97 research outputs found

    Quiescent current testing of CMOS data converters

    Get PDF
    Power supply quiescent current (IDDQ) testing has been very effective in VLSI circuits designed in CMOS processes detecting physical defects such as open and shorts and bridging defects. However, in sub-micron VLSI circuits, IDDQ is masked by the increased subthreshold (leakage) current of MOSFETs affecting the efficiency of I¬DDQ testing. In this work, an attempt has been made to perform robust IDDQ testing in presence of increased leakage current by suitably modifying some of the test methods normally used in industry. Digital CMOS integrated circuits have been tested successfully using IDDQ and IDDQ methods for physical defects. However, testing of analog circuits is still a problem due to variation in design from one specific application to other. The increased leakage current further complicates not only the design but also testing. Mixed-signal integrated circuits such as the data converters are even more difficult to test because both analog and digital functions are built on the same substrate. We have re-examined both IDDQ and IDDQ methods of testing digital CMOS VLSI circuits and added features to minimize the influence of leakage current. We have designed built-in current sensors (BICS) for on-chip testing of analog and mixed-signal integrated circuits. We have also combined quiescent current testing with oscillation and transient current test techniques to map large number of manufacturing defects on a chip. In testing, we have used a simple method of injecting faults simulating manufacturing defects invented in our VLSI research group. We present design and testing of analog and mixed-signal integrated circuits with on-chip BICS such as an operational amplifier, 12-bit charge scaling architecture based digital-to-analog converter (DAC), 12-bit recycling architecture based analog-to-digital converter (ADC) and operational amplifier with floating gate inputs. The designed circuits are fabricated in 0.5 μm and 1.5 μm n-well CMOS processes and tested. Experimentally observed results of the fabricated devices are compared with simulations from SPICE using MOS level 3 and BSIM3.1 model parameters for 1.5 μm and 0.5 μm n-well CMOS technologies, respectively. We have also explored the possibility of using noise in VLSI circuits for testing defects and present the method we have developed

    IDDQ testing of a CMOS first order sigma-delta modulator of an 8-bit oversampling ADC

    Get PDF
    This work presents IDDQ testing of a CMOS first order sigma-delta modulator of an 8-bit oversampling analog-to-digital converter using a built-in current sensor [BICS]. Gate-drain, source-drain, gate-source and gate-substrate bridging faults are injected using fault injection transistors. All the four faults cause varying fault currents and are successfully detected by the BICS at a good operation speed. The BICS have a negligible impact on the performance of the modulator and an external pin is provided to completely cut-off the BICS from the modulator. The modulator was designed and fabricated in 1.5 μm n-well CMOS process. The decimator was designed on Altera\u27s FLEXE20K board using Verilog. The modulator and decimator were assembled together to form a sigma-delta ADC

    Iddq testing of a CMOS 10-bit charge scaling digital-to-analog converter

    Get PDF
    This work presents an effective built-in current sensor (BICS), which has a very small impact on the performance of the circuit under test (CUT). The proposed BICS works in two-modes the normal mode and the test mode. In the normal mode the BICS is isolated from the CUT due to which there is no performance degradation of the CUT. In the testing mode, our BICS detects the abnormal current caused by permanent manufacturing defects. Further more our BICS can also distinguish the type of defect induced (Gate-source short, source-drain short and drain-gate short). Our BICS requires neither an external voltage source nor current source. Hence the BICS requires less area and is more efficient than the conventional current sensors. The circuit under test is a 10-bit digital to analog converter using charge-scaling architecture

    IDDQ Testing of Low Voltage CMOS Operational Transconductance Amplifier

    Get PDF
    The paper describes the design for testability (DFT) of low voltage two stage operational transconductance amplifiers based on quiescent power supply current (IDDQ) testing. IDDQ testing refers to the integral circuit testing method based upon measurement of steady state power supply current for testing both digital as well as analog VLSI circuit. A built in current sensor, which introduces insignificant performance degradation of the circuit-under-test, has been proposed to monitor the power supply quiescent current changes in the circuit under test. Moreover, the BICS requires neither an external voltage reference nor a current source and able to detect, identify and localize the circuit faults. Hence the BICS requires less area and is more efficient than the conventional current sensors. The testability has also been enhanced in the testing procedure using a simple fault-injection technique. Both bridging and open faults have been analyzed in proposed work by using n-well 0.18µm CMOS technology

    Testing a CMOS operational amplifier circuit using a combination of oscillation and IDDQ test methods

    Get PDF
    This work presents a case study, which attempts to improve the fault diagnosis and testability of the oscillation testing methodology applied to a typical two-stage CMOS operational amplifier. The proposed test method takes the advantage of good fault coverage through the use of a simple oscillation based test technique, which needs no test signal generation and combines it with quiescent supply current (IDDQ) testing to provide a fault confirmation. A built in current sensor (BICS), which introduces insignificant performance degradation of the circuit-under-test (CUT), has been utilized to monitor the power supply quiescent current changes in the CUT. The testability has also been enhanced in the testing procedure using a simple fault-injection technique. The approach is attractive for its simplicity, robustness and capability of built-in-self test (BIST) implementation. It can also be generalized to the oscillation based test structures of other CMOS analog and mixed-signal integrated circuits. The practical results and simulations confirm the functionality of the proposed test method

    [Delta] IDDQ testing of a CMOS 12-bit charge scaling digital-to-analog converter

    Get PDF
    This work presents design, implementation and test of a built-in current sensor (BICS) for ∆IDDQ testing of a CMOS 12-bit charge scaling digital-to-analog converter (DAC). The sensor uses power discharge method for the fault detection. The sensor operates in two modes, the test mode and the normal mode. In the test mode, the BICS is connected to the circuit under test (CUT) which is DAC and detects abnormal currents caused by manufacturing defects. In the normal mode, BICS is isolated from the CUT. The BICS is integrated with the DAC and is implemented in a 0.5 μm n-well CMOS technology. The DAC uses charge scaling method for the design and a low voltage (0 to 2.5 V) folded cascode op-amp. The built-in current sensor (BICS) has a resolution of 0.5 μA. Faults have been introduced into DAC using fault injection transistors (FITs). The method of ∆IDDQ testing has been verified both from simulation and experimental measurements

    Analysis of ISSQ/IDDQ testing implementation and circuit partitioning in CMOS cell-based design

    Get PDF
    © 1996 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Difference between ISSQ and IDDQ testing strategies is presented, discussing the dependency of area overhead and sensing speed on the technology. The current sensor implementation style suitable for cell-based design methodology or semi-custom design style is proposed Experimental results for each strategy are discussed. Finally, different types of partitioning strategies are showed, taken into account the parallelism of the gates.Peer ReviewedPostprint (published version

    A Behavioral Model of a Built-in Current Sensor for IDDQ Testing

    Get PDF
    IDDQ testing is one of the most effective methods for detecting defects in integrated circuits. Higher leakage currents in more advanced semiconductor technologies have reduced the resolution of IDDQ test. One solution is to use built-in current sensors. Several sensor techniques for measuring the current based on the magnetic field or voltage drop across the supply line have been proposed. In this work, we develop a behavioral model for a built-in current sensor measuring voltage drop and use this model to better understand sensor operation, identify the effect of different parameters on sensor resolution, and suggest design modifications to improve future sensor performance

    An approach to dynamic power consumption current testing of CMOS ICs

    Get PDF
    © 1995 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.I/sub DDQ/ testing is a powerful strategy for detecting defects that do not alter the logic behavior of CMOS ICs. Such a technique is very effective especially in the detection of bridging defects although some opens can be also detected. However, an important set of open and parametric defects escape quiescent power supply current testing because they prevent current elevation. Extending the consumption current testing time, from the static period to the dynamic one (i.e. considering the transient current), defects not covered with I/sub DDQ/ can be detected. Simulations using an on-chip sensor show that this technique can reach a high coverage for defects preventing current and also for those raising the static power consumption.Peer ReviewedPostprint (published version

    Programmable CMOS Analog-to-Digital Converter Design and Testability

    Get PDF
    In this work, a programmable second order oversampling CMOS delta-sigma analog-to-digital converter (ADC) design in 0.5µm n-well CMOS processes is presented for integration in sensor nodes for wireless sensor networks. The digital cascaded integrator comb (CIC) decimation filter is designed to operate at three different oversampling ratios of 16, 32 and 64 to give three different resolutions of 9, 12 and 14 bits, respectively which impact the power consumption of the sensor nodes. Since the major part of power consumed in the CIC decimator is by the integrators, an alternate design is introduced by inserting coder circuits and reusing the same integrators for different resolutions and oversampling ratios to reduce power consumption. The measured peak signal-to-noise ratio (SNR) for the designed second order delta-sigma modulator is 75.6dB at an oversampling ratio of 64, 62.3dB at an oversampling ratio of 32 and 45.3dB at an oversampling ratio of 16. The implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing of CMOS data converters is also presented. The BICS uses frequency as the output for fault detection in CUT. A fault is detected when the output frequency deviates more than ±10% from the reference frequency. The output frequencies of the BICS for various model parameters are simulated to check for the effect of process variation on the frequency deviation. A design for on-chip testability of CMOS ADC by linear ramp histogram technique using synchronous counter as register in code detection unit (CDU) is also presented. A brief overview of the histogram technique, the formulae used to calculate the ADC parameters, the design implemented in 0.5µm n-well CMOS process, the results and effectiveness of the design are described. Registers in this design are replaced by 6T-SRAM cells and a hardware optimized on-chip testability of CMOS ADC by linear ramp histogram technique using 6T-SRAM as register in CDU is presented. The on-chip linear ramp histogram technique can be seamlessly combined with ΔIDDQ technique for improved testability, increased fault coverage and reliable operation
    • …
    corecore