176 research outputs found

    Sim-to-Real Reinforcement Learning Framework for Autonomous Aerial Leaf Sampling

    Get PDF
    Using unmanned aerial systems (UAS) for leaf sampling is contributing to a better understanding of the influence of climate change on plant species, and the dynamics of forest ecology by studying hard-to-reach tree canopies. Currently, multiple skilled operators are required for UAS maneuvering and using the leaf sampling tool. This often limits sampling to only the canopy top or periphery. Sim-to-real reinforcement learning (RL) can be leveraged to tackle challenges in the autonomous operation of aerial leaf sampling in the changing environment of a tree canopy. However, trans- ferring an RL controller that is learned in simulation to real UAS applications is challenging due to the risk of crashes. UAS crashes pose safety risks to the operator and its surroundings which often leads to expensive UAS repairs. In this thesis, we present a Sim-to-Real Transfer framework using a computer numerical control (CNC) platform as a safer, and more robust proxy, before using the controller on a UAS. In addition, our framework provides an end-to-end complete pipeline to learn, and test, any deep RL controller for UAS or any three-axis robot for various control tasks. Our framework facilitates bi-directional iterative improvements to the simulation environment and real robot, by allowing instant deployment of the simulation learned controller to the real robot for performance verification and issue identification. Our results show that we can perform a zero-shot transfer of the RL agent, which is trained in simulation, to real CNC. The accuracy and precision do not meet the requirement for complex leaf sampling tasks yet. However, the RL agent trained for a static target following still follows or attempts to follow more dynamic and changing targets with predictable performance. This works lays the foundation by setting up the initial validation requirements for the leaf sampling tasks and identifies potential areas for improvement. Further tuning of the system and experimentation of the RL agent type would pave the way to autonomous aerial leaf sampling. Adviser: Carrick Detweile

    Design and testing of a novel unoccupied aircraft system for the collection of forest canopy samples

    Get PDF
    Unoccupied Aircraft Systems (UAS) are beginning to replace conventional forest plot mensuration through their use as low-cost and powerful remote sensing tools for monitoring growth, estimating biomass, evaluating carbon stocks and detecting weeds; however, physical samples remain mostly collected through time-consuming, expensive and potentially dangerous conventional techniques. Such conventional techniques include the use of arborists to climb the trees to retrieve samples, shooting branches with firearms from the ground, canopy cranes or the use of pole-mounted saws to access lower branches. UAS hold much potential to improve the safety, efficiency, and reduce the cost of acquiring canopy samples. In this work, we describe and demonstrate four iterations of 3D printed canopy sampling UAS. This work includes detailed explanations of designs and how each iteration informed the design decisions in the subsequent iteration. The fourth iteration of the aircraft was tested for the collection of 30 canopy samples from three tree species: eucalyptus pulchella, eucalyptus globulus and acacia dealbata trees. The collection times ranged from 1 min and 23 s, up to 3 min and 41 s for more distant and challenging to capture samples. A vision for the next iteration of this design is also provided. Future work may explore the integration of advanced remote sensing techniques with UAS-based canopy sampling to progress towards a fully-automated and holistic forest information capture system

    Abstracts of the 10th Conference of the Italian Society of Agricultural Engineering

    Get PDF

    Wildland fire management. Volume 2: Wildland fire control 1985-1995

    Get PDF
    The preliminary design of a satellite plus computer earth resources information system is proposed for potential uses in fire prevention and control in the wildland fire community. Suggested are satellite characteristics, sensor characteristics, discrimination algorithms, data communication techniques, data processing requirements, display characteristics, and costs in achieving the integrated wildland fire information system

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Fabricate 2014

    Get PDF
    FABRICATE is an international peer reviewed conference that takes place every three years with a supporting publication on the theme of Digital Fabrication. Discussing the progressive integration of digital design with manufacturing processes, and its impact on design and making in the 21st century, FABRICATE brings together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation. Discussion on key themes includes: how digital fabrication technologies are enabling new creative and construction opportunities from component to building scales, the difficult gap that exists between digital modelling and its realisation, material performance and manipulation, off-site and on-site construction, interdisciplinary education, economic and sustainable contexts. FABRICATE features cutting-edge built work from both academia and practice, making it a unique event that attracts delegates from all over the worl

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    2020 Student Symposium Research and Creative Activity Book of Abstracts

    Get PDF
    The UMaine Student Symposium (UMSS) is an annual event that celebrates undergraduate and graduate student research and creative work. Students from a variety of disciplines present their achievements with video presentations. It’s the ideal occasion for the community to see how UMaine students’ work impacts locally – and beyond. The 2020 Student Symposium Research and Creative Activity Book of Abstracts includes a complete list of student presenters as well as abstracts related to their works

    The Murray Ledger and Times, August 5, 1991

    Get PDF
    • …
    corecore