1,744 research outputs found

    PlaneVR: Social Acceptability of Virtual Reality for Aeroplane Passengers

    Get PDF
    Virtual reality (VR) headsets allow wearers to escape their physical surroundings, immersing themselves in a virtual world. Although escape may not be realistic or acceptable in many everyday situations, air travel is one context where early adoption of VR could be very attractive. While travelling, passengers are seated in restricted spaces for long durations, reliant on limited seat-back displays or mobile devices. This paper explores the social acceptability and usability of VR for in-flight entertainment. In an initial survey, we captured respondents' attitudes towards the social acceptability of VR headsets during air travel. Based on the survey results, we developed a VR in-flight entertainment prototype and evaluated this in a focus group study. Our results discuss methods for improving the acceptability of VR in-flight, including using mixed reality to help users transition between virtual and physical environments and supporting interruption from other co-located people

    Implementation of Virtual Reality (VR) simulators in Norwegian maritime pilotage training

    Get PDF
    With millions of tons of cargo transported to and from Norwegian ports every year, the maritime waterways in Norway are heavily used. The high consequences of accidents and mishaps require well-trained seafarers and safe operating practices. The normal crews of vessels are supported by the Norwegian Coastal Administration (NCA) pilot service when operating vessels not meeting specific regulations. Simulator training is used as part of the toolset designed to educate, train, and advance the knowledge of maritime pilots in order to improve their operability. The NCA is working on an internal project to distribute Virtual Reality (VR) simulators to selected pilot stations along the coast and train and familiarize maritime pilots with the tool. There has been a lack of research on virtual reality simulators and how they are implemented in maritime organizations. The goal of this research is to see if a VR-simulator can be used as a training tool within the Norwegian Coastal Administration's pilot service. Furthermore, the findings of this study contribute to the understanding of VR-simulators in the field of Maritime Education and Training (MET). The thesis is addressing two research questions: 1. Is the Virtual Reality training useful in the competence development process of Norwegian maritime pilots? 2. How can the Virtual Reality simulators improve training outcomes of today’s maritime pilot education? The data gathered from the systematic literature review corresponds to the findings of the interviews. Considering the similarities with previous study findings from sectors such as healthcare, construction, and education, it is concluded that the results of the interviews can be generalized. For maritime pilots, the simulator offers recurrent scenario-based training and a high level of immersion. Pilots can learn at home, onboard a vessel, at the pilot station, and in group settings thanks to the system's mobility and user-friendliness. In terms of motivation and training effectiveness, the study finds that VR-simulators are effective and beneficial. The technology received positive reviews from the pilots. The simulator can be used to teach both novice and experienced maritime pilots about new operations, larger tonnage, and new operational areas, according to the findings of the research. After the NCA has utilized VR-simulators for some time, additional research may analyze the success of VR-simulators using a training evaluation study and investigate the impact of VR-training in the organization

    The Perception/Action loop: A Study on the Bandwidth of Human Perception and on Natural Human Computer Interaction for Immersive Virtual Reality Applications

    Get PDF
    Virtual Reality (VR) is an innovating technology which, in the last decade, has had a widespread success, mainly thanks to the release of low cost devices, which have contributed to the diversification of its domains of application. In particular, the current work mainly focuses on the general mechanisms underling perception/action loop in VR, in order to improve the design and implementation of applications for training and simulation in immersive VR, especially in the context of Industry 4.0 and the medical field. On the one hand, we want to understand how humans gather and process all the information presented in a virtual environment, through the evaluation of the visual system bandwidth. On the other hand, since interface has to be a sort of transparent layer allowing trainees to accomplish a task without directing any cognitive effort on the interaction itself, we compare two state of the art solutions for selection and manipulation tasks, a touchful one, the HTC Vive controllers, and a touchless vision-based one, the Leap Motion. To this aim we have developed ad hoc frameworks and methodologies. The software frameworks consist in the creation of VR scenarios, where the experimenter can choose the modality of interaction and the headset to be used and set experimental parameters, guaranteeing experiments repeatability and controlled conditions. The methodology includes the evaluation of performance, user experience and preferences, considering both quantitative and qualitative metrics derived from the collection and the analysis of heterogeneous data, as physiological and inertial sensors measurements, timing and self-assessment questionnaires. In general, VR has been found to be a powerful tool able to simulate specific situations in a realistic and involving way, eliciting user\u2019s sense of presence, without causing severe cybersickness, at least when interaction is limited to the peripersonal and near-action space. Moreover, when designing a VR application, it is possible to manipulate its features in order to trigger or avoid triggering specific emotions and voluntarily create potentially stressful or relaxing situations. Considering the ability of trainees to perceive and process information presented in an immersive virtual environment, results show that, when people are given enough time to build a gist of the scene, they are able to recognize a change with 0.75 accuracy when up to 8 elements are in the scene. For interaction, instead, when selection and manipulation tasks do not require fine movements, controllers and Leap Motion ensure comparable performance; whereas, when tasks are complex, the first solution turns out to be more stable and efficient, also because visual and audio feedback, provided as a substitute of the haptic one, does not substantially contribute to improve performance in the touchless case

    Advancing proxy-based haptic feedback in virtual reality

    Get PDF
    This thesis advances haptic feedback for Virtual Reality (VR). Our work is guided by Sutherland's 1965 vision of the ultimate display, which calls for VR systems to control the existence of matter. To push towards this vision, we build upon proxy-based haptic feedback, a technique characterized by the use of passive tangible props. The goal of this thesis is to tackle the central drawback of this approach, namely, its inflexibility, which yet hinders it to fulfill the vision of the ultimate display. Guided by four research questions, we first showcase the applicability of proxy-based VR haptics by employing the technique for data exploration. We then extend the VR system's control over users' haptic impressions in three steps. First, we contribute the class of Dynamic Passive Haptic Feedback (DPHF) alongside two novel concepts for conveying kinesthetic properties, like virtual weight and shape, through weight-shifting and drag-changing proxies. Conceptually orthogonal to this, we study how visual-haptic illusions can be leveraged to unnoticeably redirect the user's hand when reaching towards props. Here, we contribute a novel perception-inspired algorithm for Body Warping-based Hand Redirection (HR), an open-source framework for HR, and psychophysical insights. The thesis concludes by proving that the combination of DPHF and HR can outperform the individual techniques in terms of the achievable flexibility of the proxy-based haptic feedback.Diese Arbeit widmet sich haptischem Feedback für Virtual Reality (VR) und ist inspiriert von Sutherlands Vision des ultimativen Displays, welche VR-Systemen die Fähigkeit zuschreibt, Materie kontrollieren zu können. Um dieser Vision näher zu kommen, baut die Arbeit auf dem Konzept proxy-basierter Haptik auf, bei der haptische Eindrücke durch anfassbare Requisiten vermittelt werden. Ziel ist es, diesem Ansatz die für die Realisierung eines ultimativen Displays nötige Flexibilität zu verleihen. Dazu bearbeiten wir vier Forschungsfragen und zeigen zunächst die Anwendbarkeit proxy-basierter Haptik durch den Einsatz der Technik zur Datenexploration. Anschließend untersuchen wir in drei Schritten, wie VR-Systeme mehr Kontrolle über haptische Eindrücke von Nutzern erhalten können. Hierzu stellen wir Dynamic Passive Haptic Feedback (DPHF) vor, sowie zwei Verfahren, die kinästhetische Eindrücke wie virtuelles Gewicht und Form durch Gewichtsverlagerung und Veränderung des Luftwiderstandes von Requisiten vermitteln. Zusätzlich untersuchen wir, wie visuell-haptische Illusionen die Hand des Nutzers beim Greifen nach Requisiten unbemerkt umlenken können. Dabei stellen wir einen neuen Algorithmus zur Body Warping-based Hand Redirection (HR), ein Open-Source-Framework, sowie psychophysische Erkenntnisse vor. Abschließend zeigen wir, dass die Kombination von DPHF und HR proxy-basierte Haptik noch flexibler machen kann, als es die einzelnen Techniken alleine können

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    A new taxonomy for locomotion in virtual environments

    Get PDF
    The concept of virtual reality, although evolving due to technological advances, has always been fundamentally defined as a revolutionary way for humans to interact with computers. The revolution comes from the concept of immersion, which is the essence of virtual reality. Users are no longer passive observers of information, but active participants that have leaped through the computer screen and are now part of the information. This has tremendous implications on how users interact with computer information in the virtual world.;Perhaps the most common form of interaction in a virtual environment is locomotion. The term locomotion is used to indicate a user\u27s control of movement through the virtual environment. There are many ways for a user to change his viewpoint in the virtual world. Because virtual reality is a relatively young field, no standard interfaces exist for interaction, particularly locomotion, in a virtual world. There have been few attempts to formally classify the ways in which virtual locomotion can occur. These classification schemes do not take into account the various interaction devices such as joysticks and vehicle mock-ups that are used to perform the locomotion. Nor do they account for the differences in display devices, such as head-mounted displays, monitors, or projected walls.;This work creates a new classification system for virtual locomotion methods. The classification provides guidelines for designers of new VR applications, on what types of locomotion are best suited to the requirements of new applications. Unlike previous taxonomies, this work incorporates display devices, interaction devices, and travel tasks, along with identifying two major components of travel: translation and rotation. The classification also identifies important sub-components of these two.;In addition, we have experimentally validated the importance of display device and rotation method in this new classification system. This was accomplished through a large-scale user experiment. Users performed an architectural walkthrough of a virtual building. Both objective and subjective measures indicate that choice of display device is extremely important to the task of locomotion, and that for each display device, the choice of rotation method is also important

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF
    • …
    corecore