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Abstract

We consider scheduling problems in which jobs need to be processed through a (shared) network
of machines. The network is given in the form of a graph the edges of which represent the
machines. We are also given a set of jobs, each specified by its processing time and a path in the
graph. Every job needs to be processed in the order of edges specified by its path. We assume
that jobs can wait between machines and preemption is not allowed; that is, once a job is started
being processed on a machine, it must be completed without interruption. Every machine can
only process one job at a time.

The makespan of a schedule is the earliest time by which all the jobs have finished processing.
The flow time (a.k.a. the completion time) of a job in a schedule is the difference in time
between when it finishes processing on its last machine and when the it begins processing on its
first machine. The total flow time (or the sum of completion times) is the sum of flow times
(or completion times) of all jobs. Our focus is on finding schedules with the minimum sum of
completion times or minimum makespan.

In this paper, we develop several algorithms (both approximate and exact) for the problem
both on general graphs and when the underlying graph of machines is a tree. Even in the very
special case when the underlying network is a simple star, the problem is very interesting as it
models a biprocessor scheduling with applications to data migration.
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5:2 Scheduling Problems over Network of Machines

1 Introduction

Scheduling problems have been studied extensively over the past several decades. In this
paper, we consider a class of scheduling problems in which there is an underlying network
of machines. Before stating our problem, let us start with the classical job shop scheduling
problem. In job shop, we are given a collection J of n jobs and a set M of m machines.
Each job j consists of a sequence of µj operations O1j , O2j , . . . , Oµjj . Operation Oij takes
pij ∈ Z≥0 time units on machine mij ∈M . A feasible schedule specifies for each job the times
its operations must be performed such that each machine processes at most one operation at
any time and for each job, and an operation is performed only if all preceding operations are
already performed. We assume all jobs are available at time zero. Let Cj be the completion
time of job j in a schedule. Then the makespan of the schedule is Cmax = maxj Cj and the
weighted sum of completion time is

∑
j wjCj where wj ≥ 0, j ∈ J are given weights for the

jobs. Two common performance measures are to find schedules with minimum makespan or
minimum (weighted) sum of completion times. We refer to the latter as min-sum or weighted
min-sum objective. When pij ’s are all equal to pj (i.e. independent of the machine) then we
have the identical machine setting. Otherwise, we have the unrelated machine setting.

There are many special cases of job shop scheduling studied in the literature. One
specialization that still generalizes several other problems and has drawn attention more
recently is when there is an underlying network of machines. In this setting, we assume we
are given a graph G = (V,E) where each edge e corresponds to a machine. Each job j ∈ J
has a specific path Qj starting at sj ∈ V and ending at tj ∈ V . The path specifies the set of
machines the job has to go through in a specific order (i.e. the sequence of its operations). If
the graph G is a simple path P = v1, v2, . . . , vm+1 (where vivi+1 corresponds to machine mi),
each sj = v1 and tj = vm+1 for all jobs j ∈ J then we get the classical flow shop problem.
Another interesting special case is when we have a general graph G, but all pij ’s are 1; this
problem becomes the classical packet routing problem in a network (see [14, 15]). There are
also works when the underlying graph G is a tree or other special graphs (see [1, 13, 19, 20]).

1.1 Previous work
The amount of previous work on these problems is simply too large to be reviewed compre-
hensively here. We mention only some of the work and refer the reader to the references
in them. Trivial lower bounds used in many of the previous work for makespan are the
congestion and dilation lower bounds. If C is the largest congestion of any machine (the
maximum over all machines i of the total running time of jobs that have an operation on
i) and D is the largest dilation (longest time it would take a job to perform regardless of
the presence of other jobs) then lb = max{C,D} is clearly a lower bound on the makespan.
For general job shop Shmoys et al. [25] presented an algorithm with performance ratio
O((log lb)2/ log log lb). When jobs can be preempted (i.e. their processing can be paused in
the middle of any operations to be resumed later) one can get better results (see [2]).

Acyclic job shop is a special case of job shop where no job has two operations on the
same machine. For this setting, Scheideler and Feige [6] present an algorithm to schedule
with makespan O(lb log lb log log lb). To complement this, for acyclic job shop with identical
machines they provide a family of instances with optimum makespan Ω(lb log lb/ log log lb).

The approximation in [6] is also the best known result for the case of flow shop (which is
a special case of acyclic job shop). For the slightly more general setting of flow shop where
each job still has to go through the machines in the order they appear but may not need to
be run on all of them (i.e. only needs to be run on a subsequence of machines), Mastrolilli
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and Svensson [18] prove a hardness of approximation of ratio Ω(log1−ε lb). For the flow shop
problem with identical machines (also referred to as proportionate flow shop), Shakhlevich et
al. [23] present a polynomial time algorithm for the weighted min-sum objective.

As mentioned earlier, for the special case of pij = 1 for all i, j, the problem reduces
to the packet routing problem, where each job is simply a packet that takes one unit of
time to travel each edge (being a machine or a router). For this, the celebrated result of
Leighton et al. [14, 15] and subsequent works show that there is a schedule of length O(lb).
The most recent result by Harris and Srinivasan [10] show that there exists a schedule of
length 7.26 · (C +D) (non-constructive) and an algorithm that finds a schedule of length
8.84 · (C +D). More recently, Peis et al. [19] have shown that for the case of packet routing
on a tree, one can get a schedule of length at most C + D − 1; so this implies a simple
2-approximation. For the special case of packet routing when G is simply a path and all
packets go from left-to-right, [1, 12] show that the schedule in which at each time step each
machine (edge) processes the job that has the shortest distance to go finds the optimum
solution for the min-sum objective. Similar algorithms (namely furthest-to-go first) find the
optimum solution for makespan objective [12].

For packet routing for in-trees or out-trees (directed trees in which the in-degree of each
node is at most one, or out-degree is at most one, respectively) results of [16] show that the
furthest-to-go strategy gives optimum solution for makespan. Based on this, [19] observe
that it is easy to get a 2-approximation for makespan on undirected trees (by converting the
tree into a rooted tree and splitting each schedule into two stages where in the first stage all
the packets must first go up and then all the packets must go down to their destination in
the 2nd stage). Similar results are claimed by Kowalski et al. [13] for makespan and min-sum
objective on trees.1

In [17, 22], the authors give a general framework for a broad class of scheduling problems
(using LP rounding) that shows that any approximation algorithm with ratio ρ w.r.t. the
trivial lower bound lb for makespan can be used to obtain a 2eρ approximation for the
min-sum objective. As a special case, this applies to the scheduling problems on networks of
identical machines. We will use this result in some of our results. It is worth pointing out
that some of the ideas in [17, 22] which are also used in subsequent works have similarities to
the ideas of approximation of minimum latency in vehicle routing problems (like the classical
minimum latency) which use an approximation for minimum k-stroll or minimum k-spanning
tree (k-MST) as a subroutine (see [4] and earlier works).

More recent works have looked at some other variants of scheduling on a network. Im and
Moseley [11] look at the online scheduling problem where the network is a tree. In their model,
the edges are considered routers and each leaf node corresponds to a machine. Each job must
start from the root and then pass through the routers to arrive at a machine to be scheduled
on. Each router and machine can process one job at a time. Machines may be unrelated,
but routers are identical. They present constant factor competitive approximations using
constant speed-up for makespan. Bhattacharya et al. [3] look at coordination mechanism for
routing problems on a tree.

1.2 Our results
All of our results are for the identical machines setting (so each job j ∈ J has a processing
time pj , independent of the machine).

1 They claim a 3-approximation for makespan, and a 7-approximation for the min-sum objective, but the
sketch of the proof they provide for the latter seems incorrect and there is no full proof for it.

APPROX/RANDOM’17



5:4 Scheduling Problems over Network of Machines

Our first result is really just some smaller observations on our part, our more interesting
results are mentioned later. However, it points out an improvement for the acyclic job shop
problem with identical machines, so we think it bears mentioning.

I Theorem 1. For trees, for both makespan and min-sum objective, there are polynomial
time O(min{logn, logm, log pmax})-approximation algorithms, where pmax is the maximum
processing time among all jobs. If all jobs have unit processing time, then there is a polynomial
time 4e-approximation for the min-sum objective.

For acyclic job shop with identical machines, under both the makespan and the min-sum
objective there is an O(min{logn`, log pmax})-approximation where ` is the maximum number
of machines in a job’s sequence.

Note pmax ≤ lb so this improves over the approximation for acyclic job shop in [6] by an
O(log log lb)-factor, but only for the identical machines case. Recall that [6] show existence
of family of instances of acyclic job shop with identical machines having optimum makespan
Ω(lb log lb/ log log lb), so the upper bound is tight within an O(log log lb) factor.

We should point out that earlier works [1, 12] imply a 2-approximation for minimizing
the makespan for identical jobs on trees. We also consider a special case of trees, called
junction-trees: in this setting, the network is a rooted tree T and for each job j ∈ J , the Qj
path for j contains the root. A special junction-tree is when T is simply a star with all the
jobs starting and ending at the leaves of T .

I Theorem 2. For scheduling on junction-trees, there is a 4-approximation for makespan
and a 8e-approximation for the min-sum objective. Furthermore, if all processing times are
1, there is a different 3-approximation algorithm for the min-sum objective.

Perhaps the strongest and most technical result of our paper is for the simplest setting of
star networks. We prove the following.

I Theorem 3. For the min-sum objective on stars where all the jobs start and end on leaves
there is a 7.279-approximation algorithm. For the special case of unit processing time, there
is a 1.796-approximation algorithm.

This setting is more interesting than one might initially think; it is closely related to
biprocessor scheduling problems studied in, say, [9]. This connection is examined more closely
at the start of Section 2.

Another special case of junction trees is when each job starts at the root and may take
(any) root-to-leaf node in order to be completed. So there is not a specified path of machines
that job j must run on. Instead, we have to decide the path as well as how to schedule the
jobs. This is the same setting as in [11] for which the authors present online algorithms. It
turns out for this special case computing a schedule with the min-sum objective can, in fact,
be solved in polynomial time. We call this problem rooted-tree routing scheduling.

I Theorem 4. For the rooted-tree routing scheduling, there is a polynomial time algorithm
to compute a schedule with the min-sum objective.

Outline of the paper: We start by studying the simplest setting (star networks) and prove
Theorem 3 in Section 2. The approximation algorithms for trees and junction trees as well
as the observation for acyclic job shop with identical machines (Theorems 1, 2, and 4) are
presented in Section 3.
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2 Approximation Algorithms for Stars

In this section, we look at the min-sum objective for scheduling on a star where jobs
start/end at leaves. One problem related to the scheduling problem defined on a star network
is biprocessor scheduling or data migration which can be modelled as edge sum-coloring or
edge sum multi-coloring [7, 8, 9]. In the data migration problem, one has to move data stored
among devices in a network from one configuration to another. The network is modeled as a
graph G = (V,E) where each vertex v ∈ V represents a data storage and an edge e = vivj
represents the need to transfer data between vi and vj . This transfer may take pe time units
and will keep both vi and vj busy for that many steps. A transfer cannot be preemptive
(hence, once started must run until completed) and no node vi can be transferring data
to/from more than one other data storage at the same time. So, only data transfer over
edges that form a matching can happen concurrently. The goal is to find a schedule for these
transfers and minimize the makespan (the time the last transfer completes) or the min-sum
objective (the average time the transfers are completed).

This is essentially biprocessor scheduling where the nodes are the processors, the tasks
are represented by edges, and each task requires two specific resources (its two end-points) in
order to run. When all pe’s are one, minimizing the min-sum objective is equivalent to the
min-sum edge coloring of G [9], and it has been studied extensively. In the min-sum edge
coloring, one has to find a proper edge coloring φ : E → Z+ that minimizes

∑
e φ(e). One

can think of φ(e) as the time step in which edge e is scheduled to run on the two processors
of its end-points. In the min-sum edge multi-coloring, each edge e has a requirement pe
and one has to assign pe distinct integers (as colors) to e such that for any two adjacent
edges the set of colors assigned to them are disjoint. If one further requires each set of
colors to form a consecutive sequence of integers, then those pe integers can be considered
to be the time steps in which task e = vivj is supposed to run on the two processors vi, vj .
The best approximation algorithm for the min-sum edge coloring is due to Halldorsson
et al. [9] who present a configuration LP rounding with ratio 1.8298 and a combinatorial
1.8886-approximation. For biprocessor scheduling with arbitrary processing times pe, Gandhi
et al. [7] give a 7.682-approximation.

The problem we are considering, when restricted to networks of stars is another form of
biprocessor scheduling in which each task requires being performed on two specific processors
and in a specific order. More formally, suppose that the star T = (V,E) with root/center
node r is the network and each job j ∈ J starts and ends at leaf nodes sj , tj , respectively. We
first create a directed demand graph H = (VH , EH) whose vertices correspond to machines
(i.e. edges of T ) and whose arcs correspond to jobs in J , where each arc (sj , tj) ∈ EH
reflects the fact that job j needs to be processed on machines {sj , r} and then on {r, tj}. So,
|VH | = m and |EH | = n. We will use ej ∈ EH to refer to a job j ∈ J .

In this Section, we prove Theorem 3. We start first by presenting the algorithm for the
general case which achieves an approximation ratio of 7.279. We then present a modified
algorithm that has ratio 1.796 for when all pj ’s are 1.

2.1 Approximating stars with general processing times
Our algorithm for both the general and unit processing times has the following general
framework which is somewhat similar to the general framework of minimizing latency (see [4]
and earlier works) to convert a makespan objective to a min-sum objective. Our algorithm
works in stages where in each stage we try to find the maximum number of jobs that can be
scheduled subject to a makespan bound B, which is increasing geometrically in each iteration.

APPROX/RANDOM’17



5:6 Scheduling Problems over Network of Machines

Data: Auxiliary graph H, a constant c ∈ R>0 to be fixed later
Result: A scheduling of the jobs

1 α ∼ U [0, 1)
2 i← 1
3 R1 ← EH ;
4 while Ri 6= ∅ do
5 ti ← ci+α

6 Find a (1.5, ti)-proper subset Ji ⊆ Ri (cf. Lemma 6).
7 Schedule Ji using Proposition 7, starting at the previous iteration’s completion

time.
8 Ri+1 ← Ri \ Ji
9 i← i+ 1

10 end
Algorithm 1: Approximation for the min-sum scheduling on stars with identical
machines.

We show how even a bicriteria approximation for this makespan version of the problem can
give a good approximation for the min-sum objective. Most of the work is in finding a good
schedule subject to the makespan bound.

Given a schedule, for a subset of jobs Ĵ ⊆ J , we define the makespan of Ĵ as the difference
in time between when the last job of Ĵ finishes processing on its last machine and when the
first job of Ĵ begins processing on its first machine. We also define the load of a machine
i to be the total processing time of jobs in Ĵ incident to i in H. Note that the notions of
makespan (in our original graph T ) and load (in our demand graph H) are closely related.
We define (ρ, t)-proper sets of jobs, which will be used in our algorithm.

I Definition 5 ((ρ, t)-proper set). For ρ ≥ 1 and t > 0, we call a subset of jobs Ĵ ⊆ J a
(ρ, t)-proper set if the two following conditions hold:
|Ĵ | is at least the size of the maximum subset of J that can be scheduled with a makespan
of at most t.
For each machine i, the total load (congestion) of jobs in Ĵ that have i as their first
machine (called the in-load of i) is at most ρ · t and also the load of jobs that have i as
their second machine (called the out-load of i) is at most ρ · t.

We, later on, show how we can build a schedule of jobs in a (ρ, t)-proper subset |Ĵ | with
small makespan and small average completion time of those jobs in Proposition 7. Assuming
we have an algorithm that can find (ρ, t)-proper sets of jobs for any given t, combined with
Proposition 7 we show how we can build an algorithm for the star scheduling problem with
the min-sum objective. At each iteration i, we fix a value ti and do the following: we first
find a proper set of remaining jobs with respect to ti and then, we find a “good” scheduling
of these jobs. Algorithm 1 describes the procedure formally. 2

Before we proceed with the analysis of Algorithm 1, we show how to perform Step 6,
i.e. find a proper set of jobs among remaining jobs, and also some details about Step 7.

I Lemma 6. There is a polynomial time algorithm that finds a (1.5, t)-proper set for any t.

2 We ideally wish to find the largest set of jobs that can be scheduled at any given time ti. However, to
ensure the tractability of our algorithm, we settle for a proper set as defined instead.
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Proof. Let OPTt be the maximum number of jobs from J that can be scheduled with
makespan at most t. First, observe that jobs/edges e in H with pe >

t

2 do not appear in
any feasible scheduling with a makespan of t as each such job needs to run sequentially on
two machines. Remove such jobs from consideration. Let pmax = maxj pj ; thus pmax ≤ t/2.
We will find a set of jobs Ĵ such that the in-load of each machine and the out-load of each
machine is at most t+ pmax ≤ 1.5 · t and |Ĵ | ≥ OPTt.

To find this set, we first consider the problem of picking the maximum number of jobs
such that for each machine i the in-load and out-load are at most t. Note the size of this set
is at least OPTt. To find such a set, we round an LP relaxation.

Construct an undirected bipartite graph H̃ = (Ṽ1 ∪ Ṽ2, Ẽ) from H: corresponding to
every vertex v ∈ VH (i.e. for each machine), we create two copies ṽ1 and ṽ2 in Ṽ1 and Ṽ2,
respectively; for every (directed) edge e = (u, v) ∈ Ri (which corresponds to a job) with
pe ≤ t/2, we put an undirected edge ẽ = (ũ1, ṽ2) into Ẽ and let pẽ denote the corresponding
value pe. We work with the following LP relaxation:

max

∑
e∈Ẽ

xe :
∑

e∈δẼ(v)

pexe ≤ t ∀v ∈ Ṽ1 ∪ Ṽ2, x ∈ [0, 1]Ẽ


This LP is exactly the LP relaxation for the so-called demand matching problem whose
study was initiated in [24]. From [24] (which uses an iterated relaxation technique) and
the fact that the graph H̃ is bipartite, we can find an integer vector x ∈ {0, 1}Ẽ with∑
e∈Ẽ xe ≥ OPTLP ≥ OPTt such that

∑
e∈δẼ(v) pe · xe ≤ t + pmax. The edges in E

corresponding to e ∈ Ẽ with xe = 1 forms a (1.5, t)-proper set. J

We should point out that the (1.5, t)-proper set obtained in the proof of Lemma 6 has the
property that the in-load and out-load of each node is at most t+ pmax. Now we describe a
method that, given such a (ρ, t)-proper set Ĵ (for any ρ ≥ 1), returns a schedule of them
with a makespan of at most ρ · t and furthermore, the average completion time of each job is
small.

I Proposition 7. Suppose that Ĵ is a (1.5, t)-proper set as obtained by Lemma 6. There is a
scheduling of the jobs in Ĵ with a makespan of at most 2t+ 2pmax ≤ 3t. Furthermore, the
average completion time of a job in that schedule is at most γ = 2t+ pmax ≤ 2.5t.

The algorithm for this proposition is a simple 2-stage one: in the first stage, each machine
i processes (in some arbitrary order) those jobs in Ĵ that have i as their first leg, i.e. are
going towards the center of the star where this machine is their first leg. Once all the jobs in
Ĵ have arrived at the center of the star (i.e. have completed their first leg), each machine
i starts processing the jobs that have i as their second machine, from smallest to largest
processing time. It is straightforward to observe that each stage takes at most t+pmax ≤ 1.5t
units of time to complete; so the total makespan of all jobs is at most 2t+ 2pmax ≤ 3t.

The proof that the average completion time of each job is at most 2t + pmax is a bit
more involved, and we defer the detailed proof to the full version of the paper. Using this
proposition in Step 7, we can turn the (1.5, ti)-proper set found in Step 6 into a schedule for
that set with makespan at most 3ci+α and average completion time of each job in that set
will be 2.5ci+α.

I Theorem 8. Algorithm 1 is a 7.279-approximation algorithm for the min-sum objective on
stars when jobs have general processing times.

APPROX/RANDOM’17



5:8 Scheduling Problems over Network of Machines

Proof. Following the notation of [4], let uj be completion time of j’th job in our schedule
and let coptj be the completion time of j’th job in a schedule with the optimum min-sum
objective (note that these jobs might not be the same). We would like to bound uj w.r.t.
coptj . Assume that coptj = dck for some d < c and some k ≥ 1. Based on the value of d with
respect to the random variable α in Algorithm 1, two cases arise: i) d < cα or, ii) d ≥ cα. For
the first case, note that since in the optimum there is a schedule of j jobs with makespan at
most coptj = dck < ck+α, the iteration in which the j’th job is scheduled in our algorithm is
at most k. Also, note that the completion time of any job in each iteration i of the previous
k − 1 iterations is at most ρci+α where ρ = 3 and the average completion time of each job in
iteration k (using Proposition 7) is at most γck+α where γ = 2.5. Thus:

uj ≤ ρ
k−1∑
`=1

c`+α + γck+α ≤ c1+α

c− 1(γck − ρ+ (ρ− γ)ck−1).

Similarly, for when d ≥ cα, coptj = dck < ck+1+α. Thus, the j’th job is scheduled no later
than iteration k + 1. Therefore:

uj ≤ ρ
k∑
`=1

c`+α + γck+1+α ≤ c1+α

c− 1(γck+1 − ρ+ (ρ− γ)ck).

In the first case, α ∈ [logc d, 1) and in the second case, α ∈ [0, logc d). By taking the
expectation over α over the two cases, one gets

E [uj ] ≤
∫ 1

logc d

c1+α

c− 1(γck − ρ+ (ρ− γ)ck−1)dα+
∫ logc d

0

c1+α

c− 1(γck+1 − ρ+ (ρ− γ)ck)dα

= c

c− 1

(
(γck − ρ+ (ρ− γ)ck−1)

∫ 1

logc d
cαdα (1)

+ (γck+1 − ρ+ (ρ− γ)ck)
∫ logc d

0
cαdα

)
= c

ln c
(
γdck − ρ+ (ρ− γ)dck−1) ≤ c

ln c (γ + ρ− γ
c

)coptj .

Setting ρ = 3 and γ = 2.5, and c = 2.912 leads to the approximation ratio of 7.279. J

2.2 Refinements for the case of unit processing times
In this section, we modify our general framework to obtain better approximation factors for
the case of unit processing times. The main new ingredient of the proof is to use a different
algorithm to find (ρ, t)-proper sets instead of Lemma 6. Recall that our general framework
works in two steps: first, partition the jobs into disjoint blocks, and second, schedule each
block separately. For unit processing time, we follow the same general framework but we use
a standard b-matching algorithm for partitioning, and a more careful scheduling algorithm
to deal with the jobs of each block. Algorithm 2 describes each stage more formally.

In our algorithm, the procedure b-Matching(b) finds a maximum size b-matching (a
subgraph with maximum degree b) in the undirected subgraph obtained from the set of edges
in Ri in polynomial time (e.g. [5]).

I Lemma 9. For even b ≥ 0, any b-matching can be partitioned into b

2 2-matchings.
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Data: Auxiliary graph H, a constant c ∈ R>0 to be fixed later
Result: A scheduling of the jobs

1 α ∼ U [0, 1)
2 i← 1
3 R1 ← EH
4 while Ri 6= ∅ do

5 ti ← 2
⌊
ci+α

2

⌋
6 Ji ← b-Matching(ti)

7 Decompose Ji into
ti
2 disjoint 2-matchings J1

i , J
2
i , . . . , J

ti
2
i (see Lemma 9)

8 Schedule jobs in Ji according to Lemma 10
9 Ri+1 ← Ri \ Ji

10 i← i+ 1
11 end

Algorithm 2: Approximation for the min-sum objective on stars with identical jobs.

This is known for b-regular graphs [21]. It is straightforward to prove the same for graphs
with maximum degree b as well. The details appear in full version.

Next, we schedule the jobs in each block. We note that using Vizing’s algorithm for
edge coloring, we can schedule the jobs in Ji using ti + 1 new time steps (details omitted
here), however, in order to obtain a better approximation ratio we do the following. Let
J = {J1, J2, . . . , J`} be the partitioning constructed by the algorithm, where Ji is a
maximum ti-matching. Recall that each Ji is further partitioned into slots J1

i , J
2
i , . . . , J

ti
2
i .

Our goal is to find a scheduling of jobs in Ji (for each i ≥ 1) with small makespan for them
and at the same time small average completion time. We show how to find a schedule with
makespan ti for each Ji, i ≥ 2 (relative to the end of the last group Ji−1), and with makespan
t1 + 1 for J1; furthermore, for each Ji the average completion time of the jobs in Ji will be
ti+1

2 . In the following lemma, we slightly abuse the definition of the makespan within each
slot to refer to the number of new time units (in comparison to the previous slot) that is
used to schedule its edges.

I Lemma 10. Given the partitioning J , there exists a scheduling in which every slot J ti has
makespan of 2, except for the very first slot J1

1 which has a makespan of 3. The makespan of
each job in Jk will be at most 1 +

∑k
`=1 tk. Furthermore, the average completion time of jobs

in Jk will be at most 1 +
∑k−1
`=1 t` + tk+1

2 .

We only sketch the proof here and defer the details to a full version of the paper.

Proof Sketch. Given that each slot J tk accommodates a 2-matching, we first develop a
schedule for the first slot of J1 with a makespan of 3. In doing so, we observe that any
2-matching accommodated in a slot can be modified to a cycle (path) whose vertices alternate
between having an in-degree of 2 and an out-degree of 2. By scheduling the jobs of J1

1 with
a makespan of 3, we create one slack time unit since every machine processes at most 2 jobs.
We then carry this slack time unit to the subsequent slots and schedule the jobs in each J tk
(except J1

1 ) with a makespan of 2. J

The proof of the following theorem is analogous to that of Theorem 8, and we defer it to
the appendix.
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I Theorem 11. Algorithm 2 is a 1.796-approximation algorithm for the star scheduling
problem when jobs have unit processing times.

3 Scheduling on Trees and General Networks

In this section, we first focus on situations where the topology of the machines is a tree and
then on the general acyclic job shop setting. We prove Theorems 1, 2, and 4.

We first recall a result from [17, 22] that shows how to convert an approximation for the
makespan objective that is relative to the lower bound max{C,D} into an approximation
for the weighted min-sum objective losing only an additional constant factor. Here, C is the
congestion and D is the dilation of the input. The statement below paraphrases their result.

I Theorem 12 ([17, 22]). Consider an instance of job shop scheduling with jobs J having
weights wj ≥ 0, j ∈ J . Suppose for any J ′ ⊆ J we can find a schedule of J ′ in polynomial
time having makespan γ ·max{C(J ′), D(J ′)} where C(J ′) is the maximum congestion of an
edge under jobs J ′ and D(J ′) is the dilation of J ′. Then in polynomial time, we can find a
schedule for all of J where the weighted completion time is at most 2eγ times the minimum
possible weighted completion time.

When we invoke this, we will simply have proved that for the given instance we can
schedule all jobs with makespan bounded by a factor of max{C,D}. But it should be obvious
that we would get the analogous bound if we restricted to any subset of jobs because that
restricted instance falls in the same family of instances we are considering (e.g. on a tree or
acyclic job shop with identical machines).

3.1 Proof of Theorem 1
First, note that if all pj ’s are 1, then we simply have the packet routing problem in a tree.
Peis et al. [19] presented a simple algorithm in this setting that has makespan at most
C +D − 1 (where C and D are congestion and dilation). This, together with the result of
[17, 22], yields a 4e-approximation for the min-sum objective in unit processing time.

Now, suppose that we have general processing times. We first present an algorithm with the
ratio O(min{logm, logn}) with respect to the two lower bounds of C,D for the makespan.
Combined with Theorem 12, this yields the same approximation ratio for the min-sum
objective. Finally, we focus on the acyclic job shop and present an O(min{logn`, log pmax})-
approximation. This will also provide the O(log pmax) part of the guarantee stated in
Theorem 1 for trees.

So, we now focus on trees. Let T be the underlying network. Our plan is to present
an O(logm)-approximation, and also an O(logn)-approximation for makespan. We simply
return the better of the two. For each, we decompose the problem into a logarithmic number
of independent instances, each of which is the union of vertex-disjoint junction-tree instances.

To do this, pick an arbitrary node v1 ∈ T as the root (we specify which vertex to pick
below) and then partition the jobs into two groups: G1: those jobs j for which their path Qj
contains node v; and the rest are placed in J −G1. Note that no job in J −G1 ever needs
processing on any edge incident with v1, therefore, each such job is over a subtree of T − v1.
We claim that we can always pick v1 such that the number of jobs in each of the subtrees in
T − v1 is at most n/2.

I Claim 13. Given a tree T with some subpaths Q1, . . . , Qn where each Qi is a si, ti-path
for some si, ti ∈ V (T ) one can always pick a vertex v ∈ T such that the number of paths that
are entirely within any subtree of T − v is at most n/2.
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Proof. For every edge e = uv, if more than n/2 of the paths Qi are contained entirely in one
subtree of T − e, direct e toward this subtree. Otherwise, direct e arbitrarily. After directing
all edges, there is a node v that has no out-going edge. It should be easy to see v has the
required properties. J

Trees

Note that we can find a schedule for each of the subtrees of T−v1 independently and run them
in parallel. Therefore, we can now solve the problem on each of those subtrees independently.
For each such subtree, we pick a node as the root again; all the jobs that contain one of these
roots form group G2 and the rest of jobs belong to J −G1 −G2, and we do this recursively
for each subtree. Since each time, the number of jobs left in a subtree halves, we will have at
most logn iterations and hence we obtain σ ≤ logn groups G1, G2, . . . , Gσ and each group
is the union of independent (i.e. vertex-disjoint) junction-tree instances. Using Theorem 2
we can obtain a 4-approximation for makespan of each group. Running these logn schedules
in any arbitrary order gives an O(logn)-approximation for makespan.

The algorithm for finding an O(logm)-approximation is similar. We only need to pick
the root v1 (and subsequent roots) in such a way that the number of edges (i.e. machines)
in each subtree left is at most half the number of edges in the original one. Such a node is
commonly called a centroid of the tree. Therefore, we obtain logm groups this way, each
of which is a collection of independent junction tree instances. Combining these we get an
O(min{logn, logm})-approximation for the makespan on trees and subsequently the same
approximation ratio for min-sum objective function.

Acyclic Job Shop

The approximation we devise for acyclic job shop is really just a sequence of simple observa-
tions. Recall we are assuming the processing times are integers, so pj ≥ 1 for all jobs j. As
in [6], by losing a factor of 2 in pmax, C, and D, we assume pj = 2k for some k ∈ Z≥0. This
is achieved by scaling up all pj to a power of 2. Observe the optimum solution value at most
doubles; we could just double the start times of all operations in an optimum solution. Also,
any schedule under these scaled processing times yields a schedule under the original times
by using the same start times for each operation.

For each integer 0 ≤ k ≤ log2 pmax, form the group Bk = {j : pj = 2k}. We can view
each group Bk as an instance of acyclic job shop with identical jobs, so by [15] there is a
solution with makespan O(C +D). More specifically, we can scale the running times of each
job in Bk to be 1, which also scales the congestion and dilation by 2−k. In polynomial time,
we can find a schedule for these unit-length jobs with makespan O(2−k · (C +D)) [15], so
under the original running times 2k we get a solution with makespan O(C +D).

Finally, we simply concatenate the resulting solutions for these 1 + pmax groups to get
a solution for all jobs with makespan O(log pmax · (C + D)). As this is an approximation
relative to the lower bound max{C,D}, we also get an O(log pmax)-approximation for the
min-sum objective using Theorem 12.

For the O(logn`)-approximation, we perform the same bucketing but also form a “small
job” group Bsmall = B0 ∪ B1 ∪ . . . ∪ Ba where a = (log2 pmax) − dlog2 n`e. We round up
all jobs in Bsmall to have processing time 2a. We can solve Bsmall trivially by a greedy
algorithm that simply ensures no machine is idle if it has an available job to process.

The makespan of this schedule will be at most 2a · ` · n because there are ` · n operations
in total to be performed between all jobs and at any point of time before all jobs are
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completed at least one machine will be busy. Note 2a · ` · n ≤ pmax ≤ C + D. We then
solve the remaining O(logn`) buckets Ba+1, . . . , Blog2 pmax as before and concatenate their
schedules for a total makespan of O(logn`) · (C +D)). Again, using Theorem 12 this yields
an O(logn`)-approximation for the min-sum objective.

3.2 Proof of Theorem 2
Recall that in this setting the network of our machines forms a tree T rooted at r and the
path Qj for each job j contains r on its path.

3.2.1 General processing times
In this section, we present a 4-approximation for the makespan on junction trees which is
based on the trivial lower bounds of C,D. Again, combined with the result of [17, 22], this
implies an 8e-approximation for the min-sum objective function.

Let L be the value of makespan in an optimum solution. Our algorithm for makespan
has two stages: in the first stage each job j moves from sj to r; in the second stage each job
j moves from r to tj . Clearly, each stage can be completed with makespan at most L. We
show how each step can be completed with makespan at most 2L, and this yields a solution
with makespan at most 4L.

It is easier to describe the algorithm for the 2nd stage first: in this setting, all the jobs
are already at the root, and the goal is to send them to their destinations (tj ’s). If u1, . . . , uσ
are children of r, it is enough to focus on the jobs that travel down one arbitrary edge rui
and describe the algorithm for the subtree rooted at ui. Suppose we sort the jobs based on
their processing times from smallest to largest and start sending them (from the smallest) as
soon as rui is free. Since each job j starts on its first edge rui after jobs that have smaller
processing time than j, job j does not encounter delay/waiting other than at the root. Let
p1 ≤ p2 ≤ . . . ≤ pn be the jobs going down rui. Then the maximum delay any job encounters
(which happens for the last job) is

∑n−1
i=1 pi which is at most congestion C. Also, note that

once j starts on the first edge, the total time it takes to complete j is exactly |rtj | ·pj . Noting
that the largest |rtj | · pj is dilation D, all jobs are done after at most D steps, once they have
started processing. Therefore, the whole makespan is at most C +D which is at most 2L.

The algorithm for sending the jobs to the root is almost the same. The best way to
describe it is to consider running the same algorithm as if the jobs were supposed to start
at the root and each job j is to be sent to its start point sj . Using the same algorithm as
above, all jobs can reach their designated vertex sj in time at most 2L. Run this schedule
backwards to move all jobs j from sj to r in time at most 2L.

3.2.2 Special case of unit processing times
Here, we consider the case of junction trees with unit processing time and present a 3-
approximation algorithm for the min-sum objective. Since we have jobs of unit processing
time, we can think of the schedule in synchronized setting were in each time step each
machine starts processing one job that is available for that machine. We assume each e = uv

has two buffers (queues) be(u) and be(v) at the two ends u, v; be(u) will buffer the jobs that
arrive at u and want to cross e and be(v) will buffer the jobs that arrive at v and want to
cross u.

Our algorithm, called Algorithm 3, is very simple; it tries to keep the machines busy.
More specifically, at each time step, each machine e = uv (where v is parent of u) performs
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1 while there is a job unfinished do
2 foreach machine e = uv (with v being parent of u) do
3 if be(u) 6= ∅ then
4 process the first job in be(u) and pass it to the next buffer;
5 else if be(v) 6= ∅ then
6 process the first job in be(v) and pass it to the next buffer;
7 end
8 end
Algorithm 3: Approximation for the min-sum objective on junction trees with unit
processing times.

the following: if there is any job in be(u) process the next job from be(u) and send it along
its path, else if there is any job in be(v) then process the next job from be(v) and send it
along its path, else do nothing. Whenever a job arrives at a machine e = uv from whichever
end-point, it enters the corresponding buffer. Essentially, the algorithm keeps the machines
busy by processing the jobs that have arrived at them (from either end-point), giving priority
to the jobs that are moving towards the root (so they are still in their first leg of their path).

We show that this is a 3-approximation for the min-sum objective, which implies the 2nd
part of Theorem 2.

I Theorem 14. Algorithm 3 is a 3-approximation for min-sum objective.

We use δ(r) to denote the set of machines incident to r. For each edge e let L(e) be the
set of jobs whose path contains e and l(e) = |L(e)|. Recall that for each job j, Qj is the
unique sj , tj path and |Qj | be the number of machines j needs to be processed on. Let OPT
denote an optimum schedule and Copt the total flow time of OPT. We use C to denote
the cost of our solution. In the following two lemmas, we get lower bounds for the optimum.
The proof of the first lemma is immediate and the proof of the second is deferred to a full
version of this paper.

I Lemma 15. Copt ≥
∑
j |Qj |.

I Lemma 16. Copt ≥
∑
e∈δ(r)

`(e)(`(e)+1)
4 + n

2

Combining the above two, we obtain the following lower bound for optimum.

I Corollary 17. Copt ≥ 1
3

(∑
e∈δ(r)

`(e)(`(e)+1)
2 + n+

∑
j |Qj |

)
This corollary along with the following lemma implies Theorem 14.

I Lemma 18. C ≤
∑
e∈δ(r)

`(e)(`(e)−1)
2 +

∑
j |Qj |.

We defer the details to a full version of the paper and conclude this section by noting
that Algorithm 3 is a 2-approximation for the special case when the machines form a star.
This is because by

∑
e∈δ(r) `(e) = 2n and |Qj | = 2 the bounds proved in Lemmas 16 and 18

simplify to:

COPT ≥
∑
e

`(e)2

4 + n and C ≤
∑

e

`(e)2

2 . (2)

Recall that for this setting our (more complicated) algorithm of Theorem 3 yields a
1.796-approximation.
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3.3 Proof of Theorem 4
In this setting, each job j starts at the root and, unlike the previous settings in which a job
must be processed on all machines along a given (sj , tj) path, it can take any path to reach
any leaf node of the tree, while it has a processing time of pj on every machine. For this
case, we show that a simple greedy algorithm finds a schedule with the min-sum objective in
polynomial time, hence proving Theorem 4.

Suppose c1, . . . , cd are the children of r. Consider an optimum solution OPT and let
Jk be the set of jobs that go down a path starting at edge (machine) rck. The following
observation is immediate:

I Observation 19. In any optimum solution, the following two hold:
1. The optimum solution processes the jobs in Jk in the order of their processing time from

small to large.
2. All the jobs in Jk follow the shortest root-to-leaf path.

Processing jobs from the smallest to the largest is known as SPT (Shortest Processing
Time) rule, and it is known that on a single machine, SPT minimizes total flow time (which
means it minimizes the total delay/waiting on one machine). Since using SPT there is no
delay on subsequent machines for any job, it immediately implies that the optimum sends
jobs down each path using SPT rule.

Let nk = |Jk| andmk be the length of the path (number of machines from root-to-leaf) jobs
in Jk travel. Suppose that the jobs in Jk from small to large are: j1

k, j
2
k, . . . , j

nk
k . Since each

job jak ∈ Jk will incur a delay only at the root and the delay is pj1
k

+pj2
k

+ . . .+pja−1
k

, and has a
path of lengthmk of machines to go through, the total flow time of jak ismkpja

k
+
∑

1≤i≤a−1 pjik .
Thus, the total flow time of all the jobs in Jk is:

∑
1≤i≤nk(mk + nk − i)pji

k
, and the total

flow time of all the jobs in OPT is
∑

1≤k≤d
∑

1≤i≤nk(mk +nk− i)pji
k
. We use hk = mk +nk

and call it the “load” of the branch rck. The following lemma follows easily.

I Lemma 20. In any optimum solution, for any two children ck, ck′ of r with nk, n′k > 0 we
must have: |mk + nk −mk′ − nk′ | ≤ 1. In other words, the difference of loads of any two
branches is at most 1.

Proof. By way of contradiction suppose that OPT is an optimum solution and for two
children of r we have nk, n′k > 0 and hk ≥ hk′ + 2. Suppose that Jk = j1

k, j
2
k, . . . , j

nk
k and

Jk′ = j1
k′ , j

2
k′ , . . . , j

nk′
k′ are the sequences of the jobs scheduled on branches rck and rck′ ,

respectively. Suppose we remove job j1
k from branch rck and add it in front of the queue Jk′ .

The total flow time of the jobs on branch rck goes down by hkpj1
k
and the total flow time

of the jobs on branch rck′ goes up by (hk′ + 1)pj1
k
. So the total net change in flow time is

(−hk + hk′ + 1)pj1
k
< 0, which contradicts optimality of OPT. J

We call a schedule in which the load of any two branches differs by at most 1 an almost
balanced schedule. So the above lemma shows every optimum solution is almost balanced.
We can also assume w.l.o.g. that in any optimum solution for jobs n, . . . , 1, if job 1 (the
smallest job) is removed from the schedule, the remaining schedule is still an almost balanced
one. In other words, if Jk is the set of jobs including job 1 and are scheduled on branch
rck then the load hk is as big as any other branch load. To see this, suppose that job 1 is
scheduled on branch rck with hk < hk′ for some other branch rck′ with nk′ > 0. Let i be
the smallest job in Jk′ and swap 1 and i in the schedule. The net change in the total flow
time will be pi(hk − hk′) + p1(hk′ − hk) < 0 since p1 ≤ pi, which is a contradiction.

These properties suggest the following simple greedy algorithm which we show below
finds the optimum solution.
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1 Sort the jobs in non-increasing order of their processing time, say pn, pn−1, . . . , p1;
2 Let c1, . . . , cd be the children of r; and Ji ← ∅ be the queue of jobs going down

branch rci;
3 Let mi be the length of shortest root to leaf path from rci and ni ← |Ji|;
4 j ← n;
5 while j ≥ 1 do
6 k ← argmin1≤i≤d{mi + ni};
7 Schedule job j in front of the queue Jk;
8 nk ← nk + 1;
9 j ← j − 1;

10 end
Algorithm 4: Solving the rooted-tree problem.

I Theorem 21. The greedy algorithm (Algorithm 4) finds an optimum solution.

Proof. We prove by backward induction on i that the greedy finds the optimum solution
for the set of jobs n, . . . , i for all n ≥ i ≥ 1. The case of i = n is trivial. Let k ≤ n be
an arbitrary integer and suppose that the greedy partial schedule for jobs n, . . . , k + 1 is
optimum for this set of jobs; call this schedule Sk+1 and let Sk be the greedy schedule after
adding job k and Ok be an optimum schedule for jobs n, . . . , k. Let O′ be the schedule for
n, . . . , k + 1 obtained from Ok by removing job k. Since Sk+1 is optimum (by hypothesis),
cost(Sk+1) ≤ cost(O′). Also, note that both Sk+1 and O′ are almost balance and have the
same number of jobs. Therefore, if hmin(O′) and hmin(Sk+1) are the minimum loads in O′
and Sk+1, respectively, then hmin(O′) = hmin(Sk+1). This implies

cost(Sk) = cost(Sk+1) + pk(hmin(Sk+1) + 1) ≤ cost(O′) + pk(hmin(O′) + 1) = cost(Ok).J

4 Conclusion

We have presented a number of approximations for special cases of acyclic job shop with
identical machines. There are still many interesting questions one could ask.

For example, we tightened the bound between lb and the minimum makespan for acyclic
job shop with identical machines by an O(log log lb) factor, and now the gap is off by only an
O(log log lb) factor. Can this be further tightened? Perhaps more interestingly, is the acyclic
job shop problem with identical machines hard to approximate within any constant? It may
be hard to approximate within Ω(log1−ε lb), just like flow shop with unrelated machines [18].

Are we resigned to losing logarithmic factors in trees or can we do better? Note that
getting an O(1)-approximation for instances of acyclic flow shop with identical machines
where the underlying network is a path and each job must follow a subpath is still open.

Finally, the fact that the makespan objective for acyclic job shop is super-constant
hard does not necessarily mean its min-sum counterpart is also hard. By way of analogy,
min-sum set cover admits a constant-factor approximation while its classic variant minimum
set cover (which can be viewed as a makespan version) has a logarithmic hardness of
approximation. The problem of getting either further improvements under the min-sum
objective or establishing a super-constant hardness are both open.
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A Proof of Theorem 11

Proof. Similar to our analysis for the case of general processing times, let uj be completion
time of j’th job in our schedule and let coptj be the completion time of j’th job in a schedule
with the optimum min-sum objective. Assume coptj = dck for d < c. We consider the
two cases where d < cα and d ≥ cα. In the first case, uj is bounded from above by the
amortized bound 1 +

∑k−1
`=1 t` + tk + 1

2 , and in the second case, by the amortized bound

1 +
∑k
`=1 t` + tk+1 + 1

2 , where t` = 2
⌊
c`+α

2

⌋
. Note that the first two terms in both of these

bounds correspond to the sum of completion times of all the jobs in previous blocks (∆k),
and the second term corresponds to the amortized completion time of job j in the last block.
Simplifying the bound in the first case, we get

uj ≤ cα + c1+α +
k−1∑
`=2

c`+α + ck+α + 1
2 + 1− cα − c1+α + 2

⌊
c1+α

2

⌋

=
k−1∑
`=0

c`+α + ck+α

2 + 3
2 + βj = ck+α

(
1

c− 1 + 1
2

)
− cα

c− 1 + 3
2 + βj ,
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where βj = 2
⌊
c1+α

2

⌋
− cα − c1+α. For the second case, we obtain the following:

uj ≤ ck+1+α
(

1
c− 1 + 1

2

)
− cα

c− 1 + 3
2 + βj .

Taking the expectation of uj over α, we get

E [uj ] ≤
∫ 1

logc d

(
ck+α c+ 1

2(c− 1) −
cα

c− 1 + 3
2 + βj

)
dα+ (3)∫ logc d

0

(
ck+1+α c+ 1

2(c− 1) −
cα

c− 1 + 3
2 + βj

)
dα

= c+ 1
2(c− 1)c

k

∫ 1

logc d
cαdα+ c+ 1

2(c− 1)c
k+1

∫ logc d

0
cαdα+ (4)∫ 1

0

(
− cα

c− 1 + 3
2 + βj

)
dα

= c− 1
ln c ·

c+ 1
2(c− 1)dc

k − 1
ln c + 3

2 +
∫ 1

0
βjdα. (5)

It remains to bound
∫ 1

0 βjdα =
∫ 1

0

(
2
⌊
c1+α

2

⌋
− cα − c1+α

)
dα. Observe that

⌊
c1+α/2

⌋
= κ

where κ ∈ {1, . . . , 6} is such that 1 + α ∈ [logc 2κ, logc 2(κ+ 1)) for 3 ≤ c <
√

14. The range
for parameter c is chosen with some foresight. Therefore,∫ 1

0
2
⌊
c1+α

2

⌋
dα = 2

(∫ logc 4−1

0
1dα +

∫ logc 6−1

logc 4−1
2dα + . . .+

∫ 1

logc 12−1
6dα

)
= 22− 2 logc 23040.

Finally,∫ 1

0
βjdα =

∫ 1

0

(
2
⌊
c1+α

2

⌋
− cα − c1+α

)
dα = 22− 2 logc 23040− c− 1

ln c −
c(c− 1)

ln c .

Substituting this value in Equation (5) and simplifying, we get

uj ≤
coptj (c+ 1)

2 ln c + 47
2 − 2 logc 23040− c2

ln c ≤
coptj (c+ 1)

2 ln c ,

where the second inequality holds because 47
2 − 2 logc 23040− c2

ln c is a negative term for c > 0.
For c = 3.59, we obtain the claimed approximation ratio of 1.796. J
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