
Further Approximations for Demand Matching:
Matroid Constraints and Minor-Closed Graphs∗

Sara Ahmadian1 and Zachary Friggstad†2

1 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada
sahmadian@uwaterloo.ca

2 Department of Computing Science, University of Alberta, Edmonton, Canada
zacharyf@ualberta.ca

Abstract
We pursue a study of the Generalized Demand Matching problem, a common generalization
of the b-Matching and Knapsack problems. Here, we are given a graph with vertex capacities,
edge profits, and asymmetric demands on the edges. The goal is to find a maximum-profit subset
of edges so the demands of chosen edges do not violate the vertex capacities. This problem is
APX-hard and constant-factor approximations are already known.

Our main results fall into two categories. First, using iterated relaxation and various filtering
strategies, we show with an efficient rounding algorithm that if an additional matroid structure
M is given and we further only allow sets F ⊆ E that are independent in M, the natural
LP relaxation has an integrality gap of at most 25

3 ≈ 8.333. This can be further improved
in various special cases, for example we improve over the 15-approximation for the previously-
studied Coupled Placement problem [Korupolu et al. 2014] by giving a 7-approximation.

Using similar techniques, we show the problem of computing a minimum-cost base in M
satisfying vertex capacities admits a (1, 3)-bicriteria approximation: the cost is at most the
optimum and the capacities are violated by a factor of at most 3. This improves over the
previous (1, 4)-approximation in the special case that M is the graphic matroid over the given
graph [Fukanaga and Nagamochi, 2009].

Second, we show Demand Matching admits a polynomial-time approximation scheme in
graphs that exclude a fixed minor. If all demands are polynomially-bounded integers, this is
somewhat easy using dynamic programming in bounded-treewidth graphs. Our main technical
contribution is a sparsification lemma that allows us to scale the demands of some items to be
used in a more intricate dynamic programming algorithm, followed by some randomized rounding
to filter our scaled-demand solution to one whose original demands satisfy all constraints.

1998 ACM Subject Classification F.2.2 Computations on Discrete Structures, G.2.1 Combina-
torial Algorithms, G.1.6 Optimization

Keywords and phrases Approximation Algorithms, Column-Restricted Packing, Demand Match-
ing, Matroids, Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.55

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10396.
† This research was undertaken, in part, thanks to funding from the Canada Research Chairs program

and an NSERC Discovery Grant.

EA
T

C
S

© Sara Ahmadian and Zachary Friggstad;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 55; pp. 55:1–55:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.55
https://arxiv.org/abs/1705.10396
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Matroid Constraints and Minor-Closed Graphs

1 Introduction

Many difficult combinatorial optimization problems involve resource allocation. Typically,
we have a collection of resources, each with finite supply or capacity. Additionally there are
tasks to be accomplished, each with certain requirements or demands for various resources.
Frequently the goal is to select a maximum value set of tasks and allocate the required amount
of resources to each task while ensuring we have enough resources to accomplish the chosen
tasks. This is a very well-studied paradigm: classic problems include Knapsack, Maximum
Matching, and Maximum Independent Set, and more recently-studied problems include
Unsplittable Flow [1] and Coupled Placement [9]. In general, we cannot hope to
get non-trivial approximation algorithms for these problems. Even the simple setting of
Maximum Independent Set is inapproximable [8, 18], so research frequently focuses on
well-structured special cases.

Our primary focus is when each task requires at most two different resources. Formally, in
Generalized Demand Matching (GDM) we are given a graph G = (V,E) with, perhaps,
parallel edges. The vertices should be thought of as resources and the tasks as edges. Each
v ∈ V has a capacity bv ≥ 0 and each uv ∈ E has demands du,e, dv,e ≥ 0 and a value puv ≥ 0.
A subset M ⊆ E is feasible if dv(δ(v) ∩M) ≤ bv for each v ∈ V (we use dv(S) as shorthand
for
∑
e∈S dv,e when S ⊆ δ(v)). We note that the simpler term Demand Matching (DM) is

used when du,e = dv,e for each edge e = uv (e.g. [15, 17]).
DM is well-studied from the perspective of approximation algorithms. It is fairly easy to

get constant-factor approximations and some work has been done refining these constants.
Moreover the integrality gap of a natural LP relaxation is also known to be no worse than a
constant (see the related work section). On the other hand, DM is APX-hard [15].

Our main results come in two flavours. First, we look to a generalization we call
Matroidal Demand Matching (GDMM). Here, we are given the same input as in GDM
but there is also a matroidM = (E, I) over the edges E with independence system I ⊆ 2E
that further restricts feasibility of a solution. A set F ⊆ E is feasible if it is feasible as a
solution to the underlying GDM problem and also F ∈ I. We assume M is given by an
efficient independence oracle. Our algorithms will run in time that is polynomial in the size
of G and the maximum running time of the independence oracle.

As a special case, GDMM includes the previously-studied Coupled Placement problem.
In Coupled Placement, we are given a bipartite graph G = (V,E) with vertex capacities.
The tasks are not individual edges, rather for each task j and each e = uv ∈ E we have
demands dju,e, djv,e placed on the respective endpoints u, v for placing j on edge e. Finally,
each task j has a profit pj and the goal is to select a maximum-profit subset of tasks j and,
for each chosen task j, assign j to an edge of G so vertex capacities are not violated. We
note that an edge may receive many different tasks. This can be viewed as an instance of
GDMM by creating parallel copies of each edge e ∈ E, one for each task j with corresponding
demand values and profit for j and lettingM be the partition matroid ensuring we take at
most one edge corresponding to any task.

For another interesting case, consider an instance where, in addition to tasks requiring
resources from a shared pool, each also needs to be connected to a nearby power outlet. We
can model such an instance by lettingM be a transversal matroid over a bipartite graph
where tasks form one side, outlets form the other side, and an edge indicates the edge can
reach the outlet.

In fact GDMM can be viewed as a packing problem with a particular submodular objective
function. These are studied in [2] so the problem is not new; our results are improved

S. Ahmadian and Z. Friggstad 55:3

approximations. Our techniques also apply to give bicriteria approximations for the variant
of GDMM where we must pack a cheap base of the matroid while obeying congestion bounds.
In the special case whereM is the graphic matroid over G itself (i.e. the Minimum Bounded-
Congestion Spanning Tree problem), we get an improved bicriteria approximation.

Second, we study GDM in special graph classes. In particular, we demonstrate a PTAS
in families of graphs that exclude a fixed minor. This is complemented by showing that even
DM is strongly NP-hard in simple planar graphs, thereby ruling out a fully-polynomial time
approximation scheme (FPTAS) in simple planar graphs unless P = NP.

1.1 Statements of Results and Techniques
We first establish some notation. For a matroidM = (E, I), we let rM : 2E → Z≥0 be the
rank function for M. We omit the subscript M if the matroid is clear from the context.
For v ∈ V we let δ(v) be all edges having v as one endpoint; for F ⊆ E we let δF (v) denote
δ(v) ∩ F . For a vector of values x indexed by a set S, we let x(A) =

∑
i∈A xi for any A ⊆ S.

A polynomial-time approximation scheme (PTAS) is an approximation algorithm that
accepts an additional parameter ε > 0. It finds a (1 + ε)-approximation in time O(nf(ε))
for some function f (where n is the size of the input apart from ε), so the running time is
polynomial for any constant ε > 0. An FPTAS is a PTAS with running time being polynomial
in 1

ε and n.
We say an instance of GDM has a consistent ordering of edges if E can be ordered

such that the restriction of this ordering to each set δ(v) has these edges e ∈ E appear in
nondecreasing order of demands dv,e. For example, DM itself has a consistent ordering of
demands, just sort edges by their demand values. This more general case was studied in [13].
We say the instance is conflict-free if for any e, f ∈ E we have that {e, f} does not violate
the capacity of any vertex.

In the first half of our paper, we mostly study the following linear-programming relaxation
of GDMM. Here, r : 2E → Z is the rank function forM.

max :

∑
e∈E

pexe :
∑
e∈δ(v)

dv,exe ≤ bv ∀v ∈ V, x(A) ≤ r(A) ∀A ⊆ E, x ≥ 0

 (LP-M)

Note x({e}) ≤ 1 is enforced for each e ∈ E as r({e}) ≤ 1. It is well-known that the constraints
can be separated in polynomial time when given an efficient independence oracle forM, so
we can find an extreme point optimum solution to (LP-M) in polynomial time.

Throughout, we assume each edge is feasible by itself. This is without loss of generality:
an edge that is infeasible by itself can be discarded1. We first prove the following.

I Theorem 1. Let OPT(LP-M) denote the optimum solution value of (LP-M). If dv,e ≤ bv
for each v ∈ V, e ∈ δ(v) then we can find, in polynomial time, a feasible solution M ⊆ E such
that OPT(LP-M)/p(M) (and, thus, the integrality gap) is at most:

25
3 in general graphs

7 in bipartite graphs
5 if the instance has a consistent ordering of edges
4 if the instance is conflict-free
1 +O(ε1/3) if dv,e ≤ ε · bv for each v ∈ V, e ∈ δ(v) (i.e. edges are ε-small)

1 This is a standard step when studying packing LPs, even the natural Knapsack LP relaxation has an
unbounded integrality gap if we consider items that do not fit by themselves.

ICALP 2017

55:4 Matroid Constraints and Minor-Closed Graphs

These bounds also apply to graphs with parallel edges, so we get a 7-approximation for
Coupled Placement, which beats the previously-stated 15-approximation in [9].

We prove all bounds in Theorem 1 using the same framework: iterated relaxation to
find some M′ ∈ I with p(M′) ≥ OPTLP that may violate some capacities by a controlled
amount, followed by various strategies to pare the solution down to a feasible solution. We
note constant-factor approximations for GDMM were already implicit in [2], the bounds
in Theorem 1 improve over their bounds and are relative to (LP-M) whereas [2] involves
multilinear extensions of submodular functions.

Our techniques can also be used to address a variant of GDMM. The input is the
same, except we are required to select a base ofM. The goal is to find a minimum-value
base satisfying the vertex capacities. More formally, let Minimum Bounded-Congestion
Matroid Basis be given the same way as in GDMM, except the goal is to find a minimum-
cost base B ofM satisfying the vertex capacities (i.e. the cheapest base that is a solution to
the GDMM problem).

When all demands are 1, this is the Minimum Bounded-Degree Matroid Basis
problem which, itself, contains the famous Minimum Bounded-Degree Spanning Tree
problem. As an important special case, we let Minimum Bounded-Congestion Spanning
Tree denote the problem when k = 2 with arbitrary demands where M is the graphic
matroid over G. Even determining if there is a feasible solution is NP-hard, so we settle with
approximations that may violate the capacities a bit. Consider the following LP relaxation,
which we write when G can even be a hypergraph.

min :

∑
e∈E

pexe :
∑
e∈δ(v)

dv,exe ≤ bv ∀v ∈ V, x(A) ≤ r(A) ∀A ⊆ E, x(E) = r(E), x ≥ 0

(LP-B)

As a side effect of how we prove Theorem 1, we also prove the following.

I Corollary 2. If G is a hypergraph where each edge has size at most k, then in polynomial
time we can either determine there is no integral point in (LP-B) or we can find a base B
ofM such that p(B) ≤ OPT(LP-B) and dv(δB(v)) ≤ bu + k ·maxe∈δ(v) dv,e for each v ∈ V .

I Theorem 3. There is a (1, 1 + k)-bicriteria approximation for Minimum Bounded-
Congestion Matroid Basis.

In particular, there is a (1, 3)-bicriteria approximation for Minimum Bounded-Congestion
Spanning Tree, beating the previous best (1, 4)-bicriteria approximation [5]. Theorem
3 matches the bound in [9] for the special case of Coupled Placement in k-partite
hypergraphs, but in a more general setting.

One could also ask if we can generalize Theorem 1 to hypergraphs. An O(k)-approximation
is already known [2] and the integrality gap of (LP-M) is Ω(k) even without matroid
constraints, so we could not hope for an asymptotically better approximation. We remind
the reader that our focus in GDMM is improved constants in the case of graphs (k = 2).

Our second class of results are quite easy to state. We study GDM in families of graphs
that exclude a fixed minor. It is easy to see GDM is strongly NP-hard in planar graphs
if one allows parallel edges as it is even strongly NP-hard with just two vertices, e.g. see
[6, 11]. We show the presence of parallel edges is not the only obstacle to getting an FPTAS
for GDM (or even DM) in planar graphs.

I Theorem 4. DM is NP-hard in simple, bipartite planar graphs even if all demands,
capacities, values, and vertex degrees are integers bounded by a constant.

S. Ahmadian and Z. Friggstad 55:5

We then present our main result in this vein, which gives a PTAS for GDM in planar
graphs among other graph classes.

I Theorem 5. GDM admits a PTAS in families of graphs that exclude a fixed minor.

This is obtained through the usual reduction to bounded-treewidth graphs [4]. We would
like to scale demands to be polynomially-bounded integers, as then it is easy to solve the
problem using dynamic programming over the tree decomposition. But packing problems are
too fragile for scaling demands naively: an infeasible solution may be regarded as feasible in
the scaled instance.

We circumvent this issue with a sparsification lemma showing there is a near-optimal
solution M′ where, for each vertex v, after packing a constant number of edges across v the
remaining edges in δM′(v) have very small demand compared with even the residual capacity.
Our dynamic programming algorithm then guesses these large edges in each bag of the tree
decomposition and packs the remaining edges according to scaled values. The resulting
solution may be slightly infeasible, but the blame rests on our scaling of small edges and
certain pruning techniques can be used to whittle this solution down to a feasible solution
with little loss in the profit.

1.2 Related Work
DM (the case with symmetric demands) is well-studied. Shepherd and Vetta initially give
a 3.264-approximation in general graphs and a 2.764-approximation in bipartite graphs
[15]. These are all with respect to the natural LP relaxation, namely (LP-M) with matroid
constraints replaced by xe ≤ 1,∀e ∈ E. They also prove that DM is APX-hard even in
bipartite graphs and give an FPTAS in the case G is a tree.

Parekh [13] improved the integrality gap bound for general graphs to 3 in cases of GDM
that have a consistent ordering of edges. Singh and Wu improve the gap in bipartite graphs
to 2.709 [17]. The lower bound on the integrality gap for general graphs is 3 [15], so the
bound in [13] is tight. In bipartite graphs, the gap is at least 2.699 [17].

Bansal, Korula, Nagarajan, and Srinivasan study the generalization of GDM to hyper-
graphs [2]. They show if each edge has at most k endpoints, the integrality gap of the natural
LP relaxation is Θ(k). They also prove that a slight strengthening of this LP has a gap
of at most (e+ o(1)) · k. Even more relevant to our results is that they prove if the value
function over the edges is submodular, then rounding a relaxation based on the multilinear
extension of submodular functions yields a

(
e2

e−1 + o(1)
)
· k-approximation. For k = 2, this

immediately gives a constant-factor approximation for GDMM by considering the submodular
objective function f : 2E → R given by f(S) = max{p(S′) : S′ ⊆ S, S′ ∈ I}.

They briefly comment on the case k = 2 in their work and say that even optimizations to
their analysis for this special case yields only a 11.6-approximation for DM (i.e. without a
matroid constraint). So our 25

3 -approximation for GDMM is an improvement over their work.
They also study the case where dv,e ≤ ε · bv for each v ∈ V and each hyperedge e ∈ δ(v) and
present an algorithm for GDM with submodular objective functions whose approximation
guarantee tends to 4e2

e−1 as ε→ 0 (with k fixed).
As noted earlier, our results yield improvements for two specific problems. First, our

7-approximation for GDMM in bipartite graphs improves over the 15-approximation for
Coupled Placement [9]. The generalization of Coupled Placement to k-partite
hypergraphs is also studied in [9] where they obtain an O(k3)-approximation, but this
was already inferior to the O(k)-approximation in [2] when viewing it as a submodular
optimization problem with packing constraints.

ICALP 2017

55:6 Matroid Constraints and Minor-Closed Graphs

Second, our work also applies to the Minimum-Congestion Spanning Tree problem,
defined earlier. Determining if there is even a feasible solution is NP-hard as this models
the Hamiltonian Path problem. A famous result of Singh and Lau shows if all demands are
1 (so we want to bound the degrees of the vertices) then we can find a spanning tree with
cost at most the optimum cost (if there is any solution) that violates the degree bounds
additively by +1 [16]. In the case of arbitrary demands, the best approximation so far
is a (1, 4)-approximation [5]: it finds a spanning tree whose cost is at most the optimal
cost and violates the capacities by a factor of at most 4. It is known that obtaining a
(1, c)-approximation is NP-hard for any c < 2 [7].

2 Approximation Algorithm for Demand Matching Problem

Here we present approximation algorithms for GDMM and prove Theorem 1 and Corollary 2.
Our algorithm consists of two phases: the iterative relaxation phase and the pruning phase.
The first finds a set M′ ∈ I with p(M′) ≥ OPT(LP-M) that places demand at most
bv + 2 ·maxe∈δM′ (v) dv,e on each v ∈ V . The second prunes M′ to a feasible solution, different
pruning strategies are employed to prove the various bounds in Theorem 1.

2.1 Iterative Relaxation Phase
This part is presented for the more general case of hypergraphs where each edge has at most
k endpoints. Our GDMM results in Theorem 1 pertain to k = 2, but we will use properties of
this phase in our proof of Corollary 2. The algorithm starts with (LP-M) and iteratively
removes edge variables and vertex capacities.

We use the following notation. For some W ⊆ V, F ⊆ E, a matroidM′ with ground set
F , and values b′v, v ∈ W we let LP-M[W,F,M′, b′] denote the LP relaxation we get from
(LP-M) over the graph (V, F) with matroid M′ where we drop capacity constraints for
v ∈ V −W and use capacities b′v for v ∈W .

Note that the relevant graph for LP-M[W,F,M′, b′] still has all vertices V , it is just that
some of the capacity constraints are dropped. Also, for a matroidM′ and an edge e ∈ F we
letM′ − e be the matroid obtained by deleting e and, if {e} is independent inM′, we let
M′/e be the matroid obtained by contracting e (i.e. a set A is independent inM′/e if and
only if A ∪ {e} is independent inM′).

Algorithm 1 describes the steps in the iterated relaxation phase. Correct execution and
termination are consequences of the following two lemmas. Their proofs are standard for
iterated techniques and are deferred to the full version.

I Lemma 6. Throughout the execution of the algorithm, wheneverM′ is contracted by e we
have {e} is independent (i.e. e is not a loop) inM′.

I Lemma 7. The algorithm terminates in polynomial time and the returned set M′ is an
independent set in M with p(M′) ≥ OPT(LP-M). Furthermore, if at any point W ′ = ∅
then the corresponding extreme point solution x∗ is integral.

The last statement in the lemma emphasizes the last case in the body of the loop cannot be
encountered if W ′ = ∅.

Next, we prove M′ is a feasible demand matching with respect to capacities bv + k ·
maxe∈δ(v) de,v for each v ∈ V by utilizing the following claim.

I Claim 8. In any iteration, if 0 < x∗e < 1 for each e ∈ F then |δF (v)| ≤ x∗(δF (v)) + k for
some v ∈W .

S. Ahmadian and Z. Friggstad 55:7

Algorithm 1 Iterated Relaxation Procedure for GDMM.
W ← V, F ← E,M′ ←M
b′v ← bv for each v ∈ V
M′ ← ∅
while F 6= ∅ do

solve LP-M[W,F,M′, b′] to get an optimum extreme point x∗
if x∗e = 0 for some e ∈ F then

F ← F − {e}
M′ ←M′ − e . fix x∗e to 0 from now on

else if x∗e = 1 for some e ∈ F then
F ← F − {e}
M′ ←M′/e
M′ ← M′ ∪ {e} . fix x∗e to 1 from now on
b′v ← b′v − dv,e for each endpoint v of e . permanently allocate space for e

else
let v be any vertex in W with minimum value |δF (v)| − x∗(δF (v))
W ←W − {v} . drop the capacity constraint for v

return M′

Proof. Let A1 (A2 (. . . (At ⊆ F be any maximal-length chain of tight sets. That is,
x∗(Ai) = rM′(Ai) for each Ai in the chain. Then the indicator vectors χAi ∈ {0, 1}F of
the sets Ai are linearly independent and every other A ⊆ F with x∗(Ai) = rM′(A) has
χA ∈ span{χAi : 1 ≤ i ≤ t}. This can be proven by using uncrossing techniques that exploit
submodularity of rM′ , see Chapter 5 of [10].

Now, as Ai−1 (Ai for 1 < i ≤ t and x∗e > 0 for each e ∈ F , we see rM′(Ai) = x∗(Ai) >
x∗(Ai−1) = rM′(Ai−1). Since the ranks are integral and rM′(A1) 6= 0 (as A1 6= ∅), then
rM(Ai) ≥ i for all 1 ≤ i ≤ t.

Note that |F | ≤ t + |W | because of the number of non-zero (fractional) variables is at
most the size of a basis for the tight constraints. We have∑

v∈W
|δF (v)| − x∗(δF (v)) ≤

∑
v∈V
|δF (v)| − x∗(δF (v)) ≤ k · (|F | − x∗(F))

≤ k · (|F | − rM′(At)) ≤ k · (|F | − t) ≤ k · |W |.

The second bound holds because each edge has at most k endpoints, so it can contribute
1− x∗e ≥ 0 at most k times throughout the sum. Thus, some v ∈W satisfies the claim. J

I Lemma 9. Algorithm 1 returns a set M′ ∈ I such that dv(δM′(v)− L(v)) ≤ bv where L(v)
denotes the min{k, |δM′(v)|} edges e ∈ δM′(v) with greatest demand dv,e across v.

Proof. We know M′ ∈ I by Lemma 7. Consider an iteration where a vertex v ∈ W is
removed from W . Claim 8 shows |δF (v)| ≤ x∗(δF (v)) + k.

Let F kv = {e1, . . . , ek} be the k edges of this iteration in δF (v) having largest demand (if
|δF (v)| < k then let F kv = δF (v)). Then∑

e∈δF (v)−Fk
v

dv,e ≤
∑

e∈δF (v)

dv,e · x∗e,v ≤ b′v.

The first bound follows because if we shift x∗-values from larger- to smaller-demand edges the
value

∑
e∈δF (v) dv,ex

∗
e,v does not increase. We can continue to do this until each e ∈ δF (v)−F kv

has one unit of x∗-mass because |δF (v)| − k ≤ x∗(δF (v)).

ICALP 2017

55:8 Matroid Constraints and Minor-Closed Graphs

ss

ll

ll

ss

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll ll

Figure 1 Left: The graph with vertex labels s and l and edges A. Right: The graph G obtained
by “shattering” the s vertices. Notice the maximum degree is 2, the ss edges are isolated, and the
sl edges lie on paths.

At this point of the algorithm, we have dv(δM(v)) = bv − b′v (letting M denote the set M′
from the current iteration). So dv(δF (v)− F kv) + dv(δM(v)) ≤ bv. We conclude by noting the
edges returned by the algorithm contains only edges in M ∪ F so dv(M′ − L(v)) ≤ bv. J

Proof of Corollary 2. If there is no feasible solution to (LP-M), then there can be no
integral solution. Otherwise, we use the same iterated relaxation technique as in Algorithm
1, except on (LP-B), whose polytope is the restriction of the polytope from (LP-M) to the
base polytope ofM (which is also integral, Corollary 40.2d of [14]).

All arguments are proven in essentially the same way. So we can find, in polynomial time,
a base B with p(B) ≤ OPT(LP-B) where dv(δB(v)) ≤ bv + k ·maxe∈δB(v) dv,e. J

2.2 Pruning phase
We focus on GDMM (k = 2) in this section and show how to prune a set M′ ⊆ E satisfying
the properties of Lemma 9 to a feasible solution M ⊆ M′ while controlling the loss in its value.
Each part of Theorem 1 is proved through the following lemmas. In each, for a vertex v ∈ V
we let L(v) be the two edges with highest dv-value in δM′(v) (or L(v) = δM′(v) if |δM′(v)| ≤ 1).
We also let S(v) = δM′(v)− L(v) be the remaining edges. Note dv(δS(v)(v)) ≤ bv.

I Lemma 10. For arbitrary graph G and arbitrary demands, we can find a feasible demand
matching M ⊆ M′ with p(M) ≥ p(M′) · 3

25 .

Proof. For each vertex v, label v randomly with s with probability α or with l with
probability 1 − α (for α to be chosen later). Say e ∈ M′ agrees with the labelling for an
endpoint v if either e ∈ S(v) and v is labelled s, or v ∈ L(v) and v is labelled l. Let A ⊆ M′
be the edges agreeing with the labelling on both endpoints.

Modify the graph (V,A) by replacing each v ∈ V labelled s with |δA(v)| vertices and
reassigning the endpoint v of each e ∈ δA(v) to one of these vertices in a one-to-one fashion.
See Figure 1 for an illustration. Call this new graph G.

Each vertex in G has degree at most 2 so G decomposes naturally into paths and cycles.
Each path with ≥ 2 edges can be decomposed into 2 matchings and each cycle can be
decomposed into 3 matchings. Randomly choose one such matching for each path and cycle
to keep and discarding the remaining edges on these paths and cycles. Note edges uv of G
where u and v both had degree 1 are not discarded.

Let M be the resulting set of edges, viewed in the original graph G. Note that M is
feasible: any vertex labelled s already had its capacity satisfied by A because δA(v) ⊆ S(v).
Any vertex labelled l has at most one of its incident edges in A chosen to stay in M.

Let e = uv ∈ M′, we place a lower bound on Pr[e ∈ M] by analyzing a few cases.
If e ∈ S(u) ∩ S(v), then Pr[e ∈ M] = Pr[e ∈ A] = α2.

S. Ahmadian and Z. Friggstad 55:9

If e ∈ S(u) ∩ L(v) or vice-versa then Pr[e ∈ M] = α · (1− α)/2 (note e does not lie on a
cycle in G since one endpoint is labelled s).
If e ∈ L(u) ∩ L(v) then Pr[e ∈ M] = (1− α)2/3.

Choosing α = 2/5, we have E[p(M)] ≥ p(M′) · 3
25 . J

We can efficiently derandomize this technique as follows. First, we use a pairwise independent
family of random values to generate a probability space over labelings of V with O(|V |) events
such that the distribution of labels over pairs u, v ∈ V is the same as with independently
labelling the vertices. See Chapter 11 of [12] for details of this technique. For each such
labelling, we decompose the paths and cycles of G into matchings and keep the most profitable
matching from each path and cycle instead of randomly picking one.

I Lemma 11. For a conflict-free instance of GDMM, we can find a feasible solution M ⊆ M′
with p(M) ≥ p(M′)

4 .

Proof. The set A from the proof of Lemma 10 is already feasible so it does not need to be
pruned further. In this case, choose α = 1/2. J

I Lemma 12. If the given graph G is bipartite, then we can find a feasible solution M ⊆ M′
with p(M) ≥ p(M′)

7 .

Proof. Say VL, VR are the two sides of V . We first partition M′ into 4 groups:

{uv ∈ M′ : uv ∈ S(u) ∩ S(v)},
{uv ∈ M′ : uv ∈ L(u) ∩ L(v)},
{uv ∈ M′ : uv ∈ S(u) ∩ L(v)},
{uv ∈ M′ : uv ∈ L(u) ∩ S(v)}.

The first set is feasible. The latter three sets can each be partitioned into two feasible sets
as follows. For one of these sets, form G as in the proof of Lemma 10. Each cycle can also
be decomposed into two matchings because G, thus G, is bipartite. Between all sets listed
above, we have partitioned M′ into 7 feasible sets. Let M be one with maximum profit. J

I Lemma 13. For an arbitrary graph G = (V,E) with a consistent ordering on edges, we
can find a feasible demand matching M ⊆ M′ with p(M) ≥ p(M′)

5 .

Proof. We partition M′ into five groups in this case. Consider the edges in decreasing order
of the consistent ordering. When edge e = uv is considered, assign it to a group that does
not include edges in L(u) ∪ L(v) that come before e in the ordering. As |L(u) ∪ L(v)| ≤ 4,
the edges can be partitioned into five groups this way. Each group A is a feasible demand
matching since δA(v) ⊆ S(v) or |δA(v)| = 1 for each vertex v. Now let M be the group with
maximum profit, so p(M) ≥ p(M′)

5 . J

I Lemma 14. If dv,e ≤ ε ·bv for each v ∈ V, e ∈ δ(v), we can find a feasible demand matching
M ⊆ M′ with p(M) ≥ (1−O(ε1/3)) · p(M′).

This is proven using a common randomized pruning procedure so the proof is skipped in this
extended abstract. See, for example, [3] for a similar treatment in another packing problem.

ICALP 2017

55:10 Matroid Constraints and Minor-Closed Graphs

3 Demand Matching in Excluded-Minor Families

In this section we prove GDM admits a PTAS in graphs that exclude a fixed graph as a
minor. Our proof of Theorem 4 (the NP-hardness) appears in the full version. Throughout
we let OPT denote the optimum solution value to the given GDM instance.

Let H be a graph and let GH be all graphs that exclude H as a minor. Our PTAS uses
the following decomposition.

I Theorem 15 (Demaine, Hajiaghayi, and Kawarabayashi [4]). There is a constant cH depend-
ing only on H such that for any k and any G ∈ GH , the vertices V of G can be partitioned
into k + 1 disjoint sets so that the union of any k of these sets induce a graph with treewidth
bounded by cH · k. Such a partition can be found in time that is polynomial in |V |.

Using this decomposition, we have a PTAS for GDM when G ∈ GH if we have a PTAS for
GDM in bounded-treewidth graphs.

Intuition for our approach is given at the end of Section 1.1. We assume, for simplicity,
that all dv,e-values are distinct so we can naturally speak of the largest demands in a set.
This is without loss of generality, we could scale demands and capacities by a common value
so they are integers and then subtract 2i+j

3|E|2 from the j’th endpoint of the i’th edge according
to some arbitrary ordering. Such a perturbation does not change feasibility of solutions as
the total amount subtracted from all edges is < 1.

3.1 A Sparsification Lemma
We present our sparsification lemma, which even holds for general instances of GDMM.

I Lemma 16 (Sparsification Lemma). For each ε > 0 there is a feasible solution M ⊆ E with
the following properties.

p(M) ≥ (1− 2ε) ·OPT
for each v ∈ V , there is some Mv ⊆ M with |Mv| ≤ 1/ε2 such that dv,e ≤ ε · (bv −
dv(δMv (v))) for all e ∈ δM−Mv (v)

Think of Mv as the “large” edges in δM(v) and δM−Mv
(v) as the “small” edges in δM(v).

Note that some e ∈ M may be designated large on one endpoint and small on the other.

Proof. Let M∗ be an optimum solution. For each v ∈ V , if |δM∗(v)| ≥ 1/ε2 then let Lv be
the 1/ε2 edges in δM∗(v) with greatest dv-demand and Rv be a random subset of Lv of size
1/ε. If |δM∗(v)| < 1/ε2, simply let Lv = δM∗(v) and Rv = ∅.

Set M = M∗−∪v∈VRv and for each v ∈ V set Mv = M∩Lv. Clearly M is feasible as it is
a subset of the optimum solution. For each e = uv ∈ M∗, e lies in Ru or Rv with probability
at most ε each, so Pr[e 6∈ M] ≤ 2ε. Thus, E[p(M)] ≥ (1− 2ε) ·OPT.

Now we focus on proving the second property for M. Let v be an arbitrary vertex in V .
By construction |Mv| ≤ |Lv| ≤ 1/ε2. If |Rv| = 0 then δM−Mv (v) = ∅, otherwise, |Rv| = 1/ε
and for each remaining e ∈ δM−Mv

(v), we note that dv,e + dv(δMv
(v)) +

∑
e′∈Rv

dv,e′ ≤ bv
because the terms represent a subset of edges of M∗ incident to v. Rearranging and using
the fact that dv,e′ ≥ dv,e for any e′ ∈ Rv shows 1

ε · dv,e ≤ bv − dv(δMv
(v)). J

This motivates the following notion of a relaxed solution.

I Definition 17. An ε-relaxed solution is a subset M ⊆ E along with sets Mv ⊆ δM(v) with
|Mv| ≤ 1/ε2 for each v ∈ V such that the following hold. First, let bv = bv − dv(δMv (v)) for
each v ∈ V . Next, for each e ∈ δM−Mv

(v), let d′v,e be the value of dv,e rounded down to the
nearest integer multiple of ε

|E|bv. Then the following must hold:

S. Ahmadian and Z. Friggstad 55:11

Large Edge Feasibility: dv(δMv (v)) ≤ bv for each v ∈ V .
Small Edges: dv,e ≤ εbv for each v ∈ V and each e ∈ δM−Mv

(v).
Discretized Small Edge Feasibility: d′v(δM−Mv

(v)) ≤ bv for each v ∈ V .
The set M in an ε-relaxed solution is not necessarily a feasible GDM solution under the
original demands d. As we will see shortly, it can be pruned to get a feasible solution without
losing much value. Note the scaling from d to d′ for some of the edges e in the definition is
done independently for each endpoint of e: the demand at different endpoints may be shifted
down by different amounts.

Sometimes we informally say just a set M ⊆ E itself is an ε-relaxed solution even if we do
not explicitly mention the corresponding Mv sets.

I Lemma 18. Let M be an ε-relaxed solution with maximum possible value p(M). Then
p(M) ≥ (1− 2ε) ·OPT .

Proof. The set M and its corresponding Mv subsets from Lemma 16 suffices. J

I Lemma 19. Given any ε-relaxed solution M ⊆ E, we can efficiently find some M′ ⊆ M
that is a feasible GDM solution with p(M′) ≥ (1−O(ε1/3)) · p(M).

The idea is that the {0, 1} indicator vector of M is almost a feasible solution to (LP-M)
with the trivial matroid I = 2E in the residual instance after all “large” edges are packed
so it can be pruned to a feasible solution while losing very little value by appealing to the
last bound in Theorem 1. There is a minor subtlety in how to deal with edges that are both
“small” and “large”. The proof is deferred to the full version.

3.2 A Dynamic Programming Algorithm
Suppose G = (V,E) has treewidth at most τ and that we are given a tree decomposition
T = (B, ET) of G where each B ∈ B has |B| ≤ τ + 1. Recall this means the following:
1. For each v ∈ V , the set of bags Bv = {B ∈ B : v ∈ B} form a connected subtree of T .
2. For each uv ∈ E, there is at least one bag B ∈ B with u, v ∈ B.
Let Br ∈ B be some arbitrarily chosen root bag. View T as being rooted at Br. We may
assume that each B ∈ B has at most two children. In fact, it simplifies our recurrence a bit
to assume each B ∈ B is either a leaf in T or has precisely two children. This is without loss
of generality. Arbitrarily order the children of a non-leaf vertex so one is the left child and
one is the right child. For a bag B, let TB be the subtree of T rooted at B (so TBr = T).

For each v ∈ V , say Bv is the bag containing v that is closest to the root Br. Note for
uv ∈ E with Bu 6= Bv that one of Bu or Bv lies on the path between the other and Br

(by the properties of tree decompositions). For each B ∈ B and each v ∈ B, we partition a
subset of the edges of δ(v) into four groups:

δhere(v : B) = {uv ∈ δ(v) : Bu = B}.
δleft(v : B) = {uv ∈ δ(v) : Bu lies in the left subtree of B}.
δright(v : B) = {uv ∈ δ(v) : Bu lies in the right subtree of B}.
δup(v : B) = {uv ∈ δ(v) : Bu lies between B and Br}.

The only other edges uv ∈ δ(v) not accounted for here do not have Bu in either TB or
between B and Br. We note if B = Bv, then every edge in δ(v) lies in one of the four groups
and for any uv ∈ δup(v : B) we must have u ∈ B (otherwise no bag contains u and v, which is
impossible since uv ∈ E) and, consequently, Bu lies between B and Br. This will be helpful
to remember when we describe the recurrence.

ICALP 2017

55:12 Matroid Constraints and Minor-Closed Graphs

Dynamic Programming States

Let ∆ := {here, left, right, up} be the set of “directions” used above. The DP states are
given by tuples Φ with the following components.

A bag B ∈ B.
For each v ∈ B, a subset Mv ⊆ δ(v) with |Mv| ≤ 1/ε2.
For each v ∈ B and κ ∈ ∆, an integer av,κ ∈ {0, . . . , |E|/ε} such that

∑
κ∈∆ av,κ ≤ |E|ε .

The number of such tuples is at most |B| · |E|O(τ/ε2) · (|E|/ε)O(τ), which is polynomial in G
when τ and ε are regarded as constants. The idea behind av,κ is that it describes how to
reserve the discretized d′v-demand for edges uv ∈ δκ(v : B)−Mv. Of course, other edges in
δ(v) not in the partitions δκ(v : B) may be in an optimal ε-relaxed solution. They will either
be explicitly guessed in Mv or will be considered in a state higher up the tree by the time
the bag Bv is processed.

Dynamic Programming Values

For each such tuple Φ = (B; 〈Mv〉v∈B ; 〈av,κ〉v∈B,κ∈∆), we let f(Φ) denote the maximum
total value of an ε-relaxed solution M′ ⊆ E (with corresponding large sets M ′v for v ∈ V)
satisfying the following properties. We slightly abuse notation and say v ∈ TB for some
v ∈ V if v lies in some bag of the subtree TB .

Each uv ∈ M′ has at least one endpoint in TB .
M ′v = Mv for each v ∈ B.
Each uv ∈ M′ with both Bu, Bv 6∈ TB lies in M ′u ∪M ′v.
For v ∈ B let bv = bv − dv(δM ′v (v)). For κ ∈ ∆ and v ∈ B, it must be that d′v(δκ(v :
B) ∩M′ −M ′v) ≤ av,κ · ε

|E| · bv where d′v,e is the largest integer multiple of ε
|E| · bv that is

at most dv,e for e ∈ δM′−M ′v (v).
The last point is a bit technical. Intuitively, it says the scaled demand of small edges incident
to v coming from some direction κ ∈ ∆ fit in the capacity of v reserved for that direction.

If there is no such F , we say f(Φ) = −∞. Note the maximum of f(Φ) over all configura-
tions Φ for the root bag Br is the maximum value over all ε-relaxed solutions.

3.2.1 The Recurrence

For the sake of space, details behind the recurrence are deferred to the full version. We
just outline the main ideas. A tuple Φ is a base case if the bag B is a leaf of T . In this
case, only edges in some δκ(v : B) set for κ ∈ {here, up} are considered (there are none in
the directions left, right). We find the optimal way to pack such edges that are not part
of a “large” set Mv while ensuring the d′v-demands do not violate the residual capacities
bv and, in particular, for each direction κ we ensure this packing does not violate the part
of the residual capacity for that direction allocated by the av,κ values. This subproblem
is just the Multi-Dimensional Knapsack problem with 2|B| knapsacks. A standard
pseudopolynomial-time algorithm can be used to solve it as the scaled demands are from a
polynomial-size discrete range.

For the recursive step, we try all pairs of configurations Φleft,Φright that are “consistent”
with Φ. Really this just means they agree on the sets Mv for shared vertices v and they agree
on how much demand av,κ should be allocated for each direction. For each such consistent
pair, we pack small edges in δhere(v : B) and δup(v : B) optimally such that their scaled
demands do not violate the av,κ-capacities, again using Multi-Dimensional Knapsack.

S. Ahmadian and Z. Friggstad 55:13

References
1 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing

2 + ε approximation for unsplittable flow on a path. In Proceedings of the Twenty-fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 26–41. Society for Industrial
and Applied Mathematics, 2014.

2 Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srinivasan. Solving pack-
ing integer programs via randomized rounding with alterations. Theory of Computing,
8(1):533–565, 2012.

3 Gruia Calinescu, Amit Chakrabarti, Howard Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7,
2011.

4 Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. In Proceedings of the
Forty-sixth Annual IEEE Symposium on Foundations of Computer Science, pages 637–646.
IEEE, 2005.

5 Takuro Fukunaga and Hiroshi Nagamochi. Network design with weighted degree constraints.
Discrete Optimization, 7(4):246–255, 2010.

6 Georgii Gens and Evgenii Levner. Complexity of approximation algorithms for combinato-
rial problems: a survey. ACM SIGACT News, 12(3):52–65, 1980.

7 Mohammad Ghodsi, Hamid Mahini, Kian Mirjalali, Shayan Oveis Gharan, Morteza Zadi-
moghaddam, et al. Spanning trees with minimum weighted degrees. Information Processing
Letters, 104(3):113–116, 2007.

8 Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–
142, 1999.

9 Madhukar Korupolu, Adam Meyerson, Rajmohan Rajaraman, and Brian Tagiku. Coupled
and k-sided placements: generalizing generalized assignment. Mathematical Programming,
154(1-2):493–514, 2015.

10 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial
optimization, volume 46. Cambridge University Press, 2011.

11 Michael J. Magazine and Maw-Sheng Chern. A note on approximation schemes for multi-
dimensional knapsack problems. Mathematics of Operations Research, 9(2):244–247, 1984.

12 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press, 2005.

13 Ojas Parekh. Iterative packing for demand and hypergraph matching. In International Con-
ference on Integer Programming and Combinatorial Optimization, pages 349–361. Springer,
2011.

14 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
2003.

15 Bruce Shepherd and Adrian Vetta. The demand-matching problem. Mathematics of Oper-
ations Research, 32(3):563–578, 2007.

16 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. In Proceedings of the Thirty-eighth Annual ACM Symposium on
Theory of Computing, pages 661–670. ACM, 2007.

17 Mohit Singh and Hehui Wu. Nearly tight linear programming bounds for demand matching
in bipartite graphs. http://cgi.cs.mcgill.ca/~hehui/paper/Demand_matching.pdf,
2012.

18 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, pages 681–690. ACM, 2006.

ICALP 2017

http://cgi.cs.mcgill.ca/~hehui/paper/Demand_matching.pdf

	Introduction
	Statements of Results and Techniques
	Related Work

	Approximation Algorithm for Demand Matching Problem
	Iterative Relaxation Phase
	Pruning phase

	Demand Matching in Excluded-Minor Families
	A Sparsification Lemma
	A Dynamic Programming Algorithm
	The Recurrence

