1,264 research outputs found

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure

    A Kriging Method for Modeling Cycle Time-Throughput Profiles in Manufacturing

    Get PDF
    In semiconductor manufacturing, the steady-state behavior of a wafer fab system can be characterized by its cycle time-throughput profiles. These profiles quantify the relationship between the cycle time of a product and the system throughput and product mix. The objective of this work is to efficiently generate such cycle time-throughput profiles in manufacturing which can further assist decision makings in production planning.;In this research, a metamodeling approach based on Stochastic Kriging model with Qualitative factors (SKQ) has been adopted to quantify the target relationship of interest. Furthermore, a sequential experimental design procedure is developed to improve the efficiency of simulation experiments. For the initial design, a Sequential Conditional Maximin algorithm is utilized. Regarding the follow-up designs, batches of design points are determined using a Particle Swarm Optimization algorithm.;The procedure is applied to a Jackson network, as well as a scale-down wafer fab system. In both examples, the prediction performance of the SKQ model is promising. It is also shown that the SKQ model provides narrower confidence intervals compared to the Stochastic Kriging model (SK) by pooling the information of the qualitative variables

    On Coding for Reliable Communication over Packet Networks

    Full text link
    We present a capacity-achieving coding scheme for unicast or multicast over lossy packet networks. In the scheme, intermediate nodes perform additional coding yet do not decode nor even wait for a block of packets before sending out coded packets. Rather, whenever they have a transmission opportunity, they send out coded packets formed from random linear combinations of previously received packets. All coding and decoding operations have polynomial complexity. We show that the scheme is capacity-achieving as long as packets received on a link arrive according to a process that has an average rate. Thus, packet losses on a link may exhibit correlation in time or with losses on other links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability of error with coding delay. Our analysis of the scheme shows that it is not only capacity-achieving, but that the propagation of packets carrying "innovative" information follows the propagation of jobs through a queueing network, and therefore fluid flow models yield good approximations. We consider networks with both lossy point-to-point and broadcast links, allowing us to model both wireline and wireless packet networks.Comment: 33 pages, 6 figures; revised appendi

    Modeling the Emergency Care Delivery System Using a Queueing Approach

    Get PDF
    This thesis considers a regional emergency care delivery system that has a common emergency medical service (EMS) provider and two hospitals, each with a single emergency department (ED) and an inpatient department (ID). Patients arrive at one of the hospital EDs either by ambulance or self-transportation, and we assume that an ambulance patient has preemptive priority over a walk-in patient. Both types of patients can potentially be admitted into the ID or discharged directly from the ED. An admitted patient who cannot access the ID due to the lack of available inpatient beds becomes a boarding patient and blocks an ED server. An ED goes on diversion, e.g., requests the EMS provider to divert incoming ambulances to the neighboring facility, if the total number of its ambulance patients and boarding patients exceeds its capacity (the total number of its servers). The EMS provider will accept the diversion request if the neighboring ED is not on diversion. Both EDs choose its capacity as its diversion threshold and never change the threshold value strategically, and hence they never game. Although the network could be an idealized model of an actual operation, it can be thought of as the simplest network model that is rich enough to reproduce the variety of interactions among different system components. In particular, we aim to highlight the bottleneck effect of inpatient units on ED overcrowding and the network effects resulting from ED diversions. A continuous time Markov chain is introduced for the network model. We show that the chain is irreversible and hence its stationary distribution is difficult to characterize analytically. We identify an alternative solution that builds on queueing decomposition and matrix-analytic methods. We demonstrate through discrete-event simulations the effectiveness of this solution on deriving various performance measures of the original network model. Moreover, by conducting extensive numerical experiments, we provide potential explanations for the overcrowding and delays in a network of hospitals. We suggest remedies from a queueing perspective for the operational challenges facing emergency care delivery systems

    Concurrent cell rate simulation of ATM telecommunications network.

    Get PDF
    PhDAbstract not availabl

    Statistical multiplexing and connection admission control in ATM networks

    Get PDF
    Asynchronous Transfer Mode (ATM) technology is widely employed for the transport of network traffic, and has the potential to be the base technology for the next generation of global communications. Connection Admission Control (CAC) is the effective traffic control mechanism which is necessary in ATM networks in order to avoid possible congestion at each network node and to achieve the Quality-of-Service (QoS) requested by each connection. CAC determines whether or not the network should accept a new connection. A new connection will only be accepted if the network has sufficient resources to meet its QoS requirements without affecting the QoS commitments already made by the network for existing connections. The design of a high-performance CAC is based on an in-depth understanding of the statistical characteristics of the traffic sources
    • …
    corecore