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Abstract

A Kriging Method for Modeling Cycle

Time-Throughput Profiles in Manufacturing

Amirmahdi Tafreshian

In semiconductor manufacturing, the steady-state behavior of a wafer fab system

can be characterized by its cycle time-throughput profiles. These profiles quantify

the relationship between the cycle time of a product and the system throughput

and product mix. The objective of this work is to efficiently generate such cycle

time-throughput profiles in manufacturing which can further assist decision mak-

ings in production planning.

In this research, a metamodeling approach based on Stochastic Kriging model with

Qualitative factors (SKQ) has been adopted to quantify the target relationship of

interest. Furthermore, a sequential experimental design procedure is developed to

improve the efficiency of simulation experiments. For the initial design, a Sequen-

tial Conditional Maximin algorithm is utilized. Regarding the follow-up designs,

batches of design points are determined using a Particle Swarm Optimization al-

gorithm.

The procedure is applied to a Jackson network, as well as a scale-down wafer

fab system. In both examples, the prediction performance of the SKQ model is

promising. It is also shown that the SKQ model provides narrower confidence in-

tervals compared to the Stochastic Kriging model (SK) by pooling the information

of the qualitative variables.



“The mysteries of eternity are known neither to you nor me

the enigma can be read neither by you nor me

behind the veil a discourse goes on about me and you

when the veil disappears there remain neither you nor me”

Omar Khayyam
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Chapter 1

INTRODUCTION

Considering the huge amount of capital invested yearly in the semiconductor in-

dustry, semiconductor manufacturers are continuously searching for new capacity

planning tools to support decisions made for improvement and more profit. Prior

to making such decisions, manufacturers need to answer what-if questions re-

garding different (and possibly numerous) scenarios for product mix, production

targets, and capital expansion (see e.g., Yang (2010)). Computer simulation is an

essential tool to tackle this issue. One can run a simulation model before construct-

ing or modifying a manufacturing system and predict the system’s performance.

Moreover, computer simulation can be utilized to specify the required capacity

of each system’s server to optimize the output’s performance. Compared to ex-

perimenting with the physical system (when it is practical), computer simulation

has been proved to be faster and more cost efficient. Schömig and Fowler (2000)

introduce the semiconductor industry as an example of such systems where man-

ufactures spend large amount of money and resources to design simulation models

that mimic the behavior of real wafer fab systems. In contrast, some researchers

use queueing theory to model the characteristics involved in the semiconductor

industry (see e.g., Hopp et al. (2002)). Although being mathematically tractable,

these models fail to consider many details of a real fab system (Jacobs et al. (2004);

Wu et al. (2007)). Nevertheless, computer experiments in and of themselves are

not suitable for answering what-if questions, since it may take many hours or days

1



Chapter 1. Introduction 2

to implement a single run. For this reason, we integrate computer simulation and

statistical modeling in this study to analyze complex manufacturing systems. In

the next section, we define our problem more precisely and define some notations

that will be used throughout the paper.

1.1 Statement Of The Problem

In this research, the expected steady-state cycle time of each product is of our

primary interest. Cycle time (CT) is defined as the total time it takes for a single

item to traverse a pre-specified production line and become a finished manufactur-

ing product (Hopp and Spearman (2001)). The expected CT can be characterized

as a function of throughput (TH), product mix (PM), and product type. A wafer

fab system can be viewed as a multi-product queueing network with K distinct

products and M different stations. Each of these K products need to traverse a

pre-specified sequence of M stations. We use the notation of Yang et al. (2011) as

follows:

• {sj, j = 1, 2, · · · ,M}: the number of parallel servers at station j.

• {ukj, k = 1, 2, · · · , K; j = 1, 2, · · · ,M}: the effective service rate of each

resource at station j for products of type k.

• {δkj, k = 1, 2, · · · , K; j = 1, 2, · · · ,M}: the number of times product of type

k visits station j.

• λ: the overall release rate of all the products into the system.

• α = (α1, α2, · · · , αK): the product mix vector where αk represents the share

of product type k in the flow such that
∑K

k=1 αk = 1 and αk ∈ [0, 1].

• λk = λαk : the release rate of product type k to the system

• ρkj = δkj/(sjukj): the utilization of station j by product type k

In order to perform capacity/bottleneck analysis, one can take the following steps

suggested by preliminary queueing analysis:
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Calculate the utilization of station j, ρj:

ρj = λ
K∑
k=1

αkρkj .

Then, find the utilization of system, denoted as x:

x = min
j
ρj .

The bottleneck station (BN) will be specified as below:

jBN = argmin
j

ρj = argmin
j

λ
K∑
k=1

αkρkj . (1.1)

Equation (1.1) simply states that the BN station is the one that has the highest

utilization among all M stations. This equation also implies that the BN station

is a function of PM and may change with respect to different product mix vectors.

Further, we need to compute the stability constraint for our queueing network as

shown below:

x = λ
K∑
k=1

αkρkjBN < 1 .

By using this constraint, we are able to obtain the system capacity, u∗(α), which

gives us the upper limit on λ for stability of the system:

λ <
1∑K

k=1 αkρkjBN
= u∗(α) . (1.2)

We need to utilize Equations (1.1) and (1.2) prior to modeling the CT-TH-PM

surfaces, and both of these equations rely on the estimation of the effective service

rate at each station for each product type, ukj. There are various methods to esti-

mate the effective service rates of the real manufacturing systems (see e.g., Hopp

et al. (2002)). Herein, we trust the existing queueing methods and approximations

for estimating the effective service rates and performing the preliminary queueing

analysis.
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Now, we discuss the formulation of CT-TH-PM surface. After applying capac-

ity/BN analysis to normalize the overall throughput, λ, one can run simulation

experiments at certain design points and collect the data required for the fitting

of the CT-TH-PM surfaces. We will talk more about how we can find these design

points in the Methodology section. As mentioned before, our response is the mean

steady state CT of products and our independent variables are the overall product

flow through the system, λ, the product mix vector, α, and the product type,

k. As suggested by Yang et al. (2011), we invoke the following transformation to

normalize the system throughput over the product mix region and estimate the

expected CT as a function of x instead of λ, where x ∈ [0, 1) and it is independent

of PM:

x =
λ

u∗(α)
. (1.3)

Additionally, we use first (K − 1) αk’s to make the product mix variables inde-

pendent of each other. As a result, we are interested in fitting a simulation-based

model to estimate the long-run CT of products as a function of the vector of the

independent variables (x, α1, α2, · · · , αK−1, k). In the next two sections, we state

the goal of this work and the research approach to achieve these goals.

1.2 Research Objectives

The main objective of this research is to quantify for multi-product semiconductor

manufacturing systems the functional dependence of the mean of steady-state CT

1 upon the input decision variables (x, α1, α2, · · · , αK−1, k).

1In the remainder of this work, we will use CT to refer to the mean of steady-state cycle
times.
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1.3 Research Approach

CT-TH-PM response surfaces are complex, and we chose a Gaussian Process model

to fit the target surfaces because of its flexibility and ability to provide valid statis-

tical inference. To efficiently estimate the CT-TH-PM relationships, a sequential

procedure is developed to collect simulation data in batches.

The remainder of this thesis is organized as follows. Chapter 2 provides a brief

review of the existing literatures. Chapter 3 describes the adopted GP model,

and presents the sequential experimental design procedure. The metamodeling

methods are applied to two illustrative examples and the results are given in

Chapter 4. Finally, the conclusions and recommendations for further study are

provided in Chapter 5.



Chapter 2

LITERATURE REVIEW

Our objective, as noted earlier, is to obtain a model for generating the mean

cycle time of different products in a wafer fab as a function of system’s utilization,

product mix, and product type. In the literature, there exist studies devoted to the

generation of such CT–TH–PM surfaces. In general, we can divide these studies

in two major categories: Analytical approaches and simulation-based approaches,

and each of these approaches have advantages and disadvantages. Next, we will

explain some of these studies in more detail.

In analytical approaches, one may consider the wafer fab as a queueing network

and thus apply queueing theory to compute cycle time in steady states by using

the information of the arrival process and the service process. For instance, Jack-

son (1963) introduced a simple queueing network for job shop problems where

the inter-arrival time for different products and the process time of different tools

follow an exponential distribution and each type of product traverses a specific

route of tools. It can be shown that the exact cycle time of each product in

the Jackson network system can be obtained by exploiting Little’s law and sta-

tionary equilibrium. Kuehn (1979) developed an approximation method, called

decomposition method, which decomposes the queueing network into subsystems,

and thus this method allows analysis of the queueing networks with inter-arrival

times and service times as the renewal processes. Shanthikumar and Buzacott

(1981) extended the Jackson network model by allowing service times having a

6
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general distribution and applying the decomposition method introduced by Kuehn

(1979). Furthermore, Whitt (1983) developed a software package called Queueing

Network Analyzer which uses the decomposition method along with an approx-

imation method to separate nodes in a job shop queueing network and analyze

these nodes independently.

As noted by Shanthikumar et al. (2007), modeling and analysis of queueing sys-

tems in semiconductor manufacturing is rather complicated because it involves

many tools with different configurations and processing requirements which may

require more sophisticated models. Chen et al. (1988) first considered an ideal

fab with a simple queueing system and applied queueing network models to ob-

tain the cycle time of entities. Connors et al. (1996) improved the queuening

network model of wafer fabs further by allowing tool groups into the model and

refining the characterization of rework and scrap. Hopp et al. (2002) introduced

an optimized queueing network (OQNet) system for capacity planning of new and

reconfigured semiconductor manufacturing facilities. They considered a variety

of common assumptions in a wafer fab such as batch processes, re-entrant flows,

multiple product classes, and machine setups, and they optimized the facility cost

with respect to some constraints on cycle times. The authors claimed that the

results obtained by the OQNet system are not more than 30% off the simulated

results. Further improvements on analytical approaches have been accomplished

by researchers in recent years (see e.g., Shanthikumar et al. (2007) for further in-

formation). Although being mathematically tractable, the analytical approaches

fall short in using all aspects of a real wafer fab facility because one may need

several restrictions to obtain a model in closed form. Most of the time, these

models tend to overestimate the cycle times since they are not flexible for different

policies of handling WIPs (see e.g. Miltenburg et al. (2002)).

As an alternative to queueing network models, computer simulation has been a

more flexible tool to design and analyze manufacturing systems since it allows

more details of the process to be taken under consideration. Simulation models

can be utilized either before a new system is created or after it has been em-

ployed when it needs substantial changes (see, e.g., Schömig and Fowler (2000)).
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In the literature, one can find a lot of studies of the application of computer sim-

ulation in semiconductor manufacturing. Hung and Leachman (1996) proposed

an iterative computer simulation and linear programming optimization to obtain

the future cycle times as a function of product mix and work load. Sivakumar

(1999) applied an online simulation-based system to optimize the cycle time and

utilization of a semiconductor manufacturing facility. Park et al. (2002) proposed

a simulation-based method to efficiently generate the CT-TH curves in manu-

facturing by exploiting a sequential simulation experiment based on a nonlinear

D-optimal design. In spite of fidelity and flexibility of simulation models, Fowler

and Rose (2004) claimed that it may take a long time to run a single replication

for more complex manufacturing systems, and hence it would not be practical in

many cases. Moreover, simulation merely provides an estimate at each single point

and one may need to run several replications to improve the estimation at each

single point.

With this in mind, Yang et al. (2007) developed a metamodeling approach that

alleviates the major shortcomings of queueing networks and computer simulation

in generation of CT–TH profiles. A metamodel is a mathematical equation in the

form of polynomial regressions, splines, etc., that quantifies the results obtained

by the simulation. For more information about metamodeling techniques, one can

refer to Henderson and Nelson (2006). Yang et al. (2008) proposed the generalized

Gamma distribution as the underlying distribution of (CT-TH) percentile curves.

In this research, she introduced another metamodel to find the first three moments

of CT-TH percentile curves, and thus estimated the parameters of the underlying

distribution by matching the percentiles. Both of these nonlinear regression meta-

models are suitable for the two-dimensional CT-TH curves. To incorporate PM as

a decision variable in multi-product environment, Yang (2010) developed a neural

network (NN)-based metamodeling approach. In this method, she does not treat

the NN as a black box, and instead, she specifies a predetermined model for fit-

ting based on her experience with the behavior of the response surface. Moreover,

she proposed a progressive fitting approach to construct an effective and efficient

network by optimizing the number of layers.
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This work intends to address the same problem as in Yang (2010) by developing a

GP-based metamodeling method. Compared to the NN modeling in Yang (2010),

the GP method has the following advantages.

1. The GP is able to model together the CT-TH-PM profiles for all product

types. This way, we can exploit the information sharing between our different

products and obtain more reliable predictions.

2. Since our model is capable of handling non-smooth continuous regions, our

model is fit over the entire region of inputs whereas Yang (2010) is fitting

different models for each sub-region with a similar bottleneck station.

3. We do not need to assume a constant variance throughout the region of

inputs which shows the capability of our proposed model in adapting to the

real problems.



Chapter 3

METHODOLOGY

As mentioned in the previous chapter, cycle time of a product, the response, can

be explained by its product mix and system utilization, the independent variables.

These variables are considered quantitative factors and are noted by the vector x

in our model. However, the Gaussian process model proposed here is capable of

handling both quantitative and qualitative factors. Having this in our mind, we

define the product type as a qualitative factor, noted by z with Q levels {cq; q =

1, · · · , Q}, to be included in our model. Therefore, the experimental design point

can be shown by vector w = (x>, z>)> and following this notation, the random

cycle time for an experimental design can be generally written as

Y (w) = E [Y (w)] + ε(w) = Y(w) + ε(w) (3.1)

where E [Y (w)] = Y(w) is the true expected cycle time and ε(w) is the mean zero

random error which gives the response a stochastic behavior. Prior to using a GP

model, we perform a simulation-based experiment of I different design points and

collect the data denoted as

{(wi,Yl(wi)); i = 1, · · · , I; l = 1, 2, · · · , n(wi)} (3.2)

where wi represents the ith experimental design point, Yl(wi) is the observed re-

sponse from the lth replication at wi, and n(wi) denotes the number of replications

10
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at wi. Then, we apply a GP method to model the CT-TH-PM surfaces of different

products together. The structure of proposed GP model has been detailed in next

section.

3.1 The Gaussian Process Model

The Gaussian process (GP) model has been introduced by Sacks et al. (1989b) to

fit the data from a deterministic computer experiment. This GP model is shown

as

y = f(x)>β + Z(x) . (3.3)

In (3.3), x is a vector of continuous factors in Rd, f(x) is a p× 1 vector of known

functions, β is the corresponding vector of coefficients, Z(x) is a Gaussian stochas-

tic process with mean zero and correlation matrix R(θ) and the elements of R(θ)

are the correlations between the responses at two design points. It is worth men-

tioning that the constant mean β0 is sufficient for most applications, e.g. our

problem, and Z(x) is a function that maps Rd → R. The GP model is generally

a spatial correlation model, because the correlation of the response between two

distinct observations becomes smaller when the design factors get farther away

from each other in space. As noted by Montgomery (2008), the GP model, which

provides an exact fit to the observations from the experiment, is one of the most

popular models among researchers not only because of the ‘exact fit’ but also

because of the small number of parameters involved in the model for handling

so-called complex surfaces. However, this model can not be applied to the exper-

iments with qualitative factors. Thus, Qian et al. (2008) developed a new model

for deterministic computer experiments with a valid correlation function to tackle

this issue. Although powerful and effective in many problems, these two mod-

els are not capable of handling the intrinsic uncertainty inherent in a stochastic

computer experiment and this fact motivated Ankenman et al. (2010) to propose

a new model, called the Stochastic Kriging (SK) method. In this model, which

accounts for both the intrinsic and extrinsic uncertainty of the response surface,
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the output of the computer experiment on the lth replication at design point x can

be shown as

Yl(x) = Y(x) + εl(x) = f(x)>β + M(x) + εl(x) , (3.4)

where Y(x) is the true response at design point x, M(x) has the similar definition

to Z(x) in (3.3), and εl(x) represents the independent and identically distributed

random errors with mean zero and accounts for variability in the response from

one replication to the other at design point x. Finally, Wang et al. (2014) took

advantage of the last two models and introduced a quite powerful and flexible

method, the Stochastic Kriging model with Qualitative factors (SKQ). This model,

which is suitable for our problem, has the following structure on the lth replication

of computer simulation at design setting w:

Yl(w) = Y(w) + εl(w) = f(w)>β + M(w) + εl(w) . (3.5)

In (3.5), w = (x>, z>)> is an experimental design setting, including d continuous

factors x = (x1, x2, · · · , xd)> ∈ Rd and J qualitative factors z = (z1, z2, · · · , zJ)>

with each zj having mj levels. The polynomial term f(w)>β has the same defi-

nition as in (3.3). We reduce the polynomial term to a constant mean, because

Steinberg and Bursztyn (2004) showed that the correlation function performs very

well in terms of capturing linear and quadratic trends and first-order interactions,

if present, and there is no need to include any polynomial terms into the GP model

unless there is sufficient evidence to infer otherwise. The terms M(w) and εl(w)

express the extrinsic and intrinsic uncertainties in the response, respectively, and

we elaborate on them in next sections.

In order to build an SKQ model, we perform an experiment with ni simulation

replications at wi, i = 1, 2, · · · , k, for k distinct design settings in total. It is worth

noting that the number of replications at each design setting, ni, can vary. Ac-

cording to Wang et al. (2014), the sample average of our simulation outputs at
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design setting wi can be exhibited as

Ȳ (wi) =
1

ni

ni∑
l=1

Yl(wi) = f(wi)
>β + M(wi) +

1

ni

ni∑
l=1

εl(wi) , (3.6)

and the k× 1 vector of averaged simulation outputs is Ȳ =
(
Ȳ (w1), Ȳ (w2), · · · ,

Ȳ (wk)
)>

. Moreover, the k× 1 vector of averaged simulation errors is denoted by

ε =
(
ε̄(w1), ε̄(w2), · · · , ε̄(wk)

)>
, where

ε̄(wi) =
1

ni

ni∑
l=1

εl(wi) , i = 1, 2, · · · , k .

3.1.1 The Extrinsic Variance Structure for SKQ

M(w) is a stationary Gaussian process with mean zero and spatial variance-

covariance matrix denoted by ΣM, where ΣM(w,w′) = Cov
[
M(w),M(w′)

]
=

Cov
[
Y(w),Y(w′)

]
. For k design points, ΣM is a k × k matrix where the ijth

entry identifies the spatial covariance between the response at the ith and jth de-

sign settings. Based on the framework proposed by Qian et al. (2008), Wang et al.

(2014) suggest the following structure for the elements of this matrix in SKQ:

ΣM(w,w′) = τ 2
[ J∏
j=1

ςj,zj ,z′j

]
·K(x,x′) , (3.7)

where τ 2 > 0 is the constant extrinsic variance, wi and w are two distinct design

settings, zj and z′j are the corresponding setting for the jth qualitative factor at

w and w′, x and x′ are the corresponding continuous factor setting at w and w′,

ςj,zj ,z′j is the multiplicative correlation function for qualitative variables, and finally

K(x,x′) is the correlation function for continuous variables.

In the literature, there is a wide range of valid correlation functions for continuous

variables and Santner et al. (2013) and Qian et al. (2008) explain some of these

functions in detail. As an example, the family of exponential correlation functions

is:

K(x,x′) = exp

{
d∑

m=1

−θm|xm − x′m|p
}
. (3.8)
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In (3.8), xi and xh are two distinct continuous factor settings in Rd, θm > 0

is the roughness parameter to quantify the smoothness of the response surface

in the direction of coordinate m,m = 1, 2, · · · , d, and parameter p ∈ (0, 2] is

a real number. Setting parameter p equal to 2 makes this correlation function

infinitely differentiable and we refer to this function as the Gaussian correlation

function (Ramussen and Williams, 2006). This Gaussian correlation function is

not able to quantify the correlation between qualitative factors and thus Qian

et al. (2008) came up with the equation in (3.7) to tackle this issue. As noted by

Qian et al. (2008), we can think of ςj,zj ,z′j as a measure of similarity in two design

settings that have the same values for all quantitative and qualitative factors

except the qualitative factor j; i.e., in our problem, ςj,zj ,z′j explains the similarity

between the response surface of two different products in any fixed product mix and

throughput. For building a structure for the correlation function of the qualitative

factors, Qian et al. (2008) proposed the Isotropic (or exchangeable) correlation

functions (EC) which is written as

ςj,zj ,z′j = exp
{
−φjI [zj 6= z′j]

}
, (3.9)

where φj > 0 is the correlation parameter for the qualitative factor j and I [·] is

an indicator function that is equal to 1 if the expression inside the bracket holds

and 0 otherwise. Notice that EC does not distinguish between different levels of

a qualitative factor. Although quite simple and popular, EC can not explain the

possible negative correlations between qualitative factors. Zhou et al. (2011) in-

troduced an unrestricted correlation function (UC) to address this issue. There

are two formulations for the UC function: the general formulation and the product

formulation. In the general formulation, we consider all possible level combina-

tions of the qualitative factors in z, which has m =
∏J

j=1mj different levels, and

consequently we need to estimate m(m− 1)/2 parameters for the qualitative fac-

tors. This aggravates the estimation problem if m is relatively large. On the other

hand, there is a product formulation which copes with each factor separately and

then multiplies the correlations of all qualitative factors, and thus substantially

lessens the number of parameters needing to be estimated. Since we have only
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one qualitative factor in our problem, there is no difference between these two for-

mulations. Here we discuss the latter formulation and refer interested readers to

Zhou et al. (2011) for more information. Zhou et al. (2011) used the hypersphere

decomposition (see also, Chen et al. (2013); Rebonato and Jäckel (2011)) to build

the mj × mj positive definite with unit diagonal elements (PDUDE) correlation

matrix Tj = [τr,s], r, s = 1, 2, · · · ,mj in the following 2 steps.

Step 1. By using a Cholesky decomposition, we calculate the lower triangular

matrix with strictly positive diagonal elements L where T = LL>.

Step 2. For each row vector (lr,1, lr,2, · · · , lr,r) in L assuming that l1,1 = 1:
lr,1 = cos(φr,1),

lr,s = sin(φr,1) · · · sin(φr,s−1) sin(φr,s), for s = 2, · · · , r − 1

lr,r = sin(φr,1) · · · sin(φr,r−2) sin(φr,r−1),

where φr,s belongs to the parameter set Φ = {φr,s ∈ (0, π), s = 1, 2, · · · , r − 1; r =

1, 2, · · · ,m}. Note that φr,s ∈ (0, π) may produce some negative elements in the

matrix Tj; i.e., UC is able to handle both positive and negative correlation.

3.1.2 The Intrinsic Variance Structure for SKQ

So far in Section 3.1.1, we have only characterized the structure of a GP model

that does not include the so-called nugget effect (see e.g., Cressie (2015)) and thus

it is only suitable for modeling deterministic computer experiments. Adding the

term ε(w), which is called the intrinsic uncertainty by Ankenman et al. (2010), to

the current model allows it to be applied to the outputs of a stochastic simulation

experiment. Since we are only concerned about predicting the average response

(mean cycle time) in our problem, we elaborate on the details of the averaged

simulation error vector ε̄ in this section. It is assumed that ε̄ is coming from

a multivariate Gaussian distribution with mean zero and the variance-covariance

matrix Σε. Furthermore, we assume that the averaged random simulation errors

are independent and identically distributed across the k design settings since we
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are not using common random numbers (CRN) through our simulation implemen-

tation (see e.g., Kelton and Law (2000)). Therefore, Σε is a k× k diagonal matrix

as shown below:

Σε =



Var
[
ε(w1)

]
n(w1)

0 · · · 0

0
Var
[
ε(w2)

]
n(w2)

· · · 0
...

...
. . .

...

0 0 · · · Var
[
ε(wk)

]
n(wk)


. (3.10)

Note that the variances of average simulation outputs can differ and this fact

makes SKQ a flexible and realistic tool for our specific application. In our study,

the simulation run for all products at a PM and TH are implemented at once and it

is very unusual to assume that different products have the same variability in their

cycle time. If there were no such flexibility in our modeling tool, we would have

to perform simulation runs for each product at a specific PM and TH separately,

which is significantly time-consuming.

3.1.3 Estimation and Prediction for SKQ

Based on the structure of the SQK model, we have the following list of parameters

that need to be estimated:

• β0: The constant mean

• θ: The vector of correlation parameters corresponding to d quantitative

factors

• Φ: The vector of correlation parameters corresponding to j qualitative fac-

tors

• R(θ,Φ): The correlation function between the design settings

• τ 2: The extrinsic spatial variance

• Σε: The diagonal intrinsic variance-covariance matrix

Furthermore, we assume that the vector of averaged simulation outputs Ȳ has a

multivariate Gaussian distribution with constant mean β0 and variance-covarance
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matrix Σ = ΣM + Σε = τ 2R(θ,Φ) + Σε. Following this assumption, we use

the maximum likelihood estimation (MLE) method for maximizing the following

log-likelihood function:

ln L = −1

2

(
k ln(2π) + ln(|Σ|) + Ỹ >Σ−1Ỹ

)
, (3.11)

where Ỹ = Ȳ − β01k, 1k is a k × 1 vector of ones, and |Σ| is the determinant

of Σ. Ankenman et al. (2010) suggest that the diagonal elements of intrinsic

variance-covariance matrix can be estimated, independent of other parameters, as

follows:

Σ̂εi,i =
1

ni(ni − 1)

ni∑
l=1

(
Yl(wi)− Ȳ (wi)

)2
, i = 1, 2, · · · , k . (3.12)

After substituting Σ̂ε in (3.11), we take the following steps, suggested by Qian

et al. (2008), to obtain the MLEs of other parameters.

β-step: Given τ 2, θ, and Φ, we can obtain β̂0 as

β̂0(τ
2,θ,Φ) =

(
1>k [τ 2R(θ,Φ) + Σ̂]−11k

)−1
1>k [τ 2R(θ,Φ) + Σ̂]−1Ȳ . (3.13)

(τ 2,θ,Φ)-step: Given β̂0(τ
2,θ,Φ), our problem reduces to the following:

(τ 2,θ,Φ) = argmin
τ2,θ,Φ

[
ln(|τ 2R(θ,Φ) + Σ̂ε|)+

(Ȳ − β̂01k)>
[
τ 2θ,Φ) + Σ̂ε|

]−1
(Ȳ − β̂01k)

]
,

subject to θi > 0, i = 1, · · · , d .
(3.14)

This problem falls into the category of constrained nonlinear multivariate opti-

mization problems and can be easily solved by the MATLAB fuction fmincon.

For predicting the expected average response at any arbitrary setting w0, we have

the following estimator:

Ŷ(w0) = β̂0 + Σ̂M(w0, ·)>
[
τ̂ 2R(θ̂, Φ̂) + Σ̂ε

]−1
(Ȳ − β̂01k) . (3.15)
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In (3.15) Σ̂M(w0, ·) is a k × 1 vector containing the estimation of the spatial

correlations between arbitrary setting w0 and k design settings w1,w2, · · · ,wk

represented as below:

Σ̂M(w0, ·) = τ̂ 2r0(θ̂, Φ̂) = τ̂ 2


r1

r2
...

rk

 . (3.16)

It is worth mentioning that Ankenman et al. (2010) referred to the predictor

in (3.15) as Stochastic Kriging which is an extension of the standard Kriging

estimator (see e.g., Cressie (2015)). This clarifies the reason that we call this model

Stochastic Kriging with Qualitative factors. In addition, we have the following

mean squared error (MSE) for SKQ which enables us to make inferences about

our prediction.

MŜE(w0) = τ̂ 2 − Σ̂M(w0, ·)>Σ̂−1Σ̂M(w0, ·) + η̂>
(
1>k Σ̂−11k

)−1
η̂ , (3.17)

where η̂ = 1−1>k Σ̂−1Σ̂M(w0, ·). Based on these terms, we can write the two-sided

100(1− α)% confidence interval for the average response at any arbitrary setting

w0 in this manner:

Ŷ(w0)± tα/2(ν)

√
MŜE(w0) , (3.18)

where tα/2(ν) is the 100(1− α/2)th percentile of t-distribution with degrees of

freedom ν and ν = k −# of parameters.

Like any other modeling method, understanding the characterization of SKQ is

not enough to make the most of this tool in terms of effectiveness and efficiency.

There are two significant factors shown in the SKQ literature (see e.g., Ankenman

et al. (2010)): a decent placement of design settings, and simulation efforts in each

design setting. The former plays an important role on the structure of the extrinsic

variance-covarince matrix, because a relatively small distance between two design

settings in space affects the condition number of the information matrix and may

ruin any estimation or prediction made by that model. On the other hand, the
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structure of the intrinsic variance is highly affected by the length and number of

simulation runs incurred in each design setting. In the next section, we discuss the

design of experiment and the simulation procedure to achieve the best performance

of the SKQ model.

3.2 Procedure for Modeling the Response Sur-

face

Following the SKQ notation detailed in the previous sections, we define the rela-

tionship between the response and independent variables in CT-TH-PM surface

by

Y(w) = β0 + M(w) + ε(w) , (3.19)

where the factor setting w consists of the values for the quantitative factors x =

(x,α) and the product type as qualitative factor z with mj levels equal to the

number of products. Y(w) represents the cycle time estimate of a simulation at

design setting w. Prior to describing our design of experiment (DOE), we elaborate

on the computer simulation effort made at each quantitative design setting x.

3.2.1 Computer Simulation Effort

Assuming that we have d products in our manufacturing fab and each of them

has a specific sequence of machines to visit, the computer simulation runs at each

design point have the following inputs and outputs:

Simulation Inputs:

• Quantitative design factor setting x = (x, α1, α2, · · · , αd−1)

• Length of a simulation run specified by the total number of finished products

collected in the steady-state, Q(x) = Q1(x)+Q2(x)+· · ·+Qd(x) where Qi(x)

is the number of finished product of type i, i = 1, 2, · · · , d

• Number of simulation replications at each design point, n(x)
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Simulation Outputs:

• d steady-state mean cycle time estimate for each product at design point x

denoted by

Yi(x) =
1

n(x)

n(x)∑
l=1

CT
i

l(x) , (3.20)

where CT
i

l is the average cycle time for Qi products of type i on the lth

replication at design point x.

The design of experiment in the following section specifies the input design settings

at which we perform simulation runs. There is no need to worry about the design

of experiment for the qualitative variables in this study, because we obtain the

cycle time estimate for all products at once on a simulation run and thus we use

all levels of our qualitative variable, product types, at each design point x. There

are two reasons for dealing with our qualitative factor in such manner. Firstly, it

is computationally more efficient to obtain design of experiment for the continuous

factors only, and secondly, we take the advantage of all information acquired on

each simulation run.

We use a two-step procedure (see e.g., Yang (2010)) to find the proper number of

replications at each design point. In the first step, we will run the simulation for

n0 replications and collect the sample set {CT il, i = 1, 2, · · · , d, l = 1, 2, · · · , n0}

with CT
i

l representing the average cycle time for product i on the jth replication,

computed as shown below:

CT
i

l(x) =
1

Qi(x)

Qi(x)∑
q=1

CT ilq(x) ,

where CT ilq is the cycle time of qth finished product i on the jth replication. Then,

the initial sample mean and variance of each product will be calculated as

Yi,0(x) =
1

n0(x)

n0(x)∑
l=1

CT
i

l(x) , (3.21)
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and

Var[Yi,0(x)] =
σ̂2
i0

n0

=
1

n0(Qi(x)− 1)

Qi(x)∑
l=1

(CT ilq(x)− CT il(x))2 . (3.22)

Finally, n(x) is computed as

n(x) = max

(⌈ σ̂2
1,0

σ2

⌉
,
⌈ σ̂2

2,0

σ2

⌉
, · · · ,

⌈ σ̂2
d,0

σ2

⌉)
, (3.23)

where σ2 is a pre-specified constant variance. In the second stage, we perform the

n(x) − n0(x) follow-up runs to obtain the cycle time estimate in (3.20). If n0 is

large enough, this method guarantees that the average mean cycle time variance

at design setting x is less than σ2. Note that we do not need to assume a constant

variance on the simulation outputs and that is one of the prominent advantages

of SKQ over previous approaches. However, this variance affects the accuracy of

the simulation outputs and accordingly influences the prediction accuracy made

by our model. Yang (2010) suggests to choose σ2 small enough to ensure a high

precision, say γ%, in the simulation outputs. More precisely, she recommends to

set σ = 4% × cmin where cmin is a rough estimate of the smallest expected cycle

time based on the user’s past experience.

3.2.2 Design of Experiment

In the literature, there are two approaches for designing an experiment with a

budget of N design points: classical DOE and sequential DOE. In classical DOE

(see e.g., Montgomery (2008)), particularly in factorial designs, we introduce a few

equally-spaced levels for each continuous variable and allocate all N design points

to the combination of these levels. In sequential DOE (see e.g., Mitchell and Morris

(1992)), the experiment budget will be used in a multistage procedure. It has been

shown that the sequential methods outperform the classical approaches in a variety

of circumstances, since models have a chance to “learn” from previous stages. The

sequential approaches can be divided into two groups based on the number of

design points added at each experimental stage: a fully sequential method that
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adds one point at a time, and batch sequential method where a batch of nb design

points are added at each stage. In our research we use a batch sequential method

since it is computationally more efficient in terms of constructing the design and it

is less likely for our criterion to converge into a local optima (Loeppky et al., 2010).

Figure 3.1 gives a schematic presentation of our modeling procedure summarized

in a flowchart. We have already talked about the Model Fitting step. Other

steps will be detailed in the following sections.

Start

Initializing:
• Specify the initial design X0

• Set n = n0
• Perform computer simulation at
n0 design points

Model Fitting:
• Estimate the parameters of
SKQ
• Compute the mean squared er-
rors

Stopping
Criteria?

Updating:
• Augment the design by a batch
of follow-up design points
• Set n = n+ nb
• Perform computer simulation at
nb design points

Stop

Not met

Met

Figure 3.1: Model fitting procedure with a batch sequential method

3.2.2.1 Initial Design

At the first stage, we consume a portion of the fixed sampling budget for the ini-

tial design. This initial design should be large enough to let our model provide a

reliable estimation of parameters, because we exploit these parameter estimates to
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come up with a follow-up design at the next step. Ranjan et al. (2008) recommend

allocating 25%−35% of the sampling budget to the initial design. There is a wide

tendency for researchers to use space-filling designs (see e.g., Mitchell and Morris

(1992)), since they cover the input space well, and thus they can usually give a

rough approximation of the response behavior. However, special care needs to

be taken for our problem since the input space is not a regular hypercube and is

subjected to a linear constraint. So, we are not able to use an OA-based or max-

imin Latin Hypercube Design (LHD). However, Golchi and Loeppky (2015) have

recently proposed a novel method to obtain space-filling designs for constrained

regions by proposing a Sequential Monte Carlo based algorithm to find the design

points. More precisely, this approach consists of two separate algorithms: a Se-

quential Constrained Monte Carlo (SCMC) algorithm is used first to get a large

uniform sample over the constrained input region of the continuous variables. Sec-

ond, a sequential selection algorithm is used to find a space-filling design from the

sample obtained in first step based on a distance-based criterion. In practice, we

could not find an advantage of using the first algorithm in our research since using

a large grid of points in our constrained space region can be viewed as a fairly

uniform sample of points. However, we exploited the second algorithm proposed

by Golchi and Loeppky (2015) with some modifications (to be revealed later) to

obtain a maximin design. We explain this algorithm in detail below.

First, we obtain a uniform sample of size N (a large number) over our constrained

region, denoted as Ξ = {ξ1, ξ2, · · · , ξN}. Also, we define the distance function,

δ(ξj, xi) that calculates the Euclidean distance between ξj and xi. Then, we start

with a null set of design points, denoted as s, and we take n steps sequentially

to find our initial design set of size n, sn = {x1,x2, · · · ,xn}. For the first step, a

design point is sampled randomly from Ξ, and we set s1 = {x1}. We also calculate

the Euclidean distance between x1 and all the design points in S, arranged in a

vector of size N , denoted as ψ1. For step i (2 ≤ i ≤ n), we update the jth element

of vector ψi as below:

ψij = min{ψi−1j , δ(ξj,xi−1)} j = 1, · · · , N (3.24)



Chapter 3. Methodology 24

xi is found as a design point in Ξ that has the maximum distance in ψi, and

update si accordingly. Note that we only need to find the distance between all

the points in S and the last design point added to s at each step which saves us

a huge amount of time. Golchi and Loeppky (2015) discuss that this algorithm

has a better result compared to the previous methods where all points are added

at once. In our research, we modify the first step to avoid extrapolation using our

proposed model. In other words, in the first step we choose the centroid of the

input space instead of sampling from Ξ. By this modification, the algorithm is

guaranteed to choose all the extreme points in the following steps automatically.

3.2.2.2 Stopping Criteria

In our multistage procedure, after the step of constructing the SKQ model and

estimating the parameters, we calculate the mean cycle times and mean squared

errors over a large grid set of evaluation settings {wh = (x>h , z
>
h )>} where xh ∈

[0, 1]d with respect to xh,1 + xh,2 + · · · + xh,d−1 ≤ 1 and zh represent the product

type. This evaluation set must be large enough to ensure that the whole feasible

region of interest has been covered properly. Then the estimate of coefficient of

variation (CV) is calculated at each evaluation setting as

ĈV(wh) =

√
MŜE(wh)

Ŷ (wh)
h = 1, 2, · · · , H (3.25)

It can be shown that max
h

(ĈV(wh)) provides an estimate of the maximum absolute

relative prediction error over this set computed as shown below:

ARPE(wh) =
|Ŷ (wh)− Y(wh)|

Y(wh)
h = 1, 2, · · · , H (3.26)

where Y(wh) is the true average response at setting w. Therefore we define the

stopping criteria to be the fixed budget of N design points and the prediction

precision δ%. In other words, we stop the iterative proposed procedure if we run

out of the budget of N design points or if we achieve a maximum ĈV (wh) less

than δ%.
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3.2.2.3 Design Augmentation

In batch sequential design, one refers to adding a batch of nb design points to

the existing set of points as the design augmentation step. There is a variety of

methods in the literature for adding the follow-up design points (see e.g., Shewry

and Wynn (1987)) . In most of these methods, the researcher takes advantage of

the information obtained in previous steps and finds new design points to optimize

a criterion function of model parameters with respect to the design factors’ space.

Here we discuss a few methods that have been shown to be successful in different

applications; for further information we refer you to Loeppky et al. (2010).

Sacks and Schiller (1988) select a new batch design Xb that minimizes the criterion

function

max
x∈[0,1]d

MŜE(x) , (3.27)

with MŜE(x) being calculated similarly to (3.17) but only for continuous variables

and the matrix Σ̂M includes the entire design X = (X>0 , X
>
b )>. This algorithm

selects a batch of follow-up design points that minimizes the maximum estimated

MSE over the input space. The Max MSE method incorporates performing several

numerical optimization problems during the design optimization when the factors

are continuous and this issue diminishes its popularity among different criteria.

Minimizing the Integrated MSE (IMSE) is another criterion, suggested by Sacks

et al. (1989a,b), and it minimizes the following integration:

∫
x∈[0,1]d

MŜE(x)dx , (3.28)

where again MŜE(x) is calculated similarly to (3.17) but only for continuous

variables and the matrix Σ̂M involves the whole design X = (X>0 , X
>
b )>. In spite

of being more computationally efficient than the Max MSE, the IMSE criterion is

still time-consuming in terms of finding a new batch of design points.

Shewry and Wynn (1987) pointed out that the correlation matrix R(θ) contains

the amount of information in the experiment obtained by a Gaussian Process

model with β = β0, and introduced the Maximum Entropy criterion to be utilized
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for finding the follow-up design points. The correlation matrix R can be rewritten

as a block matrix

R =

R0,0 R0,b

Rb,0 Rb,b

 , (3.29)

where R0,0 indicates the correlation matrix corresponding to the previous design,

R0,b represents the correlation matrix corresponding to the design added, and

Rb,0 = R>0,b denotes the correlation matrix between the previous and added de-

signs. In the Maximum Entropy function, the determinant of the matrix R is

maximized, which is equivalent to maximizing the determinant of the nb × nb

matrix

(Rb,b −Rb,0R
−1
0,0R0,b) . (3.30)

It is needless to say that working with the second equation is less intensive, be-

cause once one calculates the inverse of the matrix R0,0, there is no need to work

with the possibly huge n × n matrix. The Maximum Entropy criterion has been

shown to require less computational effort than the other two methods (Loeppky

et al. (2010)). However, it still requires calculating the inverse or determinant of

matrices, which may take considerable time for a programming software.

Johnson et al. (1990) proved that maximizing the entropy is equivalent to maximiz-

ing the minimum Weighted Distance, and hence proposed the Maximin Weighted

Distance criterion denoted as

max
Xb∈[0,1]2

min
x,x′∈X

√√√√ d∑
j=1

θj(xj − x′j)2 , (3.31)

where θj indicates the weight of the distance between two distinct design points in

jth dimension and is equivalent to the continuous correlation parameter in SKQ.

The Maximin Weighted Distance method significantly reduces the amount of time

needed for obtaining a follow-up design. Further, Loeppky et al. (2009) prove that

the Maximin Weighted Distance is based on the Max MSE criterion. For finding

the follow-up design in computer experiments, Loeppky et al. (2010) showed that

the Maximin Weighted Distance and Maximum Entropy outperform the other

methods based on the results of the maximum prediction error and the root mean
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squared error criteria in some applications.

We implemented both the Maximin Weighted Distance and Maximum Entropy

methods in our first case study and we found very similar results for all prediction

accuracy measures except one important measure. We observed that selecting the

design points using the Maximin Weighted Distance criterion will not necessarily

reduce the estimated CV as the algorithm proceeds with more points. On the other

hand, the follow-up design points selected using the Maximum Entropy criterion

consistently reduces the estimated CV until it gets smaller than a prespecified δ.

According to this experience, we choose to exploit the Maximum Entropy criterion

for finding the follow-up design points. Namely, we are seeking a follow-up design

that maximizes the Entropy defined in (3.30) over the entire design input region.

We want the sum of (d − 1) mixture variables to be less than 1 ,and thus there

is a nonlinear optimization involved in maximizing (3.30) subject to the linear

feasibility constraint xh,1 + xh,2 + · · · + xh,d−1 ≤ 1, and thus, there are several

methods to solve this optimization problem. A time-consuming but quite reliable

approach is proposed by Fedorov (1972). In the Federov Exchage method, a large

grid of feasible points G = {xg, g = 1, 2, · · · , G} in [0, 1]d, that fairly represents the

whole feasible area, is considered to be design point candidates. Initially, a starting

solution Xb of size nb from this candidate set would be generated. Next, we try

all pairwise exchanges of a design point in Xb with a design point in G and repeat

this process until we see no improvement in our objective function. Beside the

Federov Exchange method, a variety of other exact or approximate optimization

algorithms have been proposed to expedite the process of finding a decent optimal

design. Recently, Leatherman et al. (2014) introduced the use of Particle Swarm

Optimization (PSO) for designing computer experiments and it has been shown

that this method provides near optimal designs in a timely manner. Next, we

present a brief review of this algorithm.

The PSO algorithm starts with a large number of particles (design candidates)

where these particles are scattered randomly over the input space of interest.

Let’s say that we are interested in finding nb followup design points. Define Ndes

as the number of particles and rewrite each candidate matrix of size nb × d, as a
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dnb × 1 vector, and therefore, we start with Ndes vectors of size dnb × 1, denoted

as {ϑti}
Ndes
i=1 . At each iteration t, update the location of these particles by using the

following equation and evaluate the objective function for the new particles:

ϑt+1
i = ϑti + vt+1

i , (3.32)

where ϑti and ϑt+1
i are the current and future locations of the ith design, respec-

tively. Each particle is updated by vt+1
i which is defined as:

vt+1
i = θvti + αεt1i ◦ (ϑti − gt) + βεt2i ◦ (ϑti − pti) . (3.33)

In (3.33), gt is the particle (design point) that gives the best global (among all de-

sign points) objective function through time t, and pti is the particle that produces

the best value of objective function for the ith particle through time t. The symbol

◦ presents the element-wise product of vectors, εt1i and εt2i are random vectors with

elements coming from Unif[0, 1], α and β are weights that control the steps toward

the global and particle-best locations, θ ∈ [0, 1] is called the “inertia” parameter

and we specify a lower and an upper limit of 0.25 for the steps taken at each

iteration (i.e., vti ∈ [−0.25, 0.25]). This process will be continued until iteration

Niter and the design yielding the best criterion value is selected.

In the PSO algorithm, like in other metaheuristic methods, choosing an appro-

priate starting solution can improve the efficiency of finding a global optimum.

Leatherman et al. (2014) suggest starting the algorithm with Ndes particles that

are selected based on an LHD design with the Maximin criterion. There are two

major shortcomings in using this method in the context of our study: (1) the

input space is assumed to be a hypercube in LHD designs which is not the case

in our study; (2) their method is not suitable for augmenting an existing design.

Therefore, we propose a starting solution based on the conditional Maximin al-

gorithm discussed earlier for the initial design. Suppose that we currently have

m design points in the input space of continuous variables and we are looking for

nb follow-up design points to add to the existing design. The algorithm in Figure

3.2 shows the steps for finding Ndes designs (or the locations of the particles) to
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start the PSO algorithm. Step 1 is the key step in our proposed method, since we

calculate the minimum distance between each candidate point and the existing de-

sign points and find the weights accordingly. Using these weights in the sampling

step enables us to avoid selecting the candidate points which are very close to the

existing points. For each design k (k = 1, · · · , Ndes), we initialize the sequential

algorithm with weighted sampling from Ξ, and find the follow-up points based on

the conditional Maximin criterion as discussed earlier in the initial design section.

A Sequential Maximin Design for Initializing the PSO Algorithm
Input: Ξ = {ξ1, ξ2, · · · , ξN}, a large grid of points over the constrained region

δ, a function for calculating the Euclidean distance between 2 points:
s0 = {x1,x2, · · · ,xm}, a sequence of the existing design points

1: find the weights of the points in Ξ
1-1: ψ0

j ← min
i
δ(ξj,xp), for ξj ∈ Ξ, j = 1, · · · , N , xp ∈ s0, p = 1, · · · ,m

1-2: wj ← 1− e−(ψ0
j )

2

, j = 1, · · · , N

2: for k = 1 to Ndes do

3: Initialize the design:
3-1: sample xk1 from Ξ with the weights wi
3-2: s1k = {xk1}
3-3: ψ1

j = min{ψ0
j , δ(ξj,x

k
1)}, j = 1, · · · , N

4: for i = 2 to nb do
4-1: ψij = min{ψi−1j , δ(ξj,x

k
i−1)}, j = 1, · · · , N

4-2: xki ← xjmax , where jmax = argmax
j

ψij

4-3: sik = {xk1,xk2, · · · ,xki }
5: end for

6: end for

Output: snbk , k = 1, · · · , Ndes, Ndes designs of size nb

Figure 3.2: The procedure to find a starting solution for the PSO algorithm

In this chapter, we described the structure of the SKQ model and the procedure for

the simulation and design of experiment. In the next chapter, we show the results

of applying this tool to the CT-TH-PM profiles in real manufacturing systems.
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EMPIRICAL STUDIES

In this chapter, we evaluate our proposed Kriging method with two well-known em-

pirical examples: a Jackson network system and a scale-down real wafer fab model.

The primary intention of these studies is to survey the prediction performance of

the Kriging model. This model can be utilized to estimate the CT-TH-PM pro-

files of manufacturing systems with any number of product types. However, in

the following examples, we consider simple systems where the number of product

types is three. As a result, we are able to demonstrate the division of input space

based on the bottleneck regions and corresponding response surfaces. Moreover,

we restrict utilization to change only from 0.75 to 0.85, since this is usually the

range of utilization in which semiconductor manufacturing industries run their

facilities (see e.g., Hopp (2011)). Furthermore, we set the desired prediction error

δ% to be 7%, i.e., we stop our sequential fitting process once the prediction error

becomes lower than 7%. Next, we illustrate the parameters of interest in each case

followed by some results.

4.1 A Jackson Network System

Our first case study belongs to a simple Jackson network system with three prod-

ucts (K = 3) and three stations (M = 3). As mentioned earlier, Jackson network

30
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is a job shop problem where jobs visit a predetermined sequence of stations. Fur-

ther, inter-arrival times and service times follow an exponential distribution, and

there is no failure for any machine. Any Jackson network system can be com-

pletely characterized by the following sequences of parameters: the number of

parallel machines at each station {sj}Mj=1, effective service rates for each product

at each station{ukj}K,Mk=1,j=1, and the number of times each product visits each sta-

tion {δkj}K,Mk=1,j=1. Table 4.1 clearly defines the system configuration of the Jackson

network in this study.

Station 1 Station 2 Station 3
s1 = 1 s2 = 1 s3 = 1
u11 = u21 = u31 = u1 = 4 u12 = u22 = u32 = u2 = 3 u13 = u23 = u33 = u3 = 2.8
δ11 = 1 δ12 = 3 δ13 = 2
δ21 = 3 δ22 = 2 δ23 = 1
δ31 = 2 δ32 = 1 δ33 = 1

Table 4.1: System configuration of a 3-product, 3-station Jackson network

Following the queuing analysis described in Chapter 1, we can divide the input

space into three sub-regions with a constant bottleneck station Ωk given the in-

formation in Table 4.1. Figure 4.1 shows the partition of input space into the

sub-regions at any given level of utilization.

α2(0, 0, 1)

α1(1, 0, 0)

α3(0, 0, 1)

Ω1

Ω2

Ω3

Figure 4.1: Partition of the input space in a Jackson network at any utilization
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This figure suggests that each station serves as the bottleneck for some combina-

tions of product mix variables. For an open Jackson network, we can obtain the

true mean CT of a product as a function of PM at any level of utilization denoted

as ck(α, x):

ck(α, x) =
M∑
j=1

δkj

uj

[
1− x

(∑K
k=1 αkδkj/uj∑K
k=1 αkδkν/uν

)] , (4.1)

where ν is the bottleneck station. Thus, we can compare the estimates provided

using our proposed model with the true values.

In the preliminary queueing analysis, we do not need to specify the route of each

product. However, for running the simulation emulator, we define the following

sequences of the three stations as the deterministic routes for each of the three

products:

• Product 1: {3, 1, 2, 3, 2, 3}

• Product 2: {1, 2, 1, 3, 1, 2}

• Product 3: {2, 1, 3, 1}

Next, we define the parameters involved in DOE of the Jackson network model.

4.1.1 Design of Experiment for a Jackson Network System

Loeppky et al., 2010 suggest that as a rule of thumb at least 10× d design points

are needed for the initial design where d is the number of continuous variables in

the input space. In our example, we have 3 continuous variables α1, α2, and x

which suggests starting our fitting procedure with at least 30 design points. Based

on our experience of working with the CT-TH-PM surface of the Jackson network

model, we set the number of initial design points to be 50. With a space-filling

design of size 50, we are able to obtain an appropriate estimate of the SKQ pa-

rameters.

In sequential designs, the number of follow-up design points is a key feature of a

successful design augmentation. On the one hand, we may be trapped by a local-

optimum if we pick a small number of points. On the other hand, the process of
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finding an optimal design becomes computationally intensive if we choose a large

number of design points. Based on our experience with the Particle Swarm Opti-

mization algorithm, we choose the number of follow-up design points to be 25. For

setting the other parameters of the design augmentation algorithm, Leatherman

et al. (2014) suggest the values presented in Table 4.2.

Figures 4.2a and 4.2b depict the convergence of the maximum Entropy objective

function of particle-best and global locations, respectively, for adding a batch of 25

design points. Note that we are minimizing the negative Entropy in these figures

which is equivalent to maximizing the Entropy. As shown in Figure 4.2, the PSO

algorithm usually converges before 600 iterations, and this fact motivated us to

add another criterion for stopping the PSO algorithm. We stop the algorithm if

the difference between the global-best in current iteration gt and the global-best

in 50 iterations earlier gt−50 is less than 1 × 10−2. Adding this criterion to our

algorithm saved us a considerable amount of time for finding the follow-up designs.

θ 0.5
α 2
β 2
Ndes 4× n× d = 300
Niter 2×Ndes = 600

Table 4.2: The parameter setting of the PSO algorthm

4.1.2 Results for A Jackson Network System

In this section, we evaluate the prediction performance of our proposed model.

First, we compare our estimate to the true CT over a large set of points in the

input space. Second, we compare the prediction performance of the SKQ model

and the SK models to show the effectiveness of pooling the information of the

three products.
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(a) Particle-best

(b) Global

Figure 4.2: The convergence of the PSO algorithm

4.1.2.1 Comparison to the True Cycle Times

As mentioned earlier, we can find the true CT by using (4.1). Therefore, we define

a large set of evaluation points S0 = {(αl1, αl2, xl), l = 1, · · · , L} including almost

100,000 evenly spaced points in the input space of continuous variables and obtain

the true CT of the three products at each point. For estimating the CT’s at

these points, we follow the procedure in Section 3.2 and use (3.15) and (3.17) to

estimate the CT’s and their MSE’s, respectively at each point in S0. It is needless

to say, that we will obtain different models each time that we perform the fitting

process because of not only the stochastic nature of the simulation runs, but also

the several possible outcomes for the design of experiment. Thus, we repeat the

fitting process of fitting for 100 macro replications, and each time we find the
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relative prediction error of all the evaluation points. The relative prediction error

is calculated as:

re =
ck(α

l
1, α

l
2, x

l)− ĉk(αl1, αl2, xl)
ck(αl1, α

l
2, x

l)
, (4.2)

where ck(α
l
1, α

l
2, x

l) is the true CT, and ĉk(α
l
1, α

l
2, x

l) is the SKQ estimate of the

CT of product k at point l. For each macro replication, the following statistics

regarding the relative prediction errors have been calculated: min, 2.5th percentile,

5th percentile, 50th percentile, 95th percentile, 97.5th percentile, and max. Then,

the box plot of each statistic over 100 macro replications has been obtained and

demonstrated in Figure 4.3. Figure 4.3 indicates that at least 95% of the predic-

Figure 4.3: The box plot of different percentiles of the relative prediction
errors in a Jackson network system over 100 macro replications

tion errors are less than 7%. Based on the box plot for the 50th percentiles, our

predictions are centered at zero and from similar frequencies in the right and left

side of point zero we can infer that there is no sign of bias in our predictions. This

figure also shows that in the worst case the prediction error is still between −17%

and 13%. In order to investigate the prediction power of the proposed model, we

choose one of the SKQ models and present its estimates and the true responses in

Figure 4.4. For the sake of graphical presentation, we plot the CT of the products

with respect to one mixture variable α1 for different levels of the two other con-

tinuous variables α2 and x. Also, the parameter estimates of this SKQ model is

listed in Table 4.3.
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Figure 4.4: The true CT and its prediction for each product as a function of
α1 in 3 different levels of utilization and 3 constant ratio of α2 and α3

β̂0 0.4002

σ̂ 0.1078

θ̂1 22.4578

θ̂2 3.4288

θ̂3 0.5771

φ̂1 0.9101

φ̂2 0.7313

φ̂3 0.1339

Table 4.3: The parameter estimates of an SKQ model

As depicted in Figure 4.4, the SKQ model is able to predict the response accurately

for almost every points except for those that are close to the region where the

bottleneck station changes. The cycle time increases dramatically in these regions

and it is hard for the SKQ model to provide accurate estimates in such points.

However, the relative prediction error calculated at these points is still reasonably

low, and the estimates at the other points is not affected significantly.

We can also obtain some information about the response surface by looking at the

parameter estimates. It can be seen from the plots in Figure 4.4 that the response
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surface is not smooth in the direction of α1 and that is the reason for having a

large estimate for θ1. On the other hand, comparing the graphs horizontally does

not show any significant difference in the behavior of the response which results

in a small estimate for θ3.

4.1.2.2 Comparison between the SKQ and SK models

In this section, we want to evaluate the effectiveness of sharing the information

of the three products in the proposed SKQ model. Therefore, we perform similar

fitting process as mentioned in the last section once again, but this time to fit

SK models to each product separately, and find the SK estimates of the CT’s and

their MSE’s for the points in S0. This process is also repeated for 100 macro

replications. As a result, using a modeling method (SK or SKQ) for 100 times

enables us to find 100 confidence intervals (CI’s) for the true response at any

evaluation point in S0 with α = 0.05. The coverage probability of the CI’s at

any point can be estimated as the percentage of the CI’s that include the true

response. Ideally, we are expecting the percentages be close to 95%. For the sake

of graphical and tabular presentations, we set α2 = α3 and x = 0.8, and compare

the CI’s given by SKQ and SK for the three products in 5 levels of α1. Table 4.4

presents the coverage probabilities of these 95% CI’s over 100 macro replications.

Product Model
α1

0.1 0.3 0.5 0.7 0.9

Product 1
SK 1.00 1.00 1.00 1.00 1.00

SKQ 0.92 0.67 0.96 0.97 0.95

Product 2
SK 1.00 1.00 1.00 1.00 1.00

SKQ 0.94 0.74 0.93 0.96 0.93

Product 3
SK 1.00 1.00 1.00 1.00 1.00

SKQ 0.95 0.76 0.93 0.96 0.95

Table 4.4: The coverage percentage of CI’s given SK and SKQ models for the
three products

The estimated coverage probabilities of the SK CI’s are given in the row marked

as SK, and are all equal to 1.00 at the check points, which is much higher than the
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expected 95%. However, the estimated coverage probabilities provided by SKQ

are presented in the row specified as SKQ, and they are significantly closer to the

95% except for the point that is very close to the bottleneck region. An example

of such CI’s has been presented in Figure 4.5. This figure clearly shows that the

SK models fail to provide tight CI’s while the SKQ model provides much narrower

CI’s. As a result, SKQ models are preferred because the MSE estimates are much

smaller than what we obtain in the SK models because of pooling CT information

of different products together.

Figure 4.5: The 95% CI’s provided by SK and SKQ for each product as a
function of α1 in utilization 0.8 and a constant ratio of α2 = α3
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4.2 A Scale-Down Wafer Fab System

In this section, we apply our proposed model to a scale-down semiconductor wafer

fab system to estimate its CT-TH-PM surfaces. When performing aggregate pro-

duction planning, manufacturers usually categorize several possible types of prod-

ucts into a few product families with similar characteristics. This fact along with

the benefit of using graphical presentations motivated us to consider a real wafer

fab system with three types of product families. An analytical approach similar

to what we utilized for the previous study is exploited to perform the capaci-

ty/bottleneck analysis of the fab model. This analytical approach also provides

an estimate of the system capacity which leads to convert the throughput into

system utilization x as mentioned in Section 1.1. Again, we assume that the uti-

lization changes between 0.75 and 0.85 and the PM space is not subject to any

further constraint. The latter assumption is not realistic especially for real fab

systems, since there are various conditions for meeting the demands in the real

world that influence the production mixture. Nevertheless, allowing a wider input

space makes the problem of fitting the response more challenging, and gives us a

better understanding of the prediction performance of our proposed model. Un-

fortunately, we can not obtain the true CT in a real wafer fab with the analytical

approaches due to the fact that there are many assumptions such as daily demand,

batch processing, machine failures, scraps, and so on that can not be character-

ized with a mathematical approach. Thus, we use the fidelity and flexibility of

computer simulation to mimic the behavior of a real wafer fab. More precisely, we

run an extensive simulation effort with 500 replications at each point to find the

so-called ‘nearly true’ CT. For the design of experiment, we use the same param-

eter setting discussed in the previous section, because there is no change in the

number of variables. Finally to evaluate the prediction performance of our model,

we define a grid of 198 points in the input space of continuous variables as the

evaluation set S0, and find the true responses as discussed earlier. Following the

same procedure as in the case of Jackson network, we find 100 SKQ estimates of

the CT of each product at any check point, and compute the relative prediction
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errors using Equation 4.2. Figure 4.6 shows the box plot of different percentiles of

relative prediction errors over the check points using 100 SKQ models.

Among the 198 × 3 check points, all the relative prediction errors fall within the

range of [−15%, 11%] with at least 95% of them within [−8%, 7%]. Therefore, the

SKQ model is able to provide a decent prediction of CT of the three products all

over the input space of a real waber fab.

Figure 4.6: The box plot of different percentiles of the relative prediction
errors in a wafer fab system over 100 macro replications
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CONCLUSIONS

In this study, we developed a metamodeling approach based on the Stochastic

Kriging model with Qualitative factors (SKQ) to build CT-TH-PM profiles in

semiconductor manufacturing. In such industries, one can use these profiles to

answer “what-if” questions in production planning. The conventional models can

be categorized into two major classes: analytical approaches which require several

simplifications, and simulation-based studies where we perform extensive simula-

tion efforts to obtain CT’s for a vast number of scenarios. Adopting a metamodel-

ing approach, we seek to take advantage of the flexibility of computer simulation,

and the real-time prediction ability of statistical models.

The advantages of the SKQ-based metamodeling are summarized as follows com-

pared to the existing metamodeling methods in CT-TH-PM quantification. (i)

SKQ is able to provide a single model representing the CT-TH-PM response sur-

faces of all product types. (ii) Unlike many other data mining techniques, SKQ

allows for valid statistical inference and hence enables the construction of confi-

dence intervals. (iii) SKQ is able to accommodate heterogeneous variance.

To efficiently estimate CT-TH-PM profiles, a sequential experimental design pro-

cedure is developed to carry out simulation experiments in batches. For the initial

design, a modified version of a Sequential Maximin algorithm with the conditional

Maximin criterion is utilized. This approach provides a space-filling design with

41
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small computational effort. For follow-up designs, we exploit a Particle Swarm

Optimization algorithm to maximize the Entropy of the augmented design. A

method based on the Sequential Maximin algorithm is proposed to find the initial

locations of the particles in the PSO algorithm. Finally, we apply this metamod-

eling approach to a Jackson network system and a scale-down wafer fab model.

It is shown that we obtain high prediction accuracy for most of the points over

the entire input space of both examples. Moreover, comparing the CI’s provided

by SK and SKQ suggest that pooling the information of the qualitative variable

(product type) leads us to tighter confidence intervals for the target response.
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