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Using unmanned aerial systems (UAS) for leaf sampling is contributing to a better

understanding of the influence of climate change on plant species, and the dynamics

of forest ecology by studying hard-to-reach tree canopies. Currently, multiple skilled

operators are required for UAS maneuvering and using the leaf sampling tool. This

often limits sampling to only the canopy top or periphery. Sim-to-real reinforcement

learning (RL) can be leveraged to tackle challenges in the autonomous operation of

aerial leaf sampling in the changing environment of a tree canopy. However, trans-

ferring an RL controller that is learned in simulation to real UAS applications is

challenging due to the risk of crashes. UAS crashes pose safety risks to the operator

and its surroundings which often leads to expensive UAS repairs.

In this thesis, we present a Sim-to-Real Transfer framework using a computer

numerical control (CNC) platform as a safer, and more robust proxy, before using

the controller on a UAS. In addition, our framework provides an end-to-end complete

pipeline to learn, and test, any deep RL controller for UAS or any three-axis robot for

various control tasks. Our framework facilitates bi-directional iterative improvements

to the simulation environment and real robot, by allowing instant deployment of the

simulation learned controller to the real robot for performance verification and issue

identification.

Our results show that we can perform a zero-shot transfer of the RL agent, which



is trained in simulation, to real CNC. The accuracy and precision do not meet the

requirement for complex leaf sampling tasks yet. However, the RL agent trained for a

static target following still follows or attempts to follow more dynamic and changing

targets with predictable performance. This works lays the foundation by setting up

the initial validation requirements for the leaf sampling tasks and identifies potential

areas for improvement. Further tuning of the system and experimentation of the RL

agent type would pave the way to autonomous aerial leaf sampling.
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Chapter 1

Introduction

Deep Reinforcement Learning (RL) can be utilized to control complex robotic sys-

tems [1]. RL agents are capable of learning an optimal controller by interacting with

the environment and receiving rewards based on actions taken. This is similar to

a trial-and-error approach, where the controller improves over time as more data is

gathered. We can combine many types of sensors and image data as inputs for the

RL agent which is not commonly used in traditional control algorithms.

Plant scientists study leaves to understand the genotype and environment inter-

action in individual plants and as a collective in a forest. This is important to better

understand the negative effects global warming has caused in a range of environments.

Traditional leaf sampling methods require human experts that collect samples with a

pole pruner, ladder, slingshot, shotgun, rope launcher or they try to climb trees. Most

of these methods either have a low reach, low access (only inner stronger branches),

or have the potential risk of injury to the operator or the wildlife.

Aerial leaf sampling is a relatively new sampling method that uses a UAS with

some leaf or branch cutting mechanism [2]. This requires collaborative effort in areas

of mechanical, electrical, computer science, and plant science. Aerial leaf sampling

methods can be divided into five broadly defined processes [3]: (1) the UAS flies from

the base station to the desired tree canopy; (2) the UAS operator identifies the desired
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target branch according to sampling requirements; (3) the UAS operator lowers the

leaf sampler to the target branch; (4) the leaf sampler collects the leaves; and (5) the

UAS retrieves the sampler, and flies back to the base station.

The overall goal of this thesis is to automate the entire aerial leaf sampling process

to reduce human intervention and error. We first identify some of the challenges that

we must overcome for the future development of automated leaf sampling systems

including the RL agent. The challenges are as follows:

1. Since our target environment is an unstructured tree canopy with lots of uncer-

tainties that can cause the UAS to crash, learning directly from real experience

is not feasible. However, we can train the RL agent in a simulation environment

using synthetic data, and then transfer the learned agent to a real robot working

in the real environment. This method is known as sim-to-real RL and shows

great success in many different robotics applications [4]. There would still be

a challenge to address the ‘reality gap’ that may occur between the simulation

and the real-world system [5].

2. The lack of a precise UAS motion capture system outdoors makes it difficult to

perform precise maneuvers. Performing experimental control methods for the

UAS over a tree can result in setbacks due to catastrophic crashes when there

is a system failure or wrong control inputs are given. Furthermore, outdoor

UAS experimentations can not be performed on rainy, snowy, or windy days.

This imposes seasonal limitations on developing the different aspects of the leaf

sampling process.

To overcome these challenges we developed a sim-to-real framework using rein-

forcement learning. We limit our scope to indoor implementation of the leaf sampler

with the help of the Vicon motion capture system. We also use a computer numeric
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control (CNC) system mounted on the ceiling as an intermediate platform for au-

tonomous development instead of the UAS. Although we reduce the dimensionality

of the problem from a six-degree-of-freedom of the UAS to a three-degree-of-freedom

of the CNC, the framework offers interoperability between the two systems by using

similar observations and control inputs. This mitigates challenges of flight time and

crashes of risk when directly using UAS and offers non-stop power tethered operation.

Additionally, it allows us progressively implement different algorithms and techniques

to handle various leaf sampling tasks while adding sensors and electronics as required.

This thesis establishes the pipeline for autonomous aerial leaf sampling and presents

the initial steps in the sim-to-real leaf sampling processes.

1.1 Contributions

In this thesis, we present an indoor sim-to-real platform that would facilitate fast

learning and deployment of reinforcement learning algorithms in the simulation en-

vironment and real-world deployment. We were able to do a zero-shot transfer of

the RL agent trained in the simulated CNC to the real CNC. The agent performed

robustly for a more dynamic target than what was trained in the simulation. Our

contributions are:

• Development of a sim-to-real framework for training and deploying an RL agent

for UAS aerial leaf sampling;

• Design of a hardware and software interface that allows fast deployment of

simulation-trained agents to the CNC setup (real world); and

• Evaluation of the sim-to-real framework of a learned RL agent in simulation

and in CNC.
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Our results show that the RL agent performance does not fully meet the expecta-

tion in terms of accuracy and precision yet. However, the predictability of the results

and identifiable limitations of the system that can be addressed in future iterations

show that we are on the right path.

The advancement in sim-to-real leaf sampling would benefit researchers who might

also use similar payloads for wildlife monitoring, critter, and insect studies, canopy

microclimate study, enhanced imaging, depth map of inner forest layers, collection of

genetic samples for plant identification, etc. as the framework can be adapted to any

other similar UAS application.

The rest of the thesis is organized as follows: We present a literature review

on reinforcement learning and leaf sampling to provide context to design decisions

made throughout the paper. We then discuss our sim-to-real framework methods,

simulation and real-world setup, results and discussion, and finish with a conclusion

and future work.
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Chapter 2

Related Work

Reinforcement learning has been shown to be very successful in solving many complex

tasks in recent years. Following the success of AlphaGo defeating the world champion

at Go [6], recently, RL trained algorithm defeated a team of professional players in the

competitive e-sports game of DOTA 2 [7]. This is particularly impressive since the

game of DOTA2 presents a lot of challenges to traditional RL: observation and action

space are large, with a long horizon, and a partially observable environment. In recent

years, there has been significant development in using the RL controller learned in

simulation for real-world robotic applications such as object manipulation [8, 9, 10,

11, 12], robotic locomotion [13, 14], and Unmanned aerial systems (UAS) flights [15,

16, 17, 18].

In this chapter, we discuss the relevant background of reinforcement learning in the

context of this thesis. We then discuss the state-of-the-art in sim-to-real reinforcement

learning and UAS aerial leaf sampling.

2.1 Reinforcement Learning Background

In this section, we discuss the reinforcement learning (RL) background and discussion

relating to what RL agent we used in this thesis. Although our framework can
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be used to test various different RL agents available, we used a Twin-delayed deep

deterministic policy gradient agent, also known as TD3 [19] as discussed next.

A reinforcement learning (RL) agent receives a set of observations (S) from the

environment and executes actions (A). The environment transitions to a new state

S ′ and the agent receives a reward (R) based on the actions taken. The RL agent’s

policy (π) is updated from this experience such that the expected cumulative long-

term reward is maximized [20]. In traditional RL, this can be formalized as Markov

Decision Process (MDP) where the transition probability from (S) to (S ′) based on

action (A) follows the probability distribution P (S ′|S,A) [20].

Figure 2.1 shows a schematic of an RL agent and corresponding mapping to the

classical control system. The environment, agent policy, action, observation, and RL

algorithm in reinforcement learning are equivalent to the plant, controller, control

output, error signal, and controller tuning in classical control respectively. Optimal

control would then be equivalent to minimizing the loss function in RL.

One major difference is that while the classical control uses a linearized model of

the plant to derive the controller, reinforcement learning can either be model-based

or model-free. Using deep learning network structure in the agent policy, it can learn

a model-free, non-linear representation of the environment or plant.

2.1.1 Value-based, Policy-based, and Actor-Critic Agents

In RL, the actor and critic represent the next best action given some observations

and the merit of such action in maximizing the long-term cumulative reward. The

critic can be represented by value function (V (s)) if only using observations as input,

Q-value (Q(S,A)) function if taking both observation and the action as input. On

the other hand, actors (π(S)) can be represented by a deterministic policy, or a

stochastic policy where the action is deterministic or stochastic as the name implies.
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Figure 2.1: Reinforcement learning agent concept schematic and the mapping that
represents equivalent control system. Image from [21]

Deterministic policy actor will add random noise to promote exploration.

When the actor and the critic are represented using deep neural networks, the

algorithm would then be called deep RL. Using the deep neural network is especially

useful because the discrete or continuous observation or action space is very large.

Many RL algorithms have emerged that use different variations of the actor-critic

network. Table 2.1 summarizes different RL algorithms, action space, and actor-

critic representations used with each of them.

Agents that use critics only for selecting actions are called value-based or indirect

policy representation agents. Agent of these type include: Q-Learning (Q) [22], Deep

Q-Network (DQN) [23], State-Action-Reward-State-Action (SARSA) [24] agents.

Agents that only use actors are called policy-based or direct policy representation

agents, e.g., Policy Gradient (PG) [25] agents.
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Table 2.1: Summary of popular RL algorithms used in Literature. Observation space
is omitted as it can be discrete or continuous in all listed algorithms

RL Algorithm Agent Type Action space Critic Representation Actor representation

Q-Learning (Q) Value-Based Discrete Q-value function ×
Deep Q-Network (DQN) Value-Based Discrete Q-value function ×
State-Action-Reward-State-Action (SARSA) Value-Based Discrete Q-value function ×
Policy Gradient (PG) Policy-Based Either value-function stochastic
Actor-Critic (AC) Actor-Critic Either value function stochastic
Proximal Policy Optimization (PPO) Actor-Critic Either value function stochastic
Trust Region Policy Optimization (TRPO) Actor-Critic Either value function Stochastic
Deep Deterministic Policy Gradient (DDPG) Actor-Critic Continuous Q-value function Deterministic
Twin-Delayed DDPG (TD3) Actor-Critic Continuous Q-value function Deterministic
Soft Actor-Critic (SAC) Actor-Critic Continuous Q-value function stochastic

Agents that use both actor and critic representations are called actor-critic agents.

The actor learns the best actions based on the feedback from the critic instead of the

reward. And the critic learns from the reward to provide feedback to the actor.

Examples of such agents are: Actor-Critic (AC) [26], Proximal Policy Optimization

(PPO) [27], Trust Region Policy Optimization (TRPO) [28], Deep Deterministic Pol-

icy Gradient Agents (DDPG) [29], Twin-Delayed Deep Deterministic Policy Gradient

(TD3) [19], Soft Actor-Critic agents (SAC) [30].

For continuous observation and action space, actor-critic agents are the most

ideal choice since indirect and direct policy representation actors are computationally

expensive, and noisy respectively in such scenarios.

2.1.2 Deep Deterministic Policy Gradient (DDPG)

DDPG algorithm is a model-free, online, off-policy RL learning algorithm [31]. A

DDPG agent optimizes a policy that would return the most expected long-term re-

ward when starting from any state. The network architecture of this algorithm is

based on deterministic policy gradient (DPG) [29] algorithm’s actor-critic method.

The actor determines the best possible action at any given state using a policy that

is learned based on the critic’s feedback instead of directly using the reward. The
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critic is learned using the Bellman equation similar to Q-learning [31].

The most important feature of the DDPG algorithm is that it can be used in

environments with continuous action space and continuous or discrete action space.

This feature of the DDPG makes it suitable for applications using continuous control

such as controlling a UAS.

Critic Q(S,A|ϕ) in DDPG uses a Q-value function for representing the total ex-

pected long-term reward. This function maps the observation-action pair to a scalar

value that represents the total expected long-term rewards when the agent starts

from a given observation (S) and executes the given action (A). Here ϕ represents

the parameters of the network of the Q-value.

Actor π(S|θ) in DDPG uses a deterministic policy actor function approximator

with a continuous action space. The actor takes observations (S) and outputs the

action that maximizes the expected cumulative long-term reward as determined by

the critic. Here θ represents the parameters of the network of the actor.

At each time step, for a given observation S, the actor executes an action A =

π(S) +N , where N is a stochastic noise from a chosen noise model. The agent then

observes the reward R and the next observation (S ′). The experience (S,A,R, S ′) is

stored in a circular buffer during training. The replay buffer enables updating the

critic’s Q-value and actor’s policy in an off-policy method by randomly sampling a

mini-batch of experiences from this buffer [32]. To improve the stability of optimiza-

tion, a copy of the actor-critic network- known as the target actor-critic network is

used which is updated less frequently from the original actor-critic with a smoothing

factor τ .

The value function target (yi) is the sum of the experience reward and the dis-

counted future reward. The agent computes the cumulative reward recursively by

first passing the next observation (S ′) to the target actor and then passing the next
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action and observation to the target critic. The critic parameters are updated by

minimizing the following loss (L) equation across a mini-batch of M experiences,

yi = Ri + γQt(S
′
i, πt(S

′
i|θt)|ϕt) (2.1)

L =
1

M

M∑
i=1

(yi −Q(Si, Ai|ϕi)
2 (2.2)

The actor parameters are updated by a gradient descent update that takes both

the gradient output of the actor and the gradient output of the critic into account by

the following formula.

∇θJ ≊
1

M

M∑
i=1

∇AQ(Si, π(Si|θ)|ϕ)∇θπ(Si|θ) (2.3)

2.1.3 Twin-delayed Deep Deterministic Policy Gradient (TD3)

One of the limitations of the DDPG is that function approximation error can lead

to overestimation of the Q-value function and result in a sub-optimal policy. To

address this limitation, an extension of the DDPG algorithm is proposed as TD3

algorithm [19]. The main difference between TD3 with DDPG is: 1) it uses two

Q-value functions instead of one, and updates the policy using the minimum value of

the two; 2) updates the actor’s policy and targets less frequently than the critic’s Q

functions; 3) during policy update, it adds noise to the target action to reduce the

chances of the policy exploiting actions with high Q-value.

The value function target is slightly different from DDPG where the noise (ϵ) is

added to the computed action and clipped based on the defined limit before passing
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the actions to the two target critics to find out the minimum value of the two.

yi = Ri + γ ∗ min
k=1,2

Qtk(S
′
i, clip(πt(S

′
i|θt) + ϵ)|ϕtk) (2.4)

The loss function and policy update function is similar to DDPG with the differ-

ence in policy and target update frequency.

TD3 outperforms DDPG in similar tasks in learning time and average return.

While an improvement from each TD3 modifications results are found to be different

based on tasks, delayed policy update is found to improve performance and reduce

training time in general [19].

2.2 Sim-to-Real Reinforcement Learning

RL agents trained in simulations are being transferred to real robots for control with

success in many different fields, specially in robotic tasks involving object manipula-

tion [8, 9, 10, 11, 12], robotic locomotion [13, 14], and UAS flights [15, 16, 17, 18].

Figure 2.2 shows some of the sim-to-real examples with a rendering of the simulation

environment and corresponding real-world setup.

Some popular approaches for sim-to-real transfer used by researchers are system

identification, domain randomization, domain adaptation, imitation learning, meta-

learning, and knowledge distillation [5]. More often than not, the successful transfer

comes from using a combination of these techniques instead of one singular approach.

If the agent is successfully transferred to a real robot without further modification,

it is termed as ‘zero-shot transfer’. This is the most straightforward transfer method

but requires careful design of the rest of the framework. We review the three main ap-

proaches in the following text: system identification, domain adaptation, and domain

randomization. We also discuss the available software for the simulation environment
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Figure 2.2: Sim-to-real examples from recent literature. a) Solving Rubik’s cube with
one robotic hand [10], b) dexterous manipulation with one robotic hand [9], c) manip-
ulation using quadruped [12], d) quadruped locomotion [13], e) robotic manipulation
with canonical simulation paired with real and simulated environment [11]

and the challenges of the ‘reality gap’ [33] between simulation and real-world when

deploying the models in real-world complex environments.

2.2.1 System Identification

System identification is the method of ‘calibrating’ the simulator to improve the re-

alistic representation of the physics and dynamics. Simulators are inherently prone

to unreasonable outputs, especially for unreasonable input parameters. Modeling



13

physical parameters like friction, inertia, and mass for each and every robot part is

nontrivial and cumbersome. Most zero-shot transfer methods focus highly on system

identification but this requires a lot of expertise and experience for successful imple-

mentation. Some level of system identification is performed by almost all successful

sim-to-real transfer involving robots with dynamics and actuators involved [13, 34, 35].

Often used as an alternative to system identification, domain adaptation, and

domain randomization techniques can be used to increase the robustness of the Agent,

and to better capture the actual system dynamics.

2.2.2 Domain Adaptation

Domain adaptation is the idea of training an RL agent in a domain where data is

abundant and then later transferring the learning to a domain where data is sparse.

Domain adaption may include visual or dynamics adaption.

Visual domain adaption has been successfully demonstrated for ‘zero-shot transfer’

in robotic manipulation applications [36, 37]. The concept behind visual adaption

proposed by [37], is that the agent ‘learns to see’ before ‘learning to act’. The idea

of ‘learning to see’ is implemented by training a variable auto-encoder (VAE) in an

unsupervised manner that would learn ‘a latent state representation’ common to the

source and target domain. Learning actions after the representation enhances the

success rate of domain adaptation in both sim-to-sim and sim-to-real.

This disentanglement of perception approach is taken a step further by [11] where

a cGAN (conditional generative adversarial network) [38] is trained to produce non-

random canonical images from the randomized simulation images, and also from the

real world images. The randomization of the simulation environment adds a do-

main randomization component (see Section 2.2.3) while canonical image generation

improves domain adaptation. The agent learns from both simulation images and
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canonical images, allowing it to fine-tune joints on the real robot based on the real

image and corresponding canonical image after deployment.

There’s also a proposal to implement bi-directional domain adaption, real-to-sim

for the visual domain and sim-to-real for the dynamics domain [39]. Real-to-sim is

implemented using cGAN (cycle generative adversarial network) [40] with the argu-

ment that if the sensor characteristic changes from simulation to the real world but

dynamics remain the same, the policy can make sense of the real-world observations

through the lens of the cGAN. Sim-to-real is done using a perceptron regression net-

work that residual error for state transition in simulation and reality. This network

is then augmented in simulation for the agent to learn from the simulation while

simultaneously being aware of the difference in dynamics in the real world.

2.2.3 Domain Randomization

Domain randomization improves the policy’s robustness in case of dynamics or mod-

eling errors. By adding variation to the physics parameter, the agent learns to handle

varying real-world dynamics or disturbances better. Success with domain randomiza-

tion can be seen in many vision-based sim-to-real transfers: learning quadrotor control

without any real image [41], successful transferred object detector by adding variation

to simulation visuals [42], or using locomotion of quadruped as manipulator [12].

An extension to this technique by [10] is automatic domain randomization (ADR).

ADR is the process of gradually increasing the difficulty in the simulation while

randomizing the dynamics. This method demonstrated robustness in learned policy

as well as a reduction in training time while capturing the physics better than just

the randomization technique alone.

Chebotar et al., [43] proposed a method for dynamics randomization by period-

ically augmenting the training with real-world experience by deploying the agent in
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a real robot and updating the network parameters for the deviation in simulation

dynamics observation from the real world.

Valassakis et al.,[44] argues that engineering domain randomization is nontrivial

and requires a significant trial-and-error along with real-world data. On the other

hand, random force injection requires very little setup and processing but performs

consistently better than domain randomization in most of the reaching, pushing, and

sliding tasks.

For robots that operate on cartesian space with a low-level controller can transfer

to real robots without dynamics randomization while maintaining operational safety

constraints [34]. In fact, dynamic randomization caused the training to be more

unstable but system identification gave better results.

2.2.4 Simulation Environment

Simulation environments play a very important role in the success of sim-to-real

transfer. The choice of the simulator is driven by many design choices, such as the task

type (vision-based or control-based), required emulated/supported sensors, support

for physical properties (such as contact, friction, deformation), collision detection,

rendering speed, etc. Some simulators are standalone with a physics simulator and

rendering engine, while others use physics engines that can interface with rendering

engines of the user’s choice for simulation. The ability to run headless and faster than

in real-time is also a primary selection criterion for scalable RL learning.

Py-Bullet [45], and MuJoCo [46] are among two popular simulators among the RL

community used by many to simulate robot environments [10, 47, 48]. Although both

have native OpenGL rendering support, MuJoCo also offers the option to render using

third-party rendering engines such as Unity [49]. Both of these integrate very well

with Python-based deep learning libraries, but they are not as straightforward when
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connecting to a real robot. Gazebo [50] is another popular simulator choice, especially

for robotic applications with inverse kinematic computations. Gazebo interfaces well

with Robot Operating System [51] which interfaces well with any robots or network

of robots.

For a UAS simulation, RotorS [52] is a popular UAS simulator based on Gazebo.

In recent years, AirSim [53] has gained popularity for applications involving imaging

or surveillance using UAS. AirSim interfaces with the Unreal engine to provide a

photo-realistic environment. However, it uses a separate physics engine from the

Unreal engine and has limited support for added external payloads.

Matlab Simulink is also an alternative to these popular simulators used for simulat-

ing UAS and rope/string connected payload [54, 55]. Simulink can simulate physics,

render with Simulink 3D animation or Unreal engine, and connect to robots through

ROS. Simulink offers a graphical way to design or model a dynamic system using

blocks. Simulink blocks can represent a physical system, functions, and configura-

tions in an input/output relationship. One benefit of this approach is that the user

can make their own components or use numerous blocks available in the Simulink

library as part of different toolboxes. Blocks can be reused in any compatible com-

binations, making the simulation environment highly configurable. This speeds up

the process of building a simulation environment with the user having as simple or

as advanced control over the design as desired. The block diagram approach has

another important benefit when building physical systems, each block’s input/output

can be logged or analyzed; similar to doing unit tests to ensure they work as ex-

pected. Matlab and Simulink together provide a one-stop solution for designing the

simulator environment, the model, and the RL agent, then training the agent, and

transferring the agent to real robots. We chose to use Matlab for this reason to allow

rapid prototyping and deployment of sim-to-real reinforcement learning.
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2.2.5 Reality Gap

The reality gap refers to any difference between the mathematical model, simulation

environment, and the real world. Collecting data from real robots can be very time-

consuming and expensive [56], unrealistic or impossible in many cases where safety is

concerned [57], or where the robots can be damaged in the real-world experiments [9].

Furthermore, these repairs can change the ‘model’ of the robot and physical param-

eters thus causing further gaps in reality [9]. Another problem of learning directly

in real robots is often not collecting sufficient data with large enough randomness

distribution to make the RL agent robust enough for unseen scenarios. Examples

of collecting large-scale data using real-world robots also exist but the resource uti-

lized to train the agent in such a manner is exceptionally high and not practical for

most researchers [58]. Consequently, most researchers use a simulation environment

to generate the data for training.

The simulation environment where the robot is modeled is a common source of

reality gap [5]. The simulators that simulate accurate physics alongside collision,

deformations, frictions, joints, actuators, etc., become too slow to be realistically

useful for large-scale RL training. This slowdown stems from the complexity of solving

the implicit dynamic equations that emerge in such models. For this reason, most

simulation software in use by RL researchers (e.g., MuJoCo [46]) do not simulate

actual physics but rather a ‘close-enough’ prediction of it that looks ‘realistic enough’.

This trade-off allows the simulations to run faster than real-time, and to be able to

collect data for large-scale RL learning applications.

Lack of realism in the rendering of the environment can pose challenges to a

successful transfer. One of the key failure points is the difference in visual observation

in simulation and reality [59], especially if the task is highly dependent on vision.
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The simulated sensors may not match the real ones in values, output dimensions,

or frequency of output. These sensor implementations can be different depending on

the simulation platform. Without a thorough understanding, matching or calibrating

such sensors with real ones can be difficult.

In real robots disturbances from the environment, sudden changes of contact and

friction parameters, and network dropouts are very common but these are nontrivial

to implement in a simulator. Even unintentional rounding of numbers, often a trade-

off for faster computation, can also contribute to the reality gap.

Consequently, researchers are focusing on bridging the ‘gap’ with many alterna-

tive techniques such as adding random perturbation force inputs during training [44],

occasional real-world rollouts to update policy by augmenting real experience [43],

collaborative learning by multi agent [60], or training predictors for sim-to-real trans-

fer success [61].

2.3 Background on UAS Aerial Leaf Sampling

Researchers study leaves for understanding the physiology of plants (e.g., nutrient

composition of the leaf, studying the effect of sunlight and shade on the tree’s de-

velopment, study genetics or species of the plant, etc.), ecology of the forest (e.g.,

nutrient cycling of a forest, the impact of the availability of water or drought on

plants, etc.) or forest interaction with environments (e.g., studying the microclimate

in the forest canopies and their impact on the local climate, and impact of global

warming on the plants etc.).

Researchers have found many different ways to sample leaves from tree canopies

over the last few decades. Some of these methods require expert humans for success:

tree climbing, pole pruner, ladder, slingshot, shotgun, rope launcher, etc. Most of
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these methods either have a low reach, low access (only inner stronger branches), or

have the potential risk of injury to the operator or the wildlife.

Some other methods that can give access to the upper canopy area require ex-

pensive massive structures such as: canopy tower, scaffolding, canopy crane [62, 63],

canopy walkway, hydraulic lift, canopy rafts or helicopter. These traditional canopy

sampling methods impart bias in site selection based on available access method, lim-

its the number of samples collected, and is harder to replicate while being difficult to

move between sites [64].

Based on a survey conducted in 2001 among canopy researchers: ground access,

tower, and walkway are the most used access methods by plant physiology and ecology

researchers [64].

Figure 2.3 shows some of the popular methods used by canopy researchers. Some

of these access methods are also used for other canopy research such as wildlife mon-

itoring, the study of insects and other critters, etc.

The majority of the tree canopy still remains hardly accessible. New studies are

challenging the previous understanding that assumed properties of the top sunlit

leaves are representative of the entire canopy [72, 73]. The lack of leaf sampling

data in three dimensions is shifting the interest toward using the UAS in canopy

sampling. UAS aerial leaf sampling has improved access to forest canopy for leaf

sampling in recent years. Figure 2.4 shows currently available leaf sampling UASs

with the sampling tool magnified in the inset.

UAS attached with a form of the manipulator that can cut or chop leaves, twigs,

or branches [2, 69, 3]. Current aerial leaf sampling systems are mostly operated

manually and are currently only suitable for accessing the side or top of the canopy

in favorable wind conditions. Research in rainforest canopies, for example, would

require a system that can access the more complex canopy layers of the forest as well
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Figure 2.3: Forest canopy access techniques used by canopy researchers over the years:
(a) pole pruner [2], (b) climber [65], (c) shot gun [66], (d) canopy balloon [67], (e)
canopy walkway [68], (f) hydraulic lift [69], (g) helicopter [66], (h) canopy crane [70],
(i) canopy raft [71]. Image collage modified from [2].

as epiphytes that grow on the trees.

While the use of UAS in leaf sampling has taken a major leap in mechanical design,

the use of automation is still lacking. There has been some progress on adding vision

to assist the pilot [74], or branch tracking algorithm by modeling tree branches to

design assistive controllers [75].

Existing leaf samplers in this context can be classified using five design choices:

mounting options, choice of cutting tools, the orientation of the target branch/leaf

samples, target canopy position, and the UAS control method.
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Figure 2.4: Currently available UAS leaf samplers in research publications.
The close-ups of leaf sampling mechanisms are shown in the inset. Im-
age source: (a)Charron et al., [2], (b)Kutia [3], (c)Kaslin et al., [69],
(d)Orol et al., [76],(e)Finzgar et al., [77], and (f)Wu et al., [78]



22

2.3.1 Mounting options

The primary design choice of UAS leaf sampling tools is whether the mechanism is

extended horizontally outwards from the UAS [3, 76] or suspended below [77, 69, 78,

2].

Extending the mechanism horizontally reduces or eliminates the impact of the

propeller downwash [79] on the branch; making it relatively easier to grab. This is

also useful for reaching towards trees that have mostly upright branches such as Pinus

radiata tree sampled by [80]. However, this design choice requires balancing the force

exerted by the moment arm on the UAS by offsetting some mass, i.e., uas battery [76]

or by controller compensation [80]. Another drawback of this design is the potential

to transmit high-frequency vibration to the UAS controller resulting from the cutting

action or wind-branch interaction when the sampler is coupled to the branch. This

coupling requires careful design of the controller to avoid overshooting the integral

controller [80]. The mechanism also potentially could impart horizontal moment on

the UAS as it is rigidly connected to the UAS while also coupled to a branch that

can sway with the wind [81].

The more popular design choice is suspending the sampler down from the UAS.

Since mounting the sampler is at the center of gravity this eliminates the torque

acting on the UAS. Hence, commercial UAS can be used without the need to design a

custom controller [69, 2]. However, this design choice requires using a long extension

to reduce the effect of propeller downwash on the target leaves. The long extension can

be mounted on universal joints to further dampen the effect of the sampler coupling

with a swaying branch. Long extension however can induce pendulum motion that

may need to be accounted for.

Another approach explored for aerial pruning UAS is vertical mounting the mech-
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anism on the top of the UAS [82]. This approach however is prone to the UAS being

knocked over by the branch being cut. A similar mounting technique with a small

drone equipped compliant mechanism mounted on the top or bottom to collect leaves

by the movement of the UAS is shown by [83]. The method while being novel results

presented only shows the indoor static condition of the leaves. Any wind disturbance

outdoors will make it significantly harder for such mechanisms to be successful.

2.3.2 Cutting tools

There are three main types of cutting tools used by aerial sampling UASs - saw [69,

3, 78, 2], shear [77], blade [76].

Saw is the most popular choice for its simplicity and available cutting power. It

is also much more controllable with repeated consistent results compared to a shear

or blade. However, all the mechanism with one blade suffers from gyroscopic effect

as noted by [2]. This is countered by adding a second blade rotating in the opposite

direction in [81]. Adding two saws presents more control challenges as the chance of

motor stalling increases.

One important characteristic of all saw design is that it has some form of gripper

or claw mechanism to hold the branches as its performing the cutting action. Lack

of this gripper results in failure to cut any branch [84]. Similar failure can occur in

mechanisms using shears without using any gripper mechanism [85].

These mechanisms are by design restricted to collecting branches instead of just

leaves. While this might be desirable in some cases where collecting samples of flowers,

pollen, seeds, or fruits; the woody part is unused extra weight that is discarded and

is not used for analysis [86]. Because of this additional woody part, 100 g to 400 g

of sample collection was being targeted for 30 g to 40 g fresh leaves by [2]. Carrying

this 3 times to 10 times extra weight far from the center of gravity of the UAS, and
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the wind drag profile from carrying such a sample also adds to the stability control

burden of the UAS and reduces the flight time.

Some researchers used shear actuated by spring for cutting action [77]. The shear

mechanism requires significant torque for cutting action. However, in an outdoor en-

vironment where the branch might be affected by wind movement- it would present

a serious challenge to successful sampling as the orientation would affect the perfor-

mance of cutting.

The blade is used in [76] to cut sections of leaves while [87] uses a boom-mounted

blade to cut branches from the tree using UAS movement. Both of these methods are

deemed to be unreliable in the outdoor environment with more atmospheric wind at

play.

2.3.3 Sample orientation

All the leaf sampling or branch pruning UAS described above are very sensitive to the

orientation of the incoming branch or leaf. Although [2] the claim to admit sample

of any orientation, the adjustment must be made before the flight, and knowledge of

the branch orientations is a pre-requisite for the said adjustments.

One way the researchers have worked around the sensitivity of the orientation

is by using larger gripper claws to admit large errors from swaying branches. This

comes at the cost of further reduction in flight time.

Also, this is critical for the operation and when manually piloted- it requires

synchronized movement by two skilled operators one operating the UAS and one

operating the sampling tool using camera feed from the UAS [2].

Another way to address the orientation issue is the use of computer vision tech-

niques for branch tracking and designing a controller that uses this additional in-

formation [75] for the custom UAS controller design. Alternative use of the branch
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tracking is to design an assistive high-level controller in a semi-autonomous mode that

moves the UAS towards the target branch [74]. These branch tracking algorithms are

currently however leaf sampler design specific and might be only applicable to a spe-

cific plant or few specific types of plants; generalizing the use of such tracking method

for all kinds of plants is challenging but need to be forthcoming for automation.

2.3.4 Target Canopy Position

The above-described mechanisms are only suitable for collecting branches at the side

or top of the canopy due to the reach of the respective manipulators, and these systems

are not designed for flying inside a tree canopy. One critical design consideration for

this choice as argued by [2] is that collection of sunlit leaves is required for foliar

experiments. However, other canopy researchers argue that sampling only the sunlit

leaves does not represent the foliar or spectral traits of the entire canopy as previously

thought. In fact, only chlorophyll and leaf area index (LAI) are more accurate when

sampled from the sunlit upper canopy, but foliar nitrogen (N), carbon (C), and leaf

mass per area (LMA) were more accurate when leaves were sampled from both sunlit

upper and shaded middle canopy [88]. Most of these trait variations also persist

throughout seasons [89] and affect the physical models used by canopy researchers.

These findings are also supported by the previous authors from [2] in their follow-up

work [73].

In this thesis, we are interested in leaf sampling in the forests where plants of

interest or leaves of interest might be deeper in the canopy. As such, we design our

leaf sampler as a cable-suspended payload that can be lowered by a winch mechanism

when the UAS is at the sampling site. This allows the UAS to be at a safe distance

from the canopy top, avoid the effect of propeller downwash, and reach deeper in the

canopy.
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2.3.5 UAS and Leaf Sampler Control Method

Controlling the UAS and the leaf sampler is a non-trivial task. The unstructured

nature of the trees, random disturbances caused by winds, and leaf sampler tool are

hard to mitigate but also safety critical.

Leaf sampling tools discussed above are partially automated in terms of triggering

mechanisms but still require positioning the branch at a specific angle and position

of the leaf sampler. This is usually done manually using wireless radio by a second

operator who is watching a video feed [2] or from the operator’s console [69].

Controlling the UAS is tricky with a sampler that extends horizontally as they

require a custom controller [3, 76]. On the other hand, the vertical orientation al-

lows using commercial UAS with a default controller with mechanical damping for

vibration and load transfer to UAS [2, 69].

We propose using a model-free reinforcement learning (RL) algorithm policy due

to the nature of the complexity of modeling the problem of leaf sampling, the un-

structured nature of tree canopy and the potential UAS interaction with dynamic

coupling, lack of availability of data to train the real robot, and safety-critical nature

of the project.

2.4 Selection of Real Hardware: UAS vs CNC

While our final target real system is the leaf sampler mounted on the UAS as Fig-

ure 2.5, we selected a modified CNC platform as the real hardware for sim-to-real

transfer. CNC works as an intermediate ‘real’ system step towards using sim-to-real

agents on the real UAS.

Simulating the UAS dynamics is relatively easy in the simulation environment,

however, it is not possible to perfectly simulate the real world and account for all the
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variability that might be present in the system. This is especially true for sensor noise,

positioning error, effect on thrust from decreasing battery voltage, manufacturing

defect, operating conditions, atmospheric disturbances, etc. that might occur during

a UAS flight. Validating a RL agent or control algorithm directly in the real world

to operate a leaf sampler mechanism through tree branches is nontrivial. Using CNC

provides a safer alternative to validate the RL agent that is trained in simulation.

This also allows validation in repeatable test scenarios with controllable complexity

and disturbances that may occur during a UAS flight.

Using a CNC provides us with multiple benefits instead of using the UAS during

development: 1) The CNC is plugged into a power outlet and can provide unlimited

operation where a UAS needs to change its batteries very often, 2) We implemented

hardware and software safety constraints on the CNC that reduces accidents and

crashes that might otherwise occur when running experimental RL agents directly

on a UAS. In essence, the CNC provides additional safety nets in finding potential

problems during development and experimentations with the RL agent algorithms,

3) the CNC can be used to fine-tune the simulator’s learned model before deploying

to the UAS to reduce the risk of crashes, 4) the CNC can be controlled using the

same high-level velocity controls that UAS can also be controlled with.

2.4.1 Similarities and Differences in dynamics

A UAS has six degrees of freedom (3 linear axes, and 3 rotational axes), and movement

in all six axes is controllable. The leaf sampler we designed operates using a winch

system that will be attached to a UAS and can linearly move up or down along the

z-axis. In a three-axis CNC, where the z-axis uses a winch mechanism, there are 3-

linear axes movements that are controllable. Additionally, due to the flexible material

of the winch system in the z-axis of the CNC, we see limited movement in all three
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Figure 2.5: A leaf sampler mounted on a UAS (left) and CNC (right) using a braided
rope.

of the rotational axes (pendulum motion in two axes and torsion/twist motion of

the rope) that are observable, but not controllable. We selected the braided rope to

reduce the torsion significantly but the other two rotational axes’ movement can still

occur when the CNC head moves. Figure 2.5 shows how the leaf sampler is mounted

on UAS and CNC using a rope.

In a limited movement scenario where the UAS is hovering over the tree and we

are operating the leaf sampler mechanism in the z-axis, or if we are moving the UAS

slightly within a small bound, it can be approximated by the movement from the

CNC.
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Chapter 3

Sim-to-Real Reinforcement Learning Framework

In this chapter, we describe the reinforcement learning framework for training the RL

agent in the simulation environment. The framework, shown in Figure 3.1, is divided

into two parts: 1) RL agent, and, 2) Simulated Environment.

3.1 The RL Agent

In this thesis, we explore the performance of the twin-delayed deep deterministic

policy gradient (TD3) [19] RL algorithm due to its robustness in continuous action

space as described in Chapter 2. We validate our reinforcement learning framework

by training our RL agent to move the leaf sampler to a target position from a random

initial position.

We use the TD3 agent with two critics and one actor as it reduces the Q-value

function overestimation bias while making the training more stable. This stability

and improvement are achieved by using the minimum Q-value estimate of the two

critics, updating the actor’s policy and targets less frequently than the critic’s Q

functions, and by adding noise to the target action to reduce the chances of the policy

exploiting actions with high Q-value [19]. The deep neural network architecture of

the actor and critic uses fully connected deep neural networks with ReLu activation
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Figure 3.1: Reinforcement learning framework to train the RL agent in the Simulation
environment (represented in the diagram with blue and green colors respectively).
RL System agent interface with simulated CNC through a low-level controller that
accepts velocity inputs to update the simulation environment. Creation, training,
and validation of the agent are done in the Reinforcement Learning Designer toolbox.

Figure 3.2: Simulink RL algorithm structure in block diagram format. External action
is used to pass actions directly similar to imitation learning when the RL agent is not
required to act.
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layers between them. The actor has a Tanh layer as the last layer so the output can be

limited between [−1, 1]. TD3 agent adds a random noise in the action to encourage

exploration. The default noise model available to use with TD3 is the Gaussian

noise model or Ornstein-Uhlenbeck (OU) noise model. We used the Gaussian noise

model for the action noise and used action limits and scaling to pass to the low-

level controller simulating the CNC. Although, Lillicrap [31] argues that OU noise

would better represent continuous control application, where the inertia of the system

would make the noise correlated similar to the ’Brownian motion’. However, Barth-

Maron [90] argues that it is unnecessary to use OU block to replace Gaussian noise

as it does not add to the performance. Figure 3.3 shows the actor-critic setup used in

this thesis. We prepare observations, reward, and early termination conditions from

the measurements and reference as shown in Figure 3.2 and described next.

3.1.1 Observations

We selected sensors and calculated measurements as observations for RL agents that

would be common for both the real system and the simulated system. The obser-

vations selected for the real CNC are also observable from real UAS to reduce the

adaptation required for deployment of the RL agent in real-world target systems.

We provide a total of 10 observations from the current simulation step and the

same 10 observations from the previous step. This is to encourage the agent to

learn its own smoothing and interpretation and estimation of velocity, acceleration,

etc. [91, 12]

In particular, 1) we observe the position error and velocity of the CNC in the x-y

axes since it drives the overall positioning of all the other components; 2) position

error between the CNC origin and leaf sampler origin as we intend to move the leaf

sampler in sync with the CNC; 3) position error of the leaf sampler in the z-axis,
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Figure 3.3: Network architecture model of the actor-critic used with the TD3 agent.
TD3 agent uses one actor, and two identical critic models (one shown for brevity).

and leaf sampler velocity in x-y-z axes as this indicates where the target sampling

position is relative to leaf sampler. The agent also receives actions taken by the RL

agent in the last simulation step as additional observations. Thus total observation

space is R23. The size of this observation space varies in literature but depends

on the number of joints and actuation the robot may have. For example, we see

the successful landing of UAS on a moving platform using observation size R7 [18],

quadruped learning dexterous manipulation using R130 [12], solving Rubik’s cube with

robotic hand using observation space R478 for block orientation task [10].
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3.1.2 Rewards

Crafting a good reward function can be tricky as it often comes with experience and

a deeper understanding of the system as a whole. In the scope of this thesis, we are

only concerned about moving the leaf sampler to a target position from a random

position as fast as we can. We craft our reward function to achieve that goal:

reward = − α× a2t−1 (3.1)

− β × (cnc2xerror
+ cnc2yerror) (3.2)

− γ × (sampler2xerror
+ sampler2yerror) (3.3)

− δ × sampler2zerror (3.4)

The first element of our reward (Equation 3.1) penalizes for action taken by the RL

agent in the previous step at−1 to prevent movements when the sampler is sufficiently

close to the target location. The second element (Equation 3.2) penalizes for error in

CNC x-y origin and target position. This encourages fast convergence to the target

location as this component moves all the other components with it. The error in

CNC origin is also more predictable compared to the leaf sampler position which may

oscillate like a pendulum due to the flexible z-axis. The third element of the reward

function (Equation 3.3) penalizes errors in leaf sampler origin and CNC origin. This

penalty encourages the agent to minimize movements that induce oscillation of the

leaf sampler and also move the CNC origin in sync with the leaf sampler. The fourth

element (Equation 3.4) encourages the agent to minimize error in the z-axis and move

the leaf sampler to the correct height. Separating it from horizontal errors gives the

option to prioritize it to converge to the target value faster.

We use scalar multiples, (α, β, γ, δ), that are determined through experimentation
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and tuning. The final values used for experiments are presented in Table 4.3.

3.1.3 Early Termination

For this thesis, we ran each episode to a maximum number of steps. This number of

steps is heuristically set for the experiments and the final value is listed in Table 4.3.

We kept it simple since we had software constraints in place that prevents catastrophic

CNC movements. Also, our validation experiments were simple enough that otherwise

complex early termination criteria were not necessary.

However, more complex tasks such as navigating inside a tree canopy with the

leaf sampler would benefit from early stopping to avoid catastrophic scenarios, and

also to gather more relevant experience per episode for the experience buffer.

3.1.4 Domain Randomization

Domain randomization techniques improve the success of the transfer of the agent.

We implement domain randomization techniques in the simulation environment. At

the start of each episode, the position of the CNC and leaf sampler is randomized

and the target location is also selected at random.

3.2 Simulation Environment

We created the simulation environment using the Matlab software suit as discussed

in Chapter 2. The following sections describe the simulated CNC hardware, sensors,

and the control interface employed in the simulation.
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3.2.1 Simulated Hardware: CNC

We create the CNC in the simulation environment using a suit of Matlab software:

Matlab, Simulink, and Simulink 3D animation. Matlab facilitates the design and

training of RL agents, and communication of software and hardware using ROS nodes;

Simulink is used to model the physics of CNC and also the environment where the

RL agent would interact; Simulink 3D animation is used for modeling collision and

other sensors that are not available in Simulink.

The CNC in the simulation environment is designed with the same dimensions

and motion limits as the real CNC. Simscape multibody toolbox is used to model the

axes and the winch mechanism. The rope is modeled as a series of discretized links

connected with universal joints. The number of links affects the accuracy of rope

behavior, with a higher number of links being more accurate at the cost of simulation

speed. Figure 3.4 and 3.5 show the simulation environment setup and the block-based

design in Simulink respectively.

3.2.2 Sensors

In Simulink, many sensors are available to attach to the physical frames of differ-

ent objects to measure movement and rotational displacements, speeds, acceleration,

etc. We can pre-process these measurements to generate appropriate observations as

designed for the RL agent. Collision-based sensors are available through Simulink

3D animation visualization environment. Simulink 3D animation uses X3D language

similar in structure to URDF that is often used with other simulators described in

Chapter 2. The model in Simulink communicates with the 3D renderer at specified

update rates to compute the new position and rotation of the elements and process

any sensor updates.
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Figure 3.4: Rendering of the simulated robot environment (left), and the real-world
robot setup (right).

Figure 3.5: Simulation Environment Schematic in Simulink Block diagram

3.2.3 Control interface

A controller is implemented in Simulink that implements motion characteristics of

the real CNC to the simulated one. This controller also takes target velocity as

input and moves the CNC axes accordingly. The movements are implemented by

calculating what the next position of the three axes should be given the current states

and commanded states. Simulink multibody then calculates the forces necessary to

achieve the desired state.
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Chapter 4

Simulation and Experimental Setup

In this chapter, we discuss the RL agent hyperparameters and training workflow.

We then describe the simulation and experimental setup we used for the sim-to-real

transfer of the RL agent, we list the parameters and settings for each setup. We

also discuss the validation experiments we designed to evaluate the success of the

sim-to-real transfer.

4.1 RL Agent Setup

4.1.1 RL Agent architecture and hyper-parameters

We use the TD3 agent with two critics and one actor for our RL algorithm keeping

the same structure as in Figure 3.3. Hyperparameters for the RL agent and actor-

critic are tabulated in Table 4.1a, and 4.1b respectively. Hyperparameters for noise

models to encourage exploration and for the target policy smooth model are listed

in Table 4.2. These hyper-parameters are determined heuristically through training

and experiments starting from recommended defaults set by the Matlab RL Designer

toolbox. Since in this thesis, we are only validating our sim-to-real framework through

trajectory following task, we keep the changes to a minimum from defaults. We

experimented with the sample time and found 0.2 s provided faster simulation speed
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Table 4.1: RL agent and actor-critic hyperparameters

(a) Agent hyperparameters

Parameters Values

Sample time 0.2
Discount factor 0.99
Batch size 256
Experience buffer length 1e4
Policy update frequency 2
Target smooth factor 0.005
Target update frequency 2
Reset experience buffer Yes
Save experience buffer No

(b) Actor-critic hyperparameters

Parameter Actor Critic

Learn rate 1e-2 1e-2
Gradient threshold Inf Inf
Optimizer adam adam
Denominator offset 1e-8 1e-8
Gradient decay 0.9 0.9
Gradient threshold l2norm l2norm
L2 regularization 1e-4 1e-4

Table 4.2: Exploration and Target Policy smoothing method noise model hyperpa-
rameters

Parameter Exploration Model Target Policy Smoothing Model

Standard deviation (σ)
√
0.1

√
0.2

Mean (µ) 0 0
Lower limit -Inf -0.5
Upper limit Inf 0.5
σ decay 0 0
σ min 0.1 0.1
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compared to lower sample times. We also experimented with the noise model so that

the standard deviation of the noise does not dominate the RL agent action output.

We also added a decay in the noise which indicates the model would exploit the

learned knowledge more and explore less as the training goes on.
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Figure 4.1: Matlab’s Reinforcement learning designer app [92] showing training in
progress. The left panel shows the RL agents, environments, and training results
currently loaded in the Matlab workspace. The graph in the center shows rewards
per episode. The right panel shows other training statistics such as the total number
of steps, average reward, etc.

4.1.2 Training Workflow

We design and train the agent with a Reinforcement Learning Designer App [92] as

shown in Figure 4.1. It provides a visual way of designing and training the agent and

allows inspection and comparison of simulation data very easily between different

runs of the simulation. The designer allows training a compatible agent for a selected

environment that has the same number of observation and action spaces. Any pre-

viously trained agent can also resume training from their last saved point with or

without a previous experience buffer. The training can be also initiated or performed

directly from Matlab as well.

Deployment of the agent is done by loading the agent into the Matlab workspace
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and setting the appropriate agent name in the Simulink model environment. Also, the

data preprocessing is done for the real and simulated CNC data and the appropriate

one is connected to the agent’s observation module depending on whether we are

performing the experiment in simulation or real hardware. This makes the deployment

of the trained agents much easier and helps fast iteration of the RL agent during

developments. The setup is also ready to be used in a way where the agent is learning

directly from the real CNC for the purpose of fine-tuning or training from scratch.

4.2 Simulation Setup

4.2.1 Simulation Environment and Parameters

We used Simulink in conjunction with Matlab to design the simulation environment as

discussed in Chapter 3. Simulink models physical system dynamics using continuous

input and output. Simulink uses continuous solvers for the physical systems to accu-

rately model the physics and dynamic interaction between systems. The RL agent,

however, outputs action at a fixed rate that we set. We used a variable step solver

with support for continuous states that CNC physical system’s continuous states are

compatible with. We used Matlab’s daessc solver (DAE solver for Simscape) with a

variable step size.

We limit each episode to 20 seconds. Related simulation parameters as well as

scalars used for reward scaling are listed in Table 4.3. We also measured the dimen-

sions from the real CNC to match the simulated CNC for all the physical components.

4.2.2 Modeling the CNC in Simulation

The CNC is modeled using the block diagram design paradigm of Simulink with

physics-enabled blocks from the Simscape Multibody toolbox. We divide the design
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Table 4.3: Simulation parameters.

Parameter Training Evaluation
Episode length 20 s 30 s
RL Agent sample time ( 1

rate
) 0.2 s [0.025 0.05 0.1 0.2] s

Observation data type continuous
Action data type continuous
α 0.2
β 5
γ 1
δ 4

into two subsystems: 1) the x-y component of the CNC and 2) the z-axis of the CNC.

To keep the dynamics similar to the real CNC, we model the x-y axis using a

rectangular joint. A rectangular joint in Simulink uses two prismatic joints primitive

to allow linear motion in two axes. A joint in Simulink can be driven by position or

force. We used position-based motion and calculate the positions using equations of

motion for each step of the simulation. This allows us to closely match the movement

of the real CNC since the real CNC is driven using equations of motion as well.

Ideally, the z-axis would be modeled using a winch and rope that closely matches

the real CNC. However, modeling the z-axis with a flexible rope is a challenge for any

simulation software. The rope is usually modeled using the finite element analysis

method, where the rope is modeled as many smaller rigid segments connected by a

suitable joint type. While this approach approximates the ‘realistic’ rope interac-

tion, the implicit state-space becomes large enough that it slows down the simulation

significantly. Physical interaction of this rope with other physical components not

directly connected to it also slows it down significantly. To overcome this limitation

and to maintain reasonable simulation speed, we approximate the rope with 20 rigid

links connected with each other using universal joints. Each link is 50mm long. To

simulate the winch mechanism which actuates the rope up/down in the z-axis, we
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Figure 4.2: The real CNC is mounted on the ceiling. Vicon motion capture systems
cameras (in the picture: cameras with red infrared glow) produce the position and
orientation at 200Hz for both CNC Head (x-y plate) and the Leaf sampler.

used a prismatic joint with a variable length cylinder connected to CNC x-y axes

using another universal joint.

4.3 Real World Setup

4.3.1 Real Environment and Parameters

We use an open-source two-axis CNC hardware kit from OpenBuilds [93] and added

a custom-built Z-axis that uses a winch mechanism to mount the leaf sampler mech-

anism. This allows the leaf sampler mechanism to move up and down from 0m to

2m. We then reinforced the CNC hardware using aluminum brackets and mounted

it on the ceiling as shown in Figure 4.2. Table 4.4 shows the specifications of the

CNC including motion limits. Specific motion limits used for the real experiments
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Table 4.4: Specifications of the CNC from OpenBuilds [93] along with our modifica-
tions for the z-axis.

Specification Value

Machine dimensions 1.5m× 1.5m
Work area 1.3m× 1.3m
Drive System Belt driven GT2 timing belts
Driving Motor NEMA 17 Stepper motor
Accuracy 0.10mm–0.20mm
Z-Axis Stepper motor driven Winch-rope
Z-Axis travel 2.5m
Limit switch 2 per axis
Connection interface USB, XBee Wireless Module
CNC control system OpenBuilds BlackBox motion control system
Processor ATmega328p 8 bit µC

are shown in Table 4.5.

Braided climbing rope is used to reduce the torsional and bending disturbance that

may be induced by the leaf sampler when actuating the CNC. This also dampens the

pendulum motion that may occur on the leaf sampler mechanism from fast movement

in the x-axis and y-axis. We also employ some hardware/software safety mechanisms

to prevent the machine from executing commands that would lead to crossing the

machine boundary. This is different from constraint enforcement in reinforcement

learning [94] which uses a deep learning network to suggest safe alternative actions,

whereas we just ignore the command that would violate safety.
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Table 4.5: CNC parameters for Real World Experiments

Parameter Value

Frame of reference NED
Max Travel in X 1.2m
Max Travel in Y 1.2m
Max Travel in Z 2m
Max velocity 0.5m/s
Max acceleration 1m/s2

Command rate 25Hz

4.3.2 Sensors

Sensors are crucial for observations that RL agents would use as one of the inputs to

generate control signals. Since we are working indoors at this stage of the project,

we take advantage of the Vicon Motion Capture system to track the position of

the CNC head and the position/orientation of the leaf sampler. The Vicon system

outputs data at a maximum frequency of 200Hz. The motion capture system allows

us to precisely track the position of the leaf sampler and the CNC head similar to

the simulation environment, thus, reducing the need for domain adaptation at this

stage. The Vicon’s output rate can be modified or the noise can be added to simulate

data available in outdoor environments when experimenting with domain adaptation

techniques.

4.3.3 Control interface

The CNC is operated by a low-level controller that runs GRBL open-source CNC

firmware. The CNC controller is connected to the ground station computer using

wireless XBEE radio that is used for sending commands and getting status updates

from the CNC. Traditionally, CNC is run using G-code that consists of a Cartesian

position and a target velocity. The CNC would then take the shortest path between
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the initial and final positions.

Since we can use velocity-based inputs for an LQR controller for UAS indoor and

outdoor flights [95], we wrote a ROS node that also takes the velocity input com-

mands from the RL agent. Implementing velocity control reduces the complexity of

domain adaptation and would allow seamless sim-to-real transfer from the simulation

environment to both CNC and UAS as the agent’s inputs and outputs are compatible

with both systems.

The ROS node translates the target velocity commands into a series of small move-

ments and speed into an equivalent G-code that is sent to the low-level controller of

the CNC which is named the Blackbox motion control system. This allows simulta-

neous velocity control in all three axes, however, there’s a caveat, movement appears

jittery as GRBL uses constant acceleration/deceleration with variable speed which

causes large changes in the direction of the moment of inertia. This is due to the fact

that GRBL plans the path of motion in three segments: speed-up, constant-speed,

and slow-down. During these three segments, it accelerates to max speed, cruises at

max speed, and then decelerate to come to a stop by the time it reaches the target

coordinate. GRBL firmware keeps the movements smooth by implementing a look-

ahead of the planner buffer to see if the next movement will be in the same direction.

If the next target coordinate is in the same direction, it would skip the slowdown

segment for the current target coordinate. Using a high enough acceleration value,

we can limit this speed-up and slow-down period. If the commands are sent to GRBL

in a way where the next movement command is sent before the current one is finished,

this would allow a smoother movement at the cost of ‘reaction time’ where the CNC

output will lag the commanded input by the ‘reaction time’.
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Figure 4.3: A schematic of the sim-to-real process in Simulink.

4.4 Sim-to-Real Experiments

The RL agent is trained in the simulation environment described above. The envi-

ronment is replaced with the real hardware environment block in Simulink that has

the measurement/observations and rewards. This new environment interfaces with

the Vicon motion capture systems through ROS networks and enables the hardware-

in-the-loop mode to test the RL agent. A simplified block diagram of this sim-to-real

transfer process is shown in Figure 4.3

We perform two types of experiments: 1) sim-to-real transfer validation to com-

pare the performance of the RL agent in simulated and real CNC, and 2) simulation

calibration experiments to see how the physical parameters of the simulated and real

CNC affect the RL agent performance.

4.4.1 Sim-to-Real Transfer Validation Experiments

For sim-to-real transfer validation, we train the RL agent in simulation to move the

leaf sampler from a random starting position to a target position. During training, we

keep the target position constant for the entire episode, similar to a ’step input’. We
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then use the trained model to evaluate the performance of the RL agent in simulation

and the real world in achieving the target position using a step input.

We also extend the experiments to using a ‘trajectory input‘ of two shapes (circle

and square) and compare the RL agent in simulation and the real world. Since we

did not explicitly train the model for these trajectory inputs, these experiments show

the robustness of the RL agent and the ability to transfer to tasks that are similar in

nature.

RL agent was trained at 0.2 s sample rate. This low frequency works well for the

CNC but our ultimate goal is to use UAS for leaf sampling, which would require the

RL agent to perform well at a sample rate of 0.025 s to 0.03 s or lower as required by

an LQR control framework such as Freyja [95]. For this reason, we also validate the

RL agent’s performance in simulation and real-world at three other sampling rates

(0.025 s, 0.05 s, 0.1 s and 0.2 s) that are lower than what the RL agent was trained at.

Results of these experiments are presented in Section 5.1.

4.4.2 Calibration Experiments

We do the calibration experiments to see what physical parameters affect the RL

agent performance and to gain an understanding of how to match the performance

of the RL agent in the simulated and the real CNC.

We first experiment on how changing the dynamics of the CNC affects perfor-

mance. We change the acceleration parameter for X-Y-Z axes from [1m/s2, 1m/s2

and 0.5m/s2] to [2m/s2, 2m/s2 and 2m/s2] and compare the trajectory following

performance using the same RL agent. The outcome of these experiments determines

whether we can fine-tune the simulated or the real CNC to match the performance

that would allow a zero-shot transfer. Failure to match the performance would mean

that we would need to tune the RL agent for the real CNC before deployment.
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We do a second experiment on calibration by following a dynamic target that we

only move after the agent reaches the target position for 60 s. This experiment is

aimed to identify the system response time for the specific sample rate, as well as

how the RL agent performs over a longer period than the training episodes.

We then check if changing the simulation parameters such as sample rate have any

effect on the simulation software performance. This is to identify limitations that we

may need to consider when calibrating our simulated and real CNC environments.

Results of these experiments are presented in Section 5.2.
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Chapter 5

Results and Discussion

In this chapter, we present the results from our experiments conducted in simulation

and real-world that work as validation for the sim-to-real framework. Our work pre-

sented here sets up the initial work needed for autonomous aerial leaf sampling using

UAS by defining the sim-to-real framework that uses the CNC as an intermediate step

and validating the framework by training an RL agent in simulation and transferring

it into the real world. As such, the experiments presented here are much simpler than

what would be needed for leaf sampling applications where the goals and constraints

would be different. Our results here do not meet the expectation in terms of accuracy

and precision, however, they still provide valuable insights and information on the

capability of our framework.

We first discuss how the framework can perform a zero-shot transfer of the RL

agent that was only trained for following static targets to follow dynamic targets

and trajectories. This demonstrates that our framework is on the path to reliable

sim-to-real leaf sampling applications because the RL agent attempts to follow the

trajectory, even when the trajectory type or sample rate changes, instead of taking

unpredictable actions.

We then discuss what parameters affect the performance of our sim-to-real frame-

work, so we can learn what works and what we need to change in the next stage of



50

the project.

We present our sim-to-real transfer validation experiment results in Section 5.1

where we show the performance of our RL agent in two types of trajectories, and

simulation calibration experiment results in Section 5.2 where we explore experiments

designed for performance improvement to simulation and real CNC.

Whenever we refer to the target position in the following discussion, we mean the

target position of the leaf sampler as we are working in the context of navigation of

the leaf sampler through the canopy.

5.1 Sim-to-Real Transfer Validation

Our eventual goal is to navigate the leaf sampler through the tree canopy, much

like [96] but using a model-free RL agent. We do not have any active propulsion on the

leaf sampler, we rely on the movement of the UAS in the X-Y axes to position the leaf

sampler horizontally and use the winch mechanism to position it vertically in Z-axis.

This would allow the UAS to hover over the canopy at a specific Z-height and perform

the movements safely to position the leaf sampler without needing to be too close to

the canopy. We selected two trajectories for our validation experiments with CNC

that are similar to UAS movements that would be performed during the sampling

process, would help us characterize the RL agent-based control system responses, and

would allow us to verify the robustness of the agent. In training, we only used a static

target position that stayed the same for the entire episode. During the evaluation,

described in the following sections, we test the RL agent performance with slightly

higher difficulty by following step inputs that occurred in all three axes. We then

evaluated the RL agent against sinusoidal input which changes at a much faster rate

than static or step input does. RL agent was trained at a sampling time of 0.2 s but



51

we evaluate the RL agent at 0.2 s, 0.1 s, 0.05 s and 0.025 s as the UAS requires sample

time between 0.05 s to 0.025 s for its control. This experimentation with sample time

validates the requirement for the RL agent to be used with UAS.

The required accuracy for trajectory following will vary depending on the task at

hand. Several factors including the type of trajectory, the constraints on velocity and

position, and the environment may affect this requirement. In the context of the leaf

sampling tasks, such as guiding a leaf sampler through the tree branches out of the

canopy, we need to be accurate enough so that the leaf sampler does not get stuck

in a tree branch. Since our leaf sampler is around 150mm in diameter, and if the

branches are 160mm apart, our accuracy needs to be better than 10mm. On the

other hand, if we are positioning our leaf sampler to sample the leaves, our system

opens up to 200mm and would only require accuracy better than 100mm. In the

context of the trajectories performed in the thesis, ‘good enough’ would be when the

real trajectory matches the simulated trajectory within a few millimeters while being

as accurate as possible compared to the commanded trajectory.

5.1.1 Square Step Input Trajectory

The first trajectory is the step input trajectory that looks similar to a square in the

X-Y axis. This trajectory is similar to the waypoint navigation of the UAS. Step input

trajectory allows us to characterize the response time, transient response, and steady-

state response to our desired input (target position for the leaf sampler). Our results

show that the real CNC follows the target position similar to the simulated CNC for

training sample rates, but the leaf sampler struggles due to oscillation. Change in

sample rate affects both the accuracy and precision as discussed below.

Figure 5.1 shows the output of the square step trajectory for a single episode

of 30 s. Each column represents the same trajectory done at different sample rates
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Figure 5.1: Graph of CNC and leaf sampler positions for a 30 s episode in response to
a square step input trajectory. Each column represents experiments done at a specific
sample rate as indicated at the top. The top three rows show CNC’s X-Y position
and timeseries, while the bottom four rows show the leaf sampler’s X-Y position
and X-Y-Z timeseries. The first 5 s is dotted as the CNC starts from random initial
positions.
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of 0.2 s, 0.1 s, 0.05 s and 0.025 s from left to right respectively. We test these lower

sample rates to test the agent’s robustness as well as predictability of performance

when deployed in the UAS as the UAS control using an LQR controller, such as

Freyja [95] that requires lower sample rates. Success or failure of using different

sample rates would indicate if we need to fine-tune the RL agent when transferring to

the UAS from the CNC. The first three rows represent the X-Y position of the CNC

and the corresponding timeseries. The bottom four rows represent the X-Y position

and X-Y-Z timeseries of the leaf sampler. First 5 s is plotted with dotted lines as the

preparation time for the CNC as it starts from a random initial start position.

We break our result discussion into the CNC X-Y, and the Leaf sampler X-Y-Z

in the following text.

5.1.1.1 CNC X-Y

We investigate how close the RL agent performance match in simulated and real CNC.

If we look at the first row of X-Y plot in Figure 5.1, we can see that the trajectory is

followed closely by CNC X-Y axes for all the sample rates in the simulation. In real

CNC however, CNC axes match the target X-Y closely only for the 0.2 s and 0.1 s

sample rate, but gets progressively worse for lower sample rates of 0.05 s and 0.025 s.

Looking at the second and third rows for X-Y timeseries, we get a slightly different

picture of the movement characteristic in each individual axis that explains why the

performance is worse at lower sample times. The timeseries show that the response

time increases as we move from left to right. At 0.2 s and 0.1 s sample time, the CNC

position reaches to steady state in about 7 s compared to about 3 s in simulation, and

this time doubles to about 16 s for the 0.05 s sample rate. The CNC X-Y axes fail to

reach a steady state before the end of the episode at 0.025 s sample rate. This increase

in response time is decreasing accuracy as we see the real squares get progressively
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smaller. However, the RL agent performs the task with high precision and follows the

trajectory faithfully even with the change in dynamics of the CNC at all sampling

rates. For leaf sampling tasks using CNC, this increase in response time for the real

CNC means that at the current configuration of the real CNC, the target position

in the trajectory needs to change slower if we want to operate at a higher sampling

frequency. But the UAS with more agile dynamics and lower response time would

perform much closer to what we see in the simulation.

One explanation for the increase in response time at a lower sample rate in real

CNC is that, at smaller sample times, the movement commands being sent to the

CNC are also shorter. As the CNC has a speed-up and slow-down period, this type

of short movement reduces the overall speed the CNC is moving at between the target

positions. This is artificially increasing the response time of the CNC by making it

mostly stay at the less than optimum speed. The software that translates the velocity

commands from the RL agent to G-code movement commands would likely need to

be updated to account for this. We investigate this issue further in Section 5.2.1 to

confirm whether more acceleration would increase accuracy by decreasing the speed-

up/slow-down period.

5.1.1.2 Leaf sampler X-Y-Z

For the leaf sampler positions in Figure 5.1, which is our main target for X-Y-Z axes,

the X-Y plot looks very noisy due to the leaf sampler overshooting its target position.

Time series plots of X-Y axes in rows five and six show that the real sampler follows

the trajectory of the simulated one very closely. The response time for the real CNC

is half of that in the X-Y axes. The low response time and overshooting response

are likely due to how CNC operates. CNC movement in X-Y axes is controlled by

a stepper motor with a very precise starting and stopping position. Leaf sampler on
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Figure 5.2: On the left, we see the leaf sampler connected to the real CNC using
a flexible rope. On the right, we see the leaf sampler connected using a simulated
flexible rope. The simulated rope is made by connecting rigid links together using
universal joints. The length of the links on the simulated CNC has been exaggerated
to show the difference, we use a much higher number of links with much smaller
lengths in our simulated experiments to improve simulation accuracy.

the other hand is connected with a flexible rope that gets kinetic energy when the

CNC starts moving it as seen in Figure 5.2. This dynamics causes the leaf sampler to

swing similar to a pendulum and causes it to overshoot the target when the X-Y axes

movement speed is very high. At higher sample rates where CNC is moving at an

effectively lower speed, we see the inertia imparted on the leaf sampler is also lower.

Also as the sampling rate increases, the RL agent is able to see the position

or overall movement characteristics of the leaf sampler more frequently and take
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corrective actions to maximize the reward. However, the leaf sampler oscillating

more in the real CNC than in the simulation might also be due to the rope design

in the simulation not faithfully modeling the real-world rope and might need further

tuning. For leaf sampling tasks using CNC at the current configuration, these results

indicate higher precision at lower sample times. If the accuracy of the real CNC is

improved by tuning the system, we might also see higher accuracy at low sample

times. For the UAS leaf sampling tasks, as the agility of the system increases, it will

likely perform better trajectory control at lower sample rates.

Leaf sampler performance on the Z-axis matches well between the simulated and

the real CNC. However, the response time seems to be much higher as we only see

a transient state response for the whole episode. Increased response time compared

to the X-Y axes is most likely due to the acceleration for the Z-axis being set to

0.5m/s2 instead of 1.0m/s2 on the X-Y axes. This design decision was to reduce

sudden movement in Z-axis which might pull the leaf sampler in through a branch

faster and get itself stuck before the RL agent recognizes it. We investigate the effect

of increasing acceleration in the Z-axis at Section 5.2.1. For leaf sampling tasks, these

results indicate we need to have a much slower trajectory for this axis in the current

configuration.

5.1.2 Circle Trajectory

For the second trajectory, we chose a sinusoidal input with different phases for all

three axes. The trajectory looks like a circle in the X-Y axes. While the RL agent

was trained on static input, evaluating it on this trajectory does a ‘stress test‘ of

the agent to see its robustness to change in the operating environment. The change

of rate was also much higher as the target position moved around the circle twice

in the same 30 s episode length of the square trajectory. The results for the circle



57

Figure 5.3: Graph of CNC and leaf sampler positions for a 30 s episode in response
to a circle trajectory input. Each column represents experiments done at a specific
sample rate as indicated at the top. The top three rows show CNC’s X-Y position
and timeseries, while the bottom four rows show the leaf sampler’s X-Y position and
X-Y-Z timeseries. Each graph shows two continuous circle trajectories performed in
the period of 30 s
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trajectory following described below show that the accuracy is worse than that of the

step input trajectory but highlight the importance of response time when following a

fast-moving target.

Figure 5.3 shows the output of the circle trajectory for a single episode of 30 s.

Each column represents the same trajectory done at different sample rates of 0.2 s,

0.1 s, 0.05 s and 0.025 s from left to right respectively. The first three represent the

X-Y position of the CNC and the corresponding timeseries. The bottom four rows

represent the X-Y position and X-Y-Z timeseries of the leaf sampler.

We break our result discussion into the CNC X-Y, and the Leaf sampler X-Y-Z

in the following text.

5.1.2.1 CNC X-Y

We compare the performance of the RL agent for the CNC X-Y positions. RL agent

performed similarly as it did with square step input trajectory but with a decrease in

accuracy. The increased response time we saw for lower sample times in the step input

graphs explains the lack of accuracy: the rate of change in the target position is so

high for the circle trajectory that the CNC position never reaches a steady state. This

graph also shows that even the simulated CNC would perform at a lower accuracy if

the rate of change in the target position is higher than the response time. Looking at

the timeseries plots of the X-Y axes in rows three and four we see the higher response

time manifests as lower amplitude for sinusoidal inputs. However, the positions still

follow the leaf sampler predictably as they did for the step input. For leaf sampling

tasks using CNC, these results indicate that dynamic trajectories will need to have a

lower rate of change that accounts for the response time for the chosen sample rate.

Using the UAS for leaf sampling tasks should be able to use the RL agent without

much tuning as the response times would be much lower for UAS.
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5.1.2.2 Leaf sampler X-Y-Z

If we look at the leaf sampler graphs, oscillation makes the X-Y plot harder to repre-

sent a circle. But looking at the timeseries plots in the bottom three rows, we see the

leaf sampler performs pretty much on par with the simulated one for 0.2 s and 0.1 s

sample time. The effect of decreased accuracy in CNC x-y axis for 0.05 s and 0.025 s

sample time causes a significant decrease in the diameter of the circle (0.4m while

the target is 1m). The oscillation on the leaf sampler axes still remains throughout

the episode but the magnitude of the oscillation is decreased from that of the step

input trajectory. Leaf sampler Z-axis illustrates the very high response time causing

the amplitude to be only 0.6m to 0.2m for a sample time of 0.2 s to 0.025 s while

the amplitude of the target position is 2m. This illustrates that our target positions

are highly ambitious and do not properly account for the limitation imposed by the

real CNC. For leaf sampling tasks using CNC, we would need to consider reducing

the oscillation of the leaf sampler by either tuning the reward function and retraining

the RL agent or reworking the way waypoints are being sent to the CNC such that

movements can be made smoother.

5.2 Simulation Calibration Results

This section aims to evaluate the performance of the RL agent in controlling the real

CNC machine and to understand how to calibrate the simulation system to match

the real system dynamics. We conduct three experiments to address the following

research questions: 1) How do changes in dynamics such as acceleration settings affect

the accuracy and responsiveness of the real CNC machine? 2) How long does it take

for the RL agent to reach the target position at low sample times in the real CNC

machine? 3) How do these settings influence the Simulink software? The results
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Target and Actual Position of CNC and Leaf Sampler (LS) in Real CNC

 ----- Target    ----- CNC ( Acceleration [1 1 0.5] m/s2)   ----- CNC (Acceleration [2 2 2] m/s2)

Figure 5.4: Graph of CNC and leaf sampler positions for a 30 s episode in response
to a square step input trajectory in Real CNC for regular acceleration and two times
acceleration. Each column represents experiments done at a specific sample rate as
indicated at the top. The top two rows show CNC’s X-Y position timeseries, while
the bottom three rows show the leaf sampler’s X-Y-Z position timeseries.

of these experiments will help us fine-tune both the real and simulation systems to

match their response.

5.2.1 Effect of Change in Dynamics

As we have seen in the previous sections, the performance in real CNC seems to be

bottlenecked by the dynamic response of the system. While we could work to match

the simulation more to the real world by modifying simulation dynamics, here we
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Figure 5.5: Graph of CNC and leaf sampler positions for a 30 s episode in response to
a circle trajectory input in Real CNC for regular acceleration and two times accelera-
tion. Each column represents experiments done at a specific sample rate as indicated
at the top. The top two rows show CNC’s X-Y position timeseries, while the bottom
three rows show the leaf sampler’s X-Y-Z position timeseries.

investigate what happens if we change the physical dynamics of the real CNC without

re-training or tuning the RL agent. More specifically, we change the acceleration

parameter for X-Y-Z axes from [1m/s2, 1m/s2 and 0.5m/s2] to [2m/s2, 2m/s2 and

2m/s2] and compare the performance using the same RL agent. Our results show

that these changes increase accuracy but have other consequences that we need to

consider as described below.

We show the comparison for square step trajectory in Figure 5.4, and the circle
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trajectory response in Figure 5.5. The first two rows in each figure show the timeseries

of the CNC X-Y axis, bottom three rows show the timeseries of the X-Y-Z axis of the

leaf sampler. The experiments are done with the same trajectory as presented in the

previous section with the same episode length of 30 s.

Increasing the acceleration should reduce the response time to change in input as

the speed-up or slow-down period for the CNC motion is reduced. We indeed see the

improvement in response time in all three axes as evident from the square step input

trajectory in Figure 5.4. However, as expected we see more oscillations on the leaf

sampler as the higher acceleration increases the jerk. While the RL agent performs

robustly in the CNC X-Y axes, further tuning or training might benefit the RL

agent. Adding a domain randomization method that includes changes in acceleration

and velocity limits during training might also make the model more robust to these

changes.

Increasing the acceleration should also increase the accuracy as the model can

reach a steady state faster. This is also verified with the response for sinusoidal input

shown in Figure 5.5. We see the amplitude of the response increases across all three

axes for all the sample rates. The oscillation in the leaf sampler also seems to get

worse than it did for the square step trajectory. This is an expected behavior for the

leaf sampler as it is essentially getting imparted with higher moments of inertia.

While increasing the acceleration improved the response, it still does not match

the simulated CNC performance yet. We may need to fine-tune other aspects of the

CNC dynamics such as speed, timestep of the commands, etc. We may also need to

modify the ROS interface software to change how we send the commands to the CNC

to optimize the response time as well if we want to match the responses better.
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5.2.2 Tracking Dynamic Target

In the previous sections, we saw that real CNC has high precision and low accuracy

due to having a very high response time. Specially at low sample times, we only see

the transient response and not the steady state. We investigate whether the target

position would be achieved if given sufficient time.

Figure 5.6 shows the timeseries graph of the X-Y axes for CNC and the X-Y-Z

axes for the leaf sampler. We only do this experiment at the sample rate of 0.5 s for

an episode length of 60 s. We experiment with a dynamic target position that we

move only after the CNC achieves that target position. Dynamic target is tracked

using Vicon motion capture systems and connected to Simulink through ROS.

As expected, we see the real CNC can indeed reach the target positions in all

three axes. We do this experiment on four times lower sample time and two times

higher episode length than what the RL agent was trained at. This further confirms

the robustness of the RL agent and confirms the performance in simulation indeed

predicts the performance in the real system. As long as the simulation and real CNC

response times are comparable, we should see better accuracy overall.

5.2.3 Performance of the Simulation Software

We used a Simulink block that introduces a delay to keep the simulation time as

close as possible to the real-time clock. This is important when controlling the real-

world system from Simulink, we need to have a predictable step size to ensure the

frequency of control actions stays within the range of the real system. The real-time

pacing block outputs pacing error as the deviation from real-time. We investigate

how changing the sample times affect the Simulink software.

We show the pacing error for the circular trajectory and square step for all the
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Figure 5.6: Timeseries of Real CNC following a dynamic target tracked by Vicon
motion captures through ROS interface. The top two rows show the X-Y position
timeseries of the CNC and the bottom three row shows the X-Y-Z position timeseries
of the leaf sampler.

sample times in Figure 5.7. The first and second column shows the pacing error

related to the circle trajectory and square step respectively. The sample time for

each plot is indicated at the top of each subplot.

We see the performance of the real-time pacing block stays the same for all the

sample times in the real system. This is important for control tasks. This performance

however drops significantly when it comes to the simulation environment at sample

rates of 0.5 s and 0.025 s. The pacing error is 10 s and 40 s for 0.5 s and 0.025 s

respectively. This would be unacceptable when controlling real-time systems. This

slowdown does not affect the training since we only use real-time pacing blocks during
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testing or evaluation or when we are controlling the real CNC. As such, care must

be taken not to have the simulated system activated when the Simulink is controlling

the real system.
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Chapter 6

Conclusion and Future work

We presented an indoor sim-to-real platform using CNC for training and testing

reinforcement learning algorithms for leaf sampling tasks. This thesis provides a good

first step towards using UAS for autonomous aerial leaf sampling using sim-to-real

reinforcement learning. Autonomous aerial leaf sampling would allow the collection

and new analytics of unreachable leaf samples that are inside the tree canopy without

needing multiple skilled operators.

We contributed a sim-to-real framework for training and deploying an RL agent

in a simulated CNC. We tested the RL agent in real CNC for a square step input and

circle trajectory input. Our evaluation shows RL agent performance matches well

between the simulated and the real CNC for the training sample times of 0.2 s. At

lower sample times, the RL agent performance is still predictable but shows a lower

accuracy in real CNC due to the increase in response time at lower sample times.

We also contributed a hardware and software interface that allows fast deploy-

ment of simulation-trained agents without any additional tuning required. We used

observations that are available in both CNC and UAS with similar control inputs so

that the framework can be easily extended to controlling the UAS in the future.

We also noticed some limitations in our work, such as the slow response time in

the real CNC, the slow down of the simulation software for lower sample rates, and
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other simulated environment limitations, etc., that we discuss next.

6.1 Limitations and Future Work

We discuss some of the limitations and possible future work to address those.

6.1.1 Response Time Limitation of the real CNC

In the simulated CNC we see the response time stays consistent regardless of the

sample times. However, in the real CNC, the response times increase when the

sample time is decreased. This causes a reduction in accuracy. One possible reason

for that is the CNC plans each motion with a speed-up, constant speed, and slow-

down period. This is to reduce the sudden start and stop that can introduce jerk or

cause the stepper motor to lose steps. The CNC uses a planner buffer that can store

up to 15 movements and can plan the motions to optimize the movements. However,

if the two consecutive motion is not in the same direction, we can not avoid the slow-

down for the current movement and speed-up for the next movement. When looking

at the time series response trajectory in the X-Y-Z axes, the outputs look similar to

a PID control. However, if we investigate the RL agent action output (not presented

here), we see the RL agent switches back and forth between +ve and −ve velocity

frequently similar to the ‘bang bang’ control method. While bang-bang control is

simple and faster, it is prone to oscillation and error as we see in our case.

One possible future extension would be to experiment with a reward function

to encourage the RL agent action output to be more like a PID control as well

which would make the motion smoother by reducing the magnitude of output velocity

instead of switching to the opposite state.
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6.1.2 Simulation speed Limitation of the simulation software

We chose Matlab as it provides seamless integration between the RL agent, simu-

lator, training, real CNC, and ROS. However, we noticed that the accuracy of the

simulation comes at the cost of a high time penalty for simulating each time step.

We use variable timestep simulation in Matlab to speed up simulations as Matlab can

optimally simulate physical systems with continuous states at a pretty high step size.

Lowering the sample time on the RL agent, however, forces the simulator to take

steps that are less than or equal to the sample time. This means that between 0.2 s

sample rate, and 0.025 s sample rate- there are at least 8 times more steps required for

Matlab to simulate for the same 30-second period. This slows down the simulation

environment significantly where training the model would be unrealistic for such low

sample times as the reinforcement learning usually takes a lot of episodes to learn, and

tuning the reward becomes much harder due to waiting times between each training

period. One way to improve this is by training the RL agent using parallel training

but the performance diminishes after a certain number of agents.

One possible future extension is the use of an external rendering engine such as

Unreal Engine or Unity Engine for the simulation of physical bodies. Since these are

game engines optimized for rendering speed, the physics accuracy might not be the

same as Simulink but rather it is realistic enough. Alternatively, we can explore the

use of the Gazebo simulation software interfaced with Simulink through ROS.

Some particle-based simulation exists that limit the particles to a cartesian joint

while allowing no rotation in any axis. Simulation of deformable objects such as

the rope or tree branches can be designed using this method called position-based

dynamics (PBD) [97], and the improved version Extended Position Based Dynamics

(XPBD) simulation [98]. This technique is capable of simulating deformable soft
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bodies, as well rigid bodies at a very large scale [99]. One issue with this approach is

that it does not simulate actual physics, but rather a close visual resemblance of it.

Domain adaption technique or fine-tuning of the RL agent for the real system might

be required when using these techniques.

6.1.3 Actuation of the Leaf Sampler

In the scope of this thesis, we move the leaf sampler using the movement of the CNC.

While this worked for validation of the leaf sampling framework, we noticed precise

control of the leaf sampler is harder with this approach. The presence of disturbances

such as wind would make the oscillation we see on the leaf sampler even worse.

One possible extension to the leaf sampler would be to use active propulsion on

the leaf sampler to counter this oscillation but also to be able to position the leaf

sampler more precisely. Success has been shown for navigating the tree canopy using

a propelled mechanism [96] connected through the rope. The RL agent can be easily

adapted to either have increased action space or use in a multi-agent setup where two

RL agents collaborate in controlling the CNC, and the leaf sampler.

6.2 Future Extensions

The next step of the project would be to evaluate the RL agent performance on the

UAS. The simulated environment would need to be extended to have trees/branches,

and model contact forces/collision dynamics for interaction with the leaf sampler for

various leaf sampling tasks. The real CNC can also be used for hardware-in-the-loop

training of the RL agent instead of simulation if certain aspects of the leaf sampler

become harder to model in simulation.
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