #2(7!,3)) forallk >0

Since #z(ﬂ'li) = 0} N O; holds for all i € {1,2} and all k > 0, the union of the outputs of 77
and 7; is well-defined as no conflicts can occur. Thus, 7 is well-defined. We first show that
7 € Paths(71 || 73, y) holds, i.e., that we have #; (7m9) € To and (#1(7x), Yk, #1(7k+1)) € T as well as
(#1(7x), yk» #2(7y)) € ¢ for all points in time k > 0. By assumption, both ! € Paths(77, y') and
n? € Paths(7;, y*) hold and hence we have #; (1)) € T, as well as both (#; (ﬂ,i), y,i, #1(7T]i+1)) €1
and (#1(7;), ;. #2(m;)) € & foralli € {1,2} and all k > 0. Thus, by construction of 7, in
particular #; (1) € To holds. Since we have #;(m;) = o, N O; for all i € {1,2} and all k > 0, it
follows from the construction of y that yx U #z(ﬂz_i) =0, N(03-; U ((I; UL;) \ O;)) holds for all
i € {1,2}andallk > 0. Thus, we have (y U#z(ﬂz‘i))ﬂli = (oxN(05_;U(I;UL)\O;)))NI;. Since
I; N O; = 0 holds by assumption for all i € {1,2}, we have (L UL)\O;)) N =(LUL)NL =1
and hence (O5;_; U ((I; UL) \ O;)) NI; = I; follows. Therefore, (y; U #2(71'2_")) NI; = y* holds for
alli € {1,2} and all k > 0. Hence, we have (#1(7r,1),#1(7r£)),yk, (#1(7r11+1),#1(7r£+1))) € 7 and
(#1(m), #1(12)), Yi #2(m)) U #2(77)) € € for all k > 0 by definition of the parallel composition
of finite-state transducers and thus, by construction of 7, both (#; (), yk, #1(7k+1)) € T and
(#1(7x), Yi #2(7)) € £ follow. Therefore, & € Paths(71|| 72, y) holds. Moreover, by construction
of 7, we have #,(m;) = #Z(JT;) v #2(7[,3) for all k > 0 and thus, since #2(7T]i) = o N O; holds, we
have #;(7x) = ox N (01 U Oy) for all k > 0. Since we have y = o N ((I; U L) \ (O1 U Oy)) by
definition, y U #;(m) = o NV follows for all k > 0. Hence, since o € (2")® holds and by
definition of traces, o € Traces(71 || 72, y) follows.

39

40

2. FOUNDATIONS

Second, let o € Traces(71 || 7z) be a trace of the parallel composition 77 || 77 of 77 and 75.
Lety =on ((I; UL) \ (O; UOy)), let y! = o NIy, and let y> = 6 N I,. Then, since all traces
of 71 || 7 are infinite by assumption, 77 || 72 produces an infinite path = € Paths(71 || 72,)
for input sequence y such that #,(7;) = o N (O; U O,) holds for all points in time k > 0. We
construct infinite sequences 7' € (T,2°) and 72 € (T3, 29?) from 7 as follows:

mp = (#1(#1 (), #2 () N Oy) forallk >0
71',3 = (#2(#1(7mr)), #2(mx) N O3) forallk >0

We first show that 7' € Paths(7;,y") holds for all i € {1,2}. Since 7 € Paths(7; || T2,y), we
have #;(m) € To X T and thus #1(715) € T;p follows for all i € {1, 2} with the construction
of 7. Hence, it remains to show that, for all i € {1, 2}, we have both (#1(7T’i), y,i, #1(7T1i+1)) €T
and (#1(7), y;, #2(;)) € ¢ for all points in time k > 0. Since 7 € Paths(7; || 72, y) holds by
assumption, we have both (#;(7x), yx, #1(7k+1)) € T and (#1(7x), Yk, #2(7x)) € £ for all k > 0.
Therefore, for all k > 0, there exist outputs 0; C O; and 0, C O, such that 01 U 0, = #,(7mx) and
both (#; (#1(7x)), (yk Yo3—i) N1, #1(#1(7mk41))) € 7 and (#1(#1(7x)), (v Yo3-i) N1, 0;) € £ hold.
Since 07 U 0y = #, () holds, we clearly have o; = #5(m) N O; for all i € {1, 2}. Furthermore,
by construction of 7, we have #;(7;) = o N (O U O3) and thus o; = gx N O; follows. Hence,
we have yx U os_; = ox N (03-; U ((I; U L) \ O;)) by construction of y. Thus, in particular,
(ykVos—i) NI = (ox N (O3-; U ((I; ULy) \ O;))) NI; holds. Since I; N O; = @ holds by assumption,
we have (L UL)\O;)NI; = (I; UL) NI; = I; and hence (O3_; U (L UL)\ O0)) NI = I
follows. Therefore, (yx U os—;) N I; = y]i holds for all i € {1,2} and all kK > 0. Hence, both
(#1(#1(7x)), v #1(#1(mk41))) € 73 and (#1(#1 (7)), v, #2(7r;.)) € ¢ follow with the construction
of the parallel composition of finite-state transducers for all i € {1,2} and all k > 0. Thus,
n' € Paths(7;,y") holds for all i € {1,2}. Moreover, by construction of the sequence 7', we
have #z(ﬂ'li) = #, () N O; and thus #z(ﬂli) = (0; N (01 U 0,)) NO; = o N O; follows for all
i € {1,2} and all k > 0. Since y* = o N]; holds by definition, we thus have y, U#;(r) = o NV;
for all k > 0. Therefore, 0 N'V; € Traces(7;,y") follows for all i € {1, 2}. m|

2.6.2. SYSTEM STRATEGIES

While system models define all possible behaviors of a reactive system, a system strategy defines
a concrete behavior of the system. Hence, it characterizes how the system concretely reacts to
an input sequence. Therefore, in contrast to system models, system strategies are both complete
and deterministic. That is, for every input sequence, there exists exactly one output sequence.
Formally, we define a system strategy as follows:

Definition 2.13 (System Strategy and Computation).

Let I and O be finite sets of input and output variables with I N O = 0. A system strategy is a
function s : (21Y9)* x 2! — 29 The computation of strategy s on an infinite input sequence
y € (2h)®, denoted comp(s,y), is the infinite word o € (2/Y9)® with both ¢ N T = y and
s(0g . .. Ok, Ok+1 N I) = og41 N O for all points in time k > 0.

2.6. SYSTEM MODELS AND STRATEGIES

/Q)// \
2N N
{b} {b} {b}
0 / \{c} 0 / \{c} 0 / \{c} 0 / \{c}
{a} {a} {a} {a} {a}

{a}

Figure 2.5.: Strategy tree for a strategy s : (2V0)* x 2! — 29 with I = {c¢} and O = {a, b} that
alternates between outputting a and b, irrespective of the input. For ease of presentation we
denote every node of the tree with its label.

Intuitively, a system strategy thus maps a history of valuations of input and output variables
and the current input valuation to a valuation of output variables. Hence, the behavior of a
system strategy s : (2/Y9)* x 2! — 209 is characterized by an infinite 2°-labeled tree (T, ¢). It
branches according to the valuations of I and its nodes x € T are labeled with the strategic
choice of s on x. An exemplary strategy tree for a strategy that alternates between outputting a
and b, irrespective of the input c, is depicted in Figure 2.5.

When reading an infinite input sequence y € (2/)®, a strategy s : (2/Y9)* x 2! — 29 produces
a unique infinite output sequence characterizing the system’s behavior: the computation
comp(s,y) of s on y. The computations of a system strategy then define whether the strategy
complies with a system specification given as a linear-time property:

Definition 2.14 (Specification Realization).

Let V be a finite set of variables. Let I € V and O C V be finite sets of input and output
variables with 1N O = 0. Let s : (2Y9)* x 2T — 29 be a system strategy and let L C (2V)® be
a linear-time property. Then, s realizes L, denoted s |= L, if, and only if, comp(s,y) Uy’ € L
holds for all y € (2/)® and all y’ € (2V\UVO))®,

Given a set V of variables and sets I € V and O C V of input and output variables with
INO = 0, we call a linear-time property L C (2")® realizable if there exists some system strategy
s = (2IY9)* x 2I — 20 that realizes L. Overloading notation, we say that a system strategy s
realizes an LTL formula ¢ instead of saying that s realizes ¢’s language L(¢). Throughout this
thesis, we call system strategies simply strategies when the context is clear.

It is well-known that whenever there exists a system strategy that realizes an LTL formula,
then there also exists one that is finitely representable [EJ91]. Since we only consider system
requirements formalized in LTL in this thesis, we can thus always assume that there exist
finitely representable strategies for realizable system objectives. A finite representation of a
system strategy is called implementation. For simplicity, however, we use the terms strategy
and implementation interchangeably when the context is clear.

41

42

2. FOUNDATIONS

In this thesis, we model system implementations as finite-state transducers. We also call
transducers that represent system strategies strategy transducers. Let I and O be finite sets
of inputs and outputs. A finite-state (2, 2°)-transducer 7 that represents a system strategy
s 1 (2190)* x 2T — 29 produces exactly the computations of s. Since a system strategy produces
for every infinite word a unique infinite output word, a finite-state transducer that represents a
system strategy needs to produce a unique trace and thus also a unique path for every infinite
input word as well. Therefore, the transducer needs to be both deterministic and complete as
it can otherwise produce multiple path - if it is nondeterministic — or no path at all - if it is
incomplete. The unique path produced by a 7~ on input sequence y € (27)® then needs to
coincides with the computation of s on y, i.e., with comp(s, y). Hence, for a transducer 7 to
represent a system strategy s, we require that Traces(7",y) = {comp(s, y)} holds forall y € (27)®.
Therefore, it follows immediately from Definition 2.14, that a finite-state (2, 20)-transducer T
realizes a linear-time property L € (2")®, where I U O C V, if it is deterministic and complete
and if Traces(77) U (2V\UY0))@ C [holds.

Note that we defined system strategies irrespective of the architecture of the system. For a
monolithic architecture & = (P, V, I, 0), a system strategy s : (ZIluol)* x 2l — 201 defines the
behavior of the single system process p; € P~. For a distributed architecture &/ = (P,V,I,0),
we consider strategies s; : (21Y01)* x 2li — 20i defining the behavior of all respective system
process p; € P™. These strategies are also called process strategies. Moreover, we consider a
system strategy s : (20enY07)* x 20w — 20" for the entire system, i.e., for the interplay of all
system processes. We denote the parallel composition of two system strategies s; and s; with
s1 || s2 and define it in terms of the underlying finite-state transducers, i.e., s || s, is represented
by 771 || 7z, where 77 and 7; are finite-state transducers representing s; and s;, respectively.

2.6.3. WINNING AND DOMINANT SYSTEM STRATEGIES

In this thesis, we consider two types of system strategies: winning strategies and remorsefree
dominant — or simply dominant - strategies. Given an LTL formula ¢, a strategy is called
winning for ¢ if it realizes the linear-time property £L(¢):

Definition 2.15 (Winning Strategy).

Let V be a finite set of variables. Let I C V and O C V be finite sets of input and output
variables with I N O = 0. Let ¢ be an LTL formula over atomic propositions V and let
s 1 (21Y0)* x 2T — 20 be a strategy. Then, s is winning for ¢, if, and only if, s |= ¢ holds.

Thus, a winning strategy s is required to satisfy the specification ¢ for every input sequence.
Hence, an LTL formula is realizable if, and only if, there exists a winning strategy for it. In most
settings, winning strategies are considered.

Remorsefree dominance [DF11] is a weaker requirement than winning. In contrast to winning
strategies, remorsefree dominant strategies are allowed to violate the specification for an input
sequence if no other strategy would have satisfied it in the same situation. In the remainder
of this thesis, we call remorsefree dominant strategies also dominant strategies whenever the
context is clear. Formally, remorsefree dominant strategies are defined as follows:

2.7. INFINITE GAMES

Definition 2.16 (Dominant Strategy [DF14]).

Let V be a finite set of variables. Let I € V and O C V be finite sets of input and output
variables with I N O = (. Let ¢ be an LTL formula over atomic propositions V and let
s 1 (2190)*x 2l — 20 be a strategy. A strategy ¢ : (2/Y9)*x2! — 29 is dominated by s, denoted
t < s, if, and only if, for all y € (25)® and all y’ € (2"\UY9))® either comp(s,y) Uy’ | ¢ or
comp(t,y) Uy’ = ¢ holds. Strategy s is called dominant for ¢ if t < s holds for all alternative
strategies ¢ : (2[V0)* x 2T — 20,

Intuitively, a strategy s dominates a strategy ¢ if it is “at least as good” as t. It is dominant
for ¢ if it is at least as good as every other possible strategy and thus if it is “as good as possible”.
Dominance is, therefore, a notion of best effort: if a strategy s fails to satisfy the specification
but there does not exists any better strategy, then s did it’s best and thus should not feel any
remorse concerning its behavior. A dominant strategy also dominates other dominant strategies,
particularly itself. An LTL formula is called admissible if a dominant strategy exists for it.

Example 2.6. Consider the LTL formula ¢ = a A b, Let I = {a} and O = {b}. There does
not exist a winning strategy s for ¢: irrespective of the sequence of output valuations produced
by s, the computation of s on some input sequence y € (2/)® accurately reflects the valuations
of input variables defined by y. Thus, in particular, for an input sequence y € (2/)® that does
not set a to true at any point in time, i.e., with a ¢ yj for all k > 0, the computation comp(s, y) of
any strategy s contains no a. Hence, for such input sequences, comp(s, y) violates ¢ irrespective
of the choice of the strategy s. However, there exist dominant strategies for ¢, for instance a
strategy s that sets b to true in the very first time step: for input sequences that do not contain
any a, all strategies violate ¢ as outlined above. For all other input sequences, the computation
of s clearly satisfies ¢. A

Every strategy that is winning for an LTL specification ¢ is clearly also remorsefree dominant
for ¢. Hence, if ¢ is realizable, then there exists a dominant strategy s for ¢ whose computation
satisfies ¢ for every input sequence. Since every other dominant strategy t for ¢ needs to be
at least as good as s, its computation thus needs to satisfy ¢ for every input sequence as well.
Therefore, every dominant strategy for ¢ is winning for ¢ if ¢ is realizable:

Proposition 2.5 ([DF14]). LetV be a finite set of variables. LetI €V and O C V be finite sets of
input and output variables with I N O = 0. Let ¢ be an LTL formula over atomic propositions V.
If ¢ is realizable, then every dominant strategys : (2/V°)* x 2T — 29 is winning for ¢.

2.7. INFINITE GAMES

Games, particularly two-player games, are a common model in computer science. Since we
consider reactive systems in this thesis and thus systems that do not terminate, we utilize
infinite games, i.e., games that are played indefinitely. Infinite games can, for instance, be used
for solving the reactive synthesis problem. An infinite game is played in an arena, which is
represented by a graph whose set of vertices, the so-called positions, is partitioned into the
positions of the two players Player 0 and Player 1. Formally:

43

44

2. FOUNDATIONS

Definition 2.17 (Game Arena).

A game arena is a tuple A = (P, Py, Py, v, E), where P, Py, P; are sets of positions with
P =Py UP;and Py N P; =0, vy € P is the initial position, E C P X P is a set of edges such
that for all positions v € P, there exists a position v’ € P such that (v,0") € E holds. Player i
controls the positions in P;.

In an arena A = (P, Py, P, vy, E), the players construct a play. A play is an infinite sequence
p € P of positions such that (p, px+1) € E holds for all k > 0. The player owning a position
chooses the edge on which the play is continued. That is, if a position v € P;, which is controlled
by Player i and which is reached at point in time k > 0 in a play p € P“, has multiple outgoing
edges (v,0), (v,0”) € E, then Player i chooses whether p continues with v” or v, i.e., whether
Pr+1 = 0" or pry1 = 0" holds. We call a play initial if it starts in the initial position, i.e., if py = v
holds for the play p € P®. Note that since we require every position of an arena to have at least
one outgoing edge, a play is guaranteed to be infinitely long. Based on game arenas and plays,
an infinite game is defined as follows:

Definition 2.18 (Infinite Game).

An infinite game G = (A, W) consists of a game arena A = (P, Py, P1, vy, E) and a winning
condition W € P“. A play p € P in A is winning for Player 0 if p € W holds and winning for
Player 1 otherwise.

Given a game G = (A, W) with arena A = (P, Py, Py, vy, E), a strategy for Player i intuitively
defines the decisions Player i makes during a play. Formally, a strategy for Player i is a function
U P* X P; — P such that for all positions v € P; and all finite sequences v € P* of positions,
whenever p(v,v) = v’ holds, then we have (v,0”) € E. A play p € P* is consistent with a player’s
strategy p if, and only if, for all points in time k > 0, it holds that whenever we have pi € P;,
then pr.1 = p(pjk, p) holds. We denote the set of all plays that start in position v and that
are consistent with y with Plays(G, p, v). The set of initial plays that are consistent with y, i.e.,
Plays(G, p,vy), is also denoted with Plays(G, p1). Note that, given a strategy p for Player 0 and a
strategy p’ for Player 1, there is a unique initial play that is consistent with both yand 1/, i.e., we
have |Plays(G, u) N Plays(G, pi’)| = 1. A strategy for Player i is winning if, and only if, all initial
and consistent plays are winning for Player i. Hence, for a winning strategy u : P* X Py — P for
Player 0, we have p € W for all plays p € Plays(G, p). For a winning strategy p : P* X P — P
for Player 1, in contrast, we have p ¢ W for all p € Plays(G, p).

Example 2.7. Consider the game arena A depicted in Figure 2.6. Positions controlled by
Player 1 are depicted as rectangles, positions with rounded edges are controlled by Player 0.
Let W be a winning condition that states that the positions 5 and v; should never be visited.
These states are highlighted in violet. A winning strategy for Player 0 is highlighted in blue.
It enforces every initial consistent play to reach v; without visiting vs or v; beforehand. In vs,
Player 1 does not have any choice other than moving to v,. Position v,, however, is controlled
by Player 0 and the strategy described above enforces that a consistent play moves back to vs.
Hence, every initial consistent play loops between v, and v3 forever while not visiting vs or v
before and therefore the strategy is winning. A

2.8. REACTIVE SYNTHESIS

02 03

A
Y
U4 > U5 |« U6 07

Figure 2.6.: A game arena A. Positions controlled by Player 1 are depicted as rectangles, positions
with rounded edges are controlled by Player 0. Positions vs and v7, highlighted in violet, should
be avoided. A winning strategy for Player 0 is depicted in blue.

Y

2.8. REACTIVE SYNTHESIS

Intuitively, reactive synthesis [Chu57] is the task of automatically deriving a correct-by-
construction implementation for a reactive system from a formal specification. In this thesis,
we only consider formal specification given in LTL. Furthermore, we consider both monolithic
and distributed systems. Therefore, we formalize the reactive synthesis problem as follows.

Definition 2.19 (Reactive Synthesis Problem).
Let &/ = (P,V,I,0) be an architecture. Let ¢ be an LTL formula over atomic propositions V.
The reactive synthesis problem is to derive system strategies sy, . . ., s, for the system processes

P1s--->Pn € P such thatsy || ... || s, E ¢ holds.

For monolithic architectures, the reactive synthesis problem for LTL specifications can be
solved by first translating the LTL formula into a nondeterministic Biichi automaton. After
determinizing the automaton with Safra’s construction [Saf88], we can employ the game-
based [BL69] or the automaton-based [Rab72] synthesis approach. In terms of complexity,
synthesis results in a doubly-exponential running time. In fact, the reactive synthesis problem
for monolithic architectures and LTL specifications is 2EXPTIME-complete:

Theorem 2.1 ([PR89a]). Let o/ = (P,V,I,0) be a monolithic architecture. Let ¢ be an LTL
formula over atomic propositions V. The question whether there exists a system strategy s for the
single system process such that s |= ¢ holds is 2EXPTIME-complete.

In this thesis, we focus on safraless [KV05] synthesis approaches, which avoid Safra’s con-
struction for determinizing the nondeterministic Biichi automaton. In particular, we consider
bounded synthesis [FS13], on which we elaborate in the following section.

2.8.1. BOUNDED SYNTHESIS

Bounded synthesis [FS13] is a synthesis procedure for monolithic systems that derives size-
optimal strategies from LTL specifications. It constructs a finite-state transducer that realizes
the specification with a minimal number of states. To do so, bounded synthesis bounds the

45

46

2. FOUNDATIONS

4 N\
. translate UCA A, Valid annotation »
encode constraint
—_—
Run graph system
E
L) unsatisfiable satisfiable
increase

Figure 2.7.: Workflow of constraint-based bounded synthesis.

number of states of the desired transducer. Starting from bound 1, the bound is successively
increased if there does not exist a transducer of the specified size that realizes the specification.
This procedure is continued until a solution is found. There exists an upper bound on the
size of a finite-state transducer realizing the specification [FS13]. Thus, bounded synthesis is
guaranteed to terminate. If there does not exist a transducer of the size of the upper bound
that realizes the specification, then the specification is unrealizable. Bounded synthesis is, for
instance, implemented in the tools UNBEAsT [Ehl11], Acacia+ [BBF"12], and BoSy [FFT17].

Constraint-based bounded synthesis reduces bounded synthesis to a constraint-solving
problem. In particular, it encodes the existence of a finite-state transducer of the specified size
that realizes the specification into a constraint system. There exist SMT, SAT, QBF, and DQBF
encodings [FS13, FFRT17]. In the following, we describe the general workflow of constraint-
based bounded synthesis. An overview is depicted in Figure 2.7. First, bounded synthesis
translates a given LTL specification ¢ into a universal co-Biichi automaton A, of size o(2leh
with L(A,) = L(¢) (see Proposition 2.4). Recall that a finite-state transducer 7~ representing a
system strategy s realizes ¢ if, and only if, every trace generated by 7~ lies in the language of ¢.
Thus, since L(A,) = L(¢) holds, it follows from the definition of the acceptance of universal
co-Biichi automata that 7~ realizes ¢ if, and only if, every trace generated by 7~ induces only
runs of A, with finitely many visits to rejecting states. The runs of A, induced by a finite-state
transducer 7 are captured by the unique run graph of A, and 7:

Definition 2.20 (Run Graph).

Let o be a monolithic architecture and let I and O be the inputs and outputs of the single
process. Let A = (Q, qo, 3, F) be a universal co-Biichi automaton over alphabet I U O. Let
7 = (T, Ty, 7, £) be a deterministic and complete finite-state (2, 20)-transducer. The run
graph G = (V,E) of A and 7, denoted 7 X A, is defined by

« V =T xQ, the set of vertices, and

« & CV XYV, the edge relation, with ((¢,q), (¢',q")) € & if, and only if,

Fe2lFoe20 (t,,t') €T A(t,1,0) €tA(gitUo,q) €.

2.8. REACTIVE SYNTHESIS

A vertex v = (t,q) € V of a run graph G = (V, &) is rejecting if, and only if, ¢ € F, i.e, q
is a rejecting state in the universal co-Biichi automaton A. A run is a path of G that starts in
the initial vertex (t,qo) with t € Tj. Note that since 7 is deterministic, we have |Ty| = 1 and
thus the initial vertex of the run graph is unique. We call a run accepting if it is either finite or
contains only finitely many rejecting vertices. A run graph is accepting if every run is accepting.

The run graph of a finite-state transducer 7~ and a universal co-Biichi automaton A then
captures whether or not 7 realizes A’s language:

Lemma 2.3 ([FS13]). Let & be a monolithic architecture and let I and O be the inputs and outputs
of the single process. Let A be a universal co-Biichi automaton over alphabet I U O. Let T be a
deterministic and complete finite-state (2!, 29)-transducer. Then the run graph T X A is accepting
if, and only if, T realizes L(A).

Hence, we can utilize the run graph of a candidate transducer 7~ and the universal co-Biichi
automaton A, with L(A,) = L(¢) in order to determine whether or not 7~ realizes ¢. More
precisely, we annotate the run graph 7~ X A,. An annotation is a function 1 : V — N U {1},
where V is the set of vertices of 7~ X A,. Hence, A maps the vertices of the run graph to either
unreachable L or to a natural number k € N.

Definition 2.21 (Valid Annotation [FS13]).

Let &/ be a monolithic architecture and let I and O be the inputs and outputs of the single
process. Let A = (Q, qo, d, F) be a universal co-Biichi automaton over alphabet I U O and
let 7 = (T,Ty,7,¢) be a deterministic and complete finite-state (27, 29)-transducer. Let
G = (V, &) be the run graph of 7 and A and let 1 : ¥V — N U {L} be an annotation of G.
Then, A is valid if, and only if,

« the initial vertex of G is reachable and thus annotated with a natural number, i.e.,
A((2,q0)) # L holds for the single state t € Ty, and

. if a vertex v € V is annotated with a natural number, i.e., A(v) = k # L, then every
successor vertex v’ € V with (v,0") € & is annotated with a greater natural number
A(v”), which needs to be strictly greater than k if o’ is rejecting, i.e., A(v") >, k, where
> if' o’ is rejecting
> otherwise.

Intuitively, a valid annotation counts how often a rejecting state is visited. The first require-
ment of Definition 2.21 ensures that the initial vertex is annotated “reachable”. The second
requirement ensures that the annotation strictly increases whenever a rejecting vertex is reached.
For non-rejecting states, in contrast, the annotation can remain unchanged.

Recall that if there exists a run in the run graph G that is not accepting, then it contains
infinitely many rejecting vertices. Since G has a finite set of vertices, the run thus contains a

cycle with a rejecting vertex. Hence, in a valid annotation, the annotation of this vertex would
need to strictly increase whenever it is visited, i.e., an infinite number of times. Therefore,

47

48

2. FOUNDATIONS

there does not exist a valid annotation of a run graph that is not accepting and hence a valid
annotation of the run graph 7~ X A,, serves as a witness of 7 realizing ¢:

Theorem 2.2 ([FS13]). Let &/ be a monolithic architecture and let I and O be the inputs and
outputs of the single process. Let A be a universal co-Biichi automaton over alphabet I U O. Let T~
be a deterministic and complete finite-state (2!, 2°)-transducer. There is a valid annotation A of

the run graph 7 X A if, and only if, T realizes L(A).

Hence, the bounded synthesis problem for a concrete bound b € N reduces to finding a valid
annotation of the run graph of the universal co-Biichi automaton representing the specification
and some candidate finite-state transducer with b states. This search can be encoded into a
constraint system. If the constraint system is realizable, a deterministic and complete finite-state
transducer realizing the specification can be extracted immediately from the solution of the
constraint system. Otherwise, the bound is either increased (see Figure 2.7) or, if the upper
bound is reached, unrealizability of the specification is deduced.

In the original formulation of bounded synthesis, an encoding of bounded synthesis into
an SMT constraint-solving problem has been provided [FS13]. To be able to use state-of-
the-art constraint solvers, encodings in related domains have been proposed: SAT, QBF, and
DQBF [FFRT17]. The purely propositional SAT encoding expands the universal quantification
over the vertices of the run graph and uses binary arithmetic to encode the ordering constraints
of the valid annotation. The QBF encoding, also called the input-symbolic encoding, allows for
handling the input variables, i.e., the propositions controlled by the environment, symbolically:
a universal quantification over the input variables is added, resulting in a exponentially more
succinct encoding. Adding further universal quantification over the states of the candidate
finite-state transducer as well as of the universal co-Biichi automaton allows for representing
both of them symbolically. For this, a DQBF encoding is necessary.

Theorem 2.3 ([FS13, FFRT17]). Let ¢ be an LTL formula and let A be a universal co-Biichi
automaton with L(A) = L(¢). Let b € N be a bound. There exist SMT, SAT, QBF, and DQBF
constraint systems Cif\f, Cipr, CEB(;F, and CZQBF respectively, such that CE([J is satisfiable for
D € {SAT, SMT, QBF, DQBF} if, and only if, ¢ is realizable with a deterministic and complete
finite-state transducer with b states.

In practice, the SAT, QBF, and DQBF encodings all outperform the original SMT encoding.
Moreover, the more symbolic encodings, i.e., QBF and DQBF, are perform better than the purely
propositional SAT encoding [FFRT17, FFT17, Ten19]. Note that the performance of the DQBF
encoding highly depends on the performance of the underlying solver [Ten19]: while the SMT
encoding outperforms the DQBF encoding when using 1DQ [FKBV14] (as in the experiments
performed in [FFRT17, FFT17]), the performance of the DQBF encoding sharply increases when
using DCAQE [TR19] instead. Nevertheless, the QBF encoding has shown to be the most
performant one in practice [FFRT17, FFT17, Ten19]. For large benchmarks in terms of states of
the finite-state transducer and the automaton, however, the DQBF encoding has an advantage
over the QBF encoding [Ten19].

The concept of bounded synthesis has been extended to the synthesis of distributed sys-
tems [FS07] and respective SAT, QBF, and DQBF encodings have been developed [Baul7].

2.8. REACTIVE SYNTHESIS

, translate universal
Pl B R e > tﬂ(p’—w TS ST S Ssmsssssssmss=s==- 1
! projection
1
translate
-

, | translate universal
— | ¢ Ay —
projection

Figure 2.8.: Construction of the automaton ﬂg accepting computations of remorsefree dominant
strategies for LTL specification ¢. The construction by Damm and Finkbeiner [DF14] is depicted
in blue, the one by Steiger [Ste13] in violet and with dashed edges.

€ mmmm——-

product

(2]
S

construction

Furthermore, for monolithic bounded synthesis, the ranking function used in valid annotations
has been extended to Biichi, parity, Rabin, and Streett acceptance conditions, resulting in a
bounded synthesis algorithm for CTL* specifications [KB17].

2.8.2. SYNTHESIZING REMORSEFREE DOMINANT STRATEGIES

In contrast to winning strategies, remorsefree dominant strategies [DF11] are allowed to violate
the specification in situations in which every other strategy would have violated the specification
as well (see Section 2.6.3). When synthesizing remorsefree dominant strategies rather than
winning once, it is thus crucial to identify such situations. In the following, we describe the
extension of bounded synthesis [FS13] to remorsefree dominant strategies.

Recall that constraint-based bounded synthesis relies on encoding the search for a winning
strategy, i.e., a strategy whose computation satisfies the given LTL specification for every input
sequence, into a constraint system. To do so, bounded synthesis translates the LTL specification
into a universal co-Biichi automaton A, with £L(A,) = L(¢) and encodes the search for a
strategy s such that, for every input sequence y € (27), the runs of A, induced by comp(s, y)
visit only finitely many rejecting states.

To utilize the existing algorithms for this check also for synthesizing remorsefree dominant
strategies, we encode the notion of remorsefree dominance into the universal co-Biichi au-
tomaton. Hence, we construct a universal co-Buchi automaton ﬂ(‘; that recognizes dominant
strategies. More precisely, ﬂg recognizes whether the specification ¢ is satisfied and whether
no strategy at all would satisfy ¢ in the same situation. An overview of the construction of A%,
which follows [DF11, DF14], is provided in Figure 2.8, highlighted in blue.

First, a universal co-Biichi automaton A, with £L(A,) = L(¢) is constructed from ¢ (see
Proposition 2.3). This automaton recognizes situations in which the specification ¢ is satisfied.
Second, we construct a universal co-Biichi automaton identifying situations in which no strategy
can satisfy ¢ as follows. Let ¢’ be a copy of ¢, where every output variable o € O is replaced by

49

50

2. FOUNDATIONS

a fresh variable o’ ¢ I U O. Intuitively, the primed variables define the outputs of an alternative
strategy. We build the automaton A-, with L(A-,) = L(—¢’) that, intuitively, accepts
sequences that define an alternative strategy that violates the specification for the given input
sequence. To consider all alternative strategies instead of only a single one, we universally
project to the unprimed variables in A-, . Intuitively, the resulting automaton quantifies
universally over the primed variables since it always considers both valuations. Formally, the
universal projection is defined as follows:

Definition 2.22 (Universal Projection).

Let A = (Q, Qo, 6, F) be a universal co-Biichi automaton over alphabet ¥ and let X C X. The
universal projection of A to X is the universal co-Biichi automaton 7x (A) = (Q, Qo, x (J), F)
over alphabet X, where 7x(8) = {(g,a,¢') € 0 x2Xx Q| 3b € 2>"X (q,aU b,q) € 5}.

Intuitively, the projected automaton zx (A) for a universal co-Biichi automaton A over
alphabet ¥ and a set X C X contains the transitions of A for all possible valuations of the
variables in 3\ X. Hence, for a sequence o € (2%X)®, all runs of A on sequences extending o with
some valuation of the variables in ¥\ X, i.e., sequences ¢’ € (2*)® with ¢’ N X = o, are also runs
of the projected automaton 7zx (A). Since both ‘A and 7y (A) are universal automata, 7y (A)
thus accepts a sequence o € (2%)¢ if, and only if, A accepts all sequences extending ¢ with
some valuation of the variables in ¥ \ X:

Lemma 2.4. Let A be a universal co-Biichi automaton over alphabet 3. Let X C ¥ be a set and
let o € (2%)“. Then, mx(A) accepts o if, and only if A accepts all ¢’ € (2%)® witho’ N X = o.

Proof. First, suppose that the projected automaton 7zx (A) accepts 0. Then, by definition of
universal co-Biichi automata, all paths 7 € Paths(rx (A), o) of mx (A) induced by o visit only
finitely many rejecting states. Suppose that there is an infinite sequence ¢’ € (2%)® with
o’ N X = o that is rejected by A. Then, there is a path 7’ € Paths(A, ¢’) of A induced by ¢’
that contains infinitely many rejecting states. By definition of the universal projection and since
o’ N X = o holds, there thus also exists a path 7”" € Paths(nx (A), o) of mx(A) induced by o
such that #;(7;) = #1() as well as #;(;) N X = #,(;’) holds for all points in time k > 0.
Since 7" and 7’ agree on their first component and thus on the visited states, it follows that 7"’
contains infinitely many visits to rejecting states as well. Hence, 7’ is a path of zx (A) induced
by ¢ with infinitely many visits to rejecting states; contradicting that zx (A) accepts o.
Second, suppose that A accepts all sequences ¢’ € (2*)® with ¢’ N X = o. Then, by definition
of universal co-Biichi automata, all paths 7 € Paths(A, ¢’) of A induced by some ¢’ € (2%)®
with ¢’ N X = o visit rejecting states only finitely often. Suppose that zx (A) rejects . Then,
there is a path 7’ € Paths(nx(A), o) in nx(A) induced by o that contains infinitely many
visits to rejecting states. By definition of the universal projection, there exists some ¢’ € (2%)®
with ¢’ N X = o that induces a path 7" € Paths(A, 0’) in A such that #, () = #1(7)) as
well as #;(7;) = #;(7;') N X holds for all points in time k > 0. Since 7’ and 7" agree on
their first component and thus on the visited states, it follows that 7" contains infinitely many
visits to rejecting states as well. Hence, since 7’ is induced by ¢, the automaton A rejects ¢”;
contradicting that A accepts all sequences o’ € (2%)© with ¢’ N X = 0.]

2.8. REACTIVE SYNTHESIS

We utilize this property to obtain a universal co-Biichi automaton Ay (-, from A-,, that
considers all possible alternative strategies instead of only a particular one: we project to
the unprimed variables, i.e., to I U O, thereby quantifying universally over the alternative
strategies. Combining the two automata A, and A () in a product construction then yields
the desired universal co-Biichi automaton ﬂg that recognizes remorsefree dominant strategies
as the language of the product automaton is the union of the languages of A, and A ().

Using the resulting automaton ﬂg instead of the universal co-Biichi automaton A, in
bounded synthesis then allows for synthesizing remorsefree dominant strategies. By Proposi-
tion 2.3, both intermediate automata A, and A-, are of size O(21y, Since universal projection
does not alter the state space of an automaton, A (-, has also O(2!?!) states. Therefore, it
follows that ﬂg has O(2!¢!) states as well. Synthesizing remorsefree dominant strategies is, as
synthesis of winning strategies, 2EXPTIME-complete:

Theorem 2.4 ([DF14]). Let &/ = (P,V, 1, 0) be a monolithic architecture. Let ¢ be an LTL formula
over atomic propositions V. The question whether a property given as an LTL formula is admissible
in a single-process architecture is 2EXPTIME-complete. A remorsefree dominant strategy can be
computed in doubly-exponential time.

Steiger [Ste13] introduced a synthesis approach for remorsefree dominant strategies, which
slightly differs from the automaton construction from [DF11] presented above but results in
equivalent automata for synthesis. Instead of first constructing two different automata, one for
recognizing situations in which the specification is satisfied and one for recognizing situations in
which the specification cannot be satisfied by any strategy, his approach immediately constructs
a single automaton that accounts for both situations. In particular, he encodes the combination
of both automata directly into the specification and then constructs a single automaton out of
it. This allows for outsourcing more of the construction work to existing tools for automata
generation such as Spot [DLF*16, DRC*22].

More precisely, given an LTL specification ¢, Steiger proposes to construct the modified
specification y = ¢’ — @, where ¢’ is, similar to the synthesis approach presented above, a copy
of ¢, where every occurrence of an output variable of the system is replaced with a fresh variable.
Then, a universal co-Biichi automaton Ay, with L(Ay) = L(¥) is constructed. Intuitively, Ay,
accepts sequences that either satisfy the specification ¢ or that define an alternative strategy
that violates the specification for the given input sequence. To consider all alternative strategies
instead of only a single one, we universally project to the unprimed variables in Ay. The
resulting automaton is then the desired automaton ﬂ(dp that recognizes remorsefree dominant
strategies. An overview of Steiger’s construction is integrated into Figure 2.8, highlighted in
violet and with dashed edges.

51

Part L.

DISTRIBUTED SYSTEMS

53

Chapter 3

SYNTHESIZING BEST-EFFORT STRATEGIES
FOR LIVENESS PROPERTIES

In this chapter, we study best-effort strategies for the compositional synthesis of distributed
systems. The naive compositional distributed synthesis approach is to synthesize winning
strategies for the system processes separately. Usually, however, processes need to collaborate
in order to achieve the overall system’s correctness. For instance, a particular input sequence
may prevent the satisfaction of the specification no matter how a single process reacts, yet,
the other processes of the system ensure that, in the interplay of their strategies, this input
sequence will never be produced. Therefore, separate winning strategies rarely exist.
Remorsefree dominance [DF11], a weaker notion than winning, allows for making implicit
assumptions on the behavior of the other system processes. A remorsefree dominant strategy,
or simply dominant strategy, is allowed to violate the specification as long as no other strategy
would have satisfied it in the same situation. Hence, a remorsefree dominant strategy is a
best-effort strategy as we do not blame it for violating the specification if the violation is not its
fault. Intuitively, a dominant strategy thus implicitly assumes that the other system processes
will not violate the overall specification. Searching for dominant rather than winning strategies
then allows us to find strategies that do not necessarily satisfy the specification in all situations
but in all that are realistic in the sense that they actually can occur during the interaction of
the system processes if all of them play best-effort strategies. Therefore, remorsefree dominant
strategies have been utilized for compositional distributed synthesis algorithms [DF14].
However, the parallel composition of dominant strategies is only guaranteed to be dominant
for safety properties [DF14]. For liveness specifications, in contrast, dominance of the parallel
composition cannot be ensured. Thus, remorsefree dominance is, in general, not a compositional
notion and therefore it is not suitable for compositional synthesis for non-safety specifications.
Consider, for example, a system with two processes p; and p, that send messages to each other,
denoted with atomic propositions m; and my, respectively. Both processes are required to
send their message eventually, i.e., the specification is given by ¢ = O my A O my. For py, it
is dominant to wait for the other process to send the message ms_; before sending its own
message m;: if p3_; sends its message eventually, p; does so as well, satisfying ¢. If p3_; never
sends its message, ¢ is violated, no matter how p; reacts, and thus the violation of ¢ is not p;’s

55

56

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

fault. If both p; and p; play this strategy, however, combining them yields a system strategy
that never sends any message since both processes wait indefinitely on each other. At the same
time, strategies for the entire system that satisfy ¢ clearly exist, for instance, a strategy that
sends both messages in the very first time step.

Bounded dominance [DF14] is a variant of remorsefree dominance that ensures composition-
ality for general properties. Intuitively, it reduces every specification ¢ to a safety property by
introducing a measure of the strategy’s progress with respect to ¢ and by bounding the number
of non-progress steps, i.e., steps in which no progress is made. However, bounded dominance
has two major disadvantages: first, it requires an explicit bound on the number of non-progress
steps, and it is, in many cases, challenging to determine a suitable bound. Second, not every
bounded dominant strategy is remorsefree dominant: if the concrete bound n is chosen too
small, every strategy, also one that is not remorsefree-dominant, is trivially n-dominant.

In this chapter, we introduce a new strategy requirement, called delay-dominance, that
builds upon the ideas of bounded dominance but circumvents the aforementioned weaknesses.
Similar to bounded dominance, it introduces a progress measure on strategies with respect
to the specification. However, it does not require a concrete bound on the number of non-
progress steps, i.e., steps, in which no progress with respect to the specification is made, but
relates such steps in the delay-dominant strategy s to non-progress steps in an alternative
strategy t: intuitively, a strategy s delay-dominates a strategy ¢ if, whenever s makes a non-
progress step, t makes a non-progress step eventually as well. A strategy s is delay-dominant if
it delay-dominates every other strategy t. In this way, we ensure that a delay-dominant strategy
satisfies the specification at least as “fast” as all other strategies in all situations in which the
specification can be satisfied. Delay-dominance considers specifications given as alternating
co-Biichi automata and the progress measure is defined in terms of visits to rejecting states. We
introduce a two-player game, the so-called delay-dominance game, which is vaguely leaned on
the delayed simulation game for alternating Biichi automata [FW05], to formally define delay-
dominance: the winner of the game determines whether or not a strategy s delay-dominates a
strategy ¢t on a given input sequence.

We show that every delay-dominant strategy is also remorsefree dominant. Furthermore,
we introduce a bad prefix criterion for alternating co-Biichi automata such that, if the criterion
is satisfied, compositionality of delay-dominance is guaranteed. The criterion is satisfied for
many automata, both ones describing safety properties and ones describing liveness properties.
Thus, delay-dominance overcomes the weaknesses of both remorsefree and bounded dominance.
Note that since delay-dominance relies, as bounded dominance, on the automaton structure,
there are realizable specifications for which no delay-dominant strategy exists. However, we
experienced that this rarely occurs in practice when constructing the automaton from an
LTL formula with standard algorithms. Moreover, if a delay-dominant strategy exists, it is
guaranteed to be winning if the specification is realizable. Hence, the parallel composition of
delay-dominant strategies for all processes in a distributed system is winning for the whole
system as long as the specification is realizable and the compositionality criterion is satisfied.
Therefore, delay-dominance is a suitable notion for compositional synthesis.

We thus introduce a synthesis approach for delay-dominant strategies that immediately
enables a compositional synthesis algorithm for distributed systems, namely synthesizing delay-

3.1. COMPOSITIONAL SYNTHESIS WITH DOMINANCE

dominant strategies for the system processes separately. We present a three-step construction of
a universal co-Biichi automaton A; 7, from an LTL formula ¢ that recognizes delay-dominant
strategies for a system process p; € P™. The automaton A; 5, can immediately be used for
safraless synthesis [KV05] approaches such as bounded synthesis [FS13] to synthesize delay-
dominant strategies for single processes. We show that the size of A; 4, is single-exponential
in the squared length of ¢. Thus, synthesis of delay-dominant strategies is, similar to synthesis
of winning or remorsefree dominant strategies, in 2EXPTIME.

Publications and Structure. This chapter is based on work published in the proceedings
of the 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science [FP22b] and its extended version [FP22c]. The author of this thesis is the lead
author of the publications.

This chapter is structured as follows. First, we recap the compositional synthesis approach for
distributed systems based on remorsefree dominant strategies [DF14] and discuss its relation-
ship with liveness properties. In particular, we elucidate the shortcomings of both remorsefree
dominance and bounded dominance concerning compositional synthesis in Section 3.1.2. After-
ward, in Section 3.2, we introduce delay-dominance, our new strategy requirement, and show
that every delay-dominant strategy is also remorsefree dominant. Furthermore, we study the
compositionality of delay-dominance in Section 3.3. In particular, we consider a bad-prefix
criterion for alternating co-Biichi automata and prove that whenever the criterion is satisfied
by the automaton representing the specification, then compositionality of delay-dominance is
guaranteed. In Section 3.4, we present a three-step construction of a universal co-Biichi automa-
ton that recognizes delay-dominant strategies for single processes and that can immediately be
used for synthesizing delay-dominant strategies with safraless synthesis approaches. Lastly,
we present the resulting compositional synthesis algorithm for distributed systems utilizing
delay-dominant strategies in Section 3.5

3.1. COMPOSITIONAL SYNTHESIS WITH DOMINANCE

Given an LTL specification ¢ and a distributed architecture &/, the synthesis problem asks
whether there exist system strategies sy, . . ., s, for the system processes py, ..., p, € P~ such
that s; || ... || s» E ¢ holds and, if so, derives such strategies. Classical distributed synthesis
algorithms directly synthesize the parallel composition of the process strategies, i.e., s1 || .. .|| sn,
together to be able to ensure that s || ... || s, |E ¢ holds. This, however, leads to huge state
and search spaces, resulting in poor scalability of the algorithms. Compositional distributed
synthesis approaches aim at breaking down the synthesis problem for the entire distributed
system into synthesis subtasks for the individual processes.

The naive compositional synthesis approach for distributed systems is given in Algorithm 3.1.
For each system process p; € P7, it tries to derive a winning strategy for the overall system
specification ¢ (line 5), i.e., a system strategy s; : (2iY9)® x 2li — 29 for process p; such that
comp(s;,y) Uy’ = ¢ holds for all input sequences y € (2%)® and all sequences y’ € (2"\"/)® of
valuations of variables that cannot be observed by p;. If such a strategy exists, it is stored in the

57

58

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

Algorithm 3.1: Naive Compositional Distributed Synthesis
Input: ¢: LTL, A: Architecture
Output:realizable: Bool, strategies: List Strategy
processes « getSystemProcesses(A)
foreach p € processes do
pInp < getProcessInputs(A,p)
pOut < getProcessOutputs(A,p)
(pRealizable, pStrategy) « synthesize(p, pInp, pOut)
if pRealizable then
‘ strategies.append(pStrategy)
else
‘ return (false, [])

O 00 N T R W N =

10 return (true, strategies)

list of process strategies (line 7). Otherwise the algorithm is aborted by returning (false, [])
(line 9). If all synthesis tasks succeeded, the list of process strategies is returned (line 10).

Suppose that the algorithm succeeds and returns a list of strategies sy, . . ., s,, one for each
system process. In that case, it follows immediately from the construction of the strategies,
particularly the fact that they are winning, that s; || ... || s, |= ¢ holds. Every process strategy
ensures that the overall system specification ¢ is satisfied for all input sequences and all
sequences of variables, which are not observable by the considered process. Thus, in particular,
the satisfaction of ¢ is guaranteed for the sequences that are produced in the interplay of all
process strategies. Hence, the synthesis algorithm is sound.

A critical shortcoming of the naive compositional synthesis approach is, however, that
requiring the individual process strategies to be winning for the full system specification is for
almost all system architectures and specification too hard of a requirement. A process strategy
is required to guarantee the satisfaction of all system requirements — even of those that specify
the behavior of other processes — irrespective of whether or not the other processes cooperate
in achieving the goal of satisfying the specification. Hence, in most cases, the synthesis task fails
for at least one of the processes, resulting in the compositional synthesis algorithm not finding
a solution. Identifying the parts of the specification that indeed specify requirements posed on
the considered process and only considering them in the process’s synthesis task can improve
the applicability of the naive compositional synthesis algorithm. However, identifying such
parts is a non-trivial task due to complex interconnections between specification parts, which
might result in indirect requirements on a process that are not easy to identify for the developer.
Furthermore, often the requirements on the behavior of two processes cannot be decoupled
entirely, again resulting in the problem that a process strategy also needs to guarantee that
requirements on the behavior of another process are satisfied.

Therefore, we focus on weakening the strategy requirement, i.e., not requiring a strategy
to satisfy the specification for all input sequences, in this chapter. In this way, we are able to
derive strategies for individual system processes in many situations, even if the specification

3.1. COMPOSITIONAL SYNTHESIS WITH DOMINANCE

T|0 —ms_; | 0 TI[0
. T i i |0 T i
. | {mi} @ S ms—; | @ | {m} t,
(a) Strategy transducer 7. for process p;. (b) Strategy transducer 7 for process p;.

Figure 3.1.: Two Moore transducers 7;° and 7, representing strategies s; and t; for system
process p; € P~ from the running example. The former sends m; in the first time step, the latter
waits for receiving ms_; before sending m;.

poses requirements on the behavior of other processes. Consequently, the hard and, currently,
manual task of identifying parts of the specification that affect the considered process is often
not necessary for successful synthesis. In this chapter, we focus on the strategy requirement
remorsefree dominance [DF11]. Recall that a dominant strategy is allowed to violate the specifi-
cation for input sequences for which no other strategy would have satisfied the specification
either. It is thus a weaker requirement than winning, and therefore dominant strategies exist in
more cases than winning ones.

Example 3.1. Consider the message-sending system with two processes from the introduction,
where two processes p; and p, send messages m; and m; to each other. Message m; is sent by
process p; and received by process ps_;. Consequently, the inputs of p; are given by I; = {ms_;}
and the outputs by O; = {m;}. The system specification ¢ = < my A O my formalizes that
both processes must send their messages eventually. Throughout this chapter, we will use the
message-sending system as a running example.

The satisfaction of the specification ¢ = > my A O my cannot be ensured by any of the
processes alone since it poses requirements on output variables of both of them. In order to
realize ¢, a strategy s; : (2{mm2hy* x 2lms-it 5 2{mi} for process p; needs to satisfy ¢ for
every input sequence y € (2{™-1)©_ Yet, p; can only control variable m;, variable ms_; is
uncontrollable and thus its valuation is, for every point in time, defined by s;’s input sequence y.
Therefore, for the sequence y € (2{™-)® with y = 0°, we have comp(s;, y) N {ms_;} = 0°
for all strategies s; for process p;. Hence, there does not exist a strategy for process p; that
realizes ¢ and thus there does not exist a winning strategy for p; and ¢.

Let s; : (2{mvmabys 5 olms-ib 5 9{mi} be a strategy for process p; that outputs m; in the very
first time step. A finite-state (2{"-i}, 2{mi})_transducer 7;® with Moore semantics represent-
ing s; is depicted in Figure 3.1a. Clearly, for this strategy s;, we have comp(s;,y) | < m; for
all input sequences y € (2{™-i})©, Furthermore, for all input sequences y € (2{-i})® that
contain at least one ms_;, i.e., with y N {ms_;} # 0 for at least one point in time k > 0, clearly
comp(s;, y) |E & ms—; holds as well and therefore comp(s;, y) satisfies ¢ for such input sequences.
For y € (21m-i1)@ with y = 0®, in contrast, we have comp(s;,y) I ¢ as shown above. However,
every strategy t; : (2{mvmedys x alms-ib 5 2{mi} for p; violates ¢ for input sequence y = 0 as
argued above. Thus, s; dominates every alternative strategy t; : (2{mvm2})* x a{ms-i} _ plmi}
for p; and therefore s; is dominant for p;. A

59

60

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

In the following, we recap a compositional distributed synthesis approach for safety spec-
ifications [DF14], which utilizes remorsefree dominant strategies rather than winning ones.
It thus succeeds in more cases than the naive compositional distributed synthesis approach.
Afterward, we discuss limitations of the approach for liveness properties and, in this way, lay
the foundations for the remainder of this chapter.

3.1.1. COMPOSITIONALITY OF DOMINANCE FOR SAFETY PROPERTIES

Since remorsefree dominant strategies exist in more cases than winning ones, it is a straight-
forward extension of the naive compositional synthesis approach to try to synthesize individual
remorsefree dominant strategies for the system processes rather than winning ones [DF14]. The
resulting compositional distributed synthesis algorithm is similar to the naive compositional
synthesis algorithm (see Algorithm 3.1), yet, it replaces the synthesis task for winning strategies
in line 5 with a synthesis task for dominant strategies. This allows us to synthesize strategies
for the processes of a distributed system compositionally although no winning strategies for the
individual processes exist and hence this compositional approach succeeds in more cases. Note,
however, that although this approach finds solutions in more cases than the naive approach
that tries to synthesize individual winning strategies, it is nevertheless still incomplete since
the existence of individual dominant strategies is not guaranteed [DF14].

For compositional distributed synthesis, it is crucial that the strategies for the individual
processes can be recomposed to obtain a strategy for the whole system. This property is called
compositionality. Note here that since we are considering arbitrary system architectures, system
processes are allowed to observe and, in particular, react to output variables of other system
processes. Therefore, we need to consider process strategies that can be represented with
Moore transducers in compositional synthesis as otherwise it is not guaranteed that the parallel
composition of the process strategies is complete (see Section 2.6.1).

Given an LTL specification ¢, the parallel composition of individual process strategies that
are winning for ¢ is guaranteed to be winning for ¢ as well as outlined above for the soundness
of the naive compositional synthesis algorithm. For the parallel composition of dominant
strategies, in contrast, arguing about — and even achieving — compositionality is much more
challenging: realizing the specification and thus satisfying it in all situations has the advantage
that nothing better can be achieved; even when considering the whole system and not only
individual processes. Dominant strategies, however, are allowed to violate the specification.
Although there then is no better strategy on the individual process-level, it is not obvious that
nothing better can be achieved when considering the entire system since then not only the
behavior of the individual process but that of all other processes can be controlled.

For safety specifications ¢, compositionality of remorsefree dominant strategies has been
shown [DF14], i.e., the parallel composition of two remorsefree dominant strategies for ¢ is
guaranteed to be dominant for ¢ as well:

Theorem 3.1 ([DF14]). Let ¢ be an LTL formula over atomic propositions V. Let s; and s, be
system strategies for processes p1 € P and p, € P, respectively, and assume that both s, and s, are
dominant for ¢. If ¢ is a safety property, then sy || s, is dominant for p; || p; and ¢.

3.1. COMPOSITIONAL SYNTHESIS WITH DOMINANCE

Intuitively, dominant strategies are compositional for safety properties since if the parallel
composition s; || s, of two dominant strategies s; and s, violates the specification ¢ on some input
sequence y € (2(hVRIN\O1V02))@ then there exists a smallest bad prefix 5 of comp(sy || sz, 7).
i.e., a smallest prefix such that every extension of it violates ¢. Note that the existence of this
smallest bad prefix 7 relies on the fact that the considered specification is a safety property,
which, by definition, allows for bad prefixes (see Section 2.3) and consequently also for smallest
bad prefixes. The last position of the smallest bad prefix then allows for blaming at least one of
the strategies for the violation of ¢: the blamable strategy s; produces an output at this point
in time such that ¢ is violated, irrespective of future inputs as well as future behavior of both
process strategies. If there exists an alternative strategy t for p; || p, that does not violate ¢,
i.e., if the parallel composition s; || s, of s; and s, is not dominant, then the strategy s; that
is blamable for the violation cannot be remorsefree dominant either: we can then extract a
strategy t; for the corresponding process p; from the strategy ¢, which then dominates s; since ¢;
does not violate ¢ on the input sequence resulting from the computation of the full strategy t
on y, while, by the definition of smallest bad prefixes, strategy s; does. Consequently, since s;
and s, are both dominant for ¢ by assumption, there cannot exist such an alternative strategy ¢
for p; || p2 and therefore s || s, is dominant.

Since dominant strategies are compositional for safety properties, the parallel composition of
separately synthesized process strategies is indeed a useful strategy for the entire system. It
is guaranteed to be dominant and, if the specification is realizable, it is even guaranteed to be
winning by Proposition 2.5. Hence, Theorem 3.1 enables a compositional synthesis approach for
safety properties that synthesizes individual dominant strategies for the system processes (see
Section 2.8.2 for an introduction to the synthesis of dominant strategies). In the next section,
we study the relationship of dominant strategies and liveness properties and, in particular, the
compositionality of dominant strategies for liveness properties.

3.1.2. DOMINANT STRATEGIES AND LIVENESS PROPERTIES

For safety properties, remorsefree dominance is a compositional notion. For liveness properties,
however, it is not: compositionality of dominant strategies for safety properties relies heavily on
the fact that if the computation of the parallel composition s; || s; of two dominant strategies s;
and s; violates the specification ¢ on some input sequence y, then there exists a smallest bad
prefix of comp(s; || sp, y). This prefix then allows for blaming at least one of the strategies s;
and s, for the violation of ¢ and therefore for concluding that s; || sz is dominant.

Liveness properties, however, do not have a bad prefix by definition since every finite prefix
can be extended such that the resulting infinite sequence satisfies the liveness property (see
Section 2.3). Thus, in particular, there does not exist some point in time at which a strategy
needs to show a specific behavior to be dominant. Hence, it might be the case that both p;
and p, have to show a specific behavior eventually to satisfy the specification ¢, but both can
postpone it indefinitely by waiting for the other process to show the behavior first. We cannot
blame any process for postponing this behavior since waiting for the other process is dominant.
If both processes do so, however, ¢ is violated while there might exist alternative strategies for
the full system p; || p; that satisfy ¢.

61

62

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

Example 3.2. Consider the message-sending system from the running example. For system
process p; € P, let t; be a strategy that waits for receiving ms_; before sending its own mes-
sage m;. A finite-state Moore transducer representing such a strategy is depicted in Figure 3.1b.
This strategy is dominant for p; and ¢: for input sequences y € (21-})© in which ms_; occurs
at some point in time, the computation comp(t;, y) contains ms_; as well. Therefore, it satisfies
<> ms_;. Furthermore, t; sets m; to true one step afterward. Therefore, comp(t;, y) satisfies & my;
as well and hence comp(t;,y) |= ¢ follows. For input sequences y’ € (2{"-1)¢ in which ms_;
never occurs, the computation of ever strategy for p; on y’ does not contain any ms_;, thus
violating < m3_; and hence also violating ¢. Therefore, ¢; is allowed to violated ¢ on y’.

The parallel composition of such strategies t; and t; for both processes, however, does not
send any message and thus violates ¢. None of the strategies can be blamed for not sending the
corresponding message since there is no concrete time step at which ¢ enforces that one of the
processes needs to send its message in order to be dominant. Yet, there clearly exist strategies
for the entire system p; || p; that satisfy ¢, for instance a strategy that sends both m; and m; in
the very first time step. Hence, t; || t; is not dominant. A

The parallel composition of dominant strategies is thus not guaranteed to be dominant for
liveness properties. Therefore, composing separately synthesized dominant strategies does
not necessarily yield a useful strategy for the overall system. Hence, synthesizing individual
dominant strategies is not sound for liveness properties. Therefore, the extension of the naive
compositional synthesis algorithm with dominant strategies presented in the previous section
is not a suitable synthesis approach for general specifications.

Bounded dominance [DF14] is a variant of dominance that is compositional for both safety
and liveness properties. Intuitively, it reduces every specification ¢ to a safety property by
introducing a bound on the number of steps in which a strategy does not make progress with
respect to ¢. The progress measure is not defined on the LTL formula ¢ itself but on a universal
co-Biichi automaton A, that accepts the same language as ¢. The measure mz,,(comp(s, y,))
of a strategy s; for system process p; € P~ on an input sequence y € (2/)® is then the supremum
of the number of rejecting states of the runs of A, induced by comp(s;, y). Slightly overloading
notation, we call the set of runs induced by all sequences comp(s;,y) Uy’ fory’ € (2V\V)@, ie.,
the set {r | r € Runs(Agy, comp(s;,y) Uy') Ay’ € (ZV\V")“’}, also the set of runs induced by
comp(s;, y). Given a bound n € Ny, bounded dominance for n, which is also called n-dominance,
is then defined utilizing the measure m#,,:

Definition 3.1 (n-Dominant Strategy [DF14]).

Let V be a finite set of variables. Let I € V and O C V be finite sets of input and output
variables with IN O = (). Let n € Njy. Let ¢ be an LTL formula over atomic propositions V and
let A, be a universal co-Biichi automaton with £(A,) = L(¢). Let s : (21V0)* x 2T — 20 be
a strategy. A strategy ¢ : (21Y0)* x 2! — 20 is n-dominated by s if, and only if, for all y € (27)®
either ma, (comp(s,y)) < nor ma,(comp(t,y)) > n holds. Strategy s is n-dominant for A,
if, and only if, it n-dominates all alternative strategies ¢ : (ZIUO)* x 2l — 20,

Similar to remorsefree dominance, a bounded dominant strategy performs at least as good as
every other strategy. While, in remorsefree dominance, “good” refers to satisfying the specifica-

3.1. COMPOSITIONAL SYNTHESIS WITH DOMINANCE

Figure 3.2.: Dominant strategy t; for system process p; € P~ from the running example that
waits for receiving ms_; before sending m; and a co-Biichi automaton A,, for ¢ = O my A O m;.

tion, it is defined in terms of satisfying the specification with a small number of visits to rejecting
states for bounded dominance. Intuitively, visiting only few rejecting states corresponds to
satisfying the specification fast. For safety specifications, the notions of remorsefree dominance
and bounded dominance coincide. For liveness specifications, however, they differ.

Example 3.3. Consider the message-sending system from the running example. A universal
co-Biichi automaton A, with L(A,) = L(¢) is depicted in Figure 3.2. Furthermore, reconsider
the strategy t; for system process p; € P~ that waits for receiving ms_; before sending its

own message m; and the finite-state Moore transducer representing t; depicted in Figure 3.1b.

Consider system process p; and the corresponding version t; of strategy t;. Let y € (2{m2})®
be an input sequence for process p; that models that p, sends its message for the first time
at point in time ¢ > 0, i.e., we have y, = {my} and y; = 0 for all j > 0 with j < ¢. Then,
comp(ty, y) neither contains m; nor m;, up to point in time ¢, contains only m, at point in time ¢,
and contains m; at point in time £ + 1. Hence, comp(t,, y) induces a single run r of A, that,
starting in gy, stays in gy up to point in time ¢ — 1, then, reading m;, but not m;, moves to g,
and then, reading m;, moves to g3 immediately afterward, where it stays forever. Since gq
and g, are rejecting states while g is not, r thus contains ¢ + 2 visits to rejecting states and thus
ma,,(comp(ty,y)) = £ + 2 holds.

Consider an alternative strategy s; for p; that sends m; in the first time step, irrespective
of whether or not it receives m,. For input sequence y described above, comp(sy,y) then
contains m; at point in time 0 and m; at point in time ¢. If £ = 0 holds, then comp(sy, y) induces
the single run 7’ that, starting in g, immediately moves to g3 as it reads both m; and m; in the
very first time step and stays there forever. If £ > 0 holds, then comp(s;, y) induces the single
run r”’ that, starting in gy, moves to g; as it reads m; but not m,, then stays in g; up to point in
time #;, and then, reading m,, moves to g3, where it stays forever. Since ¢o and q; are rejecting
states while g3 is not, r’ contains a single visit to a rejecting state, while r’” contains ¢ + 1 visits
to rejecting states and thus m g, (comp(s;,y)) = £ + 1 holds. Hence, for bound n = £ + 1, we
have ma,, (comp(s1,y)) = n, while ma,, (comp(t1,y)) > n. Therefore, t; does not n-dominate s,
on input y for bound n = ¢ + 1 and consequently ¢ is not n-dominant, while it is remorsefree
dominant as outlined in Example 3.2. A

63

64

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

A crucial disadvantage of bounded dominance is that it does not imply remorsefree domi-
nance [DF14]. There are specifications ¢ or, more precisely, automata A, for ¢, with a minimal
measure m € N, i.e., for all strategies, there exists some input sequence such that the resulting
computation has a measure of at least m. When choosing a bound n < m, every strategy is
trivially n-dominant for the automaton A, even non-dominant ones. For the message-sending
system from the running example and the universal co-Biichi automaton depicted in Figure 3.2,
for instance, the minimal measure is m = 1. A strategy for process p; that never sends its
message m; is clearly not dominant; yet, it is trivially 0-dominant.

Therefore, the choice of the bound n € Nj is crucial for bounded dominance. However, it
is not obvious how to determine a good bound. On the one hand, it must be large enough to
avoid non-dominant strategies. On the other hand, as the bound has a huge impact on the
synthesis time, it cannot be chosen too large as otherwise synthesis becomes infeasible: in
order to synthesize bounded dominant strategies, we need to count the number of rejecting
states that already occurred during a run up to the bound n. Hence, the larger we choose n,
the higher we need to count and therefore the size of an automaton recognizing a bounded
dominant strategy grows tremendously for larger bounds. Especially for specifications with
several complex dependencies between processes, it is hard to determine a proper bound.
Hence, bounded dominance is not practically applicable to compositional synthesis for liveness
properties. In the remainder of this chapter, we introduce a different variant of dominance that
implies remorsefree dominance and ensures compositionality also for liveness properties.

3.2. DELAY-DOMINANCE

In this section, we introduce a new requirement for strategies, delay-dominance, which resembles
remorsefree dominance but ensures compositionality also for liveness properties. It builds on
the idea of bounded dominance to not only consider the satisfaction of the LTL specification ¢
but to measure progress based on an automaton representing ¢. Similar to bounded dominance,
we utilize visits of rejecting states in a co-Biichi automaton to measure progress. Yet, we
use an alternating automaton instead of a universal one. Note that delay-dominance can be
equivalently formulated on universal co-Biichi automata, yet, using alternating automata allows
for more efficient synthesis algorithms for delay-dominant strategies as we will discuss later
in this chapter (see Section 3.4). Moreover, we do not require a fixed bound on the number
of visits to rejecting states; rather, we relate visits to rejecting states induced by the possibly
delay-dominant strategy to visits to rejecting states induced by the alternative strategy.
Intuitively, delay-dominance requires that, for every input sequence, every visit to a rejecting
state in the alternating co-Biichi automaton A, caused by the computation of the delay-
dominant strategy on this input sequence is matched with a visit to a rejecting state in A,
caused by the computation of the alternative strategy on the same input sequence eventually. The
visits to rejecting states of A, are closely related to the satisfaction of the LTL specification ¢: if
infinitely many rejecting states are visited, then ¢ is not satisfied. Thus, delay-dominance allows
a strategy to violate the specification if all alternative strategies violate it as well in the same
situation. Defining delay-dominance on the rejecting states of A, instead of the satisfaction

3.2. DELAY-DOMINANCE

of ¢ allows for measuring the progress on satisfying the specification. Thus, we can distinguish
strategies that wait indefinitely for another process to act — and hence strategies that are critical
for compositionality — from those that do not. Intuitively, a strategy s that waits for another
process to act first will visit a rejecting state later than a strategy ¢ that does not wait but tries
to meet its obligations as soon as possible. This visit to a rejecting state is then not matched
eventually with a visit to a rejecting state induced by ¢, preventing delay-dominance of s.

In the following, we formally define the strategy requirement of delay-dominance. Afterward,
we prove that every delay-dominant strategy is also remorsefree dominant.

3.2.1. THE DELAY-DOMINANCE GAME

Delay-dominance is a game-based notion. We thus introduce an infinite two-player game, the
so-called delay-dominance game, which is loosely inspired by the delayed simulation game for
alternating Biichi automata [FWO05], to define delay-dominance.

Given an LTL specification ¢, an equivalent alternating co-Biichi automaton A, = (Q, qo, 6, F)
with L(A,) = L(¢), two strategies s; and t; for a process p; € P, an input sequence y € (2%)®,
and an infinite sequence y’ € (2V\%)® fixing the valuations of the variables that p; cannot
observe, the delay-dominance game determines whether or not s; delay-dominates ¢; for A, on
input y when additionally considering the sequence y’. Intuitively, the delay-dominance game
proceeds in rounds. At the beginning of each round, a pair (p, q) of states p, q € Q of A, and
the number of the iteration j € Nj is given. Here, p represents a state of A, that is visited by a
branch of a run tree of A, induced by comp(t;,y) Uy’, while g represents a state of A, that
is visited by a branch of a run tree of A, induced by comp(s;, y) U y’. We thus also call p the
alternative state and q the dominant state. For the sake of readability, let ¢% = comp(s;, y) Uy’
and o't = comp(t;,y) U y’. The two players Duplicator and Spoiler, where Duplicator takes on
the role of Player 0, play as follows:

. ti
1. Spoiler chooses a set ¢ € 6(p, 0}').
2. Duplicator chooses a set ¢’ € d(q, a]s.i .
3. Spoiler chooses a state ¢’ € ¢’.

4. Duplicator chooses a state p’ € c.

The starting pair of the next round is then ((p’, ¢’), j+1). Beginning with the pair ((qo, o), 0),
the players construct an infinite play that determines the winner. Duplicator wins for a play if
every rejecting dominant state is eventually matched with a rejecting alternative state.

Both the possible delay-dominant strategy s; and the alternative strategy t; may control
the nondeterministic transitions of A, while the universal ones are uncontrollable. Since,
intuitively, strategy t; is controlled by an opponent when proving that s; delay-dominates t;, we
thus have a change in control for ¢;: for process strategy s;, Duplicator controls the existential
transitions of A, and Spoiler controls the universal ones. For process strategy t;, in contrast,

Duplicator controls the universal transitions of A, and Spoiler controls the existential ones.

Note that the order in which the players Spoiler and Duplicator make their moves is crucial to

65

66

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

Figure 3.3.: Alternating co-Biichi automaton Ay fory =0 aVvOb.

ensure that Duplicator wins the game when considering the very same process strategies. By
letting Spoiler move first, Duplicator is able to mimic — or duplicate — Spoiler’s moves. Formally,
the delay-dominance game is defined as follows:

Definition 3.2 (Delay-Dominance Game).

Let ¢ be an LTL formula over atomic propositions V. Let A, = (Q, qo, , F) be an alternating
co-Biichi automaton with £(A,) = L(¢). Based on A, we define the sets S3 = (Qx Q) XNy,
D3 =(Q0x0Qx29) xNy, Sy = (0 x Q0 x 29 x 29 x Ny, and Dy = (Q x Q x Q x 29) x N,
Let 0,0’ € (2V)® be infinite sequences. The delay-dominance game (A, o, ") is the game
G = (A, W) defined by A= (P, Py, Py, 0o, E) with P = S5 U D3 U Sy U Dy, Py = D3 U Dy, and
P; =S3 U Sy as well as vy = ((qo, g0),0) and

E={(((p.9).). ((p.q.).) | c € 5(p, 7))}
U{(((p.q.0).). ((p.q.e.).) | ¢ € 8(q.0))}
U{(((p.q.c.c").). ((p.q.¢.9). /) | ¢ € ¢}
U{(((p g, 4),), ((p'.4), j+ 1)) [p’ € c},

and the winning condition W = {p € P® | Vk € Ny. fyom(px) € F — 3k’ > k. fun(px’) € F},

where f;(v) = #1(#1(0)) and fzom(v) = #2(#1(v)), i.e., far(v) and fzom(v) map a position
v € P to the alternative state and the dominant state of v, respectively.

The formal definition of a delay-dominance game thus follows thoroughly the intuitive
description of the game. The states of the game and in particular their assignment to the players
Spoiler and Duplicator match the choices occurring for Spoiler and Duplicator. Furthermore,
the set of edges is carefully designed to ensure the desired structure of the game, i.e., the order
in which the players make their moves.

Example 3.4. Let V = {a, b} and consider the LTL formula y = 0<>aVOb over V. An alternat-

ing co-Biichi automaton Ay with L(Ay) = L(¢) is depicted in Figure 3.3. Let p; be a process

with inputs I; = {b} and outputs O; = {a}. Let s; be a strategy for p; that does not output a in

the very first time step but in all time steps afterward, i.e., we have comp(s;, y) N O; = 0{a}® for
all input sequences y € (2{#}))©. Let t; be a strategy for p; that outputs a in every step, i.e., we

3.2. DELAY-DOMINANCE

(o go {1 b 4@ 0 = . —] (qug.1 > ...

f
—| (90.90).0 —{(CIO,CIO,{%})»OJ—' (o 40, {q1}. {q1. 32}), 0 —{ (qo. Go. {ql},qzxo)—» (a1 q2), 1
] —~—]

[(r/n-w/u. {44 };LO}H (90, 90, {94}, {91, ¢2}). 0 (90,90, {q1}.91), 0
] N ! !

(90, 90, {94}, {q4}). 0 {(qmqu.{<1|}-<1|‘>-,0} ["qn-qu-,{qx}-qz)-,o} (q1,q1), 1 (q1,93).2
| ! I ' }
(g4, q1), 1 (94, q2), 1
! ' i !

(94, 94), 1 (91.93).3

! !

Figure 3.4.: Partial game arena of the delay-dominance game G = (Ay, comp(t;,y), comp(s;, y))
from Example 3.4. Positions controlled by Spoiler are depicted as rectangles, positions with
rounded edges are controlled by Duplicator. Parts of the game arena that are not consistent
with the winning moves of Spoiler are grayed out. Positions of the form ((p, q), j) that are
critical for Duplicator are highlighted in blue.

have comp(s;, y) N O; = {a}® for all input sequences y € (2{¥})® Lety € (21})® be some input
sequence for p; that does not contain any b, i.e., we have y = 0“. Consider the delay-dominance
game G = (A, comp(t;, y), comp(s;, y)). Note here that since I; U O; = V holds, comp(s;, y) and
comp(t;, y) are indeed infinite sequences over V. The relevant part of the game arena of G is
depicted in Figure 3.4. Positions controlled by Spoiler are depicted as rectangles. Positions with
rounded edges, in contrast, are controlled by Duplicator. Positions of the form ((p, q), j) that
are critical for Duplicator are highlighted in blue. A position is critical if it is reachable in a play
with a rejecting dominant state in a round j’ € Ny with j* < j that is not yet matched with a
rejecting alternative state up to round j. A strategy u for Spoiler in G or, more precisely, all
initial plays that are consistent with p, are depicted in black. All other parts of the game arena
are grayed out. In the first step of the game, Spoiler chooses the transition from gy to q; in the
alternative states; resulting in the successor set {q; }.

First, suppose that Duplicator chooses the successor set {q4} and thus the transition from gy
to g4 in the dominant states. Then, since both successor sets are singletons, both players do not

have further choices in the first round of the game and thus we obtain the node ((q1, g4), 1).

Since, in the second time step, t; outputs a while y does not contain a b, Spoiler and Duplicator
do not have any choices: the alternative states stay in q; while the dominant states move from g4
to gs, resulting in the node ((g1, gs), 2). Since #; further outputs a in every following time step
and since state g5 only contains a self-loop, Spoiler and Duplicator do not have any choices in

67

68

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

the remainder of the game: the alternative states always stay in ¢; and the dominant states
always stay in ¢s. Thus, all following positions in a play in G are of the form ((q1, gs), j). Note
here that ¢; is non-rejecting while gs is rejecting. Therefore, no play p that is consistent with
Spoiler’s choice in the very first round of the game defined by p as well as Duplicator’s choice
afterward considered in this case contains any rejecting alternative state, while it contains
infinitely many rejecting dominant state. Hence, we have p ¢ W for all such plays p.

Second, suppose that Duplicator chooses the successor set {q;, g»} in the first round of the
game. Then, p defines that Spoiler chooses g; as the successor of g, in the dominant states.
Since the successor set {g; } in the alternative states is a singleton, Duplicator does not have
any further choice; resulting in the node ((q1,42),1). As in the case above, t; ensures that
the alternative states always stay in g;. Since s; outputs a in the second time step, the only
successor set for the dominant states is {3}, resulting in the node ((q1, q3), 2) since, due to the
fact that {q3} is a singleton, Spoiler does not have any choice other than choosing g;. Due to
the structure of Ay and, in particular, the fact that g3 is a sink state, i.e., it only has a self-loop,
the dominant states always stay in gs. Therefore, since the alternative states always stay in g,
as outlined above, all subsequent positions in a play in G are of the form ((q1, g3), j). Therefore,
every play p that is consistent with Spoiler’s choice in the very first round of the game defined
by p as well as Duplicator’s choice afterward considered in this case contains no rejecting
alternative state at all since both g, and q; are non-rejecting, while it contains a rejecting
dominant state at the second time step, namely q,. Hence, we have p ¢ W for all such plays p.

Thus, there exists a strategy p for Spoiler in G such that we have p ¢ W for all initial consistent
plays p € Plays(G, p1). Hence, Duplicator loses the game G, while Spoiler wins it. Moreover, for
an input sequence y € (2{1)®, Duplicator has a winning strategy in the delay-dominance game
G’ = (Ay, comp(s;, y), comp(t;, y)) due to a similar choice as the one of Spoiler defined by p
in G in the very first round of the game: in G, Duplicator controls the existential transitions
in Ay when reading comp(t;, y). Hence, in particular, it is Duplicator’s choice to either let the
dominant states move from gy to g; or to g4. If it chooses g4, then it follows analogously to the
argument for game G that no initial consistent play will ever encounter any rejecting dominant;
resulting in the fact hat every initial consistent play satisfies the winning condition. A

We now define the notion of delay-dominance based on the delay-dominance game. Intuitively,
the winner of the game for the computations of two strategies s; and t; determines whether
or not s; delay-dominates ¢; on a given input sequence. Similar to remorsefree dominance, we
then lift this definition to delay-dominant strategies. Formally:

Definition 3.3 (Delay-Dominant Strategy).

Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating co-Biichi
automaton with £L(A,) = L(¢). Let s; and t; be strategies for process p; € P. Then, s;
delay-dominates t; on input sequence y € (2)® for Ay, denoted t; 47, s, if, and only
if, Duplicator wins the delay-dominance game (A,, comp(t;, y) U y’, comp(s;,y) U y’) for
all y’ € (2V\Vi)®. Strategy s; delay-dominates t; for Ay, denoted t; Jz, s, if, and only
if, t; 4z, si holds for all y € (27)®. Strategy s; is delay-dominant for A, if, and only if,
ti 4, si holds for every strategy t; for process p;.

3.2. DELAY-DOMINANCE

Similar to the definition of the satisfaction of specifications by computations of strategies, we
require a strategy to satisfy the delay-dominance condition, i.e., that Duplicator wins the delay-
dominance game, for all valuations of variables that the considered process cannot observe.
Intuitively, those variables are thus treated similarly to inputs, namely that an delay-dominant
strategy needs to delay-dominate every other strategy for all valuations of these variables.
However, they cannot be observed by the considered process, and thus, in particular, the
strategy cannot react to them. This matches the definition of architectures and, in general, the
intuition of unobservable variables. In the following, we illustrate delay-dominance and, in
particular, the concept of delay-dominant strategies with the running example.

Example 3.5. Consider the message-sending system from the running example and the co-
Biichi automaton A, from Figure 3.2, which describes the specification ¢ = Gmy A O ms.
Although A, was constructed as a universal co-Biichi automaton, every universal automaton
can be seen as an alternating automaton without any nondeterministic choices. Furthermore, A,
is, in fact, the alternating co-Biichi automaton that we obtain from the LTL formula ¢ when
utilizing standard algorithms for automaton construction. Therefore, we consider it to be an
alternating co-Biichi automaton in the remainder of this chapter.

Let s; be a strategy for system process p; that sends message m; in the first time step and let t;
be a strategy that waits for receiving message m, before sending m;. To determine whether s;
delay-dominates t, for A, on an input sequence (2{mz2})® e consider the delay-dominance
game G = (A, comp(t1,y), comp(sy, y)). Since A, is, in fact, deterministic, the computations
comp(sy,y) and comp(t;, y) both induce a single run tree with a single branch in A,, for every
input sequence y € (2{™})®). Hence, the players Spoiler and Duplicator do not have any
choices in any delay-dominance game for A,. Therefore, we do not provide the (partial) game
arena here, but only the unique sequence of state pairs (p, q) of the delay-dominance game,
abstracting from all intermediate tuples.

First, consider an input sequence y € (2{™})® that contains message m; for the first time at
point in time £ > 0. Then, the single branch of the single run tree of A, induced by comp(sy, y)
starts in qo, moves to ¢; immediately if £ > 0, stays there up to the occurrence of m; and then
moves to g3, where it stays forever. If £ = 0, then the branch moves immediately from g, to gs.
The single branch of the single run tree of A, induced by comp(t, y), in contrast, stays in qo
until my occurs, then moves to ¢, and then immediately to g3, where it stays forever. Thus, we
obtain the unique sequence

(90, 90) (90, 91)" ' (q2. 43) (g3, 43)°

of state pairs in the delay-dominance game G = (A, comp(ty,y), comp(si, y)). The last rejecting
alternative state, i.e., a rejecting state induced by comp(#;, y) occurs at point in time £+ 1, namely
state g,. In contrast, the last rejecting dominant state i.e., a rejecting state induced by comp(sy, y),
occurs at point in time ¢, namely state g;. Thus, t; J,,, s holds. In fact, t; <4, s1 holds for
all alternative strategies t; for p; for such an input sequence y since every strategy t; for p;
induces at least ¢ visits to rejecting states due to the structure of y.

Second, consider an input sequence y’ € (2{2}) that does not contain any message m, i.e.,
we have y’ = 0. Then, the single branch of the single run tree of A, induced a computation

69

70

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

of any strategy t; for p; on y’ never reaches g3 and thus only visits rejecting states. Hence,
every visit to a rejecting state induced by comp(sy, y’) is matched with a visit to a rejecting state
induced by comp(t],y’) for all strategies t{ for p;. Thus, t; <4, s1 holds for all alternative
strategies t; as well. We can thus conclude that s, is delay-dominant for A,, meeting our
intuition that s; should be allowed to violate ¢ in situations in which it never receives m;.

Strategy t, in contrast, is remorsefree dominant for p; and ¢ but not delay-dominant for A,,:
consider again an input sequence y € (2{™2})® that contains the very first m, at point in time .
For the delay-dominance game G’ = (A, comp(si, y), comp(t1,y)), we obtain the following
sequence of state pairs:

(90-90)(q1,90) " (g3, 92) (g3, g3)°

It contains a rejecting dominant state, i.e., a visit to a rejecting state of A, induced by comp(t;, y),
at point in time £ + 1, while the last rejecting alternative state, i.e., a visit to a rejecting state
of A, induced by comp(si,y), occurs at point in time . Hence, t; does not delay-dominate s; in
input sequence y, preventing that it is delay-dominant to wait indefinitely for the other process
to send its message first. A

For the usefulness of the notion of delay-dominance and its applicability in compositional
synthesis, it is crucial that every strategy delay-dominates itself. Otherwise, no strategy at all
would be delay-dominant. This property is ensured by the design of the delay-dominance game
and, in particular, by the order in which the players make their moves:

Lemma 3.1. Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating
co-Biichi automaton with L(A,) = L(¢). Lets; be a strategy for process p; € P and lety € (2'1)®
be some input sequence. Then, s; <z, si holds.

Proof. Lety’ € (2V\V))® be s sequence of valuations of variables that cannot be observed by p;.
Consider the delay-dominance game G = (A, comp(s;,y) U y’, comp(s;, y) Uy’). For the sake
of readability, let o = comp(s;, y) U y’. We construct a winning strategy p for Duplicator in the
game G by mimicking the respective moves of Spoiler. Since Spoiler moves first by construction
of the game, this is always possible. Formally, we construct the strategy p as follows: let v € P*
be a finite sequence of positions of G and let v € P, be a position that is assigned to Duplicator,
i.e., we have v € D3 U Dy. First, suppose that v € D3 holds, i.e., position v is of the form
v = ((p, g, c), j). By construction of G, we have ¢ € 5(p, 0;). If p = q holds, we therefore define
p(v,0) = ((p, g, ¢,c), j). Otherwise, we define p(v,0) = ((p,g.c,c’), j) for some ¢’ € (q, 7).
Second, suppose that v € Dy holds, i.e., position v is of the form v = ((p, g, ¢, ¢q’), j). Moreover,
by construction of G, the last position of v is of the form v|,|-; = ((p, g, c,¢’), j) and we have
q € ¢’. If ¢ = ¢’ holds, we therefore define u(v,v) = ((¢’,q’), j + 1). Otherwise, we define
u(v,0) =((p,q,p’,q’), j + 1) for some p’ € c.

Let p € Plays(G,) be some initial play that is consistent with p. Since vy = ((qo, o), 0)
holds, where gy is the initial state of A,, it follows inductively from the construction of y
and by definition of the delay-dominance game that we have both p = g for all positions
occurring in p, irrespective of whether the positions are of the form ((p, q), j), ((p, g, c¢), j),

3.2. DELAY-DOMINANCE

((p,g.c.c'),j),or ((p,g,c.q’), j), and ¢ = ¢’ for all positions of the form ((p, g, ¢, ¢’), j) occurring
in p. Thus, in particular, f,;(px) = fiom(px) holds for all iterations k € Ny and therefore
faom(px) € F — far(pr) € F follows immediately for all k € Ny. Therefore, p € W holds and
hence, since we chose the play p € Plays(G, p) arbitrarily, y is indeed a winning strategy for
Duplicator in the delay-dominance game G. Consequently, s; 94, s; holds. O

In the remainder of this section, we address one of the other two important properties of a
suitable dominance-like notion, namely that, in contrast to bounded dominance, it needs to
imply remorsefree dominance. More precisely, we show that every delay-dominant strategy is
also remorsefree dominant.

3.2.2. DELAY-DOMINANCE IMPLIES REMORSEFREE DOMINANCE

Recall that one of the main weaknesses of bounded dominance is that every strategy, even a non-
dominant one, is n-dominant if the bound n is chosen too small [DF14]: let ¢ be a specification
that requires a minimal bound m € N. Let A, be a universal co-Biichi automaton with
L(A,) = L(¢). Then, in particular, we have mg,, (comp(s;, y)) > m for all strategies s; and all
input sequences y € (2)“. Let n € Ny be some bound. By definition, a process strategy s; is n-
dominant if, for all input sequences y € (2%)®, either m A, (comp(si,y)) < nholds, or if we have
ma, (comp(t;, y)) > n for all alternative strategies f;. Since m is the minimal bound of A, and
thus ma,, (comp(si,y)) > m for all strategies s;, we have, in particular, ma, (comp(si,y)) > n
for all strategies s; if n < m holds. Hence, for all bounds n € Ny with n < m, every strategy is
trivially n-dominant, even one that is not remorsefree dominant.

The main reason for this undesired result for bounded dominance is the need for an explicit
bound n € Ny and the fact that it is oftentimes challenging to determine a good bound for a
synthesis task: it should be high enough to avoid that non-dominant strategies are trivially n-
dominant, while it should be as small as possible to reduce the synthesis time. Delay-dominance
does not require an explicit bound and thus does not suffer from this problem. In fact, every
delay-dominant strategy is also remorsefree dominant. To prove this, we establish a relationship
between strategies in the delay-dominance game and run trees in the underlying alternating
co-Biichi automaton. To formalize the relationship conveniently, we first define a projected play
of the delay-dominance game:

Definition 3.4 (Projected Play).

Let ¢ be an LTL formula over atomic propositions V and let A, be an alternating co-Biichi
automaton with L(A,) = L(¢). Let 0,0" € (2V)®. Let p be some play in the delay-
dominance game G = (A, 0,0”). The projected play p € (Q x Q)? is defined by pr = #; (Pax)
for all k > 0. The projected dominant play p?°™ € Q® of p and the projected alternative play

Aalt _

p%t € O of p are defined by ﬁl‘fom = #2(pr) and p;" = #,(px) for all k > 0, respectively.

Intuitively, we obtain the projected play p from the play p by removing all positions that are
not of the form ((p, q), j) and by projecting to the state tuple; thus removing the index j. The

Adom

projected dominant play p“°™ is then obtained by further projecting to the dominant state of the

71

72

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

state tuples of p, i.e., to g for a state tuple (p, q), while we further project to the alternative state
in the projected alternative play p%", i.e., to p for a state tuple (p, q). Utilizing projected plays,
we now establish the following correspondence between strategies in the delay-dominance
game and run trees: a strategy for player Duplicator in the delay-dominance game (A, 0, 0”)
corresponds to a run tree of A, induced by ¢’. Similarly, a strategy for player Spoiler in the

same game corresponds to run tree of A, induced by o. Formally:

Lemma 3.2. Let ¢ be an LTL formula over atomic propositions V and let A, be an alternating
co-Biichi automaton with L(A,) = L(¢). Let 0,0’ € (2V)°. Let G = (Ap, 0,0”) be a delay-
dominance game and let u and y’ be strategies for Duplicator and Spoiler, respectively, in G. Then,
there exist run treesr € Runs(Ay, o) and r’ € Runs(Ay,0’) of A, such that we have both
Branchesp,¢(r) = {ﬁd"m | p € Plays(G, ,u)} and Branchespe(r') = {ﬁ“” | p € Plays(G, ,u')}.

Proof. Let A, = (Q, qo,d, F). First, we consider Duplicator’s strategy p. We construct a Q-
labeled tree (T, ¢) from the strategy p as follows by defining the labeling of the root as well as
of the successors of all nodes. The labeling of the root ¢ of T is defined by £(¢) = go. Let x € T
be a node of T with depth k = |x|. Let v = pref (T, x) be x’s prefix in T, i.e. the unique finite
sequence of nodes in T that, starting from ¢, reaches x. We define the labeling of the successor
nodes children(x) of x such that

{e(x") | x" € children(x)} = {ﬁ,‘fﬁ’l" | p € Plays(G,) A YO <Kk’ <k. ﬁ,‘jf’m =t(vi) }

holds. Next, we show that (T, ¢) is a run tree of A, induced by ¢’. Let x € T be some node of T.
Then, by construction of the delay-dominance game, we know that Duplicator controls the
existential transitions of A, for ¢’, while the universal ones are controlled by Spoiler. Hence,
since y is a strategy of Duplicator, ;i defines the existential choices in A,, for o’. Therefore, for
every round of the delay-dominance game and thus for every time step k > 0, there exists a
decision for the existential choices in A, for ¢’, namely the one defined by 4, such that all initial
plays that are consistent with y adhere to it. Moreover, as no strategy for Spoiler is given, for
every round of the game the set of initial plays that are consistent with y, i.e., the set Plays(G, p),
defines all possible universal choices in A, for o that fit in with the existential choice defined
by u as well as the history. Therefore, it follows that, for every node x € T and its depth k = |x],

the set {ﬁ,‘fﬁ’l” | p € Plays(G, u) A V0 <k’ <k. ﬁ,‘ff"" = {’(vk/)} satisfies the formula

VoA

c'es(e(x).0),) g €¢/

Thus, by construction of the labeling of the successor nodes of node x defined above, the
set {£(x”) | x’ € children(x)} satisfies this propositional formula as well. Hence, by definition
of run trees, the Q-labeled tree (T, ?) is indeed a run tree of A, induced by ¢’. Intuitively,
the dominant states of an initial play that is consistent with strategy u thus evolve according
to a branch of a run tree of A, induced by ¢’. Furthermore, by construction of (T, £), we
immediately obtain that Branchesp,s(T, £) = {ﬁdom | p € Plays(G, y)} holds. Therefore, (T, ¢) is
the desired run tree of A, induced by o”.

3.2. DELAY-DOMINANCE

Similarly, we can construct a Q-labeled tree (T”, ¢’) from Spoiler’s strategy y’, which only
differs slightly in the definition of the labeling of the successors of a node x € T’. Instead of
utilizing the projected dominant play 5%°™, we employ the projected alternative play p%™. Due
to the change of control for process strategy ¢; in the construction of the delay-dominance game,
Spoiler controls the existential transitions of A, for o, while Duplicator controls the universal
ones. Therefore, it follows completely analogous to the first part of this proof that (T’, ¢’) is the

desired run tree of A, induced by o. O

Vice versa, we can translate a run tree of an alternating co-Biichi automaton A, induced
by some sequence o € (2")® of system variable valuations into a strategy for Spoiler in the
delay-dominance game (A,, 0,0”), where ¢’ € (2V)® is some infinite sequence of valuations
of system variables. Similarly, a run tree of A, induced by ¢’ corresponds to a strategy for
Duplicator in the same delay-dominance game. Formally:

Lemma 3.3. Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating co-
Biichi automaton with L(A,) = L(¢). Let 0,0’ € (2¥)?. Let G = (A,, 0,0") be a delay-
dominance game. Letr € Runs(Ay,0’) andr’ € Runs(Ay,, o) be run trees of A,. Then, there
exist strategies y1 and p’ for Duplicator and Spoiler, respectively, in the game G such that both
Branchesy,¢(r) = {ﬁd"m | p € Plays(G, ,u)} and Branchesp,(r') = {ﬁ““ | p € Plays(G, p’)} hold.

Proof. Let A, = (Q, qo, , F). First, we consider the run tree r’ of A, induced by 0. We construct
a strategy ' for Spoiler in the delay-dominance game G from r’ as follows. Let v - v be a finite
sequence of positions of G’s game arena with v € P* and v € P. We only define p’ explicitly
on sequences Vv - v that can occur in the delay-dominance game G and where v is controlled
by Spoiler; on all other sequences, we define p’(v,v) = v’ for some arbitrary position v’ € P
that is a valid extension of v - v. In the following, we thus assume that v - v is a prefix of a
play that can occur in the game G and that v is of the form ((p, q), j) or ((p,g,c,c’), j). We
map v - v to a prefix of a branch of the run tree r’ if there is a compatible one: a compatible
branch b of r’ agrees with the finite projected alternative play 7%/ up to point in time |v| — 1,
i.e., we have by = ﬁzlt for all k with 0 < k < |v|. Note here that, slightly misusing notation, we
apply the definition of a projected play also to the finite prefix v of a play. Moreover, no matter
whether v is of the form ((p, q,¢c), j) or ((p,q,c,c’), j), we have b|,| = p in a compatible branch.
If there is no compatible branch in 7, we again define (v - v) = v’ for some arbitrary position
v’ € P that is a valid extension of v - v. Otherwise, the successors of p in b define the choice
of y: by definition, the set S of successors of the node labeled with p in b satisfies 5(p, o},).
Thus, there exists some set ¢ € §(p, 0},|) such that p” € S holds for all p” € c. If v is of the form
v = ((p,q), j), we thus define p’(v - v) = ((p, g, ¢), j). If v is of the form v = ((p, q,¢’, c), j), we
define p/(v - v) = v’ for some arbitrary position v’ € P that is a valid extension of v - v. Note
here that choosing an arbitrary successor for v - v for p’ is possible in this case since the choice
defines a successor state for the dominant state q. Hence, the choice does not influence the
projected alternative play. Since the existential choices in A, define the run tree, it follows
immediately from the construction of y’ that Branchesps(r’) = {ﬁ“” | p € Plays(G, ;1’)} holds.

Similarly, we can construct a strategy p for Duplicator in the delay-dominance game G from
the run tree r of A, induced by ¢’. We define the compatibility of a branch analogously, yet,

73

74

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

utilizing the projected dominant play 7%™ instead of the projected alternative one 7%, If there
exists a branch b of r that is compatible with the considered sequence v - v, then, by definition,
the set S of successors of the node labeled with g in b satisfies (g, O'l, V|). Thus, similar to the
case above, there exists some ¢’ € (g, cfl’ VI) such that ¢’ € S holds for all ¢’ € ¢’. If v is of the
form o = ((p, g, ¢), j), we therefore define p(v - v) = ((p,g,c,¢’), j). In all other cases, i.e., if v
is of the form v = ((p,q,¢,q’), j), if v & Py, if there is no compatible branch for v - v, orif v - o
cannot occur in the game G, then we choose an arbitrary successor position v € P that is a
valid extension of v - 0. Since Duplicator controls the existential choices in A, for ¢’ and Spoiler
controls the existential choices in A, for o, it follows analogously to the previous case that
Branchesy,s(r) = {ﬁ“lt | p € Plays(G, p)} holds. O

Utilizing the observations on the relationship between strategies in a delay-dominance game
and run trees in the underlying alternating co-Biichi automaton, we now show that every
strategy s; for a process p; € P that is delay-dominant is also remorsefree dominant. The main
idea behind the result is that a winning strategy p of Duplicator in the delay-dominance game
defines a run tree of the alternating co-Biichi automaton induced by a computation of s; such
that all branches either visit only finitely many rejecting states or such that all rejecting states
are matched eventually with a rejecting state in some branch of all run trees induced by an
alternative strategy. Thus, s; either satisfies the specification, or every alternative strategy does
not satisfy it either. Formally:

Theorem 3.2. Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating
co-Biichi automaton with L(A,) = L(¢). Let s; be a strategy for process p; € P. If s; is delay-
dominant for A, then s; is remorsefree dominant for ¢.

Proof. Let A, = (Q, qo, 5, F). Suppose that strategy s; is delay-dominant for p; A,, while s;
is not remorsefree dominant for ¢. Then, there exists an alternative strategy t; for process p;
and two infinite sequences y € (2%)® and y’ € (2V\V)® such that comp(s;,y) Uy’ [~ ¢ holds,
while we have comp(t;,y) Uy’ [¢. Furthermore, since strategy s; is delay-dominant for p;
and A, by assumption, there exists, for every infinite sequence y” € (2V\Vi)© | a winning
strategy for Duplicator in the delay-dominance game (A, comp(t;, y) U y”, comp(s;, y) Uy”).
Therefore, in particular, Duplicator has a winning strategy p in the delay-dominance game
G = (Ap, comp(ti,y) Uy, comp(si,y) UY').

First, by Lemma 3.2, there exists a run tree r € Runs(ﬂqp, comp(s;,y) Uy’) of A, induced
by comp(s;,y) Uy’ that reflects the choices for the existential transitions of A, that occur
when reading comp(s;, y) Uy’ defined by Duplicator’s winning strategy p in the game G. More-
over, we have Branchespr(r) = {ﬁdom | p € Plays(G, ,u)} Since comp(s;,y) Uy" £ ¢ holds
by assumption, all run trees of A, induced by comp(s;,y) Uy’ contain a branch that con-
tains infinitely many visits to rejecting states. Thus, in particular, the run tree r for which
Branchesp(r) = { p%m | p € Plays(G, ;1)} holds contains a branch that visits rejecting states
infinitely often. Hence, there is an initial play p € Plays(G, p) in G that is consistent with Du-
plicator’s strategy u such that 5™ contains infinitely many visits to rejecting states. Therefore,
it follows from the definition of projected dominant plays that the play p contains infinitely
many visits to rejecting dominant states.

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

Next, since we have comp(t;, y) Uy’ | ¢, there exists arun tree r’ € Runs(A,, comp(t;, y)Uy’)
of A, induced by comp(t;, y) Uy’ whose branches all visit only finitely many rejecting states.
Then, by Lemma 3.3, there is a strategy p’ for Spoiler in the delay-dominance game G that
reflects the choices of ” for the existential transitions of A, when reading comp(t;,y) U y’.
Moreover, we have Branchesps(r’) = {,5“” | p € Plays(G, ,u’)}. Thus, since all branches of r’
visit only finitely many rejecting states, it follows immediately from the construction of y’
that, for all initial plays p € Plays(G, y’) that are consistent with z’, we have that p* visits
only finitely many rejecting states. Therefore, particularly for the unique initial play that is
consistent with both g and 1/, it holds that 5% visits only finitely many rejecting states. Hence,
by definition of projected alternative plays, p visits only finitely many rejecting alternative
states. However, as shown above, p%™ visits infinitely many rejecting states. Thus, there is a
point in time k € Ny such that fy,,(pr) € F holds, while we have f,;(pr) ¢ F for all k&’ > k.

However, then y is not a winning strategy for Duplicator; yielding a contradiction. O

Thus, every delay-dominant strategy is also remorsefree dominant and hence the notion of
delay-dominance overcomes the main weakness of bounded dominance. Furthermore, recall
that, given a realizable LTL specification ¢, every strategy that is remorsefree dominant for ¢ is
also winning for ¢ by Proposition 2.5. Together with Theorem 3.2 the same property follows
immediately also for delay-dominant strategies:

Corollary 3.1. Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating
co-Biichi automaton with L(A,) = L(¢). If ¢ is realizable, then every strategy that is delay-
dominant strategy for A, is winning for ¢ as well.

Thus, from the point of view of obtaining meaningful strategies for the individual system
processes, delay-dominance is a more suitable notion than bounded dominance. In compositional
synthesis, however, it is not only crucial to obtain a meaningful process strategy but also to
obtain a suitable strategy for the overall system when building the parallel composition of the
individual process strategies. In the following section, we thus study the compositionality of
delay-dominance for both safety and liveness properties.

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

A critical shortcoming of remorsefree dominance is its non-compositionality for liveness proper-
ties. This restricts the usage of dominance-based compositional distributed synthesis algorithms
to safety specifications, which are, in many cases, not expressive enough to formalize the system
requirements. Delay-dominance, in contrast, is specifically designed to be compositional for
more properties. This heavily relies on two facts. First, delay-dominance is not defined using
the satisfaction of the given specification but on a more involved property on the visits of
rejecting states. Second, delay-dominance is defined using a two-player game, and thus we
require the existence of a strategy for Duplicator, i.e., determining which decisions to make for
the existential choices of the delay-dominant strategy and the universal ones for the alternative
strategy has to be possible without knowledge about the future input as well as the future
decisions for the other choices.

75

76

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

More precisely, compositionality requires that whenever the parallel composition of two
strategies s; and s, for system processes p; € P~ and p, € P, respectively, does not satisfy the
strategy requirment - that is, for instance, remorsefree dominance, bounded dominance, or
delay-dominance — we are able to blame at least one of the processes for being responsible
for violating that strategy requirement. Otherwise, none of the processes ever behaves incor-
rectly with respect to the strategy requirement, and thus none of the processes violates the
strategy requirement. Hence, the parallel composition of two strategies that satisfy the strategy
requirement would then not necessarily satisfy it.

Example 3.6. Reconsider the message-sending system from the running example and the
strategy property remorsefree dominant. Furthermore, consider the strategies ¢, and ¢, that
wait to receive the respective other messages before sending their own one (see Figure 3.1b).
Their parallel composition #; || t; never sends any message and thus violates the specification
@ = Omy A my on every input sequence. However, none of the processes can be blamed
for being responsible for violating the properties of remorsefree dominance: even if process p;
would send its message m; eventually, the specification is still not satisfied since message ms_;
has not been send yet. Thus, as long as p; did not receive ms_;, it is not required to eventually
send m;. The same, however, also holds for system process p;_;. Note here that it is crucial that,
although p; is required to send m; eventually if it receives ms_;, process ps_; is not required
to send ms_; in the first place; resulting in the deadlock situation where both processes wait
on each other indefinitely. Nevertheless, both #; and t, are remorsefree dominant strategies:
the processes are not required to send their message when confronted with the behavior of the
other process defined by a computation of the parallel composition t; || £; of ¢; and t, i.e., when
reading an input of the form comp(t; || t2,y) N L. A

Let s; and s; be two strategies for processes p; and p;, respectively, and suppose that their
parallel compositions s; || s; does not satisfy the process requirement. Intuitively, we can
then blame at least one of the processes p; and p, for violating the strategy requirement if
there exists a bad prefix of a computation of their parallel composition s; || s; for the strategy
requirement, i.e., a prefix of a computation of s; || s, such that all of its infinite extensions
violate the strategy requirement. For remorsefree dominance, for instance, a bad prefix of a
computation comp(sy || sz, y) is a finite prefix n of comp(sy || sz, y) such that all infinite extensions
o € (2"1972)@ of i that agree with y on the inputs of p; || p2, i.e., for which o NI, |15, = ¥ NIy, p,
holds, violate the specification while there exists an alternative strategy t for p; || p» such that
comp(t, y) satisfies the specification. Note here that since remorsefree dominance only considers
the satisfaction of a specification, the existence of a bad prefix for remorsefree dominance boils
down to the existence of a bad prefix for the considered specification. Since liveness properties
do not have bad prefixes by definition (see Section 2.3), there thus clearly do not exist bad
prefixes for remorsefree dominance for liveness properties.

Delay-dominance, in contrast, takes an alternating co-Biichi automaton, which describes the
system specification, into account and relates the visits of the automaton to rejecting states
induced by the computation of a delay-dominant strategy to those induced by a computation of
an alternative strategy. Thus, the non-existence of bad prefixes for liveness properties does not
necessarily result in the absence of bad prefixes for delay-dominance.

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

Example 3.7. Reconsider the message-sending system from the running example and its
specification ¢ = & my A O my. Furthermore, consider the alternating co-Biichi automaton A,
with L(A,) = L(¢). depicted in Figure 3.2. Although £L(¢) is a liveness property and thus
does not have a bad prefix by definition, the automaton A, ensures, intuitively, the existence
of bad prefixes for delay-dominance: let s; be a strategy for system process p; € P~ that is not
delay-dominant for A,. Then, there exists an input sequence y € (2{ms-i})© and an alternative
strategy ¢; for p; such that Duplicator does not have a winning strategy in the delay-dominance
game G = (A, comp(t;, y), comp(s;, y)). As outlined in Example 3.5, for such an input sequence
y € (21m-})® it holds that ms_; occurs in comp(s;,y) before m;. Let k > 0 be the earliest
point in time at which ms_; occurs in comp(s;, y) while m; did not occur so far. The prefix of
comp(s;, y) up to the point in time k, i.e., comp(s;, y)|k+1, is then a bad prefix of comp(s;, y) for
delay-dominance in A,: since A, is deterministic, every play in the delay-dominance game
stays in state g in the dominant states up to the point in time k at which ms_; occurs and then
moves to either g; or ¢,, depending on whether i = 1 or i = 2 holds. It then stays there until m;
occurs and moves to g3 afterward. An alternative strategy that outputs m; on input sequence y
at point in time k, i.e., at the exact same point in time at which ms_; occurs in y, induces a move
from ¢ directly to g3, thus avoiding the visit of a rejecting state g; or ;. Hence, no matter how
system process p; behaves after entering g; or g, respectively, there is an alternative strategy
that causes Duplicator to lose the delay-dominance game for input sequence y, namely the one
that, intuitively, predicts the point in time at which ms_; is sent, and that sends m; at the very
same point in time. Thus, behaving as s; on y up to point in time k always results in Duplicator
losing the delay-dominance game for some alternative strategy. Consequently, behaving as s;
on y up to point in time k always results in not being delay-dominant for A,,. A

In the following, we first establish that delay-dominance is indeed compositional if bad
prefixes exist. Afterward, we then study which properties the alternating co-Biichi automaton
needs to satisfy to allow for bad prefixes. Thus, we first define a property that formalizes the
existence of a bad prefix with respect to delay-dominance.

Definition 3.5 (Bad Prefixes for Delay-Dominance).

Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating co-Biichi
automaton with L(A,) = L(¢). Then, A, ensures bad prefixes for delay-dominance if, and
only if, for all p; € P, y € (2V'9/)®, and o € (29)® for which there exists some ¢’ € (2")®
such that Duplicator loses the delay-dominance game (A, o’ Uy, o Uy), there is some finite
prefix n € (29%)* of o such that for all infinite extensions 6 € (29)® of 5, there is some
o’ € (299)® such that Duplicator loses the delay-dominance game (A, a”’ Uy, 6 Uy).

If the considered alternating co-Biichi automaton A, satisfies the bad prefix property for
delay-dominance, then the notion of delay-dominance is indeed compositional, i.e., then the
parallel composition of two delay-dominant strategies is guaranteed to be delay-dominant
as well. The main idea of the proof is to utilize the bad prefix property to argue that, if the
parallel composition s; || s; of two strategies is not delay-dominant, then at least one of the
processes can be blamed for being responsible for violating the properties of delay-dominance.

77

78

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

No matter which of the processes is responsible — or even both — we can then conclude from
the properties of process strategies and the fact that they are represented by Moore transducers
that the strategy of the respective process cannot be delay-dominant:

Theorem 3.3. Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating
co-Biichi automaton with L(A,) = L(¢). Let p1, po € P be processes and let s; and s, be strategies
for them. If both s; and s, are delay-dominant for A, and p, and p,, respectively, and if A,
ensures bad prefixes for delay-dominance, then sy || s is delay-dominant for A, and p, || pa.

Proof. For the sake of readability, let I; » = (I; U Iz) \ (O; U O,) be the set of inputs of p; || p2,
let O12 = O1 U O, be the set of outputs of p; || ps, and let Vi, = I; ; U Oy 2 be the set of variables
of py || p2. Let A, = (Q,qo, 6, F). Suppose that s; || s is not delay-dominant for A, and
p1 || p2. Then, there is some sequence y’ € (2"\V12)@ of variables that cannot be observed
by p1 || p2, some alternative strategy t for p; || p2, and some infinite input sequence y €
(252)® such that there is no winning strategy for Duplicator in the delay-dominance game
G = (Ap, comp(t,y) Uy’ comp(sy || s2,y) UY').

By assumption A, ensures bad prefixes for delay-dominance and thus there exists a finite
prefix v € (2Y)* of comp(s || s2,y) Uy’ such that for all infinite extensions 6 € (2")® of v with
6N (V\O0i2) = (comp(sy || s2,y) Uy’) N (V' Oy2), there exists some sequence ¢’ € (2V)® with
6N (V\0y2) = 0’ N(V\Oy) such that Duplicator loses the delay-dominance game (A,, 0", &).
In particular, there thus exists a smallest, i.e., shortest, such bad prefix of comp(s; || s2,y) Uy’.
Let - § € (2¥)* be this smallest such bad prefix, where n € (2)* and § € 2V holds. Since 1 - §
is a bad prefix for delay-dominance by construction, it holds that for all infinite extensions
6€(2V)? ofp-Swith 6N (V\ Oyrz) = (comp(sy || s2,¥) Uy’) N (V' \ Oy2), there exists some
infinite sequence o’ € (2)® with 6N (V'\ Oy2) = ¢’ N (V \ O1) such that Duplicator loses the
delay-dominance game (A, 0”’, 5). Furthermore, since 7 - J is the smallest such prefix, there
exists an infinite extension & € (2)% of n with 5N (V \ Oy2) = (comp(s; || 52, y) Uy’)N (V\O15)
such that Duplicator wins the delay-dominance game (A, 0", 6”’) for all ¢’ € (2V)* with
50 (V\012) = 0" 01 (V\ Oy).

Suppose that 17+ § is the empty sequence. In that case, for all infinite sequences o’ € (2")® that
agree with y Uy’ on the variables in V'\ Oy 2, Duplicator does not have a winning strategy in the
delay-dominance game (A, comp(t,y) Uy’,o’). However, then Duplicator particularly does
not have a winning strategy in the delay-dominance game (A, comp(t,y) Uy’, comp(t,y) Uy’);
contradicting that every strategy delay-dominates itself by Lemma 3.1. Hence, 5 - § cannot be
the empty sequence and thus | - §| > 0. Let m = |5 - §| be the length of 1y - §. The last position §
of the prefix 1 - § — which is guaranteed to exist since 7 - § is not the empty sequence - contains
decisions of both processes p; and p, defined by their delay-dominant strategies s; and s,
respectively. We distinguish the following two cases:

1. There exists an infinite extension & € (2")® of n with o,,,_1 N (V' \ O1) = 6N (V'\ O;) and
6N (V\O;z2) = yUy’ such that Duplicator has a winning strategy in the delay-dominance
game (A, comp(t,y) Uy’, 6). Hence, intuitively, it is the fault of process p; and thus, in
particular, of its strategy sy, that Duplicator loses the game delay-dominance G. Let ¢’ be
a strategy for p; || p, that produces the sequence 6 N'V; on input sequence y, i.e., a strategy

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

with comp(t’,y) U o = 6. For the sake of readability, let y*> = comp(s; || s2,) N O, and
let y%2 = comp(t’,y) N O,. Since we have § N (V \ O1) = 6p_1 N (V '\ Oy) by assumption,
we obtain that 77 - § and 6|, agree on the variables in V' \ O; and therefore, in particular,

the finite sequences comp(s; || $2,y)|m and comp(t’, y)|m agree on the variables in V'\ O;.
Hence, it follows from the construction of y*> and y% that (y U Y)im=(yu yt§)|m holds.

Since strategies cannot look into the future,strategy s; thus cannot behave differently on
input sequences (y U y*2) N I; and (y U y%2) N I; up to point in time m — 1. For the sake
of readability, let p°, p*’ € (2V\91))® be the infinite sequences of valuations of variables
outside the control of p; defined by p* :== y Uy2 Uy’ and p* :=y U y%2 Uy’. Then,

comp(si, p* N 1) jm U (p,, N (V\ V2)) = comp(si, p'" 0 L)y U (pl1 0 (V\ V1))

follows. Hence, since 1§ is a finite prefix of comp(s;||s2, y) Uy’ by definition and since we
have comp(s1, pNL)U(p*N(V\ V1)) = comp(s1]|sz, y) Uy’ by construction of y*2 and p° a
well as by definition of computations of strategies, comp(sy, p*’ NI)) U (p* N(V\V})) is an
infinite extension of - 8. Furthermore, since clearly (comp(si||sz2, y) Uy)N(V\O;) = yUy’
holds by definition of computations of strategies, it follows immediately that we have

(comp(si, p" NL) U (p" N (VAVI)) N (VO =(yUy)n(V\O0y),

i.e. that comp(sy, p*’ N1I;) U (p* N (V \ 1)) agrees with y U y’ on the variables in V \ O;.

Therefore, by construction of the finite prefix - §, Duplicator loses the delay-dominance
game G’ = (A, comp(t,y) Uy, comp(si, p" N L) U (p* N (V \ V1))). However, by
construction of the strategy t’, Duplicator has a winning strategy p in the delay-dominance
game (A, comp(t,y) Uy’ comp(t’,y) Uy’). Let t] be a strategy for process p; such that
comp(t’,y) N Vi = comp(t], pY N 1)) holds. Then, since s; is delay-dominant for p,
and A, by assumption, s; particularly delay-dominates ¢; on input p!' N1 for sequence
p! 0 (V'\ V1) and therefore Duplicator has a winning strategy z’ in the delay-dominance
game (A, comp(t], p NL) U (p* N (V\ V1)), comp(si, p! NL) U (p* N (V\ V})). Since
comp(t], p!' NL)U(p! N(V\ Vi) = comp(t’,y) Uy’ holds by construction of the process
strategy t;, we can thus combine the strategies y and 4/, i.e., the winning strategies
of Duplicator in the two delay-dominance games (A, comp(t,y) U y’, comp(t’,y) Uy’)
and (A, comp(t}, p*' N 1) U (p* 0 (V\ W), comp(s1. p* N 1)) U (p* N (V\ W), toa
strategy p’’ for Duplicator in the delay-dominance game G’. Furthermore, since p and '
are winning in the respective games, it follows immediately that for all initial plays
p € Plays(G’, i) that are consistent with Duplicator’s combined strategy p’’ it holds
that whenever fy,,,(px) € F holds for a point in time k € Ny, then there is a point in time
k" € Ny with k" > k such that f;;(pr’) € F holds. Thus, p’’ is a winning strategy for
Duplicator in the delay-dominance game G’; contradicting that Duplicator loses G’.

. There is no infinite extension & € (2"12)® of with 6,,_; N (V\ 0;) =8 N (V' \ Oy) and
6N (V\O;z2) = yUy’ such that Duplicator has a winning strategy in the delay-dominance
game (A, comp(t,y) Uy’, 6). Hence, intuitively, it is (at least also) the fault of process p,
and thus, in particular, of its strategy s, that Duplicator loses the game G. By construction
of the finite prefix 5 - §, there exists an infinite extension ¢’ € (2")® of 5 such that

79

80

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

Duplicator has a winning strategy in the delay-dominance game (A, comp(t,y) Uy’, o’).
Let t’ be a process strategy for p; || p, that produces ¢’ N (V' \ V;) on input y, i.e., a strategy
with comp(t’,y) Uy’ = ¢’. For the sake of readability, let y** = comp(s; || s2,y) N O; and
let y%i = comp(t’,y) N O;. By definition of t’, the sequence comp(t’,y) Uy’ is an infinite
extension of 1. Thus, since 7 - § is a prefix of comp(s; || s2,y) Uy’ by definition, we have
comp(t',y)jm-1 = comp(sy || S2,¥)|m-1. Hence, it follows from the construction of y*
and y*i that (y U y*)|—1 = (y U y1)|,n—1 holds. Since strategies cannot look into the
future, s, thus cannot behave differently on input sequences (yUy*') NI, and (yUy) NI,
up to point in time m — 2. For the sake of readability, let p°, pt" € (2V\92))® be the infinite
sequences of valuations of variables outside the control of p, defined by p* :=y Uy U o
and p!’ :=y Uy U o. Then,

comp(s, p* N B)jm—1U (p,,_, N (V\V2)) = comp(sa, p N I)jm—1 U (pf,,_; N (V\V2))

follows. Hence, comp(sy, p* N 1I) U (p* N (V \ V,)) is an infinite extension of 5 as well.
Since we consider process strategies that are represented by Moore transducers, s, cannot
react directly to an input. In particular, s, can thus, at point in time m — 1, not behave
differently when reading p* N I, and p* N I; even if p° N I, and p*" N L, differ at point in
time m — 1. Consequently,

comp(sa, p° N L) m—1 N Oy = comp(sZ,pt’ NDL)mo1 N Oy

holds. Furthermore, we have p° N (I3 U (V \ Vi.2) = p* N (I3 U (V \ Vi) by construction
of p* and pt’ and thus, since I; ;U (V'\Vy2) = V\ Oy 2 holds by definition of V; ; as well as by
definition of architectures, p* and p*” agree on the variables in V\ Oy 5. Therefore, it follows
from the definition of computations of strategies that comp(ss, p* N I2)m-1U (p* N (V\V3))
and comp(sy, p*' NI)m_1U (p! N (V \ V,)) agree on the variables in V \ Oy 5. By definition
of 012, we have (V '\ O13) U Oz =V \ Op and thus comp(sz, p° N L)m-1 U (p* N (V\ V2))
and comp(sz, p¥’ N I)m-1 U (p*' N (V' \ V3)) agree on the variables in V \ O; as well. For
the sake of readability, let & = comp(sz, p*' N 1I5))m_1 U (pfrll_1 N (V' \ V)). Then, since we
have 6 = comp(sz, p* N L)m-1 U (p;,_, N (V' \ V2)) holds by definition of the prefix n - §
as well as by construction of p*, & N (V\ O1) = § N (V \ Oy) follows. Furthermore,
the sequence comp(sy, p*’ N I;)) U (p* N (V' \ V3)) is an infinite extension of 5 - §’. By
construction of the strategy t’, Duplicator has a winning strategy p in the delay-dominance
game (A, comp(t,y) Uy’, comp(t’,y) Uy’). Let t; be a strategy for process p, such that
comp(t',y) NV, = comp(t’,pt/ N I;) holds. Then, since s; is delay-dominant for p,
and A, by assumption, s, particularly delay-dominates ¢, on input p!" NI, for sequence
p" N (V'\ V,) and therefore Duplicator has a winning strategy y’ in the delay-dominance
game (A, comp(t}, p*' NL) U (p! N (V\V3)), comp(sz, p!’ NL) U (p! N (V'\Vz))). Similar
to the previous case, we can combine p and p’ to a winning strategy p’’ for Duplicator
in the delay-dominance game (A, comp(t,y) Uy’, comp(sz, p' N L) U (p! N (V \ W)).
Thus, comp(sz, p*’ N L) U (p* N (V \ V)) is an infinite extension & € (2")® of 5 with
Gm-1N(V\0O1) =N (V\0Oq)and 6 N (V \ O13) = y Uy’ such that Duplicator wins the
delay-dominance game (A, comp(t,y) U y’, 5); contradicting the assumption that no
such infinite extension exists.

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

Q

)

T T Y\ T
q1 q2 q3 q4 T
o O W v
A
) o
Figure 3.5.: Alternating co-Biichi automaton A over alphabet {a, b} that does not ensure bad
prefixes for delay-dominance. Universal choices are depicted with a gray arc.

Hence, no matter which of the processes p; and p, can be blamed for being responsible for
Duplicator losing the delay-dominance game G, which determines whether or not s; || s; delay-
dominates ¢ on input y when considering y’, we obtain a contradiction. Thus, for all y € (21:2)®,
all y e (2V\"12)©_ and all strategies t for p; || p;, Duplicator has a winning strategy in the
respective delay-dominance game (A, comp(t,y) U y’, comp(sy || s2,y) U y’). Therefore, it
follows that s; || s; is delay-dominant for A, and p; || p2; concluding the proof. O

We have thus shown that delay-dominance is compositional for all specifications given
as alternating co-Biichi automata that ensure bad prefixes for delay-dominance according
to Definition 3.5. From Theorems 3.2 and 3.3 it now follows immediately that the parallel
composition of two delay-dominant strategies is also remorsefree dominant if the considered
alternating co-Biichi automaton representing the specification ensures bad prefixes:

Corollary 3.2. Let ¢ be an LTL formula over atomic propositions V. Let A, be an alternating
co-Biichi automaton with L(A,) = L(¢) that ensures bad prefixes for delay-dominance. Let s,
and s; be delay-dominant strategies for A, and processes p; and p., respectively. Then, s, || s, is
remorsefree dominant for ¢ and p; || p.

Moreover, recall that, given a realizable LTL specification ¢, every strategy that is delay-
dominant for an alternating co-Biichi automaton A, with L(A,) = L(¢) is also winning
for ¢ by Corollary 3.1. Hence, together with Theorem 3.3, it follows that given a specification ¢
and an alternating co-Biichi automaton A, with £(A,) = L(¢) that ensures bad prefixes for
delay-dominance, the parallel composition of delay-dominant strategies for A, and all system
processes of a distributed system is winning if ¢ is realizable. Hence, delay-dominance is a
notion that can be soundly used for dominance-based compositional synthesis approaches when
ensuring the bad prefix criterion.

As already pointed out above, there are many more properties for which there exists an
alternating co-Biichi automaton that ensures bad prefixes for delay-dominance than properties
that have a “classical” bad prefix. By definition, no liveness property has a classical bad prefix,
yet, for many of them, there exist alternating co-Biichi automata that ensure bad prefixes for
delay-dominance. In the following, however, we consider an alternating co-Biichi automaton
that does not ensure bad prefixes:

81

82

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

90 do
l |
4 qs
q qs3 qs
7N : AN
q2 q3 q4 qs3 qs
SN l ‘ l <N
qz qs q4 : q4
SN | |
q4 . .
}
(a) Run tree induced by comp(s;, y). (b) Run tree induced by comp(t;, y).

Figure 3.6.: Run trees of the alternating co-Biichi automaton A depicted in Figure 3.5 induced
by comp(s;, y) and comp(t;, y) from Example 3.8, respectively.

Example 3.8. Let V = {a, b} be a set of variables. Consider the alternating co-Biichi automa-
ton A over alphabet V depicted in Figure 3.5. Let p; be some process with inputs I; = {b} and
outputs O; = {a}. Let s; be a strategy for p; that outputs a in the very first time step and never
outputs a afterward. That is, irrespective of the input sequence y € (2%)®, the computation of s;
is given by comp(s;, y) = {a}0“. Let t; be an alternative strategy for p; that never outputs a,
i.e., comp(t;, y) = 0 holds for all y € (2/1)®. The run trees of A induced by the computations
of s; and ¢; on any input sequence are depicted in Figure 3.6. Note that both comp(s;, y) and
comp(t;, y) induce only a single run tree in A. For an arbitrary input sequence y € (21)®,
consider the delay-dominance game G = (A, comp(t;, y), comp(si, y)).

In the following, we illustrate that Duplicator does not have a winning strategy in G. We
present a strategy p for Spoiler in G and show afterward that it is winning, irrespective of
Duplicator’s moves. Strategy p is a memoryless game strategy, which performs its choices only
based on the current node of the game. It does not consider the history of the play. Thus, let
v € P* be some finite history of a play in G. Due to the structure of A and the definition of t;,
no existential transitions occur in A when reading comp(t;, y). Consequently, Spoiler’s choices
for positions of the form ((p, q), j) € S3, are already fixed by the transition function § of A.
More precisely, given position ((p, q), j) € S3, the set §(p, comp(s;, y);) is a singleton, i.e., we
have §(p, comp(t;,y);) = {c} for some set ¢ C Q of states of A, and we define

u(v, ((p,q),) = ((p.g.), j).

For positions of the form ((p, q,c,c’), j) € Sy, in contrast, Spoiler is, in some situations,
required to make choices regarding the successor node ((p, ¢, ¢, q'), j) since, due to the structure

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

—1 (0900 f~{ (g0 {0510 J>{ (q0: g0 g5} {91, 0 = (g0, 0. {g5).92).0 }-+| (g5.q0). 1

|
(g5, 92), 2 «—((qs,ql,{qg,qs}, q2>,1}— (g5 1, {q5, G5}, {q2}) 1 «—((qs,ql,{qs,qs}m]

| |
(@5 ataa.2) | (a2 [@a a2 o (@0 (60)).2

! L

(g5, 92, {93 45}, {g2. ¢3}), 2 H[warn{(1‘s-qa}-,<1;s>-2} ((qs, q2s {q4},q3),2j [<<1;s-q_»-{f11}-«1z)-2}

! = o ! !

[(qs, 92,193 45}, 42)s 2} (g3, 93),3 (g5, 93),3 (94, 93), 3 (94 92), 3
(93, 92),3 (g5.92), 3

! !

Figure 3.7.: Partial game arena of the delay-dominance game G = (A, comp(t;, y), comp(si, y))
from Example 3.8. Positions controlled by Spoiler are depicted as rectangles, positions with
rounded edges are controlled by Duplicator. Parts of the game arena that are not consistent
with the winning moves of Spoiler are grayed out. Positions of the form ((p, q), j) that are
critical for Duplicator are highlighted in blue.

of A and the definition of s;, universal transitions can occur in A when reading comp(s;, y).

However, note that only a single universal transition can occur, namely the one from ¢, to
both g, and gs. Thus, whenever ¢’ is not a singleton, then we have ¢’ = {g5, g3}. Given position
((p,q,c,¢’), j) € Sy, we then define

((p.g.c.q), j+1) ifc" ={q'},
pv, ((p.g.e.¢'). j) =4 ((p.g.cq3), j+1) ifgsec” A p=gs
((psq.¢,q2), j+1) ifgzec” N p#gs,

The relevant part of the game arena of the delay-dominance game G is depicted in Figure 3.7.

Parts that are not consistent with Spoiler’s strategy p are grayed out. Starting from the initial
position ((qo, o), 0), neither Duplicator not Spoiler has any choice in the first round of G,
resulting in the successor position ((gq1, gs), 1). In the next round, the only choice is by Duplicator
and allows for deciding whether the alternative states stay in ¢gs or move to gs.

First, suppose that Duplicator chooses to let the alternative states move to gs. Then, we
obtain the successor node ((gs, q2), 2). In the next round, no existential transitions are possible
due to the definition of strategy s;. Hence, the first decision of the round is by Spoiler, and it
can decide whether the dominant states stay in g, or move to gs. Since the alternative states
are in gs, Spoiler chooses g3 for the dominant states according to its strategy p. Since there
is only a single outgoing transition from g3, Duplicator does not have any choice other than

83

84

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

letting the alternative states move from g3 to qq, resulting in the successor node ((ga, g3), 3)-
Due to the structure of A, state g4 is a sink, i.e., it cannot be left again. Hence, the alternative
states will always stay in q4 from this round on. Furthermore, similar to the previous round
for the alternative states, Spoiler does not have any choice other than letting the dominant
states move from g3 to q4. Hence, we obtain the successor node ((q4, g4),4) and, in fact, all
subsequent positions in an initial play that is consistent with the choices of Duplicator and
Spoiler described above are of the from ((qq, q4), j). Hence, every such initial consistent play
in G contains exactly two visits to rejecting dominant states — namely g; in round 1 and g3 in
round 3 — and one visit to a rejecting alternative state — namely g3 in round 2. The visit to a
rejecting dominant state in round 3 is thus not matched with a visit to a rejecting alternative
state. Consequently, such an initial consistent play does not satisfy the winning condition of the
delay-dominance game. Hence, Duplicator’s choice to let the alternative states move from gs
to g3 in round 2 results in losing the delay-dominance game G.

Next, suppose that Duplicator chooses to let the alternative states stay in ¢s in round 2,
yielding the successor node ((gs, g2), 2). Due to the definition of s; and the structure of A,
no existential choices occur. Hence, the only choices Duplicator and Spoiler can make in the
following concern the universal transitions in the alternative and dominant states, respectively.
In each round, Spoiler moves first. According to Spoiler’s strategy p, it chooses to let the
dominant states stay in ¢, as long as the alternative states are still in ¢gs. As soon as the
alternative states move to g3, Spoiler chooses to let the alternative states move to g3 as well.
If Duplicator never chooses to let the alternative states move to gs, this results in a play in
which the alternative states always stay in gs, while the dominant states always stay in gs.
Then, no rejecting alternative state is visited. In contrast, a single rejecting dominant state
is visited — namely ¢; in round 1. This visit is clearly not matched with a visit to a rejecting
alternative state. Thus the play does not satisfy the winning condition of the delay-dominance
game, resulting in Duplicator losing the game G. If Duplicator chooses to let the alternative
states move from g5 to g in some round j > 3, then we obtain the ending tuple ((gs, g2), j) for
this round. In the next round, Spoiler can then decide to let the dominant states move from g,
to g3, while Duplicator does not have any choice other than letting the alternative states move
from g3 to q4 due to the structure of A. This results in the successor node ((q4, g3), j + 1) and,
similar to the very first case, in nodes of the form ((q4, q4), j’) for all rounds j* > j+1. Hence, an
initial consistent play again contains exactly two visits to rejecting dominant states — namely ¢,
in round 1 and g3 in round j — and one visit to a rejecting alternative state — namely g3 in round
j + 1. The visit to a rejecting dominant state in round j is thus not matched with a visit to a
rejecting alternative state. Consequently, such an initial consistent play does not satisfy the
winning condition of the delay-dominance game. Duplicator thus also loses the game G for this
choice. Consequently, s; does not delay-dominate t; and therefore s; is not delay-dominant.

However, there does not exist a bad prefix of delay-dominance for s;: let k > 2 be some point
in time and let 7 be the prefix of comp(s;, y) up to point in time k, i.e., let n = comp(s;, y) |x+1. Let
o € (2V)“ be an infinite extension of with a € o} for some point in time k’ > k and consider
the delay-dominance game G’ = (A, comp(t;, y), c). We construct a winning strategy p’ for
Duplicator in G’ as follows: for the existential choice in ¢, in round k’, i.e., in the round
corresponding to the point in time at which a occurs, p’ chooses to let the dominant states

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

move to g4. For the universal choice in gs, it chooses to let the alternative states stay in gs up
to round k’ — 1 and to let them move to g; afterward, i.e., in round k’. Then, y’ ensures the
visit to a rejecting alternative state after round k’, namely in round k’ + 1. However, we show
in the following that the last rejecting dominant state occurs before round k’. For an initial
play p € Plays(G’, i’) that is consistent with p’ and in which the dominant states are in ¢,
in round k’, Duplicator’s strategy p’ ensures that no rejecting dominant state is visited after
round k’. In fact, no rejecting dominant state is visited after round 1, in which the dominant
states visited g, since, by construction of A, state g, is non-rejecting, it is reached in round 2,
and staying in ¢, is the only possibility to be in g, in round k’. Since k > 2 and k’ > k holds
by construction, we clearly have 1 < k’ and thus the last rejecting dominant state occurs
before round k’. For an initial play p € Plays(G’, ') that is consistent with p’ and in which the
dominant states move from g; to gs; in some round k"’ < k’, it follows from the construction
of A that the last rejecting dominant state is visited in round k”” + 1. Hence, since k" < k’
holds by construction of k", the last rejecting dominant state occurs before round k’. Thus, in
every initial play p € Plays(G’,) that is consistent with p, every visit to a rejecting dominant
state is matched with a visit to a rejecting dominant state and thus p € W holds. Therefore, 1’
is indeed a winning strategy for Duplicator in the delay-dominance game G’. Since we chose
k > 2 arbitrarily, there thus does not exist a bad prefix for delay-dominance in A. A

Hence, there indeed exist alternating co-Biichi automata that do not ensure bad prefixes.
We identified the universal cycle structures of the automaton A depicted in Figure 3.5 to be
critical in general for the existence of bad prefixes. Let s; be a strategy for process p; that is not
delay-dominant. Let ¢; be the alternative strategy and let y € (2/7)“ be the input sequence such
that s .4, t holds, i.e., such that Duplicator loses the game G = (A, comp(t,y), comp(s,y)).
First of all, note that if postponing the point in time at which a losing rejecting dominant state,
i.e., a rejecting dominant state that is never matched with a rejecting alternative state, is visited
is not possible, then there exists a bad prefix for delay-dominance: in particular, there then
exists a point in time k5, > 0 such that for all strategies p of Duplicator in G, there exists an
initial play p € Plays(G, p) that is consistent with p and a point in time k" with 0 < k" < kpgx
such that f,;;(pr’) € F holds, while we have fjom(px~) € F for all k¥’ > k’. Then, the prefix of
length k. of comp(s;, y) is clearly a bad prefix for delay-dominance.

If, in contrast, Duplicator can postpone the point in time at which a losing visit to reject-
ing dominant state is visited, then either (i) Duplicator can delay making visits to rejecting
dominant states losing indefinitely, or (ii) there is a point in time k,;; from which on all visits
to rejecting dominant states are losing but Duplicator can delay visits to rejecting dominant
states indefinitely. If the latter is the case, then Duplicator would not lose the game G. Since the
automaton A has a finite number of states, postponing the visit to losing rejecting dominant
states indefinitely requires a cycle in A that allows Duplicator to choose at an arbitrary point in
time to let a play visit a losing rejecting states after point in time k,;;. However, then Duplicator
is also able to enforce that a rejecting dominant state is never visited after k,j;, resulting in a
winning strategy for Duplicator in G. Hence, (ii) cannot hold, and therefore Duplicator can delay
making visits to rejecting states losing indefinitely. Since visits to rejecting dominant states are
losing if they are not answered with a visit to a rejecting alternative state eventually, it thus

85

86

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

(a) Universal cycle structure C,. (b) Universal cycle structure CL.

Figure 3.8.: Schematic illustration of both types of universal cycle structures, CEIS and C\];. The
sets of states corresponding to the structures are highlighted in blue. The transition labels are
omitted for readability. The labels of violet transitions differ from those of black transitions.

follows that Duplicator can delay the point in time at which no rejecting alternative states are
visited anymore indefinitely. If Duplicator could enforce infinitely many rejecting alternative
states, then Duplicator would have a winning strategy in G. Hence, Duplicator can enforce the
visit to indefinitely many non-rejecting alternative states before the last rejecting alternative
state. Since A has only a finite number of states, this thus requires a cycle structure C\‘j in A
which is entered when reading comp(t;, y) such that Duplicator can choose to either enforce
all plays to stay in the cycle structure in the alternative states or to leave it. Furthermore, all
states in the cycle structure are non-rejecting, while a finite number of rejecting states, but at
least one, is visited after leaving the cycle structure C\‘,g. Since Duplicator controls the universal
transitions for the alternative strategy, the cycle structure is thus universal in the sense that the
transitions to either stay in the cycle structure or to leave it are universal. An illustration of
such a cycle structure is depicted in Figure 3.8a. In the automaton from Example 3.8 depicted in
Figure 3.5, state g5 represents such a cycle structure.

Furthermore, if there would be a point in time k > 0 such that Duplicator can enforce that
no rejecting dominant state is visited after this point in time k, then Duplicator would clearly
win the game G since it could choose to let the alternative states stay in the cycle structure up
to point in time k and to let them then leave the cycle structure, resulting in at least one visit to
a rejecting alternative state after point in time k. Thus, Spoiler is able to delay the last visit to a
rejecting dominant state indefinitely as well. Therefore, there exists an analogous universal
cycle structure Cy in the automaton, which is entered when reading comp(s;, y). Furthermore,
there exists a pending visit to a rejecting dominant state, i.e., a visit to a rejecting dominant state
that has not been matched with a visit to a rejecting alternative state so far. Otherwise, it would
be winning for Duplicator to enforce that the alternative states stay in the cycle structure C3,
which is entered when reading comp(t;, y), forever. In the automaton from Example 3.8 depicted
in Figure 3.5, state g, represents such a cycle structure. As long as the cycle structure Cy that is
reached when reading comp(s;, y) cannot be left irrespective of the moves of Spoiler for some
infinite extension of a finite prefix of comp(s;, y), i.e., as long as Cy is of the form as the one

3.3. COMPOSITIONALITY OF DELAY-DOMINANCE

depicted in Figure 3.8a, the bad prefix property for delay-dominance is still satisfied. Analogous
to the explicit case in Example 3.8, we can show that it is neither winning for Duplicator to
choose to let the alternative states stay in the cycle structure Cy forever nor to let them leave
the cycle structure eventually. If, however, analogous to the transition with a from g, to gs
in the automaton from Example 3.8 depicted in Figure 3.5, there exists the possibility that
Duplicator enforces to leave the cycle structure and to visit only a finite number of rejecting
states afterward, the bad prefix property for delay-dominance is not guaranteed. Such a cycle
structure C& is schematically depicted in Figure 3.8b. The violet transitions denote the possibility
for Duplicator to enforce to leave the cycle structure as they are labeled differently than the
black transitions. Similar to the transition with a from g; to ¢s in Example 3.8, they thus allow
for infinite extensions of every finite prefix of comp(s;, y) for which Duplicator has winning
strategy in the respective delay-dominance game.

Therefore, the combination of cycle structures as depicted in Figure 3.8 are critical for the
bad prefix property for delay-dominance. However, in many cases, such structures do not occur
in alternating co-Biichi automata that are constructed from an LTL formula with standard
algorithms. For instance, the automaton A from Figure 3.5 does not feature rejecting states
that lie in cycles. Thus, in particular, no branch of a run tree of A can contain infinitely many
visits to rejecting states, and consequently, A accepts every infinite word over 2{%*}. More
precisely, A describes the LTL formula true. However, standard algorithms would never yield
such a peculiar automaton as A when constructing an alternating co-Biichi automaton for the
formula true. In particular, for every safety specification, there exists an alternating co-Biichi
automaton that ensures bad prefixes for delay-dominance:

Lemma 3.4. Let ¢ be an LTL formula over atomic propositions V. If ¢ is a safety property, then
there exists an alternating co-Biichi automaton A, with L(A,) = L(¢) that ensures bad prefixes
for delay-dominance.

Proof. Suppose that ¢ is a safety property. Then, there exists an alternating co-Biichi automaton
Ay = (0, q0, 9, F) with L(A,) = L(¢) and a single rejecting sink, i.e., with a single state g € Q
such that F = {q} and such that (g, 1, q) € & holds for all : € 2", while we have (q,1,q’) ¢ 8 for
all1 € 2V and all ¢’ € Q with g # ¢’. Hence, a branch of a run tree of A, induced by an infinite
sequence o € 2" either visits no rejecting state at all or it visits infinitely many rejecting states.
Let o € 2" be some infinite sequence such that Duplicator loses the delay-dominance game
G = (A, 0’, 0) for some infinite sequence o’ € (2V)®. Then, it follows from the structure of Ay
that for all strategies p of Duplicator, there exists some initial consistent play p € Plays(G, p)
such that fy,,(pr) = q holds for some point in time k > 0, while we have f,;;(px) # ¢ for all
k’ > 0. Hence, p visits q in its dominant states, while it never reaches q in its rejecting states.
Since q is a rejecting sink, p thus visits infinitely many rejecting dominant states, while it does
not visit any rejecting alternative states. If there is no point in time k > 0 such that for all
strategies u of Duplicator, there exists some initial consistent play p € Plays(G, p) such that
faom(pr) = q holds, then Duplicator can delay visiting g in the dominant states indefinitely.
Yet, since A, has a finite number of states, it thus follows that Duplicator can also enforce
that q is never entered; contradicting that Duplicator loses the game G. Hence, there is a point
in time k > 0 such that for all strategies y of Duplicator, there exists some initial consistent

87

88

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

play p € Plays(G,) such that fi,,(px) = q holds. Let n € (2")* be the prefix of o up to
point in time k, i.e., let 7 = oj41. Since q is a rejecting sink by construction of Ay, it then
follows immediately that for all infinite extensions ¢’/ € (2") of 5 and all strategies y of
Duplicator in the delay-dominance game G’ = (A,, o/, 0”’), there exists some initial consistent
play p € Plays(G’, 1) that visits infinitely many rejecting states. Hence, Duplicator loses
the delay-dominance game G’ and therefore, since we chose the infinite extension ¢’ of n
arbitrarily, A, ensures bad prefixes for delay-dominance. O

Furthermore, for many liveness specifications ¢, there exists an alternating co-Biichi automa-
ton A, with L(A,) = L(¢) that ensures bad prefixes for delay-dominance as well since, in
general, the existence of critical automaton structures is quite rare. Nevertheless, we cannot
exclude that there exist liveness specification that enforce such critical cycle structures and thus
enforce an alternating co-Biichi automaton that does not ensure bad prefixes. We, however,
have not encountered such a specification so far. Hence, delay-dominance is a suitable notion
of best effort for compositional synthesis: it is compositional for many properties and the bad
prefix criterion even allows us to determine whether or not the parallel composition of two
delay-dominant strategies will be delay-dominant before synthesizing and then composing them
by analyzing the specification automaton. Therefore, we introduce an automaton construction
for synthesizing delay-dominant strategies for individual processes in the following section,
which can then be utilized for compositional distributed synthesis.

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

In this section, we introduce how delay-dominant strategies can be synthesized using existing
tools for synthesizing winning strategies. We focus on utilizing bounded synthesis [FS13] tools
such as BoSy [FFT17]. Mostly, we use bounded synthesis (see Section 2.8.1) as a black box
procedure throughout this section. A crucial observation regarding bounded synthesis that we
utilize, however, is that it translates the given specification ¢ into an equivalent universal co-
Biichi automaton A, i.e., a universal co-Biichi automaton with £(A,) = L(¢) and then derives
a strategy such that, for every input sequence, the runs of A, induced by the computation of
the strategy on the input sequence visit only finitely many rejecting states.

To synthesize delay-dominant strategies instead of winning ones, we can thus use existing
bounded synthesis algorithms by replacing the universal co-Biichi automaton A, that represents
the specification ¢ with a universal co-Biichi automaton encoding delay-dominance, i.e., with
an automaton A; #, such that its runs induced by the computations of a delay-dominant
strategy on all input sequences visit only finitely many rejecting states. This idea is similar
to the approach for synthesizing remorsefree dominant strategies (see Section 2.8.2). The
automaton for recognizing delay-dominant strategies, however, differs inherently from the one
for recognizing remorsefree dominant strategies.

The automaton construction consists of several steps. An overview is given in Figure 3.9.
Since delay-dominance is not defined on the LTL specification ¢ itself but on an equivalent au-
tomaton, we first translate ¢ into an alternating co-Biichi automaton A, with L(A,) = L(¢).

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

EE—
ﬂfp
ACA |V e S
" | Def 356 Bi,ﬂ(p Miyano- ﬂi;»ﬂ4p universal AiA,
— ACA |V U O] |Hayashi | UCA |V U O/ |projection | UCA |V
A-p N B NS B |
'
& e
N

Figure 3.9.: Overview of the construction of a universal co-Buichi automaton A; #,, recognizing
delay-dominant strategies for the alternating co-Biichi automaton A, with L(A,) = L(¢).
The lower parts of the boxes list the automaton type, i.e. alternating or universal, and the
alphabet, i.e., with or without primed variables.

For this, we utilize well-known algorithms for translating LTL formulas into equivalent alter-
nating Biichi automata as well as the duality of the Biichi and co-Biichi acceptance condition
and of nondeterministic and universal branching (see Section 2.5.2). Similarly, we construct
an alternating co-Biichi automaton A-, with L(A-,) = L(—¢) from —¢. The centerpiece of
the automaton construction is an alternating co-Biichi automaton 8; #,, constructed from A,
and A-, that recognizes whether a strategy s; for process p; delay-dominates some alternative
strategy t; for p; for A,. Then, B; 7, is translated into an equivalent universal co-Biichi automa-
ton U; #, with L(U; a,) = Bi a1, for example with the Miyano-Hayashi algorithm [MH84].
Lastly, we translate U; 7, into a universal co-Biichi automaton that accounts for requiring a
strategy s; to delay-dominate all other strategies ¢; for p; and not only a particular one utilizing
universal projection. In the remainder of this section, we describe all steps of the construction
in detail and prove their correctness.

3.4.1. CoNsTRUCTION OF THE BAsic ACA ForR DELAY-DOMINANCE

From the two alternating co-Biichi automata A, and A-,, we construct an alternating co-
Biichi automaton 8; 7, that recognizes whether Duplicator has a winning strategy in the
delay-dominance game (A,, 0, ¢”’) and thus, in particular, whether strategy s; for process p;
delay-dominates an alternative strategy ¢; for p; on some input sequence y € (2%)® for A,.
The construction relies on the observation that Duplicator has a winning strategy in the delay-
dominance game G = (A,, 0,0") if, and only if, either (i) o violates ¢ or (ii) there exists a
winning strategy p in the game G such that every initial play of G that is consistent with p
visits only finitely many rejecting dominant state.

Lemma 3.5. Let ¢ be an LTL formula over atomic propositions V. Let A, = (Q, qo, 6, F) be an
alternating co-Biichi automaton with L(A,) = L(¢). Let o,0" € (2V)® be sequences. Then,
Duplicator has a winning strategy in the delay-dominance game G = (A,, 0, 0") if, and only if,
either (i) we have o |£ ¢, or (ii) there exists a winning strategy u in the game G such that for
every initial play p € Plays(G, p1) that is consistent with y, there is a point in time k > 0 such that
faom(pr’) € F holds for allk’ > k.

89

90

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

Proof. First, assume that Duplicator has a winning strategy p for in the delay-dominance game
G = (Ay, 0,0"). If every initial play p € Plays(G, y) that is consistent with y contains only
finitely many visits to rejecting dominant states, then (ii) holds and thus the claim follows.
Otherwise, we have infinitely many visits to rejecting dominant states for some initial play
p € Plays(G, p) that is consistent with p. Let ¢’ be some strategy for Spoiler such that p is
consistent with both y and ’. Note that, by construction of the delay-dominance game, only
the part of i’ that defines the universal choices in A, that occur when reading ¢’ affects
whether or not p contains infinitely many visits to rejecting dominant states. Let '’ be a
strategy for only these choices that coincides with the ones defined by y’. Then, for all full
strategies /I for Spoiler that coincide with ;" on the universal choices in A, for ¢’, the initial
play p’ that is consistent with both y and /i contains infinitely many visits to rejecting dominant
states. Since p is a winning strategy for Duplicator by assumption and by construction of the
delay-dominance game, it follows that every such initial play p’ contains infinitely many visits
to rejecting alternative states. Thus, intuitively, independent of the existential choices in A,
for o, strategy p can enforce infinitely many rejecting alternative states.

By Lemma 3.2, for all such full strategies /i for Spoiler, there exists a run tree r of A,
induced by o that reflects the existential choices of Ay, for o defined by ji. Moreover, we have
Branchesp,¢(r) = {/3“” | p € Plays(G, ﬁ)} Thus, by definition of the projected alternative play,
we obtain that for all strategies /I for Spoiler extending ", the initial play p’ that is consistent
with both p and /i is a branch of r. Since p’ contains infinitely many rejecting alternative states,
it follows that all such run trees r contain a branch with infinitely many visits to rejecting
states. Moreover, since y”" does not fix any decision regarding the choices occurring in A,
when reading o, indeed every run tree of A, induced by o contains a branch with infinitely
many visits to rejecting states. Therefore, by definition of alternating co-Biichi automata, A,
rejects 0. Since L(A,) = L(¢) holds by assumption, o [¢ ¢ follows. Hence, (i) holds.

Second, let (i) or (ii) hold. If (ii) holds, then it follows immediately that Duplicator has a
winning strategy in the delay-dominance game G. Thus, let (i) hold, i.e., we have o = ¢.
Then, since L(A,) = L(¢) holds by assumption, A, rejects o and hence for all run trees
of A, induced by o, there exists a branch that visits infinitely many rejecting states. Let
r € Runs(Ay, o) be some run tree of A, induced by o. By Lemma 3.3, there exists a strategy y
for Spoiler in the delay-dominance game G that reflects the existential choices in A, when
reading o defined by y. Moreover, we have Branchesps(r) = {ﬁ“” | p € Plays(G, ,u)} Note that
only the part of i controlling the existential choices of A, when reading o is relevant for this
property. Thus, in fact, there are strategies y” for all run trees r of A, induced by o that coincide
for the other part of a strategy for Spoiler, i.e., the universal choices of A, when reading ¢”.
Let M be the set of such strategies y" of all run trees r € Runs(A,, o). As shown above, the
sequences of alternative states in consistent plays of such strategies y” € M coincide with
branches of r. Thus, since every run r contains a branch b that visits infinitely many rejecting
states, there also exists an initial play p" € Plays(G, ") of the delay-dominance game G that is
consistent with y” and which contains infinitely many rejecting alternative states. Note that
since the number of rejecting alternative states is only affected by the alternative states of the
play and since all strategies y" coincide on the universal choices of A, when reading o’, there
are, in particular, such plays p” that all coincide in the dominant states. Moreover, there is a

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

set of such plays such that for every two plays p, p’ € P that coincide in the alternative
states up to point in time k > 0 as well as in the previous decisions for the alternative states in
the current round k + 1 of the game G, the plays p and p’ coincide on the universal decision
for the alternative state in round k + 1 as well: suppose that this is not the case. Then, there
is a finite prefix v € P“ of a play that coincides with p and p’ up to point in time |v| — 1 and
that requires a universal choice between options u and u’ in the next step. Moreover, suppose
that u is the correct extension of v for a play p, while v’ is the correct one for a play p’, i.e., the
respective other choice does not yield a play with infinitely many rejecting alternative states.
But then, there is also the run tree r that, depending on the universal choice u vs. 4’ makes the
existential choices that causes a play with only finitely many rejecting alternative states, i.e., p
for u” and p’ for u. Since this is the case for all such situations and since there are run trees for
all possible combinations of existential choices, there thus exists a run tree whose branches
all visit only finitely many rejecting states; contradicting the assumption. Hence, there indeed
exists such a set of plays of the delay-dominance game G such that (i) all plays p € # contain
infinitely many rejecting alternative states, (ii) all plays p € P coincide on the dominant states,
and (iii) where for every two plays p, p’ € P that coincide in the alternative states up to point in
time k > 0 as well as in the previous decisions for the alternative states in the current round k+1
of the game, p and p’ coincide on the universal decision for the alternative state in round k + 1
as well. Thus, in particular, for every finite prefix of a play in #, the next universal decision
of A, when reading ¢ can always be made solely based on the information about the history.
Hence, we construct a strategy y’ for the universal choices occurring in A, when reading o
from P by defining the respective choice defined by the plays in # for every finite prefix. But
then, since all plays in # contain infinitely many rejecting alternative states, every initial play
that is consistent with " does so as well. Since the existential choices occurring in A, when
reading ¢’ do not influence the alternative states of a play, it follows that for all strategies y of
Duplicator that coincides with y” on the universal choices occurring in A, when reading o,
all consistent initial plays contain infinitely many rejecting alternative states. Thus, all such
strategies y are winning strategies for Duplicator in the game G and therefore Duplicator wins
the delay-dominance game G. O

Due to this observation, the alternating co-Buichi automaton 8; 5, consists of two parts, one
accounting for (i) and one accounting for (ii), and guesses nondeterministically in the initial
state which part is entered when reading some sequence o € (2")®. The alternating co-Biichi
automaton A-, with L(A-,) = L(—¢) clearly accounts for (i). For (ii), we intuitively build
the product of two copies of the alternating co-Biichi automaton A, with L(A,) = L(¢), one
for each of the considered process strategies s; and ¢;. Note that similar to the change of control
for t; in the delay-dominance game, we consider the dual transition function of A,, i.e., the
one where conjunctions and disjunctions are swapped, for the copy of A,, for t;. We keep track
of whether we encountered a situation in which a rejecting state was visited for s; while it was
not for ¢;. This allows for defining the set of rejecting states of B; #,,.

Note that we need to allow for differentiating valuations of output variables computed by
strategies s; and t; on the same input sequence. Therefore, we extend the alphabet of B; 7,
In addition to the set V of all variables of the system, we consider the set O] := {0’ | 0 € O;}

91

92

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

of primed output variables of system process p; € P~, where every output variable is marked
with a prime to obtain a fresh symbol. The set V; of primed variables of p; is then given by
V! := I; U O;. Intuitively, the output variables O; depict the behavior of the possibly delay-
dominant strategy s;, while the primed output variables O; depict the behavior of the alternative
strategy #;. The alphabet of B; 7, is then given by V' U O;. Note that this is equivalent to V U V/
since the input variables are never primed to ensure that we consider the same input sequence
for both strategies. In the following, we use the functions pr : V; — V/ and unpr : V! — V;
to switch between primed variables and normal ones: given a valuation a € V; of variables,
pr(a) replaces every output variable o € O; occurring in a with its primed version o’. For a
valuation a € V/, unpr(a) replaces every primed output variable o’ € O;] occurring in a with its
regular unprimed version o. We extend pr and unpr to finite and infinite sequences as usual.
The alternating co-Biichi automaton 8; #,, is then constructed as follows:

Definition 3.6.

Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be some system process.
Let A, = (Q,q0,6,F) and A-, = (QF, q;, 6, F°) be alternating co-Biichi automata with
L(A,y) = L(p) and L(A-,) = L(~¢), respectively. For p;, we construct the alternating
co-Biichi automaton 5; A, = (QA, Qg‘, 54, F4) with alphabet V' U O as follows:

« QM= (QXOX{T, LHuQe

« 08 =(q0,90, T)

« FA=(QxQx{Ll})UF*

¢ 3 ((OXOX{T,L}) UQ°) x2"Y0% — (0 x Q x{T,L}) UQ° with

§*(qe,) = 8°(qe, ') for g, € Q°
(gD =@ v N\ A Voew.d.m

ced(qo,t’) c’€8(qo.t) ' €C’ p’Ec

Mpgamd= N\ N Vow.q.m

ced(pa') c'ed(qu) q'€c’ plec

where we have 1 = iNV and /' = unpr(inV;) U (iN (V \ V;) as well as where we define
F:(OxQOX{T,L}) > OxXQOx{T,L} by

(p,q,L) ifpgF,qe Fandm=T
dp.gm)=1(p,q L) ifpgFandm=_L
(p,q, T) otherwise

Indeed, the alternating co-Biichi automaton B; A, constructed as defined above consists
of two parts: the one defined by states of the form (p, g, m), and the one defined by the
states of A-,. By definition of 54, these parts are only connected in the initial state of B; Ap>
where a nondeterministic transition to the respective successors in both parts ensures that
choosing nondeterministically whether (i) or (ii) will be satisfied is possible, i.e., whether (i) the

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

alternative strategy t; violates ¢ on input sequence y € (2%) or (ii) strategy s; delay-dominates
the alternative strategy t; on input sequence y and for every initial play that is consistent with
Duplicator’s winning strategy, there exists a point in time such that no rejecting dominant
state is visited from this point in time on. For states of the form (p, g, m), the mark m € {T, L}
determines whether there are pending visits to rejecting states in the copy of A, for the possibly
delay-dominant strategy, i.e., the second component g of (p, g, m). A pending visit to a rejecting
state is one that is not yet matched with a visit to a rejecting state in the copy of A,, for the
alternative strategy. Therefore, the function ¢ defines that if a visit to a rejecting dominant
state that is not immediately matched with a rejecting alternative state is encountered, the
mark is set to L. As long as no rejecting alternative state is visited, the mark stays set to L.
If a matching rejecting alternative state occurs, however, the mark is reset to T, indicating
that the pending visit to a rejecting visit has been matched and is thus not pending anymore.
States of B; 5, marked with L are then defined to be rejecting states, ensuring that a visit to a
rejecting dominant state is not pending forever.

Including an alternating co-Biichi automaton A-,, that recognizes sequences satisfying the
negated specification into B; #, is necessary to, intuitively, allow a sequence o to induce
visits to rejecting states that are not immediately matched with a rejecting state induced
by an alternative sequence ¢’, but that are matched eventually, infinitely often. In such a
case, both o and ¢’ cause infinitely many visits to rejecting states in A, and, in particular,
Duplicator wins the delay-dominance game (A, 0’, o) due to the definition of the winning
condition W. Since the rejecting states induced by ¢ are not matched immediately, however,
the automaton 8; 4, contains rejecting states for the visits of rejecting states of A, caused
by o due to the definition of §. Since o causes infinitely many visits to rejecting states in A,
the part of the automaton B; 7, that does not represent A-,, thus also visits infinitely many
rejecting states when confronted with ¢ and ¢’, resulting in rejection. To accurately capture
delay-dominance, we thus add the part corresponding to A-,, which recognizes such cases
and enforces acceptance, to B; 7,

Example 3.9. Consider the message-sending system from the running example and the alter-
nating co-Biichi automaton A, depicted in Figure 3.2, which describes the system specification.
An alternating co-Biichi automaton A-,, for the negated specification is similar to A,, yet, re-
jecting and non-rejecting states are interchanged. That is, states qq, g1, and g, are non-rejecting
in A-, while state gs is rejecting. The (partial) alternating co-Biichi automaton 8, #, for
system process p; constructed from A, and A-, according to Definition 3.6 is depicted in
Figure 3.10. The part of 8, 7, that corresponds to A-,, is omitted for the sake of readability.
Since the mark T or L of a state of the displayed part of 8; #, can be uniquely inferred from
the fact that a state is non-rejecting or rejecting, respectively, we omit it from the state names.

Note that the displayed part of B, #,, i.e., the product automaton part, rejects a word
o € (2lmmemihyo if and only if, it contains m, at some point in time k > 0 and m] at some
(possibly different) point in time k’ > 0, while it does not contain m; for all points in time
k" > 0 with k”” < max{k, k’}. Furthermore, by construction, the part of 8; # v that corresponds
to A-, rejects a word o € (2{mumzmibyo if and only if, o | > mg A <> m/ holds. Thus, A-, is
more restrictive than the displayed part of B; 4, in the sense that it rejects all words that are

93

94

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

—my A —m

mp A my ™

@,’\,

—mi A " my

Figure 3.10.: Alternating co-Buichi automaton 8, 7, for the running example. The part of the
automaton that corresponds to A-,, is omitted for the sake of readability. Since the mark T
or L of a state of the displayed part of B, 5, can uniquely inferred from the fact that a state is
non-rejecting or rejecting, respectively, we omit it from the state names.

rejected by the displayed part of B, 5, as well as some additional words, namely those that
contain both m; and m] but also contain m; before or at the same time as both m, and m/ have
occurred. Since both parts of B, 5, are only connected in the initial state and since we use
an existential transition for this connection, it thus follows that the overall automaton 8, 4,
rejects a word o € (2{mm2mh@ if and only if, it contains m; at some point in time k > 0
and m] at some (possibly different) point in time k” > 0, while it does not contain m; for all
points in time k” > 0 with k” < max{k, k’}; meeting our intuition that 8, 7, accepts words
that satisfy the specification < my A & my as fast as possible. A

The alternating co-Biichi automaton 8; #, constructed from the alternating co-Biichi au-
tomata A, and A-, according to Definition 3.6 is sound and complete in the sense that it
recognizes whether or not Duplicator has a winning strategy in an delay-dominance game. That
is, given a process p; and two infinite words o, 0’ € (2V)® witha N (V\ 0;) =o' N (V \ 0;),
the automaton B; #,, accepts the infinite word o’ U pr(o N O;) if, and only if, Duplicator wins

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

the delay-dominance game G = (A, 0, ¢’). The main reason for soundness and completeness
is that a run tree of B; 5, induced by ¢’ can be translated into a strategy for Duplicator in
the delay-dominance game G and vice versa since, by construction, both define the existential
choices in A, for ¢’ and the universal choices in A, for o. First, we focus on soundness. From
the above observation regarding the connection of run trees of B; #, and strategies in G, it
follows that for a run tree of B; #, whose branches all visit only finitely many rejecting states,
there exists a strategy for Duplicator in the delay-dominance game G that ensures that for all
consistent plays either o £ ¢ holds or, by construction of & and 64, every rejecting dominant
state is matched with a rejecting alternative state eventually. Formally:

Lemma 3.6. Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system process.
Let A, and A-,, be alternating co-Biichi automata with L(A,) = L(¢) and L(A-,) = L(—¢).
Let B; z, be the alternating co-Biichi automaton constructed from A, and A, according to
Definition 3.6. Let 0,0 € (2V)® be sequences witha N (V\ 0;) = o’ N (V \ 0;). If B, 7, accepts
o’ U pr(o N O;), then Duplicator wins the delay-dominance game (A, 0,0").

Proof. For the sake of readability, let & = ¢’ U pr(c N O;). Furthermore, let &’ € (2V)® be the
sequence obtained from & by removing all unprimed outputs of p; and by then making all
primed outputs of p; unprimed, i.e., 6" = (6N (V\ 0;)) Uunpr(6NO;). Since B; #;, accepts ¢ by
assumption, there exists a run tree r € Runs(8; z,, 6) of B; 5, induced by 6 whose branches
all visit only finitely many rejecting states. By definition, r defines the existential choices
occurring in B; 7, when reading 6. Thus, in particular, r defines the choice in the initial
state (qo, qo, T) for, intuitively, either entering the alternating co-Biichi automaton A-,, for the
negated specification or for entering the product automaton part of 8; #,,.

First, suppose that r defines to enter the alternating co-Biichi automaton A-,. Then, by
construction of B; 7, there is a run tree 7 of A-, induced by 6’ that only differs from r in
the labeling of the root. In 7, the root is labeled with gq,, while it is labeled with (qo, go, T)
in r. Thus, by definition of the set F# of rejecting states of B; ,» all branches of the run tree 7
visit only finitely many rejecting states as well. Hence, A-,, accepts 6’ and thus we have
6’ € L(A-,). Since L(A-y) = L(—¢) holds by assumption, 6" [¢ follows. By definition
of 6, we have 6 N (V\ O;) =o' N (V' \ O;) and hence 6 N (V' \ O;) = o N (V' \ O;) follows since
onN(V\O;) =0d n(V\O;) holds by assumption. Furthermore, since 6 N O] = pr(c N O;)
holds by definition of the sequence &, we have unpr(6 N O}) = o N O0;. Thus, 6’ = o holds
and hence we have o [£ ¢. Therefore, it follows with Lemma 3.5, that Duplicator wins the
delay-dominance game (A,, 0,0").

Second, suppose that r defines to enter the product automaton part of B; #,. Then, we
construct a strategy p for Duplicator in the delay-dominance game G = (A, 0,0") from r as
follows. Let v - v be a finite sequence of positions with v € P* and v € P. We only define p
explicitly on sequences v - v that can occur in the delay-dominance game G and where v is
controlled by Duplicator; on all other sequences we define pi(v,v) = v’ for some arbitrary v’ € P
that is a valid extension of v - v. Thus, in the following we assume that v - v is a prefix that can
occur in the game and that o is of the form ((p, ¢, ¢), j) or ((p,q,¢,q’), j). We map v- o to a prefix
of a branch of the run tree r if there is a compatible one: a compatible branch b of r agrees with
the finite projected play ¥ up to point in time |v| — 1. Note her that, slightly misusing notation,

95

96

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

we apply the definition of a projected play also to the finite prefix v of a play. Moreover, no
matter whether v is of the form ((p, g, ¢), j) or ((p,q.c,q’), j), we have b}, = (p, g, m) for some
m € {T, L}. If there is no compatible branch in r, we again define yi(v, v) = v’ for some arbitrary
position o’ € P that is a valid extension of v - v. Otherwise, the successors of (p, g, m) in b define
the choice of y: by definition, the set S of successors of (p, g, m) satisfies §*((p, g, m), 6,)).
Therefore, for all sets ¢ € §(p, 6|’ VI)’ there is some set ¢’ € 5(g, 6|, N'V) such that for all states
q € ¢, there is some state p’ € ¢ such that we have 9(p’, ¢’, m) € S. Note here that we do
not distinguish between the initial state (qo, qo, T) and other states (p, g, m) of B; 4, since, by
assumption, the run tree r defines the choice of entering the product automaton part of B; #,
and thus the choice of the second disjunct for (go, go, T) which coincides with 54 for other
states (p, g, m). If v = ((p, q. ¢), j) holds, we thus define p(v,v) = ((p, g, c..), j), where the choice
of ¢’ is based on c. If v = ((p, ¢, ¢, q’), j) holds, then we define u(v,v) = ((p’,q’), j + 1), where
the choice of p’ is based on ¢, ¢/, and ¢’. Since 6 NV = ¢ and 6’ = ¢’ hold, p is indeed a strategy
for Duplicator in the delay-dominance game G.

It remains to show that p is winning for Duplicator from the initial position vy of G. Let
p € Plays(G, u) be some initial play in G that is consistent with p. Then, by construction of y,
there is a branch b of the run tree r that coincides with the projected play p in the states p and g,
i.e., we have p = b’, where b’ is the sequence obtained from b when removing the mark m from
all states (p, g, m) of B; z,,. By assumption, all branches of r contain only finitely many visits to
rejecting states. Thus, in particular the branch b with b’ = p contains only finitely many visits
to rejecting states. Hence, by construction of B; #, and since, by assumption, we only consider
the product automaton part of B; #,,, the branch b thus contains only finitely many visits to
states of the form (p, g, L). Furthermore, by definition of J, we only have m = L for a state
(p, g, m) at point in time k > 0 in b if either (i) p ¢ F and q € F holds, or if (ii) p’ ¢ Fand ¢’ € F
holds for (p’, ¢’, m’) at some point in time k” < k in b and p”’ ¢ F holds for (p”’, q"’, m’’) at all
points in time k” with k” < k” < k. Therefore, since b visits only finitely many states of the
form (p, g, L), there are only finitely many points in time, where b visits a rejecting dominant
state while it does not visit a rejecting alternative state, and for all these points in time there
are only finitely many following steps until a rejecting alternative state is visited. Thus, in
particular, #;(b;) € F — 3k’ > k. #1(b;,) € F holds for all points in time k > 0. Since we
have b’ = p by construction, it thus follows that p € W holds. Therefore, Duplicator wins the
delay-dominance game (A, 0, 0"). O

Thus, if the alternating co-Biichi automaton 8; 5, constructed according to Definition 3.6
accepts some infinite sequence & € (2"Y%)® constructed from two sequences o, ¢’ € (2")® that
only differ on outputs of process p; such that 6 = ¢’ U pr(o N O;) holds, then Duplicator wins
the delay-dominance game G = (A,, 0, 0’), where A, is the alternating co-Biichi automaton
representing the LTL specification ¢ from which 8; 4, is constructed. Next, we consider
completeness of B; #,,. Similarly to the main idea behind soundness, a winning strategy for
Duplicator in G can be translated into a run tree r of B; #,,. If o |= ¢ holds, then r visits only
finitely many rejecting states since only finitely many rejecting dominant states are visited. If
o [£ ¢ holds, then there exists a run tree, namely one entering the part of B; 4, that coincides
with A-,, whose branches all visit only finitely many rejecting states. Formally:

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

Lemma 3.7. Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system process.
Let A, and A-,, be alternating co-Biichi automata with L(A,) = L(¢) and L(A-,) = L(—¢).
Let B; a, be the alternating co-Biichi automaton constructed from A, and A-, according to
Definition 3.6. Let 0,0’ € (2V)® be sequences with a N (V '\ 0;) = ¢’ N (V \ O;). If Duplicator
wins the delay-dominance game (A, 0, "), then B; z;, accepts o’ U pr(c N O).

Proof. Let A, = (Q, qo,d, F) and let B; A, = (QA, qu, 54, F4). For the sake of readability, let
& = ¢’ U pr(c N O;). Furthermore, let & € (2")® be the infinite sequence obtained from &
by removing all unprimed outputs of process p; and by then making all primed outputs of p;
unprimed afterward, i.e., we have 6’ = (6 N (V' \ O;)) U unpr(6 N O}). Since Duplicator wins
the delay-dominance game G = (A,, 0,0’) by assumption, it follows with Lemma 3.5 that
either (i) o = ¢ holds or (ii) Duplicator has a winning strategy p in the delay-dominance game G
and for every initial play p € Plays(G, p) that is consistent with g, there is a point in time k > 0
such that fiom(pr) ¢ F holds for allk” > k, i.e., p does not contain any rejecting dominant states
from some point in time k > 0 on and thus it contains only finitely many visits to rejecting
dominant states. We distinguish two cases.

First, suppose that (i) holds. Then, we have ¢ [¢ and hence o = —¢ holds. Therefore,
we have 0 € L(—¢) and thus, since L(A-,) = L(—¢) holds by assumption, o € L(A-,)
follows. Thus, there exists a run tree r of A-,, induced by o whose branches all contain only
finitely many visits to rejecting states. By construction of B; #,,, there exists a corresponding
run tree 7 of B; 5, that only differs from r in the labeling of the root. In r, the root is labeled
with g, while it is labeled with (go, go, T) in 7. Hence, by definition of the rejecting states F4
of B; a,, all branches of the run tree r contain only finitely many visits to rejecting states
as well. Moreover, since A-, is an alternating co-Biichi automaton with alphabet V' and by
construction of the transition function §4 of B; 4 ,» the successors in 7 only depend on the
valuations of the variables in (V' \ O;) U O] or, more precisely, on their unprimed versions, and
thus, in particular, are solely defined by o. Therefore, all infinite sequences ¢’ € (2"Y°)® with
(a”" N (V'\0;)) Uunpr(c” NO;) = o induce the run tree 7. Hence, in particular, the sequence &
induces the run tree 7: by definition of 6, we have 6 N (V \ O;) = ¢’ N (V' \ O;) and therefore
N (V\O;) =on(V\O) follows since o N (V \ O;) = ¢/ N (V \ O;) holds by assumption.
Furthermore, 6 N O] = pr(o N O;) holds by construction of 6 and therefore we obtain that
unpr(6N0O;) = 0N O; holds. Hence, (6N (V\ O;)) Uunpr(6N0O;) = o follows. Consequently, &
induces a run tree of B; #,, that contains only finitely many visits to rejecting states, namely 7.
Therefore, B; # , accepts 0.

Second, suppose that (ii) holds. Then, Duplicator has a winning strategy p in the delay-
dominance game G = (A, 0, 0”) and for every initial play p € Plays(G, p) that is consistent
with g, there is a point in time k > 0 such that fy,,,(pr) ¢ F holds for all k¥” with k&’ > k. Let
f:(OXQ)? - (QXQX{T,L})? be a function that, given an infinite sequence y € (Q X Q)®
of state tuples (p, q), returns an extended sequence y’ € (QxQ x{T, L})“ that is incrementally
defined as follows: for the initial point in time, let y; := (p,q, T) if yo = (p,q). For a point
in time k > 0, let)(,’c = Hp’,q',m) if Xl’<—1 = (p,q,m) and yx = (p’,q’). Here, 3 denotes the
corresponding function used in Definition 3.6. We construct a Q-labeled tree (T, ¢) from p as
follows by defining the labeling of the root as well as of the successors of all nodes. The labeling

97

98

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

of the root ¢ of the tree T is defined by £(¢) = (qo, g0, T). Let x € T be a node of T and let k = |x|
be its depth. Let v = pref (T, x) be x’s prefix in T, i.e. the unique finite sequence of nodes in T
that, starting from the root node ¢, reaches node x. We define the labeling of the successor
nodes children(x) of x such that

{¢(x') | %' € children(x)} = {f (Prs1) | p € Plays(Gup) A VO < K < k. (i) = £(ver)}

holds. Next, we show that (T, ¢) is a run tree of B; 7, that is induced by 6. Since it follows
immediately from the construction of (T, ¢) that £(¢) = (g, qo, T) holds, which is the initial state
of B; 7, it only remains to show that {¢(x") | x" € children(x)} | 5(£(x), 6|x|) holds for every
node x € T. Let x € T be anode of T and let k = |x| be its depth. Let v = pref (T, x) be x’s prefix
in T, i.e. the unique finite sequence of nodes in T that, starting from the root node ¢, reaches
node x. Let S = {pr+1 | p € Plays(G, p) A YO <k’ < k. f(pr) = £(v/) }. By construction of
the delay-dominance game, the alternative states of an initial play that is consistent with p
intuitively evolves according to a run of ﬂg induced by o, where ﬂg is the alternating co-
Biichi automaton obtained from A, by dualizing the transition function 4, i.e., by swapping
conjunctions and disjunctions. The dominant states, in contrast, evolve according to a run
of A, induced by ¢’. Hence, formally, we know from the construction of the delay-dominance

game that S satisfies
A V@),

ced(p,6;) c'€8(q.6xNV) q'€C’ p'ec

where p := #;(£(x)) and q := #;(£(x)). Furthermore, the function f is defined such that it
accurately reflects the marks T and L assigned by the function ¢ in Definition 3.6. Hence, the
set 8" = {pr+1 | p € Plays(G, u) A YO < k" < k. f(prr) = €(vp)} satisfies

AV AV ewgm,

c€d(p,6.) ¢'€8(q.6¢NV) q'€¢’ p’ec

where (p, g, m) = £(x). Therefore, (T, ¢) is indeed a run tree of B; 7, that is induced by 6.
Lastly, we show that all branches of the run tree (T,) contain only finitely many visits to
rejecting states. Since y is a winning strategy for Duplicator in the delay-dominance game G
by assumption, we have p € W for all initial plays p € Plays(G, i) that are consistent with p.
Hence, for all such plays p € Plays(G, i) and all points in time k > 0, it holds that if we have
faom(pr) € F, then fu;(px) € F holds for some point in time k” with k” > k as well. Moreover,
since (ii) holds by assumption, for every initial play p € Plays(G, p) that is consistent with g,
there exists a point in time k > 0 such that fy,m(pr’) ¢ F holds for all k” > k. Thus, there are
only finitely many points in time at which p visits a rejecting dominant state and for all these
points in time it holds that a rejecting alternative state occurs in p at the very same point in
time or at a later point in time. Therefore, by construction of (T, £) and f, we obtain that there
are only finitely many nodes x € T with #3(£(x)) = L. Hence, since only states of the form
(p, g, m) are reached and since for these states the ones with mark L are the only rejecting ones
of B; a1, all branches of (T, £) visit only finitely many rejecting states. Hence, since (T, ¢) is a
run tree of B; #, induced by 6, it follows that B; #,, accepts 6. m]

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

Thus, if Duplicator has a winning strategy in the delay-dominance game (A,, 0, ¢”) for two
sequences o,0’ € (2V)® that only differ on outputs of process p;, then the alternating co-Biichi
automaton B; 4, constructed from A, and A-, accepts the infinite sequence o’ U pr(c N O;).
Therefore, it follows immediately from Lemmas 3.6 and 3.7 that the alternating co-Biichi
automaton B; #,, constructed as described in Definition 3.6 is sound and complete in the sense
that it recognizes whether or not Duplicator wins the delay-dominance game:

Theorem 3.4. Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system process.
Let A, and A-,, be alternating co-Biichi automata with L(A,) = L(¢) and L(A-,) = L(=¢).
Let B; a, be the alternating co-Biichi automaton constructed from A, and A-, according to
Definition 3.6. Let 0,0’ € (2V)® be sequences with c N (V \ 0;) = o’ N (V '\ O;). Then, Bia,
accepts o’ U pr(o N O;) if, and only if, Duplicator wins the delay-dominance game (A, 0, 0”).

Since B; #,, thus determines whether or not Duplicator has a winning strategy in an delay-
dominance game, it follows immediately from the definition of delay-dominance that B; #,, is
suitable alternating co-Biichi automaton for determining whether or not a process strategy s;
for p; delay-dominates another process strategy t; for p; on some input sequence:

Corollary 3.3. Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system process.
Let A, and A-,, be alternating co-Biichi automata with L(A,) = L(¢) and L(A-,) = L(—¢).
Let B; a, be the alternating co-Biichi automaton constructed from A, and A-, according to
Definition 3.6. Let s; and t; be strategies for p;. Lety € (21)©. Then, t; <A,y Si holds if, and only
if, Bia, accepts comp(s;, y) U pr(comp(ti,y) N O;) Uy’ forally’ € (2V\Viye,

Yet, although B; 7, recognizes whether or not a strategy s; delay-dominates another strat-
egy t; on some input sequence, it cannot directly be used for synthesizing delay-dominant
strategies. First, B; 7, is an alternating co-Biichi automaton, while we require a universal
co-Biichi automaton for bounded synthesis. Second, it considers one particular alternative
strategy t;. For recognizing delay-dominance, however, we need to consider all alternative
strategies. In the remainder of this section, we thus describe how 8; 4, can be translated into a
universal co-Biichi automaton for bounded synthesis of delay-dominant strategies.

3.4.2. CoNsTRUCTION OF THE UCA FOR BOUNDED SYNTHESIS

Next, we translate the alternating co-Biichi automaton 8; 7, constructed as described in the
previous subsection to a universal co-Biichi automaton A; #,, that can be utilized in existing
bounded synthesis frameworks for synthesizing delay-dominant strategies for a system process
pi € P™. As outlined before, we need to (i) translate B; # v into a universal co-Biichi automaton,
and (ii) ensure that the automaton considers all alternative strategies for process p; instead of a
particular one. Therefore, we proceed in two steps.

First, we translate the alternating co-Biichi automaton 8; 7, into an equivalent universal
co-Biichi automaton U; #,. We utilize the well-known Miyano-Hayashi algorithm [MH84] for
translating alternating Biichi automata into nondeterministic Biichi automata. It introduces an
exponential blowup: the resulting nondeterministic Biichi automaton is of exponential size in

99

100

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

the number of states of the initial alternating Biichi automaton. Since we consider co-Biichi
rather than Biichi automata, we need a translation from an alternating co-Biichi automaton
to an equivalent universal co-Biichi automaton. Recall from Section 2.5 that the Biichi and
co-Biichi acceptance conditions as well as nondeterministic and universal branching are dual.
Utilizing this duality, we can reuse Miyano and Hayashi’s result for co-Biichi automata:

Lemma 3.8. Let A be an alternating co-Biichi automaton with m states. There exists a universal
co-Biichi automaton B with O(2™) states such that L(A) = L(B) holds.

Proof. Let A = (Q,Qy, 6, F). Let Ay = (0, Qg, 8¢, F?) be the dual automaton of A, i.e., the
alternating Biichi automaton with Q¢ = Q, Qg = Qy, F = F, and §%(u, i) = Aeceswiy Vuree -
Then L(Ay) = L(A) holds due to the duality of nondeterministic and universal branch-
ing as well as of the Biichi and co-Biichi acceptance condition. As shown by Miyano and
Hayashi [MH84], there exists a nondeterministic Biichi automaton 8’ with O(2|Qd|) states
and with £(8’) = L(A?). Let B be the dual automaton of B, i.e., the universal co-Biichi
automaton that is a copy of B’, but where the nondeterministic transitions are interpreted as
universal ones and where the accepting states are interpreted as rejecting states. Then, 8 has
O(Z'Qd|) states and we have £(8B) = L(8’). Since L(B’) = L(A?) = L(A) holds, we obtain
L(B) = L(A). Thus, B is the desired universal co-Biichi automaton. m|

Next, we construct the desired universal co-Biichi automaton A; 5, that recognizes delay-
dominant strategies for A, and system process p; € P". For this sake, we need to adapt the
universal co-Biichi automaton U; 7, to consider all alternative strategies for p; instead of a
particular one. Similar to the automaton construction for synthesizing remorsefree dominant
strategies [DF14, FP20a], we utilize universal projection (see Definition 2.22) as described in
Section 2.8.2. Intuitively, the projected automaton 7x (A) for a universal co-Biichi automaton A
over alphabet ¥ and a set X C X contains the transitions of A for all possible valuations of the
variables in 3 \ X. Hence, for a sequence o € (2%)®, all runs of A on sequences extending &
with some valuation of the variables in ¥ \ X are also runs of the projected automaton zx (A).
Since both A and zx (A) are universal automata, 7y (A) thus accepts a sequence o € (2%)®
if, and only if, A accepts all sequences extending o with some valuation of the variables in
3\ X (see Lemma 2.4). We utilize this property to obtain a universal co-Biichi automaton A; #,,
from U; a, that considers all possible alternative strategies for p; instead of only a particular
one: we project to the unprimed variables of the alphabet of U; #,,, i.e., to V, thereby quantifying
universally over the alternative strategies. We thus obtain a universal co-Biichi automaton that
recognizes delay-dominant strategies for system process p; as follows:

Definition 3.7 (Delay-Dominance Automaton).

Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system process. Let A,
and A-, be alternating co-Biichi automata with L(A,) = L(¢) and L(A-,) = L(-g).
Let B; a, be the alternating co-Biichi automaton constructed from A, and A-, according
to Definition 3.6. Let U; ,, be a universal co-Biichi automaton with £(8; a,) = L(U; a,,)-
The delay-dominance automaton A; a, for A, and p; is defined by A; a, = 7v(U; z,,).

3.4. SYNTHESIZING DELAY-DOMINANT STRATEGIES

Figure 3.11.: Delay-dominance automaton A;, Ay for system process p; constructed from A,
depicted in Figure 3.2 for the running example after simplification.

Hence, the construction of the delay-dominance automaton A; #, indeed transforms the
intermediate alternating co-Biichi automaton B; 7, introduced in Section 3.4.1 into a universal
co-Biichi automaton for recognizing delay-dominant strategies in two steps: first, we trans-
late B; a, into a universal automaton, namely U; #,. Afterward, we consider all alternative
strategies instead of only a single one by projecting to the unprimed variables.

Example 3.10. Reconsider the message-sending system from the running example and the
alternating co-Biichi automaton A, from Figure 3.2 describing the specification. Furthermore,
consider the intermediate alternating co-Biichi automaton 8, #,, for process p; constructed
from depicted in Figure 3.10. After simplification, the delay-dominance automaton A; #,, for ¢
and process p; is given by the universal co-Biichi automaton depicted in Figure 3.11.

It accepts an infinite word o € (2{™™2})® if, and only if, message m; occurs before or at
the same time as the first occurrence of message m; in ¢. In particular, it thus rejects the
computation of the strategy t;, which waits for the other message m; before sending its own
message (see Figure 3.1b), for all input sequences y € (2{™2})® in which m; occurs at some
point in time, i.e., with y # 0. Since we model strategies with Moore transducers and since
strategies cannot look into the future by definition, a strategy for p; cannot wait for m, and
immediately react with sending its own message. Instead, a strategy that waits for m, will
always have a delay of at least one time step in sending mj, such as, for instance, #;. Therefore,
since there is an input sequence that contains m, at the very first point in time, only strategies
that output their own message in the very first time step ensure that the automaton Ay 4,
accepts its computation on all input sequences. Thus, in particular, strategy s;, which sends m;
in the very first time step and then never afterward (see Figure 3.1a) is recognized by A, #,, as
a delay-dominant strategy. This meets our intuition that a delay-dominant strategy needs to
satisfy the specification as fast as possible. A

Utilizing the previous results, we can now show soundness and completeness of the delay-
dominance universal co-Biichi automaton A; A,- From Theorem 3.4 and, in particular, from
Corollary 3.3, we know that B; #,, recognizes whether or not a strategy s; for process p; € P~
delay-dominates another strategy t; for p; for A, on an input sequence y € (2/). By Lemma 3.8,
there exists a universal co-Biichi automaton U; 1, with L(U; a,) = L(B;#,). With the
definition of the delay-dominance automaton as well as with Lemma 2.4, it then follows that the
universal co-Biichi delay-dominance automaton A; 5, determines whether or not a strategy s;
for process p; is delay-dominant for A,. Formally:

101

102

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

Theorem 3.5. Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system process.
Let A, be an alternating co-Biichi automaton with L(A,) = L(¢). Let A; a, be the delay-
dominance automaton for A, and p; as constructed in Definition 3.7. Let s; be a process strategy
for pi. Then, s; is delay-dominant for A, if, and only if, the universal co-Biichi delay-dominance
automaton A; a,, accepts comp(s;,y) U o forally € (25 and all o € (2V\V1)®.

Furthermore, the delay-dominance automaton A; A, is of convenient size: for an LTL for-
mula ¢, there exists an alternating co-Biichi automaton A, with £(A,) = L(¢) such that the
delay-dominance automaton A; 7, constructed from A, is of exponential size in the squared
length of the formula ¢. This follows from Lemma 3.8 and from the facts that (i) A, and A-,,
both are of linear size in the length of the LTL formula ¢ (see Proposition 2.3), and (ii) universal
projection preserves the automaton size:

Lemma 3.9. Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system process.
There is an alternating co-Biichi automaton A, of size O (|¢|) with L(A,) = L(¢) and a universal
co-Biichi automaton A; #,, of size O(2|‘”|2) such that a strategy s; for p; is delay-dominant for A,
if, and only if, A; a, accepts comp(s;, y) U o forally € (2")® and all o € (2V\Viye,

Proof. Given an LTL formula ¢, there are alternating co-Biichi automat A, = (Q, Q, 6, F) and
A-p = (Q°, 05, 6% F°), both of size O(|¢|), with L(A,) = L(¢) and L(A-,) = L(—¢) by
Proposition 2.3. By Theorem 3.4, the automaton Aj; #,, constructed according to Definition 3.7
satisfies the property that a strategy s; for process p; is delay-dominant for A,, if, and only
if, A; z,, accepts comp(s;,y) Uy’ forally € (25)® and all y” € (2V\Vi)©. Let Bia, and U; 7,
be the intermediate automata from which A; #, is constructed. The alternating co-Biichi
automaton B; 7, is of size O(|QI* + |Q¢]) by construction. By Lemma 3.8 and by construction,
the universal co-Biichi automaton U; «,, is of size O(2™), where m is the number of states

of B; a,- Hence, U; n, has O(2|Q|2+|QC|) states. Since the universal projection does not affect

the size of an automaton as it only alters the transition relation, A; #, has O(2|Q|Z+|Qc|) states
as well. Since both A, and A-, have O(|¢|) states, the claim follows. O

Note here that utilizing an alternating co-Biichi automaton A,, for representing the LTL
specification ¢, i.e., with £L(A,) = L(¢), as starting point of the construction of the delay-
dominance automaton, is crucial for this result. If we would have started with a universal
co-Biichi automaton describing ¢, then the delay-dominance automaton would be of size

o (22@'2): constructing a universal automaton instead of an alternating automaton from ¢
introduces an exponential blowup. The construction of the automaton 8; #,,, however, yields
an alternating automaton irrespective of whether A, is alternating or universal due to the need
of keeping track of two sequences in one copy of A, and one copy of the dual automaton of A,
Hence, we need to translate B; #, to a universal co-Buichi automaton even if we started from
a universal automaton A,, introducing another exponential blowup. Hence, although delay-
dominance can be equivalently defined on universal co-Biichi automata instead of alternating
co-Biichi automata, utilizing alternating ones allows for avoiding an exponential blowup in the
size of the automaton recognizing delay-dominance and thus, as we will show in the following,
for more efficient synthesis of delay-dominant strategies.

3.5. COMPOSITIONAL SYNTHESIS WITH DELAY-DOMINANCE

Since the automaton construction described in this section is sound and complete, the
universal co-Biichi automaton A; 7, can be used for synthesizing a delay-dominant strategy for
system process p; € P~In fact, the automaton construction immediately enables utilizing existing
bounded synthesis tools, which derive winning strategies, for the synthesis of delay-dominant
strategies by replacing the universal co-Biichi automaton recognizing winning strategies, i.e.,
the automaton that accepts the same language as ¢ with the delay-dominance automaton A; #,,.

Similar to the universal co-Biichi automaton recognizing remorsefree dominance [DF14],
the delay-dominance automaton A; 7, can be translated into a nondeterministic parity tree
automaton with an exponential number of colors and a doubly-exponential number of states
in the squared length of the formula. Synthesizing delay-dominant strategies thus reduces to
checking tree automata emptiness and, if the automaton is non-empty, to extracting a finite-
state transducer, which represents a delay-dominant process strategy, from an accepted tree.
This can be done in exponential time in the number of colors and in polynomial time in the
number of states [Jur00]. With Lemma 3.9, a doubly-exponential complexity for synthesizing
delay-dominant strategies thus follows:

Theorem 3.6. Let ¢ be an LTL formula over atomic propositions V. Let p; € P~ be a system
process. Let A, be an alternating co-Biichi automaton of size O(|¢|) with L(A,) = L(¢). If
there exists a delay-dominant strategy for A, then it can be computed in 2EXPTIME.

It is well-known that synthesizing winning strategies is 2EXPTIME-complete [PR89a], see
also Theorem 2.1. Since there exists a universal co-Biichi automaton of exponential size in the
length of the formula, which recognizes remorsefree dominant strategies, dominant strategies
can also be synthesized in 2EXPTIME [DF14]. Synthesizing delay-dominant strategies rather
than winning or remorsefree dominant ones thus does not introduce any overhead. At the same
time, it allows for a simple compositional synthesis approach for distributed systems for many
safety and liveness specifications.

3.5. COMPOSITIONAL SYNTHESIS WITH DELAY-DOMINANCE

In this section, we describe a compositional synthesis approach for distributed systems that
utilizes delay-dominant strategies. We extend the algorithm described in [DF14] from safety
specifications to general properties by synthesizing delay-dominant strategies instead of re-
morsefree dominant ones. Hence, given a distributed architecture and an LTL specification ¢,
the compositional synthesis algorithm proceeds in three steps. First, ¢ is translated into an
equivalent alternating co-Biichi automaton A, by constructing an alternating Biichi automaton
for —¢ with standard algorithms and by then dualizing the transitions as well as by interpreting
accepting states as rejecting states (see Proposition 2.3). Second, for each system process p; € P,
we construct the universal co-Biichi automaton A; #,, that recognizes delay-dominant strategies
for A, and p; as described in Section 3.4. Note that although the initial automaton A, is the
same one for every process p;, the universal co-Biichi automata recognizing delay-dominant
strategies differ as, since the processes have different sets of output variables, already the

103

104

3. SYNTHESIZING BEST-EFFORT STRATEGIES FOR LIVENESS PROPERTIES

alphabets of the intermediate alternating co-Biichi automaton B; #, differ for different pro-
cesses. Third, for each system process p; € P7, a delay-dominant strategy s; is synthesized
from the respective universal co-Biichi automaton A; #, with bounded synthesis [FS13]. By
construction of the automata, we can employ standard bounded synthesis algorithms such
as, e.g., implemented in the tool BoSy [FFT17], for synthesizing delay-dominant strategies by
only exchanging the universal co-Biichi automaton that recognizes winning strategies, i.e., the
automaton that accepts the same language as ¢, with the delay-dominance automaton A; .,

If the initial alternating co-Biichi automaton A, ensures bad prefixes for delay-dominance,
then the parallel composition sq || ... || s, of the synthesized delay-dominant process strategies
is, by Theorem 3.3, delay-dominant again. Thus, the strategies sy, ..., s, form a correct solution
for the distributed synthesis problem if A, ensures bad prefixes. Furthermore, if ¢ is realizable,
then sy || ... || sp is, by Corollary 3.1, winning for ¢.

Note that even for realizable LTL formulas ¢, there does not necessarily exist a delay-dominant
strategy since delay-dominance is not solely defined on the satisfaction of ¢ but on the structure
of an equivalent alternating co-Biichi automaton A,,. In certain cases, A, can thus “punish” the
delay-dominant strategy by introducing rejecting states at clever positions that do not influence
acceptance but delay-dominance, preventing the existence of a delay-dominant strategy. How-
ever, we experienced that an alternating co-Biichi automaton A, constructed with standard
algorithms from an LTL formula ¢ does not punish delay-dominant strategies since A, thor-
oughly follows the structure of ¢ and thus often does not contain unnecessary rejecting states. In
particular, when constructing an alternating Biichi automaton for the negated specification with
standard algorithms, accepting states are only induced by negated U-operators. Such operators,
however, usually also induce a self-loop in the respective state, thus yielding two runs that can
visit the accepting state infinitely often. When dualizing the alternating Biichi automaton to
obtain an alternating co-Biichi automaton for the initial specification ¢ (see Proposition 2.3), we
thus obtain an automaton with a run that visits the rejecting state infinitely often; hence possibly
influencing the acceptance. Therefore, rejecting states in automata constructed with standard
algorithms seem to contain unnecessary rejecting states rarely. Furthermore, we experienced
that alternating co-Biichi automata constructed with standard algorithms often ensure bad
prefixes for delay-dominance: in Section 3.3, we discussed under which circumstances the bad
prefix property is not satisfied and identify critical structures in alternating co-Biichi automata.
The critical structures can most likely be encoded into an LTL formula in the sense that we
obtain an alternating co-Biichi automaton with a critical structure when constructing it with
standard algorithms. However, we experienced that for meaningful specifications, such critical
structures rarely - if ever — exist in standard automata.

Simple optimizations such as removing rejecting states that do not lie in a cycle from the
set of rejecting states of the alternating co-Biichi automaton A, have a positive impact on
both the existence of delay-dominant strategies and on ensuring bad prefixes. Such states
cannot be visited infinitely often; thus, removing them from the set of rejecting states does
not alter the language. Nevertheless, rejecting states can enforce non-delay-dominance, and
thus removing unnecessary rejecting states can result in the automaton ensuring bad prefixes
and in more strategies being delay-dominant. For instance, it follows immediately with this
optimization that, for safety properties, the parallel composition of delay-dominant strategies is

3.6. SUMMARY

delay-dominant; extending the result from Lemma 3.4 that for safety properties there always
exists some alternating co-Biichi automaton that ensures bad prefixes for safety properties.
Thus, we experienced that, for an alternating co-Biichi automaton A, constructed from an
LTL formula ¢ with standard algorithms, it holds in many cases that (i) if ¢ allows for a
remorsefree dominant strategy, then A, allows for an delay-dominant strategy, and (ii) the
parallel composition of delay-dominance strategies for A, is delay-dominant as well. Therefore,
the compositional synthesis algorithm presented in this section is indeed applicable for many
LTL formulas and system architectures.

3.6. SUMMARY

We have presented a new requirement for process strategies, delay-dominance, that allows a
strategy to violate a given specification in certain situations. It is thus a notion of best effort.
In contrast to the classical requirement of winning, delay-dominance can consequently be
used for individually synthesizing strategies for the processes in a distributed system in many
cases, enabling a simple compositional synthesis approach. Delay-dominance builds upon the
concept of remorsefree dominance, where a strategy is allowed to violate the specification as
long as no other strategy would have satisfied it in the same situation. However, remorsefree
dominance is only compositional for safety properties. For liveness properties, the parallel
composition of dominant strategies is not necessarily dominant. This restricts the use of
compositional synthesis algorithms based on remorsefree dominance to safety specifications,
which are often not expressive enough to state the system requirements. Delay-dominance, in
contrast, is specifically designed to be compositional for more properties while maintaining
desirable properties of remorsefree dominance such as that, if the specification is realizable,
every remorsefree dominant or delay-dominant strategy is winning,.

We have introduced a game-based definition of delay-dominance, which builds upon specifi-
cations given as alternating co-Biichi automata. Furthermore, we establish a bad prefix criterion
on alternating co-Biichi automata such that, if the criterion is satisfied, compositionality of delay-
dominance is guaranteed, both for safety and liveness properties. We have shown that every
delay-dominant strategy is remorsefree dominant. Hence, for realizable system specifications,
the parallel composition of delay-dominant strategies for all system processes is guaranteed to
be winning for the entire system if the specification automaton satisfies the bad prefix criterion.
Thus, delay-dominance is a suitable notion for compositional synthesis algorithms. We have,
therefore, introduced a three-step automaton construction for recognizing delay-dominant
strategies. The resulting universal co-Biichi automaton can immediately be used to synthesize
delay-dominant strategies utilizing existing safraless synthesis approaches such as bounded
synthesis. The automaton is of single-exponential size in the squared length of the initial LTL
specification. Thus, synthesizing delay-dominant strategies is, as synthesis of winning and
remorsefree dominant strategies, possible in 2EXPTIME. Synthesizing delay-dominant strate-
gies for the individual system processes thus constitutes an efficient compositional synthesis
algorithm for distributed systems.

105

Chapter 4

ASSUME-GUARANTEE CONTRACTS FOR
DISTRIBUTED SYNTHESIS

In the previous chapter, we have introduced delay-dominance as a best-effort notion for strate-
gies, which weakens the classical strategy requirement of winning. We presented a compo-
sitional synthesis algorithm for distributed systems based on delay-dominant strategies. The
algorithm utilized the implicit assumption induced by delay-dominance that other processes will
not maliciously violate the shared goal, i.e., the specification for the entire system. While this
allows for compositionally synthesizing strategies more often than with the naive compositional
distributed synthesis approach, which tries to synthesize winning strategies for the processes
separately, it fails for systems with complex inter-process dependencies. Such systems often
require more explicit assumptions on the process’s concrete behavior.

In this chapter, we thus present a compositional synthesis algorithm for distributed systems,
called certifying synthesis, that considers explicit assumptions on the behavior of the other
system processes. Every system process provides a guarantee on its own behavior, a so-called
certificate. The other system processes can then rely on the process to not deviate from its
guaranteed behavior. The certificates define an assume-guarantee contract between the system
processes. A process’s strategy is then only required to realize the system specification if the
other processes do not deviate from their guaranteed behavior. This allows for considering
a system process independent from the other processes’ strategies while accounting for the
potential need for cooperation between the system processes via explicit assumptions. Certifying
synthesis automatically derives both strategies and certificates for all system processes from
a formal specification. It is an extension of bounded synthesis [FS13] that incorporates the
additional search for certificates into the synthesis task for the process strategies.

In addition to enabling a compositional synthesis algorithm for distributed systems, syn-
thesizing certificates has several benefits. First, observe that the assume-guarantee contract
is formed with the processes’ certificates rather than their strategies. Thus, while a process
may rely on the other processes to not deviate from their certificates, it does not obtain any
information about the other processes’ strategies apart from their guaranteed behavior. Once
the contract has been synthesized, particular process strategies can therefore be exchanged
safely with other strategies as long as they still respect the contract, i.e., as long as the certificate

107

108

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

still matches the new strategy. This enables modularity of the system. If requirements that do
not affect the contract but only particular processes change, system strategies can be adapted
flexibly without the need for synthesizing a solution for the entire system again.

Furthermore, the certificates accurately capture which information a system process requires
about the other processes’ behavior to be able to realize the specification. Certificates thus
abstract from the behavior of other processes that is irrelevant from the considered process’s
point of view. Therefore, certifying synthesis allows for recognizing the system’s interconnections
by analyzing the certificates. Moreover, it enables a local analysis of the synthesized process
strategies. When considering the strategy of an individual process, we do not need to take the
other processes’ entire strategies, which frequently contain irrelevant behavior, into account,
but only their certificates. Both recognizing interconnections between system processes and
the possibility of local analysis of process strategies greatly improve the understandability of
the system and the derived strategies.

Lastly, bounded synthesis introduces a bound on the size of the desired strategy. This allows
for finding size-optimal solutions. Certifying synthesis introduces, in addition to the size bound
on the strategies in bounded synthesis, bounds on the sizes of the certificates. Consequently,
certifying synthesis bounds the size of the interface between the system processes, which is
shaped by the assume-guarantee contract. By starting with small certificate bounds and by only
increasing them if the specification is unrealizable for the given bounds, our algorithm restricts
synthesis to search for solutions with small interfaces, which are often preferred in practice.
Thus, certifying synthesis guides the synthesis procedure toward desirable solutions.

We introduce two representations of certificates, as LTL formulas and as deterministic and
complete finite-state transducers. We prove the soundness and completeness of our certifying
synthesis algorithm for both of them. While LTL certificates have the advantage that they
allow for nondeterminism, resulting in more compact certificates for certain specifications,
certificates modeled with finite-state transducers are easier to integrate into existing synthesis
algorithms. For the latter representation, we thus present a reduction of certifying synthesis to
a SAT constraint-solving problem, which integrates certificates into the SAT constraint system
for classical bounded synthesis [FFRT17]. The constraint system then immediately enables
distributed synthesis using certificates.

Furthermore, we extend the representation of certificates with finite-state transducers with
nondeterminism, thus taking advantage of the upside of LTL certificates. In particular, for certain
specifications for which only knowledge about parts of the other processes’ behavior is required,
permitting nondeterminism results in significantly smaller certificates than when considering
deterministic certificate transducers. We extend the SAT encoding of transducer-based certifying
synthesis to allow for nondeterministic certificates. Moreover, we present an optimization of
certifying synthesis that reduces the number of considered certificates by determining relevant
processes for each system process. The certificates of non-relevant processes then do not need
to be considered during the synthesis of the process’ strategy. Soundness and completeness of
certifying synthesis are preserved for all variants of certificates.

We implemented the certifying synthesis algorithm with certificates represented by finite-
state transducers, both deterministic and nondeterministic ones, and compared its performance
to an extension [Baul7] of the bounded synthesis tool BoSy [FFT17] to distributed systems as

4.1. RUNNING EXAMPLE

well as the compositional synthesis algorithm based on remorsefree dominant strategies [DF14].
The results clearly demonstrate the advantage of synthesizing certificates: if solutions with a
small interface between the system processes exist, our algorithm significantly outperforms
the other ones. Otherwise, the overhead of synthesizing certificates is small. Permitting
nondeterminism can reduce the strategy and certificate sizes notably.

Publications and Structure. This chapter is based on work published in the proceedings of
the 19th International Symposium on Automated Technology for Verification and Analysis [FP21a]
and in the Innovations in Systems and Software Engineering Journal [FP22a] as well as on the
extended version [FP21b] of the former publication. The author of this thesis is the lead author
of all three publications.

This chapter is structured as follows. After introducing a running example, which we
use throughout the chapter, we present the certifying synthesis algorithm with certificates
represented by LTL formulas in Section 4.2 and prove its soundness and completeness. In
Section 4.3, we introduce certifying synthesis with certificates represented by deterministic
and complete finite-state transducers. We show that incremental synthesis is also sound and
complete for this type of certificate. In Section 4.4, we present how certificates represented by
finite-state transducers can practically be synthesized alongside strategies for the processes. In
particular, we introduce a SAT encoding of certifying synthesis. We present an optimization of
certifying synthesis in Section 4.5 that identifies processes whose certificates are relevant to the
considered process. Afterward, we extend certifying synthesis to certificates represented by
nondeterministic and complete finite-state transducers in Section 4.6. We prove that soundness
and completeness are preserved and present the necessary changes in the SAT constraints
system with respect to certifying synthesis with deterministic transducers. Lastly, we provide an
experimental evaluation of certifying synthesis in general and a comparison of the performance
of certifying synthesis with deterministic and nondeterministic transducers.

4.1. RUNNING EXAMPLE

In this section, we illustrate the main concept of certifying synthesis with an example, which we
will use throughout this chapter. Autonomous robots are a crucial component in the production
line of many modern factories. The correctness of their implementation is essential; therefore,
they are a natural target for synthesis. A factory with several robots can be inherently seen as a
distributed system: each robot constitutes a process of the overall system.

We consider a factory with two autonomous robots that carry production parts from one
machine to another. In the factory, there is a crossing that is used by both robots. The robots
are required to prevent crashing into each other at the crossing. We formalize this with the
following LTL formula:

Ono_crash = ((atCrossing1 A Ogol) A (atCrossingz A Ogoz)) ,

where, for i € {1, 2}, variable atCrossing; is an input variable denoting that robot r; arrived at
the crossing, and where go; is an output variable of robot r; denoting that r; moves one step

109

110

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

ahead. Intuitively, ¢, crqsn thus states that it should never be the case that both robots enter the
crossing at the very same point in time. Furthermore, to prevent that both robots wait at the
crossing forever and thus never arrive at the designated machines, both robots need to cross
the intersection at some point in time after arriving there. This requirement is formalized in
LTL for each robot r; with i € {1, 2} as follows:

Ocross; = [(atCrossingi — O(}goi) .

In addition to these crossing-related requirements, both robots have further individual objec-
tives @4q4,, Which are specific to their area of application. For instance, they may capture which
machines have to be approached by the robot r; in which order.

None of the robots can realize ¢, crash A @cross; N @eross, @lone: since whether or not the other
robot moves forward cannot be controlled, @, ; is not realizable for robot r;. Furthermore,
even if we restrict the specification to the parts concerning the output variables of r;, i.e., if we
only consider @, crash A @eross; for ri, no solution for individual synthesis tasks can be found.
No matter when r; enters the crossing after arriving there to ensure that ¢, holds, the other
robot r3_; may enter the crossing at the exact same point in time, yielding a crash and thus
violating @, crqsh. While it is easy for humans to pinpoint this problem when only considering
the requirements concerning the crossing, the additional objectives @444, and @444, of the robots
may add much complexity to the specification, making it challenging to understand why the
overall specification is not met.

However, if the robots commit to their behavior at crossings, individual solutions can be
found. If, for instance, r, guarantees to give always priority to r; at crossings, a strategy for r;
that enters crossings regardless of r; realizes @, crash A @cross,: since ry may assume that r, will
not deviate from its certificate, it can rely on the fact that r, will not move forward if both
robots are at the crossing. This ensures that ¢, s is satisfied no matter how r; behaves.
However, a strategy for r; that always enters the crossing if it arrives there might prevent the
existence of a strategy for robot r, that realizes @, in the, in fact, quite unrealistic, scenario
that r; is, from some point in time on, always at the intersection again directly after crossing
it — thus attempting to cross it immediately again in the other direction - r, would always give
priority to r; and would never be able to cross the intersection itself. Therefore, robot r; needs
to guarantee not to block the crossing in this manner. For instance, r; can ensure giving priority
to r, at the crossing if it already waited there in the previous step. A strategy for r, that enters
the crossing after it gave priority to ry, for instance, then realizes both ¢y crash A @cross,- Note,
however, that r; then cannot guarantee to always give priority to r; at the intersection as it
does not in the step immediately after letting r; enter the crossing. Thus, we need to slightly
adapt r,’s guarantee to this extent. Nevertheless, a strategy for ry that gives priority to r; if it
already waited at the crossing in the previous step still realizes @, crash A @cross, as long as r; then
actually crosses the intersection as outlined above. The parallel composition of these strategies
for the robots then indeed realizes the whole specification @, crash A @cross; A @eross, N Paddy N Padd,
as long as the strategies satisfy the additional requirements @,44, as well.

Furthermore, we then know that the robots solely interfere at crossings since the assumptions
that the robots need to pose on the other robot’s behavior to be able to realize the specification

4.2. COMPOSITIONAL SYNTHESIS WITH CERTIFICATES

only concern the behavior at the crossing. Thus, the certificates, i.e., the guaranteed behavior
of the robots, provide insight in the required communication of the robots and abstract away
the irrelevant behavior, i.e., the behavior aside from crossings, of the other robot. Especially for
large additional objectives ¢,4q,, this significantly increases the understandability of why r;’s
strategy realizes the specification. Moreover, the certificates form a contract of safe behavior at
crossings: If 9,44, changes since, e.g., the order in which the machines should be approached
changes, it suffices to synthesize a new strategy for robot r;. As long as r; does not change its
behavior at crossings, r3_;’s strategy can be left unchanged.

4.2. COMPOSITIONAL SYNTHESIS WITH CERTIFICATES

In this section, we present a sound and complete compositional synthesis algorithm for dis-
tributed systems. The main idea is, as in the naive compositional synthesis algorithm from Al-
gorithm 3.1, to synthesize strategies for the system processes separately. Note here that since
we are considering arbitrary system architectures, processes are allowed to observe and, in
particular, to react to the output variables of other processes. Therefore, similar to the previous
chapter, we need to consider process strategies that can be represented by Moore transducers
in compositional synthesis, as otherwise, it is not guaranteed that the parallel composition of
the process strategies is complete (see Section 2.6.1).

Furthermore, we simplify the specification ¢ for the entire system when considering the
individual processes. Intuitively, the simplified specification ¢; considered for an individual
process p; € P~ captures the parts of ¢ that affect p;. Note that simplifying the specification is not
necessary for our compositional synthesis algorithm. However, it can reduce the complexity of
individual synthesis tasks. Simplifying specifications is not the main focus of this chapter; in fact,
our algorithm can be used with any simplification fulfilling the above requirement. While there is
work on obtaining small subspecifications - see, e.g. our specification decomposition algorithm
for monolithic systems presented in Chapter 5 — we use an easy specification simplification in
this chapter for simplicity:

Definition 4.1 (Specification Decomposition).

Let ¢ = & A ... A & be an LTL formula over atomic propositions V' with k conjuncts.
The specification decomposition of ¢ is a vector (¢i, .. ., ¢,) of LTL formulas for the system
processes p1, ..., pn € P~ such that ¢; = {§j €@ | prop(&)NO; =0 Vv prop(&) NO™ = (Z)}.

A specification decomposition (¢, . .., ¢,) of an LTL formula ¢ thus splits ¢ into n subfor-
mulas, one for each system process p; € P~. Intuitively, a subformula ¢; contains all conjuncts
of ¢ that contain output variables of the process p; as well as all input-only conjuncts. Note that
if a conjunct of ¢ contains output variables of two system processes p;, p; € P~ with i # j, then,
intuitively, both the behavior of p; and p; may affect the satisfaction of the conjunct. Therefore,
it is contained in both subformulas ¢; and ¢;. The satisfaction of input-only conjuncts, i.e.,
conjuncts that do not contain any output variables of system processes but only environment
outputs, cannot be affected by any system process. Nevertheless, input-only conjuncts can

111

112

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

prevent the realizability of the full LTL formula ¢. Thus we need to take them into account
when only considering the subformulas ¢; and not the full formula ¢ in compositional synthe-
sis. While it suffices to add input-only conjuncts to a single subformula, we add them to all
subformulas for simplicity of the definition of specification decomposition.

Example 4.1. Consider the two robots from the running example introduced in Section 4.1.
Assume for simplicity that none of them has additional requirements ¢,44,, i.e., both robots are
only required to safely cross the intersection when they arrive there. Hence, the full system
specification is given by ¢ = @no crash A @cross; N Peross,- Recall that the only output variable
of robot r; is go;, i.e., O; = {go;}. Thus, both ¢, cresh and @cross; contain output variables of
robot r;, while ¢y, , does not. Therefore, we obtain the specification decomposition (¢, ¢2)
for ¢ with @; = @no_crash A Qeross; for i € {1,2}. A

Although we decompose the specification, a system process p; usually cannot guarantee
the satisfaction of ¢; alone; rather, it depends on the cooperation of the other processes. For
instance, robot r; from the running example from Section 4.1 cannot guarantee that no crash
will occur when entering the crossing since r, can enter it at the very same point in time.
Thus, the compositional synthesis approach presented in this chapter, called certifying synthesis,
additionally derives a guarantee on the behavior of each system process, the so-called certificate.
The certificate then provides essential information to the other system processes: if system
process p; € P~ commits to a certificate, the other processes can rely on p;’s strategy to not
deviate from this behavior. In particular, the other processes’ strategies only need to realize
the specification as long as p; sticks to the behavior formalized in its certificate. Hence, the
certificates constitute an assume-guarantee contract (see, e.g., [CHO07]) between the system
processes. Therefore, in certifying synthesis, a system process is not required to react to all
behaviors of the other processes but only to those that truly occur when the processes interact.

In this section, we represent the certificate of a system process p; € P~ by an LTL formula ¢;
over atomic propositions V;. The requirements on a strategy s; for p; are twofold: the strat-
egy (i) may not deviate from p;’s certificate, and (ii) needs to realize the subformula g; if the
other system processes stick to their certificates. Therefore, to ensure that (i) holds, we require s;
to realize the LTL formula ¢/; representing p;’s certificate. To establish (ii), we require s; to realize
the LTL formula ¥; — ¢;, where ¥; = {zpj | pj € P\ {pi}}, i.e., ¥; denotes the conjunction of
the certificates of the other system processes.

Example 4.2. Consider the two robots from Section 4.1 and assume for simplicity that none
of the robots has additional requirements ¢,44,. Thus, the full system specification is given
by @ = @no_crash N @cross, N Peross, and, as outlined in Example 4.1, we obtain the specification
decomposition (@i, 92) With ¢; = @no crash N Peross; for all i € {1,2}. An LTL certificate for
robot r; could, for instance, be given by

Y2 =0((—atCrossing, V —atCrossing,) — O go,)
A O((=(atCrossing, A atCrossing,) A O(atCrossing; A atCrossing,)) — OO —go,)
A O((atCrossing, A atCrossing, A O(atCrossing; A atCrossing,)) — OO go,)

4.2. COMPOSITIONAL SYNTHESIS WITH CERTIFICATES

Intuitively, it formalizes that r, always moves forward if one of the robots is not at the crossing.

If however, both robots are at the crossing, and not both of them have been there in the previous
step, then r, waits, thus giving priority to r;. If both robots are at the contrast and both have
been at the crossing in the previous step as well, then r, moves forward, ensuring to “take
its turn” in crossing the intersection. While a strategy for robot r; that enters the crossing
regardless of r, whenever not both robots have been at the crossing in the previous time step
clearly does not realize ¢, it realizes ¥, — ¢. A

Whether a strategy for a system process p; € P~ is valid for the subformula ¢; thus does
not only depend on ¢; but also on the certificates of the other system processes. Since the
other processes’ certificates range over their variables, the LTL formula ¥; — ¢; ranges over all
variables V of the system and not only over p;’s variables V;. Note that a strategy for p;, however,
is still defined for p;’s inputs and outputs, i.e., a computation of s; lies in (2')®. Formally, we
can now define certifying synthesis as follows:

Definition 4.2 (Certifying Synthesis with LTL certificates).

Let ¢ be an LTL formula over atomic propositions V with decomposition {¢y, ..., ¢,). Let
S =(s1,....spyand ¥ = (Y1, ..., ¢y) be vectors of strategies and LTL certificates, respectively,
for the system processes p; ... p, € P~. Let ¥; = {% | pj € P\ {pi}}. Ifsi =i A (¥ — i)
holds for all p; € P, then we say that (S, ¥) realizes ¢. Certifying synthesis for ¢ derives
vectors S and ¥ such that (S, ¥) realizes ¢.

Classical algorithms for distributed synthesis directly search for strategies s, ...,s, for
the system processes such that s; || ... || s, F ¢ holds. Hence, they reason globally about
the realization of the specification by the parallel composition of the synthesized strategies.
Certifying synthesis, in contrast, reasons locally about the realization of the subformulas for
the individual processes, i.e., without considering the composition of the strategies. Hence
the strategies can be considered separately. This greatly improves the understandability of the
synthesized solutions since it is possible to focus on a single process and its behavior.

Moreover, local reasoning as employed in certifying synthesis is sound and complete. Thus, if
certifying synthesis derives a pair (S, ¥) for an LTL specification ¢, then the parallel composition
of the strategies in S realizes ¢. Furthermore, certifying synthesis derives a pair (S, ¥) for all LTL
specifications that are realizable in the considered architecture. Intuitively, soundness follows
from the fact that every system process is required to realize its own certificate. Completeness
is obtained since every strategy can serve as its own certificate. Formally:

Theorem 4.1. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢p)-
LetS = (s1,...,sn) be a vector of strategies for the system processes. Then, there exists a vector
Y = (Yn,...,¥n) of LTL certificates for the system processes such that (S, V) realizes ¢ if, and
only if,s1 || ... || sn = ¢ holds.

Proof. Let 71, ...7, be the deterministic and complete finite-state Moore transducers repre-
senting the strategies si,...,s,. Let 7 = 77 || ... || 7, be their parallel compositions. Since

113

114

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

all 7; are deterministic and complete Moore transducers and since the sets of output vari-
ables of different components are disjoint by definition of architectures, 7 is determinis-
tic and complete by Lemma 2.1 as well. Hence, all traces of 7 are infinite and therefore
Traces(T") = {0 e (2V) |Vp;eP.onV; e Traces(?{)} follows with Lemma 2.2.

First, suppose that there exists a vector ¥ = (¢, . ..,) of LTL certificates for the system
processes such that (S, ¥) realizes ¢. For process p; € P~ let ¥; = {gb, | pi € P™\ {pj}}.
Let o € Traces(7) be a trace of 7. Then, as shown above, o0 N V; € Traces(7;) holds for
all system processes p; € P~. By assumption, (S, ¥) realizes ¢. Therefore, for all p; € P,
we have s; = ¢; A (¥; — ¢;) and hence Traces(7;) U (V \'V;) € LW A (¥; — ¢;)) holds.
Thus, (c NV;)) Uo’ € LY A (¥; — ¢;)) follows for all 6’ € V \ V;. Hence, in particular,
o€ LU A (¥; — ¢;)) holds for all p; € P~ and therefore, by definition of conjunction, we
have o € LA, (i A (¥; = ¢;))). Thusboth o € L(ALL; ¥i) and 0 € L(AL; ¥i — ¢;) hold
and hence o € L(A]-, ¢;) follows with the definition of ¥; and the semantics of implication.
By definition of specification decomposition, we have AL, ¢; = ¢ and therefore we obtain
o € L(¢). Since we chose the trace o € Traces(7") of T arbitrarily, Traces(7") € L(¢) follows.
Thus, by definition of 7, we have s || ... || sp E ¢.

Second, suppose that s; || ... || sn = ¢ holds. We construct LTL certificates i1, .. ., {, as fol-
lows: ; describes exactly the behavior of's; for the variables in V;, i.e., L(¢/;) = Traces(7;) holds.
Since 77 has, by construction, only finitely many states, such an LTL formula ¢; can always be
constructed by encoding the transducer. Let ¥ = (i1, ..., ;) and let ¥; = {tﬁj | pj € P\ {p,-}}.
It remains to show that (S, ¥) realizes ¢, i.e, thats; = ¢; A (¥; — ¢;) holds and thus that
we have Traces(7;)) U (V\V;) € L(¥; A (¥; — ¢;)) for all p; € P™. Let p; € P~ be some
system process. Let o € Traces(7;) U (V \ V;). By construction of the LTL certificates, we
clearly have o € {p e | pnV;e L(zp,)} If o E —Y%; holds, then 0 € L(¥; — ¢;)
follows immediately with the semantics of implication and since ¥; — ¢; is an LTL formula
over atomic propositions V. Thus, since ¢ € {p e2V)? | pnV;e L(lpl)} holds as shown
above, we obtain 0 € L(; A (¥; — ¢;)) with the semantics of conjunction. Otherwise,
ie, if o | ¥ holds, then 0 € L(AL, ¢;) follows with the definition of ¥; and since we
have o € {p e | pnV;e L(i,bl-)}. Thus, o N'V; € Traces(7;) holds for all system pro-
cesses p; € P~ by construction of the LTL certificates. Therefore, o € Traces(7") follows
since we have Traces(7) = {0 e (2V) |Vp;eP.onV; e Traces(?{)} as shown above. By
assumption, s; || ... || sn E ¢ holds and thus, by definition of 7, we have Traces(7") C L(¢).
Therefore, by definition of specification decomposition and by the semantics of conjunction,
Traces(7) € L(¢;) holds as well. Thus, o € L(¢;) follows and hence, by the semantics of
implication, 0 € L(¥; — ¢;) holds as well. Since ¢ € {p e | pnV;e L((,bi)} holds as
shown above, we obtain o € L(; A (¥; — ¢;)) with the semantics of conjunction. Since we
chose o € Traces(7;) U (V' \ V;) arbitrarily, Traces(7;) U (V\V;) € LW A (¥; — ¢;)) follows.
Hence, s; | ¥; A (¥; — ¢;) holds for all p; € P~ and therefore (S, ¥) realizes ¢. O

Certifying synthesis thus enables modularity and increases the understandability of the
system due to local reasoning while ensuring finding solutions for all specifications that are
realizable in the architecture. Moreover, the parallel composition of the synthesized strategies
serves as a correct solution for the entire system.

4.3. SYNTHESIS WITH DETERMINISTIC CERTIFICATES

There are several quality measures for certificates, for instance, their size. We focus on
certificates that are easy to synthesize in the sense that certifying synthesis can be integrated
into existing synthesis algorithms first. Therefore, in the subsequent section, we study how to
model certificates with finite-state transducers instead of LTL formulas.

4.3. SYNTHESIS WITH DETERMINISTIC CERTIFICATES

In the previous section, we considered certificates in certifying synthesis to be LTL formulas
that describe the guaranteed behavior of the individual system processes. In the following, in
contrast, we focus on certificates that allow for simple integration of certifying synthesis into
existing synthesis algorithms and frameworks. Here, we focus on constraint-based bounded
synthesis [FS13, FFRT17] as, for instance, implemented in the tool BoSy [FFT17]. Therefore, in
this section, we introduce certifying synthesis with certificates represented by deterministic
finite-state transducers. First, we present how certificates can be modeled with transducers.
Afterward, we formulate certifying synthesis and, in particular, the satisfaction of a specification
in the presence of certificates represented by finite-state transducers. Lastly, we show soundness
and completeness of this variant of certifying synthesis.

4.3.1. MODELING CERTIFICATES

We model the certificate of a system process p; € P~ as a deterministic and complete finite-state
Moore transducer 7176, called guarantee transducer (GT), over input variables I; and guarantee
output variables OF C O;. Only considering a subset of O; as output variables of the guarantee
transducers allows the certificate to abstract from outputs of p; whose valuation is irrelevant for
all other processes. In the following, we assume the guarantee output variables of p; to be both
an output of p; and an input of some other process, i.e., we define Ol.G = 0; N I". Intuitively, a
variable v € O; \ OY, which is an output of p; but not a guarantee output, cannot be observed
by any other system process. Thus, a guarantee on its behavior does not influence any process
and hence it can be omitted from the outputs of the guarantee transduce 7;. Since a guarantee
transducer 7}’ G is both deterministic and complete by construction, it produces exactly one
infinite trace for every input sequence y € (21)®, ie., |Traces(7;° y)| = 1 holds. Slightly
overloading notation, we call this single trace produced by 7, on input y the computation
of 7,9 on y, also denoted comp(7.°,y).

Example 4.3. Consider the robots from the running example introduced in Section 4.1. Guar-
antee transducers ‘7IG and 7;6 for the robots r; and r; are depicted in Figure 4.1.

Intuitively, 7;6 stays in state u, until both robots arrive at the crossing, always outputting go, .
If both robots arrive at the crossing, 7IG moves to uj, ensuring that r; can make use of its priority
in the next step and move forward. If at most one robot arrives at the crossing afterward, 7,°
transitions back to uy. Otherwise, it moves to u,, ensuring that r; does not block the crossing but
gives r; the possibility of crossing the intersection. Thus, 7, keeps track in its state whether
at most one robot arrives at the crossing (state u,), both robots arrive together at the crossing,
while not both of them have been at the crossing in the previous step (state u;), or whether

115

116

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

—atCrossing, V
—atCrossing, | {go;} —atCrossing; V
—atCrossing, | {go,}

atCrossing; A
atCrossing, | {go;}

—atCrossing, V
—atCrossing, | {go,}

atCrossing, A atCrossing; A

atCrossing, A atCrossing, | {go;} true | 0 atCrossing, | {go,}
atCrossing, | 0
—atCrossing, V
—atCrossing, | 0
(a) Guarantee transducer 7IG (b) Guarantee transducer 7;G

Figure 4.1.: Guarantee transducers for the robots r; and r; from the running example.

both robots arrive at the crossing in (at least) two consecutive time steps and we are currently
in an even one of these time steps (state uy).

Similar to 7IG, the guarantee transducer ‘GG intuitively stays in state uy until both robots
arrive at the crossing, always outputting go,. If both robots arrive at the crossing, 7, moves
to uy, ensuring that r, does not move forward in the next step to grant r; priority. Afterward,
irrespective of the position of the robots, 7;6 moves back to state u, ensuring that r, outputs go,
in the next step to take its turn in crossing the intersection. Thus, 7,¢ keeps track of whether at
most one robot arrives at the crossing (state ug) or both robots arrive together at the crossing,
while not both of them have been at the crossing in the previous step (state uy). A

Since both strategy transducers and guarantee transducers — and thus all transducers we
are considering in this chapter — have Moore semantics, we omit the input from the labeling
relation in the remainder of this chapter. That is, slightly overloading notation, we assume the
labeling relation ¢ of a (21, 29)-transducer 7~ = (T, To, 7, £) to be of type £ : T X 20,

In the next section, we present how guarantee transducers can be utilized instead of LTL
certificates in certifying synthesis while still ensuring soundness and completeness.

4.3.2. CERTIFYING SYNTHESIS WITH GUARANTEE TRANSDUCERS

In certifying synthesis, it is crucial that a strategy only needs to realize the specification if the
other processes do not deviate from their certificates. For certificates modeled as LTL formulas,
we use an implication in the local objective, which is again an LTL formula, to model this
(see Section 4.2). When representing certificates as finite-state transducers, however, it is no
longer possible to easily integrate the satisfaction of the other processes’ certificates into the

4.3. SYNTHESIS WITH DETERMINISTIC CERTIFICATES

local LTL specification without encoding the certificate as LTL formula and thus losing the
benefit of simple integrability into existing synthesis frameworks. Instead, we formalize that
a strategy only needs to realize the specification if the other processes do not deviate from
their certificates by slightly altering the notion of satisfaction of an LTL formula. Intuitively, a
strategy realizes an LTL formula ¢ if each of its computations either satisfies ¢ or could not
occur if the other processes stick to their certificates. Consequently, we need to identify whether
or not a sequence matches the other processes’ certificates in the sense that it could occur when
the processes interact if none of the processes deviates from its certificate. We formalize this
with so-called valid computations:

Definition 4.3 (Valid Computation and Valid History).

Let C P~ be a finite set of system processes. Let G be a finite set of guarantee transducers,
one for each of the processes in #. An infinite sequence o € (2V)¢ is called valid computation
for G if, and only if o N Ol.G = comp(‘];G, ocnN)n OiG holds for all ‘7;G € G. The set of valid
computations for G is denoted with V. A finite prefix p € (2)* of length k > 0 of some
valid computation o € Vj; is called valid history of length k for G. The set of all valid histories
of length k for G is denoted with ?{g

Intuitively, a valid computation for a set G of guarantee transducers is an infinite sequence
that is a computation of all guarantee transducers in G. Thus, a valid computation can be
produced by all guarantee transducers in G, and therefore it can be produced by their parallel
composition. Consequently, a valid computation is a sequence that can occur in the interplay of
all processes whose guarantee transducers are contained in G as long as these processes do
not deviate from their guaranteed behavior. A valid history for G is then a finite prefix of a
computation of the parallel composition of the guarantee transducers in G.

Example 4.4. Consider the robots from the running example introduced in Section 4.1 and the
guarantee transducers depicted in Figure 4.1. As an example for valid computations, consider
robot r; with its guarantee transducer 7;G from Figure 4.1b. Let y € (2%2)® be some infinite input
sequence or r, with yx # {atCrossing,, atCrossing,} for some point in time k > 0, denoting that
at most one of the robots arrives at the crossing at point in time k. Irrespective of the nature of
the valuations of the input variables of p; at the remaining points in time k’ > 0 with k" # k,
the path 7 € Paths(7,°, y) of 7, on input sequence y visits state ug at point in time k + 1, i.e.,
we have 7. = (uo, {g0,}). Therefore, by definition of traces, ox.; N O, = {go,} holds for all
o € Traces(T,°,y). Furthermore, since O; N I”{go,} holds, go, is not only an output but also a
guarantee output of robot r,. Thus, we have x4 N Of = {go,} forallo € Traces(‘igG, y) as well.
Therefore, every infinite sequence p € (2")® with either atCrossing, & py or atCrossing, ¢ px
but go, ¢ p+1 for some point in time k > 0 is no valid computation for G = {7;6} A

Since the notion of valid computations determines whether or not a particular infinite
sequence can occur during the interaction of the processes whose guarantee transducers are
contained in the considered set G as long as these processes do not deviate from their certificates,
we use valid computations to define the slightly altered version of satisfaction which is required
for certifying synthesis with guarantee transducers: a strategy locally realizes an LTL formula

117

118

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

for a finite set G of guarantee transducers if, for all input sequences, its computation either
classically satisfies the LTL formula or its computation is not valid and thus does not match the
guarantee transducers in G. Formally:

Definition 4.4 (Local Satisfaction and Local Realization).

Let p; € P~ be a system process and let # C P~\ {p;} be a set of other system processes. Let G
be a set of guarantee transducers, one for each of the processes in . Let ¢; be an LTL formula
over atomic propositions V;. An infinite sequence o € (2V)® locally satisfies ¢; with respect
to G, denoted o =g ¢, if, and only if, either o |= ¢; or o € Vg holds. A strategy s; for p; then
locally realizes ¢; with respect to G, denoted s; =g ¢;, if, and only if, comp(s;, y) Uy’ Eg @i
holds for all y € (2%)® and all y’ € (2V\Vi)®.

Intuitively, requiring a strategy to locally realize an LTL formula ¢; with respect to a set G
of guarantee transducers thus encodes the classical satisfaction of the local objective ¥ — ¢;,
where ¥ is an LTL formula encoding the computations of all guarantee transducers in G, as
used in certifying synthesis with LTL certificates. A sequence o € (2V)® satisfies ¥ — ¢; if it
either satisfies ¢; or violates V. If the former is the case, then o clearly also locally satisfies ¢;.
If the latter is the case, then o does not match the guaranteed behavior defined in ¥, and thus,
by construction of ¥, it does not match the computations of all guarantee transducers in G.
Thus, o is then no valid computation for G, and therefore it locally satisfies ¢; as well.

Example 4.5. Consider the robots from the running example presented in Section 4.1. Further-
more, consider the guarantee transducer 7;G for robot r; depicted in Figure 4.1b. If r, does not
deviate from its guaranteed behavior defined by 7,°, then r; can enter the crossing regardless
of r, without risking a crash whenever both robots arrive at the crossing while at least one
of them was not at the crossing in the previous time step. Such a strategy s; for r; can, for
instance, be given by the same transducer as ry’s guarantee transducer depicted in Figure 4.1a.
In the following, we call this transducer 77.

A computation of s; on some input sequence y € (21)® only contains go, at some point in
time k > 0 if the corresponding path 7 € Paths(7y,y) of 71 is in state u, or u; at point in time k.
The path 7 is only in state u, at point in time k if either k = 0 holds or if at most one of the
robots arrives at the crossing at point in time k — 1, i.e., if we have either atCrossing, ¢ yi—; or
atCrossing, ¢ yi—1. Furthermore, 7 is only in state u; at point in time k if both robots arrive at
the crossing at point in time k — 1 and if k — 1 is an odd position in the current sequence of
consecutive time steps at which both robots arrive at the crossing. Clearly, no crash can happen
whenever 77 is in state u: it neither violates ¢p, crqsh if both robots move forward in the first
time step nor if at most one of the robots arrived at the crossing at the previous point in time.
Whenever 77 is in state uy, in contrast, a crash can potentially happen if r, moves forward in
the very same time step, violating ¢,, crqsn. However, a trace of r,’s guarantee transducer 7;G
does not contain go, at a point in time k > 0 if both robots arrive at the crossing at point in
time k — 1 and if k — 1 is an odd position in the current sequence of consecutive time steps at
which both robots arrive at the crossing. Hence, an infinite sequence that contains both go,
and go, at some point in time k > 0 is no valid computation with respect to G = {7,°}. and
therefore s; locally realizes ¢, ¢rqsn With respect to G = {‘75G}, i.e., we have s1 Fg @no crash-

4.3. SYNTHESIS WITH DETERMINISTIC CERTIFICATES

Furthermore, every computation of s; classically satisfies @¢yoss,, i.-€., S1 [E @cross, holds: the
transducer 77 leaves the only state in which it does not output go,, i.e., state u,, immediately after
arriving there, irrespective of the input sequence. That is, no path of 77 can loop indefinitely
in u,, and therefore the states in which 77 outputs go, are visited infinitely often for every input
sequence. Hence, s; outputs go, infinitely often for every input sequence and, thus, in particular,
for every input sequence that contains atCrossing, at some point in time. A

Since local satisfaction allows for formalizing that a strategy only needs to realize the speci-
fication if the other system processes do not deviate from their certificates, we employ local
satisfaction and local realization for defining certifying synthesis with certificates modeled with
guarantee transducers. However, recall that the requirements for strategies in certifying syn-
thesis are twofold. Additionally, strategies are not allowed to deviate from their own certificate.
When representing certificates with LTL formulas, we achieved this by requiring the strategy
to realize the LTL certificate (see Section 4.2). When considering guarantee transducers, in
contrast, we utilize transducer simulation for Moore transducers instead:

Definition 4.5 (Transducer Simulation).

Let I, Oy, and O be finite sets of input and output variables with I N O; = 0, I N Oy = @, and
01 C Oy. Let 71 = (T3, Ti, 11, £1) and T = (Ty, Ty 0, 72, £2) be a finite-state (27, 291)-transducer
and a finite-state (2!, 292)-transducer, respectively. Then, 71 simulates 75, denoted 7; < 771, if,
and only if, there exists a simulation relation R : T, X T; with

. (tg’(), tl’()) € R for all tro € Tg,() and all t10 € Tl,(),

. forall (t;,t,) € R, we have {0 | (t,0) € &4} = {oN O; | (t2,0) € &} and, for all 1 € 2!
and all t; € T, if (t,1,t;) € 72 holds, then there exists some t; € T; such that both
(t1,1,t]) € 7y and (5, ;) € R hold.

Intuitively, a finite-state transducer 77 thus simulates a finite-state transducer 7; if all traces
of 7; are, restricted to the variables I U O; of 77, also traces of 77. In the following, we show
that this intuition indeed holds:

Proposition 4.1. Let I, Oy, and O, be finite sets of input and output variables with I N Oy = 0,
INO; =0, and O; C O,. Let 7 be a finite-state (2!, 29") -transducer and let 7; be a finite-state
(2!, 292) -transducer. If T; < 77 holds, then o N (I U Oy) € Traces(7;) holds for all o € Traces(73).

Proof. Let 71 = (T1,t10, 71, 1) and let 73 = (Tp, to, T2, £2). Assume that 7, < 77 holds. Let
o € Traces(7;) be a trace of 7; and let = € Paths(73, 0 N I) be the corresponding path. Since
7z < 91 holds by assumption, there exists a simulation relation R that satisfies the properties of
transducer simulation defined in Definition 4.5.

By definition of paths, we have (#;(7x), ox N #1(7x+1)) € 12 and (#1(7), ox N1, #2(71x)) € &,
for every point in time k > 0. Hence, by definition of the simulation relation R, there exists
an infinite sequence p € (T X 21 x 291 X T7)® such that (#; (), #1(px)) € R, #2(px) = ox N1,
#3(pr) = (ox N O2) N Oy, and #4(px) = #1(pr+1) as well as pi € 11 holds for all points in time
k > 0. Let 7’ € (T; x 2°1)® be the infinite sequence such that 7’ = (#;(px), #3(px)) for all

119

120

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

—atCrossing, V —atCrossing, | {go,}

—atCrossing, V
—atCrossing,) | {go,, o, }

atCrossing; A
atCrossing, | {go;, 0,}

atCrossing, A
atCrossing, | {go;}

—atCrossing, vV atCrossing, A
—atCrossing, | {go;} atCrossing, | {go,}

Figure 4.2.: Parallel composition of the strategies of the robots from the running example.

points in time k > 0. By construction of p, we clearly have n’ € Paths(71, 0 N I). Furthermore,
there exists a trace o’ € Traces(71, o N I) such that ¢’ = (6 N I) U ((o N Oy) N O4) holds. Since
O; C O, holds by assumption, we have (6 N O;) N O; = 0 N O and thus ¢’ = o N (I U Oy)
follows. Therefore, o N (I U O,) € Traces(77) holds. m|

Hence, requiring that a strategy transducer 7; for system process p; € P~ is simulated by the
guarantee transducer 717G of p; ensures that every trace produced by the strategy of p; is also
produced by p;’s certificate. That is, intuitively, p;’s strategy cannot perform actions that are
not captured by the certificate of p; and therefore the strategy of a process cannot deviate from
the process’s own certificate.

With local realization and transducer simulation, we have laid the foundations for utilizing
deterministic finite-state Moore transducers for representing certificates. In the following, we
thus lift certifying synthesis from certificates given as LTL formulas to certificates represented
by deterministic finite-state guarantee transducers with Moore semantics. First, we formally
define certifying synthesis with guarantee transducers:

Definition 4.6 (Certifying Synthesis with Guarantee Transducers).

Let ¢ be an LTL formula over atomic propositions V with decomposition (¢, ..., ¢,). Let
S={(p....,spyand G = (‘7IG, ..., T.9) be vectors of strategies and guarantee transducers,
respectively, for the system processes. For p; € P~ let G; = {71'6 | pi € P™\ {pj}}. If
si Fg, ¢iand 77 < ‘717G, where 77 is the deterministic and complete finite-state Moore
transducer representing s;, hold for all p; € P~, then we say that (S, G) realizes ¢. Certifying
synthesis for ¢ derives vectors S and G such that (S, G) realizes ¢.

Certifying synthesis with guarantee transducers is thus, in general, similar to certifying
synthesis with LTL certificates. However, it seeks strategies and guarantee transducers instead
of strategies and LTL certificates. Moreover, it models the requirements that a strategy must not
deviate from its certificate and that a strategy only needs to satisty the specification if the other
processes stick to their certificates with transducer simulation and local satisfaction rather than
with incorporating them into the LTL formula defining the processes objective.

4.3. SYNTHESIS WITH DETERMINISTIC CERTIFICATES

Example 4.6. Consider the robots r; and r, from the running example from Section 4.1 and their
guarantee transducers 7;6 and 7;G depicted in Figure 4.1. Recall that the guarantee transducers
can also be interpreted as strategy transducers 77 and 7; for the two robots. Clearly, 7; < 7;G
holds for all i € {1,2}. As outlined in Example 4.5, we also have 71 | (7.6} Pno_crash N Peross;-

Similarly, 7; E (76} Pno_crash A Peross, follows. Therefore, the pair ({s1, s2), (‘7IG, ‘7;G>), where s;
is the strategy represented by 7; for i € {1, 2}, realizes @,y crash A @cross; N Peross,- The parallel
composition of 77 and 77 is depicted in Figure 4.2. It is a strategy that allows both robots to move
forward as long as at most one of them arrived at the crossing. Furthermore, starting with ry,
both robots take turns in crossing the intersection when both of them are at the crossing at
several consecutive time steps. Hence, 77 || 7; realizes ¢, crash A @cross, N @cross, as well. A

In the following, we prove soundness and completeness of certifying synthesis with guarantee
transducers by reducing the existence of LTL certificates to the existence of guarantee transduc-
ers and vice versa. Given vectors S and G of strategies and guarantee transducers for the system
processes, respectively, such that (S, @) realizes an LTL specification ¢, we intuitively construct
a vector ¥ of LTL certificates that capture the exact behavior of the guarantee transducers.
Then, (S, ¥) realizes ¢ as well.

Lemma 4.1. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., On).
Let S and G be vectors of strategies and guarantee transducers for the system processes, respectively.
If (S, G) realizes @, then there is a vector ¥ of LTL certificates such that (S, V) realizes ¢.

Proof. Let S = (s1,...,s0), G = (7,9,....T,0). For p; € P~ let G; == {T,° | pi € P\ {p;}}
and let \N/J = Upier\(p;) VO. Let V= Up,ep- VjG Suppose that (S, G) realizes ¢. We construct
LTL certificates as follows: for system process p; € P, let /; be an LTL formula over atomic
propositions Vl.G describing the exact behavior of p;’s guarantee transducer 7; G ie., §;is an
LTL formula over atomic propositions Vl.G with L(¢;) = Traces(7i'G). Recall that a guarantee
transducer has finitely many states. Therefore, such an LTL formula 1; can always be constructed
by encoding the guarantee transducer 7;6. Since V¥ C V; holds, y/; then indeed matches the
form of an LTL certificate. Let ¥ = (1, ...,¥,) and, for p; € P7, let ¥; = {1/4- | pi € P\ {pj}}.
We claim that (S, ¥) realizes ¢. Hence, we show in the following thats; = ¥; A (¥; — ¢;)
holds for all p; € P~. More precisely, we show that 0 € L(i; A (¥; — ¢;)) holds for all o €
Traces(7;) U (2V\V)® where 7; is the deterministic and complete finite-state Moore transducer
representing s;. Let p; € P~ and let o € Traces(7;) U (2V\Vi)©,

First, we prove that strategy s; does not deviate from p;’s certificate ¢, i.e., we show that
on Vl.G € L(1;) holds. Since (S, G) realizes ¢ by assumption, 7; < 717G holds. By definition, 7; is
a (2%, 29¢)-transducer, while ‘717G isa (2%, 201‘6)-transducer. Moreover, by definition of guarantee
outputs, we have O? C O;. Thus, by Proposition 4.1, we have ¢’ N Vl.G € Traces(fil.'G) for all
o’ € Traces(77) since Vl.G =L U O? holds by definition. Clearly, we have o N'V; € Traces(7;) by
construction of o. Therefore, o N Vl.G € L(y;) follows with the construction of ;.

Next, we prove that s; realizes ¢; as long as all other system processes do not deviate from
their certificates, i.e., we show that o € {p eV | pn(V;UV) € L(¥; — (pi)} holds. Since
(S, G) realizes ¢; by assumption, in particular s; =g, ¢; holds. We have o N V; € Traces(7;) by
construction of o and thus, in particular, o g, ¢; holds. If o € Vg, holds, then o [= ¢; follows

121

122

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

with the definition of local satisfaction. Thus, by the semantics of implication, we also have
o E ¥ — ¢; and therefore o € {p e 2| pn (V; UV;) € L(¥; — (pl-)} holds. Otherwise,
i.e., if o is no valid computation for G;, then there exists a point in time k > 0 such that
or N O? * comp((]]'.G, o N I;) holds for some guarantee transducer 7;6 € G,;. By definition, 7}6
is a deterministic and complete finite-state transducer and thus comp(‘i}G, o N I;) is the single
trace of 7;6 induced by o N I;. Thus, we have o N OjG ¢ Traces(‘];.G, o N1j). Since I; N OJ.G =0
holds by definition of architectures and of guarantee outputs, o N OJG ¢ Traces(’];G) follows with
the definition of traces. By construction of the LTL formula ¢/;, we have L(;) = Tmces(’/}G)
and therefore o N OjG ¢ L(;). Since 7;6 € G, holds, we have p; € P™\ {p;} and thus ¢; € ¥;
holds as well. Hence, o N \7, ¢ L(¥;) follows with the semantics of conjunction. Thus, by the
semantics of implication, o € {p eV | pn(V;UV) € L(¥; — (p,-)} holds.

Therefore, for all processes p; € P~and all traces o € Traces(7;) U (2V\")®, we have both
on ViG € {0' e (2" | crﬂVl.G € L(lﬁ,)} and o € {0' e |on(V;UV;) € L(¥; — (pi)}.
Clearly, Vl.G C VUV;and V; € VUV; hold. Thus, it follows with the semantics of conjunction that
o€ {cr ce@V)? |on(VUV) e LY A (Y — (pl-))} holds for all system processes p; € P~
and all o € Traces(7;) U (2V\Vi)® as well. Hence, (S, ¥) indeed realizes ¢. m|

Vice versa, we can construct a vector G of guarantee transducers from vectors § and ¥
of strategies and LTL certificates for the system processes, respectively. If (S, ¥) realizes an
LTL specification ¢, then (S, G) realizes ¢ as well. Intuitively, we construct the guarantee
transducers from the strategies by restricting the strategies to the guarantee variables.

Lemma 4.2. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n).
Let S and ¥ be vectors of strategies and LTL certificates for the system processes, respectively. If
(S, ¥) realizes ¢, then there is a vector G of guarantee transducers such that (S, G) realizes ¢.

Proof. Let S = (s1,...,sp) and ¥ = (Y1, ..., ¥n). For p; € P~ let ¥; := {1//1 | pj € P7\ {p,-}}.
Suppose that (S, V) realizes ¢. We construct guarantee transducers for the system processes
as follows: for p; € P~ let 77 = (T;, Tyo, 7, £;) be the (2%, 29%)-transducer with Moore semantics

representing s;. The guarantee transducer 7, = (T¢, TS, 7, ¢°) is then defined by

. TiG:Ti

G _
« T;p = Tio,

e (t,,t)) € TiG if, and only if, (¢,1,t") € 7;, and

(t,0) € t’l.G if, and only if, there exists some o’ € 29 with o’ N Ol.G =oand (¢,0") € 4.

Intuitively, ‘717G is thus a copy of 7;, where the output of each state is restricted to the guarantee
outputs O?. Since 7; represents s;, it has a finite number of states, is both deterministic and
complete, and has Moore semantics. Thus, by construction, these attributes hold for ‘717G as well.
Let G =(7,%,...,7,°) and, for p; € P, let G; = {71'G | pi € P™\ {pj}}. We claim that (S, G)
realizes ¢. Hence, we show in the following that both s; g, ¢; and 7; < 7, hold for all system
processes p; € P~. Let p; € P~ be some system process.

4.3. SYNTHESIS WITH DETERMINISTIC CERTIFICATES

First, we prove that 7; < 7;6 holds. By construction of 717G, the two transducers 7; and 7;6
only differ in the outputs of the states. The outputs of the states nevertheless agree on p;’s
guarantee outputs, i.e., on the variables in Ol.G. By definition, the guarantee outputs are the only
output variables that are shared between 7; and 71.'6 and, in particular, 7;6 C 77 holds. Hence, it
follows immediately with the definition of transducer simulation that we have 7; < ‘717G.

Next, we show that s; =g, ¢; holds. Thus, we prove that for all input sequences y € (2%)®
and all sequences y’ € (2V\V)® of valuations of variables that p; cannot observe, we have
comp(s;,y) Uy’ Eg, ¢i- Lety € (25)® and let y’ € (2V\Viy© By assumption, (S, ¥) realizes ¢
and therefore s; = ¢; A (¥; — ¢;) holds. By the semantics of conjunction and by the definition
of specification realization, comp(s;,y) Uy’ | ¥; — ¢; thus holds. For the sake of readability,
let o == comp(s;,y) Uy'. If o E ¥; holds, then since 0 E ¥; — ¢; holds, o E ¢’ follows
immediately. Hence, o =g, ¢; follows with the definition of local satisfaction. Otherwise,
ie, if o £ ¥; holds, then there exists some p; € P~ \ {p;} such that o £ ¢; holds. Since
(S, ¥) realizes ¢; by assumption, we also have s; E ¢; A (¥; — ¢;). Thus, s; E ¢; and
hence Traces(7;) N VjG C L(¥;) hold, where 7; is the finite-state transducer representing s;.
Since o [; and thus o N VjG ¢ L(¥;) holds by assumption, o ¢ Traces(7;) follows. By
definition of traces, we therefore have o ¢ Traces(7;, o N I;). By construction of the guarantee
transducers, 7]'.6 is a copy of 7}, which is the transducer representing s;, where the outputs of
each state are restricted to O]G. Therefore, we have Traces(7;,0 N1;) N VjG = Traces(‘i;G, onlj)
and thus o N VjG ¢ Traces(‘i;G, o NI;) holds. Since guarantee transducers are both deterministic
and complete, 7;G produces exactly one trace on input sequence o NI}, namely comp(‘i;G, onlj).
Hence, o N VjG #+ comp(7}'.G, o N I;) follows. Since OJG C VJ.G holds by definition, we thus have
on OJQ * comp((i;G, onlj)n O?. Therefore, o is no valid computation for G;, i.e., o ¢ Vg,
holds. Consequently, o =g, ¢; follows with the definition of local satisfaction. Since we chose
y € (2)® and y’ € (2V\V)® arbitrarily, o [z g, ¢; follows. O

Note that the construction of the guarantee transducers in the proof of Lemma 4.2 only
depends on the strategies, not on the LTL certificates. Hence, intuitively, we provide the
entire strategy as guaranteed behavior and do not make use of the possibly more concise LTL
certificates. However, this does not mean that guarantee transducers always represent the entire
strategy in general. There might exist more concise guarantee transducers that represent the very
same guaranteed behavior as the LTL certificates and still satisfy the requirements of certifying
synthesis with guarantee transducers. Yet, theoretically, an LTL certificate could be more
general than the strategy: consider two processes p; and p, with I; = {a}, O; = {b}, I, = {b},
and O; = {a} as well as specification [J(a V b). Simple strategies for p; and p, are, for instance,
strategies that output b and a, respectively, in every step. While LTL certificates ¥, = [Ja
and ¢, = (b suffice in this case, also the more general LTL certificates /] = ¢/, = true yield a
valid solution of certifying synthesis. Every transducer that captures exactly the guaranteed
behavior modeled by these LTL certificates is nondeterministic and thus, by definition, no
guarantee transducer. Lemma 4.2, however, only considers the existence of some guarantee
transducers such that the requirements of certifying synthesis are satisfied. Hence, we can
utilize the deterministic transducers representing the strategies.

123

124

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

Since for every solution of certifying synthesis with LTL certificates, there exists one with
guarantee transducers and vice versa, we can utilize the results from Section 4.2 to conclude
that certifying synthesis with certificates represented by deterministic finite-state transducers is
sound and complete. It follows immediately from Theorem 4.1 together with Lemmas 4.1 and 4.2
that there exist vectors of strategies and guarantee transducers realizing an LTL specification if,
and only if, the parallel composition of the strategies realizes the specification:

Theorem 4.2. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n).
Let S = (s1,...,sn) be a vector of strategies for the system processes. Then, there exists a vector G
of guarantee transducers for the system processes such that (S, G) realizes ¢ if, and only if,
sill--- 1l sn E @ holds.

Proof. First, let there be a vector G of guarantee transducers such that (S, G) realizes ¢. Then,
by Lemma 4.1, there exists a vector ¥ of LTL certificates such that (S, ¥) realizes ¢. Therefore,
by Theorem 4.1, s1 || ... || sn E ¢ holds.

Second, suppose that s; || ... || s, |= ¢ holds. Then, by Theorem 4.1, there exists a vector ¥ of
LTL certificates such that (S, ¥) realizes ¢. Thus, by Lemma 4.2, there also exists a vector G of
guarantee transducers such that (S, G) realizes ¢. O

Hence, similar to LTL certificates, certifying synthesis with guarantee transducer allows for
local reasoning and thus enables modularity of the system. At the same time, it still ensures that
correct solutions are found for all realizable specifications. In particular, enforcing certificates
to be deterministic does not rule out strategies that can be obtained with certifying synthesis
with possibly nondeterministic LTL certificates. Nevertheless, nondeterministic certificates can
generally be more concise than deterministic ones. Therefore, we also study the advantages
and disadvantages of permitting nondeterminism in guarantee transducers in Section 4.6.

Since certifying synthesis with guarantee transducers is sound and complete, it is suitable
for compositional synthesis of distributed systems. In the following section, we thus describe
how strategies and certificates represented by guarantee transducers can be synthesized for the
system processes and hence how the distributed synthesis problem can be solved practically
with certifying synthesis.

4.4. SYNTHESIZING CERTIFICATES

In this section, we present an algorithm for practically synthesizing strategies and certificates
represented by guarantee transducers. Our approach is based on bounded synthesis [FS13]
and incorporates the search for certificates and the local objectives formalized by certifying
synthesis into the existing framework.

In monolithic bounded synthesis, the size of the strategy is bounded and, starting from
one state, is only increased if no solution with this size is found (see Section 2.8.1). Thus,
bounded synthesis produces size-optimal solutions. Since we additionally synthesize certificates
represented by finite-state transducers, we bound the sizes of the certificates as well, allowing
for size-optimal solutions in either terms of strategies or certificates.

4.4. SYNTHESIZING CERTIFICATES

In the following, we first present which formalisms of certifying synthesis with guarantee
transducers presented in Section 4.3 need to be slightly adapted to incorporate certifying synthe-
sis into existing bounded synthesis frameworks easily. We prove soundness and completeness
of certifying synthesis with these adaptions. Afterward, we introduce a SAT constraint system
that encodes the search for strategies and deterministic guarantee transducers that satisfy the
requirements of certifying synthesis.

4.4.1. LOoCAL STRATEGIES

Like for classical bounded synthesis [FS13, FFRT17] for monolithic systems, we reduce the
search for a solution of certifying synthesis of a certain size to a constraint-solving problem.
We employ parts of the existing bounded synthesis algorithm, particularly the concept of valid
annotations of run graphs to determine whether or not a strategy realizes the given specification
(see Definition 2.21). Therefore, we need to slightly adapt the formalisms for certifying synthesis
with guarantee transducers presented in Section 4.3 in order to incorporate the local objectives
of certifying synthesis into the concept of valid annotations.

In Section 4.3, we utilized local satisfaction to formalize that, in certifying synthesis with
guarantee transducers, a strategy only needs to realize its specification if the other processes do
not deviate from their guaranteed behavior formalized in their certificates. Hence, we changed
the satisfaction condition with respect to classical notions. However, determining whether
or not a strategy classically realizes an LTL formula is the crucial part of existing bounded
synthesis frameworks and, in particular, the SAT constraint system [FFRT17] that encodes
the bounded synthesis problem. Therefore, we present a different formalization of certifying
synthesis with guarantee transducers in this section. It relies on classical satisfaction, thus
allowing for reusing parts of the SAT constraint system for monolithic bounded synthesis,
particularly valid annotations of run graphs, while still ensuring that a strategy only needs to
satisfy the specification if the other processes do not deviate from their certificates.

Recall that to determine whether or not a strategy s; for a system process p; € P~ realizes an
LTL formula ¢; in bounded synthesis, we first construct a universal co-Biichi automaton A;
that accepts the language of ¢;, i.e., an automaton with L(A;) = L(¢;). Then, s; realizes ¢; if,
and only if, A; accepts comp(s;,y) Uy’ for all y € (2%)© and all y’ € (2V\V1)®. Hence, since the
acceptance of a universal co-Biichi automaton is determined by the number of visits to rejecting
states during a run, we check whether or not all runs of A; induced by some computation of s;
contain only finitely many visits to rejecting states (see Section 2.8.1). Observe that a finite
run of a co-Biichi automaton can never visit rejecting states infinitely often. Consequently,
all finite runs are trivially accepting. Hence, by ensuring that A; produces finite runs on all
sequences that deviate from the certificate of some other system process, we can check local
satisfaction with the very same concept for determining classical satisfaction, namely by using
valid annotations for checking whether the runs of \A; induced by the computations of s; visit
rejecting states only finitely often.

There are two possibilities for a universal co-Biichi automaton A; to produce finite runs on the
computation comp(s;, y) of the strategy s; on some input sequence y € (2/)®. First, A; can be
incomplete, i.e., there can be a state g of A; that occurs in a run of A; induced by the respective

125

126

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

computation comp(s;, y) of s; at point in time k and that does not have any outgoing edge for
input valuation comp(s;, y)r+1, i-€., we have (q, comp(s;, ¥)k+1,q") € O for all ¢’ € Q, where Q
is the set of states of A; and § is its transition relation. Second, the respective computation
comp(s;, y) of s; can be finite. In classical bounded synthesis, A; accepts the language of ¢;, i.e.,
we have L(A;) = L(¢;). Thus, the former possibility requires altering the universal co-Biichi
automaton A; to incorporate the other system processes’ certificates, for instance, when using
LTL certificates. Consequently, A; depends on the certificates and is not fixed, which is a major
change with respect to classical bounded synthesis algorithms. The latter possibility, in contrast,
only requires altering the strategies. To ensure that the computation of s; is finite on input
sequences that do not match the other processes’ certificates, we can model strategies with
transition-incomplete transducers instead of complete ones. Since we synthesize the strategies or,
more precisely, the finite-state transducers representing them, in bounded synthesis anyhow,
we thus only need to slightly alter the encoding of the strategies we are searching for, which is
much less invasive than altering A;. The transducers representing strategies, however, are still
deterministic and labeling-complete.

Therefore, we focus on this possibility and model strategies with deterministic and labeling-
complete but transition-incomplete finite-state Moore transducers in the following. Intuitively,
their transition relation is defined such that the computation of a strategy is infinite if, and only
if, the other processes do not deviate from the behavior formalized in their certificates. Note that
system strategies defined according to Definition 2.13 cannot produce finite computations as they
are modeled with functions. Thus, representing system strategies with transition-incomplete
finite-state Moore transducers is, strictly speaking, not possible. Therefore, we define local
strategies, a variant of system strategies that can be modeled with transition-incomplete finite-
state Moore transducers, as follows:

Definition 4.7 (Local Strategy).

Let p; € P~ be some system process. Let # € P~\ {p;} be a set of other system processes
and let G be a set of guarantee transducers, one for each process in . A local strategy
§i + (2Y)* x 2l — 20 for p; with respect to G is represented by a deterministic and labeling-
complete finite-state (2%, 297)-transducer 9; with Moore semantics. For all y € (21)® and all
o € Traces(7;, y) it holds that (i) if o is infinite, then there exists some y’ € (2"\"/)® such that
o Uy’ € Vg holds, and (ii) if o is finite, then o - (y|5| Uo) Uy’ ¢ HY holds for all 0 € 20

|o|+1
and all y’ € (2V\Vi)* with |y’| = |o] + 1.

Intuitively, a finite-state Moore transducer representing a local strategy thus omits all transi-
tions that are invoked by an input that may only occur if the other processes deviate from their
certificates, possibly resulting in labeling-incompleteness. For an input sequence y € (2%)® that
does not match the other processes’ guaranteed behavior, a local strategy s; thus encounters, at
some point in time k, the situation that in the current state of the transducer 7; representing s;
there does not exist an outgoing transition that matches yi4;. Since a local strategy is repre-
sented by a deterministic finite-state transducer, the current state at point in time k is unique.
Therefore every run of the transducer representing s; ends at point in time k, resulting in a
finite computation of the local strategy.

4.4. SYNTHESIZING CERTIFICATES

go, A (—atCrossing; V
—atCrossing,) | {go;}
go, A atCrossing; A
atCrossing, | {go,}

=go, A (—atCrossing; V
—atCrossing,) | {go,}

—go, A atCrossing; A
go, A atCrossing; A atCrossing, | {go;}

atCrossing, | 0

g0, A (—atCrossing; V
—atCrossing,) | 0

Figure 4.3.: Local strategy 77 for robot ry from the running example. Atomic propositions
denoting output variables of the other robot are highlighted in gray.

Example 4.7. Consider the robots r; and r; from the running example introduced in Section 4.1.

Furthermore, consider the guarantee transducers ‘TG and ‘TG for r; and ry, respectively, depicted
in Figure 4.1. Recall that the guarantee transducers 7,6 and 7,° can be 1nterpreted as strategy
transducers 77 and 7; for the robots r; and ry, respectively, as well. Local strategies 1 and 7 for
the robots ry and r, with respect to the sets {‘756} and {7{6}, which are based on the strategy
transducers 77 and 73, are depicted in Figures 4.3 and 4.4, respectively.

Robot ry’s local strategy 1, depicted in Figure 4.3, looks similar to 77, depicted in Figure 4.1a.

However, the transition labels contain restrictions on the output variable go, of robot r;, which
match r,’s guaranteed behavior formalized in ‘7;G, depicted in Figure 4.1b. Thus, in particular, Ii
does not define transitions that cannot be taken in the interplay of 77 and 7,¢. For instance, 7,°
ensures that go, is played in the very first time step as well as every time at most one of the
robots arrived at the crossing. As 77 is always in state u in this situation, ’f] does not have an
outgoing transition for —go, in state u.

Robot r,’s local strategy 77, depicted in Figure 4.4, differs from 7; in the number of states and
the transition structure. This is necessary to correctly incorporate r;’s guaranteed behavior:
in 7;, we are not able to distinguish even and odd positions of a sequence of consecutive time
steps in which both robots arrive at the crossing. Therefore, we cannot accurately capture r;’s
guaranteed behavior, which differs in these situations, with a two-state transducer, and hence we
need to enlarge the state space. Nevertheless, 7 defines an analogous behavior as 73, yet having
no outgoing transitions for situations that cannot occur in the interplay of 7; and 7;°. A

Note that the requirements on the finiteness and infiniteness of computations posed by the
definition of local strategies ensure that a finite-state transducer representing a local strategy

127

128

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

g0, A (—atCrossing; V
—atCrossing,) | {go,}
go, A atCrossing; A
atCrossing, | {go,}

g0, A (—atCrossing; V
—atCrossing,) | 0

go, A atCrossing; A
—go, A atCrossing; A atCrossing, | 0

atCrossing, | {go,}

=go, A (—atCrossing; V
—atCrossing,) | {go,}

Figure 4.4.: Local strategy 7, for robot r, from the running example. Atomic propositions
denoting output variables of the other robot are highlighted in gray.

has at least one initial state. Since the transducer is also deterministic by definition, it thus
follows that a labeling-incomplete finite-state Moore transducer representing a local strategy
has exactly one initial state:

Proposition 4.2. Let p; € P~ be some system process. Let P C P~ \ {p;} be a set of other
system processes and let G be a set of guarantee transducers, one for each process in P. Let $; be
a local strategy for p; with respect to G and let 9 = (T, fi,o, 1., £;) be the finite-state transducer
representing ;. Then, |T;o| = 1 holds.

Proof. Let OF = Upjep O?. Let 7 = (T, Ty, 7,) be the parallel composition of the guarantee
transducers in G. Since guarantee transducers are deterministic and complete Moore transducers
and since the sets of output variables of different processes are disjoint by definition of system
architectures, 7 is deterministic and complete and has Moore semantics by Lemma 2.1 as well.
Hence, there exists a unique initial state t, € Ty. Furthermore, there exists a unique valuation
0 € 297 of the guarantee outputs of the processes in P such that (¢, 0) € £ holds. Let p € (2")®
be some infinite sequence with poﬂOiG = 0. Then, in particular, p, ﬁOjG = comp('i;G, pNI;) ﬂOjG
holds for all p; € # and thus, by definition of valid histories, we have p|; € 7-(1g.

Since ‘7A,~ is deterministic by definition and thus, in particular, transition-deterministic, we
have |7A"l-,0| < 1. Suppose that |7A",-,0| = 0 holds. Then, |o| = 0 holds for the unique trace
o € Traces(T;, pNI) of 77 induced by p N I;. Since §; is a local strategy for p; with respect to G,
we thus have ((pp N L) Uo) Uy ¢ 7—(19 for all y € (2V\V)® with |y’| = 1 and all 0 € 29, Thus,
in particular ((po N I;) U (po N O;)) U (po N (V \ V) g€ ng holds; contradicting p|; € 7-{19.
Hence, we have |T;| # 0 and, since |T;o| < 1 holds, |T;¢| = 1 follows. O

4.4. SYNTHESIZING CERTIFICATES

Utilizing the notion of local strategies, we now reformulate the definition of certifying
synthesis with guarantee transducers from Section 4.3.

Definition 4.8 (Certifying Synthesis with Local Strategies).

Let ¢ be an LTL formula over atomic propositions V with decomposition {¢y, ..., ¢,). Let
G = <7IG, .. .,7:1G) be a vector of guarantee transducers for the system processes and, for
pj € P letGj = {7:G | pi € P™\ {pj}}. LetS = (81, ..,8n) such that $; is a local strategy
for p; € P~ with respect to G;. Let 7; be the deterministic and labeling-complete finite-state
Moore transducer representing ;. If 7; < 7. holds and if, for all y € (21')‘*’ Y e (2V\Viye,

either comp(s;, y) is finite or comp($,y) U y" | ¢ holds, then we say that (S, G) realizes ®.

Certifying synthesis for ¢ derives vectors S and G such that (S, G) realizes ®.

Note here that the notion of transducer simulation for ensuring that a strategy does not
deviate from its own certificate does not need to be altered when using local strategies instead
of complete strategies: for T < /A G to hold, transducer simulation requires a transition in
the guarantee transducer 7l.'G whenever there is a matching one in 71' Hence, whenever the
local strategy does not have an outgoing transition for a specific input in the current state, i.e.,
whenever the local strategy is transition-incomplete, transducer simulation does not require
the existence of a transition in this situation either. Since guarantee transducers are complete,
however, this permits any behavior in the guarantee transducer in such situations. While this
differs from the previous definitions of certifying synthesis, both with guarantee transducers
and LTL certificates, it does not affect soundness or completeness since, intuitively, situations
in which a guarantee transducers’ behavior does not match the local strategy cannot occur in
the interplay of all strategies.

Certifying synthesis with local strategies indeed utilizes classical satisfaction instead of local
satisfaction. Thus, we can reuse existing bounded synthesis frameworks and, in particular, valid
annotations of run graphs (see Section 2.8.1), to determine whether a local strategy realizes an
LTL formula. In the following, we study the relationship between certifying synthesis with
local strategies as defined above (see Definition 4.8) and certifying synthesis with guarantee
transducers as introduced in Section 4.3. First, we introduce the notions of extending local
strategies and restricting complete strategies. This allows for comparing local strategies with
classical satisfaction to complete strategies with local satisfaction. Afterward, we then utilize
the concepts of strategy extension and restriction to show soundness and completeness of
certifying synthesis with local strategies.

4.4.2. STRATEGY EXTENSION AND RESTRICTION

Given a local strategy $; for system process p; € P~ and a set G of guarantee transducers, we
can construct a complete strategy s;, i.e., a strategy according to Definition 2.13 represented by
a complete finite-state transducer, by, intuitively, extending §; with its own guaranteed behavior.
More precisely, s; behaves as §; up to the point in time k > 0 at which §; does not produce
any further valuation of output variables. From point in time k on, s; then behaves as p;’s
certificate, modeled by guarantee transducer 7;°, does. Note that whenever $; produces an

129

130

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

infinite computation, s; does not switch from §; to p;’s guarantee but always behaves as §; does.
Formally, we construct a deterministic and complete finite-state Moore transducer modeling
the full strategy s; from §; as follows:

Definition 4.9 (Strategy Extension).

Let p; € P~ be a system process and let 7,¢ be a guarantee transducer for p;. Let # € P~\ {p;}
be a set of other system processes and let G be a set of guarantee transducers, one for each
process in P. Let §; be a local strategy for p; with respect to G. Let ‘77 = (T,, f},o, %, 4;) be
the transition-incomplete finite-state (2%, 297)-transducer representing $;. The extension
extend(s;, 7:G) of §; is represented by a finite-state (2%, 29%)-transducer 7; = (T;, Ty,0, 7i, £;)
which we construct from ‘i{ and 7;G as follows:

Ty = (LU {L}) xTF,

_ G
« Tio =Ty X T;j and

((£,1),1, (#,1)) € 7; if, and only if, (t,1, 1) € TiG and either (f,1,1) € 7;, or both #’ = L
and Vi"” € T. (£,1,£"") ¢ %;, or f = L holds.

((£,1),0) € ¢ if, and only if, either both # # 1 and (£,0) € # hold, or we have both
f =L ando = pick ({o € 29 | (,on O%) € £°}),

where pick(M) picks one element from the non-empty set M.

Intuitively, the transducer representing extend(s;, ‘7:G) keeps track of both the behavior of
the possibly incomplete transducer 7; representing the local strategy $; and the behavior of the
guarantee transducer 7; G for system process p; € P~. If, for some input sequence y € (2%)®, the
local strategy §; produces an infinite computation, i.e., if §; does not “get stuck” at some point
in time, the extended strategy extend(s;, G) always follows both §; and 7:6 and produces $;’s
outputs. As soon as §; “gets stuck”, however, the extended strategy extend(3;, 7,°) cannot
follow $; anymore but only ‘717G. It then produces some extension of the outputs of 7;6, which
are a subset of all output variables of p;, to the set O; of all output variables.

Since the transducer 7; representing extend(s;, ‘7:6) is built from the deterministic transduc-
ers ‘f{ and 7}’ G and since the transition relation of 7; always follows one of them, 7 is transition-
deterministic as well. Furthermore, 7,¢ is complete, while 9; might be transition-incomplete.
Since the transition relation of 7; always follows 7; G, however, 7; is transition-complete as
well. Since 7;’s labeling relation follows 9; for states (,t) with f # L and since 7; is both
labeling-deterministic and labeling-complete, 7; has exactly one output for such states as well.
For states (£,t) with = L, in contrast, 7;’s output is defined by a unique valuation of output
variables which, restricted to the guarantee outputs, is an output of 7; G in state t. Note here that
the set of all such valuations is non-empty since 7;€ is labeling-complete. In fact, the valuation
of the guarantee outputs is already uniquely defined by l’iG since we consider 71.'6 to be labeling-
deterministic here as well. However, the function pick would ensure labeling-determinism for
such states also if 71.~G would not be labeling-deterministic, Therefore, the transducer 7; is both
labeling-deterministic and labeling-complete as well. Lastly, since both 77 and 7€ consist of a

4.4. SYNTHESIZING CERTIFICATES

finite number of states, it follows immediately from the construction of 7; that it has a finite
number of states as well. Thus, 7; is a deterministic and complete finite-state transducer and
hence it indeed represents a complete strategy. Furthermore, §; and extend(s;, 7:G) agree on
input sequences on which §; produces infinite computations:

Lemma 4.3. Let p; € P~ be a system process and let 7176 be a guarantee transducer for p;. Let
P C P\ {pi} be a set of other system processes and let G be a set of guarantee transducers, one
for each process in P. Let $; be a local strategy for p; with respect to G. Let s; := extend(§;, 7176).
Lety € (2%)®. Then, comp(5;, y)x = comp(s, y)x holds for all k with 0 < k < |comp(3;,y)|.

Proof. Let7; = (T;, T, 73, £;) and ’ff = (f}, f},o, 11, ;) be the finite-state transducers representing s;
and §;, respectively. By definition, 77 is deterministic and labeling-complete. As outlined above, 7;
is both deterministic and complete. Let y € (2%)“. Let = € Paths(7;,y) and # € Paths(7;, Y) be
the unique paths produced by 7; and 7 respectively, on y. Then, it follows from the construction
of 7; and thus from the definition of strategy extension, that for all k with 0 < k < |comp(S;, y)|,
if 7 = (£, 0), then there exists some t© € TiG such that ;. = ((,t%), 0) holds. Thus, in particular,
#1(7r) = #1(#1(mp)) and #2(7;) = #2(y) hold for all k with 0 < k < |7|. Let o € Traces(7;,y)
and & € Traces(7;, y) be the unique traces corresponding to & and 7, respectively. Then, it
follows that ox = &y for all k with 0 < k < |6] holds as well by definition of traces. Hence,
by definition of computations, comp($;, y)x = comp(s;, y)x holds for all points in time k with
0 <k < |comp(Si,y)|- O

The extension of a local strategy §; for a set G; of guarantee transducers according to Defi-
nition 4.9 to a complete strategy then preserves realization: if the local strategy §; realizes an
LTL formula ¢;, then the complete strategy extend(s;, 7;€) locally realizes ¢; with respect to Gi.
Furthermore, it follows from the construction of 7; that ‘717G simulates 7;. Lastly, the parallel
composition of the local strategies and the parallel composition of their extensions coincide.
Note that this immediately establishes that the parallel composition of the local strategies
produces a unique and infinite computation for every input sequence. Therefore, we can lift a
solution of certifying synthesis with local strategies to a solution of certifying synthesis with
local satisfaction using strategy extension:

Lemma 4.4. Let ¢ be an LTL formula over atomic propositions V with decomposition (¢, . .., ¢n).
Let G = (T,C,...,T.C) be a vector of guarantee transducers for the system processes and, for
pjePlet G ={T.% | pi € P\ {p;}}. Let S = (51,...,3,) be a vector of local strategies for the
system processes such that §; is a local strategy for p; € P~ with respect to G;. Let S = (sq, ..., Sn)
such that s; = extend(s;, ‘7176) holds for all p; € P~. If(S, G) realizes ¢, then (S, G) realizes ¢ as
well and Traces(77 || ... || 95) = Traces(77 || ... || Tn) holds, where T; and 9; are the finite-state
transducers representing s; and $;, respectively.

Proof. Let'/f,T = (f}, f},o, t,6), T = (T;, T; 0, 7i £i), and 71.'6 = (Tl.G, Tl% rl.G, t’iG). Let (S, G) realize ¢.
Then, by definition of certifying synthesis with local strategies, we have, for all p; € P7, both
Ti < ‘7l.'G and, for all y € (2%)®, y" € (2V\V1)®, either comp(§;, y) is finite or comp($;, y) Uy’ = ¢
holds. To prove that (S, G) realizes ¢ as well, we show that both s; =g, ¢; and 7; < ‘717G hold
for all system processes p; € P~. Let p; € P~ be some system process.

131

132

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

First, we show that 7; < 717G holds. Since (3, G) realizes ¢ by assumption, in particular
717 < '7;G holds. Let R : fl X Tl.G be the relation establishing the simulation. We construct a
relation R’ : T; X Tl.G establishing the simulation 7; < 717G from R as follows: ((£,t),t°) € Rif,
and only if, t = t© and either (,t%) € R or { = 1 holds It remains to show that R’ satisfies the
properties of a simulation relation. Clearly, (t, t(?) € R’ holds for all t, € Ty and all tg; € TOG
by construction of 7; and R’ and since R satisfies the properties of a simulation relation. Let
((£,t9),t%) € R". If { = 1 holds, then {o | (t%0) € flG} = {0 N Ol.G | ((£,t9),0) € {’i} follows
immediately from the definition of strategy extension. If # 1 holds, then we have (£,) € R
by construction of R’ and thus, in particular, {o | (1%, 0) € {’IG} = {o N OiG | (,0) € f,} holds.
Hence, {0 | (t€0) € t’lG} = {o N OIG | ((£,t9),0) € t’i} follows with the construction of ¢; also
if # 1 holds. Furthermore, there is only a transition ((,t), 1, (#',t')) € 7; in 7; if there is a
transition (t,1,t") € rl.G in 71.'G as well. Hence, the second requirement of simulation relations
for transducer simulation is satisfied as well and thus 7; < 7;G follows.

Second, we show that s; g, ¢; holds, i.e., we prove that forall y € (2%)® and ally’ € (2V\Viye,
we have comp(s;,y) Uy’ g, @i. Lety € (25)? and y’ € (2V\Vi)®_ Since (S, G) realizes ¢ by
assumption, either comp(§;, y) is finite or comp($;,y) Uy’ | ¢; holds. If comp(§;, y) is infinite,
then, by Lemma 4.3, comp(S;, y) = comp(s;, y) holds. Furthermore, we have comp($;, y) Uy’ | ¢;
and thus comp(s;,y) Uy’ | ¢; follows. Hence, comp(s;,y) Uy’ g, ¢ holds. Otherwise, i.e.,
if comp($;,y) is finite, let k := |comp(S;, y)|. By definition of local strategies, we then have
comp(S;,y) - (yxUo)Uy” ¢ 7-(5"1 forallo € 29 and all y” € (2V\V)* with |y”’| = k + 1. Thus, in
particular, comp(S;, y) - (yx Uo) U y|’k o ¢ 7{&1 holds for all 0 € 29:. Furthermore, by Lemma 4.3,
we have comp(S;,) = comp(s;, y)r for all points in time k” with 0 < k’ < k. Hence, we obtain

comp(si, y) |k = comp($;,y) and therefore comp(s;, y)x - (yx Uo) U Y|’k+1 ¢ (Hgf"l follows for all
o € 29, Thus, since we have comp(s;,y) N I; = y by definition of computations, in particular
comp(si, ¥)k+1 U Y|/k+1 ¢ Wk%l holds. Therefore, we have comp(s;,y) Uy’ ¢ Vg, and thus, by
definition of local satisfaction, comp(s;,y) Uy’ g, ¢: follows.

Lastly, we show that Traces($1||...||$,) = Traces(sy||...||sn) holds. For the sake of readability,
let 7 =F||...|| Tnand T =T7 || ... || Tnas wellas T = (T, Ty, 7,£) and T = (T, Ty, 7, £). Let

y € (29)© be some input sequence of the full system. Let 77 € Paths(7", y) and # € Paths(7", y)
be the paths of 7~ and 7~ induced by y, respectively. Let o € Traces(7",y) and 6 € Traces(7",y)
be the corresponding traces. Let k := |6]. Since all transducers 7; are deterministic and
complete and have Moore semantics by construction and since the sets of output variables of
different processes are disjoint by definition of architectures, 7 is deterministic and complete
by Lemma 2.1 as well. Therefore, both 7 and ¢ are infinite. First, let 77 € (TIG X ZOiG)“’ be
the sequence such that #1 (87 = #y(#;(#1 (7)) and #2(757) = #5(mp) N Ol.G holds for all
k’ > 0. Hence, intuitively, 7% captures the part of 7 that corresponds to the guarantee for
process p;. By definition of strategy extension, every transition in 7; corresponds to a transition
in 7,°. Furthermore, since 7; < 7, holds as shown above, the labeling of a state of 7; always
agrees with the labeling of the guarantee part on the variables in OIG, no matter which case of
the case distinction in the definition of the labeling function is applicable. Hence, 7% defines
a path in 7}’ G. More precisely, it follows with the definition of the parallel composition of
finite-state transducers that 7% € Paths(‘i;G, o N ;) holds. Let ¢%% € Traces(‘i;G, o NI;) be

4.4. SYNTHESIZING CERTIFICATES

the corresponding trace. Then, 0*C = comp(7;°, o N I;) holds for all p; € P~ since guarantee

transducers are deterministic. Thus, by construction of the 742G, we have o € Vg, forall p; € P™.

Utilizing this observation, we now show that 7 is infinite and that #; (#;(#; (7x))) = #;(#1 (7))
holds for all p; € P~ and all points in time k > 0. Proof by induction on k.

« k = 0. By definition of strategy extension, we have T; = ﬁo X TG for all p; € P~
Thus, by definition of the parallel composition of finite-state transducers the sets of
initial states of 7~ and 7~ are given by T1 0X...X Tn() and (T1 o XT 0) X ... X (TnO xT 0)

respectively. By Proposition 4.2 we have |T,-,0| = 1. Hence, || > 0 holds and, for all
pi € P~, we have both #i(#l(ﬁo)) S Ti,O and #1(#1'(#1 (JT()))) S Ti’(). Since |T},()| = 1 holds,
#1(#;(#1(7m0))) = #;(#1 (7)) thus follows for all system processes p; € P~.

o k> 0and#;(#;(#;(mr))) = #;(#1 (A)) holds forall p; € P~and all kK’ with 0 < k” < k. For
system process p; € P, let 7' € (T; x 29%)* be the finite sequence with |7’| = k such that
both #;(7%,) = #,(#;(#1 (7)) and #,(rr},) = #,(m) N O; hold for all kK’ with 0 < k’ < k.
Since we have #; (#;(#(7r))) = #;(#1(7x)) for all p; € P~and all K’ with 0 < k' < k by
assumption, #; (#;(#1 (7x—1))) # L holds. Hence, it follows from the definition of strategy
extension that, for all p; € P~, the finite sequence 7' is a prefix of p' € Paths(7;, 0 N I;).
By definition of computations, ojx N V; is thus a prefix of comp($;, o0 N I;). As shown
above, o € Vg, holds for all p; € P~ and thus, in particular, we have o, € 7-(k+’1 for all
pi € P™. Hence, since $; is a local strategy for p; and G; by definition, it follows from the
definition of local strategies that |comp($;, 0 N I;)| > k holds for all p; € P~. Thus, for all
pi € P, there exists a transition (#1(7r]i_1), ok_1 NI #1(p,i<)) € 7;. Therefore, there also
exist transitions (#; (#1(7mx—1)), oxk—1 N I, #;(#1 (7)) € T; for all p; € P~ and, in particular,
#1(#;(#1 () = #1(ﬁ,;) holds by definition of strategy extension. By construction of 7,
we have #; (7, _,) = #1(#;(#1(7mk-1))). Thus, #1(7;_,) = #;(#1(A-1)) follows with the
assumption that #; (#; (#;(7x—1))) = #;(#1(Ax-1)) holds for all p; € P~. By definition of
paths and traces, we have ox_; = yx—1 U 0 and 63_1 = yx—1 U 6, where 0,6 € 20i are
the unique outputs of 7; and 7; produced in state #; (mx_;) and #; (#_), respectively.
Since #1 (#; (#1(mr—1))) = #;(#1(Ax-1)) holds for all p; € P~ by assumption, it follows from
the definition of strategy extension that o = 6 holds. Hence, oy_; = ;- and therefore
(#:(#1 (1)), 61 N 1, #1(p]i)) € 7; for all p; € P~ as well. Thus, by definition of strategy
extension, #;(#1(7x)) = #1(p,) holds and hence, since #; (#;(#1(7x))) = #1(p,) as shown
above, we have #;(#;(#; (7)) = #;(#1 (7)) for all p; € P~.

Hence, we have #; (#;(#1(x))) = #;(#1 (7)) for all p; € P~ and all points in time k > 0. Thus,
by definition of the parallel composition of finite-state transducers as well as the definition
of paths, we have #;(7x) N O; = #;(7x) N O; and therefore, since J,,ep-O; = O™ holds by
definition, #;(7x) = #2(/) follows. Hence, we also have o = 6 by construction of ¢ and 6 as
well as by definition of traces. Since we chose y € (297)® as well as o € Traces(7,y) and
6 € Traces(7T, y) arbitrarily, Traces($y || ... || $n) = Traces(sy || ... || sn) follows. |

Thus, since a solution of certifying synthesis with local strategies can be extended to a
solution of certifying synthesis with local satisfaction, we can utilize the results from Section 4.3

133

134

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

to also reason about the version of certifying synthesis presented in this section. In particular,
it follows immediately from Theorem 4.2 and Lemma 4.4 that certifying synthesis with local
strategies and guarantee transducers is sound:

Corollary 4.1. Let ¢ be an LTL formula over atomic propositions V and let {p1, ..., ¢n) be its
decomposition. Let G = (T,C, ..., T.C) be a vector of guarantee transducers for the system processes
and, forp; € P~ let G; = {7, | p; € P~\ {p;}}. LetS = (3y,...,5,) be a vector of local strategies
for the system processes such that $; is a local strategy for p; € P~ and G;. If(S, G) realizes ¢,
then sy || ... || $n | @ holds.

Vice versa, we can restrict a complete strategy to obtain a local strategy. The restriction is
based on a set of guarantee transducers and the local strategy is restricted to those sequences
that match computations of these guarantee transducers. Intuitively, the local strategy is a copy
of the complete one; yet, we delete all transitions that can only be taken if some of the other
(observable) system processes deviates from its certificates. Formally:

Definition 4.10 (Strategy Restriction).

Let p; € P~ be a system process. Let # C P~ \ {p;} be a set of other system processes and
let G be a set of guarantee transducers, one for each process in . Let s; be a strategy for p;
and let 77 = (T}, T; o, 73, £;) be the deterministic and complete finite-state (2%, 29%)-transducer
with Moore semantics representing s;. Let 7 = (T, Tp, 7,) be the parallel composition of
the guarantee transducers in G. We construct the restriction restrict(s;, G) of s; to G; by con-
structing a deterministic but possibly transition-incomplete finite-state (2%, 29¢)-transducer
J; = (Tl, f",-,o, t;, 6;) from 7; and 7~ as follows:

- Ti=Tx2',
o Tpo = Tio x {{to} | to € Ty},
o (5, M), 1, (t',M")) € 7;if, and only if, (t,1,¢") € 7; as well as M’ # @ hold, and the set M’
is uniquely defined by
M ::{E’ €T|30e2% FeM 36200, (i6) et A (to) €l
AT €2X 1n0C=6nL A N0 =0NnIC

/\l/ﬂfizlﬂIiG A (f,t',f’)Ef},

where Il.G = Uij,D I\ Upjeil’ Oj and OIG = UPJE;D Oj, and

« ((t,M),0) € ¢ if, and only if, (t,0) € ¢

Intuitively, a computation of restrict(s;, G;) on input y € (2%)® follows both a computation
of the complete strategy s; on y and a computation of the parallel composition of all guarantee
transducers in G on some matching input sequence. This allows for tracking whether or
not there exists some sequence y’ € (2V\V))® such that comp(s;,y) Uy’ € Vg holds. The

4.4. SYNTHESIZING CERTIFICATES

transducer representing restrict(s;, G;) then only contains those transitions of the transducer
representing s; that are taken in comp(s;, y) up to the point in time at which the properties of a
valid computation are satisfied for all y’ € (2V\V)®. In the following, we show formally that
restrict(s;, G) indeed satisfies the properties of a local strategy of p; with respect to G.

Lemma 4.5. Let p; € P~ be a system process. Let P C P\ {p;} be a set of other system processes
and let G be a set of guarantee transducers, one for each process in P. Let s; be a strategy for p;
and let §; = restrict(s;, G). Then, §; is a local strategy for p; with respect to G.

Proof. Let I? = Up,ep i \ Up,ep O), let OF = U, ep O, and let VE = IC U OF. Let
T = (T;, Tip, 71, £;) and ‘f{ = (f}, Ti,o, %;, £;) be the finite-state transducers representing s; and $;,
respectively. Let 7 = (T, Ty, 7, £) be the parallel composition the guarantee transducers in G.
By definition, 7; is a deterministic and complete Moore transducer. Thus, it follows from the
definition of strategy restriction that 7; is both labeling-deterministic and labeling-complete
and has Moore semantics. Furthermore, for each (t, M) € T;, there only exists a single t' € T
such that ((¢t, M), 1, (t', M")) € 7; holds for some M’ € 2T. Hence, since M’ is uniquely defined,
it follows from the construction of 71' that ‘i{ is transition-deterministic as well.

Next, we show that §; satisfies the properties of a local strategy for p; with respect to G
regarding the finiteness and infiniteness of computations. Let y € (2/) and let # € Paths(7;, y)
be the unique path produced by ; on inputy. Let 6 € Traces(7;,) be the corresponding trace.
Let k := |6]. First, we show a fact regarding the connection of paths of 9; and paths of 7.
Afterward, we utilize this result to show that §; satisfies the properties of a local strategy.

Fact (A): For all k’ with 0 < k” < k, we have t € #,(#, (A)) if, and only if, there exists some
Y€ (ZIiG)“’ and some 7 € Paths(7,7) with #,(7x/) = t such that yx» N Ol.G = (G N OIG) NI,
}7](// N O,‘ = (6'k// N Ol) N IlG, and Yk N IlG = ?k” NI hold for all k" with 0 < k" < kl, where
6 € Traces(T,y) is the trace corresponding to 7. Proof by induction on the point in time k’.

« k' = 0. By definition of strategy restriction, we have YA},O =Tio X {{to} | to € To}. Hence,
in particular, #,(#; (7)) € {{to} | to € To} holds by definition of paths. Furthermore, we
have #,(7y) € Ty for all & € Traces(7"). Since k' — 1 < 0 holds, the claim thus follows.

« 0 < k' < k and we have t € #,(#;(#_;)) if, and only if, there exist some j € (ZIiG)‘”
and some 7 € Paths(7,y) with #,(7/) = t such that yx» N Ol.G = (6xr N Ol.G) NI,
?kn N Oi = (6’ N Ol) N IlG, and Yk N IlG =)N/k// N Ii hold for all k" with 0 < k" < k’ — 1,
where 6 € Traces(7,y) is the trace corresponding to 7. First, suppose that there exist
some y € (ZIiG)”, some 7 € Paths(7,y), and some & € Traces(r,y) such that we have
Yk NOY = (G NOC) NI, i NO; = (637 NO;) NIC, and yxr NIC = Jr NI, for all K with
0 < k” <k’ — 1. Then, by assumption, #;(7x'—1) € #,(#;(%x-—1)) holds. Since guarantee
transducers are complete Moore transducers and since the sets of output variables of
different processes are disjoint, 7~ is a complete Moore transducer by Lemma 2.1 as well.
Hence, there exists some transition (#;(7x'~1), Yx'-1, #1(7x’)) € 7. By definition of paths
and traces, both (#{(7x), 6 N OlG) € ¢ and (#,(fx), 61 N O;) € £; hold. Hence, we have
(#1(#1 (), 6 N O;) € ¢; by construction of 9; as well. Therefore, it follows from the
assumption as well as from the definition of strategy restriction, in particular the definition

135

136

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

of the set M’, that #; (#fx') € #2(#; (A1) holds. Second, suppose that there do not exist
Y€ (ZIiG)‘”, 7 € Paths(7,7), and ¢ € Traces(r, y) such that yx» N Ol.G = (6 N OIG) NI,
YirNO; = (6xr ﬂOi)ﬂIl.G, and yy ﬂIiG = yx»NI; hold for all k”” with 0 < k" < k’—1. Then,
by assumption, we have #;(7x _1) ¢ #2(#1(7y)). By definition of strategy restriction, it
thus follows that #; (7x') ¢ #;(#1 (/%)) holds.

Utilizing fact (A), we show that §; satisfies the requirements of a local strategy for p; and G
regarding finiteness and infiniteness of computations, i.e., we show that if the trace ¢ is infinite,
then there exists some y’ € (2V\V)® such that 6 Uy’ € Vg holds and otherwise, if & is finite,
then we have 6 - (yx Uo) Uy’ ¢ 7_{kg+1 forall o € 2% and all y’ € (2V\V¥)* with |y’| = k + 1.

First, let 6 be infinite. Then, by definition of strategy restriction, in particular #; (#;(7x)) # 0
holds for all points in time kK’ > 0. Hence, it follows with fact (A) that there exist some
v € (ZIiG)“’ and some 7 € Paths(7,y) with corresponding trace 6 € Traces(7,y) such that
Y NOF = (60 NOC) NI, o NO; = (6 NO;) NIC, and yr N IC = jo N I; as well as
#1 (7)) € #2(#1(7x)) hold for all k” > 0. Note thaty =6 NLjandy =N II.G hold. Therefore,
(6NL)NOY = (6NO°)NI;, (6NIC)NO; = (6N0;) NI, and (6NL)NIC = (6NI°) NI; follow.
Thus, 6 and & agree on all variables in (I; N OlG) U (O; ﬂIiG) U (I; ﬁIl.G). Since O; N Ol.G = (follows
from the definition of OF as well as the disjointness of the sets of output variables of processes, 6
and ¢ further agree on all variables in O,-OOZ.G. Therefore, 6N (ViﬁViG) =dN (ViﬂViG) follows. By
construction of 6 and &, we have & € (2)®? and & € (2ViG)“) and hence 6NV; = o and &ﬁViG =0
hold. Thus, 6N Vl.G = 6NV; follows and hence, in particular, (6U (6N (VIG \V))n Vl.G = ¢ holds.
Since ¢ is a trace of 7, we have 6 N V; = comp("];G, o NI;) forall p; € P by Proposition 4.1 and
thus (6 U (6N (ViG \V)))nv; = comp(‘]J“.G, (6U(en (Vl.G \ Vi) N1I;) follows for all p; € P as
well. Thus, 6 U (6N (VlG \ Vi)) € Vg holds since we have V; U Vl.G =V by construction. Hence,
there exists some y’ € (2\V)©, namely y’ := 6 N (VIG \ Vi), such that 6 Uy’ € Vg holds.

Second, let 6 be finite. Let k = |6]|. By definition of strategy restriction, #,(#; (7x+1)) = 0 holds.

Suppose that there are 0 € 2% and y’ € (2V\V)* with |y’| = k+1 such that - (yx Uo)Uy’ € ‘}'—(ngr1

holds. Let p := 6 - (yx Uo) U Y|/k+1' Let p’ € (2ViG)“) be some infinite extension of p. Then,
we have pp NV} = comp(7;G,p’ NI NVjforall p; € Pandall k¥’ with0 < k" < k+ 1.
Hence, similar to the proof of Proposition 4.1, it follows that p is the prefix of some trace
of 7. Furthermore, clearly pi» N'V; = & N VE holds for all k” with 0 < k” < k. Thus,
in particular, (6x» N L) N OF = (pr N OP) N I, (prr NIC) N O; = (6, N O;) N IC, and
(6 N L)N Il.G = (pgr N IIG) N I; hold for all k” with 0 < k” < k + 1. Therefore, it follows with
fact (A) that we have #;(7x11) € #2(#1(%x+1)), where 7 € Paths(7,p’ N Il.G) is the unique path
produced by 7 on input p’ N Il.G; contradicting that #;(#; (7x4+1)) = 0 holds. O

Furthermore, the computation of restrict(s;, G) on some input sequence y € (2%)® agrees
with s;’s computation comp(s;, y) if comp(restrict(s;, G),y) is infinite. Otherwise, comp(s;, y)
is an infinite extension of comp(restrict(s;, G),y). Additionally, it follows with the fact that
restrict(s;, G) is a local strategy for p; with respect to G that a computation of restrict(s;, G)
on y is infinite if, and only if, there exists some valuation of the variables that are unobservable
for system process p;, together with comp(restrict(s;, G), y), build a sequence that matches the
guaranteed behavior of the system processes in $:

4.4. SYNTHESIZING CERTIFICATES

Lemma 4.6. Let p; € P~ be a system process. Let P C P~ \ {p;} be a set of other system processes
and let G be a set of guarantee transducers, one for each process in P. Let s; be a strategy for p;
and let §; := restrict(s;, G). Lety € (2%)®. Then, comp($, y)ir = comp(s;,y)x holds for all k’
with 0 < k' < |comp(5;,y)| and all y € (2%)®. Furthermore, comp(5;,y) is infinite if, and only if,
there exists some y’ € (2V\V1) such that comp(s;,y) Uy’ € Vg holds.

Proof. Let 7; = (T;, Ty, 71, £;) and T = (T,, Ti,O: 13, £;) be the finite-state transducers representing s;
and §;, respectively. Let 7 = (T, T, 7, £) be the parallel composition the guarantee transducers
in G. Let y € (2%)® be some input sequence. Let & € Paths(7;,y) and # € Paths(7;, y) be the
unique paths produced by 7; and 77, respectively, on y. Let o € Traces(T;,y) and 6 € Traces(7;,y)
be the corresponding unique traces. Let k := |6|. By definition of strategy restriction, every
transition (¢,4,t) € 7; in ‘if is contained in 7; as well, i.e., (t,1,t’) € 7; holds. Thus, since
both 77 and 7; are deterministic by construction and by Lemma 4.5, respectively, and thus =
and 7 are unique, we have mp = 7y for all points in time k" with 0 < k' < |%|. Hence,
comp(8;, y)rr = comp(s;, y)x holds for all k” with 0 < k' < |comp(5;,y)| follows from the
definition of computations and the fact that |[comp($;, y)| < || holds by definition of traces.

First, let & be infinite. Then, since §; is a local strategy for p; with respect to G by Lemma 4.5,
there exists some y’ € (2V\V))® such that 6 Uy’ € Vg holds. Furthermore, since comp(s;, y) is
infinite, we have comp($;, y) = comp(s;, y) as shown above and thus, in particular, o = & holds
since both 77 and 7; are deterministic by definition and by Lemma 4.5, respectively. Therefore,
it follows that there exists some y’ € (2V\V#)® such that o Uy’ € Vg holds.

Second, let & be finite. Then, since §; is a local strategy for p; with respect to G by Lemma 4.5,
we have 6- (yxUo)Uy’ ¢ 7_{kg+1 forallo € 2% and all y’ € (2"\Vi)* with |y’| = k+1. Furthermore,
we have comp(S;, y)ir = comp(s;, y)i for all k” with 0 < k' < k as shown above and thus, in
particular oy = 6y for all k¥’ with 0 < k" < k since both 7; and 9; are deterministic by definition
and by Lemma 4.5, respectively. Hence, we have o - (yx Uo) Uy’ ¢ ?{Ii forallo e 29 and all

v € (2VV)* with |y’ =k + 1 and thus c U y’ ¢ Vg follows for all y’ € (2V\Viyo, |

The existence of a transition in the finite-state transducer ‘f{representing $; = restrict(s;, Gi),
however, might also depend on unobservable behavior of other system processes. The valuation
of variables outside of V; cannot be observed by process p;. However, whether or not a transition
of the transducer 7; representing thee full strategy s; is also contained in 77 does not only depend
on the existence of an input sequence y € (2%)® and s;’s behavior on y but also on the existence
of a sequence y’ € (2V\%/)®. Hence, whenever there is some unobservable behavior of the other
system processes that matches their guaranteed behavior, a transition from 7; is preserved in 7;
and thus, as shown in Lemma 4.6, the computations of s; and $; coincide on y.

When determining whether or not §; realizes an LTL formula ¢;, we determine whether
for all y € (25)® and all y’ € (2V\V)® either comp(s;,y) is finite or comp(5;,y) Uy E o
holds. Hence, we consider a concrete sequence y’ of valuations of unobservable variables.
However, whether comp($;,y) is infinite only depends on the existence of some sequence
of unobservable variables, not the concretely considered one. Thus, comp(§;, y) might be
infinite although comp($;,y) Uy’ ¢ Vg, holds. Hence, requiring $; = ¢; then also requires
comp($;,y) Uy' [¢; to hold although comp(S;,y) Uy" ¢ Vg, This is in contrast to local
satisfaction, where comp($;,y) Uy’ [Eg, @i holds if we have comp(S;,y) Uy ¢ Vg, .

137

138

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

Therefore, not every solution of certifying synthesis with local satisfaction can be translated
into one for certifying synthesis with local strategies when utilizing strategy restriction as
defined in Definition 4.10. The former requires a strategy to realize the specification if all other
system processes do not deviate from their guaranteed behavior. The latter, in contrast, requires
a strategy to satisfy the specification if the observable behavior of all other system processes does
not deviate from their guaranteed behavior. Thus, if system process p; € P~ cannot observe
whether or not another system process p; € P~ \ {p;} deviates from its certificate, satisfaction
with local strategies requires the strategy to satisfy the specification while local satisfaction for
complete strategies does not. However, as long as the satisfaction of the specification does not
depend on unobservable variables, i.e., as long as prop(¢;) € V; holds for all system processes
pi € P, then the existence of some sequence y’ € (2V\V)® such that comp(s;,y) Uy’ E ¢;
holds implies that comp(s;, y) Uy’ [¢; holds for all such sequences y’. Hence, satisfaction of
local strategies can be concluded from local satisfaction for complete strategies when utilizing
strategy restriction for obtaining the local strategies:

Lemma 4.7. Let ¢ be an LTL formula over atomic propositions V with decomposition {1, . .., @n).
LetS = (sy,...,sp) and G = (T.°, .. .,TnG) be vectors of strategies and guarantee transducers for
the system processes. For pj € P~, let G; = {7:6 | pi € P™\ {pj}}. Let S = (51,...,8,) such that
$; = restrict(s;, Gi) holds for all p; € P~. If (S, G) realizes ¢ and if prop(¢;) € V; holds for all
pi € P, then (S, G) realizes ¢ as well.

Proof. Let ’f,' = (’f}, tio» T, t;) and 7; = (T;, i, i, £;) be the finite-state transducers representing $;
and s;, respectively. Let 71.'G = (TiG, ti,GO, TiG,fiG). Assume that (S, G) realizes ¢. Then, by
definition of certifying synthesis with guarantee transducers and local satisfaction, we have
both s; Eg, ¢; and 7; < 7,€ for all p; € P™. To prove that (S, G) realizes ¢ as well, we show
that both $; = ¢; and 7{ < 7;G hold for all p; € P~. Let p; € P~ be some system process.

First, we show that 7; < 7:6 holds. Since 77 < 717G holds by assumption, there exists a
simulation relation R : T; X TiG that establishes that 71.'6 simulates 7;. We construct a simulation
relation R : T; X Tl.G that establishes 7; < 7;6 as follows: ((¢, M), t%) € R holds if, and only if, we
have (t,t%) € R. Since t; € T; 0 holds for all (o, M) € T,-,o by definition of strategy restriction, it
follows immediately from the construction of R and the fact that R is a valid simulation relation
that (fo. t§') € R holds for all fy € T;o and all t¢ € TS. If ((t, M), 1, (t,M")) € #; holds, then, by
construction of (i{ we have (t,1, 1) € 7; as well. Hence, since 7; < 7}’ G holds by assumption,
it follows from the construction of R that the second requirement of simulation relations for
transducer simulation is satisfied by R as well. Thus, 7; < 7. holds.

Second, we show that §; |= ¢; holds, i.e., we prove that for all y € (2%)® and all y’ € (2V\Vi)®,
either comp(§;,y) is finite or comp($;,y) Uy’ = ¢ holds. Let y € (2%)© and y’ € (2V\Vi),
Since we have s; =g, ¢; by assumption, comp(s;,y) Uy’ =g, ¢; holds. Thus, we have either
comp(s;, y) Uy’ & Vg, or both comp(s;, y) Uy’ € Vg, and comp(si, y) Uy’ [¢; hold. If the latter
holds, then it follows with Lemma 4.6 that comp(§;, y) is infinite and that we have comp(s;, y) =
comp(s;, y). Since comp(s;, y) Uy’ = ¢; holds by assumption, comp($;, y) Uy’ [¢; thus holds as
well. If comp(s;, y) Uy’ ¢ Vg, holds, then, we distinguish two cases. If comp(s;, y) Uy” ¢ Vg,
holds for all y* € (2"\V1), then comp(§;, y) is finite by Lemma 4.6. Otherwise, i.e., if there is

4.4. SYNTHESIZING CERTIFICATES

some y’ € (2V\V1)© such that comp(s;,y) Uy’ € Vg, holds, then comp(s;,y) = comp(s;,y)
holds by Lemma 4.6. Furthermore, since both comp(s;,y) Uy” € Vg, and s; =g, ¢; hold by
assumption, we have comp(s;, y) Uy” | ¢;. Moreover, prop(¢;) € V; holds by assumption and
therefore the satisfaction of ¢; does not depend on the variables in V' \ V;. Thus, the satisfaction
of ¢; is independent of y”’. Hence, it follows that comp(s;, y) Uy’ | ¢; holds for y” as well. Since
we have comp(§;,y) = comp(s;,y) as shown above, comp(S;,y) Uy’ | ¢; follows. Hence, we
have shown that in both cases either comp(s;, y) is finite or comp($;,y) Uy’ | ¢; holds. O

Thus, since a solution of certifying synthesis with local satisfaction and complete strategies
can be restricted to a solution of certifying synthesis with local strategies as long as prop(¢;) € V;
holds for all p; € P~, we can utilize the results from Section 4.3 to reason about certifying
synthesis with local strategies. In particular, it follows from Theorem 4.2 and Lemma 4.7 that
certifying synthesis with local strategies is complete if prop(¢;) C V; holds for all p; € P~

Corollary 4.2. Let ¢ be an LTL formula over atomic propositions V and let {¢1, ..., ¢n) be its
decomposition. Let S = (sy,...,s,) be a vector of strategies for the system processes. If, for all
pi € P7, both prop(p;) C Vy and sy || ... || sn E ¢ hold, then there exist vectors G = (7;6, T O)
and S = (31,...,5n) of guarantee transducers and local strategies such that $; is a local strategy

for p; € P~ and G;, where G; = {7;6; | pj € P\ {pi}}, and such that (S, G) realizes ¢.

The slight difference between local strategies and local satisfaction yielding only conditional
completeness for certifying synthesis with local strategies is needed in order to technically
incorporate the requirements of certifying synthesis into the strategy and thus to be able to reuse
existing bounded synthesis frameworks. Although this is at general completenesses expanse,
we experienced that, in practice, many distributed systems indeed satisfy the condition that is
needed for completeness, i.e., that prop(¢;) € V; holds for all p; € P™. In fact, all benchmarks
described in Section 4.7 satisfy it.

Therefore, we utilize local strategies for certifying synthesis in the remainder of this chapter.
For practically synthesizing solutions for certifying synthesis, it is thus crucial to formalize
local strategies and, in particular, to identify valid computations only to construct strategies
that adhere to the definition of local strategies. In the following section, we present how this
identification can be carried out before we introduce the SAT encoding for certifying synthesis
with local strategies and guarantee transducers in Section 4.4.4.

4.4.3. IDENTIFYING VALID COMPUTATIONS

For synthesizing local strategies and guarantee transducers that satisfy the requirements of
certifying synthesis, it is crucial to determine whether an infinite sequence is a valid computation
with respect to a set of guarantee transducers as valid computations play a major role in the
definition of local strategies. To ensure that the encoding searches for Moore transducers that
adhere to the definition of local strategies, we thus need to identify whether computations of
transition-incomplete Moore transducers allow for valid computations.

To do so, we augment a local strategy for system process p; € P~ with additional associated
outputs. Such an associated output is a variable that is an input variable of p; and an output

139

140

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

variables of some other system process p; € P~\ {p;}, i.e., the set O of associated outputs of p;
is defined by Of =1IiNUp,ep\(p;) Oj- An augmented local strategy then does not only produce
a valuation of output variables of p; but of outputs and associated outputs of p;. Furthermore,
we ensure that, intuitively, the sequence of associated outputs produced by an augmented local
strategy always matches the sequences produced by the guarantee transducers of the other
system processes. Lastly, an augmented local strategy has a transition with source state t and
input : if, and only if| the valuations of the associated outputs produced by the augmented local
strategy in ¢t match their valuations in . Intuitively, an augmented local strategy s; thus only
produces outputs on some input sequence y € (2/)® as long as the prefix of comp(5;,y) Uy’
up to the current point in time is a valid history with respect to G; for some y’ € (2V\Vi)©,
Thus, in particular, s; satisfies the same requirements regarding finiteness and infiniteness of
computations as local strategies. That is, given some input sequence y € (25)%, if comp(5;, y) is
infinite, then there exists some sequence y’ € (2\V1)® such that comp(5;,y) Uy’ € Vg, holds. If
comp(S;, y) is finite and of length k, in contrast, then we have comp(S;,y) - (yx Uo) Uy’ ¢ (Hkg:l
for all o € 2% and all y” € (2V\Vi)* with |y’| = k + 1.

Note that, although local strategies and thus also augmented local strategies can be transition-
incomplete, they are always labeling-deterministic and labeling-complete. Moreover, they have
Moore semantics. For the sake of readability, we thus depict their labeling relations as functions
that map a state to a unique valuation of output variables instead of relations in the remainder
of this section. Formally, we define augmented local strategies as follows:

Definition 4.11 (Augmented Local Strategy).

Let p; € P~ be some system process. Let # € P~\ {p;} be a set of other system processes and
let G be a set of guarantee transducers, one for each process in . An augmented local strategy
si: (V) x 2l — 20107 for p; with respect to G is represented by a deterministic finite-state
(2%, ZOiUO?)-transducer i = (T, Ty, 7, £) with Moore semantics. It holds that (i) for every
t € Tandevery: € 2% there is some t’ € T with (t,1,t') € rif, and only if £(¢) N Of‘ =N O;“
holds, and (ii) for every p; € P~\ {p;} with guarantee transducer 7;G = (TJ.G, T]%, TJG, ZJG) such
that 7;6 € G, there exists a relation S;. : T].G X T such that

. (tg;, fo) € Sj. for all tg; € TOG and all ty € T;, and

. forall (t°1) € S; we have {’]G(tG) N O? =£(t)N O](.; and, for all 1 € 2U, // € 2% with
N =1NIjaswellas £(t) N OiA =/nN Of, and all t¢" € TJ.G, if (tG, 1 tG,) € TjG holds,
then there exists some ¢’ € T; such that (¢,//,t’) € r and (t9",¢') € S} hold.

Although the sets of inputs and outputs of an augmented local strategy are not disjoint,
requirement (i) ensures that no paths with contradictory valuations of shared variables can be
produced. Therefore, traces of augmented local strategies are well-defined.

Furthermore, note that the relations S/ which are required in the definition of augmented local
strategies resemble simulation relations as defined for transducer simulation in Definition 4.5.
However, they do not require that the transducers have the same input variables but consider
all combinations of valuations of inputs that agree on shared input variables. Similarly, they do

4.4. SYNTHESIZING CERTIFICATES

not require that the output variables of 71.’G are a subset of the outputs of 7; but only require
that the two transducers agree on all shared output variables. The relations S/ can thus be seen
as a more general version of transducer simulation. However, the definition of the relations S’
further poses the additional restriction that £;(¢) N O{‘ =N Of‘ holds in the second requirement.
This is due to the fact 7, is a complete Moore transducers while 7; is not. When omitting this
restriction, then the second requirement would ensure that i is complete as well as 7; would
need to provide a matching transition for all transitions in 7, even if the considered sequence
does not match a valid computation anymore. This would contradict that augmented local
strategies only have a transition if the input matches the associated outputs. Therefore, we add
the additional restriction that ensures that we only require a matching transition in 7; if the
input indeed matches the associated outputs. We first show that augmenting a local strategy
with associated outputs indeed allows for determining whether or not the properties of local
strategies are satisfied. In particular, we show that an augmented local strategy §; satisfies the
same requirements as local strategies regarding finite and infinite computations:

Lemma 4.8. Let p; € P~ be some system process. Let P C P~\ {p;} be a set of other system
processes and let G be a set of guarantee transducers, one for each process in P. Let S; be an
augmented local strategy for p; € P~ with respect to G. Let T; be the finite-state transducer
representing ;. Then, for ally € (2")® and all o € Traces(T;,y), it holds that (i) if o is infinite,
then there exists some y’ € (2V\V))® such that o Uy’ € Vg holds, and (ii) if o is finite, then
o (YloiUo) Uy ¢ HY holds for all o € 29 and ally’ € (2V\V))© with || = |o| + 1.

|o|+1

Proof. For p; € P, let ‘7;G = (T].G, Tﬁ), T]G, {’JG) be the guarantee transducer contained in G and

let Sj. be the relation establishing that s; is an augmented local strategy with respect to p;’s
guarantee transducer 7;6. Let 7; = (T;, Ti,o, 7, 6). Let y € (25)® and let # € Paths(‘i{, Y) be
the unique path produced by 7; on input y. Let & € Traces(7;, y) be the corresponding trace.
Let k := |#|. Let p € (2")® be some infinite sequence such that p N V; = & holds if & is
infinite and such that both p N I; = y and ppr N V; = 6% N V; holds for all points in time k’
with 0 < k’ < |&| otherwise. We first show a fact on the relationship of traces of 77 and valid
computations. Afterward, we utilize this result to show that 7; satisfies the properties of a local
strategy regarding infinite computations.

Fact (A): For all p; € P, we have (#1(nj,),#1(ﬁk/)) € S;. for all points in time k’ with
0 <k’ < k, where 7/ € Paths(’];G, p N 1Ij). Proof by induction on k’.

« k’ = 0. By definition of the relations S; we have, for all p; € P, that (tfo, tig) € S;. holds
for all t](',;o € TJGO and all t;y € T;. Thus, since #1(71({) € Tﬁ) and #;(7) € T;p hold by

definition of paths, we have (# (71'({), #1(7p)) € S;

e 0 <k’ < kand (#1(7ri,_1),#1(frk»_1)) € S; holds for all p; € #. Since guarantee

transducers are complete, there exist transitions (#; (ﬂi,_ 1), Prr—1NIj, #; (th) € TjG for all
processes p; € P. Furthermore, since k” < k holds by assumption, there exists a transition
(#1(Zrr=1), Yrr—1, #1 (7)) € 7;. Moreover, since k’ < k, we have pp_1 N V; = 631 and
thus, in particular, (pr—; N Ij) N I; = yrr—; N I; holds. Hence, by condition (i) of the

141

142

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

definition of augmented local strategies, we have £(#;(#r'_1)) N O{‘ =y N Of‘. Since
(#1(7r]]</_ D> #1(7k-1)) € S;. holds for all p; € # by assumption, it thus follows with the
definition of the relations Sj. that (#, (), #1(7p)) € Sj. holds for all p; € P.

Utilizing fact (A), we now show that 7; indeed satisfies the properties of a local strategy
regarding (in)finiteness of computations.

First, let 77 be infinite. Then, ¢ is infinite as well. For p; € P, let = Paths(‘i;G, 6 N1Ij)
and let o/ € Traces(TG o N I;) be the corresponding trace Then, it follows with fact (A) that
(#1(m) #1(M)) € S‘ holds for all k > 0. Thus, by definition of the relations S’ in particular
Z.G (#1(7Tk)) N OA = {(# (7)) N OG holds for all p; € and all k > 0. Therefore by definition
of paths, #; (7) N OA =#,(7) N OG holds for all p; € # and all k > 0. Thus, with the definition
of traces (¢/ N O]G) N Of‘ =(oN O;“) N OjG follows forall p; € P. Lety’ € (2V\V1)@ be an infinite
sequence such that y’ N OjG =0/ N (O]G \ Vi) holds for all p; € P. Since the sets of output
variables of different processes are disjoint by definition, y’ N O]G =o' N (O]G \ Of) follows for
all p; € P with the definition of associated outputs. Thus, we obtain ¢/ N O]G =(6uUy)n O](.;
and hence (6 U y’) N O? = comp((i]'.G, p N I;) follows for all p; € P with the definition of
computations and the construction of ¢/. Therefore 6 Uy’ € Vg holds.

Second, let 77 be finite. Then, by condition (i) of the definition of augmented local strategies,
we have f,-(#l(ftk_l))ﬁO;“ * yk_lﬁOf. Furthermore, we have |6| = max{0,k—1}. Letp € 2"y
be some sequence such that both pNI; = y and pr NV; = 63 NV; hold for all k" with 0 < k" < |5].
For p; € P, let e Paths('l;.G, p N1I;). Then, it follows with fact (A) that (#1(r), #1 (7)) € Sj.
holds for all k" with 0 < k” < k and for all p; € . Thus, we have (#1(75{_1),#1(7%;(_1)) € S; By
definition of the Sj., we have l’jG(#l (71]](_1)) OO{‘ = {;(#1(A%_1)) ﬂO]G forall p; € . Since we have
& (#1(Fr-1)) N O # yk—1 N O as shown above, ij(#l(”,]C_l)) NOL # (-1 NOMHN OJ.G follows.
By definition of associated ourputs and by construction of y, thus t’JG(#l (ﬂi_ DN # ye1N OjG
holds. Hence, we have #g(nli_ DNLi#ye-1 N O]C.; by definition of paths and hence it follows
with the definition of computations that (comp(’];G, pNIL)NO;)NL # Y1 N OJ.G holds for all
pj € P. Therefore, we have ¢ - (yx-1 Uo) Uy’ ¢ 7-(,? forallo € 2% and all y’ € (2V\V)©. 0o

We now define certifying synthesis with augmented local strategies and guarantee transducers.
It is similar to certifying synthesis with local strategies and guarantee transducers as presented
in Definition 4.8 but uses augmented local strategies instead of local ones. Note that when posing
the requirements such as satisfaction of the subspecification and that the strategy is simulated
by the guarantee transducer, we do not use the augmented local strategy itself but a slightly
modified version: local(s;) denotes the restriction of the augmented local strategy §; to the
output variables of process p;. That is, local(s;) is represented by a finite-state transducer that is
a copy of the finite-state transducer 7; = (Tj, T;.0. 7, £;) representing §;, but modifies the labeling
function to £;(t) N O;. Since §; satisfies the properties of a local strategy regarding finiteness
and infiniteness of computations by Lemma 4.8, local(s;) is a local strategy. Furthermore,
since condition (i) of the definition of augmented local strategies ensures that augmented local

4.4. SYNTHESIZING CERTIFICATES

strategies produce well-defined computations only, the computations of §; and local(s;) coincide
for all input sequences. Thus, it is not necessary to use local(s;) instead of §; for stating the
satisfaction of the subspecification. The definition of transducer simulation, however, requires
that the set of output variables of the transducer which is simulated by another transducer needs
to be a subset if the set of outputs of the simulating transducer. Hence, since O; U Of C Ol.G does
not hold if O # 0, stating that a strategy does not deviate from its own guaranteed behavior
requires using local(s;). For ease of presentation, we then use local(s;) in the definition of
certifying synthesis with augmented local strategies for both requirements.

Definition 4.12 (Certifying Synthesis with Augmented Local Strategies).

Let ¢ be an LTL formula over atomic propositions V with decomposition {¢y, ..., ¢,). Let
G = (7;6, .., T,9) be a vector of guarantee transducers for the system processes. For p; € P~
letG; = {7:6 | pi € P\ {pj}}. LetS = (81, ..,8p) such that §; is an augmented local strategy
for p; € P~ with respect to G;. Let ’f?be the deterministic and complete finite-state transducer
representing local(s;). If, for all p; € P7, both 7; < 7i~G and, for all y € (2)@, y" € (2V\Vi)@,
either comp(local(s;), y) is finite or comp(local(s;), y) Uy’ | ¢ holds, then we say that (S, G)
realizes ¢. Certifying synthesis for ¢ derives vectors S and G such that (S, G) realizes ®.

In the following, we prove soundness and completeness of certifying synthesis with aug-
mented local strategies. Since the requirements of certifying synthesis are posed on the strategies
local(s;) instead of the strategies §;, it follows immediately from Lemma 4.8 and Corollary 4.1
that the parallel composition of the strategies local(s;) satisfies the specification ¢ if there
exist augmented local strategies §; and guarantee transducers 71.'6 that constitute a solution of
certifying synthesis. Soundness then follows with the observation that the parallel composition
of the strategies local(s;) and §; coincide:

Lemma 4.9. Let ¢ be an LTL formula over atomic propositions V and let {¢1,. .., ¢,) be its
decomposition. Let G = (‘7IG, ..., T.©9) be a vector of guarantee transducers for the system processes
and, forp; € P~ let G; = {7:6 | pi € P\ {pj}}. Let S = (51,...,5,) be a vector of augmented
local strategies for the system processes such that s; is an augmented local strategy for p; € P~ with
respect to G;. If(S‘, G) realizes ¢, then sy || ... || Sy E 0.

Proof. For p; € P~ let 7; be the finite-state transducer representing §; and let 7; be the finite-state
transducer representing local(s);. Let S= (local(sy), .. .,local(s,)). By Lemma 4.8, augmented
local strategies satisfy the requirements of local strategies regarding finiteness and infiniteness
of computations. Thus, since §; is an augmented local strategy for p; € P~ with respect to G;
by construction, it follows from its construction that local(s;) is a local strategy for p; with
respect to G;. Furthermore, since (S, G) realizes ¢ by assumption, for all p; € P~, we have
both 7; < 71.'6 and, for all y € (2%)©, y' e (2V\V)®, either comp(local(§;), y) is finite or
comp(local(s;), y) Uy’” E ¢ holds. Thus, it follows immediately with the definition of certifying
synthesis with local strategies that (S, G) realizes ¢ as well. Therefore, by Corollary 4.1,
we have local(5y) || ... || local(s,) [¢. Additionally, by Lemma 4.4, the traces produced by
911l ... || In coincide with the traces produced by the parallel composition of the transducers 7;

143

144

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

representing the strategy extensions s; = extend(local(s;), 7:6) of the local strategies i as
defined in Definition 4.9. Since 7; is a deterministic and complete Moore transducer and since
the sets of output variables of different processes are disjoint, it follows with Lemma 2.1 that that
the parallel composition of the transducers representing the extended strategies is deterministic

and complete as well. Thus, for all y € (2997)®, we have |Traces(77 || ... || Tn.y)| = 1 and
therefore | Traces(71 || ... || 7, y)| = 1 follows. Furthermore, since deterministic and complete
transducers only produce infinite traces, all traces produced by 77 || ... || 7, and thus also all
traces produced by 91| ... || In are infinite.

Let y € (29)® Leto € Traces(71 || ... || Tns y) be the unique trace produced by the

parallel composition of the local strategies local(s;) on input y. Then, since o is infinite as
shown above, ¢ N'V; € Traces(7;, p N I;) holds for all p; € P~ by Proposition 4.1. Therefore,
by construction of local(s;) and ‘f{, we have c NV; € Traces(’i{,p N I;) for all p; € P~ as
well. Hence, o € Traces(71 || ... || 7,) follows with Proposition 4.1 and thus, in particular
o € Traces(T{ || ... || Tn, y) holds. Since the sets output variables of different processes are
disjoint by the definition of archictures and since augmented local strategies are deterministic
Moore transducers, 71 || ... || 7, is a deterministic Moore transducer by Lemma 2.1 as well and
therefore o is the unique trace produced by 71 || . .. || 75 on input y. Thus, for all y € (20e)®,
we have Traces('f} ...l Y) = Traces(T1 || ... || Tns ¥). Since local(5y) || ... || local(s,) E ¢
holds as shown above, it thus follows that §; || ... || S, = ¢ holds as well.]

Hence, when obtaining a solution of certifying synthesis with augmented local strategies,
the parallel composition of the augmented local strategies restricted to the respective output
variables is guaranteed to realize the specification. Completeness is ensured as long as for every
system process p; € P~, the behavior of the parallel composition of the guarantee transducers of
all other system processes is deterministic in the sense that the paths produced by the parallel
composition of the guarantee transducers are the same on input sequences that p; cannot
distinguish: an augmented local strategy needs to keep track of the matching traces in the
guarantee transducers of all other system processes for the relations S; to exist. If one of the
other processes behaves differently on two sequences p; cannot distinguish, then the definition
of the relation S ; would require contradicting valuations of associated outputs in some state of
the augmented local strategy. We call this kind of determinism observation determinism and
define a slightly more general form as follows:

Definition 4.13 (Observation Determinism).

Let p; € P~ be some system process. Let I € V and O € O~ be finite sets of input and output
variables. Let # € P\ {p;}. Let M be a set of complete finite-state transducers, one for each
pj€P.Letl =, cpljUlUp ep Oj. We call M observation-deterministic for p; if, and only
if, we have Paths(7",y) = Paths(7,y’) forall y,y’ € (21)® withy NV, =y NV,

In the following completeness proof for certifying synthesis with augmented local strate-
gies, we require the strategies whose parallel composition realizes the specification to ensure
observation determinism for every process p; € P~ and the parallel composition of the other
strategies. Then, by Theorem 4.2 and, in particular, Lemma 4.2, there exist complete strategies

4.4. SYNTHESIZING CERTIFICATES

and guarantee transducers that realize the specification. Furthermore, the construction of
the guarantee transducers Lemma 4.2 preserves observation determinism as the guarantee
transducers are copies of the strategies which are restricted to the guarantee outputs. Strategy
restriction as defined in Definition 4.10 then allows for constructing local strategies that, to-
gether with the very same guarantee transducers as before, realize ¢ as well (see Lemma 4.7).
Since, for each p; € P7, the parallel composition of the guarantee transducers of the other
processes is observation-deterministic, it follows that in every state of the local strategy the
part which represents a set of states in the parallel composition of the guarantee transducers is
a singleton. We can thus utilize a slightly modified version of strategy restriction which also
preserves the outputs of the guarantee transducers to obtain augmented local strategies. Then,
in fact, the resulting transducer represents an augmented local strategy that (i) produces the
same traces when restricting them to the outputs of the considered system process and (ii) if
the local strategy is simulated by the guarantee transducer, then so is the augmented local
strategy constructed in this way. Hence, together with Corollary 4.2, we obtain the following
completeness result:

Lemma 4.10. Let ¢ be an LTL formula over atomic propositions V and let (@1, ..., pn) be its
decomposition. Let sq,...,s, be strategies for the system processes represented by finite-state
transducers T4, . . ., Tn. If we have prop(¢;) C V; for all p; € P~, and if, for all p; € P~, the set
{7; | pj € P7\ {pi}} is observation-deterministic for p;, and if sy || ... || sn |= ¢ holds, then there
exists a vector G = (T.°, ..., T,C) of guarantee transducers for the system processes and a vector
S = (51,...,$) such that§; is an augmented local strategy for p; € P~ with respect to G;, where

Gi = {7;(; | pj € P™\ {p,—}}, such that (S, G) realizes @.

Proof. Assume that s || ... || s, | ¢ holds and that, for all p; € P~ the set {7; | pj € P\ {pi}}
is observation-deterministic for p;. Let S = {sy, ..., s,) and let 7; be the finite-state transducer
representing s;. Then, by Theorem 4.2 there exists a vector G = (7,%,..., 7.¢) of guarantee

transducers such that (S, G) realizes ¢. In particular, this holds for the guarantee transducers
which are copies of the transducers representing the corresponding strategy that are restricted to
the guarantee outputs since this construction is used in the completeness proof (see Lemma 4.2).
In the following, we assume that this vector of guarantee transducers is given, i.e., that, for
all p; € P~and all y € (2/)®, we have both #1(ﬂ,i’G) = #1(7r,i) and #z(ﬂli’c) = #1(7r,i) N 02G
for all paths 75C € Paths(‘i;G, y) and 7' € Paths(7;,y) as well as all points in time k > 0. For
pj € P letG; = {‘71~G | pi € P™\ {pj}}. Since, for all p; € P, the set {7; | pj € P\ {pi}}
is observation-deterministic for p;, it follows immediately that, for all p; € P~, the set G; is
observation-deterministic for p; as well.

We construct augmented local strategies §; similar to the construction of local strategies from
complete strategies as defined in Definition 4.10. The only difference lies in the labeling function:
instead of defining the label of a state (¢, M) to be #;(¢), we define it to be () U (£(¢") N O?),
where t’ € M. Note that, since for all p; € P~, the set G; is observation-deterministic for p;, the
second component of a state in restrict(s;, G;) is always a singleton. Hence, the labeling function
of the constructed augmented local strategy is well-defined. We show that the transducers
constructed 77, . . ., 7, in this way indeed represent augmented local strategies. Since we only

145

146

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

alter the labeling function in a well-defined way, finiteness of the set of states as well as
determinism and completeness of the transducers follow from the respective properties for
the local strategies obtained with strategy restriction. Next, for p; € P~, let 7~: = (Tl, TZO, i, 4),
let 7;' G = (TiG, Tl((;) TiG , {’l.G) and let 7 = (T, T, 70, £) be the transducer representing the parallel
composition of the guarantee transducers of the other processes. Let p; € P~.

First, we show that condition (i) is satisfied. Let (£, M) € T; be a state of 7;. As shown above, M
is a singleton. Let M = {t®}. Suppose that there exists some transition ((t, M), 1, (t’, M")) € 7.
Then, by construction of 7;, we have iN O~ =¢ (t%) N I;. Furthermore, by construction of the
labeling function, ¢ ((t, M)) N Of =¢(t%n OZ.A holds. Since £(t°) N I; = ¢(t°) N Of holds
by definition of associated outputs, : N O~ = £((t, M)) N O thus follows. Next, suppose that
there is some ¢ € 2% such that 1 N O~ = £((t, M)) N O holds. Since 7; is constructed from a
complete strategy s;, there exists a transition (t,1,t") € 7;, where 7; is the transition relation of
the finite-state transducer representing s;. Moreover, there clearly exists some 1’ € 217, where
Il.G = Upjep—\{pi}ll' \ Upjep—\{pi} O;, such that : N Il.G =/ NLand ' NO; = (1) N Il.G hold.
Since tN O~ = £((t,M)) N O? holds by assumption, in particular, : N Ol.G = 4;((t,M)) N I; holds
by definition of associated outputs, where O = Up,ep\(p;} Oi- Furthermore, since the sets
of output variables of different processes are disjoint by definition of architectures and since
guarantee transducers are complete Moore transducers, their parallel composition 7" is, by
Lemma 2.1, complete as well and thus, in particular, there exists a transition (%, 0, tG') € 7. Thus,
by definition of 7;, we have ((t, M), 1, (', M’)) € 7;, where M’ = {t®"}. Hence, condition (i) of
the definition of augmented local strategies is satisfied.

Next, we construct relations Sj. forall p; € P\ {p;} as follows: (tJG, (t,M)) € S; if, and only
if, M = {t®} and #,,(t°) = tJ(.;, where m = jif j < iand m = j — 1 otherwise, i.e., intuitively,
the part of t“ which corresponds to p; equals tJG. Let p; € P™\ {p;}. Clearly, (tfo, ty) € Sj.
holds for all tfo € TJG0 and all §y € T; by construction of 7;. Next, let tJG € TjG andletf € T,
be states such that (t%, 1) € S; holds. Let 1 € 2l and 1/ € 2!t such that both 1N [; =/ N I; and
() n oA=/n OlA hold. Since (t}G, t) € S;, we have #,,(#,(f)) = tJG, where m = jif j < iand
m = j — 1 otherwise, by construction of S; Thus, in particular ZJG(tG) =L(#2(8)) N O? holds by
definition of the parallel composition of finite-state transducers. By construction of 77, we have
Z(f) N Oj(.; = {(#,()) N OJC.; since O; N OJG holds by definition of architectures and guarantee
outputs. Therefore, £(f) N O].G = t’JG(t]G) follows. Furthermore, since () N OlA =/N Of
holds by assumption and since condition (i) of the definition of augmented local strategies is
satisfied as shown above, there exists a transition (, 1/, (t, M)) € 7; for some (t, M) € ﬁ Thus,
by construction of 71' there also exists a transition (#;(f), ', t) € 1;, where 7; is the transition
relation of the finite-state transducer representing s;. If there exists a transition (tjG, 1, tjG') € TJG,
then it follows with the construction of ‘7~,” and the fact that it is deterministic that we have
#,(t9)) = tJG’, where M = {t%"} and m = jif j < iand m = j — 1 otherwise. Therefore, by
construction of S;, we have (tjG', (t,M)) € S;. as well. Hence, S;. satisfies the requirements stated
in the definition of augmented local strategies and thus condition (ii) holds.

Lastly, we show that the augmented local strategies §; indeed form a solution of certifying
synthesis. Let S = (51, ..., $,). By construction of §;, we clearly have local(s;) = restrict(s;, G;).

4.4. SYNTHESIZING CERTIFICATES

Let S = (local($y), . ..,local(s,)). Hence, it follows with Lemma 4.7 that (S,Q) realizes ¢.
That is, for all p; € P, we have both ‘i{ < 7;G and, for all y € (2f)e, Y € (ZV\Vi)‘*’, either
comp(local(;), y) is finite or comp(local(s;), y) Uy’ |= ¢ holds. Thus, by definition of certifying
synthesis with augmented local strategies, (S, G) thus realizes @ as well. O

Therefore, it follows from Lemma 4.9 and Lemma 4.10 that utilizing augmented local strategies
for certifying synthesis is sound and, under certain conditions, complete. In the following, we
thus introduce an encoding of the search for augmented local strategies and guarantee transduc-
ers that satisfy the requirements of certifying synthesis into a SAT constraint system. We focus
on synthesizing deterministic guarantee transducers that ensure observation determinism. As
outlined above, such guarantee transducers do not necessarily exist for all system architectures.
In the following sections, however, we introduce several optimizations of certifying synthesis,
one of them being to allow for nondeterministic guarantee transducers as well as transducers
that not ensure observation determinism.

4.4.4. CONSTRAINT SYSTEM FOR DETERMINISTIC CERTIFICATES

Like for monolithic bounded synthesis [FS13], we encode the search for a solution of certifying
synthesis of a certain size into a SAT constraint system. We reuse the concepts of run graphs
and valid annotations (see Section 2.8.1). Therefore, we employ parts of the SAT constraint
system for bounded synthesis of monolithic systems presented in [FFRT17]. In particular, the
constraint system Cy g, encoding certifying synthesis for some architecture &, a vector B
of size bounds for both augmented local strategies and guarantee transducers, and some LTL
specification ¢ consists, intuitively, of n slightly modified copies of the SAT constraint system
for monolithic bounded synthesis, one for each system process of &/. For each copy, we add
variables encoding the guarantee transducers representing the certificates as well as constraints
that ensure that the augmented local strategies and certificates indeed fulfill the requirements
of certifying synthesis with augmented local strategies and guarantee transducers.

First, we encode the finite-state transducers 7; representing the augmented local strategies,
the finite-state transducers 7;6 representing the certificates, the universal co-Biichi automata A;
representing the specifications ¢;, and the annotation function A. Furthermore, we encode the
simulation relations R; that establish that 7; < 7;6 holds as well as the relations S} that establish
that 7; is an augmented local strategy.

« Finite-state transducer 7; = (T}, T; o, 7;, £;). We represent the transition relation z; by one
Boolean variable T;lt, foreach t,t’ € T, and 1 € 2. Given t,t’ € T;, 1 € 2%, and 0 € 29, it
holds that rj . 18 trueif, and only if, (t,1,t") € 7; holds. Furthermore, we represent the
labeling relation # by one Boolean variable o;',o foreacht € T;and o € 20iY07 " Given

teT;ando € O; U O?, it holds that oio is true if, and only if, 0 € £(t) holds.

» Finite-state transducer 7}’ G = (Tl.G, Tl% TiG , t’l.G). We represent the transition relation TiG

by one Boolean variable TtG[it' foreacht,t’ € TI.G and 1 € 2. Given t,t’ € Tl.G and 1 € 21,

it holds that TtG[it' is true if, and only if, (t,1,t") € Tl.G holds. Furthermore, we represent

147

148

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

the labeling relation £€ by one Boolean variable of(’f foreacht € TG and o € 297 . Given
te Tl.G and o € OiG, it holds that ofgf is true if, and only if, 0 € fl.G (t) holds.

« Universal co-Biichi automaton A; = (Q;, gi,0, d;, F;). We represent the transition relation d;
by one propositional formula 5; o for each ¢,q’ € Q; and v € 2", Given q,q’ € Q; and
v € 2" it holds that 5;Uq, is true if, and only if, (g,v,q") € §; holds.

+ Annotation function A; : T; X Q; = N U {L}. We split the encoding of A; into two parts,
one focusing on the reachability of a state of the run graph of 7; and A; and one focusing
on the actual bound. We thus represent A; by one Boolean variable /1?3’ q foreacht € T;
and g € Q; and one bit vector Aftq foreacht € Ty and g € Q;. Given t € T; and q € Q;, it
holds that (i) AB tq is true if, and only if, ;(¢,q) # L and (ii) /1# q fepresents the binary
encoding of the value A;(t, q) if A;(t,q) = k # L.

- Simulation relation R; : T; X T,”. We represent the simulation relation by one propositional
formula R. , for each t € T, and u € TC. Given t € T; and u € TZ, it holds that R! , is true
if, and only if, (¢,u) € R; holds.

+ Relation S’ TG X T;. We represent the relation by one propositions formula S, J for
eachu € TG and t €T;. Givenu € TG and t € T, it holds that S” is true if, and only if,
(u,t) € S; holds.

Next, we present the SAT constraint system Cy g, encoding certifying synthesis with aug-
mented local strategies for an architecture &/, a vector B of size bounds, and an LTL formula ¢
with decomposition (¢, ..., @,), where each ¢; is represented by a universal co-Biichi au-
tomaton A; with L(A;) = L(¢;). We first present the SAT constraints for a single system
process p; € P™. Afterward, we assemble the constraints for the individual processes to the full
constraint system Cgy g .

First, we encode the technical requirement that guarantee transducers must be both deter-
ministic and complete, i.e., that there exists exactly one outgoing transition for every source
state u € Tl.G and every input valuation : € 2%. The constraint is similar to the one encoding
determinism and completeness of strategies in the SAT constraint system Ci{f for classical
monolithic bounded synthesis [FS13, FFRT17].

/\ /\ ulu A /\ /\ - (Tlf;,iu’ A Ti;,iu”) (4'1)

ueTiG 1C1; u’eTlG u ETIG u”eTiG\{u’}

Second, we encode that an augmented local strategy needs to adhere to its own certificate,
ie, that 7; < 7;6 holds. For this, we explicitly encode the existence of a simulation relation
R : T x TC that establishes that 7,° simulates 7;. The constraint thus closely follows the
definition of transducer simulation presented in Definition 4.5. Note that due to the Moore
semantics of both augmented local strategies and guarantee transducers, both 7; and 71.'6 only
have a single initial state. Thus, instead of encoding that (¢;, tl.%) € R; holds for all ¢,y € T;p and

all tG e TS

;0> We simply encode that (f;, ti’c’;)) € R; holds, where t; and ti’c’;) represent the unique

4.4. SYNTHESIZING CERTIFICATES

initial states of 7; and 7176, respectively. Recall that transducers representing local strategies
have a unique initial state, although they can be transition-incomplete due to the requirements
on the finiteness and infiniteness of computations of local strategies (see Proposition 4.2). Since
augmented local strategies satisfy the same properties, 7; has a unique initial state as well,
although it can be transition-incomplete.

R LA
fi,o,f,%
, . (4.2)
i i i
/\/\ Rt,u_) /\ uoHOto/\/\/\ Tttt’_>\/ (ulu AR)
teT; ueTf 0€0¢ 1CI; 1 ET; weTE

Third, we encode that 7; adheres to condition (i) of the definition of augmented local strategies.

That is, we encode that for every state ¢t € 7; and every input : € 2%, there exists a transition
with source state t for input ¢ if, and only if 1 N Ol.A =L(t)N OlA holds. Moreover, we encode
that 7; is deterministic, i.e., that for every state t € 7; and every input 1 € 2%, there exists at
most one successor state.

/\ /\ /\ 0cL< Of‘,o « \/ Tll;,L,t’ /\ /\ (Tll:,l,t/ A Tll:,l,t”) (4-3)

teT; 1Cl; \\oeO2 teT; teT; t"eT\{t'}

Next, we encode that 7; further adheres to condition (ii) of the definition of augmented local
strategies. For this, we explicitly encode the existence of relations S ; that satisfy the requirements
stated in the definition of augmented local strategies, i.e., in Definition 4.11. Similar to constraint
Equation (4.2), i.e., the constraint encoding the existence of a simulation relation establishing
that 7; < 7,° holds, we make use of the Moore semantics of both augmented local strategies
and guarantee transducers: instead of encoding that (¢ o tig) € Sj. holds for all t](.’;o € TJG0 and
all ;9 € T;, we encode that (t o tio) € S;. holds, where ¢ 70 and t; o represent the unique initial
states of 7;G and 7;, respectively.

ST
19 ti0
/\/\S{l;—> /\ ouo<—>oto/\/\/\ iNL=10nNI;
ueTS reT; 0€0{n0¢ L el (4.4)
’ i
/\/\oet<—>ot’o—>/\ u,u_’\/(fut'/\s)
ocO4 weTy veT;

This constraint considers only a single other system process p; € P~\ V;, i.e., it only encodes
the existence of a single relation S;. satisfying the requirements of local strategies. Hence, to
ensure that there does not only exist a relation Sj, for a single system process p; € P~ \ {p;} but
for all other system processes, we use one copy of this constraint for each system process that
is different from p;, i.e., we use /\pjep—\{pi} (4.4).

149

150 4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

Lastly, we encode that the run graph of the local strategy represented by 7; and the universal
co-Biichi automaton A; has a valid annotation. The constraint is similar to the one for classical
monolithic bounded synthesis [FS13, FFRT17].

B

i,fi,o,qi,o/\
(4.5)
B #
A A= A(e = I\ (o = (Ko AL > M)))
geQ; teT; q'€0; 1Cl; reT;

As in monolithic bounded synthesis, we use the notation 51 gt O denote that there exists a
transition in A; from q to ¢’ with 1 U o, where o is the set of output variables of 7; for every

transition with source state t. That is, 5; Lq¢ 1S syntactic sugar for
— i
8 as = I\ Ohiog A [\ vE0 O 0L,
0CO; ve0;

Although 7; is an augmented local strategy and thus outputs in every step a valuation of the
variables in O; U O#, we only consider the outputs of process p;, i.e., the variables in O; in the
definition of 5’ , and thus in constraint (4.5) encoding the existence of a valid annotation
of the run graph Slnce condition (i) of the definition of augmented local strategies and thus
constraint (4.3) ensures that augmented local strategies only produce well-defined traces, this is
equivalent to considering the variables in O; U Of while yielding a smaller constraint systems.

Combining all these constraints, we obtain the following constraint system Cy g, for certi-
fying synthesis with augmented local strategies and guarantee transducers:

/\ (4.1) A (4.2) A /\ (4.4) | A (4.3) A (4.5)

pi€P~ pi€P\{pi}

Since the constraint system Cy g, explicitly encodes the search for augmented local strategies
and guarantee transducers that satisfy the requirements of certifying synthesis, it thus follows
from the soundness and completeness of certifying synthesis with augmented local strategies,
i.e, Lemma 4.9 and Lemma 4.10, that Cy g, can be used to compositionally derive a solution
for the synthesis task for a distributed system.

Theorem 4.3. Let o/ be an architecture, let ¢ be an LTL formula, and let B be size bounds for
the strategies and certificates. There is a SAT constraint system Cy g, such that (i) if Cy g, is
satisfiable, then ¢ is realizable in o, and (ii) if ¢ is realizable in o for the bounds B and additionally
prop(¢;) € V; holds for all p; € P~ and, for all p; € P~, observation determinism of the strategies
of the other system processes can be ensured, then Cy g, is satisfiable.

Note that we build a single constraint system for the whole certifying synthesis task. That is,
the augmented local strategies and certificates of the individual processes are not synthesized
entirely independently. This is one of the main differences between our approach and the
negotiation-based assume-guarantee synthesis algorithm [MMSZ20]. While this prevents

4.5. COMPUTING RELEVANT PROCESSES

separate synthesis tasks and thus parallelizability, it eliminates the need for a negotiation
between the processes. Moreover, it allows for completeness of the synthesis algorithm under
certain conditions on the architecture. Although the synthesis tasks for the individual system
processes are not fully separated, the constraint system C p,, is in most cases still significantly
smaller and easier to solve than the one of classical distributed synthesis.

In the following two sections, we present two further optimizations of certifying synthesis,
which allow, in many cases, for even smaller constraint systems and, thus, for finding solutions
for even more complex architectures and specifications. First, we reduce the number of cer-
tificates a process p; € P~ needs to consider by identifying processes that are relevant for p;’s
strategy. In this way, we reduce the number of processes for which we need to add a copy of
constraint (4.4). Afterward, we permit nondeterminism in certificates, thus possibly reducing
the minimal number of states of a guarantee transducer.

4.5. CoMPUTING RELEVANT PROCESSES

In all variants of certifying synthesis presented in the previous sections and, in particular, in the
SAT constraint system that encodes certifying synthesis with augmented local strategies and
guarantee transducers, we consider, for each system process p; € P, the certificates of all other
system processes when formulating p;’s local objective. In many cases, however, it suffices only
to consider the certificates of a subset of the other system processes. Consider, for instance, the
robots from the running example presented in Section 4.1 and suppose that, in addition to r;
and ry, there is a third robot 3. The additional robot uses a different route through the factory
and thus never passes the crossing. Therefore, r3’s behavior does not influence whether or
not r; or r; can enter the crossing at a certain point in time. Thus, in particular, r3’s certificate
does not need to be considered in r;’s and r;’s local objective to be realizable.

Therefore, we present an optimization of certifying synthesis that reduces the number of
considered certificates in this section. For every system process p; € P~, we compute a set
Ri € P~\ {pi} of relevant processes. Certifying synthesis then only considers the certificates of
the relevant processes: let ¢ be an LTL formula over atomic propositions V with decomposition
(P1,---»0n), and let S = (s1,...,8,), ¥ = (Yn,...,¥n), and G = <7IG, .. .,‘THG) be vectors of
strategies, LTL certificates, and guarantee transducers for the system processes respectively.
For every system process p; € P~, we define ‘{’f = {r,bi | pi € Rj} and QJ'.R = {7:6 | pi € Rj}.
For certifying synthesis with LTL certificates, we then require that s; |= ¢; A (‘I’ZR — @)
holds for every p; € P. For certifying synthesis with guarantee transducers and complete
strategies, both 7; < TG ands; | GR @i need to hold for every p; € P~, where 7; is the finite-
state transducer representlng Si. For certifying synthesis with local strategies and guarantee
transducers, let S = (81,...,5,) be a vector such that §; is a local strategy for p; € P~ with
respect to GX. We then require that, for all p; € P~, we have 7; < 7.9, where 7; is the finite-state
transducer representing §;, and, for all y € (2%)®, y’ € (2V\V)®, elther comp($;, y) is finite or
comp(S;,y) Uy’ [¢ holds. Similarly, for certifying synthesis with augmented local strategies
and guarantee transducers, let S = (81, ..,8n) be a vector such that §; is an augmented local
strategy for p; € P~ with respect to gf‘ We then require that, for all p; € P~, we have 7; < 7°,

151

152

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

where 7; is the finite-state transducer representing §;, and, for all y € (21)©, y* e (2V\Vi)®,
either comp(S;, y) is finite or comp(S;, y) Uy’ | ¢ holds. Then, we say that (S, ¥)g, (S, G)x,
(S,G)x, and (S, G)x realize .

The construction of the sets of relevant processes needs to preserve soundness and complete-
ness of certifying synthesis. In the following, we introduce a syntactic definition of relevant
processes that does so. It excludes processes from p;’s set of relevant processes R; whose output
variables do not occur in the subspecification ¢;:

Definition 4.14 (Relevant Processes).
Let ¢ be an LTL formula over atomic propositions V with decomposition {¢s, ..., ¢,). Let
pi € P™ be a system process. The relevant processes R; € P~ \ {p;} of p; are defined by

Ri ={p; € P"\ {pi} | Oj N prop(¢;) # 0}.

Intuitively, since O; N prop(¢p;) = 0 holds for a system process p; € P~\ (R; U {p;}), the LTL
formula ¢; does not restrict the valuations of p;’s output variables. Thus, if an infinite sequence
satisfies ¢;, then it does so for any valuations of the variables in O;. Hence, p;’s guaranteed
behavior does not influence the satisfiability of ¢; and thus p; does not need to consider it.

Example 4.8. Consider the robots from the running example and, for simplicity, suppose that
the robots do not have additional objectives ¢,44,. Hence, the objective of robot r; is given
by @i = @no_crash N Peross;- Since both go; and go, occur in @, crash, clearly ry is relevant for ry
and vice versa. This meets our observation that none of the robots can realize both ¢, crash
and @crss; Without information about the other robot’s behavior. Suppose that there exists a
third robot r; with output variable go, that uses a different route through the factory and thus
never uses the crossing. Hence, we do not need to adapt ¢, crqsh to specify that no crash occurs.
Then, go; neither occurs in @, crgsh NOT i Q¢ross, and thus rs is not relevant for r; or for r,. This
meets our observation that there exist strategies for r; and r; that realize ¢@no crash A @cross; and
®no_crash N Qcross,» respectively, without the need for taking r3’s certificate into account. A

By definition of relevant processes, we have R; C P~ \ {p;} for every system process p; € P".
Thus, in particular, both ‘I’l.R C V¥ and QiR C G, hold for every p; € P™. Hence, soundness of
certifying synthesis with complete strategies when only considering relevant processes, follows
from the corresponding results when considering all other system processes:

Lemma 4.11. Let ¢ be an LTL formula over atomic propositions V with decomposition (¢, . . ., ¢n).
Let S = (s1,...,8n), ¥ = (Y1,...,¥n), and G = (7;6,...,7,'1(;) be vectors of strategies, LTL
certificates, and guarantee transducers for the system processes, respectively. If either (S, ¥)g
realizes ¢ or (S, G)g realizes ¢, then sy || ... || sn E ¢ holds.

Proof. For every p; € P~, we define ¥; = {lﬁl | pi e P™\ {pj}}, G = {‘71'G | pi € P\ {pj}},
‘I’j?e = {i,bi | pi € Rj}, and QJR = {71'6 | p;i € 7%1}. First, assume that (S, ¥)g realizes ¢. Then,
si E Ui A (‘I’IR — ¢;) holds for all p; € P~. By construction of the relevant processes, we
have R; € P~ \ {p;} and thus ‘que C ¥; follows. Hence, since s; E ; A (‘Iflq{ — ¢;) holds,
si E ¥ A (¥; — ¢;) follows with the semantics of conjunction and implication. Thus, (S, ¥)
realizes ¢ as well and therefore s; || ... || sn, = ¢ follows with Theorem 4.1.

4.5. COMPUTING RELEVANT PROCESSES

Second, assume that (S, G)g realizes ¢. Then, we have both s; |:9,-R @; and 7; < 7;6 for all
pi € P~, where 7; is the finite-state transducer representing s;. Hence, for all y € (2/1) and
all y’ € (2V\V)®, either comp(s;,y) Uy’ | ¢; holds or we have comp(s;,y) Uy’ ¢ (ng' Since
R; € P~\ {p;} holds, QiR C G; follows. Therefore, it follows immediately with the definition of
valid computations that, if comp(s;,y) Uy’ ¢ (VQ;R holds, then comp(s;,y) Uy’ ¢ Vg, holds as

well. Thus, we have both s; =g, ¢; and 7; < 7 G for all p; € P~ and therefore (S, G) realizes ¢.
Thus, s1 || ... || sn F ¢ follows with Theorem 4.2. O

Next, we consider the variants of certifying synthesis with transition-incomplete strategies,
i.e., with local strategies and augmented local strategies. Intuitively, the fact that R; C P~\ {p;}
holds for every system process p; € P~ again allows for concluding soundness: local strategies
and augmented local strategies realize the specification for every input sequence on which
they produce infinite traces. They produce infinite traces on input sequences that match the
guaranteed behavior of the relevant processes and thus, in particular, they produce infinite
traces on all input sequences that match the guaranteed behavior of all other system processes.
Formally, however, we cannot simply use the local and augmented local strategies for certifying
synthesis when considering all other system processes again since they do not adhere to the
definition of local strategies with respect to all other guarantee transducers.

Hence, the soundness proofs for these types of certifying synthesis differ in their structure
from those for certifying synthesis with complete strategies. First, we focus on certifying
synthesis with local strategies. The main idea is to extend the local strategies with strategy
extension as described in Definition 4.9 to complete strategies. These strategies build a solution
to certifying synthesis with complete strategies, guarantee transducers, and relevant processes.
Furthermore, the computations of their parallel composition coincide with the computations
of the parallel composition of the local strategies. Thus, it follows with Lemma 4.11 that the
parallel composition of the local strategies realizes the specification. Formally:

Lemma 4.12. Let ¢ be an LTL formula over atomic propositions V with decomposition (¢, . . ., ¢n).

Let G =(T.C,...,T,C) be a vector of guarantee transducers for the system processes. For p; € P~,
let Q}R = {7:G | pi € 72]-}. Let S = (§1,...,5,) be a vector such that $; is a local strategy for

pi € P~ with respect to gﬁ. If(S, ¥)g realizes ¢, then S || ... || $n E ¢ holds.

Proof. For p; € P7, let G; = {71'6 | pi € P™\ {pi}}. Let 7; = (T;, T;.0, 71,) be the finite-state
transducer representing $;. Assume that (S, ¥)g realizes ¢. Then, 7; < 717G holds for all p; € P~.
Furthermore, for all p; € P~and all y € (2%)®, y* € (2V\V)®, either comp(s;,y) is finite or
comp(Si,y) Uy' | ¢; holds. Let S = (s1,...,s,) be a vector of complete strategies such that
s; := extend($;, 7,) holds for all system processes p; € P~ i.e., we use strategy extension as
defined in Definition 4.9 to extend each §; to a complete strategy s;. Let 7; = (T;, T; 0, 73, £;) be
the finite-state transducer s;. We claim that (S, G)x realizes ¢. Let p; € P~

First, we show that 7; < 7176 holds. Note that the first part of the proof of Lemma 4.4, i.e.,
the part that proves transducer simulation there, does not make use of the fact that there is a
local strategy with respect to G;. Hence, since (S, ¥)g realizes ¢ by assumption, we can show
similarly hat 7; < 7, holds.

153

154

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

Second, we show that s; g, ¢; holds. Let y € (21)© and y’ € 2V\V)e If comp($;, y) is
infinite then comp($;,y) Uy’ E ¢; holds. Furthermore, by Lemma 4.3, we have comp(§;,y) =
comp(s;, y). Thus, comp(s;, y) Uy’ [@; follows. Otherwise, i.e., if comp($;, y) is finite, then we
can show similar to the proof of Lemma 4.4 that comp(s;,y) Uy’ | GR i holds.

Hence, (S, G)r indeed realizes ¢ and therefore sy || ... || s, |= ¢ follows with Lemma 4.11. We
can show that Traces(71 || ... || 7n) = Traces(71 || ... || 7) holds similar to the third part of the

proof of Lemma 4.4. In particular, the only difference is as follows: for p; € P~, let § be the local
strategy with respect to G; used in the proof of Lemma 4.4. In the second case of the induction,
we use that §] is a local strategy with respect to G; to conclude that [comp($], o N I;)| > k holds
from the fact that o € Vg, holds. If ¢ € Vg, holds, however, then it follows immediately
from the construction of QR that o € (V % holds as well. Hence, we can also conclude that
|comp($;, 0 N I;)| > k holds. Since the remamder of the proof is not specific to local strategies
with respect to the guarantee transducers of all other system processes, we do not need to alter
it for local strategies with respect to the guarantee transducers of all relevant processes. Hence,
we have Traces(77 || ... || Tn) = Traces(71 || ... || 7) and thus &; || ... || §, E ¢ follows. O

For certifying synthesis with augmented local strategies, recall that, by Lemma 4.8, an
augmented local strategy for a system process p; € P~ with respect to a set G of guarantee
transducers satisfies the same properties as a local strategy for p; with respect to G with respect
to finiteness and infiniteness of computations. Thus, as argued for the soundness of certifying
synthesis with augmented local strategies when considering the guarantee transducers of all
other system processes, it follows that the strategy local(s;), which is a copy of the augmented
local strategy s; with respect to G that restricts the output to O;, is a local strategy with respect
to G. Furthermore, simulation by the guarantee transducer for p; is preserved by construction
and, since augmented local strategies only produce well-defined traces, the computations of
the augmented local strategy s; and local(s;) agree for all input sequences. Therefore, the
computations of §1 || ... || s, and local(sy) || ... || local(s,) agree as well by Proposition 4.1.
Thus, soundness of certifying synthesis with augmented local strategies and relevant processes
follows from Lemmas 4.8 and 4.12, and the above observation.

Lemma 4.13. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n).
Let G =(T,°,...,T,C) be a vector of guarantee transducers for the system processes. For pj € P,

let QJR = {7I'G | pi € Rj}. LetS = ($1,-..,8n) be a vector such that 5; is an augmented local
strategy for p; € P~ with respect to gf‘ If(S’, W)g realizes ¢, then sy || ... || Sn E ¢ holds.

Next, we consider completeness. Recall that when considering the certificates of all other
system processes in the previous sections, we showed that if s; || ... || s, |E ¢ holds, then there
is a vector ¥ of LTL certificates and a vector G of guarantee transducers such that both (S, ¥)
and (S, G) realize ¢, where S = (s, ..., sp). When considering only the certificates of relevant
processes, however, we cannot prove this exact property: a strategy s; for system process p; € P~
may make use of a certificate of a system process p; € P™\ (R; U {p;}) outside of R;, i.e., it may
violate its specification ¢; on an input sequence y € (2)® that deviates from p;’s guaranteed
behavior, although ¢; is satisfiable for this input. While s; is not required to satisfy ¢; on this

4.5. COMPUTING RELEVANT PROCESSES

input since only s1 || ... || s» | ¢ needs to hold, a strategy for p; that may only consider the
certificates of relevant processes, in contrast, is. In this case, s; does not satisfy the requirements
of certifying synthesis when only considering relevant certificates.

However, we can show that if s; || ... || s, | ¢ holds, then there are some strategies s{, ..., s,
such that we can construct certificates that, together with §” = (s, ..., s;,), form a solution of
certifying synthesis for ¢. The main idea is to construct a strategy s; for the system processes
pi € P~ that behaves on every input sequence as s; does on input sequences that can occur in the
parallel composition of all strategies. Since the parallel composition of all strategies realizes ¢
by assumption, the strategies s; do so on all input sequences that match the relevant certificates.
Note, however, that this construction requires a slightly more restrictive assumption than
observation determinism: every process p; € P~ needs to be able to observe all environment
outputs or, if it does not, it needs to be able to observe all environment outputs that occur in
its specification and it may not have any relevant processes. First, we show completeness of
certifying synthesis with relevant processes for full strategies and guarantee transducers:

Lemma 4.14. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n).
Letsy, ..., sy be strategies for the system processes represented by finite-state transducers T, . . ., 7.
Suppose that for all p; € P~ either (i) Oeny C I; holds, or (ii) we have R; = 0 and O~ N I; = 0. If
si |l ... 1l sn |E @ holds, then there exist vectors S’, ¥’ of strategies and LTL certificates for the

system processes such that (S’,¥')g realizes ¢.

Proof. Let S = (s1,...,sp). For p; € P~ let 7; = (T}, Tjo,7j,¢;) and G, = {71'6 | pi € P\ {pj}}.
Assume that sy || ... || s E ¢ holds and let 7 = (T, Ty, 7, £) be the transducer representing
sill... | sn, i.e, we have 7 = 77 || ... || 7n. Then, by Theorem 4.1, there exists a vector G of
guarantee transducers for the system processes such that (S, G) realizes ¢.

We construct strategies s, .. ., s, represented by transducers 7;" = (T}, t],, 7]

1, ¢/) as follows:
for each system process p; € P~ with R; = 0 and O™ N [; = 0, let s; be a copy of s;, i.e., the
transducer 7;” representing s’ is given by 7;" := (T;, Ty, 7, £). For each system process p; € P~

with either R; # 0 or O™ N 1; # 0, let 7, = (T}, tz{,o’ 75, £’) be the transducer defined by

. T/ =T,
° Tz’o =T,

(t,1,t') € 7 if, and only if, (¢,1 N Oepy, t’) € 7 holds, and

(t,0) € ¢ if, and only if, there exists some 0" € 20" witho N O; = 0 and (t,0") € ¢.

Note that since either R; # 0 or O~ N [; # 0 holds, we have O,,, C I; by assumption. Thus,
1 N O¢ny defines the valuation of all environment outputs and therefore 7] is well-defined. Let
S’ = (s],...,s;). Furthermore, for each p; € P~ let 71.'6’ be the guarantee transducer that is a
copy of 7;” which restricts the output to the guarantee outputs of p;. Let G" := (‘EG', L TE
and, for p; € P~ let g;{j = {717G, | pi € RJ—}. In the following, we show that (S’, G")r realizes ¢,
i.e., that both s; |:g(;{l_ piand 7;” < 71.'6’ hold for all p; € P~. Let p; € P~. It follows immediately
from the construction of 7}’ G’ that 7 =< ‘717G' holds. Next, let y € (25)®, let y’ € (2V\%)®, and
let o := comp(s],y) Uy’. If o € Traces(7") holds, then, since s; || ... || s, | ¢ by assumption, it

155

156

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

follows from the construction of 7~ that we have ¢ |= ¢. Thus, by definition of specification
decomposition and by the semantics of conjunction, o |= ¢; holds as well. Otherwise, we have
o & Traces(7T"). We distinguish two cases:

First, suppose that R; = 0 and O™ N I; = 0 hold. Then, s; is a copy of s; by construction.
Let ¢’ € Traces(7) be the trace of 7 such that ¢’ N Ogpy = 0 N Ogpy holds. Since O™ NI =0
holds by assumption, p; cannot react to the outputs of any other system process and thus, in
particular, o’ N I; = o N I; holds as well. Hence, 0 N O; = ¢’ N O; follows with the definition of
computations. Furthermore, since R; = 0 holds, we have prop(¢;) NO; = @ forall p; € P™\ {p;}
and thus prop(¢;) € Oguy U V; holds. Since o and ¢’ agree on all variables in Oy, in I;, and
in O; as shown above, we thus have o N prop(¢;) = o’ N prop(¢;). By construction, we have
o’ € Traces(7) and therefore, since s || ... || sp E ¢ holds by assumption, we have ¢’ = ¢ and
thus ¢’ [= ¢;. By definition, the satisfaction of ¢; is only affected by variables in prop(¢;). Thus,
o [¢; follows and hence o |= ¥ ; — ¢; holds by the semantics of implication as well.

Second, suppose that either R; # 0 or O™ N I; # 0 holds. Then, since o N'V; € Traces(7;")
by definition of o, there exists, by construction of 7;", some trace o’ € Traces(7") such that
0N O¢py = 0" N Ogyy and o N O; = ¢’ N O; hold. Furthermore, since s || ... || s, | ¢ holds by
assumption, o’ | ¢ and thus, in particular, ¢’ |= ¢; follows. The satisfaction of ¢; is only affected
by variables occurring in ¢;. Hence, if o N prop(¢;) = o’ N prop(¢p;) holds, then we have o | ¢;
as well and thus o Iz%’i ¢; follows. Otherwise, o and ¢’ disagree on some variable in prop(¢;).
Since both ¢ N Ogpy = 6" N Ogpy and 0 N O; = ¢’ N O; hold, ¢ and ¢’ disagree on a variable
v € prop(¢:) Uy, ep-\(p;} Oj- By definition of relevant processes, we have O; N prop(¢;) = 0 for
all p; € P7\ (R;U{p;}) and thus v € prop(¢;) N UPjERi Oj follows. Let p; € R; such thatv € O;
holds. Then, in particular, o N O; # ¢’ N O; holds. Since ¢’ € Traces(7") holds by construction,
we have 0’ NV} € Traces(7;) by Proposition 4.1 and, in particular, o’ N'V; € Traces(7;, o’ N I;).
Since 7} is deterministic, c N V; ¢ Traces(7;, 0’ N I;) follows. If we have R; = 0 and O™ NI; = 0,
then, p;’s behavior is only affected by environment outputs. Since 0 N\ O¢py = 0’ N O¢yy holds as
shown above, thus o N V; ¢ Traces(7;, o N I;) follows. By construction of ‘7;’ and ‘7;G', we then
alsohave o NV; ¢ Traces(’];G', o N1I;) and hence o ¢ ‘Vg;{j follows since we have p; € R; by
construction. Hence, o |:Q«/'e,j ¢i holds. Otherwise, suppose that cNV; € Traces(7;, oN1I;) holds.
Then, by construction of ‘7;’, there exists some ¢”’ € Traces(7") such that ¢’ N Oy = 6”7 N Oppy
as wellas ' NO; = 6"’ NO; holds. Since 6N O¢py = 6" NO¢py holds, we have 6N Oepy = 6" NOppy
as well. Since 7 is deterministic as shown above and since its set of input variables is given
by Oeny by construction, o = ¢”’ follows. But then 0 N O; = ¢’ N O; holds, contradicting that o
and ¢’ differ on some output variable of p;. Hence, c N V; ¢ Traces(‘i;’, o N I;) holds. Thus,
since 7;’ is deterministic, we have c NV, # comp(‘i;’, o N Ij). By construction of 7;6', thus
onNV; # comp(7;G/, o N I;) holds and hence 0 N O; # comp(‘i]'.G’, o N 1I;) N O; holds as well.
Therefore, o ¢ (ng'z,i and thus o |=g‘;(,i @; follows. O

Recall that, as shown in the proof of Lemma 4.1, a guarantee transducer ‘717G for system process
pi € P”can be translated into an LTL certificate ;. Analogous to the proof of Lemma 4.1, we
can conclude that whenever a strategy s; for process p; € P~ realizes a specification ¢; with
respect to the set gf of guarantee transducers of the relevant processes of p;, then s; realizes

4.5. COMPUTING RELEVANT PROCESSES

the formula ‘PIR — @; as well, where ‘PIR is the set of LTL certificates of the of the relevant
processes of p; constructed from the guarantee transducers. Hence, together with Lemma 4.14,
it follows that certifying synthesis is also conditionally complete for LTL certificates when only
considering the certificates of relevant processes:

Lemma 4.15. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n).
Let sy, ..., sy be strategies for the system processes represented by finite-state transducers Ty, . . ., T,.
Suppose that for all p; € P~ either (i) Oeny C I; holds, or (ii) we have R; = 0 and O~ N I; = 0.
Ifsi||... |l sn |E @ holds, then there exist vectors S’, ¥ of strategies and LTL certificates for the
system processes such that (S’, ¥)g realizes ¢.

Next, recall that we can restrict complete strategies to local strategies with strategy restriction
as defined in Definition 4.10. Thus, in particular, we can restrict the full strategy s; for a
system process p; € P~ to the set QZR of guarantee transducers of the relevant processes
of p;. By Lemma 4.5, the resulting strategy $; := restrict(s;, QiR) is indeed a local strategy with
respect to QIR Furthermore, by construction, the transducer representing §; is simulated by
the guarantee transducer for p; as long as the transducer representing the full strategy s; is.
Analogous to the proof of Lemma 4.7, we can thus show that if the full strategy s; satisfies ¢
with respect to Ql.R and if we have prop(¢;) € V; holds, then §; realizes ¢; on all inputs on
which it produces infinite computations. Therefore, together with Lemma 4.14, it follows that
certifying synthesis is also conditionally complete for local strategies when only considering
the certificates of relevant processes:

Lemma 4.16. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n)-
Letsy, ..., sp be strategies for the system processes represented by finite-state transducers T, . . ., Tp.
Suppose that for all p; € P, either (i) O¢ny C I; holds, or (ii) we have R; = 0 and O~ N I; = 0.
If we havesy || ... || sn = @ and if prop(¢;) C V; holds for all p; € P~, then there exists a vector
G = (‘EG, .. .,7:nG) of guarantee transducers and a vector S = ($1,...,8,) such that$; is a local

strategy for p; € P~ and gl?‘, where QiR = {7;6 | pj € 73,-}, and such that (3, G)r realizes ¢.

Lastly, recall that if observation determinism as formalized in Definition 4.13 is ensured, then
we can build an augmented local strategy from a complete strategy similar to strategy restriction,
yet, adding the associated outputs to the labeling function. In particular, similar to above, we
can use restriction to the set QI.R of guarantee transducers of the relevant processes of p;.
Similar to the proof of Lemma 4.10, it follows that the resulting transducers indeed represent
augmented local strategies. Furthermore, when restricting the transducers to the outputs of
the corresponding process, we obtain transducers that are identical to those constructed with
strategy restriction. Since we used these transducers for the proof of Lemma 4.16, they form a
solution of certifying synthesis with local strategies and relevant processes. Hence, analogous
as in the proof of Lemma 4.10, it follows that the augmented local strategies form a solution
of certifying synthesis with augmented local strategies and relevant processes as well. Thus,
conditional completeness follows. Note here that observation determinism is already ensured
by the requirement that O,,, C I; holds. Therefore we do not need to state it separately for
such system processes p; € P~.

157

158

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

Lemma 4.17. Let ¢ be an LTL formula over atomic propositions V with decomposition (¢, . . ., ¢n).

Letsy, . .., s, be strategies for the system processes represented by finite-state transducers 71, . . ., T,.
Suppose that for all p; € P~, either (i) Ogny C I; holds, or (ii) {7; | pj € P7\ {p,-}} is observation-
deterministic for p; and we have R; = 0 and O~ NIL; = 0. Ifs; || ... || s E ¢ holds and

if we have prop(¢;) € V; for all p; € P~, then there exist vectors G = (7,°,...,T,C) and
S = (81,...,8n) of guarantee transducers such that s; is a local strategy for p; € P~ and QiR,

where Q;R = {‘7;G | pj € Ri}, and such that (S, G)r realizes ¢.

Therefore, it is sound and, under certain conditions, complete to consider only the certificates
of relevant processes instead of the certificates of all other system processes in all variants of
certifying synthesis that we introduced in the previous sections. Considering the certificates of
only relevant processes can easily be integrated into the SAT constraint system from Section 4.4.4
that encodes the search for augmented local strategies and guarantee transducers satisfying the
conditions of certifying synthesis. The only difference is that we do not require, for each p; € P,
the existence of relations S ; establishing that the strategy is an augmented local strategy for all
other system processes p; € P~\ {p;} but only for the relevant processes p; € R;. In particular,
we thus do not add A pieP\(pi} (4.4) for p; to the SAT constraint system but A pieR;: (4.4). This
results in the following overall constraint system:

/\ (4.1) A (4.2) A A (4.4) | A (4.3) A (4.5)

pi€P~ piER;

Correctness of the SAT constraint system under the stated conditions then follows immedi-
ately from the soundness and completeness results for certifying synthesis with augmented
local strategies and relevant processes presented in this section, i.e., from Lemmas 4.13 and 4.17,
as well as from Theorem 4.3. Note here that soundness of the SAT constraint system holds
unconditionally, i.e., if the constraint system is satisfiable, then its solution defines augmented
local strategies whose parallel composition realizes the given specification. Unconditional
completeness, however, cannot be guaranteed: note that, as outlined in Section 4.4.1, moving
from complete strategies with local satisfaction to local strategies makes the requirement that,
for each process p; € P7, all variables that are contained in p;’s subspecification are observable
by p;. We experienced, however, that this condition is often satisfied.

Furthermore, completeness of certifying synthesis with augmented local strategies and rele-
vant processes and thus completeness of the SAT constraint system requires that every system
process p; € P~ can either observe all environment outputs or does not have relevant pro-
cesses. This ensures that the guarantee transducers of other system processes are completely
deterministic also from p;’s point of view, or it is not necessary to consider other processes’
guarantees. While this limits the completeness result of the SAT constraint system to certain
architectures and specifications, we experienced again that this condition is often satisfied.
For instance, this is the case for all benchmarks considered in our experimental evaluation in
Section 4.7. Furthermore, we did not encounter a benchmark so far, where certifying synthesis
with relevant processes failed while classical certifying synthesis succeeded, even if the com-
pleteness condition on the architecture is violated. Hence, since the condition is only necessary

4.6. NONDETERMINISM IN GUARANTEE TRANSDUCERS

T | {a} T | {b}
QTI{a}/\T{a}/—\ TIO /\T{a}ﬁ é:)
NG NG
(a) Strategy s;. b) Strategy s;.

Figure 4.5.: Finite-state transducers representing the strategies s; and s, for the two system
processes p; and p, from Example 4.9.

for completeness — soundness of certifying synthesis with relevant processes is guaranteed
even if the condition is violated — trying to synthesize a solution with relevant processes only
and only considering all other system processes if certifying synthesis with relevant processes
fails still guarantees a correct solution.

4.6. NONDETERMINISM IN GUARANTEE TRANSDUCERS

In the previous sections, we focused on either LTL certificates or certificates represented by
deterministic guarantee transducers. As outlined in Section 4.3.1, the former are not suitable for
practical synthesis when aiming for integrating certifying synthesis into existing frameworks
for constraint-based bounded synthesis. The latter, in contrast, can be integrated into such
frameworks as presented in Section 4.4. While certifying synthesis with guarantee transducers
is sound and complete as well (see Theorem 4.2), requiring the guarantee transducers to be
deterministic can influence the conciseness of certificates.

Example 4.9. Consider a system with two system processes p; and p; with O; = I, = {a}
and Oy =) = {b}. Letp =a & bAaAQaAOOaAOO0O—aAOQOOO00OOa. Then,
the decomposition of ¢ is given by (@1, ¢2) with ¢; = ¢ and ¢, = a < b. To realize its
specification ¢y, process p; only needs information about p,’s behavior in the very first time
step. The behavior in all other time steps is irrelevant. Similarly, p, only needs information
about p;’s behavior in the very first time step. Suppose that both processes guarantee to set
their respective output variables to true in the first time step. Then an LTL certificate for p;
could be given by ¢; = a and an LTL certificate for p, by i, = b. These certificates only restrict
the processes’ behavior in the very first time step and is thus, in some sense, nondeterministic
for the other time steps. Nevertheless, a strategy s; for p, that sets b to true in the very first
time step realizes both {; — ¢, and ¢». A strategy s; for p; that sets a to true in the first time
step and additionally ensures that the remaining parts of ¢, are satisfied realizes both ¢, — ¢,
and ¢;. Examples of transducers representing such strategies are depicted in Figure 4.5.
When modeling certificates with deterministic finite-state transducers, however, the guaran-
tee transducers need to uniquely determine the guaranteed behavior of the processes not only
in the very first step but in all steps. Since guarantee transducer 7, for process p; is required
to simulate the transducer representing strategy s;, it needs to explicitly spell out the behavior
of s; regarding a in all time steps, resulting in a much less concise certificate. A

159

160

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

In this section, we, therefore, extend the notion of guarantee transducers with nondeter-
minism and adapt the notion of valid computation to nondeterministic guarantee transducers.
Afterward, we define certifying synthesis with nondeterministic guarantee transducers and
establish soundness and completeness. Lastly, we present a SAT constraint system for syn-
thesizing augmented local strategies and nondeterministic guarantee transducers that satisfy
the requirements of certifying synthesis. As part of the experimental evaluation of certifying
synthesis presented in Section 4.7, we investigate the trade-off between having more concise
nondeterministic certificates and the larger search space resulting from permitting multiple
transitions and labels for the same state and input.

4.6.1. SYNTHESIZING NONDETERMINISTIC GUARANTEE TRANSDUCERS

We model the certificate of a system process p; € P~ with a complete and possibly nondeter-
ministic finite-state Moore transducer 71.'6, called nondeterministic guarantee transducer (NGT),
over input variables I; and guarantee output variables OiG. Since a nondeterministic guarantee
transducer is complete, it produces at least one trace for every infinite input sequence y € (2%)%,
i.e., we have |Traces(7;G, Y)| = 1. The concept of valid computations and valid histories for
nondeterministic guarantee transducers is similar to the respective notion for deterministic
guarantee transducers introduced in Section 4.3:

Definition 4.15 (Valid Computation and Valid History for NGTs).

Let # C P~ be a finite set of system processes. Let G be a finite set of nondeterministic
guarantee transducers, one for each of the processes in #. An infinite sequence o € (2V)® is
called valid computation for G if, and only if o N OF € Traces(7;°, o N I;) N OF holds for all
A Y € G. The set of valid computations for G is denoted with Vg. A finite prefix p € (2)*
of length k > 0 of some valid computation o € Vg is called valid history of length k for G.
The set of all valid histories of length k for G is denoted with 7’(5

The notions of local satisfaction and local realization (see Definition 4.4) then carry over
immediately when utilizing valid computations for nondeterministic guarantee transducers
instead of valid computations for deterministic ones. We can thus define certifying synthesis
with certificates represented by nondeterministic guarantee transducers similar to certifying
synthesis with deterministic guarantee transducers (see Definition 4.6). The only difference is
that we derive nondeterministic guarantee transducers instead of deterministic ones.

Example 4.10. Reconsider the system and the specification from Example 4.9. A deterministic

guarantee transducer 7, for process p; is shown in Figure 4.6a, a nondeterministic one 7. in
Figure 4.6b. Clearly, 7S is much more concise than 7,°.

The set of traces of 7:3 is given by {p e (2tePhye | po N {a} = {a}}, i.e., by the set of all
sequences where a is set to true in the very first time step. Therefore, it follows immediately
that strategy s, for process p, depicted in Figure 4.5b satisfies ¢, = a <> b with respect to 7.9

n,1’

i.e.,, we have s, |:{7'G1} ¢,. Furthermore, the relation R = {(#1, t1), (2, t2), (83, t2), (ts, t2), (t5,£2) }
establishes that 77 < 75 holds, where 7; is the finite-state transducer representing strategy s

4.6. NONDETERMINISM IN GUARANTEE TRANSDUCERS

T | {a} T|{a}Vv0
_»@T{a}/t‘z\ﬂ{a}/t;\ T|O @T{a}@ . T{a}@
N N N @
(a) GT 7, for p, (b) NGT 7,5 for p;.

Figure 4.6.: Deterministic and nondeterministic guarantee transducers ‘7;6 and 7:1? for process p;
from Examples 4.9 and 4.10.

depicted in Figure 4.5a. A (deterministic) guarantee transducer 7, for p, that is a copy of the
transducer 7, representing s, clearly ensures that both 7; < 7'2'G and s; |E (75} P2 hold. Hence,

the strategies s; and s, from Figure 4.5 as well as the guarantee transducer 7,° described above
and the nondeterministic guarantee transducer depicted in Figure 4.6b constitute a solution of
certifying synthesis with nondeterministic guarantee transducers. A

A valid computation for nondeterministic guarantee transducers must match some trace of
every guarantee transducer of the other system processes. When requiring that a strategy s;
locally realizes a specification ¢;, we thus require that s; satisfies ¢; on every input sequence that
can match the behavior of the guarantee transducers in the sense that it matches some of the
nondeterministic choices of the certificates. Employing nondeterministic guarantee transducers
instead of deterministic ones in certifying synthesis thus, intuitively, makes local realization
harder since a strategy needs to realize the specification irrespective of the actual nondeter-
ministic choices of the certificates. Hence, the strategy might need to realize the specification,
although it does not know to which concrete behavior the other processes commit.

Soundness of certifying synthesis with complete strategies and nondeterministic guarantee
transducers thus follows from this observation since, intuitively, a solution (S, G) of certify-
ing synthesis with nondeterministic guarantee transducers still ensures that every strategy s;
from S realizes the specification ¢; on all sequences that can occur in the interplay of all pro-
cesses. Furthermore, since every guarantee transducer is, by definition, also a nondeterministic
guarantee transducer, completeness follows from Theorem 4.2. Formally:

Theorem 4.4. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n).
Let S = (sy,...,Sn) be a vector of strategies for the system processes. Then, there exists a vector G
of nondeterministic guarantee transducers for the system processes such that (S, G) realizes ¢ if,

and only if; s1 || ... || sn |E ¢ holds.

Proof. Let 7; = (T;, T; 0, 73, £;) be the deterministic and complete finite-state transducer repre-
senting strategy s;. Let G = (7,%,...,7,°) and, for p; € P7, let G; = {7:6 | pi e P™\ {pj}}.
First, observe that, by definition, every guarantee transducer is a nondeterministic guaran-
tee transducer as well. Thus, completeness of certifying synthesis with nondeterministic
guarantee transducers follows immediately from Theorem 4.2. Next, suppose that there ex-
ists a vector G = (TG, e 7,’16) of nondeterministic guarantee transducers for the system
processes such that (S, G) realizes ¢. Then, for each p; € P~, we have both s; =g, ¢; and

161

162

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

Ti = 7;6. Let o € Traces(71 || ... || 7»). Then, by Proposition 4.1, we have o N V; € Traces(7;)
for all p; € P~. Hence, since s; =g, ¢; holds by assumption, for all y’ € (2"\V))®, either
(eNV) Uy Egior (cnNV;) Uy ¢ Vg, holds. Thus, in particular, for every p; € P~, we have
either o = ¢; or 0 ¢ Vg,. If 0 ¢ Vg, holds for some p; € P~, however, then there exists some
pj € P7\{pj} suchthatoNO; ¢ Traces(?l.'G, o NIj) N O; holds. As shown above, however, we
have oNV; € Traces(7;). Furthermore, since (S, G) realizes ¢ by assumption, we have 7; < 7;6.
Hence, 0 N'V; € Traces(G,) follows with Proposition 4.1. By definition of traces, in particular
o NV; € Traces(Gj, o N I;) holds and therefore we have 0 N O; € Traces(7i'G, onlj)NOj;
contradicting that o ¢ Vg, holds due to p;. Since we chose both p; € P~ and p; € P\ {p;}
arbitrarily, it thus follows that o € Vg, holds for all p; € P~. Hence, it follows that o | ¢;
holds for all p; € P~ and thus we have o £ A\ j,,cp- ¢:- Therefore, by definition of specification
decomposition and by the semantics of conjunction, ¢ |= ¢ holds. O

To utilize existing bounded synthesis algorithms and frameworks, we introduced certifying
synthesis with local strategies in Section 4.4. Since the definition of local strategies (see Defini-
tion 4.7) is based on valid histories and valid computations, it carries over to nondeterministic
guarantees immediately when utilizing valid histories and valid computations for nondeter-
ministic guarantee transducers instead of the versions for deterministic ones. Hence, we can
define certifying synthesis with local strategies and certificates represented by nondeterministic
guarantee transducers similar to certifying synthesis with local strategies deterministic guar-
antee transducers (see Definition 4.8). The only difference is that we derive nondeterministic
guarantee transducers instead of deterministic ones.

Similar to the case with deterministic guarantee transducers, we can restrict complete strate-
gies to local ones, and extend local strategies to full ones. Note that strategy restriction as
defined in Definition 4.10 can already handle nondeterminism in guarantee transducers: the
restricted strategy keeps track of the guarantee transducers of the other system processes in the
second component of its state. For certain architectures, namely those where the current system
process p; € P~ cannot observe all input variables of the considered other processes in P, the
guaranteed behavior of the processes in P is already nondeterministic from p;’s point of view,
although we only considered deterministic guarantee transducers in the previous parts of this
chapter. Therefore, the definition of strategy restriction already uses sets of states in which the
guarantee transducers can be in, and thus permitting actual nondeterminism in the guarantee
transducers does not yield the need for change in the construction. Furthermore, the proofs
of Lemmas 4.5 and 4.6 do not rely on the fact that guarantee transducers are deterministic.
Thus, the results carry over to certifying synthesis with local strategies and nondeterministic
guarantee transducers. Hence, completeness of certifying synthesis with local strategies follows
exactly as for deterministic guarantee transducers.

Lemma 4.18. Let ¢ be an LTL formula over atomic propositions V with decomposition (@1, . . ., ¢n).
Let S = (s1,...,sn) be a vector of strategies for the system processes. If prop(¢;) € V; holds for all
pi € P-and ifs1]|...||sn E @ holds, then there exist vectors G = <7;G, T and S = 15+, 8n)
of nondeterministic guarantee transducers and local strategies such that $; is a local strategy for

pi € P~ with respect to G;, where G; = {‘7}“G | pj € P7\ {pi}}, and such that (S, G) realizes ¢.

4.6. NONDETERMINISM IN GUARANTEE TRANSDUCERS

However, strategy extension as defined in Definition 4.9, utilizes the fact that guarantee
transducers are deterministic. The extended strategy for p; € P~ keeps track of both p;’s local
strategy and p;’s guarantee transducer. Since p; can clearly always observe all of the inputs that
are relevant for p;’s guarantee transducer, the construction does not take care of nondeterminism
from p;’s point of view such as strategy restriction does. Thus, when using the same construction
for strategy extension when considering nondeterministic guarantee transducers as when
considering deterministic ones, the resulting transducer can be nondeterministic. Hence, since
system strategies are required to be deterministic, it then does not represent a complete strategy.
Note, however, that using the behavior of p;’s guarantee transducer to extend the local strategy
instead of some random behavior is only necessary to ensure that the extended strategy is
still simulated by the guarantee transducer. Whenever the extended strategy differs from
the behavior of the local strategy, the considered sequence does not match the guarantee
transducers of the other considered processes. Hence, by definition of local satisfaction, the
strategy’s computation does not need to satisfy the specification anyhow.

Therefore, we can alter the extension of the local strategy, i.e., the behavior of the extended
strategy whenever the local strategy does not contain transition anymore, to obtain a deter-
ministic strategy extension. As long as the extended strategy is simulated by the guarantee
transducer, the requirements of certifying synthesis with complete strategies are still satisfied.
In particular, we can thus pick one of the nondeterministic choices occurring in the nonde-
terministic guarantee transducer when building the strategy restriction. Intuitively, we thus
resolve the transducer’s nondeterminism while clearly maintaining the simulation. Then, the
extended strategy is deterministic even when considering nondeterministic choices, and, as
outlined above, the requirements of certifying synthesis with local strategies are still satisfied.
In particular, the proof of Lemma 4.3 does not change at all since it only considers the part of
the strategy extension that represents the local strategy, and the proof of Lemma 4.4 can be
carried out analogously when utilizing the slightly altered version of strategy extension. Hence,
soundness of certifying synthesis with local strategies follows exactly as for deterministic
guarantee transducers.

Lemma 4.19. Let ¢ be an LTL formula over atomic propositions V with decomposition {1, . . ., ¢n).
Let G = (7,5,...,T.0) be a vector of nondeterministic guarantee transducers for the system
processes and, forp; € P~, let G; = {7:6 | pi € P\ {pj}}. LetS = (31,. .., 5,) be a vector of local
strategies for the system processes such that §; is a local strategy for p; € P~ and G;. If(S G)
realizes @, then §1 || ... || $n E 0.

Next, recall that, in order to practically identify valid computations, we augmented local
strategies with associated output variables, i.e., the outputs of other processes that are also
inputs of the current process, in Section 4.4.3. In particular, an augmented local strategy for
process p; € P~ is represented by a (2%, Zoiuof)-transducer, while a local strategy is represented
by a (2%, 297)-transducer. Since system strategies are deterministic, this construction inherently
enforces determinism of the guarantee transducers of the other processes and, in fact, even
determinism from the current processes point of view, i.e., observation determinism. In the
following, we thus slightly alter the definition of augmented local strategies. We represent an

163

164

4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

augmented local strategy §; for system process p; € P~ as a deterministic (2%, 297)-transducer
T = (T;, ig %;, £;) and equip it with an additional labeling function sz : T; X O;‘1 — {T,L,?}
that determines for each state t € T and each associated output v € OI.A whether it is definitely
true in t (encoded with T), definitely false in ¢ (encoded with L) or whether it can be both
true and false in t (encoded with ?). For all t € T; and all 1 € 2%, we then require that there
is some t’ € T; with (t,1,t") € 7; if, and only if, it holds for all v € Of‘ that (i) if v € 1, then
we have ¢4(t,0) C {T,?} and (ii) if v ¢ 1, then we have ¢4(t,0) C {L,?}. Furthermore, we
again require the existence of relations S’ for all other considered processes p;. Consequently,
the definition of these relations is adapted in the straightforward manner to work with the
additional labeling ¢## instead of the labeling /; restricted to the associated outputs.

We can then show analogously to the proof of Lemma 4.8 that an augmented local strategy
as defined above satisfies the properties of local strategies for nondeterministic guarantee
transducers regarding finiteness and infiniteness of computations. Hence, in particular, the
transducer representing the augmented local strategy is a local strategy as well and therefore
soundness of certifying synthesis with augmented local strategies and nondeterministic guar-
antee transducers follows, as in the deterministic case, from the respective soundness result for
certifying synthesis with local strategies.

Lemma 4.20. Let ¢ be an LTL formula over atomic propositions V and let {¢1, ..., ¢n) be its
decomposition. Let G = (7,5, ..., T.°) be a vector of nondeterministic guarantee transducers for
the system processes and, for p; € P~, let G; = {‘7:G | pi € P™\ {pj}}. LetS = (51,...,5,) bea
vector of augmented local strategies for the system processes such that s; is an augmented local
strategy for p; € P~ with respect to G;. Let T; be the finite-state transducer representing §;. If, for
all p; € P, both §; = ¢; and T; < 7;G hold, then si || ... || $n E .

Furthermore, recall that the proof of completeness of certifying synthesis with augmented
local strategies and deterministic guarantee transducers, i.e., the proof of Lemma 4.10, constructs
augmented local strategies similar to the construction of strategy restriction. The proof relies on
the assumption that the strategies and the guarantee transducers are observation-deterministic,
which yields that in the construction, the second part of the state of the transducer 7; represent-
ing the augmented local strategy is always a singleton. This, however, is only needed to ensure
that, for every state of 7;, there exists a unique labeling to obtain a deterministic transducer.
Since the labeling of augmented local strategies as introduced in Section 4.4.3 contains the valua-
tions of the associated outputs, we thus require a unique valuation of associated outputs. Hence,
if the second part of the states of 7; would not be a singleton, we might obtain contradicting
valuations of associated outputs. Outsourcing the associated outputs to an additional labeling
function now enables to also handle non-singleton sets of states of the parallel composition of
the guarantee transducers in the construction of the augmented local strategy without losing
determinism. Since strategy extension already allows for nondeterminism in the guarantee
transducers as outlined above, we can use the same construction and define the additional
labeling £ in the straightforward manner. Note that the valuation of the associated outputs
in the labeling of a state of the augmented local strategy does not influence whether or not
it realizes a specification. Thus, we can show analogously to the proof of Lemma 4.10 that
the augmented local strategies constructed in this way indeed form a solution of certifying

4.6. NONDETERMINISM IN GUARANTEE TRANSDUCERS

synthesis with augmented local strategies and nondeterministic guarantee transducers, thus
proving completeness. Observe that the new definition of augmented local strategies allows for
dropping the requirement that the strategies are observation-deterministic.

Lemma 4.21. Let ¢ be an LTL formula over atomic propositions V and let (@1, ..., pn) be its
decomposition. Let sq,...,s, be strategies for the system processes represented by finite-state
transducers 71, . . ., Tn. If we have prop(p;) C V; forall p; € P~, and if s1 || ... || sn |E ¢ holds, then
there exists a vector G = (7.5, ..., T.C) of nondeterministic guarantee transducers for the system
processes and a vector S = (51, ..., $;) such that §; is an augmented local strategy for p; € P~ with

respect to G;, where G; = {‘CG | pj € P\ {pi}}, such that (S, G) realizes ¢.

Hence, when altering the definition of augmented local strategies as presented above, aug-
mented local strategies can again be used to identify valid computations. Furthermore, certifying
synthesis is both sound and complete when considering nondeterministic guarantee transducers.
Therefore, we encode certifying synthesis with augmented local strategies and nondeterministic
guarantee transducers into a SAT constraint system in the following to practically synthesize
strategies and certificates in the following section.

4.6.2. CONSTRAINT SYSTEM FOR NONDETERMINISTIC CERTIFICATES

To encode the search for augmented local strategies and nondeterministic guarantee transducers
that adhere to the requirements of certifying synthesis into a SAT constraint system, we reuse
most of the constraint system for the deterministic case presented in Section 4.4.4. We only
need to adapt a few variable encodings and constraints. To incorporate the slight change in the
definition of augmented local strategies, we first adapt the encoding of the labeling function
of the finite-state transducer 7; = (T;, T;, 7;, £;) representing the augmented local strategy as
follows: we represent ¢; by one Boolean variable 0;,0 for each t € T; and 0 € 29, Given t € T;
and o € 29 it holds that oi’o is true if, and only if, £;(t) = o holds. Thus, since an augmented

local strategy is now a (2%, 297)-transducer instead of a (2%, ZOiUO?)-transducer, we only have
Boolean variables for the outputs of p;.
Furthermore, we introduce variables to encode the additional labeling function ¢2: we

represent £/ by two Boolean variables oi’; and oi’j foreach t € T; and 0 € O2. Givent € T

ando € 20?, it holds that 0% is true if, and only if, we have t’A(t, 0) € {x,?}, where x € {T, L}.
Thus, intuitively, O;Z encodes that o can be set to true in state t, i.e., either it is definitely true or
it can be both true and false. Similarly, O;i‘ encodes that o can be set to false in state t. Hence, if
both O;I and O;j; are true, then there is no unique valuation of o in ¢.

Next, we adapt the constraints to the new variable encodings. Constraint (4.1) encodes
determinism and completeness of guarantee transducers. Hence, we remove the conjunct that
ensures that there is at most one outgoing transition for every state and every valuation of

input variables; resulting in the following constraint:

/\ /\ \/ T (4.6)

ueTiG 1ICI; u’ETiG

165

166 4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

Constraint (4.2) encodes the existence of a simulation relation that establishes that the
transducer representing the augmented local strategy for p; € P~ is simulated by the guarantee
transducer for p;. Since the simulation is only defined on the output variables of p; and not on
its associated outputs, the constraint does not need to be changed.

Constraint (4.3) encodes condition (i) of the definition of augmented local strategies as well
as determinism of the strategy. Hence, we adapt the conjunct for condition (i) to match the
formalization in the slightly altered definition of augmented local strategies when considering
nondeterministic guarantee transducers:

AALA, ez afori=oit) o \V

teT; 1CI; \o€OA teT; (4.7

i i
AN (e A)
vVeT; t"eT;\{t'}

Constraint (4.4) encodes condition (ii) of the definition of augmented local strategies, i.e., the
existence of relations S; for all other considered system processes p;. Hence, we again need
to adapt it to the slightly altered version of augmented local strategies for nondeterministic
guarantee transducers:

Jsi G.j LT G.j il
tio A /\ /\ Su,t - /\ (O € Ou,o - Ot,o) A (O é Ou,o - Ot,o)

G) A~OG
ueTj teT; 0€0; mOj

A /\ /\ /\ (0 el — oi’;) A (o ¢/ — oi’j) (4.8)

1CI; v Cl; crEO;.‘1

o) G,j i Jii
AN =001 [l — /\ Ty = \/ (rt’,,’t, /\Su,,t,)

u’eTjG teT;

Jii
StG
70

Lastly, constraint (4.5) encodes the existence of a valid annotation of the run graph of the
universal co-Biichi automaton A; representing the specification ¢; and the strategy 7;. Since the
constraint only considers the outputs of p;, the change in the encoding of the labeling function
does not affect this constraint. Hence, we do not need to alter it.

Combining all these constraints, we obtain the following constraint system Cy g, for certi-
fying synthesis with augmented local strategies and guarantee transducers:

/\ (4.6) A (4.2) A /\ (4.8) | A (4.7) A (4.5)

pi€P~ pi€P\{pi}

Recall that the new definition of augmented local strategies allows for dropping the require-
ment that the strategies allow for observation determinism while still ensuring completeness.

4.7. EXPERIMENTAL EVALUATION

Thus, redefining augmented local strategies immediately enables practical certifying synthesis
when considering architectures that do not allow for observation determinism. Thus, we can
use the constraint system introduced in this section also for synthesizing augmented local
strategies and deterministic guarantee transducers that adhere to the requirements of certifying
synthesis but violate observation determinism.

4.7. EXPERIMENTAL EVALUATION

We have implemented certifying synthesis with augmented local strategies and both determin-
istic and nondeterministic guarantee transducers. Our implementation expects an LTL formula
and its decompositions as well as the system architecture and the bounds on the strategy and
certificate sizes as input. Our implementation extends BoSy [FFT17], a bounded synthesis tool
for monolithic systems, to certifying synthesis for distributed systems. In particular, we extend
and adapt BoSy’s SAT encoding [FFRT17] as described in Sections 4.4.4 and 4.6.2, respectively.
We evaluate our implementation in two lines of experiments. First, we compare certifying
synthesis with deterministic guarantee transducers to two different synthesis approaches for
distributed systems. Second, we compare the performance of our implementation of certifying
synthesis with deterministic guarantee transducers to the one of certifying synthesis with
nondeterministic guarantee transducers.

4.7.1. DISTRIBUTED SYNTHESIS

We compare our implementation of certifying synthesis with deterministic guarantee transduc-
ers to two extensions of BoSy [FFT17]: a non-compositional one for distributed systems [Bau17],
and one for synthesizing remorsefree dominant strategies separately, implementing the compo-
sitional synthesis algorithm presented in [DF14]. We used a machine with a 3.1 GHz Dual-Core
Intel Core i5 processor and 16 GB of RAM, and a timeout of 60 minutes. We use the SMT
encoding of the non-composition distributed version of BoSy since the other ones either do
not support most of our architectures (QBF), or cause memory errors frequently (SAT). Since
the running times of the underlying SMT solver vary immensely, we report on the average
running time over ten runs. Synthesizing dominant strategies separately is incomplete; thus,
we cannot report on results for all benchmarks. We could not compare our algorithm to the iter-
ative distributed synthesis tool AGNES [MMSZ20] since it currently is restricted to two-process
architectures with safety or deterministic Biichi objectives. It thus does not support most of our
system architectures and specifications.

First, we compare the performance of the implementations in terms of their running time on
five different scalable benchmarks. Four of them, the n-ary latch, the generalized buffer, the load
balancer, and shift, stem from the annual synthesis competition SynTComp [BE]J14, JBB*17b,
JBB*15, JBB*16, JB16, JBB*17a, JBC*19, JPA*22] and the fifth one describes a ripple-carry adder.
The latch is parameterized in the number of bits, the generalized buffer in the number of
senders, the load balancer in the number of servers, and the shift in the number of inputs. The
ripple-carry adder is parameterized in the number of bits.

167

168 4. ASSUME-GUARANTEE CONTRACTS FOR DISTRIBUTED SYNTHESIS

stob_REQ,, stob_REQ,
rtob_ACK,, ..., rtob_ACK},

stob_REQ,, stob_REQ,
rtob_ACK,, ..., rtob_ACKy

btor_REQ,, . .., btor_REQy

env

i, in . . 00y in X1, Y1 Xn>Yn atCrossing, atCrossing,
e In atCrossing, g0, atCrossing,
4 C: Cn—
e) e
o1 02 on s q) $ns Cn m 802 my
(d) Shift (e) Ripple-Carry Adder (f) Robots

Figure 4.7.: System architectures of all considered benchmarks.

The system architectures are depicted in Figure 4.7. For the specifications of the n-ary latch,
the generalized buffer, the load balancer, and the shift, we refer to the benchmark descriptions
of the synthesis competition [JBC*19]. The ripple-carry adder adds two bit vectors, both with n
bits. The inputs are the very first carry bit ¢;, and the bits of the two bit vectors, x, . . ., X,—1
and vy, . . ., Yp—1. The outputs are the sum bits sy, . . ., s,—1 as well as the carry bits ¢, ..., cp-1.
The specification ¢ is then given by ¢ := @inir A N\g<i<n @i