65,807 research outputs found

    Discrete space-time geometry and skeleton conception of particle dynamics

    Full text link
    It is shown that properties of a discrete space-time geometry distinguish from properties of the Riemannian space-time geometry. The discrete geometry is a physical geometry, which is described completely by the world function. The discrete geometry is nonaxiomatizable and multivariant. The equivalence relation is intransitive in the discrete geometry. The particles are described by world chains (broken lines with finite length of links), because in the discrete space-time geometry there are no infinitesimal lengths. Motion of particles is stochastic, and statistical description of them leads to the Schr\"{o}dinger equation, if the elementary length of the discrete geometry depends on the quantum constant in a proper way.Comment: 22 pages, 0 figure

    Integrable discrete nets in Grassmannians

    Full text link
    We consider discrete nets in Grassmannians Grd\mathbb{G}^d_r which generalize Q-nets (maps ZN→Pd\mathbb{Z}^N\to\mathbb{P}^d with planar elementary quadrilaterals) and Darboux nets (Pd\mathbb{P}^d-valued maps defined on the edges of ZN\mathbb{Z}^N such that quadruples of points corresponding to elementary squares are all collinear). We give a geometric proof of integrability (multidimensional consistency) of these novel nets, and show that they are analytically described by the noncommutative discrete Darboux system.Comment: 10 p

    On Jordan's measurements

    Get PDF
    The Jordan measure, the Jordan curve theorem, as well as the other generic references to Camille Jordan's (1838-1922) achievements highlight that the latter can hardly be reduced to the "great algebraist" whose masterpiece, the Trait\'e des substitutions et des equations alg\'ebriques, unfolded the group-theoretical content of \'Evariste Galois's work. The present paper appeals to the database of the reviews of the Jahrbuch \"uber die Fortschritte der Mathematik (1868-1942) for providing an overview of Jordan's works. On the one hand, we shall especially investigate the collective dimensions in which Jordan himself inscribed his works (1860-1922). On the other hand, we shall address the issue of the collectives in which Jordan's works have circulated (1860-1940). Moreover, the time-period during which Jordan has been publishing his works, i.e., 1860-1922, provides an opportunity to investigate some collective organizations of knowledge that pre-existed the development of object-oriented disciplines such as group theory (Jordan-H\"older theorem), linear algebra (Jordan's canonical form), topology (Jordan's curve), integral theory (Jordan's measure), etc. At the time when Jordan was defending his thesis in 1860, it was common to appeal to transversal organizations of knowledge, such as what the latter designated as the "theory of order." When Jordan died in 1922, it was however more and more common to point to object-oriented disciplines as identifying both a corpus of specialized knowledge and the institutionalized practices of transmissions of a group of professional specialists

    On a class of integrable systems of Monge-Amp\`ere type

    Get PDF
    We investigate a class of multi-dimensional two-component systems of Monge-Amp\`ere type that can be viewed as generalisations of heavenly-type equations appearing in self-dual Ricci-flat geometry. Based on the Jordan-Kronecker theory of skew-symmetric matrix pencils, a classification of normal forms of such systems is obtained. All two-component systems of Monge-Amp\`ere type turn out to be integrable, and can be represented as the commutativity conditions of parameter-dependent vector fields. Geometrically, systems of Monge-Amp\`ere type are associated with linear sections of the Grassmannians. This leads to an invariant differential-geometric characterisation of the Monge-Amp\`ere property.Comment: arXiv admin note: text overlap with arXiv:1503.0227
    • …
    corecore