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Abstract  17 

Myocardial infarction (MI) is a leading cause of premature morbidity and mortality 18 

worldwide. Determining which patients will experience heart failure and sudden 19 

cardiac death after an acute MI is notoriously difficult for clinicians. The extent of 20 

heart damage after an acute MI is informed by cardiac imaging, typically using 21 

echocardiography or sometimes, cardiac magnetic resonance. These scans provide 22 

complex datasets that are only partially exploited by clinicians in daily practice, 23 

implying potential for improved risk assessment. 24 

Computational modelling of left ventricular (LV) function can bridge the gap towards 25 

personalised medicine using cardiac imaging in post-MI patients. Several novel 26 

biomechanical parameters have theoretical prognostic value and may be useful to 27 

reflect the biomechanical effects of novel preventive therapy for adverse remodelling 28 

post-MI. These parameters include myocardial contractility (regional and global), 29 

stiffness and stress. Further, the parameters can be delineated spatially to correspond 30 

with infarct pathology and the remote zone. Whilst these parameters hold promise, 31 

there are challenges for translating MI modelling into clinical practice, including 32 

model uncertainty, validation and verification, as well as time-efficient processing.  33 

More research is needed to 1) simplify imaging with CMR in post-MI patients, whilst 34 

preserving diagnostic accuracy and patient tolerance 2) to assess and validate novel 35 

biomechanical parameters against established prognostic biomarkers, such as LV 36 

ejection fraction and infarct size. Accessible software packages with minimal user 37 

interaction are also needed. Translating benefits to patients will be achieved through a 38 

multidisciplinary approach including clinicians, mathematicians, statisticians, and 39 

industry partners. 40 
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Introduction 41 

Ischaemic heart disease is the leading cause of premature disability and death in many 42 

countries worldwide[1]. Despite reductions in age-standardised death rates, the 43 

incidence of heart failure after acute myocardial infarction (MI) remains persistently 44 

high [2]. Left ventricular (LV) dysfunction after MI portends an adverse prognosis[2], 45 

however, LV dimensions change dynamically early post-MI making imaging-guided 46 

risk assessment challenging for clinicians [3] (Figure 1).  47 

The clinician relies on medical imaging to provide global measures of LV systolic 48 

function, such as LV ejection fraction (EF), wall-motion score and myocardial strain. 49 

These indices are indirect measures of LV pump function. In practice, therapeutic 50 

decisions are informed by an evidence base relating to LVEF[2,4]. However, on an 51 

individual patient basis, risk prediction using LVEF is limited as the majority of 52 

patients who die prematurely have normal or mildly reduced LVEF[5]. 53 

Another challenge is the lack of information on infarct size and pathology. Ideally, 54 

LV function should be registered with pathology to provide clinically-relevant 55 

insights into salvaged myocardium and complications, including myocardial 56 

haemorrhage and contained myocardial rupture. Cardiac magnetic resonance (CMR) 57 

imaging provides multi-parametric information in a single scan, and while CMR 58 

uniquely integrates function with pathology, CMR has limited availability daily 59 

practice. 60 

Computational heart modelling has potential to improve risk prediction in individual 61 

patients[6][7]. For example, computed biomechanical parameters of LV function 62 
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(Table 1) may have the potential to provide new knowledge over and above 63 

conventional measures of pump function (e.g. LVEF & myocardial strain)[8–11]. A 64 

number of modelling consortia have emerged since the international Physiome Project 65 

was first proposed at the International Union of Physiological Sciences Council in 66 

Glasgow in 1993. These consortia (Table 2) have potential to push technical advances 67 

through to the clinic. Further integration of medicine with mathematics and statistics 68 

has potential to bring otherwise abstruse biomechanical parameters closer to the clinic, 69 

especially if novel inference techniques from machine learning and multivariate 70 

statistics are employed. 71 

Biomechanical parameters of LV function (i.e. contractility, stiffness, strain) are 72 

theoretically more tightly linked with LV pump performance (and thus prognosis) 73 

than global measures of systolic function such as LVEF. Measurement of these 74 

indices requires model personalization, which presents a barrier translation to the 75 

clinic. Nonetheless, personalized heart-modelling holds exciting potential for a 76 

diverse range of applications, from basic science to therapy development (including to 77 

replace, reduce and refine (3Rs) the need for animals in scientific research), and for 78 

risk stratification of individual patients after acute MI. In this review article, we 79 

provide the reader with a review of recent updates in modelling myocardial infarction, 80 

including the challenges and future promise of computational heart modelling for 81 

personalised medicine. 82 

Imaging myocardial function 83 

The practice guidelines for STEMI issued by the European Society of Cardiology[2] 84 

assign the use of echocardiography with a class 1, level of evidence B indication for 85 
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risk stratification based on assessment of infarct size and resting LV function. CMR 86 

imaging has a class 2a, level of evidence C, i.e., indicated when echocardiography is 87 

not feasible, whereas routine computed tomography is not recommended (class 3, 88 

level of evidence C). The North American guidelines[4] give the assessment of LV 89 

function a class 1, level of evidence C but do not specify the method used. The infarct 90 

territory is inferred by the presence of a wall-motion abnormality[12] and the standard 91 

assessment of LV function post-MI consists of LVEF and wall motion scoring. 92 

Echocardiography has several attributes including portability, high temporal 93 

resolution, shorter scanning time and lower cost. For these reasons, echocardiography 94 

is the standard of care for cardiac imaging in post-MI patients[2]. CMR, however, has 95 

superior accuracy and precision for imaging LV and RV function when compared 96 

with echocardiography[13]. CMR is multi-parametric, thus a single scan provides 97 

information on tissue characteristics[3], infarct pathology[14] and myocardial 98 

viability. CMR does not involve ionising radiation and can be safely repeated. For 99 

these reasons, CMR is the modality of choice for computational modelling of human 100 

hearts [6]. 101 

Clinician’s view of the need for heart modelling 102 

The LVEF is the ratio of blood ejected during systole to the LV volume at the end of 103 

diastole. LVEF is one of the strongest predictors of mortality post-MI to date[2,4,14], 104 

however, it varies with heart rate, blood pressure and inotropic state[15]. Wall motion 105 

scoring is a qualitative, subjective approach for the assessment of LV function. 106 

Assessments of LV function by echocardiography may be imprecise, and potentially 107 

decisions about therapy e.g. mineralocorticoid receptor antagonist, implantable 108 

defibrillator device, may be sub-optimal if based on a single LVEF value. 109 
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Most imaging derived prognostic markers in MI patients have some limitations. 110 

Considering CMR, infarct size may be overestimated in the acute phase due to 111 

oedema[16], and microvascular obstruction and intramyocardial haemorrhage vary 112 

dynamically during the first week following MI[3]. The natural temporal evolution of 113 

LV function and infarct characteristics raises the question of the optimal timing of a 114 

scan post-MI. CMR utility for risk stratification post-MI is identified in updated 115 

guidelines from the European Society of Cardiology[2]. CMR methods continue to 116 

evolve balancing diagnostic utility (e.g. T2*-CMR for myocardial haemorrhage) 117 

against patient-level considerations (scan duration). The optimal timing of a CMR 118 

scan depends on the clinical question. CMR is useful early post-MI (<3 days) for 119 

immediate assessment of risk e.g. LV thrombus, myocardial haemorrhage, and LV 120 

volumes and infarct complications evolve over time[3,16]. Infarct characteristics are 121 

generally stable from 7–10 post-MI permitting longer-term risk stratification. Adverse 122 

remodelling typically becomes established from 3 months. Therefore, multi-123 

parametric CMR helps answer different questions according to the time-point post-124 

MI. 125 

Risk prediction in individual patients is problematic, and improvements are needed to 126 

reliably identify those patients at greatest risk who may benefit from targeted 127 

interventions e.g. defibrillator therapy.  128 

This gap is a target for computational modelling which has potential to define more 129 

informative prognostic biomarkers for stratification of individual patients. Further, 130 

computational modelling has the potential to integrate multiple domains of 131 

information including electrophysiology (i.e. conduction throughout myocardial 132 

tissue), biomechanics, blood flow (4D flow within the LV cavity), myocardial 133 

perfusion, and infarct pathology. This approach is termed ‘multi-scale/physics 134 
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modelling’. Usually, these domains of information are considered in isolation (e.g. 135 

LV function by echocardiography), partially (i.e. cardiac conduction using the surface 136 

electrocardiogram), or not at all (i.e. tissue pathology and 4D-flow, unless CMR is 137 

used). Multi-scale/physics heart modelling holds exciting potential to bring together 138 

key domains of information in one temporally and spatially resolved form. These 139 

concepts are beyond theoretical, and the field of multi-scale/physics modelling is 140 

making important advances towards personalised medicine in the clinic.  141 

Towards clinical translation 142 

Considering the practical challenges, progress is likely to be made with incremental 143 

steps. For example, infarct size and myocardial salvage are not routinely measured 144 

with CMR in clinical practice mainly because of time constraints. Standardised 145 

workflows for CMR imaging post-MI should be developed in parallel with 146 

computational modelling approaches.  In an environment as complex as an infarcted 147 

heart, there are a variety of factors that will influence the success of clinical 148 

treatments. However, reliable computational models based on longitudinal patient-149 

specific CMR imaging can inform the best timing for treatment, monitoring, and 150 

baseline selection. Future advances in personalised medicine are anticipated to lead to 151 

integration of multiscale data (anatomy, pathology, physiology, genomics, etc.) into a 152 

scaled, patient-specific report. 153 

Advances in software and machine learning could make this task more accessible for 154 

clinicians. Beyond this, future advances could lead to registration of these pathologies 155 

with parametric maps of novel biomechanical parameters (i.e. contractility, stiffness).   156 
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Personalised modelling in myocardial infarction  157 

Cardiac modelling and technical considerations 158 

Cardiac biomechanical models are a set of mathematical relationships which describe 159 

myocardial motion and deformation under various loading conditions and constrains, 160 

as governed by the continuum mechanics theory[17]. Cardiac models are usually 161 

implemented using computer languages that produce outputs (deformation, stress, etc.) 162 

from inputs (clinical data etc.) which are run on high performance computers[18].    163 

Cardiac dynamics are complex multi-physics problems that involve myocardial tissue 164 

mechanics, haemodynamics, electrophysiology, biochemistry and their interactions, 165 

spanning from sub-cellular to organ levels[18], as listed in Figure 1. Cardiac models 166 

have been developed over the past decades, ranging from single myocyte models[19], 167 

to two-dimensional approximation[20], three-dimensional models[21], and multi-168 

scale/physics systems[18]. A biomechanical cardiac model encompasses various 169 

components to capture ventricular dynamics[7], including geometrical representation 170 

(numerical mesh), mathematical representation (i.e. finite element methods), 171 

boundary conditions (motion constrain imposed by surrounding tissue and organs, 172 

blood pressure and flow rates), material properties (myocardial passive stiffness and 173 

contractility), and model output analysis  (Figure 2). The development of personalized 174 

heart models is complex and involves multidisciplinary involvement and 175 

collaboration (Figure 3). These include, stage 1: patient enrolment, cardiac imaging 176 

and clinical assessment, by healthcare staff; stage 2: image analysis and personalized 177 

model construction, requiring collaborative work between modellers and cardiologists; 178 

stage 3: mathematical model implementation, calibration, inference, and result 179 

interpretation, mainly performed by mathematical modellers and statisticians.  180 
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Model personalisation 181 

An accurate, fast and reliable heart geometry reconstruction is the first step in clinical 182 

translation. To reconstruct cardiac geometry from in vivo data, endocardial and 183 

epicardial boundaries are delineated from images, i.e. segmentation. At this point, the 184 

endocardial and epicardial borders which are represented by a 3D ‘cloud’ of points 185 

will undergo surface fitting, where a smooth surface is constructed by minimizing the 186 

difference between the points and the fitted surface. The next step is volumetric 187 

meshing, where the LV wall is divided into polyhedrons as small representative solids. 188 

Different methods are being developed for cardiac geometry reconstruction including 189 

user iterative interventions for reconstruction[7] or by warping idealized ventricular 190 

geometry, e.g. an ellipsoid,  into patient data[22]. 191 

Personalized modelling not only depends on anatomically accurate geometry, but also 192 

relies on mathematical formulation and patient-specific material properties as shown 193 

in Figure 2. Knowledge of myocardial passive and active material properties is 194 

essential to accurately predict cardiac function as well as to design and evaluate new 195 

treatment based on those models. Much research has been carried out to estimate 196 

myocardial property from in-vivo data, and to understand heart dysfunction based on 197 

the changes of myocardial mechanical properties. 198 

Mathematical descriptions of passive myocardium[23] have progressed from linear 199 

material to nonlinear material laws by considering myocyte organization and its 200 

associated collagen networks[6]. However, non-invasively estimating material 201 

parameters remains a great challenge. Inverse approaches for determining myocardial 202 

material parameters have attracted much interest, in which one can estimate the 203 

unknown parameters by minimizing the difference between in-vivo measurements 204 

(displacement, strain, pressure-volume curve) and the modelling results with respect 205 
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to those unknown parameters[20,24–27](Figure 4). However, due to the excessively 206 

large number of potential parameter combinations, and their non-linear influence on 207 

predictions, the practical realisation of this task is not trivial, and depends on the 208 

execution of computer-intensive optimisation algorithms. Recently, more advanced 209 

techniques from computational statistics and machine learning, such as Bayesian 210 

optimisation and statistical emulation, are being used[28]. 211 

Predicting myocardial systolic stress also requires further parameterisation of the 212 

active contraction model, which usually complements a myocardial passive response 213 

model[7]. Most of myocardial active models are based on ‘the sliding theory’ at 214 

cellular level and up-scaled to tissue level (Table 1). At cellular level, the active 215 

tension can be described as a function of intracellular calcium, sarcomere length, and 216 

contraction velocity. At tissue level, active tension is a function of myocyte 217 

organization and individual myocyte contractility. Due to the large set of unknown 218 

parameters in the active contraction model, parameterisation is usually carried out at 219 

tissue level, by scaling cellular active tension so that myocardial motion in systole 220 

matches in-vivo measurements[21] (Figure 4). 221 

Left ventricular pressure is a loading condition, and when LV pressure is not available, 222 

computational estimates of cardiac dynamics become less certain. The ratio between 223 

early mitral inflow velocity and mitral annular early diastolic velocity has been used 224 

to estimate the ventricular filling pressure, but this can be unreliable in certain 225 

situations[29]. Systolic ventricular pressure may be inferred from non-invasive cuff-226 

measured blood pressure or by measuring flow in large arteries through coupling 227 

circulation models[30]. Non-invasively measuring the absolute blood pressure is 228 

challenging, though pressure gradients can be estimated from flow measurements. 229 

The underlining myocyte architecture and collagen network also play an essential role 230 
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in determining pump function. Diffusion tensor MRI (DT-MRI) reveals fibre 231 

organization[31]. However, it is still a work-in-progress due to challenges presented 232 

by cardio-respiratory motion. Therefore, most cardiac models used rule-based 233 

approaches to describe their organizations[9,21,32,33], which inevitably contribute to 234 

model uncertainty for predictive modelling. Our recent modelling study demonstrated 235 

that myocyte architecture is an important factor for estimating myocardial 236 

contractility[8].  237 

Biomechanical findings from personalized heart models  238 

Clinically, increased passive myocardial stiffness is a major cause of impaired LV 239 

pump function due to inadequate diastolic filling and subsequent increased end-240 

diastolic pressure[34]. Image-based cardiac models[25,27,33,35–38] have been 241 

developed for estimating myocardial passive stiffness in both healthy subjects and 242 

patients with heart failure. These models were constructed utilising CMR imaging 243 

(cine, 3D tagging and flow imaging)[27,33] or a combination of CMR imaging (cine, 244 

tagging) and invasive LV end-diastolic pressure measurements[25]. Nevertheless, 245 

although different myocardial constitutive laws are used in the above studies either 246 

with invasively or non-invasively measured or population-based ventricular pressure, 247 

the findings from computational cardiac models seem consistent. The myocardium 248 

from diseased hearts is stiffer compared to healthy hearts. 249 

Post-MI passive stiffness is highest at 1 week followed by improvements with 250 

remodelling by 12 weeks[39]. From animal and human studies, Guccione’s group[9–251 

11] has reported that the infarcted region not only has a higher passive stiffness and 252 

higher wall stress when compared to remote myocardium, but the myocardial 253 

contractility in the border zone is reduced as well, correlating with the area-at-risk. 254 
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They suggested that adverse remodelling post-MI could be due to an altered 255 

myocardial stress pattern. Porcine biomechanical heart models[40] have disclosed that 256 

remote myocardial contractility increases at 10 days and 38 days post-MI. Several 257 

computational studies have reported that maximal active tension is much higher in 258 

patients with heart failure when compared to normal subjects[7,33], and in patients 259 

with MI[21], suggesting an increased dependency on myocardial contractile reserve. 260 

However, computationally estimated myocardial passive stiffness and contractility 261 

vary considerably between healthy and diseased hearts (Table 3.) The reasons for this 262 

variability are unclear but may be related to inter-individual variations, sample size, 263 

or technical factors. 264 

Ventricular wall stress and its inhomogeneous distribution could also lead to adverse 265 

remodelling, including myocardial hypertrophy, and heart failure[41]. Figure 5 shows 266 

the LV systolic stress patterns in a healthy control and a patient post-MI. Clearly, 267 

there is a more homogenous distribution of LV stress in health, and restoring 268 

ventricular stress to a normal stress distribution could be a potential therapeutic 269 

target[42](Table 3). Further work is needed to investigate the effect of sex, age and 270 

anthropometry on myofibre stress.  271 

Recently, we utilised an “extreme case-control” study design, with cardiac modelling 272 

undertaken in 27 healthy controls and 11 post-MI patients[8]. By combining 273 

computational modelling with machine-learning approaches, we reported that 274 

myofibre active tension is much higher in MI patients compared to healthy volunteers, 275 

and myocardial contractility correlated negatively with the observed recovery in LV 276 

pump function at six months post-MI. By contrast, LVEF was not associated with LV 277 

outcomes at 6 months. We observed moderately strong predictive associations for the 278 

biomechanical parameters despite the sample size being limited. Future prospective 279 
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studies should evaluate whether novel biomechanical parameters (Table 1) have 280 

superior prognostic value in post-MI patients as compared to standard indices such as 281 

LVEF. 282 

Challenges in personalised modelling 283 

Model uncertainty and metrology 284 

Uncertainty quantification in heart models is essential to support the use of these 285 

techniques as tools to aid clinical decision-making[43]. Specific topics for uncertainty 286 

evaluation include (1)in-vivo imaging acquisition (noise, incomplete heart structure 287 

representation); (2)image segmentation; (3)model construction; (4)model 288 

simplification (heterogeneity); (5)material laws assumptions (linear, nonlinear) and 289 

boundary conditions; (6)model abstraction from subcellular to organ levels; (7)multi-290 

physics domains e.g. electrophysiology[44,45]. These uncertainties may be either 291 

directly measured, i.e. imaging noise, or indirectly inferred such as material laws.  292 

Increasingly, computer-intensive statistical inference is being used to quantify 293 

uncertainty in parameter estimation, model selection and model prediction, utilizing 294 

methods such as Bayesian filtering[46], Markov chain Monte Carlo[47] and Gaussian 295 

process emulators[28]. Uncertainty quantification in cardiac models should be a high 296 

priority to ensure successful future clinical translation[43].  297 

Validation and verification 298 

Some validation has been achieved to date through comparisons with experimental 299 

benchmark data[48], computational models[49], and clinical images. However, 300 

substantial challenges exist, as directly validating stress and myocardial contractility 301 

in vivo is next to impossible. Novel non-invasive techniques such as magnetic 302 
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resonance elastography[50] and DTI[31] hold promise for assessing the mechanical 303 

properties of tissue in-vivo. Recently, there has been growing interest in the 304 

development of methodologies and frameworks for verification, validation and 305 

uncertainty quantification (VVUQ) in order to improve model credibility[44].  306 

Clinical Perspective and Future Directions 307 

Computational modelling is currently operative mainly within the domain of cardiac 308 

science. Recent advances support a forward-looking view, and personalized 309 

computational heart modelling has realistic potential to provide clinicians with new 310 

predictive tools, that currently are not available in daily practice[7].  311 

Bringing models into the clinic for patient benefits presents an exciting challenge 312 

(please see Online Supplement). In the future, modelling applications for risk 313 

stratification should ideally exploit echocardiography (since this is the standard of 314 

care) or CMR. Machine learning and statistical emulation techniques will be 315 

necessary to enable software applications for near real-time use in the clinic.  316 

Further work should establish a minimum-dataset of what imaging to acquire in post-317 

MI patients, the timing of the imaging scans, validate novel biomechanical parameters 318 

against more established prognostic markers, such as LVEF, e.g. in multicentre 319 

studies. Technical innovations should lead to software packages that require minimal 320 

user interaction. Our view is that adoption in the clinic is most likely through 321 

incremental steps with adoption of software tools (patches, programmes, etc.) that 322 

build on existing clinical workflows. To this end, clinicians, mathematicians, 323 

statisticians, and industry partners must work collaboratively. 324 
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Conclusion 325 

Imaging-derived heart models have a number of potentially useful applications. Novel 326 

biomechanical parameters including myocardial contractility, stiffness, stress, and 327 

their distribution, have potential as novel surrogates in therapeutic studies and for risk 328 

stratification of individual patients. Multi-scale/physics models that integrate multiple 329 

forms of information hold promise for personalised medicine.  330 
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Figure Legends  523 

Figure 1. Similar presentations yet divergent outcomes. Two male patients presented 524 

with anterior ST elevation MI and had primary angioplasty to their proximal left 525 

anterior descending artery. They were enrolled in the British Heart Foundation MR-526 

MI study (ClinicalTrials.gov identifier NCT02072850). Patient A was a 56 year old 527 

male, who had a symptom to balloon time of 209 minutes. MRI on day 2 revealed a 528 

LV ejection fraction of 47.4%, and indexed LV end-diastolic volume of 85.6 ml/m2. 529 

Infarct size (A.2, yellow arrows) at baseline was 34.9% LV mass. Microvascular 530 

obstruction (A.2, red thin arrows) was 2.89% LV mass. At 6 months follow-up (A.3), 531 

his LV ejection fraction improved to 56.1%, with no significant change in indexed LV 532 

end-diastolic volume (88.3ml/m2). 533 

Patient B was a 58 year old male, who had a symptom to balloon time of 132 minutes. 534 

MRI on day 2 revealed a LV ejection fraction of 46.4%, and indexed LV end-diastolic 535 

volume of 98.2 ml/m2. Infarct size at baseline was 32.4% LV mass. Microvascular 536 

obstruction (A.2, red thin arrow) was 0.08% LV mass.  At 6 months follow-up (A.3), 537 

his LV ejection fraction deteriorated to 36.9%, with adverse remodelling (indexed LV 538 

end-diastolic volume 126.4 ml/m2). He proceeded to have an internal cardiac 539 

defibrillator implanted for primary prevention.  540 

Figure 2. The distinct components of a mathematical cardiac model. 541 

Figure 3. Stage 1 involves patient enrolment and diagnosis, and cardiac imaging such 542 

as magnetic resonance imaging (MRI). The MRI images are all co-registered at the 543 

same position and depict a short axial mid-left ventricular position. (a.1): cine image, 544 

(a.2): T2-weighted image for oedema (red arrow) (a.3, a.4): late gadolinium enhanced 545 
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image for myocardial infarction (red arrow), (a.5) circumferential strain map. Stage 2 546 

involves image analysis and model construction. (b.1, b.2) ventricular wall boundary 547 

segmentation, (b.3) pathological region identification, (b.4) 3-dimensional LV 548 

geometry, (b.5) AHA-17 segmental mapping. Stage 3 depicts mathematical modelling. 549 

(c.1) mesh representation, (c.2, c.3) cardiac dynamics simulation at end-diastole and 550 

end-systole, (c.4) systolic stress distribution, (c.5) ventricular flow in diastolic filling.  551 

Figure 4. Schematic illustration of inversely estimating unknown parameters in 552 

modelling myocardial passive stiffness and active contraction. 553 

Figure 5. Examples of biomechanical models of left ventricular function for a healthy 554 

left ventricle (a, b), and a MI heart (c, d) from the authors’ group, adapted from[8]. (a) 555 

is the LV geometry from a healthy volunteer, and (b) shows the systolic stress along 556 

myocytes, in general, systolic stress is homogeneous throughout the whole ventricular 557 

wall. (c) is the LV geometry from a MI patient, red to blue colour suggests the MI 558 

extent from 1 to 0, which means blue (0) is functional myocardium, red (1) is the 559 

infarct region; (d) is the systolic stress along myocyte in the MI model, high stress 560 

regions can be found in the MI region, and less homogeneous compared to the healthy 561 

heart model in (b).  562 
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Table 1. Examples of biomechanical parameters of left ventricular pump function 563 

derived from mathematical modelling.  564 

Myocardial biomechanics 

parameter 

Definition 

1. Passive stiffness   The relationship between myocardial stress and myocardial strain. 

Stiffness represents the hyper-elastic properties of myocardium, and is a 

passive component of diastolic function. 

2. Required contractility   active tension generated by the sarcomere, the basic contractile unit in 

myocytes, at its resting length, it is the required minimum contractile 

function to meet the body’s blood demand. It is different from the 

maximum contractile function, the difference between the maximum 

contractile function and the required contractility is the contractile reserve. 

3. Systolic stress pattern   The sum of active stress + passive stress in systole, it can be normalized 

by systolic blood pressure, denoted as normalized stress. Stress is the force 

per unit area at any point, active stress means the force is generated by 

myocyte contractile units triggered by intracellular calcium, whereas 

passive stress is the force resulted from resistance to myocardial 

deformation, which does not involve energy consumption, for example, 

when collagen is stretched, there is a force inside collagen to 

counterbalance the external stretching force.   

4. Systolic myofilament 

kinetics 
 The ratio between systolic active stress and the required contractility. 

Systolic active stress is the actual myocardial active force, which is a 

function of contractility, myocardial deformation, etc. Systolic myofilament 

kinetics reflects the quantity of binding sites formed between myosin and 

actin in systole.  
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Table 2. Research consortia on mathematical modelling of the cardiovascular system. 565 

Cardiac modelling 

consortium  

Organization and 

funding body 

Aims Related heart research Output and application 

examples 

The Physiome Project 

(www.physiomeproject.org) 

Started from the 

International Union of 

Physiological Sciences 

council in 1993 

 

To develop a multi-scale modelling 

framework for understanding 

physiological function, allowing models 

to be combined and linked in a 

hierarchical fashion. 

Electromechanical models of the 

heart, myocardial ion channels, 

myofilament mechanics and signal 

transduction pathways, tissue 

mechanics, coronary blood flow, 

etc. 

1. Standardized mark-up 

languages for encoding 

models 

2. Model repositories for 

sharing and collaborating  

3. the physiome modelling 

framework  

 

The EUheart project 

(www.euheart.eu) 

Funded by FP7 with 16 

industrial, clinical and 

academic partners 

To develop individualized, computer-

based human heart models for improving 

the diagnosis, therapy planning and 

treatment of cardiovascular disease 

Focusing on model personalization, 

arrhythmias, coronary disease, heart 

failure, etc. 

Cardiac resynchronisation 

therapy  
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The Sim-e-Child project 

(http://www.sim-e-

child.org) 

Funded by FP7, as a 

follow-up to Health-e-

Child project 

To integrate innovative disease models 

and complex data with knowledge 

discovery applications to support clinical 

decisions in paediatrics diseases  

Developments and application 

cardiac models for congenital heart 

diseases using grid-enabled platform 

for largescale simulations 

Personalized virtual child 

heart modelling 

framework  

CARDIOPROOF 

(www.cardioproof.eu/) 

Funded by FP7, a 

proof-of-concept of 

model-based 

cardiovascular 

predictions from VPH 

To consolidate and check the applicability 

and effectiveness of existed predictive 

modelling tools, and validate in clinical 

trials 

Focusing on patients with aortic 

valve disease and aortic coarctation 

Integration of software 

technologies into clinical 

decision making and 

treatment planning 

systems, for example, the 

virtual stenting solution  

 

The virtual rat physiology 

(www.vph-institute.org) 

An international non-

profit organization to 

ensure the realization 

of the virtual 

physiological human 

project 

To develop new methods and 

technologies to make possible the 

investigation of the human body as a 

whole by integrating knowledge from 

different fields 

Activities and facilities to promote 

collaborative research of the human 

body as a single complex system. 

Development of standards 

for models and data, 

establish model and data 

repositories, and 

associated toolkits  
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The EPSRC centre for 

multiscale soft tissue 

mechanics  

(www.softmech.org) 

Funded by EPSRC UK 

with School of 

Mathematics and 

Statistics, University of 

Glasgow 

To develop a multi-scale soft tissue 

models for heart diseases by integrating 

mathematicians, clinicians, 

experimentalists, and modellers to 

elucidate the chain of events from 

mechanical factors at a subcellular level 

to cell and tissue response  

 

Novel multiscale mathematical 

models and computer-intensive 

statistical inference techniques 

applicable to heart diseases, in 

particular myocardial infarction 

Personalized models in 

patients following acute 

ST-segment elevation 

myocardial infarction, 

three potential 

biomechanical parameters 

were identified using 

machine learning 

approaches  

 

The Virtual Physiological 

Rat Project 

(http://www.virtualrat.org) 

Funded by NIH USA 

focusing on the system 

biology of 

cardiovascular disease  

To understand how disease phenotypes 

apparent at the whole-organism scale 

emerge from molecular, cellular, tissue, 

organ, and organ-system interactions 

Developing a 

theoretical/computational 

understanding of cardiovascular 

system dynamics and the aetiology 

of hypertension 

Developing multi-scale 

models to construct and 

assess competing 

hypothesis across different 

species  

Note: all websites were accessed on 23rd April 2017. This is not an exhaustive list of groups on computational cardiac modelling, other research 566 

groups include MD-Paedigree (http://www.md-paedigree.eu/), LifeV (http://www.lifev.org), Continuity (http://www.continuity.ucsd.edu), 567 

CMISS (http://www.cmiss.org), Chaste (http://www.cs.ox.ac.uk/chaste/), GlasgowHeart (www.glasgowheart.org), CHeart (http://cheart.co.uk). 568 

http://www.lifev.org)/
http://www.continuity.ucsd.edu)/
http://www.cmiss.org)/
http://www.cs.ox.ac.uk/chaste/)
http://www.glasgowheart.org)/
http://cheart.co.uk)/


 28 

Table 3. Summary of estimated myocardial contractility from computational models derived from in vivo cardiac imaging. 569 

Studies Imaging modality Number of subjects Ventricular pressure Myocardial contractility  

Genet et al, 2014 [32] Tagged MRI 5 HVs Assumed pressure 143 kPa 

Genet et al, 2015 [36] 3D cine, 3D tagged, 2D 

LGE MRI 

1 MI patient Assumed end-diastolic and cuff-

measured end-systolic pressure 

146.9 kPa 

Wenk, et al, 2012 [11] Tagged and LGE MRI 1 MI patient Direct, invasive measurement  109.5 kPa 

Wang et al, 2013 [37] Cine MRI 6 HVs,  

5 hypertrophic HF 

9 non-ischemic HF 

Assumed pressure 88 kPa (HV) 

160 kPa (hypertrophic) 

124 kPa (NI- HF) 

Gao et al, 2014 [21] Cine MRI 1 HV 

1 MI patient 

Assumed end-diastolic and cuff-

measured end-systolic pressure 

168.6 kPa (HV) 

309.1 kPa (MI) 

Asner et al, 2015 [33] Cine, 3D tagged, and 4D 

flow MRI 

1 HV 

2 patients with DCM 

Non-invasively estimated pressure 139 kPa (HV) 

168 kPa (patients) 

Land et al, 2017 [38] CT imaging 3 patients with preserved 

heart function 

Assumed pressure 120 kPa 

DCM – dilated cardiomyopathy, HF: heart failure, HV: healthy volunteer, LGE: late gadolinium enhancement, kPa: kilo Pascal. 570 


