research

Integrable discrete nets in Grassmannians

Abstract

We consider discrete nets in Grassmannians Grd\mathbb{G}^d_r which generalize Q-nets (maps ZNPd\mathbb{Z}^N\to\mathbb{P}^d with planar elementary quadrilaterals) and Darboux nets (Pd\mathbb{P}^d-valued maps defined on the edges of ZN\mathbb{Z}^N such that quadruples of points corresponding to elementary squares are all collinear). We give a geometric proof of integrability (multidimensional consistency) of these novel nets, and show that they are analytically described by the noncommutative discrete Darboux system.Comment: 10 p

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020