120,294 research outputs found

    Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant

    Get PDF
    This paper presents an implant-based wireless pressure sensing paradigm for long-range continuous intraocular pressure (IOP) monitoring of glaucoma patients. An implantable parylene-based pressure sensor has been developed, featuring an electrical LC-tank resonant circuit for passive wireless sensing without power consumption on the implanted site. The sensor is microfabricated with the use of parylene C (poly-chlorop- xylylene) to create a flexible coil substrate that can be folded for smaller physical form factor so as to achieve minimally invasive implantation, while stretched back without damage for enhanced inductive sensor–reader coil coupling so as to achieve strong sensing signal. A data-processed external readout method has also been developed to support pressure measurements. By incorporating the LC sensor and the readout method, wireless pressure sensing with 1-mmHg resolution in longer than 2-cm distance is successfully demonstrated. Other than extensive on-bench characterization, device testing through six-month chronic in vivo and acute ex vivo animal studies has verified the feasibility and efficacy of the sensor implant in the surgical aspect, including robust fixation and long-term biocompatibility in the intraocular environment. With meeting specifications of practical wireless pressure sensing and further reader development, this sensing methodology is promising for continuous, convenient, direct, and faithful IOP monitoring

    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats

    Get PDF
    This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered designer rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size

    Development of wireless bruxism monitoring device based on pressure-sensitive polymer composite

    Get PDF
    A wireless pressure sensing bite guard has been developed for monitoring the progress of bruxism (teeth grinding during sleep); as well as protecting the teeth from damages. For sensing the pressure effectively in the restricted space and hostile environment, a pressure sensitive polymer composite has been fabricated and encapsulated into a conventional bite guard which is safe for in-situ applications. The device is anticipated to give real-time data through wireless data transmission and to have a long working life (weeks). A microcontroller-based electronic circuit has been built in-house for data collection and transmission. A low power approach is configured to increase the working life of the device. This device is a useful tool for understanding and treating bruxism

    Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors

    Get PDF
    This paper presents an implantable parylene-based wireless pressure sensor for biomedical pressure sensing applications specifically designed for continuous intraocular pressure (IOP) monitoring in glaucoma patients. It has an electrical LC tank resonant circuit formed by an integrated capacitor and an inductor coil to facilitate passive wireless sensing using an external interrogating coil connected to a readout unit. Two surface-micromachined sensor designs incorporating variable capacitor and variable capacitor/inductor resonant circuits have been implemented to realize the pressure-sensitive components. The sensor is monolithically microfabricated by exploiting parylene as a biocompatible structural material in a suitable form factor for minimally invasive intraocular implantation. Pressure responses of the microsensor have been characterized to demonstrate its high pressure sensitivity (> 7000 ppm/mmHg) in both sensor designs, which confirms the feasibility of pressure sensing with smaller than 1 mmHg of resolution for practical biomedical applications. A six-month animal study verifies the in vivo bioefficacy and biostability of the implant in the intraocular environment with no surgical or postoperative complications. Preliminary ex vivo experimental results verify the IOP sensing feasibility of such device. This sensor will ultimately be implanted at the pars plana or on the iris of the eye to fulfill continuous, convenient, direct, and faithful IOP monitoring

    Communication system for a tooth-mounted RF sensor used for continuous monitoring of nutrient intake

    Get PDF
    In this Thesis, the communication system of a wearable device that monitors the user’s diet is studied. Based in a novel RF metamaterial-based mouth sensor, different decisions have to be made concerning the system’s technologies, such as the power source options for the device, the wireless technology used for communications and the method to obtain data from the sensor. These issues, along with other safety rules and regulations, are reviewed, as the first stage of development of the Food-Intake Monitoring projectOutgoin

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    Songbird organotypic culture as an in vitro model for interrogating sparse sequencing networks

    Get PDF
    Sparse sequences of neuronal activity are fundamental features of neural circuit computation; however, the underlying homeostatic mechanisms remain poorly understood. To approach these questions, we have developed a method for cellular-resolution imaging in organotypic cultures of the adult zebra finch brain, including portions of the intact song circuit. These in vitro networks can survive for weeks, and display mature neuron morphologies. Neurons within the organotypic slices exhibit a diversity of spontaneous and pharmacologically induced activity that can be easily monitored using the genetically encoded calcium indicator GCaMP6. In this study, we primarily focus on the classic song sequence generator HVC and the surrounding areas. We describe proof of concept experiments including physiological, optical, and pharmacological manipulation of these exposed networks. This method may allow the cellular rules underlying sparse, stereotyped neural sequencing to be examined with new degrees of experimental control
    corecore