3,427 research outputs found

    How Do Fairness Definitions Fare? Examining Public Attitudes Towards Algorithmic Definitions of Fairness

    Full text link
    What is the best way to define algorithmic fairness? While many definitions of fairness have been proposed in the computer science literature, there is no clear agreement over a particular definition. In this work, we investigate ordinary people's perceptions of three of these fairness definitions. Across two online experiments, we test which definitions people perceive to be the fairest in the context of loan decisions, and whether fairness perceptions change with the addition of sensitive information (i.e., race of the loan applicants). Overall, one definition (calibrated fairness) tends to be more preferred than the others, and the results also provide support for the principle of affirmative action.Comment: To appear at AI Ethics and Society (AIES) 201

    Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors

    Full text link
    While visual comparison of directed acyclic graphs (DAGs) is commonly encountered in various disciplines (e.g., finance, biology), knowledge about humans' perception of graph similarity is currently quite limited. By graph similarity perception we mean how humans perceive commonalities and differences in graphs and herewith come to a similarity judgment. As a step toward filling this gap the study reported in this paper strives to identify factors which influence the similarity perception of DAGs. In particular, we conducted a card-sorting study employing a qualitative and quantitative analysis approach to identify 1) groups of DAGs that are perceived as similar by the participants and 2) the reasons behind their choice of groups. Our results suggest that similarity is mainly influenced by the number of levels, the number of nodes on a level, and the overall shape of the graph.Comment: Graph Drawing 2017 - arXiv Version; Keywords: Graphs, Perception, Similarity, Comparison, Visualizatio

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    Interactive retrieval of video using pre-computed shot-shot similarities

    Get PDF
    A probabilistic framework for content-based interactive video retrieval is described. The developed indexing of video fragments originates from the probability of the user's positive judgment about key-frames of video shots. Initial estimates of the probabilities are obtained from low-level feature representation. Only statistically significant estimates are picked out, the rest are replaced by an appropriate constant allowing efficient access at search time without loss of search quality and leading to improvement in most experiments. With time, these probability estimates are updated from the relevance judgment of users performing searches, resulting in further substantial increases in mean average precision

    Decoding face recognition abilities in the human brain

    Get PDF
    Why are some individuals better at recognising faces? Uncovering the neural mechanisms supporting face recognition ability has proven elusive. To tackle this challenge, we used a multi-modal data-driven approach combining neuroimaging, computational modelling, and behavioural tests. We recorded the high-density electroencephalographic brain activity of individuals with extraordinary face recognition abilities—super-recognisers—and typical recognisers in response to diverse visual stimuli. Using multivariate pattern analyses, we decoded face recognition abilities from 1 second of brain activity with up to 80% accuracy. To better understand the mechanisms subtending this decoding, we compared representations in the brains of our participants with those in artificial neural network models of vision and semantics, as well as with those involved in human judgments of shape and meaning similarity. Compared to typical recognisers, we found stronger associations between early brain representations of super-recognisers and mid-level representations of vision models as well as shape similarity judgments. Moreover, we found stronger associations between late brain representations of super-recognisers and representations of the artificial semantic model as well as meaning similarity judgments. Overall, these results indicate that important individual variations in brain processing, including neural computations extending beyond purely visual processes, support differences in face recognition abilities. They provide the first empirical evidence for an association between semantic computations and face recognition abilities. We believe that such multi-modal data-driven approaches will likely play a critical role in further revealing the complex nature of idiosyncratic face recognition in the human brain

    Enhancing the use of Haptic Devices in Education and Entertainment

    Get PDF
    This research was part of the two-years Horizon 2020 European Project "weDRAW". The aim of the project was that "specific sensory systems have specific roles to learn specific concepts". This work explores the use of the haptic modality, stimulated by the means of force-feedback devices, to convey abstract concepts inside virtual reality. After a review of the current use of haptic devices in education, available haptic software and game engines, we focus on the implementation of an haptic plugin for game engines (HPGE, based on state of the art rendering library CHAI3D) and its evaluation in human perception experiments and multisensory integration
    • 

    corecore