16 research outputs found

    Approximability of the Unsplittable Flow Problem on Trees

    Get PDF
    We consider the approximability of the Unsplittable Flow Problem (UFP) on tree graphs, and give a deterministic quasi-polynomial time approximation scheme for the problem when the number of leaves in the tree graph is at most poly-logarithmic in nn (the number of demands), and when all edge capacities and resource requirements are suitably bounded. Our algorithm generalizes a recent technique that obtained the first such approximation scheme for line graphs. Our results show that the problem is not APX-hard for such graphs unless NP \subseteq DTIME(2^{polylog(n)}). Further, a reduction from the Demand Matching Problem shows that UFP is APX-hard when the number of leaves is Omega(n^\epsilon) for any constant \epsilon \u3e 0. Together, the two results give a nearly tight characterization of the approximability of the problem on tree graphs in terms of the number of leaves, and show the structure of the graph that results in hardness of approximation

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Further Approximations for Demand Matching: Matroid Constraints and Minor-Closed Graphs

    Get PDF
    We pursue a study of the Generalized Demand Matching problem, a common generalization of the b-Matching and Knapsack problems. Here, we are given a graph with vertex capacities, edge profits, and asymmetric demands on the edges. The goal is to find a maximum-profit subset of edges so the demands of chosen edges do not violate the vertex capacities. This problem is APX-hard and constant-factor approximations are already known. Our main results fall into two categories. First, using iterated relaxation and various filtering strategies, we show with an efficient rounding algorithm that if an additional matroid structure M is given and we further only allow sets that are independent in M, the natural LP relaxation has an integrality gap of at most 25/3. This can be further improved in various special cases, for example we improve over the 15-approximation for the previously- studied Coupled Placement problem [Korupolu et al. 2014] by giving a 7-approximation. Using similar techniques, we show the problem of computing a minimum-cost base in M satisfying vertex capacities admits a (1,3)-bicriteria approximation: the cost is at most the optimum and the capacities are violated by a factor of at most 3. This improves over the previous (1,4)-approximation in the special case that M is the graphic matroid over the given graph [Fukanaga and Nagamochi, 2009]. Second, we show Demand Matching admits a polynomial-time approximation scheme in graphs that exclude a fixed minor. If all demands are polynomially-bounded integers, this is somewhat easy using dynamic programming in bounded-treewidth graphs. Our main technical contribution is a sparsification lemma that allows us to scale the demands of some items to be used in a more intricate dynamic programming algorithm, followed by some randomized rounding to filter our scaled-demand solution to one whose original demands satisfy all constraints

    Symmetric Interdiction for Matching Problems

    Get PDF
    Motivated by denial-of-service network attacks, we introduce the symmetric interdiction model, where both the interdictor and the optimizer are subject to the same constraints of the underlying optimization problem. We give a general framework that relates optimization to symmetric interdiction for a broad class of optimization problems. We then study the symmetric matching interdiction problem - with applications in traffic engineering - in more detail. This problem can be simply stated as follows: find a matching whose removal minimizes the size of the maximum matching in the remaining graph. We show that this problem is APX-hard, and obtain a 3/2-approximation algorithm that improves on the approximation guarantee provided by the general framework

    Scheduling Problems over Network of Machines

    Get PDF
    We consider scheduling problems in which jobs need to be processed through a (shared) network of machines. The network is given in the form of a graph the edges of which represent the machines. We are also given a set of jobs, each specified by its processing time and a path in the graph. Every job needs to be processed in the order of edges specified by its path. We assume that jobs can wait between machines and preemption is not allowed; that is, once a job is started being processed on a machine, it must be completed without interruption. Every machine can only process one job at a time. The makespan of a schedule is the earliest time by which all the jobs have finished processing. The flow time (a.k.a. the completion time) of a job in a schedule is the difference in time between when it finishes processing on its last machine and when the it begins processing on its first machine. The total flow time (or the sum of completion times) is the sum of flow times (or completion times) of all jobs. Our focus is on finding schedules with the minimum sum of completion times or minimum makespan. In this paper, we develop several algorithms (both approximate and exact) for the problem both on general graphs and when the underlying graph of machines is a tree. Even in the very special case when the underlying network is a simple star, the problem is very interesting as it models a biprocessor scheduling with applications to data migration

    A Deterministic {PTAS} for Commutative Rank of Matrix Spaces

    Get PDF

    Approximability of Sparse Integer Programs

    Get PDF
    The main focus of this paper is a pair of new approximation algorithms for certain integer programs. First, for covering integer programs {min cx:Ax≥b,0≤x≤d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A,b,c,d are nonnegative.) For any k≥2 and ε>0, if P≠NP this ratio cannot be improved to k−1−ε, and under the unique games conjecture this ratio cannot be improved to k−ε. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx:Ax≤b,0≤x≤d} where A has at most k nonzeroes per column, we give a (2k 2+2)-approximation algorithm. Our approach builds on the iterated LP relaxation framework. In addition, we obtain improved approximations for the second problem when k=2, and for both problems when every A ij is small compared to b i. Finally, we demonstrate a 17/16-inapproximability for covering integer programs with at most two nonzeroes per colum

    Approximability of Sparse Integer Programs

    Get PDF
    The main focus of this paper is a pair of new approximation algorithms for certain integer programs. First, for covering integer programs {min cx: Ax >= b, 0 <= x <= d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A, b, c, d are nonnegative.) For any k >= 2 and eps>0, if P != NP this ratio cannot be improved to k-1-eps, and under the unique games conjecture this ratio cannot be improved to k-eps. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx: Ax <= b, 0 <= x <= d} where A has at most k nonzeroes per column, we give a (2k^2+2)-approximation algorithm. Our approach builds on the iterated LP relaxation framework. In addition, we obtain improved approximations for the second problem when k=2, and for both problems when every A_{ij} is small compared to b_i. Finally, we demonstrate a 17/16-inapproximability for covering integer programs with at most two nonzeroes per column.Comment: Version submitted to Algorithmica special issue on ESA 2009. Previous conference version: http://dx.doi.org/10.1007/978-3-642-04128-0_

    LDRD final report : combinatorial optimization with demands.

    Full text link
    corecore