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Abstract: Human mobility has played a major role in the spread of infectious diseases such as 
tuberculosis (TB) through transportation; however, its pattern and mechanism have remained unclear. 
This study used transport networks as a proxy for human mobility to generate the spatial process of 
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at the provincial level: provincial roads, national roads, highways, and railways.  Geographical 
information systems and geospatial analysis were used to examine the spatial distribution of 2,217 
smear-positive TB cases reported between 2009 and 2011 in the Shandong province. The study 
involved factors such as population density and elevation difference in conjunction with the types of 
transport networks to predict the disease occurrence in space. It identified spatial clusters of TB 
incidence linked not only with transport networks of the regions but also differentiated by elevation. 
Our research findings provide evidence of targeting populous regions with well-connected transport 
networks for effective surveillance and control of TB transmission in Shandong. 
 
 
 
 



Highlights 

 The emergence and transmission of tuberculosis (TB) is related to human movement. 

 TB in Shandong showed significant spatial clustering at scales of 7 km and below.  

 TB clusters were related to easy access to provincial/national roads but not rails. 

 Transport effects on TB were different between low and high altitude regions. 
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Manuscript Title  

Regional transport and its association with tuberculosis in the Shandong province 

of China, 2009-2011.  

 

Abstract 

Human mobility has played a major role in the spread of infectious diseases such as 

tuberculosis (TB) through transportation; however, its pattern and mechanism have 

remained unclear. This study used transport networks as a proxy for human 

mobility to generate the spatial process of TB incidence. It examined the 

association between TB incidence and four types of transport networks at the 

provincial level: provincial roads, national roads, highways, and railways.  

Geographical information systems and geospatial analysis were used to examine 

the spatial distribution of 2,217 smear-positive TB cases reported between 2009 

and 2011 in the Shandong province. The study involved factors such as population 

density and elevation difference in conjunction with the types of transport networks 

to predict the disease occurrence in space. It identified spatial clusters of TB 

incidence linked not only with transport networks of the regions but also 

differentiated by elevation. Our research findings provide evidence of targeting 

populous regions with well-connected transport networks for effective surveillance 

and control of TB transmission in Shandong.  

 

Keywords:  transport effects, human mobility, tuberculosis, geospatial analysis, 

China.   

 

1. Introduction 

There is compelling evidence that much of disease spread today is related to global 

movement of people, animals, and goods.  It has also been observed that the most 

recent outbreak of Ebola and its intense transmission in West Africa are being 

monitored and tracked closely because there is real risk of new countries being 

affected (Gomes et al., 2014; Wesolowski et al., 2014).  While migratory birds 

have contributed to the spread of avian influenza, it has been said that modern 

modes of transportation, especially air travel, are responsible for the unprecedented 

*Blinded Manuscript (WITHOUT Author Details)
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volume and speed of cross-border and cross-continental transmission of diseases in 

the 21
st
 century. 

 

Hagerstrand’s theory of diffusion (Ellegård & Svedin, 2012) is the basis for the 

formulation of many epidemic models.  His time-geographic concepts link 

individuals in one or more places through movement in space and time.  Diffusion 

of disease is examined by tracking where an infected individual has been and with 

whom the infected has been in contact.  The outbreak of SARS in 2003 highlighted 

the importance of tracking a highly infectious index patient in Hong Kong that 

resulted in an acute outbreak almost went out of control.  The 2009 Swine flu also 

painted a bleak picture of disease transmission and diffusion.  But the tracking of 

individuals’ space-time movement is a daunting task (Kwan, 2000; Chen et al., 

2011).  Even with today’s technological advances in following people’s small-scale 

movements and activity space, scientists are baffled by the immense detail and 

volume of data and how to make sense of the placing and patterning of human 

activities. 

 

1.1. The notion of distance decay 

Disease diffusion concerns the spread of a disease from its source to new locations 

and the pattern of diffusion is affected by barriers such as time, distance, physical, 

and cultural factors (Bossak and Welford, 2015).  It is well documented that the 

farther away from the source of a disease, the more time it takes to feel the impact.  

This friction of distance is what geographers refer to as the distance decay effect.  

The likelihood of disease spread can be explained by the mechanisms of expansion 

and relocation (deBlij & Murphy, 2003).  Expansion diffusion is said to occur 

when the number of infected individuals in an area grows continuously larger in 

space and time.   Expansion can occur through an established structure, also known 

as hierarchical diffusion, or through a group of people or an area, also known as 

contagious diffusion (Cliff et al., 1981; Meade et al., 2000).  Relocation is a 

sequential diffusion process whereby an infection is transmitted through movement 

of its carrier agents or a migrating population (Cliff and Haggett, 2004; Martens 

and Hall, 2000; Stoddard et al., 2009).   The distance decay function in geographic 

profiling (the circle hypothesis and the distance decay theory) of disease 

investigation is highly influenced by human activities and environmental attributes.   
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As the impact of human activities spread more widely through global 

transportation networks, disease can be transported via many different processes 

and pathways.  However, the processes generally result in some degree of distance 

decay. 

 

The fact that disease emergence decays with distance from population centers has 

been reported time and time again (Fotheringham & Rogerson, 1993; Xia, 

Bjørnstad & Grenfell, 2004).  With new evidence highlighting that disease spread 

tended to occur faster along established transportation routes (such as major roads, 

waterways, and coastlines) (Kausrud et al., 2010; Wen et al., 2012), it is more 

certain that both environmental factors and population movements play important 

roles in disease transmission. Although the modeling of complex spatial interaction 

of disease phenomena is far from being perfect, understanding the role of disease 

spread along these networks and the travel patterns would allow for better 

identification of distance jumps or rate of disease infection. For example, Balcan et 

al. (2009) found that the effect of short-range commuting flows was larger than that 

of long-range airline flows and that the epidemic behavior would be different due 

to multiscale mobility processes in the disease dynamics. The ability to estimate 

how fast or broad an infection would spread under different conditions could help 

public health officials refine disease control or intervention measures. 

 

2. Tuberculosis  

Mycobacterium tuberculosis (TB) is a highly contagious bacterium that spreads 

from person to person via aerosols (Dye, 2006; Jones-López et al., 2013).  The 

worldwide spread of TB has been a continuous threat to public health globally with 

almost one third of the world’s population infected (Dye, 2006).  The World Health 

Organization
 
(WHO, 2012) estimated that the world had over 8.7 million new TB 

infection and 1 million TB-related deaths in 2012.   

 

The transmission of TB is highly complex and dynamic, and varying spatially 

(Bryant et al., 2013; Tessema et al., 2013).  It has been asserted that travelling by 

public transports has a role in the emergence and spread of infectious diseases such 

as TB (Wilson, 1995; Barnett and Walker, 2008).  The importance of TB contact 

locations such as community drop-in centers, bars, and parks, and social networks 



 4 

have been explored to great effect (Cook et al., 2007; Carter et al., 2009).  Indeed, 

the movements of people in space and migrants, in particular, have contributed to 

the spread of TB in both developing (Long et al., 2008; Wei et al., 2009; Pace-

Asciak et al., 2013) and developed countries (Haase et al., 2007; McPherson et al., 

2008; Franzetti et al., 2010; Edelson and Phypers, 2011).  An earlier study by Jia et 

al. (2008) reported a higher rate of TB prevalence in migrants than the local 

residents of Beijing. Long et al. (2008) also found factors such as long working 

hours, poor living and working environment, as well as insufficient healthcare 

support and medical insurance to be probable causes of higher TB prevalence 

among the migrants.  However, findings from these analyses that are confined to 

sufficiently small population groups and geographic areas might not be appropriate 

for larger regions with more complex and dynamic patterns of human mobility. For 

example, China has a large number of labor workers traversing long distances 

regularly between urban cities and rural areas known to have a high prevalence of 

TB (CTCC, 2004). These migrant workers not only have increased the likelihood 

of TB spreading across wide geographic scales but also promulgated the disease to 

further propagate by local movements through public transports (Edelson and 

Phypers, 2011).  

 

Wu et al. (2006) defined human mobility as a network of interacting communities 

where the connection and corresponding intensity represent the flow of people 

among them.  But tracking massive population movement among infected localities 

is impractical, if not impossible.  In a recent study, Balcan and colleagues (Balcan 

et al., 2009) applied long-range intercontinental airlines and short-range 

commuting flows to simulate the global process of human mobility and its impact 

on the spread of influenza-like diseases over multiple geographic scales. The 

authors acknowledged that the spread of infectious diseases is caused by a strong 

heterogeneity of transport networks.  

 

Altitude (or elevation) has been applied as a significant predictor in a number of 

studies of infectious diseases, including TB (Saito et al., 2006) and avian influenza 

(Gilbert et al., 2008; Ge et al., 2012). In particular, altitude has a protective effect 

against TB in Peru in which lower disease prevalence and increased household 

clustering of TB was found in high altitude villages compared to those at sea level 
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(Saito et al., 2006). In this study, we included altitude to capture spatial variation in 

topography as well as to serve as a surrogate indicator of other unmeasured 

variables related to TB infection.  

 

This paper makes use of transport networks to explore the association between 

human mobility and TB occurrences across multiple geographic scales. The 

primary objective is to study the association modeled on transport networks to 

address the following issues: (1) spatial patterns of TB incidents and disease 

clusters or hot spots, (2) degrees of spatial association between TB clusters and 

transport networks, and (3) types of spatial association differentiated by two 

elevation groups of high versus low altitude.  

 

 

3. Data & Methods 

This was a retrospective study to test the null hypothesis of no association between 

TB clusters and transport networks differentiated into two separate regions of low 

and high elevation. We postulated that TB cases are spatially related to transport 

networks whereby well-connected roads facilitate peoples’ movements. We also 

postulated that provincial roads in zones of low altitude had a higher association 

with people movement because of their greater accessibility to travelers.  

 

3.1. Study Area. The study area was the Shandong province (eastern China) 

(Figure 1), the second most populous province of China in 2010.  It has a 

population of 95 million with 45.6 million living in urban areas (SPSB, 2012). The 

province is a prosperous and relatively rich region with a strong agricultural and 

industrial foundation, although an imbalanced urban and rural economic 

development remains a problem. Around 7 million migrants lived in the province 

in 2010, and most of them were scattered in the developed coastal cities of 

northeast Shandong, e.g., Weihai, Dongying, Qindao, and Jinan (SPSB, 2007a). It 

was estimated that 60% of migrants were sub-regional travelers traversing between 

urban and rural areas within the province (SPSB, 2007b).  

 

---  Insert Figure 1 --- 
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3.2. Data Sources. Three kinds of data were used in the study: health outcomes 

(TB cases), geographic features (transport networks and terrain elevation), and 

demographic data (population density). All data were converted into 1x1 square 

kilometer lattice.  This spatial resolution was chosen because it is a broadly 

accepted spatial unit for ecological studies (Ge et al., 2012; Qiu et al., 2014). 

Moreover, research have shown that an individual’s activity space varies between 

800 and 1000 meters and that a finer spatial resolution may cause structural clutter 

that affects decision-making (Lai et al., 2015).  However, social science and public 

health studies are faced with current limitations of neighborhood level measures. 

Neighborhood or spatial scales may involve shifting political/census boundaries or 

changing lattice size which have been found to affect clustering patterns.  

Wieczorek et al. (2012) suggested that an exploratory analysis should utilize more 

than one neighborhood scales to provide an improved understanding of spatial 

clustering across the entire region. For this reason, we also computed data at 2x2, 

5x5, 10x10 square kilometers to examine the effects of lattice size on spatial 

clustering. 

 

A total of 27,622 TB cases from 2009 to 2011 were obtained from the Shandong 

Laboratory Surveillance System and the Shandong Provincial TB Reference 

Laboratory. These case data were sampled from 19 counties and 3 districts among 

the 19 million population in the province (Table 1). Each record of TB cases 

contained the following inputs: patient identifier, age, gender, and residential 

address (complete with domestic names of villages in rural areas or the exact flat 

with street names and numbers in urban areas).  2,217 of the TB cases were 

confirmed as smear-positive
1
 pulmonary TB according to the World Health 

Organization (WHO, 2013). We included all smear-positive TB cases in this study 

and geocoded their residential addresses by matching each nominal address 

(complete with five to six hierarchical administrative district names) against the 

gazetteer records and determining its longitude and latitude coordinates through the 

Google geocoding service (Figure 1). This process of geocoding was similar to that 

applied in previous studies (see Gilbert et al., 2014) and all cases were geocoded 

successfully based on the nominal addresses. The TB cases were then aggregated 

by various spatial units (1x1, 2x5, 5x5, 10x10 square kilometers). Because data 

aggregation may result in systematic bias or ecological fallacy, examining 
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clustering results by multiple spatial scales can shed light on the robustness of the 

analysis method. 
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Table 1. Positive TB cases by counties/districts of the Shandong province, 2009-2011
*
 

 

City County/District 
Population 2009  2010  2011 

(1,000 persons) culture + culture -  culture + culture -  culture + culture - 

Linyi 

 
Cangshan 

 
1,162 

 
417 

 
297 

 
 

343 
 

337 
 

 
277 

 
408 

Tancheng  838 343 259  297 265  162 352 

Linshu  617 213 161  212 257  156 204 

Yishui  998 386 284  344 314  213 320 

Fei  757 281 234  134 294  124 209 

Jinan 
Chuqing  579 106 136  135 95  106 136 

Licheng  1,124 88 104  183 165  88 104 

Yantai 

Laiyang  879 134 467  167 389  162 318 

Yantai  830 142 255  179 235  120 231 

Laizhou  884 149 117  120 99  89 139 

Heze 
Dongming 711 146 84  136 115  78 135 

Yuncheng 1,041 136 199  386 173  202 172 

Jining 

Sishui  536 252 49  255 39  176 80 

Yanzhou  534  199  80   191  60   105  101 

Zhoucheng  1,117  329  198   330  203  306  214 

Binzhou Zhouping  779  261  102   225  78   157 128 

Dezhou Decheng 419  227  64   235 81   238  67 

Weifang Linju  834  215  39   198  79   210  88 

Qingdao Jiaonan 868  190  209   186  192   109  226 

Tai'an Xintai  1,316 554  151   552  180   310  189 

Zaozhuang Tanzhou  1,604  445  226   270  198   227  267 

Liaocheng Xin  959  474 188   475  263   476  189 

A total of 27,622 positive TB cases 5,687 3,903  5,553 4,111  4,091 4,277 

*
 The data were collected and compiled from the Shandong Laboratory Surveillance System and Shandong Provincial TB Reference Laboratory. 
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Transport network data (in GIS line-based format) were obtained from the National 

Data Sharing Infrastructure of Earth System Science (Geodata Center, 2013). The 

data included 244,500 kilometers of roads comprising of highways, national, and 

provincial roads with a road density of 156 kilometer per hundred square 

kilometers in 2012 (STD, 2013). These well-connected transport networks, which 

covered all counties in the province, were used as a surrogate measure for 

population mobility because land transports accounted for the majority of travels 

within the province. The shortest distances from a lattice cell to each type of roads
2
 

and railroads
3
, as well as their respective densities over a range of regions (at 2x2, 

5x5, 10x10 square kilometers) were computed
4
. The network density was 

considered indicative of the volume of traffic flow (Thamizh Arasan and Dhivya, 

2009) especially when local traffic data were not available in rural areas of the 

province.  

 

Altitude data showing topographic variation were derived from the 90-meter digital 

elevation model obtained from the Shuttle Radar Topography Mission provided by 

the CGIAR Consortium for Spatial Information. We applied the Gaussian mixture 

model and the expectation maximization algorithm (Dempster et al., 1977) to 

delineate regions of low (between -105 and 81 with 63 meters on average) and high 

altitude (over 81 with 181 meters on average).  We used population density as an 

indicator of the risk of bacterial infection. The data on population density were 

estimated using geospatial technologies (remote sensing and GIS) based on the 

most updated Chinese census and economic data along with land use and land 

cover data (Yang et al., 2009).  

 

3.3. Data Analysis.  The data analysis for assessing possible associations between 

TB and transport networks were conducted in three stages: (1) examining the 

spatial patterns of TB cases, (2) linking TB clusters and transport networks, and (3) 

establishing association differentiated by high and low altitude regions.  

 

3.3.1. Stage 1. We used point features to represent TB cases that can be regarded as 

a spatial point process (Ripley, 1977).  The Ripley’s K function, proposed for the 

identification of spatial point patterns, has been used in public health studies 

(Dixon, 2006; Wheeler, 2007; Delmelle et al., 2011). We examined the patterns of 
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TB cases using the Ripley’s K-function statistics at a county level of 16 kilometers 

and below. The Monte Carlo simulation of 999 random replicates was preformed to 

generate an envelope representing complete spatial randomness at the 99% 

confidence level. 

 

We examined the local patterns of TB clusters (i.e. hot spots) using a modified 

local K-function statistics
5
. The local K-function statistics, proposed by Getis 

(1984), has been used to identify spatial patterns and epidemic spread of infectious 

diseases (Vazquez-Prokopec et al., 2010). In this study, we modified the local K-

function statistics to estimate the risk of TB clusters after adjusting for the spatial 

auto-correlation of TB cases. We weighted the number of cases regarding distance 

and formulated the weighted K-function statistics as:  

K̂i (h) =

wijI(dij < h)
j=1

n

å

lci

    (1)  

where     is TB density and dij was the distance between lattice points i and j. An 

indicator function I was defined as 1 for dij    and 0 for dij   , which indicated 

whether or not TB cases surrounding a lattice point i were within the range of 

distance h.  Each case was weighted by an inverse Euclidean distance, wij = 1/dij. 

We applied the modified local K-function statistics to estimate the risks of clusters 

at the scales of 2, 5, and 10 kilometers, respectively, and defined the risk as the 

larger the estimates the intensive the cluster, and therefore the higher the risk to 

spreading. We standardized and mapped the modified K-function results over a 

continuous range (0, 1).  

 

3.3.2. Stage 2. We used bivariate spatial association analysis or spatial 

correspondence analysis (Haining, 1991) to measure relations between the intensity 

of TB clusters and their distances to the four types of transport infrastructures (i.e. 

provincial roads, national roads, highways, and railways) at the same scales as 

stage 1. The method is a novel application of a modified T-test with its sample size 

n adjusted for correlations of spatial data like clusters of TB cases to test for 

statistical significance of the R correlation coefficient expressed as:  
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R = (yi - y )(xi - x )
i=1

n

å
æ

è
ç

ö

ø
÷ (yi - y )2 (xi - x )2

i=1

n

å
æ

è
ç

ö

ø
÷

1 2

(2)
 

where     and    were the means of TB cluster intensity and transport infrastructures 

including densities of and distances to the four types of traffic networks. The n is 

sample size, i.e., the number of lattices within the study area. A reduction in the 

degrees of freedom was a function of the level of spatial autocorrelation between 

the two raster maps that were correlated. The purpose of the adjustment procedure 

was to identify the “equivalent” number of independent observations (Haining, 

2003). As the mathematics went beyond our study, we did not go into details of the 

formula in this part.   

 

3.3.3. Stage 3. We examined and compared the associations between the 

occurrence of TB cases and the four types of transport infrastructures between the 

low altitude and high altitude regions. The autologistic regression model (Besag, 

1972) was employed to formulate the associations after adjustment of spatial 

dependence of variables and their covariates by adding an additional term (the 

autocovariate) as shown in the equations below. 

 

   
  

    
                                      

                                                     

                                         

             

where   

         
      

  
   

    
  
   

                                                         (4) 

was the autocovariate term that described the average probability of TB occurrence 

weighted by cases in neighbors k surrounding the lattice i. The weight wij was equal 

to the inverse of the Euclidean distance hij between lattices i and j. In Equation (3), 

pi was probability of TB occurrences, and D2ProRdi, D2Nati, D2Highwayi, and 

D2Railwayi were the respective shortest distances from lattice i to provincial roads, 

national roads, highways, and railways. The DenProRdi, DenNati, DenHighwayi, 
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and DenRailwayi were the respective network densities at lattice i. The variables of 

alti and popi were elevation and population density, respectively.  

 

This was a nested case-control study. The Nagelkerke/Cragg and Uhler’s 

pseudo_R
2
 (Nagelkere, 1991) were used as goodness-of-fit statistic for the auto-

logistic regression models. In addition, the Cohen’s Kappa index (Carletta, 1996) 

was used to predict the probability of TB occurrence pertaining to transport and 

population characteristics of the low and high altitude regions. The receiver-

operating characteristics (ROC) curve provided a two-dimensional description of 

the predictive performance (Fawcett, 2006). The area under the ROC curve (AUC) 

is a measure of the probability of correct classification.  

 

The study used Matlab 2010b to process matrices of all of spatial lattices (i.e. TB 

cases, altitude, population density, and the four types of transport infrastructures) 

and applied ArcGIS 9.3 to map the predictive results.  

 

4. Results  

4.1. Exploring spatial patterns of TB cases. The K-function analysis (Figure 2a) 

showed that the overall patterns of TB cases varied from clustered to dispersed 

with changing distance scales from 0 to 16 kilometers. This result indicated that TB 

cases were spatially heterogeneous with significant clustering (confidence intervals 

CI: 99.9%) at a scale of around 7 kilometers but became increasingly dispersed 

thereafter. The highest level of TB clustering occurred at about 4-5 kilometers.  

---  Insert Figure 2 --- 

Based upon results of the K-function analysis (Figure 2a), we modified the local K 

function and applied the method to map the intensity of TB clusters at a scale of 

5x5 square kilometer (Figure 2b). We standardized the analysis values to range 

between 0 and 1 to represent weak to strong clustering effects for TB risks. A large 

number of TB clusters were identified near the county boundaries. The blotchy 

pattern suggested that risks of TB were unevenly distributed in geography and 

tended to form isolated clusters of 5 kilometers or smaller.  
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4.2. Linking TB clusters and transport networks. Table 2 shows that TB clusters 

were mostly negatively related to the shortest distance to transport infrastructures. 

The provincial roads exhibited the shortest and statistically significant association 

(p = 0.025, 0.049, 0.051) over multiple lattice scales of 2, 5, and 10 kilometers, 

implying that TB cases tended to cluster in areas along provincial roads. TB’s 

association with the remaining transport infrastructures, however, did not show 

very consistent or statistically significant observation probably because our results 

were clouded by the presence of intermittent green belts (Madders and Lawrence, 

1985).   

 

The positive association between TB clusters and network density for both 

provincial and national roads was found statistically significant (p<0.05). Indeed, 

the association with provincial roads became stronger (R=0.127, 0.207, 0.237) with 

increasing distances from 2 to 10 kilometers. TB clusters were also found 

positively associated with national roads albeit at the lesser geographic scales of 2 

and 5 kilometers. According to results of the spatial correspondence analysis 

(p>0.1, Table 2), both highway and railway densities did not exhibit any significant 

association with TB clusters. 
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Table 2. Spatial correspondence analysis between TB clusters and transport 

infrastructures at different geographic scales. 

 

TB 
clusters

a 
Transport 
Infrastructure

b 

Assessment of Bivariate Spatial Association 

R n 
Adjusted 

N 
t-test 

(1-tailed) 
df. 

p-
value 

2km x 
2km 

Provincial Roads -.069 47926 365 1.96 363 .025 

National Roads -.040 47926 198 .553 196 >.10 

Highway .007 47926 234 .106 232 >.10 

Railway -.037 47926 223 .547 221 >.10 

5km x 
5km 

Provincial Roads -.109  47926  175 1.65  173  .049 

National Roads -.071  47926  84  .641  82 >.10 

Highway .015  47926  103 .148  101 >.10 

Railway -.063  47926  97  .613  95 >.10 

10km x 
10km 

Provincial Roads -.137  47926  110  1.63  108  .051 

National Roads .106  47926  46  .705  44 >.10 

Highway .016  47926  58  .118  56 >.10 

Railway .094  47926  54  .680  52 >.10 

TB 
clusters 

Network Density
c 

 

2km x 
2km 

Provincial Roads .127  47926  611 3.15  609  .000 

National Roads .074  47926  630  1.86  628  .035 

Highway -.011  47926  542  .260  540 >.10 

Railway .025  47926  548  .584  546 >.10 

5km x 
5km 

Provincial Roads .207  47926  188  2.88  186  .001 

National Roads .104  47926  194  1.64  192  .050 

Highway -.014  47926  162 .175  160 >.10 

Railway .064  47926  171  .838  169 >.10 

10km x 
10km 

Provincial Roads .237  47926  78  2.12  76  .015 

National Roads .103  47926  81  .917  79 >.10 

Highway .018  47926  68 .143  66 >.10 

Railway .101  47926  73  .859 71 >.10 

The spatial correspondence analysis is used for testing null hypotheses that there is no spatial 

association between TB clusters and each of the four types of transport infrastructures. The 

above results quantify spatial association between TB clusters and various transport 

infrastructures at the geographic scales of 2, 5, and 10 kilometers. R = Pearson's correlation 

coefficient; n = sample size; Adjusted N = adjusted sample size.  

a
 TB clusters were estimated by the weighted local K-Function analysis at the geographic 

scale of 2, 5, and 10 kilometers; 
b
 The shortest distance to various transport infrastructures; and 

c
 Number of transport infrastructures per lattice. 
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4.3. Establishing associations differentiated by low and high altitude regions. 

The histograms and boxplots in Figure 3 showed a relatively normal distribution of 

elevation levels for the low altitude region but extremely varied elevations within 

the region of high altitude. Transport network was comparatively denser in low 

altitude than the more hilly areas on higher grounds. The K-function analyses 

indicated that TB cases in the low altitude region clustered at a distance of around 

15 kilometers and below but those in the high altitude region displayed more 

compact spatial clustering of 10 kilometers and below.  

 

---  Insert Figure 3 --- 

 

Results of the auto-logistic regression indicated consistent associations between 

various factors and TB occurrences between two regions of different elevation, 

with the exception of the shortest distance to railway (D2RW) and its network 

densities (DRW) (Table 3). Population density (Pop) was slightly attenuated but 

showed statistically significant positive association with the occurrences of TB in 

both regions but more so for the high altitude region. This was probably due to the 

uneven distribution of population in the hilly terrain of high altitude areas. The 

clusters of TB cases were found to have negative association with altitude, but only 

statistically significant (  = -0.006, p<0.000) in high altitude region.  
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Table 3. Summary results of the auto-logistic regression analysis for TB incidents in Shandong province, 2009-2011. The results 

are differentiated by two regions of low and high altitude. 

 

 Model Summary 

 Con Pop Alt D2Pd D2Nd D2HW D2RW DPd DNd DHW DRW AutoC 

Low Altitude             

β -2.22** .000** -.003 -.047* -.018* .022** .020** 1.58* .765 -1.91* -.377 .075 

p-value .000  .000  .480  .003  .002  .000 .000  .006  .319  .050  .000  .659 

High Altitude             

β -2.14**  .001**  -.006**  -.043  -.020*  .014 -.001  1.74* 1.47  -2.39*  .907  1.11 

p-value .000  .000  .000  .071  .004  .012 .733  .022 .306  .023  .519  .219 

 Model Assessment 

  Low Altitude   High Altitude  

AUC±SD  .761±.002   .761±.005  

Kapp±SD  .133±.004   .137±.006  

Pseudo-R
2
±SD  .157±.010   .172±.014  

These results are the averages of 1000 bootstrap replicates of the auto-logistic regression model. Con: constant of the regression models; Pop: population 

density; Alt: average altitude;  D2Pd, D2Nd, D2HW, and D2RW: minimum distances to provincial road, national road, highway, and railway, highway, 

and railway; DPd, DNd, DHW, and DRW: traffic densities for provincial road, national road, highway, and railway based on 2km x 2km lattice; AutoC: 

spatial autocovariant; AUC: Area under curve measure on correct classification; Kapp: Cohen's index on misclassification;
 
Pseudo-R

2
: Nagelkerke/Cragg 

& Uhler's Pseudo-R2 goodness-of-fit measure. ** p-value < 0.001; * p-value < 0.05.   
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Results of the auto-logistic regression analysis indicated that the occurrence of TB 

in the low altitude region was negatively associated with the shortest distance to 

provincial (  = -0.047, p<.003) and national roads (  = -0.018, p<.002), but 

positively associated with highways and railways (Table 3). In addition, we also 

found that TB occurrences were positively related to provincial road density, but 

negatively associated with both highway density and railway density (Table 3). 

 

Contrary to the low altitude region, transport networks in the high altitude region 

were less dense particularly in the more hilly areas. The occurrence of TB was 

found to be negatively associated with the shortest distance to national roads  (  = -

0.02, p<0.004), but positively associated with toll highways (Table 3). The 

significance of the regression models and the model fit were assessed statistically 

using AUC, Kappa, and Pseudo R
2
 (Table 3). These statistics indicated fairly good 

performance of the two regression models. The ROC curve was applied to measure 

the probability of correct classification or the relative fit of the two models, as 

shown in Figure 4.  

 

---  Insert Figure 4 --- 

 

Figure 5 is a probability map derived from the auto-logistic regression models for 

the risk of TB occurrences. It shows that TB was more likely to occur in the 

proximity of provincial and national roads, and around their major junctions. It also 

indicates that TB trended towards areas of low elevation with a denser population, 

particularly in the high altitude region, e.g. hilly areas in the central province.  

---  Insert Figure 5 --- 

 

5. Discussion 

 

Public transports have been observed to associate with TB transmission (CDC, 

1995; Kenyon, 1996). Compared with air transports, passengers had nearly twice 

the risk of being infected when exposed to infectious passengers in mass public 

transports (Mohr et al., 2012). The current study is one of only few studies on the 

quantitative estimates of the risk of TB transmission by local and regional transport 

infrastructures. The results indicated that human mobility could have contributed to 
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the varying spatial patterns of TB distribution showing significant clustering of 7 

kilometers and below against major transport infrastructures (Figure 2a). Short-

distance accessibilities seemed most likely to associate with the between or within 

city transmissions of TB in the province. The isolated clusters (hot spots) identified 

along provincial roads and county boundaries (Figure 2b) implied that TB 

transmission could be a process of expansion or hierarchical diffusion through 

traffic networks. Similar transmission processes have been reported in other 

infectious diseases (Wilson, 1995; Balcan et al., 2009).  

 

The occurrence of TB was found to be significantly associated with the inverse 

shortest distances to provincial and national roads in both the low and high altitude 

regions (Table 2). Moreover, the distance decay association was more pronounced 

and significant in the low altitude region. As provincial and national roads are often 

well connected and do not incur any user fee, they brought not only convenience to 

short-distance travelers but also increased TB diffusion locally.  Having adjusted 

for potential confounders, i.e., population density and terrain variation within each 

region, we found that TB was more prevalent in areas of lower elevation within the 

high altitude region (Table 3). Previous studies have indicated that provincial roads 

played a major commuting role between cities and undeveloped villages in the 

lower plains of hilly regions, such as the central part of Shandong (Mao, 1996). 

Regional disparity in economic development has also encouraged population 

migration from rural to urban areas, where a previous study indicated over 60% of 

migrants worked in manufacturing workshops situated near provincial and national 

roads (Zhou, 2011). These short-distance transport links were likely pathways of 

TB diffusion, particularly among migrants from rural suburbs where the disease 

was usually prevalent and its incidence rates relatively high (Wei et al., 2009). We 

applied the shortest distance to transport infrastructures and their respective 

network densities as proxies to account for migrant association with TB 

occurrences. Although the present study was not powered to quantify the 

association due to absence of available data on migrants, e.g., travel duration and 

frequency per year, it did shed lights on the impacts of regional transports in the 

diffusion process. Our results of the spatial diffusion patterns of TB by short-

distance transports are consistent with those of an epidemiological study conducted 

in South Africa (Andrews et al., 2013).  
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Highways and railways in China are usually built in the outskirts of a town and 

require users to pay at tollgates and stations. They are mainly used for long-haul or 

inter-regional travels. Most migrants are low-wage workers with little societal 

insurance who cannot afford the high cost of daily commute. The significant 

association between short-distance travels and TB occurrences in the both low and 

high altitude regions implied that TB was more persistent at the neighborhood 

scales. In other words, the disease was less likely transmitted from outside the 

province through long-haul transports along highways or railways. Such a pattern 

of TB diffusion and associations with regional transport networks in the province 

may not be consistent with observations in other parts of the world which are 

highly complex with confounding influences from society, culture, geography, 

human behaviors, and lifestyles (Horna-Campos et al., 2007).    

 

Our findings about the associations between TB disease and provincial/national 

roads have implications on air pollution and its health consequences. As public 

health is affected by noise and air pollution caused by road traffics (Jephcote and 

Chen, 2012), more thoughts should be given to development density and mix of 

transportation in the planning process. Even though highways and railways may be 

associated with higher traffic flows and increased vehicular-related air pollution, 

provincial and national roads that do not separate themselves from communities by 

green belts (Madders and Lawrence, 1985) can exert more traffic-related health 

impacts on the residents (Kim et al., 2012).  

 

There are a few limitations in this study. Our data lack personal information on 

patient residency status (whether migrants or permanent residents), occupation, 

smoking status, concurrent chronic respiratory diseases, and social economic status. 

The absence of residency status may lead to an underestimation of the contribution 

of short-distance accessibilities to TB diffusion, although the associations of 

provincial and national roads were attenuated but statistically significant. The 

absence of other data have prevented us to control for a variety of potentially 

confounding effects of socio-economic and health factors.  However, we may 

include data on genotypes of TB cases in future studies to uncover bacterial 

evolution and its spatial spreads associated with human mobility, which will 
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augment our understanding of the TB diffusion process and the dynamics of 

microbial evolution.  

 

6. Conclusion 

 

It is crucial for public health administrators to develop an understanding of people 

movement, especially in areas infected with TB but with limited access to 

healthcare facilities, so that they can plan for appropriate measures to carry out 

adaptive prevention measures. This study highlights important associations 

between TB and human mobility in two regions of different altitudinal variation. In 

the low altitude region, national roads and provincial roads might have facilitated 

regional and sub-regional transmissions of TB through short-distance travels and 

commuting among neighborhoods. In the high altitude region, TB tended to occur 

in areas of lower elevation with well-connected roads. Toll highways and railways 

seemed to have minimal effects on TB transmission irrespective of elevation 

differences. These results provide valuable evidence suggesting not only migrant 

workers but also the roles played by cheaper means of transportation in TB 

transmission.  

 

The above understanding of the where and why TB occurs at a certain geographic 

location can assist the Chinese government to rethink public health and transport 

strategies for the control of TB transmission that considers human mobility. As the 

most effective way of TB control is to identify persons who have active TB and to 

screen persons who had contact with TB patients to determine whether they are 

infected, this study suggests that major transportation hubs (or disease hot spots 

such as bus and railway terminals) may be enlisted to target high-risk populations. 

For instance, promotion of TB control programs to help educate the public (e.g., 

through posters and information pamphlets) and to provide guidance and assistance 

for local screening and prevention services (e.g., establishing local screening and 

treatment facilities) can encourage awareness and prevent progression of detected 

cases to active TB. The government should also engage active consultation and 

oversight for the TB control programs and collaborate with local health and 

transport authorities to ensure successful implementation of these prevention 

measures. 
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7. Footnotes 

1 
Smear-positive is based on the presence of at least one acid fast bacillus 

(AFB+) in at least one sputum sample. A patient with one or more initial 

sputum smear examinations positive for AFB is also considered to be a 

“definite” case, provided that there is a functional external quality assurance 

system with blind rechecking (WHO 2013). 

2 
China roads can be classed into five general types: highways, national roads 

(guodao 國道), provincial roads (shengdao 省道), rural/town roads (xiandao

縣道), and urban roads (xiangdao 鄉道). Highways are usually built in urban 

fringe areas connecting major cities or districts in different provinces or 

regions. These intercity freeways are largely built in the recent two decades 

and have dual carriageways with two or more lanes on each carriageway. The 

lanes are wider in width for better driving safety of high-speed vehicles. 

National roads comprise large transport networks that cover most populated 

areas, including urban and rural locations of the country. National roads are 

built with solid quality and large load-carrying capacity for heavy traffic 

flows. Compared to highways and national roads, provincial roads are roads 

with a narrower lane width, less traffic flows, and more localized coverage. 

Provincial roads have easier and more direct access to rural/town roads in 

counties or townships and urban roads in cities. Most provincial and national 

roads do not impose charges in use but highways are tolled trunk roads across 

the country. This study focused on three types of roads, namely highways, 

national, and provincial roads. 

3 
Railroads in China may be differentiated by passenger or freight depending on 

the time of construction. Most railroads for passengers built in recent decades 

are for high-speed trains. This form of transportation network is well 

connected for regional travel to provide linkage with larger cities like 

Shanghai, Beijing, Tianjin, Wuhan, Guangzhou, and Shenzhen. They are 

constructed to good quality standards to ensure travel safety at high speeds of 

over 200 kilometers per hour. Railroads for freight transport goods (such as 
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coal, metal, food, and wood) from source areas (mostly villages, hilly areas, 

and remote suburban locations where population is relatively sparse) to 

manufactories and markets. Many railroads built in the last 50 years are for 

shared use by passengers and freights; however, freight rail spurs are often 

routed into small villages and suburban areas. The present study included all 

railroads.  

 Railroads for transporting goods do not have the same potential to spread TB 

as passenger railroads because of locational and distributional differences in 

the networks and stations. Most railroads for passengers provide regional 

transportation linking major cities or counties of China where population 

densities are usually high. Railroads for transporting goods connect rural 

villages, townships, and source or market areas of raw materials which are 

situated away from urban areas and cities with large population. As a result, 

passenger railways in comparison to those for transporting goods are more 

likely to be hosts of TB transmission, although the two kinds of railroads 

overlap in some locations. This study included both types of railroads and 

considered them to have similar potential because of the following limitations: 

(1) there was no exact data to determine the incident rates of TB associated 

with each type of transportation; (2) there was no data to distinguish explicitly 

the overlapped portions of the two railways; and (3) the distinction is blurred 

in practice because railroads for transporting goods are sometimes taken over 

for passenger use in times of need.  

4 
Both road density for and the shortest distance between a TB case and a road 

were calculated using the lattice method. Firstly, all line-based road features 

were converted to raster cells showing presence of roads or otherwise (see 

diagram a below). Similarly, a raster layer was also available to show the 

presence of TB cases or not (see diagram b below). 

 
               X      X    

                         

                   X      

                         

             X     X       

                        X 
(a)  Sample raster for roads (1x1 km

2
)  (b)  Sample raster for TB cases (1x1 km

2
) 

  indicates presence of roads  X indicates presence of TB cases 
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 Each raster cell is identified by a coordinate pair (x column and y row). For 

raster of various sizes (e.g., 2x2 km
2
, 5x5 km

2
, or 10x10 km

2
), the cell 

location of a TB case to the cell location of a road is computed using the 

distance formula                   . The shortest distance was found 

by comparing the computed distances. 

 As for the density calculation, a number of lattice cells were selected around 

cells with TB cases (e.g., 2x2 km
2
, 5x5 km

2
, or 10x10 km

2
). The proportion of 

lattice cells with roads within the selection was estimated to represent the 

average road density.   

5 
The modified local K-function extends the original version of the local K-

function from a discrete to a continuous space. The reason for not using 

Ripley’s L-function in this study is explained below. 

 In spatial statistics, the L-function is defined as             

 
  , where 

        is under complete spatial randomness (CSR). In other words, if the 

value of                        for h, the statistic indicates clustering at 

this scale h. If the value of                        for h, the statistic 

indicates regular distribution as a departure from CSR at this scale h. Consider 

the equation above, the Ripley’s L-function is nothing more than a 

standardized version of the Ripley’s K-function (see also 

http://www.math.umt.edu/graham/stat544/ripleys.pdf). Therefore, we chose 

not to involve the L-function because its inclusion would not add more 

information beyond that provided by the K-function in the present study.  
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Figure Captions 

Figure 1. Spatial distribution of TB cases in Shandong province, China (2009-

2011). The base map portrays four types of transportation networks (provincial 

road, national road, highway, and railway) on a terrain characterized by elevation 

differences.  TB cases appeared to aggregate in areas of low altitude and heavy 

traffic. 

 

Figure 2. Results of the K-function and modified local K-function analyses. (a) A 

plot of global measures of clustering. The global pattern of TB showed clustering 

below 7 km but dispersion beyond that value. Clustering of TB cases is most 

significant at around 4-5 km. (b) A map showing the intensity of TB clusters (with 

values ranging between 0 and 1) in Shandong. At the optimum scale of 5 km, most 

TB clusters were found in areas of low altitude and nearby towns or counties with 

well-connected and accessible transportation networks. 

 

Figure 3. The frequency, boxplots, and K-function plots of TB cases of two 

regions of altitudinal difference in Shandong. Left column: The frequency and 

boxplots show that low altitude regions vary between -105 and 81 meters in 

elevation.  The K-function plot exhibits clustering (significant at 95%) to occur at 

around 15 km and below. Right column:  The frequency and boxplots indicate that 

elevation for high altitude regions is over 81 meters with an average height of 181 

meters. The K-function analysis reveal clustering (significant at 95%) of TB cases 
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at 5 km and below although at a lesser degree compared to that of low altitude 

region.  

 

Figure 4. ROC curves for the auto-logistic regression models. The area under the 

ROC curve (AUC) indicates the probability of correct classifications. (a) and (b) 

show the 2009-2011 average AUC of the models for TB cases in low and high 

altitude regions respectively. The shaded areas represent the envelopes of the 1000 

bootstrap replicates. 

 

Figure 5. Predicted TB risks in Shandong. The probability map shows the risks of 

having the disease, with probability values approaching one indicating higher risks. 

Areas with higher risks of TB occurrences are located near provincial and national 

roads, as well as at major transport junctions across the low altitude regions. 
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