15,133 research outputs found

    Impact of New Madrid Seismic Zone Earthquakes on the Central USA, Vol. 1 and 2

    Get PDF
    The information presented in this report has been developed to support the Catastrophic Earthquake Planning Scenario workshops held by the Federal Emergency Management Agency. Four FEMA Regions (Regions IV, V, VI and VII) were involved in the New Madrid Seismic Zone (NMSZ) scenario workshops. The four FEMA Regions include eight states, namely Illinois, Indiana, Kentucky, Tennessee, Alabama, Mississippi, Arkansas and Missouri. The earthquake impact assessment presented hereafter employs an analysis methodology comprising three major components: hazard, inventory and fragility (or vulnerability). The hazard characterizes not only the shaking of the ground but also the consequential transient and permanent deformation of the ground due to strong ground shaking as well as fire and flooding. The inventory comprises all assets in a specific region, including the built environment and population data. Fragility or vulnerability functions relate the severity of shaking to the likelihood of reaching or exceeding damage states (light, moderate, extensive and near-collapse, for example). Social impact models are also included and employ physical infrastructure damage results to estimate the effects on exposed communities. Whereas the modeling software packages used (HAZUS MR3; FEMA, 2008; and MAEviz, Mid-America Earthquake Center, 2008) provide default values for all of the above, most of these default values were replaced by components of traceable provenance and higher reliability than the default data, as described below. The hazard employed in this investigation includes ground shaking for a single scenario event representing the rupture of all three New Madrid fault segments. The NMSZ consists of three fault segments: the northeast segment, the reelfoot thrust or central segment, and the southwest segment. Each segment is assumed to generate a deterministic magnitude 7.7 (Mw7.7) earthquake caused by a rupture over the entire length of the segment. US Geological Survey (USGS) approved the employed magnitude and hazard approach. The combined rupture of all three segments simultaneously is designed to approximate the sequential rupture of all three segments over time. The magnitude of Mw7.7 is retained for the combined rupture. Full liquefaction susceptibility maps for the entire region have been developed and are used in this study. Inventory is enhanced through the use of the Homeland Security Infrastructure Program (HSIP) 2007 and 2008 Gold Datasets (NGA Office of America, 2007). These datasets contain various types of critical infrastructure that are key inventory components for earthquake impact assessment. Transportation and utility facility inventories are improved while regional natural gas and oil pipelines are added to the inventory, alongside high potential loss facility inventories. The National Bridge Inventory (NBI, 2008) and other state and independent data sources are utilized to improve the inventory. New fragility functions derived by the MAE Center are employed in this study for both buildings and bridges providing more regionally-applicable estimations of damage for these infrastructure components. Default fragility values are used to determine damage likelihoods for all other infrastructure components. The study reports new analysis using MAE Center-developed transportation network flow models that estimate changes in traffic flow and travel time due to earthquake damage. Utility network modeling was also undertaken to provide damage estimates for facilities and pipelines. An approximate flood risk model was assembled to identify areas that are likely to be flooded as a result of dam or levee failure. Social vulnerability identifies portions of the eight-state study region that are especially vulnerable due to various factors such as age, income, disability, and language proficiency. Social impact models include estimates of displaced and shelter-seeking populations as well as commodities and medical requirements. Lastly, search and rescue requirements quantify the number of teams and personnel required to clear debris and search for trapped victims. The results indicate that Tennessee, Arkansas, and Missouri are most severely impacted. Illinois and Kentucky are also impacted, though not as severely as the previous three states. Nearly 715,000 buildings are damaged in the eight-state study region. About 42,000 search and rescue personnel working in 1,500 teams are required to respond to the earthquakes. Damage to critical infrastructure (essential facilities, transportation and utility lifelines) is substantial in the 140 impacted counties near the rupture zone, including 3,500 damaged bridges and nearly 425,000 breaks and leaks to both local and interstate pipelines. Approximately 2.6 million households are without power after the earthquake. Nearly 86,000 injuries and fatalities result from damage to infrastructure. Nearly 130 hospitals are damaged and most are located in the impacted counties near the rupture zone. There is extensive damage and substantial travel delays in both Memphis, Tennessee, and St. Louis, Missouri, thus hampering search and rescue as well as evacuation. Moreover roughly 15 major bridges are unusable. Three days after the earthquake, 7.2 million people are still displaced and 2 million people seek temporary shelter. Direct economic losses for the eight states total nearly $300 billion, while indirect losses may be at least twice this amount. The contents of this report provide the various assumptions used to arrive at the impact estimates, detailed background on the above quantitative consequences, and a breakdown of the figures per sector at the FEMA region and state levels. The information is presented in a manner suitable for personnel and agencies responsible for establishing response plans based on likely impacts of plausible earthquakes in the central USA.Armu W0132T-06-02unpublishednot peer reviewe

    A Stop-Probability Approach for O-D Service Frequency on High-Speed Railway Lines

    Get PDF
    Train stop planning provides appropriate service for travel demand and stations and plays a significant role in railway operation. This paper formulates stop planning from the point of view of direct travel between origin-destination (O-D) stations and proposes an analytical method to theoretically derive optimal service frequencies for O-D demand on different levels. Considering different O-D demand characteristics and train service types, we introduce the concept of stop probability to present the mathematical formulation for stop planning with the objective of minimizing per capita travel time, which is solved by an iterative algorithm combined with local search. The resulting optimal stop probabilities can be used to calculate the required service frequency for each train type serving different demand categories. Numerical examples, based on three real-life high-speed railway lines, demonstrate the validity of the proposed method. The proposed approach provides a more flexible and practical way for stop planning that explicitly takes into account the importance of different stations and passenger travel characteristics. Document type: Articl

    Regional Transport and Its Association with Tuberculosis in the Shandong Province of China, 2009-2011

    Get PDF
    Human mobility has played a major role in the spread of infectious diseases such as tuberculosis (TB) through transportation; however, its pattern and mechanism have remained unclear. This study used transport networks as a proxy for human mobility to generate the spatial process of TB incidence. It examined the association between TB incidence and four types of transport networks at the provincial level: provincial roads, national roads, highways, and railways. Geographical information systems and geospatial analysis were used to examine the spatial distribution of 2217 smear-positive TB cases reported between 2009 and 2011 in the Shandong province. The study involved factors such as population density and elevation difference in conjunction with the types of transport networks to predict the disease occurrence in space. It identified spatial clusters of TB incidence linked not only with transport networks of the regions but also differentiated by elevation. Our research findings provide evidence of targeting populous regions with well-connected transport networks for effective surveillance and control of TB transmission in Shandong.postprin

    Planning for Complementarity: An Examination of the Roll and Opportunities of First-Tier and Second-Tier Cities Along the High-Speed Rail Network in California, Research Report 11-17

    Get PDF
    The coming of California High-Speed Rail (HSR) offers opportunities for positive urban transformations in both first-tier and second-tier cities. The research in this report explores the different but complementary roles that first-tier and second-tier cities along the HSR network can play in making California more sustainable and less dependent on fossil fuels while reducing mobile sources of greenhouse gas emissions and congestion at airports and on the state’s roadways. Drawing from case studies of cities in Northern and Southern California, the study develops recommendations for the planning, design, and programming of areas around California stations for the formation of transit-supportive density nodes

    Estimating Workforce Development Needs for High-Speed Rail in California, Research Report 11-16

    Get PDF
    This study provides an assessment of the job creation and attendant education and training needs associated with the creation of the California High-Speed Rail (CHSR) network, scheduled to begin construction in September 2012. Given the high profile of national and state commitment to the project, a comprehensive analysis that discusses the education, training, and related needs created during the build out of the CHSR network is necessary. This needs assessment is achieved by means of: 1) analyzing current high-speed rail specific challenges pertaining to 220mph trains; 2) using a more accurate and robust “bottom-up” approach to estimate the labor, education, skills, and knowledge needed to complete the CHSR network; and 3) assessing the current capacity of railroad-specific training and education in the state of California and the nation. Through these analyses, the study identifies the magnitude and attributes of the workforce development needs and challenges that lie ahead for California. The results of this research offer new insight into the training and education levels likely to be needed for the emergent high-speed rail workforce, including which types of workers and professionals are needed over the life of the project (by project phase), and their anticipated educational level. Results indicates that although the education attained by the design engineers of the system signifies the most advanced levels of education in the workforce, this group is comparatively small over the life of the project. Secondly, this report identifies vast training needs for the construction workforce and higher education needs for a managerial construction workforce. Finally, the report identifies an extremely limited existing capacity for training and educating the high-speed rail workforce in both California and in the U.S. generally

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus

    Full text link
    [EN] In China and other countries, many highway projects are built in extensive and high-altitude flat areas called plateaus. However, research on how the materialisation of these projects produce a series of ecological risks in the landscape is very limited. In this research, a landscape ecological risk analysis model for high-altitude plateaus is proposed. This model is based on the pattern of land uses of the surrounding area. Our study includes buffer analysis, spatial analysis, and geostatistical analysis. We apply the model to the Qumei to Gangba highway, a highway section located in the southeast city of Shigatse at the Chinese Tibet autonomous region. Through global and local spatial autocorrelation analysis, the spatial clustering distribution of ecological risks is also explored. Overall, our study reveals the spatial heterogeneity of ecological risks and how to better mitigate them. According to a comparison of the risk changes in two stages (before and after the highway construction), the impact of highway construction on the ecological environment can be comprehensively quantified. This research will be of interest to construction practitioners seeking to minimize the impact of highway construction projects on the ecological environment. It will also inform future empirical studies in the area of environmental engineering with potential affection to the landscape in high-altitude plateaus.This research is supported by the Branch of China Road and Bridge Corporation (Cambodia) Technology Development Project (No.2020-zlkj-04); National Social Science Fund Projects (No.20BJY010); National Social Science Fund Post-financing Projects (No.19FJYB017); Sichuan-Tibet Railway Major Fundamental Science Problems Special Fund (No.71942006); Qinghai Natural Science Foundation (No. 2020-JY-736); List of Key Science and Technology Projects in China's Transportation Industry in 2018-International Science and Technology Cooperation Project (Nos. 2018-GH-006 and 2019-MS5-100); Emerging Engineering Education Research and Practice Project of Ministry of Education of China (No. E-GKRWJC20202914); Shaanxi Social Science Fund (No. 2017S004); Xi'an Construction Science and Technology Planning Project (Nos. SZJJ201915 and SZJJ201916); Shaanxi Province Higher Education Teaching Reform Project (No. 19BZ016); Fundamental Research for Funds for the Central Universities (Humanities and Social Sciences), Chang'an University (Nos. 300102239616, 300102281669 and 300102231641).Li, C.; Zhang, J.; Philbin, SP.; Yang, X.; Dong, Z.; Hong, J.; Ballesteros-PĂ©rez, P. (2022). Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus. Scientific Reports. 12(1):1-16. https://doi.org/10.1038/s41598-022-08788-811612

    Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus

    Get PDF
    In China and other countries, many highway projects are built in extensive and high-altitude flat areas called plateaus. However, research on how the materialisation of these projects produce a series of ecological risks in the landscape is very limited. In this research, a landscape ecological risk analysis model for high-altitude plateaus is proposed. This model is based on the pattern of land uses of the surrounding area. Our study includes buffer analysis, spatial analysis, and geostatistical analysis. We apply the model to the Qumei to Gangba highway, a highway section located in the southeast city of Shigatse at the Chinese Tibet autonomous region. Through global and local spatial autocorrelation analysis, the spatial clustering distribution of ecological risks is also explored. Overall, our study reveals the spatial heterogeneity of ecological risks and how to better mitigate them. According to a comparison of the risk changes in two stages (before and after the highway construction), the impact of highway construction on the ecological environment can be comprehensively quantified. This research will be of interest to construction practitioners seeking to minimize the impact of highway construction projects on the ecological environment. It will also inform future empirical studies in the area of environmental engineering with potential affection to the landscape in high-altitude plateaus
    • …
    corecore