
Concurrent cell rate simulation of ATM telecommunications network.
Bocci, Matthew

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/3806

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30696329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/3806

1

Concurrent Cell Rate Simulation of
ATM Telecommunications Networks

by

Matthew Bocci

Submitted for the degree of Doctor of Philosophy

Department of Electronic Engineering

Queen Mary & Westfield College

University of London

February 1997

 2

to Laurissa

 3

Abstract

This thesis presents a new approach to the accelerated simulation of

Asynchronous Transfer Mode (ATM) telecommunications networks. The

union of a parallel computing architecture with cell rate traffic modelling

is investigated. The results of this work are also applied to improving

sequential cell rate simulators.

In order to obtain statistically significant network performance results,

the flow of very large numbers of cells through the network must be

modelled. This results in long simulation times. A number of techniques

have been studied elsewhere for accelerating the simulation. Concurrent

(parallel) simulation exploits the inherent parallelism in a

telecommunications network. Cell rate modelling accelerates the

simulation by reducing the total number of events that have to be

processed. The use of cell rate modelling in parallel simulation could

result in enhanced speedup over traditional cell level ATM simulators.

Cell rate simulation imposes a new set of requirements on simulation

platforms. It is the effect of these in both parallel and sequential

computing environments that forms the focus of this research.

In this thesis, a study of the efficiency and accuracy of the Timestepping

approach for parallel cell rate ATM simulation is presented. Experiments,

based on an ATM simulator developed by the author, demonstrate that

Timestepping is only effective if the network is heavily loaded. However,

the distributed nature of the event list in the Timestepping scheme can be

incorporated into sequential cell rate simulators with significant speed

advantages. An experimental study of such an event list scheme

demonstrates that maximum speedup is achieved when the event list is

spatially decomposed and also when multiple simultaneous event

generation during burst scale queueing is correctly handled. Therefore, in

 4

order to efficiently support cell rate modelling an event list algorithm

should cope with the spatially distributed nature of events and multiple

simultaneous events.

 5

Contents

ABSTRACT ..3

CONTENTS..5

LIST OF FIGURES ...9

LIST OF TABLES ...12

ACKNOWLEDGEMENTS...13

1. INTRODUCTION..14

1.1 OUTLINE OF THE THESIS ..16

1.2 SUMMARY OF CONTRIBUTION ...18

2. ASYNCHRONOUS TRANSFER MODE..19

2.1 ATM PROTOCOL REFERENCE MODEL...20

2.2 STATISTICAL AND DETERMINISTIC MULTIPLEXING..22

2.3 QUALITY OF SERVICE IN ATM ..23

2.4 TRAFFIC CONTROL AND THE ROLE OF NETWORK MANAGEMENT24

2.5 SUMMARY ...27

3. SIMULATION..28

3.1 MOTIVATION FOR SIMULATION IN ATM..29

3.2 SIMULATION PRINCIPLES ...31

3.2.1 Time Advancement and the Event List..32

3.2.2 Event Generation and Random Number Generators35

3.2.3 Transient and Steady States..36

3.3 SIMULATION LANGUAGES AND TOOLS ..36

 6

3.4 CELL LEVEL SIMULATION OF ATM NETWORKS ..41

3.4.1 Principles..41

3.4.2 MICROSIM: An Example Cell Level ATM Network Simulator43

3.5 SUMMARY ...43

4. ACCELERATED SIMULATION TECHNIQUES ..45

4.1 PERFORMANCE MEASURES FOR SIMULATORS ...46

4.2 CELL RATE SIMULATION ...46

4.2.1 Overview...46

4.2.2 Modelling the Traffic..47

4.2.3 Operation of the Queue ..48

4.2.4 Example Cell Rate Simulators..54

4.2.5 Performance of Cell Rate Simulation...55

4.3 PARALLEL SIMULATION...56

4.3.1 Overview...56

4.3.2 Decomposition..57

4.3.3 Consistency in Concurrent Simulation Schemes ..63

4.3.4 Lookahead ..64

4.3.5 Conservative and Optimistic Synchronisation ...66

4.3.6 Synchronous and Asynchronous Synchronisation..68

4.3.7 Practical Parallel Simulators...68

4.3.8 Parallel Computer Architectures ...69

4.4 SUMMARY ...73

5. TIMESTEPPING - A SYNCHRONOUS PARALLEL SYNCHRONISATION

SCHEME..75

5.1 OUTLINE OF TIMESTEPPING SIMULATOR..75

5.1.1 Grouping of Simultaneous Events ..78

5.2 PERFORMANCE IMPLICATIONS OF TIMESTEPPING...78

5.3 EXPERIMENTAL STUDY OF TIMESTEPPING PERFORMANCE.......................................83

5.3.1 Relationship Between Timestep and Simulation Speed84

 7

5.3.2 Relationship Between Timestep and Traffic Characteristics85

5.3.3 Relationship Between Timestep and Link Delay ..87

5.3.4 Effect of Burst Length Quantisation on Cell Loss Measurements................88

5.3.5 Optimising Timestepping - a Two-Level Timestep Switching Scheme90

5.3.6 Performance With Timestep Switching...92

5.4 SUMMARY ...94

6. SPROG OBJECT ORIENTED SIMULATOR ...96

6.1 MOTIVATION FOR THE DEVELOPMENT OF SPROG ..96

6.2 OBJECT ORIENTED SOFTWARE DESIGN..97

6.2.1 Overview...98

6.2.2 Encapsulation ...99

6.2.3 Inheritance and Polymorphism ..100

6.2.4 Application of Object-Oriented Techniques to Network Simulation..........101

6.3 ARCHITECTURE OF SPROG...102

6.3.1 Object Class Definitions...104

6.3.2 Event List Management ..112

6.4 APPLICATION OF SPROG TO THE COMPARISON OF SYNCHRONISATION SCHEMES 114

6.4.1 Experimental Comparison of Timestepping and Linear Event List115

6.4.2 Comparative Performance of Timestepping with no Queueing118

6.4.3 Comparative Performance of Timestepping with Queueing121

6.5 SUMMARY ...127

7. EFFICIENT EVENT LIST MANAGEMENT FOR CELL RATE

SIMULATION...129

7.1 REVIEW OF EVENT LIST MANAGEMENT SCHEMES...129

7.1.1 General Simulation Algorithms..129

7.1.2 Optimised Event Lists for Cell Rate Simulation ...131

7.2 A SPATIALLY DECOMPOSED EVENT LIST SCHEME ..134

7.2.1 Performance of Spatially Decomposed Event List137

7.3 SPACE-TIME EVENT LIST MANAGEMENT FOR CELL RATE SIMULATION141

 8

7.3.1 Performance of Space-Time Event List for Cell Rate Simulation145

7.4 VERIFICATION OF OPTIMISED SPACE-TIME USING A REALISTIC NETWORKING

SCENARIO...149

7.5 SUMMARY ...152

8. DISCUSSION ...154

8.1 SIMULATION OF ATM NETWORKS ..154

8.2 ACCELERATING CELL RATE SIMULATION..161

8.2.1 Parallel Cell Rate Simulation...161

8.2.2 Optimised Sequential Cell Rate Simulation ...167

8.3 FURTHER WORK..169

9. CONCLUSIONS ..171

ABBREVIATIONS ..173

BIBLIOGRAPHY ..175

PUBLICATIONS BY THE AUTHOR ..175

ITU-T RECOMMENDATIONS ..175

OTHER REFERENCES..176

 9

List of Figures

FIGURE 1 THE PROTOCOL REFERENCE MODEL FOR ATM ...21

FIGURE 2 SEQUENCE OF OPERATIONS IN AN EVENT DRIVEN SIMULATOR......................34

FIGURE 3 SIMULATION DEVELOPMENT PROCESS WITH OPNET40

FIGURE 4 SIMPLE MODEL OF ATM MULTIPLEXER ..41

FIGURE 5 CELL AND BURST SCALE COMPONENTS OF QUEUEING.....................................42

FIGURE 6 BASIC UNIT OF TRAFFIC..47

FIGURE 7 THE QUEUE MODEL...49

FIGURE 8 THE NINE POSSIBLE STATES OF A QUEUE ..49

FIGURE 9 EXAMPLE OF THE NEED FOR CONSISTENCY ..64

FIGURE 10 SHARED MEMORY ARCHITECTURE ..72

FIGURE 11 DISTRIBUTED MEMORY MULTIPROCESSOR ARCHITECTURE.........................73

FIGURE 12 SIMPLIFIED NODE ARCHITECTURE ..76

FIGURE 13 EVENT DELAY DUE TO GRANULARITY OF TIMESTEP79

FIGURE 14 EVENT SYNCHRONISATION WITH TIMESTEP BOUNDARIES80

FIGURE 15 EFFECT OF TIMESTEP ON BURST LENGTH FOR BURSTS SHORTER THAN 1
TIMESTEP ...81

FIGURE 16 BURST STRETCHING DUE TO TIMESTEP EFFECT ...82

FIGURE 17 NETWORK CONFIGURATION USED FOR TIMESTEP STUDIES..........................83

FIGURE 18 EFFECT ON CELL PROCESSING RATE OF INCREASING THE TIMESTEP VALUE84

FIGURE 19 EFFECT OF TIMESTEP ON BURST LENGTH DISTRIBUTION FOR SMALL LINK
DELAY..86

FIGURE 20 EFFECT OF TIMESTEP ON BURST LENGTH DISTRIBUTION FOR SMALL LINK
DELAY..87

FIGURE 21 EFFECT OF TIMESTEP ON BURST LENGTH DISTRIBUTION FOR LARGE LINK
DELAY..88

FIGURE 22 CELL LOSS EXPERIMENT USING LINKSIM ..89

FIGURE 23 VARIATION IN CELL LOSS MEASUREMENTS WITH EFFECTIVE TIMESTEP SIZE90

FIGURE 24 TIMESTEP SWITCHING SCHEME..92

FIGURE 25 SPEEDUP WITH TIMESTEP SWITCHING ..93

FIGURE 26 EXAMPLE INHERITANCE TREE..100

FIGURE 27 LOGICAL ARCHITECTURE OF THE SPROG SIMULATOR..............................104

FIGURE 28 OBJECT CLASS DEFINITIONS FOR SPROG..105

 10

FIGURE 29 ARRANGEMENT OF PLACES AND LINKS IN SPROG....................................107

FIGURE 30 SIMPLE LINEAR EVENT LIST ..113

FIGURE 31 THREE NODE EXPERIMENTAL NETWORK TOPOLOGY.................................116

FIGURE 32 ELEVEN NODE EXPERIMENTAL NETWORK TOPOLOGY...............................116

FIGURE 33 VARIATION OF CELL PROCESSING RATE FOR 3 NODE NO QUEUEING
NETWORK...120

FIGURE 34 VARIATION OF CELL PROCESSING RATE FOR 11 NODE NO QUEUEING
NETWORK...120

FIGURE 35 VARIATION OF CELL PROCESSING RATE FOR LOW UTILISATION 3 NODE
QUEUEING NETWORK...122

FIGURE 36 VARIATION OF CELL PROCESSING RATE FOR LOW UTILISATION 11 NODE
QUEUEING NETWORK...122

FIGURE 37 VARIATION OF CELL PROCESSING RATE FOR HIGH UTILISATION 3 NODE
QUEUEING NETWORK...123

FIGURE 38 VARIATION OF CELL PROCESSING RATE FOR HIGH UTILISATION 11 NODE
QUEUEING NETWORK...124

FIGURE 39 COMPARATIVE CELL PROCESSING RATES OF TIMESTEPPING WITH GROUPING
AND LARGE TIMESTEP ..127

FIGURE 40 LINKSIM EVENT LIST STRUCTURE..132

FIGURE 41 EXAMPLE NETWORK SCENARIO...133

FIGURE 42 STRUCTURE OF SPACE-TIME EVENT LIST...135

FIGURE 43 THREE NODE SPACE-TIME EVENT LIST PERFORMANCE WITH NO QUEUEING138

FIGURE 44 THREE NODE SPACE-TIME EVENT LIST PERFORMANCE WITH QUEUEING AND
LOW UTILISATION ..138

FIGURE 45 THREE NODE SPACE-TIME EVENT LIST PERFORMANCE WITH QUEUEING AND
HIGH UTILISATION..139

FIGURE 46 ELEVEN NODE SPACE-TIME EVENT LIST PERFORMANCE WITH NO QUEUEING139

FIGURE 47 ELEVEN NODE SPACE-TIME EVENT LIST PERFORMANCE WITH QUEUEING
AND LOW UTILISATION...140

FIGURE 48 ELEVEN NODE SPACE-TIME EVENT LIST PERFORMANCE WITH QUEUEING
AND HIGH UTILISATION..140

FIGURE 49 EVENT LIST OPTIMISED FOR CELL RATE MODELLING................................143

FIGURE 50 EXAMPLE NETWORK..144

FIGURE 51 PROPAGATION OF SIMULTANEOUS CELL RATE CHANGE EVENTS VIA EVENT
LIST..145

FIGURE 52 THREE NODE OPTIMISED SPACE-TIME EVENT LIST PERFORMANCE WITH LOW
UTILISATION...146

FIGURE 53 THREE NODE OPTIMISED SPACE-TIME EVENT LIST PERFORMANCE WITH
HIGH UTILISATION..147

 11

FIGURE 54 ELEVEN NODE OPTIMISED SPACE-TIME EVENT LIST PERFORMANCE WITH
LOW UTILISATION ..147

FIGURE 55 ELEVEN NODE OPTIMISED SPACE-TIME EVENT LIST PERFORMANCE WITH
HIGH UTILISATION..148

FIGURE 56 TOPOLOGY OF REALISTIC SCENARIO..150

FIGURE 57 PERFORMANCE OF EVENT LIST SCHEMES IN REALISTIC SCENARIO151

 12

List of Tables

TABLE 1 ATM PROTOCOL LAYER AND SUB-LAYER FUNCTIONS...................................22

TABLE 2 SEQUENCE OF OPERATIONS FOR TIMESTEPPING SIMULATOR...........................77

TABLE 3 INTERFACE TO PLACE AND LINK SIMULATION SERVICES...............................108

TABLE 4 INTERFACE TO EVENT SIMULATION SERVICES...109

TABLE 5 INTERFACE TO CLASS CONFIGURATION...110

TABLE 6 SEQUENCE OF OPERATIONS FOR EVENT INSERTION.......................................136

TABLE 7 SEQUENCE OF OPERATIONS FOR EVENT EXTRACTION...................................136

 13

Acknowledgements

I would like to acknowledge the support of my supervisor Professor Laurie

Cuthbert, and also that of Dr Eric Scharf and Dr Jonathan Pitts. I would

also like to thank my parents for their encouragement.

 14

1. Introduction

Asynchronous Transfer Mode (ATM) has been identified as the target

transfer mode for future Broadband Integrated Services Digital Networks

(B-ISDN). Traditionally, simulation techniques have been applied to the

specification and design of ATM equipment, and to enable experience of

ATM technology to be gained before the introduction of real ATM

networks. More recently, the use of simulators in the development of

network management systems has emerged.

Despite the fact that real networks are now in existence and experience of

ATM is now more widespread, the justification for simulation is expected

to remain because these networks are often unsuitable for

experimentation. Furthermore, off-line modelling of these networks will be

important even for network management systems that are connected to

real networks in order to assess the impact of management decisions

before they are made.

Conventional simulation of ATM involves the use of discrete event

simulators that model the flow of each individual cell through the network

(cell level simulation). However, whilst this approach can give very

accurate results, statistical considerations mean that very large numbers

of cells have to be simulated in order to guarantee the accuracy of those

results. Simulators that simply model the set-up and clear-down of calls or

connections in the network (call level simulation) can simulate at much

faster rates than cell level simulators, but because none of the traffic is

modelled during the duration of the call it is not possible to accurately

measure many significant cell scale statistics (such as cell loss ratio).

Faster simulators that can generate cell scale statistics are required, both

to bring down simulation run times and to increase the scope for coupling

simulators to telecommunications management networks (TMN) who's

 15

perception of time may be closer to real time than the simulator’s internal

simulation time.

Accelerated simulation techniques aim to improve the speed of simulation

and can be classified into three broad areas:

• implementation techniques

• statistical techniques

• modelling techniques.

This thesis considers the cell rate modelling technique, and in particular,

the acceleration of simulators through the exploitation of concurrently

occurring events. In particular, two possible paths for accelerating cell

rate simulators are investigated: the implementation technique of parallel

simulation, and the optimisation of event list management schemes to

efficiently cope with the requirements of cell rate modelling.

Whilst cell rate modelling and parallel simulation can give significant

speedup, they still run at much less than real time i.e. for a given real

time duration as perceived by the user of the simulator, the simulator’s

internal clock will advance by a much smaller amount. A number of

research projects (such as CEC RACE ICM) have attempted to obtain

further speedup by combining both of these approaches in a single

simulator. The main contribution of the work relating to parallel

simulation described in this thesis is in identifying and solving some of

the problems in attempting to simulate ATM networks using cell rate

modelling on a parallel computing architecture. A novel synchronous time

synchronisation scheme for parallel simulation, known as timestepping, is

described and the results of experiments based on cell rate simulators

using this technique are presented. These results demonstrate many of

the problems in identifying parallelism in the cell rate model. Following

this, the implementation of timestepping in a new cell rate simulator

developed by the author is described. This simulator is used to compare

 16

the speed performance of timestepping with the simple linear event list

scheme. Through this work, a number of important characteristics of cell

rate modelling are identified that have significant new implications for

simulator performance.

1.1 Outline of the Thesis

The previous section has outlined the rationale behind the work described

in this thesis.

Chapter 2 of this thesis introduces the essentials of ATM before the

motivation for and techniques involved in the simulation of this

technology are detailed in Chapter 3. The traditional method of cell level

simulation is also outlined here.

Chapter 4 describes in detail the need for accelerated simulation

techniques. It outlines the principles behind cell rate and parallel

simulation and the results of previous studies into these two techniques

are reviewed. Parallel computer architectures are also reviewed here

because the precise details of this can have a significant bearing on the

parallel simulation technique that is chosen.

Chapter 5 details a study by the author into an existing timestepping

simulator that attempts to combine cell rate modelling and parallel

techniques. This study indicates that the simple synchronous time

synchronisation scheme used is not effective in exploiting parallelism in

the cell rate model unless the scale of the simulation is large, even when

modified to attempt to account for the sparse nature of events in a cell rate

simulation. The existing simulator is found to be insufficiently flexible for

a wider ranging study of the efficiency of timestepping, in particular for

assessing the schemes performance in larger scale network simulations

and in comparison with other time synchronisation schemes.

 17

Chapter 6 describes in detail the design of an new object oriented ATM

network simulator (SPROG) that was developed by the author in order to

overcome some of shortcomings of the existing timestepping simulator.

The rationale behind the development of SPROG is outlined, together with

a description of how the properties of object oriented programming

languages can be applied to great advantage in network simulation.

SPROG is used to compare the performance of timestepping with another

basic time synchronisation and event list management scheme when

modelling a range of network scales and traffic loads when used in a

sequential simulator. Hence a sequential simulator is applied in a novel

manner in order to assess the potential performance of timestepping in a

parallel computing environment. The results of Chapter 6 suggest that

timestepping is only likely to be an effective time synchronisation scheme

for parallel cell rate simulators for large, heavily loaded network

simulations.

Chapter 7 considers the optimisation of event list management schemes in

sequential simulators such that they can efficiently support cell rate

modelling. The application of the spatial distribution of events, and their

concurrent occurrence, is exploited in the development of novel event list

management algorithms that are optimised for cell rate modelling.

Experiments that assess the performance of these algorithms are

described.

Chapter 8 discusses the implications of the work described in this thesis

on the development of both parallel and sequential cell rate ATM network

simulators. This chapter concludes with some proposals for further work

that follows up the research described in this thesis.

Finally, the conclusions of the research work are presented in Chapter 9.

 18

1.2 Summary of Contribution

The research described in this thesis contributes to two main areas of

accelerated simulation of ATM networks:

• parallel simulation of a cell rate model

• optimisation of simulators to maximise their performance when

supporting a cell rate model.

Throughout this thesis, a number of references are made to major

research projects in the field of ATM and telecommunications network

resource management of which the author was a member. These projects

were:

• CEC R1022 Technology for ATD

• CEC R2059 Integrated Communications Management (ICM)

• EPSRC/DTI Project ATM Resource Management (ARMAN).

These projects provided the inspiration for, some of the background

material pertaining to, and a realistic context for the research described

herein. However, this research was conducted entirely by the author as a

separate exercise and makes a number of contributions that are beyond

the scope of these projects. In particular, the new areas that the research

focuses on are:

• the identification of potential parallelism in cell rate ATM models and

solving some of the problems of parallelising a cell rate model

• the investigation of timestepping as a time synchronisation scheme for

parallel cell rate ATM simulators

• the development of an object oriented cell rate ATM simulator for the

purpose of studying event list management algorithm performance

• the optimisation of event list management algorithms for sequential

cell rate ATM network simulators.

 19

2. Asynchronous Transfer Mode

The International Telecommunications Union (ITU-T) has identified

Asynchronous Transfer Mode (ATM) as the target transfer mode solution

for the Broadband Integrated Services Digital Network (B-ISDN) [I.150].

ATM is potentially able to carry all of the anticipated broadband services,

while maintaining efficient use of the available network resources. Since

ATM has already been described in detail in the literature, for example

[I.150][Pryk91] and [Cuth93], only a brief outline of the main principles is

given here.

In ATM, user (or source) information is transmitted in fixed size packets,

or cells. These are 53 octets long, of which 48 octets is the actual user

information (the payload) and 5 octets the cell header, which contains

network information such as routeing. ATM is basically a connection

oriented transfer mode in which cells associated with a number of

connections are multiplexed onto a single link using asynchronous time

division (ATD) multiplexing techniques. These connections are logical and

each cell header includes a Virtual Channel Identifier (VCI) and a Virtual

Path Identifier (VPI) that associate it with a unique Virtual Channel

Connection (VCC). This simple labelling scheme allows network

complexity to be kept to a minimum and hence allows very fast switching

and routeing of cells.

ATM is capable of carrying information generated by both Constant Bit

Rate (CBR) sources, such as simple voice traffic, and Variable Bit Rate

(VBR) sources such as video coder/decoders (CODECS). Services for which

a guaranteed quality of service (QoS) is required, such as video, can be

carried, as well as those for which the QoS requirements are less

stringent, for example Internet Protocol (IP) data.

 20

Four transfer capabilities are defined [I.371]:

• Deterministic Bit Rate (DBR)

• Statistical Bit Rate (SBR)

• Available Bit Rate (ABR)

• ATM Block Transfer (ABT)

DBR is used for connections that require a static amount of bandwidth

that is continuously available during the connection lifetime. SBR, on the

other hand, is used for connections for which any characteristic variation

in the traffic is known at connection set-up time. In ABT, bandwidth is

allocated in terms of a ATM block, each block being essentially equivalent

to a DBR connection. ABR is intended to support traffic from sources that

are able to reduce their information transfer rate to zero if the network

requires them to do so, but may also increase their information transfer

rate if there is extra bandwidth available. In this thesis, only those

characteristics of ATM relevant to DBR and SBR are considered.

ATM Cells are carried in slots and they are only generated when there is

information for transfer. When there is no information to transfer,

unassigned cells are carried in the slots. ATM is also able to guarantee cell

sequence integrity i.e. cells on a particular VCC will always arrive at their

destination in the same order that they were sent out from the source.

Because ATM networks must operate at very high speeds, network

simplicity is essential. Therefore, ATM includes no provision for error

recovery, which must instead be performed on an end-to-end basis.

2.1 ATM Protocol Reference Model

Figure 1 shows the ATM protocol reference model [I.121]. It consists of a

user plane, a control plane, and a management plane. The user and

 21

control planes are divided into layers and sub-layers, as shown in Table 1.

The lowest of these, the Physical Layer, is responsible for details such as

bit synchronisation, framing, and the physical transmission medium itself.

Above this, the ATM Layer provides cell transfer for all services, while the

ATM Adaptation Layer (AAL) provides service dependent functions to the

higher layers. The management plane provides network supervision

functions.

management plane plane m
anagem

ent

lay er m
ana gem

ent

physical layer

ATM layer

ATM adaptation layer

higher layers

controlplane userplane

Figure 1 The Protocol Reference Model for ATM

 22

Layer/Sub-layer Function
ATM
Adaptation
Layer

Convergence sub-layer

Segmentation and re-assembly sub-
layer

Convergence

Segmentation and re-assembly

ATM layer generic flow control

cell header generation/extraction

cell VCI/VPI translation

cell multiplex and de-multiplex

Physical Layer Transmission convergence sub-
layer

Physical medium sub-layer

cell rate decoupling

HEC header generation/verification

cell delineation

transmission frame adaptation

transmission frame generation &
recovery

bit timing

physical medium

Table 1 ATM Protocol Layer and Sub-layer Functions

2.2 Statistical and Deterministic Multiplexing

In ATM, each connection is allocated a certain amount of bandwidth at

call set-up time. However, because variable bit rate as well as constant bit

rate sources can be accommodated, a scheme for allocating the required

bandwidth while guaranteeing a certain quality of service to the user is

required.

If deterministic multiplexing is used, then the peak source bit rate is

allocated to each connection. Whilst this can lead to a very high quality of

service because cell level congestion is minimised, it is wasteful of the

available bandwidth for ‘bursty’ VBR sources. This is because, with VBR

sources, the full allocated bandwidth will not be used all of the time, but

 23

any spare bandwidth will not be available to other currently more active

connections because it has already been allocated.

In statistical multiplexing, the bandwidth allocated to each connection is

less than the peak bit rate, but generally greater than the mean bit rate.

This means that more of the network resources will be utilised at any

given time and leads to the interesting situation where the sum of the

peak bandwidths of all the VCs on a link (or VP) can exceed the total

available bandwidth. Statistical multiplexing is effective provided that

that the sources are sufficiently ‘bursty’ and that they are uncorrelated i.e.

the peak bit rates of the different sources do not occur simultaneously.

2.3 Quality of Service in ATM

The concept of Quality of Service (QoS) in ATM is very complex and

relates to the satisfaction gained by a user from the service provided by a

network. The formal definition given by ITU-T in Recommendation I.350

[I.350] is: the collective effect of service performances which determine the

degree of satisfaction of a user of a service. Whilst this definition is useful

to the user of a network, it is highly subjective and is less meaningful to a

network provider. Therefore, the ITU-T has also defined a further

measure known as Network Performance (NP) which is characterised by

measurable and calculable parameters. The formal definition of NP, also

given in Recommendation I.350, is: the ability of a network or network

portion to provide the functions related to communications between users.

This is characterised by a number of generic parameters that are

applicable to all digital networks, including access speed, information

transfer speed, information transfer accuracy and dependency, and

disengagement speed. These map to specific network performance

parameters in ATM including connection set-up time, bandwidth, cell loss

ratio (CLR), cell delay and cell delay variation (CDV), and connection

clear-down time.

 24

When a connection is set-up across the ATM network it is done so in

accordance with a contract that is made between the users and the

network provider. This contract specifies, amongst other things, the QoS

that the provider must provide to the user. This will, at least in part, be

interpreted by the network provider as a set of guaranteed network

performance parameters.

Dimensioning and Performance Engineering are two processes that must

be applied by the network provider in order to be able to guarantee a

given QoS or NP to a user. Dimensioning is a longer term activity that

focuses on the organisation and provisioning of sufficient equipment to

meet the expected demands of users, and requires a knowledge of usage

patterns and service characteristics [Pitts93]. Performance engineering,

however, is a more detailed activity that concentrates both on the detailed

design of the equipment and on the management of the low level (i.e. cell,

burst and connection level) resources of the network in order to guarantee

QoS. This requires detailed knowledge of the performance limits of

equipment, the service characteristics and information about typical

service mixes.

2.4 Traffic Control and the Role of Network Management

The primary aim of traffic control and congestion control parameters and

procedures is to protect the network in order to achieve network

performance objectives [I.371] which should be done while optimising the

use of network resources. This is necessary in order to guarantee the QoS

that is agreed with users at call set-up time.

The ITU-T outlines a number of generic functions to meet the above

objectives. These are:

• Network Resource Management - this includes provisioning

 25

• Connection Admission Control (CAC) - this is defined as the set of

actions taken by the network at the call set-up phase in order to

establish if a virtual channel or virtual path connection (VCC or VPC)

can be accepted. This decision is based on an assessment of the

currently available bandwidth and the bandwidth required by the new

connection.

• Usage and Network Parameter Control (UPC and NPC) - this is the set

of actions taken by the network in order to monitor and control traffic at

the user access and the network access respectively. The main purpose

is to protect network resources from malicious as well as unintentional

misbehaviour that can affect the QoS of existing connections by

detecting violations of negotiated parameters and taking appropriate

actions.

• Priority Control - the user may generate different priority traffic flows

that may be dealt with differently by network elements. For example,

low priority cells could be discarded during periods of congestion in

order to protect the QoS of other connections.

• Congestion Control - the set of actions taken by the network in order to

minimise the intensity, spread and duration of congestion.

The ITU-T has also identified a number of traffic parameters that enable

the above procedures to characterise the traffic. These include:

• Peak cell rate

• Mean cell rate

• Burstiness

• Peak cell rate duration

• Source type

 26

Because of the complex nature of ATM traffic patterns, the precise way in

which traffic is characterised can be extremely important. For example, in

the case of CAC, the number of connections that can be accepted onto a

link and their quality of service is highly dependent on which of the above

parameters is used. Generally, a number of parameters will be used and

an effective bandwidth for a connection, or set of connections, derived from

these.

Most traffic control functions operate within the control plane of the ATM

protocol model. Network management, however, also operates within the

management plane and is responsible for a full range of higher-level,

longer-term planning and resource management functions. Network

management is implemented using a telecommunications management

network [TMN], defined in RACE CFS H100 [H100] as a system which

supports the management requirements of administrations to plan,

provision, install, maintain, operate and administer telecommunications

networks and services. Whilst simple network management systems are

already used in telecommunications networks, the sheer flexibility, range

of services, and consequent complexity of the traffic patterns on a large

ATM network mean that powerful TMNs will be required to successfully

manage the network. TMN functionality is classified in [ICM92.1] into 9

user specific areas (Design, Planning, Installation, Provisioning,

Accounting, Customer Query & Control, Maintenance & Fault

Management, Performance Management, and Security) and 5 user generic

areas (Configuration Management, Test Management, Event

Management, Log Control, and Monitoring). Whilst many of these operate

at a very high level, many interact with the control plane traffic control

functions of the ATM network. For example, performance management

will be able to modify CAC parameters based on it’s perception of the

current traffic load on the network in order to maintain the QoS of current

users, while areas such as planning will impact upon dimensioning of the

network.

 27

2.5 Summary

This chapter has introduced the basic principles of ATM. ATM has been

identified as the target transfer mode for use in the B-ISDN. In ATM,

information is encapsulated in fixed length cells and these cells are

transmitted in slots. ATM is capable of carrying traffic generated by both

CBR and VBR sources while making efficient use of the available network

resources. This is possible through the use of statistical multiplexing

techniques. When connections are set-up across the ATM network, they

are done so in accordance with a contract between the user and the

network provider. This guarantees a certain quality of service to the user.

In return, the user must comply with restrictions on the offered traffic.

Resource management algorithms, such as CAC, ensure that sufficient

network resources are allocated to new connections to guarantee the

contractually agreed QoS while not compromising the QoS of existing

connections. Policing functions such as UPC protect the network against

misbehaving traffic sources. Management functions are provided by a

Telecommunications Management Network. This is a large distributed

computing system that provides services ranging from performance

management to longer term services that aid activities such as network

planning.

 28

3. Simulation

A simulation is a representation of certain features of the behaviour of a

physical system or abstract model of a real system [ICM92.2]. This is to be

distinguished from an emulation which is an implementation of a system

that exactly duplicates some of the behaviour of the real system.

Simulators are systems comprising either software or a combination of

software and hardware, and are developed to apply the simulation

process. In general, simulation tools are flexible and can be used for many

modelling applications including:

• Making experimental measurements or predicting the behaviour of the

simulated system.

• Aiding in system synthesis and analysis for a system that is under

construction.

• Testing the system definition.

The process of developing a simulator consists of a number of steps,

central to which is an understanding of the original problem. These steps

are:

• Problem formulation

• Modelling

• Model implementation

• Verification and validation

• Data collection and analysis

 29

3.1 Motivation for Simulation in ATM

The simulation of ATM networks and network elements has had, and

continues to have, many applications ranging from the initial research

and development of ATM technology to the testing and validation of

network management systems. Traditionally the main application of

simulation has been in ATM research and the design of equipment. For

example, simulation was used extensively in the initial design of the CEC

ACTS EXPERT Test-bed (ETB) [SNH96] ATM demonstrator. More

recently, simulation has found application in the development of

telecommunications management systems such as those of CEC RACE

projects NEMESYS [NEME93] and ICM [ICM92.2][Swift94]. In

particular, simulation, as opposed to the use of real networks, has

continued to be applied to solving ATM and network management

problems for the following reasons:

• The unavailability of commercial scale networks for experimentation

and the testing of new equipment, code and algorithms.

• Difficulty and cost of instrumenting real networks i.e. to do realistic

experiments on real networks large numbers of ATM traffic generators

and analysers, for example, will be required.

• Lack of configuration control: Many existing ATM networks simply do

not allow access to the traffic and configuration parameters that

experimenters require.

• In order to adequately verify network management procedures, they

must be tested in wide range of situations and network topologies. This

is not possible on a real network.

• Evaluating new equipment and management algorithms can be

achieved much more quickly and at a much lower cost with a simulator.

 30

In TMN research applications, simulators have the following advantages

over real networks [Bocci95.2]:

• Scaling: Simulators are be able to simulate large high-speed ATM

networks. Present day ATM demonstrator networks are usually small

scale and laboratory based.

• Flexibility: Compared to a real commercial network, simulators can

offer flexibility in the following respects:

Functionality: A variety of network functions, technologies and

traffic types can be supported by simulators.

Measurement: Simulators provide access to a variety of network

data and parameters that may be difficult or impossible to obtain in

the real system.

Scenarios: Simulators can model a variety of traffic scenarios as

well as eventualities such as node and link failures and buffer

overflows.

• Portability: In general, simulators are a software product that can be

designed to be ported easily between different computing platforms.

This means that simulation experiments can performed at many

different sites with a minimum of specialist equipment.

The application of simulation in TMN studies imposes some specific

requirements on the design of the simulator:

• TMN Interface: Simulators for use in TMN studies should provide a

standard TMN interface, such as a Q3 adapter [M.3010].

• Simulation Speed: Ideally, the simulator and the TMN should have a

common perception of time. This can be achieved by either ensuring

that the simulator runs in real time, or by introducing a mechanism in

the Simulator/TMN interface to pass the simulated time from the

 31

simulator up through the layers of the TMN, thus ensuring that the

TMN always uses the simulator for its time reference. The latter

approach was used in the ATM simulator developed by ICM [ICM95].

However, this approach requires a specially modified TMN platform

that can accept simulated time as real time. The research described in

this thesis is aimed at maximising the speed of the simulator so that

there is less requirement for a specially modified TMN platform.

Of course, simulation is not the only method for predicting the behaviour

of ATM networks without recourse to the use of real networks.

Mathematical analysis can also be used. However, stochastic systems are

very difficult to analyse mathematically and in order to model all but the

most simple situations significant simplifications are required. These can

lead to unacceptable inaccuracies in the results obtained. Furthermore,

mathematical analysis is particularly unsuitable for network management

studies where dynamic interaction is required between the TMN and the

system being modelled.

Despite the fact that it is envisaged that ATM networks will become

progressively more available to experimenters in the future, and that

these networks will provide increased access to the appropriate

parameters, they will generally be commercial revenue earning networks

and hence the cost and risk factors associated with experimenting on them

will remain. Therefore simulation will retain many applications despite

the widespread availability of real networks.

3.2 Simulation Principles

Simulation has two basic forms: discrete and continuous [Phillips92]. In

discrete simulation, the changes in a system over time are represented as

a series of instantaneous occurrences of events. These are reflected by

changes in the state variables that describe the current system state.

 32

Discrete simulation enables a more detailed range of data to be collected

than continuous simulation. For example, consider a queue in a bank. In a

continuous simulation the movement of customers through the queue

would be modelled as a flow or rate, so only parameters such as mean

arrival rate would be applicable. However, in a discrete event simulation,

the movement of each individual person would be modelled and hence

‘rare events’ such as the refusal to admit individual customers could be

studied.

3.2.1 Time Advancement and the Event List

Discrete event simulations typically model dynamic processes that occur

over a particular time duration with events representing state changes

that occur at specific points in time. A simulation clock is used to keep a

record of the simulated time, and events are generally time-stamped with

the simulation time at which that event is scheduled to occur.

Furthermore, some way of storing all the foreseeable future scheduled

events is required. This is accomplished by the event list which normally

takes the form of a time ordered sequence of event records with the next

scheduled event at the head. The event list can be sited within the logical

architecture of the simulator according one of two schemes, the centralised

event list architecture and distributed event list architecture. In a

centralised event list architecture, one large event list is used to store all

of the events for the whole simulation, whereas with a distributed event

list there is a list for each model in the simulation that stores all of the

locally scheduled events.

There are two principle schemes for advancing the simulation: time driven

simulation and event driven simulation [Rich89]. In both of these schemes

the simulation essentially progresses through a process of the next event

being taken from the event list, processed, and any resultant events being

put back in their correct time position in the list. Where they differ is in

the way that the simulation clock is advanced.

 33

In time driven simulation fixed-increment time progression is used. Here,

the simulation clock advances by constant amounts, or ticks. After each

tick, all of the events that were scheduled to occur during that time

interval are processed, and the system state updated. This scheme is

generally used if events are known to occur at fixed regular intervals but

it can be inefficient if the tick is set incorrectly. If the tick is set to small

there will be only a low probability that an event will be scheduled for a

given tick. Therefore, there will be many ticks in which no useful

processing is done in the simulator. However, if the tick value is set too

large, then the error resulting from the fact that all events scheduled for

that tick are processed at the end of the tick will be unacceptably high.

In event driven simulation a next-event time progression scheme is used.

This is the most common technique used in ATM simulation because it

can cope with random event times. In this scheme, after the processing of

an event, the simulation clock is advanced to the time of the next

scheduled event in the event list. Therefore, periods of inactivity are

skipped and processor time is not wasted waiting for future events to

occur.

The sequence of operations that occurs in an event driven simulator is as

follows; During system initialisation, the simulator configuration is

loaded, simulation parameters and measurements initialised, the

simulation clock reset, and each of the components of the system polled to

determine when they expect to generate their first event. Based on this

the event list is initialised. The simulation then enters a loop in which the

earliest event in the event list is processed, the system state updated, and

any resulting events placed back in the event list in correct time order. A

check is then made to see if some stop criterion has been met which could

be some end simulation time, or it could be based on the state of some

other system variable. If this criterion has not been met, then the next

event in the event list is fetched and processed. Once the stop criterion is

satisfied, the loop exits and the final results of the simulation collected.

 34

Figure 2 illustrates, using the ITU-T Specification and Description

Language (SDL) [Z.100][Belina89], the sequence of operations that occurs

in an event driven simulator:

Get earliest event
from event list

SimulationTime:=
EarliestEventTime

Process event

Place any
resulting events
in event list

Sort event list
in time order

Stop criterion
met?

 Initialise system

FALSE

Collect Results

PROCESS Event_Driven_Simulator

TRUE

Figure 2 Sequence of Operations in an Event Driven Simulator

 35

3.2.2 Event Generation and Random Number Generators

Event times can be generated in one of two ways. Measurements from a

real system can be used to determine the times of the events. However,

whilst this method can offer authenticity, it has the disadvantage that for

reasonable length simulations a great deal of data must be stored.

Furthermore, it implies that real systems already exist to provide such

data to experimenters. Clearly, this is a problem in relation to ATM

simulation since the real systems do not necessarily already exist, and

even if they do access to data from them is often difficult, costly and time

consuming.

An alternative method of event generation is to use random number

generators coupled with models of the sources (e.g. probability

distributions of cell inter-arrival times). From these, particular event

times can be calculated. However, it is important to note that random

number generators are usually pseudo-random and so care must be taken

to ensure that these times are adequately realistic. A good pseudo random

number generator should produce a sequence of numbers, evenly

distributed, which should not exhibit any correlation between each other.

The sequence should also be reproducible, which aids in debugging and

can be used to increase the precision of results [Pitts93], and should be as

long as possible.

A review of random number generator algorithms is given by Law &

Kelton [Law91], an in depth discussion of these being beyond the scope of

this thesis. The Wichmann-Hill algorithm [Wich82] has shown particular

application in both cell rate and cell level simulation of ATM networks.

This is a high performance algorithm with a period (sequence length) of

about 7×1012 and the major advantage that it is highly portable, being

suitable for both 8 and 16 bit processors.

 36

3.2.3 Transient and Steady States

When a simulation is first started any measurements made will be

partially dependent on the initial states of the system variables. After

some period, the simulation will settle down to a steady state at which the

distribution of measurements (but not necessarily the actual

measurements themselves) will become stable. This initial state is known

as a transient state. In ATM simulation it is not just applicable to the

period immediately following the start of a simulation run, but also

following major occurrences when, for example, new sources start

generating traffic immediately following the set-up of calls. The precise

nature of that being measured using the simulator will determine whether

the steady or the transient state is of interest. In general, the study of cell

level phenomena such as cell losses or cell delay will require that the

simulator has reached the steady state in order to be certain of

statistically significant results. However, if call level phenomena, such as

call set-up are of interest then clearly the transient state will be more

relevant. In either case, it is often difficult to judge the exact point at

which the transient state ends and the steady state begins.

3.3 Simulation Languages and Tools

So far in this thesis simulators have only be described in the most abstract

terms. In practice a simulator will be implemented as a system consisting

of the hardware and software necessary to model the real problem. As

such, the experimenter has a range of options relating to the choice of

computer hardware, the programming language, and any high level tools

to aid the design of the simulator.

Traditionally, ATM simulators have been implemented purely as software

running on a single or multiprocessor computer. This has the advantage

that it is often easy to produce a software model of a real system and it is

relatively easy to reconfigure such software for a variety of different

 37

experiments. However, such an approach suffers when the purpose of the

simulation is to study rare events, such as cell losses. Since software based

simulators typically run at speeds much less than real time (the

simulation clock advances at a much slower rate than the real ‘wall clock’

time), very long simulation runs are often necessary.

This thesis focuses on the traditional architecture of computer software

running on a single or multiprocessor platform. The choice of platform is

dependent on the requirements on the speed of the simulator, as well as

other factors such as the availability of an appropriate platform. General

purpose single processor machines such as the SUN SPARCStation or

IBM PC have the advantage that they are relatively cheap, widely

available and have a huge existing library of software development tools.

Parallel multiprocessor machines have the advantage, on the other hand,

that if the simulator is carefully designed they can exhibit improved speed

performance over single processor sequential machines for a given CPU

clock speed. This issue is considered in depth later in this thesis.

The choice of the language in which the simulator is written can also have

a significant impact on both its performance and on the development time.

The simulators described later in this thesis are all written in general

purpose programming languages. For example, MICROSIM and

LINKSIM are written in PASCAL while the ICM simulator, MADS, is

written in ANSI C. Such languages have the advantage that they often

allow hand optimisation of programs, so enabling fast simulators to be

written. Furthermore, their highly structured nature means that real

systems can be modelled in software with little difficulty.

Despite the widespread use of conventional programming languages,

several specialised languages and tools exist that can be used to generate

the simulation model. One example is the SIMULA language in which real

systems are modelled as a number of interacting processes. Whilst this

helps in the modelling process, such language compilers can generate

 38

relatively inefficient executable code that can be substantially slower than

an equivalent simulator written in a conventional language. Object

oriented languages, such as C++, have also been used to write simulators.

These have the advantage that object modelling techniques can be applied

to produce intuitive models of real systems. Issues relating to the object

oriented design of simulators are considered in more depth in Chapter 6 of

this thesis.

Recently, a number of specialised commercial simulation tools have

emerged that allow the user to define the network using a graphical

interface. For example, the OPNET1 [OPN96] development environment

allows the user to define the network in terms of nodes, process models

and state diagrams. This description is then used to generate the

appropriate C code which is finally compiled to produce a self contained

simulator. Other examples of such commercial packages include

MODSIM, COMNET and BONES. Whilst such approaches can give rise to

considerable savings in the development time for a simulator, as in the

case of specialised simulation languages the code generated is often

inefficient and hence run times can be relatively long when compared with

hand-crafted simulators written in a conventional programming language.

Furthermore, whilst these packages are usually supplied with

comprehensive libraries of models of more established network

technologies, such as Ethernet, the provision of ATM models is currently

very limited. Therefore, the simulator developer must often resort to

writing much of their own code in order to satisfy their own requirements

for simulating ATM networks. This can reduce the development time

advantage of such commercial packages. This thesis is concerned with

methods for reducing the run time of ATM network simulators and not

development time. Whilst an in-depth review of such commercial packages

is considered to be beyond the scope of the thesis, because of the

increasing popularity of such packages it is valuable to briefly describe the

1 OPNET is a trademark of MIL3 inc.

 39

features of one of the more comprehensive systems that is currently being

used in a number of projects, for example DTI/EPSRC project ATM

Resource Management (ARMAN), for modelling ATM networks.

OPNET stands for Optimised Network Engineering Tools. It is a

workstation based application for the modelling and simulation of

communication systems. OPNET allows the user to specify the system in

terms of incrementally decreasing levels of abstraction from the sub-net

level down to the individual process level. This is done using a graphical

user interface (GUI). These specifications are then compiled to produce a

simulator executable that can be run, either under the direct control of the

OPNET GUI or independently. Debugging and measurement functions

can be embedded within the simulator executable.

An overview of the simulator development process using OPNET is given

in Figure 3. The user specifies the network to be modelled using a top-

down approach in terms of three principle layers: In the Network Editor,

the Network Layer of the model is specified as a number of nodes

connected by links. Each node is specified using the Node Editor and

consists of interconnected process and queue modules. The behaviour of

process modules is defined using one or more state transition diagrams

that also encapsulate user-defined Proto-C code [OPN96]. Note that at

each of these levels the user can either define their own models or can

make use of pre-defined models from the OPNET library. In version 2.5B

of OPNET, the ATM models in the OPNET library are extremely limited.

The user can also specify the format of intra-model and inter-model

messages (packets or interrupts) using the Parameter Editor and also the

measurement statistics that are recorded in output scalar or output vector

files for later analysis.

Once the network model has been fully defined it is compiled and linked

with the OPNET simulation kernel to produce a simulation executable.

This executable can be either run as a stand alone simulation or run

 40

under the control of OPNET. Output vector and output scalar files

generated during the simulation run can be analysed using the Analysis

Editor.

Network Editor

Node Editor

Process Editor

Model Specification

 OPNET
Simulation
 Kernel
Functions

Message &
Measurement Spec.

Probe Editor

Parameter Editor

Simulator Executable

Data Analysis Tool

Figure 3 Simulation Development Process with OPNET

 41

3.4 Cell Level Simulation of ATM Networks

Cell level simulation is the classical method for simulating ATM networks

and network elements. It is an extremely accurate method since the

propagation of every individual cell through the network is modelled.

However, cell level simulation can be very slow because of the shear

volume of cells that must be simulated in order to obtain statistically

significant results.

3.4.1 Principles

ATM networks are generally modelled as an interconnection of a variety of

elements, including links, queues or First-In-First-Out (FIFO) buffers,

delay elements, servers and traffic generators. Queues can be used to

represent buffers, for example in switches, while servers represent the cell

multiplexing and routeing elements of switches. These basic elements are

augmented by others that model, for example, the parts of the network

responsible for signalling or traffic control. Figure 4 shows how these basic

elements can be connected to model a simple shared buffer multiplexer.

ATM Cell Streams on links Server

Buffer

Queued cells

Cells leave at
cell service rate

Figure 4 Simple Model of ATM Multiplexer

Each of the cells shown in Figure 4 is represented by an event. Cells enter

a buffer via links, and leave when they are served by the server. This

occurs at a constant rate, known as the cell service rate. Note that there

are two situations in which cells will be queued. The first of these is if the

total input rate to the buffer exceeds the cell service rate, known as burst

scale queueing. The second of these occurs when two or more cells arrive

 42

at the buffer simultaneously. Clearly only one can be served at a time and

hence the other cells are queued while this one is served. This known as

cell scale queueing. Cell level simulation is able to model both of these

effects and so can model queues to a great level of detail. Figure 5

illustrates the cell and burst scale components of queueing. From this it

can be seen that if only the burst component is modelled (as in cell rate

simulation), then the measured cell loss probability is less.

Buffer Capacity

Cell loss
probability
(log scale)

Cell component

Burst component

Figure 5 Cell and burst scale components of queueing

Network users are represented by traffic sources which may generate the

traffic for one or more simultaneous connections associated with some user

activity. In order to model a given user, the traffic which that user would

inject into the network must first be characterised in terms of parameters

such as mean inter-call time, mean cell rate and peak cell rate. Random

number generators with appropriate probability distributions can then be

 43

used in the simulator to generate the event times to model the traffic. A

detailed description of source modelling is beyond the scope of this thesis.

3.4.2 MICROSIM: An Example Cell Level ATM Network Simulator

MICROSIM is a simulator developed at Queen Mary and Westfield

College [Schor94]. It is written in PASCAL and designed to run on single

processor sequential computers such as the SUN SPARCStation or IBM

PC. It is able to simulate ATM and fast packet switch networks and

provides for a very flexible network configuration. MICROSIM is

configured using simple text files that enable a variety of model elements

ranging from delay elements (that can represent link delays) and queues

to a number of source models to be interconnected to model network

elements or complete networks. MICROSIM enables a number of

parameters to be measured and these are saved in a text file. This results

file includes the following data per network element in the simulation:

maximum buffer wait, mean buffer wait, cell throughput, cells blocked

(i.e. cells lost), buffer length at the end of the simulation, cell delay

distribution, and state probability distribution (i.e. probability

distribution of buffer states, based upon arriving cells).

3.5 Summary

This chapter has reviewed the motivation for, and principles behind the

simulation of ATM networks. Simulation is required both for the

development of network hardware and management software, as well has

for network planning and provisioning. Simulators provide a convenient

and secure alternative to experimentation for these purposes on real

networks. The principles of discrete event simulation were introduced,

followed by a review of simulation languages and existing tools available

to aid network simulator development. Finally, cell level modelling of

 44

ATM networks was briefly described together with an existing example

cell level simulator, MICROSIM.

 45

4. Accelerated Simulation Techniques

Cell loss ratio and cell delay are important parameters of the network

performance. The value suggested for the maximum cell loss ratio for

adequate network performance is 10-8 [CCITT89]. Therefore, in order to

simulate the loss of one cell at least 100 million cell arrivals at a queue

must be simulated; for statistically significant results it is necessary to

simulate at least 2 orders of magnitude more cell arrivals. In cell level

simulation each cell arrival and departure from a queue is represented by

an event and so a correspondingly large number of events must be

processed. This results in very long simulation times, often amounting to

many hours of ‘real’ time just to simulate a few minutes of ‘simulated’

time.

Accelerated simulation techniques attempt to reduce simulation times, not

only to enable results to be obtained more quickly, but also to increase the

potential for dynamic interaction between simulators and experimental

network management systems [Swift94][Bocci95.2], or even real ATM

networks.

Many approaches have been proposed for the accelerated simulation of

ATM networks, including implementation techniques, modelling

techniques, and statistical techniques. These are reviewed by Pitts

[Pitts93]. This thesis concentrates on two approaches: cell rate simulation

(a modelling technique that increases the simulation speed by decreasing

the number of events that have to be processed), and parallel simulation

(an implementation technique that achieves speedup by exploiting the

inherent parallelism in a network model).

 46

4.1 Performance Measures for Simulators

When assessing the effectiveness of a particular accelerated simulation

technique it is necessary to define some metric that accurately describes

the speed of the simulator. The speed of a simulator can be defined as the

rate of doing some useful processing work; in ATM simulators this is

commonly measured in terms of a cell processing rate.

Speedup is a measure of the increase in performance of a computer system

that is achieved by making some enhancement to it. In simulation, the

concept of speedup can be used to compare the relative speeds of two

simulators used to simulate identical networks. Consider two simulators:

simulator b uses some accelerated simulation technique to increase it’s

speed over simulator a. The speedup of simulator b over simulator a is

defined by Amdahl’s law [Amd88] as:

Speedup
Execution time of simulator a
Execution time of simulator b

=
_ _ _ _
_ _ _ _

Alternatively, if the speed of the two simulators is measured in terms of

their respective cell processing rate:

Speedup
Cell proc rate of simulator b
Cell proc rate of simulator a

=
_ _ _ _ _
_ _ _ _ _

4.2 Cell Rate Simulation

4.2.1 Overview

In traditional cell level simulation of ATM each cell arrival at, or

departure from, a network element is represented by an event. One way of

increasing the speed of the simulation is to reduce the number of events

that have to be processed. Cell rate simulation (also known as burst level

 47

simulation) does this by modelling changes in the rate of flow of cells, or

bursts of cells, within the network. This technique has been studied by

Pitts [Pitts93] and has been implemented in a number of practical ATM

network simulators, including LINKSIM and MACROSIM [Pitts90] from

Queen Mary and Westfield College, and the parallel architecture

simulators from CEC RACE projects MIME [MIME91] and ICM [Swift94].

4.2.2 Modelling the Traffic

The basic unit of traffic within cell rate modelling is a burst of cells. This

is defined as a cell rate lasting for a particular time period during which

the inter-cell arrival time does not vary [Pitts90]. An event represents a

change from one cell rate to another cell rate, as illustrated in Figure 6.

burst

burst

Time

Cell Rate

Events

Figure 6 Basic unit of traffic

Each traffic source is characterised by a group of states, each state

representing a particular cell rate produced by that source. The source

changes from one state to another at a time determined by a probability

 48

distribution. On each state change an event is generated by the source

model indicating that the cell rate has changed from the old rate to some

new rate. The choice of probability distribution and the transition (with

particular probabilities) from one state to another is such that the source

produces traffic that models the traffic from a real source.

4.2.3 Operation of the Queue

The queue model is one of the basic elements of any simulation of an ATM

network. In cell rate simulation this is represented using a fluid flow

model and is illustrated in Figure 7. Two parameters describe the queue:

the maximum number of cells that it can hold, or buffer capacity, and the

constant rate at which cells leave the queue, or cell service rate. The state

of the queue at any given time is determined by the balance between the

total input rate (i.e. the combined traffic from all of the virtual channels),

and the service rate.

If the input rate is equal to the service rate then the queue size will

remain stationary. If the input rate is less than the service rate then the

queue will shrink. However, if the total input rate exceeds the service

rate, then the queue will grow until such time as either it becomes full and

cells are lost, or the input rate drops to less than or equal to the service

rate. These relationships are summarised by the following balance

equation which accounts for all of the cells within the queue:

input rate service rate queueing rate loss rate_ _ _ _= + +

Because the queue is served on a first-in-first-out basis (FIFO), changes in

the cell rate at the input to the queue will take a finite time to propagate

through to the output of the queue if there are cells queueing. This time

will depend on the current size of the queue and the cell service rate.

 49

OutputQueueing

Loss

Input

Figure 7 The Queue Model

It is important to note that, because the discrete nature of ATM cells is

not modelled, cell rate modelling can model burst scale queueing but it is

not able to model the effects of cell scale queueing. Furthermore, it is also

unable to model the simultaneous arrival of individual cells at the queue.

4.2.3.1 Analysis of Queue Behaviour

Consider the queue shown in Figure 7. Nine possible states are defined

describing its current state [Pitts93] and these are shown in Figure 8.

 Size of the queue

 empty mid full

input >
service rate

1 4 7

input =
service rate

2 5 8

input <
service rate

3 6 9

Figure 8 The Nine Possible States of a Queue

Whilst these states fully describe the current state of the queue, they are

not adequate to fully model the queue because the delay in the

propagation of events through the queue is not represented. In order to

 50

produce a more complete model, the state of the queue at the previous

event must also be considered.

The following analysis by Pitts & Sun [Pitts90] provides a more complete

description of the behaviour of the queue.

4.2.3.1.1 Notation

Let I(i,e) = input cell rate
 O(i,e) = output cell rate
 Q(i,e) = cell queueing rate
 L(i, e) = cell loss rate
 C(i,e) = number of cells queued
 Cmax = buffer capacity
 Omax = cell service rate

where i {1,...,n} indicates the ith VC and e {1,...,n} indicates the eth event at

the queue.

Let Itot(e) = I i e
i

n

(,)
=
∑

1

 = total input cell rate for all VCs at event e

 Otot(e) = O i e
i

n

(,)
=
∑

1

 = total output cell rate for all VCs at event e

 Qtot(e) = Q i e
i

n

(,)
=
∑

1

 = total queueing rate for all VCs at event e

 Ltot(e) = L i e
i

n

(,)
=
∑

1

 = total cell loss rate for all VCs at event e

 Ctot(e) = C i e
i

n

(,)
=
∑

1

 = total no. of cells queues for all VCs at event e

Using this notation, the balance equation for the queue is:

For each VC:

I i e O i e Q i e L i e(,) (,) (,) (,)= + +

and for the queue as a whole:

I e O e Q e L etot tot tot tot() () () ()= + +

 51

4.2.3.1.2 The Empty Queue

If Itot(e) ≤ Omax and Ctot(e) = 0, then for any events that do not change this

condition:

O i e I i e(,) (,)= and Q i e L i e(,) (,)= = 0

4.2.3.1.3 The Non-Empty Queue

Consider an event e=j that arrives at the queue when Ctot(j)=0 and which

causes changes in the input rates of one or more VCs such that Itot(j)

becomes greater than Omax. Each VC’s output and queueing rates will be

directly proportional to the input rate. Therefore the output rate and

queueing rate of the ith VC will be:

O i j I i j O
I jtot

(,) (,).
()

max=

Q i j I i j I j O
I j
tot

tot

(,) (,).(())
()

max=
−

The next event will either be a state change because the queue has filled

up, or a change in the input rate of one or more VCs. If this occurs at time

t(j+1):

C i j Q i j t j t j(,) (,).(() ())+ = + −1 1

C j Q j t j t jtot tot() ().(() ())+ = + −1 1

In the general case at time t(e), the equation for the total number of cells

queued becomes:

C e Q e t e t e C etot tot tot() ().(() ()) ()= − − − + −1 1 1

If Qtot(e-1)>0, then the queue becomes full, when Ctot(e) = Cmax. If, however,

Qtot(e-1)<0, then the queue will become empty when Ctot(e)=0. Therefore

the time at which the queue becomes full or empty can be determined by

substituting the appropriate value for Ctot(e) in the above equation.

 52

Note that when Itot(e) < Omax and the queue is decreasing in size the

output rate of the queue, Otot(e), will be equal to the server rate, Omax.

Events on the input of the queue will not immediately be apparent on the

output if there are cells queued. Therefore, the queue will give rise to a

delay in the propagation of events. The delay due to this queue will have a

maximum of:

D C
Omax

max

max

=

For an event e=j+1 and provided that Ctot(j+1)<Cmax, only the queueing

rate will change at the instant of the event. So, for VCs with changes in

cell rate the new queueing rate will be:

Q i j Q i j I i j I i j(,) (,) (,) (,)+ = + + −1 1

This change in input rate will manifest itself on the output at some later

time by an event e=k. At this output event, the output rates of all the VCs

must correspond to the new balance of input rates at e=j+1. Therefore, the

new output rate for a given VC at e=k due to an input event e=j+1 is:

O i j k I i j O
I jtot

(, :) (,).
()

max+ = +
+

1 1
1

This result is important, particularly if we are to consider concurrency in

cell rate simulation, because it indicates that if an event on one input VC

causes a change in the total input rate of the queue, then output events

will be generated on all the VCs. One implication of this is that, in a

congested simulator, events on a single VC can give rise to related events

on other VCs even though there is no direct logical connection between

them. Therefore single events can give rise to a whole wave of knock-on

events which will propagate out across the network, from the original

source queue along all VCs passing through that queue.

The time of output event e=k is:

 53

t k t j C j
O

tot() () ()
max

= + +
+1 1

Now consider the situation where the queue becomes full at event, e=j+1,

i.e. Ctot(j+1)=Cmax, and there is a change in input rate such that

Itot(j+1)>Omax. The queuing and loss rates are:

Q i j k O i j k O i j(, :) (, :) (,)+ = + − +1 1 1

L i j I i j O i j k(,) (,) (, :)+ = + − +1 1 1

When the queue is full, the cell rate flowing into the queue from a given

VC is equal to the output rate, O(i, j+1:k). Any excess of I(i,j+1) over O(i,

j+1:k) is lost. Note that each VC still has a queueing rate even though the

total queueing rate, Qtot(j+1) is zero.

At e=k the effects of the input event at e=j+1 become apparent at the

output of the queue. The output rate changes to O(i, j+1) and the queueing

rate for the ith VC changes by an amount equal to the change in its output

rate:

O i k O i j k(,) (, :)= +1

Q i k Q i k O i k O i j k(,) (,) ((,) (, :))= − + − − +1 1 1

4.2.3.1.4 Measurements of Cell Loss and Delay

The cell loss ratio (CLR) is defined as the proportion of cells input to a

queue over a given time interval that are lost:

CLR
L e t e t e

I e t e t e

tot
e

n

tot
e

n=
− − −

− − −

=

=

∑

∑

(().(() ()))

(().(() ()))

1 1

1 1

1

1

For a complete VC, this equation can be simplified to find the end-to-end

cell loss ratio:

 54

CLR R i
S i

tot

tot

= −1 ()
()

Where Stot(i) is the total number of cells entering the ith VC and Rtot(i) is

the total number received at the destination.

Now, (() ()).(() ())I e L e t e t etot tot− − − − −1 1 1 gives the number of cells arriving

at the queue and being either queued or served, but not lost, between

times t(e-1) and t(e). The average delay experienced by these cells is

(() ()) / (.)maxC e C e Otot tot+ − +1 2 2 . Therefore the average delay experienced by

all cells in the queue (including waiting time and service time) is:

∆ave

tot tot tot tot
e

n

tot tot
e

n

C e C e I e L e t e t e

O I e L e t e t e
=

+ − + − − − − −

− − − − −

=

=

∑

∑

(() ()).(() ()).(() ())

. . (() ()).(() ())max

1 2 1 1 1

2 1 1 1

1

1

4.2.4 Example Cell Rate Simulators

A number of cell rate simulators have been implemented. These include

the LINKSIM and MACROSIM sequential simulators from Queen Mary &

Westfield College and the simulators from the CEC RACE projects MIME

and ICM.

4.2.4.1 Linksim

LINKSIM is a simulator that fully implements the cell rate model

described above [Pitts93]. It is deliberately limited in scope in that it only

models a single link queue, as opposed to a complete ATM network,

because it was originally written as a verification and validation tool for

the cell rate model rather than as a general network simulator. In

LINKSIM, the matrix of possible queue states shown in Figure 8 is

extended to include all the possible previous states of the queue. This

results in a matrix of 81 transitions between states, of which only 39 are

actually valid. In cell rate simulations, the simultaneous cell rate changes

 55

that occur at the output of a non-empty queue must be processed together

in order to avoid the generation of multiple resultant events with the

same time-stamp (these are clearly a waste of processor time). LINKSIM

is designed to efficiently manage such events by using a novel event list

topology: Two extra dimensions are added to the normal sequential event

list structure; these list events in terms of the place that they are

scheduled to occur and the type of the event.

4.2.4.2 Macrosim

MACROSIM [Pitts90] is a cell rate ATM network simulator that

implements a simplification of the above model. It represents ATM

networks as the interconnection of network elements, which can be either

links or nodes, and network terminations. Both the burst and call levels

are modelled by this simulator and each network termination can have

multiple calls in progress at any one time.

4.2.4.3 RACE Simulators

CEC RACE projects MIME and ICM have both produced cell rate

simulators that use a simplified version of the above model. The MIME

simulator runs on a network of Transputers [MIME91] while the ICM

simulator (MADS - Multipurpose Aid for Distributed Simulation) is

designed to be portable between a sequential and a parallel architecture.

MADS is presented in Chapter 5 of this thesis as an example of a parallel

cell rate simulator and is described in detail in [ICM92.2] and [Swift94].

4.2.5 Performance of Cell Rate Simulation

The performance of a simulation scheme can be assessed in terms of two

main factors: the speed of the simulator and the accuracy of

measurements taken. One way of assessing the speed of the simulation is

to measure the rate of cell processing and to compare this with another

benchmark simulator running the same network topology. The accuracy

 56

can be assessed by comparing results (for example those for cell loss ratio)

with those predicted by analytical methods and also by another simulator

of a known accuracy.

Pitts et al have validated cell rate simulation in terms of both accuracy

and speed. In [Pitts92.1] cell loss measurements in a queue obtained using

LINKSIM were compared with analytical results using equivalent source

models. This showed excellent correlation between the two approaches.

Comparison of the cell rate results from LINKSIM with those obtained

from the cell level simulator MICROSIM [Pitts91][Pitts92.2] also

displayed a good correlation although the measured cell loss is slightly

less with cell rate modelling than with cell level modelling. This is because

the simultaneous arrival of cells at the queue is not modelled and so the

probability of achieving buffer overflow is reduced.

When comparing the speeds of the two simulators, cell rate modelling was

found to give a significant speedup over cell level modelling. In the

experiments described in [Pitts91] the speedup varied between 1.1 and

13.3, depending on the burst length of the source. An increase in speedup

seems to correspond most strongly with an increase in burst length; this is

as expected as the modelling tends to cell level as the burst length

decreases.

4.3 Parallel Simulation

4.3.1 Overview

Parallel simulation (also termed distributed or concurrent simulation) is

an accelerated simulation technique that has received much attention in

recent years. Many authors have also reviewed the literature on this

subject in great detail including Hind [Hind94], Phillips [Phillips92] and

 57

Richter & Walrand [Rich89], and so only a brief overview is given in this

thesis.

The aim of parallel simulation is to provide speedup by exploiting the

inherent parallelism in a system model. This is done by distributing the

elements of the simulation model across a multi-processor computer. This

has a particular attraction for the simulation of telecommunications

networks because they are naturally distributed systems in which one

would intuitively expect much concurrent activity to exist.

4.3.2 Decomposition

Decomposition is the process by which parallelism in the simulation model

is identified and exploited in order to maximise the utilisation of resources

within a multi-processor computer.

For parallelisation to be effective, the decomposition needs to satisfy a

number of criteria in order to ensure optimal performance of the multi-

processor system. These criteria include:

a) Coarse Granularity and Minimal Communication. Because

communication between processors is usually slow compared with the

processing of data, unnecessary inter-processor communication should

be minimised. Aiming to keep processors busy performing local

activities improves the proportion of time spent fulfilling some useful

operation. The use of decoupling buffers can help reduce processor time

spent on inter-processor communication.

b) Balanced Workload. The workload of the system should be distributed

so as to minimise the idle time of the processors. The decomposition

should also be tailored to the available resources such that, for example,

functions involving a large amount of floating point mathematics

should be placed on processors with integral floating point co-

processors.

 58

Note that each decomposed element of the simulation is generally

assigned to a process, with one or more processes be placed on each

processor. In general, for maximum parallelism it is assumed that there is

one process per processor and hence the terms are used interchangeably in

this thesis.

Various ways of decomposing a simulation problem have been identified,

broadly classified by Phillips [Phillips91] into Functional Parallelism and

Spatial Parallelism. Richter & Walrand [Rich89] describe five distinct

methods: Parallelising Compilers, Distributed Experiments, Distributed

Language Functions & Distributed Events (both forms of Functional

Parallelism), and Distributed Model Components (Spatial Parallelism). A

sixth method, Time Decomposition, is reviewed by Hind [Hind94].

4.3.2.1 Parallelising Compilers

This approach involves simply applying an appropriate parallelising

compiler to a sequential simulation program. Parallelising compilers try

to find sections of code that can be run concurrently on separate

processors. Hence they generate a parallel version of existing sequential

code. This approach has the advantage that much of the code for existing

sequential simulators can be reused, and that the details of the

parallelisation process are hidden from the user. Therefore both the

learning curve for a developer migrating from a sequential computer

architecture to a parallel architecture and the development time for

parallel simulator itself can be minimised. However, the Parallelising

Compiler approach ignores the structure of the problem itself and these

compilers are often unable to fully exploit the available parallelism. Hind

[Hind92] has applied a parallelising compiler to the simulation of a circuit

switched telecommunications network and found that the speedup that

could be achieved was disappointing.

 59

4.3.2.2 Distributed Experiments

Long simulation runs are necessary in order to obtain statistically

significant results. However, significant results can also be obtained by

running shorter independent replications of the simulation on separate

processors and averaging the results at the end. This approach can be

extremely effective because the only co-ordination required between the

processors is when the results are averaged. However, the topology and

scale of the network simulation is limited because in many multi-

processor computers each processor does not have sufficient local memory

to support a complete simulation, particularly of a large network.

Furthermore, this approach in unlikely to be of use if the simulation is

required for TMN studies because of the requirement for dynamic

interaction between the simulator and the network management system.

4.3.2.3 Spatial Decomposition (Distributed Model Components)

This involves decomposing the network model into loosely coupled

components, or domains, containing a number of components; the

components are assigned to distinct processors for concurrent execution.

In the simulator designed by RACE project 2059 ICM, the network model

is decomposed such that each node is mapped to a single processor;

Phillips [Phillips91] maps a complete domain to each processor

Spatial decomposition has received much attention over recent years. It is

the most intuitive form of decomposition since it would appear to be

relatively easy to model an inherently distributed system on a distributed

computer. Each component must maintain its own local clock measuring

the elapsed simulated time and must have a list of scheduled future

events that will occur at this location. A change in some state of the

system is usually associated with an event, and a local event may affect

the state of a remote system component. Therefore communication

between system components is required such that the simulation of

particular components progresses only when it is valid to do so. This has

given rise to many problems in maintaining event causality relationships

 60

in spatially decomposed simulations, and it is in overcoming these

problems that much work has concentrated.

4.3.2.4 Functional Decomposition Methods

These involve taking a simulation scheme, identifying the functions that

operate on data and data structures and separating them into a number of

component processes. Loosely coupled components that are largely

independent of each other are isolated so they can work concurrently if

placed on distinct processors.

Two main forms of functional decomposition have been identified:

Distributed Language Functions and Distributed Events.

4.3.2.4.1 Distributed Language Functions.

Here the support functions of the simulator are assigned to individual

processors. Simulators typically include many support functions that can

be distributed in this way, including random variable generation,

statistics processing, and I/O and file manipulation. This form of

parallelism has the advantage that it avoids deadlock problems, and that

it is transparent to the user. Comfort [Comf82][Comf83][Comf88] has

shown that some speedup can be achieved using this approach. For

example, he has used Transputers to simulate a queueing system,

obtaining a maximum efficiency of 60% on a two processor computer (one

of the processors handled the random number generation). In Comfort’s

approach, significant speedup is obtained when only a few processors are

used but follows a pattern of diminishing returns when further processors

are added. Clearly in any simulation language there is a limit to the

number of functions that can be effectively placed on other processors.

4.3.2.4.2 Distributed Events

The distributed events approach involves maintaining the centralised

event list of traditional sequential simulators. When a processor becomes

available it is responsible for processing the event at the head of the list.

 61

This approach is more appropriate to shared memory multi-processor

systems because of the large communication overhead between the

processor managing the event list and the other processors in the

simulator. Phillips [Phillips91] implemented a cell level ATM network

simulator on a network of Transputers using this approach and found that

some speedup was achievable due to the additional functional parallelism

that is exploited. However, as the number of domains is increased the

speedup is limited by the build up in work load of the processor

responsible for managing the event list.

4.3.2.5 Time Decomposition

Time decomposition represents a more recent approach to the

identification of parallelism in a simulation model. Whilst the most

obvious form of decomposition relies on concurrent activity in spatially

separated objects, this form of decomposition attempts to exploit

parallelism in the time domain. A brief survey of recent work in this field

is given by Hind in [Hind94].

Chandy et al [Chand89.2] introduce a concept known as space-time. In

this, the behaviour of a system is represented as a two dimensional graph.

A simulation represents a specific rectangle in the space/time plane. They

propose an algorithm that induces parallelism by partitioning this region

into regions of space/time. Reiher et al [Reih91] have extended this

concept to encompass time parallelism that partitions the simulation into

phases along the time axis. This can lead to significant speedup because of

better load balancing than in spatially decomposed simulators.

In [Amm92], Ammar and Deng describe an approach that combines time

warp simulation techniques (see Section 4.3.5) with time scale

decomposition. They demonstrate that a simulation system may be

decomposed into fast event sub-models and slow event sub-models. Fast

event sub-models are those in which events occur on a relatively fast

timescale, whereas slow event sub-models process events on a relatively

 62

slow timescale. Therefore, in fast event sub-models the local simulated

time advances by a smaller amount for each event than in slow event sub-

models. The fast event sub-models can be simulated concurrently because

interactions between these sub-models are relatively weak in comparison

with the interactions between the processes that are contained within

them. However, because the interactions between sub-models are ignored,

errors are introduced into the simulation.

Of particular relevance to the subject of this thesis is a study by Nikolaidis

et al [Nikolai93]. This describes the time-parallel cell rate simulation of

an ATM multiplexer. Their approach is based on the exploitation of time

parallelism in the cell rate change arrival process at the multiplexer. Each

processor within a multi-processor computer is responsible for simulating

a particular time interval. At the start of the simulation, the simulator

generates a discrete time Markov chain that represents all of the possible

states of a set of ON/OFF cell-rate traffic sources at the input to a queue.

This enables a number of time division points to be identified at times of

guaranteed queue overflow and also at times of guaranteed queue

‘underflow’ i.e. when the queue length is zero. The system states at either

side of these are considered to be independent. Therefore, regions of time

between these time division points can be simulated concurrently.

Nikolaidis et al demonstrate that the granularity of the decomposition is

limited by the number of time division points, which is often much greater

than the total number of processors available! An implementation of this

method on a 16 processor computer simulates cell arrivals at a rate of “up

to five orders of magnitude greater than an efficient conventional

sequential simulation”.

Despite the fact that there are a number of studies into time parallelism

described in the literature, as yet there are few practical implementations

of simulators that exploit time parallelism. Because of the great variety of

ways in which simulations evolve in time, these schemes are highly

dependent on the specific application. Therefore, the scope for general

 63

purpose simulation schemes based on this form of decomposition is

extremely limited. Indeed, Fujimoto et al [Fujim95] state that:

“Time-parallel simulation is more of a methodology for

developing massively parallel algorithms for specific

simulation problems than a general approach for executing

arbitrary discrete-event simulation models on parallel

computers. Time parallel algorithms are currently not as

robust as space-parallel approaches because they rely on

specific properties of a system being modelled.”

Furthermore, because the simulated time in each processor differs

substantially, there is little scope for coupling a time-parallel simulator to

real time management or control systems. The use of time-parallel

simulators is therefore restricted to determining specific performance

metrics of particular elements of a network.

4.3.3 Consistency in Concurrent Simulation Schemes

In a distributed simulation some mechanism is required to ensure that

event causality relationships are never violated and hence the simulation

remains consistent with the real system being modelled. It is possible

that, due to load variations between different processors, the simulated

time will not advance at a constant rate across the whole network. For

example, consider the model illustrated in Figure 9.

 64

Node 1

Node 2

Node 3

Node 4 Outlink

link 1

link 2

link 3

Figure 9 Example of the need for Consistency

Events are sent along links 1, 2 and 3 and are processed at node 4, giving

rise to events on the outgoing link of node 4. Consider an event on link 1

with time-stamp t1. In order to process this event node 4 must know that

no events will arrive on links 2 or 3 with a time-stamp of less that t1. If an

event arrives with time-stamp t ≤ t1 after this event has been processed

then the consistency of the simulation will have been broken.

Deadlock is a situation that can occur when one or more processes cannot

continue without violating consistency and so enter a continuous wait

state.

4.3.4 Lookahead

Lookahead is a key characteristic of a simulated system. It is defined as

the ability of a process to predict its future behaviour [Lin90]. In a parallel

 65

telecommunications network simulation this equates to the ability of a

model to process all events currently scheduled up to a given time in the

future without violating consistency. Consider once again the above

example. The concept of lookahead means that node 4 is able to process

events on link 1 from the current time to some time in the future knowing

that they will not be invalidated by historical events on the other links. A

further example of lookahead is in a queue with a minimum service time

of δt. When it transmits a cell at time t it knows that it will not transmit

another before time t+δt. Therefore, a connected process could process all

of its scheduled events autonomously up until this upper time bound,

knowing that no historical events from the queue process would later

invalidate this.

In a cell level simulation of an ATM network, where cell level queueing is

modelled, the minimum lookahead must be the smallest service time of

any component within the network model. This is called the network-wide

lookahead value. Events in spatially separate parts of the network must

be independent if their times differ by less than this value. Hence they can

be processed concurrently. However, the network wide lookahead is a very

small value and many parallel simulation schemes aim to maximise the

available lookahead. Nicol [Nicol88] describes a scheme using a future list

of pre-sampled service times to give enhanced lookahead at a queue. This

was found to be most effective under heavily loaded conditions.

In a cell rate simulation the discrete nature of the arrival and departure of

cells from queues is not modelled and hence the identification of a

network-wide lookahead is not so straightforward. This is one limitation

on the available parallelism in a cell rate simulation model.

Two main forms of lookahead have been identified: explicit and implicit

lookahead. Explicit lookahead [Lin89] is when the lookahead is known

before the start of the simulation and is invariant. Implicit lookahead is

 66

variable but can never-the-less offer performance gains even when there is

no explicit lookahead.

Lookahead ratio is defined as the mean message time-stamp increment

divided by the lookahead. It is this value, and not the absolute value of

lookahead, that determines the scope for concurrency in a simulation. For

maximum concurrency this value must be as small as possible. This is

because maximum concurrency is obtained when as many events as

possible have time-stamps that are within the current lookahead of a

process.

4.3.5 Conservative and Optimistic Synchronisation

The purpose of synchronisation within a parallel simulator is to maintain

consistency. Two fundamental policies exist: conservative and optimistic

synchronisation, based on the way in which a decision is made as to

whether or not to process a scheduled event.

A general definition of conservatism is given by Nicol [Nicol90] as methods

which prevent any processor from simulating beyond a point at which

another processor might affect it.

Conservative synchronisation means that a process is able to process

events on its inputs knowing that they will not be invalidated by any

future historical events that may arrive at those inputs. This requires

that, in the case of Chandy-Misra type spatially decomposed simulators,

messages from one process to another process are transmitted in

chronological order according to their time-stamps and that a process

must receive a message on each of its inputs before it can proceed. This

could cause deadlock since a process could wait on an empty input for a

message that is not due until after the times of all the other messages

pending on its inputs. Misra describes a scheme using null messages to

avoid this form of deadlock [Misra86]. In this scheme, null messages are

 67

sent between processes to announce the absence of simulation related

messages.

Optimistic schemes allow a process to process messages as far forward in

time as it wants without concern for any historical messages that may

arrive from other processes at some future time and invalidate this

activity. This means that a process in a spatially decomposed simulator,

for example, is able to compute the result of message arrivals even though

some its inputs may be empty. In order to avoid inconsistent behaviour,

optimistic simulators must be able to rollback [Gaf88] in time to correct

any erroneous actions whenever a message is received that invalidates

some past processing, in order to correct any erroneous actions.

Antimessages must also be sent from this process to other connected

processes in order to correct for any output messages generated as a result

of this inconsistent behaviour. Optimistic simulators must keep a record of

their state such that rollback to a previous state is possible.

A practical implementation of optimistic synchronisation is the timewarp

mechanism [Jeff85]. This is based on the concept of virtual time, which is

synonymous with simulated time. In timewarp an error in consistency is

detected if a message is received that has a time-stamp earlier than the

time of the last message, and hence earlier than the time of the process’

local clock. These messages are known as stragglers. The process will then

undo all of the events that have been processed incorrectly by rolling back

to the time of the straggler. When this occurs, the process state returns to

the last correct old state and antimessages are sent to cancel the effects of

any messages sent from this process. These antimessages will cause

rollback in other processes if the events that these processes were sent

have already been processed. This continues across the simulation until

the effects of the causality error have been removed.

The type of events generated within a simulator impacts upon the

synchronisation mechanism. Conditional events are those that are time-

 68

variant [Chandy89.1]; the time at which this activity may happen is not

explicitly defined and is dependent on other events. Unconditional events

are time-invariant and will be processed at a predetermined time

irrespective of other events. Conservative schemes will never process

conditional events.

4.3.6 Synchronous and Asynchronous Synchronisation

Synchronisation schemes can also be categorised according to the way in

which the advancement of simulated time across the simulation is

controlled.

In synchronous approaches a global record of the elapsed simulated time

is maintained. This clock can either be centralised, or distributed. The

global clock can be advanced according to a number of schemes. For

example, to the next event time for all processes, or in a series of discrete

ticks as in the timestepping approach (see Chapter 5) or Lubachevsky’s

Bounded Lag approach [Lub88]. A review of synchronous approaches is

given in [Hind94].

In asynchronous approaches, no global record of simulated time is

maintained and different processes may, at any given instant, have

differing elapsed simulation times. Conservative asynchronous simulators

are possible through the exploitation of lookahead. Asynchronous

simulation has received the greatest attention in the literature because of

its potentially high performance. This is because processes spend less time

waiting for other processes than in synchronous synchronisation.

4.3.7 Practical Parallel Simulators

Many of the schemes described above have been applied in

implementations of parallel ATM simulators. In the ideal situation, the

speedup attained is proportional to the number of processors used.

 69

However, in practice this is rarely the case due to such factors as

overheads in synchronisation and sub-optimal load balancing.

Both Hind [Hind94] and Phillips [Phillips91][Phillips92] have built

parallel cell level ATM simulators using networks of transputers. Other

practical implementations have already been described above. In

summary, the results of Phillips are typical. He implemented centralised

event list, distributed event list, and distributed event buffering schemes

and found that the most effective technique was distributed event

buffering using the Chandy-Misra null messages deadlock avoidance

scheme. A detailed assessment of these simulators is given in [Phillips92].

4.3.8 Parallel Computer Architectures

Although the parallel decomposition paradigm and time synchronisation

scheme will be partially influenced by the traffic modelling technique and

the characteristics of the network model, the precise details of the

computing platform on which the simulator will run are also an important

consideration. Multiprocessor computers are available with a wide range

of architectures. These start from simple multiprocessor workstations

whose operating systems do little more than map independent software

processes onto different central processing units that share a common set

of system resources (e.g. dual-Pentium2 PCs running Microsoft Windows

NT3). A next step is the general purpose ‘truly parallel’ machine, often

based on CPUs that are specifically designed for a parallel environment

and that control significant amounts of their own private memory and

other system resources (e.g. systems based on the INMOS Transputer4

and INTEL i860). The most specialised systems employing digital signal

processors for applications such as image processing and pattern

recognition.

2 Pentium is a trademark of Intel Corp.
3 Microsoft & Windows NT are trademarks of Microsoft Corp.

 70

Flynn [Flynn66] has classified computer architectures by considering

parallelism in the instruction and data streams. This has resulted in the

following four categories:

1. Single Instruction Stream, Single Data Stream (SISD)

2. Single Instruction Stream, Multiple Data Streams (SIMD)

3. Multiple Instruction Streams, Single Data Stream (MISD)

4. Multiple Instructions Streams, Multiple Data Streams (MIMD)

Note that this classification is very rigid and in practice many computers

will fit in more than one category.

The first category, Single Instruction Single Data Stream, encompasses

most uni-processor machines. Here there is no parallelism (or, at least, no

attempt to exploit any potential parallelism) in the instruction or data

streams.

Categories 2, 3 and 4 attempt to exploit parallelism in the instruction and

data streams. The most common of these are SIMD and MIMD computers.

MISD computers are rarer; Hennessy & Patterson [Henn90] suggest that

these are limited to super-scalar, VLIW (very long instruction word),

decoupled and systolic architectures.

In SIMD machines many functional units are invoked by a single

instruction pointed to by a single program counter. This has the

advantage that all parallel execution units are synchronised. SIMD

architectures reduce the cost of the processor’s control unit per execution

unit since this is effectively ‘spread’ over many execution units. They also

reduce the size of the program memory since only one copy of the code is

simultaneously executed (MIMD machines often require one copy to be

held per processor). SIMD computers are similar in many respects to

4 Transputer is a trademark of INMOS Ltd

 71

vector processors. In practice they will have a mixture of both SISD and

SIMD instructions, each SIMD instruction being broadcast to all of the

execution units, each of which has its own set of registers. SIMD is most

effective in processing code that contains many arrays and loops where

there is massive data parallelism.

The most common form of multiprocessor computer architecture is the

MIMD machine. These machines employ many CPUs in an attempt to

achieve speedup over uni-processor computers and follow the philosophy

that a powerful computer can be built simply by connecting together many

existing smaller ones. The speedup thus accomplished is simply a function

of the number of processors. In practice such an ideal situation is difficult

to achieve. However, MIMD computers do have some distinct advantages

over those with an SISD architecture, including higher absolute

performance and higher reliability/availability through redundancy

[Henn90].

Two principle classes of MIMD machine exist, the classification depending

upon how the processors share information. In a shared-memory computer

the processors communicate by passing variables using a block of memory

that can be accessed by all of the processors. Whilst this may appear to be

very fast method of processor intercommunication, the ultimate speed will

be limited by the bandwidth of the bus connecting the processors to the

shared memory and by the number of processors that can simultaneously

access the memory. These problems can be reduced by using local caches

on each processor. However, cache coherency then becomes an issue. A

typical shared memory scheme is shown in Figure 10.

 72

Memory

CPU1 CPU2 CPU3

Local
Cache

Local
Cache

Local
Cache

Shared Bus

Figure 10 Shared Memory Architecture

The alternative method for sharing data between processors is to pass

discrete messages between the processors. Here there is no global shared

memory; memory is distributed amongst the processors. The performance

of such a computer is limited by the efficiency of the message passing and

routeing scheme, which often decreases as the number of processors is

increased. Messages can be passed between processors using a network of

busses, or, in the most extreme example, the processors can reside in

separate computers and communicate via a local area network. A

distributed memory architecture is illustrated in Figure 11.

Parallel computer architectures are reviewed in greater depth in [Fost95].

 73

CPU1

 Local
Memory

CPU2

 Local
Memory

CPU3

 Local
Memory

CPU4

 Local
Memory

Figure 11 Distributed Memory Multiprocessor Architecture

4.4 Summary

This chapter has outlined two methods for accelerating the simulation of

ATM networks. Cell rate simulation attempts to provide speedup by

reducing the number of events that have to be processed relative to cell

level simulation. This has proven to be an extremely effective technique.

Parallel simulation attempts to provide speedup by exploiting the

inherent parallelism in a network simulation. In order for this to be

effective, a number of basic criteria must be satisfied: these include the

fact that the communication between processors must be minimised and

processing concentrated on local tasks; the workload must be evenly

balanced across the network of processors. Many different decomposition

and synchronisation schemes are described in the literature which all

attempt to exploit the inherent parallelism in the network model. Whilst

parallel simulation has shown some promise in terms of offering speedup

over sequential simulators, many schemes have been implemented with

 74

only limited success since there is often a conflict between the

aforementioned criteria. Where these problems are overcome, significant

speedup can be achieved.

In the next chapter, the application of a synchronous parallel simulation

scheme to the cell rate modelling of ATM networks is described.

 75

5. Timestepping - A Synchronous Parallel
Synchronisation Scheme

5.1 Outline of Timestepping Simulator

Timestepping is a simple scheme that attempts to overcome the problem

of maintaining time synchronisation across a parallel simulator while

minimising inter-processor communication overhead by providing a

common clock to all the processors. This is achieved by only allowing the

local time in each node model to advance by some fixed period, or timestep,

before all local times across the simulation are synchronised to some

global time.

The timestepping approach is similar to Lubachevsky’s Bounded Lag

technique [Lub88]. Lubachevsky defines a bounded lag restriction such

that, if two events e1 and e2 , that occur at times τ(e1) and τ(e2), are

processed concurrently then:

τ τ() ()e e B1 2− ≤

Where B is the bounded lag restriction, and is a known constant such that

0 ≤ B < +∞. The timestepping scheme considered here represents a novel

application of this concept to cell rate ATM simulation.

Timestepping is the synchronisation scheme that has been implemented

in the cell rate simulator developed by the RACE project R2059 Integrated

Communications Management (ICM). Although the ICM Simulator

[Swift94] has initially been implemented on a single processor computer,

it was designed to be relatively easy to port to a parallel machine.

Therefore, the simulator has been designed such that the modules

modelling the network nodes can be run on a single processor or

 76

distributed across a multi-processor architecture. Note that timestepping

has also been implemented in the SPROG5 ATM simulation tool developed

by the author and described later in this thesis

Cell rate modelling is the chosen method for modelling the traffic because,

in sequential simulators, it has been shown that significant speedup can

be achieved when compared with cell level modelling [Pitts91].

A spatial decomposition paradigm is used. In this, different nodes in the

network are modelled by separate processors. Each node model consists of

a traffic generator and a node code module. Events (such as cell rate

changes and signalling messages) are transferred between models by

kernel software (this modifies the arrival time of the events according to

any link delays), and are placed in a time ordered queue (stream queue) for

processing at the destination model. Note that a timer queue is also

provided for the self-queuing of locally generated events. This is

illustrated in Figure 12.

Node
Code

Node
Code

Node
Code

Traffic
Gen

Traffic
Gen

Traffic
Gen

link

Node n Node n+1 Node n+2

Sorted
node
queue

Stream
queue

timer
queue
(for local
events)

Sorted
node
queue

Stream
queue

timer
queue
(for local
events)

link

Figure 12 Simplified node architecture

The traffic generator for each node is called at the beginning of each

timestep. This generates all of the traffic events of any users present at

that node for that timestep plus the first event to occur after this timestep,

hence ensuring that initial traffic generation is not affected by any errors

5 Simulation PROGram

 77

introduced by timestepping. Once the traffic generators for all of the node

models have been run, the kernel will sort in time and priority order all of

the events for the current timestep from all the stream queues and the

timer queue at each node. These events are placed in the sorted node

queue at each node. The main node code of each model will then be called

for each event in that model's sorted node queue. This sequence of

operations is illustrated in Table 2 [Swift94].

FOR each timestep:

evaluate timestep size
FOR each node:

- run traffic generator
- sort in time and priority order events that
arrive at this node

END_FOR_LOOP
FOR each node:

retrieve local_time
WHILE local_time < end_step_time AND events to
process
- if event_time > local_time
local_time = event_time

- process event
This processing may generate other events that
are sent to other nodes. They cannot arrive at
other nodes before the start of the next
timestep.

END_FOR_LOOP
END_FOR_LOOP

Table 2 Sequence of Operations for Timestepping Simulator

Because the sorted node queues are built from the timer and stream

queues at the start of each timestep, only events received in previous

timesteps will be processed during any given timestep by a given model.

This means that any events sent from one model to another cannot be

processed by the destination model until the start of the next timestep at

 78

the earliest. Hence timestepping can introduce errors in the effective

arrival times of events at models. These errors can have serious

implications for the accuracy of the simulator.

5.1.1 Grouping of Simultaneous Events

In cell rate simulation, cell rate changes on a single VC on the input to a

non-empty queue give rise to simultaneous cell rate changes on all VCs on

the output of the queue. These cell rate changes must be processed

together when they are delivered to the input of any subsequent queues in

order to ensure that spurious output rate changes from that queue are

suppressed and to ensure that statistics generated are correct. An in-depth

analysis of the reasons for, and the effects of this on the performance of

cell rate simulators is presented later in this thesis.

The ICM implementation of timestepping deals with simultaneous cell

rate changes using a technique known as grouping. If events inserted in

the stream queue of a given node are found to have the same scheduled

arrival time, then they will be labelled as being at the start, the end, or

within a group. This enables node models to identify whether the current

cell rate change event forms a part of a group. Only when all of the cell

rate changes associated with a given group have been delivered to the

node model is the overall effect of these events on the output of the model

calculated.

5.2 Performance Implications of Timestepping

Consider a simple ON/OFF traffic source feeding bursts of greater than

one timestep in length along a single finite delay link to a switch, SW1.

This switch has one output port that is connected to a second switch, SW2,

by a single finite delay link. The link delay is less than the timestep and

the switches have zero buffer size. Suppose that a single event

 79

representing the leading or trailing cell rate change of a burst is sent by

the traffic source. Since this event will be generated by the traffic

generator in the source it will arrive at SW1 at the correct time. However,

output events generated at SW1 during this timestep cannot be processed

in SW2 before the start of the next timestep. Therefore, events sent from

SW1 during the current timestep will be delayed until the start of the next

timestep. This situation is illustrated in Figure 13.

Time

Timestep, t

Event
arrival
time

Event
sent
here

Event
processed
here

Link delay, d

Figure 13 Event Delay Due to Granularity of Timestep

If the output of switch SW2 is connected to another node model, then

output events generated at SW2 due to events on the input of the switch

cannot arrive at this next node until the start of the next timestep. Hence,

for a timestep greater than the link delay, event arrivals will become

synchronised with the boundaries of timesteps. Distortion of the traffic

due to the synchronisation of events with timesteps is shown in Figure 14.

 80

Time

Original
Traffic
at SW1

Traffic
processed
by SW2

Traffic
processed
by next
node

Event occurs
before end of
timestep

Event processed
& propagated
at start of next
timestep

Timestep

Figure 14 Event Synchronisation with Timestep Boundaries

It can be seen from the above figure that, for situations where burst

length is greater than one timestep, the burst length will be adjusted to

some integer number of timesteps. Whether it is rounded up or down will

depend on the precise timing of the front and tail events of the burst in

relation to the timestep boundary.

Now consider a situation where the timestep is larger than the burst

length. If the front and tail events of the burst lie within the same

timestep then both edges of the burst will be processed at the beginning of

the next timestep by the receiving node simultaneously (as shown in

Figure 15). Therefore the burst will be reduced to zero length and will be

lost.

 81

Time

Time

Front of burst
arrives at next
node here

Tail of burst
arrives at next
node here

Both events
processed
here

Original burst length

Timestep

Cell
Rate

Burst compressed
zero length

Tail of burst delayed

Front of burst delayed

Time

Cell
Rate

Original burst
at source

Burst processed
at next node

Figure 15 Effect of Timestep on Burst Length for Bursts Shorter than 1 Timestep

If the burst happens to straddle a timestep boundary then the processing

times of the front and tail events of the burst will be delayed until the

start of the next timestep, effectively stretching the burst to one timestep

in length, as shown in Figure 16.

 82

Front of
burst arrives
here

Tail of
burst arrives
here

Timestep

Cell
Rate

Original burst

Time

Time

Cell
Rate

Burst processed
at switch

Burst stretched to full length of timestep

Front of burst
pushed back to
start of next
timestep

Tail of burst
pushed back to
start of next
timestep

Figure 16 Burst Stretching Due to Timestep Effect

 Hence, for situations where the link delay is small compared with the

timestep, the following distortions of the traffic will occur:

• Events are synchronised with timestep boundaries.

• If burst length > timestep, burst length is adjusted to an integer

number of timesteps (‘burst length quantisation’).

• If burst length < timestep and the burst starts and finishes within

the same timestep, then the burst is lost (‘burst swallowing’).

• If burst length < timestep and the burst straddles a timestep

boundary, then the burst length is increased to that of the timestep

(‘burst stretching’).

In the above discussion it is assumed that the link delay is less than one

timestep. However, if the link delay is greater than the timestep then cell

rate changes will arrive within the next timestep (as opposed to the

 83

current timestep) and hence will be sorted correctly and processed at the

appropriate time by the receiving node. Therefore, the events will not be

synchronised with the timestep boundaries and no burst stretching or

swallowing will occur.

5.3 Experimental Study of Timestepping Performance

For the purposes of this study a timestepping ATM network simulator

running on a single processor Sun workstation was designed [Bocci94].

The simulator was based on an early version of the RACE ICM simulator.

The network configuration used is shown in Figure 17.

Source
Switch1

Sink
ATM Link ATM LinkSW1 ATM Link

Switch2

SW2

Figure 17 Network Configuration Used for Timestep Studies

Five virtual channel connections (VCCs) were set up from the source along

the ATM links through the switches to the sink. The switch models had

zero buffer size and therefore any cell rate input to the switch in excess of

its server rate was lost. Despite the fact that the full cell rate queue was

not modelled, using a basic zero-buffer size model allowed the study of the

essential effects of cell rate modelling while minimising the complexity of

the switch model. The traffic was generated in the source using a

Wichman-Hill random number generator with exponential statistics. The

traffic was chosen to be similar to a Virtual Private Network consisting of

a number of Ethernet Local Area Networks connected by an ATM link.

The switch server rates were 150,000cells/s and 75,000cells/s for Switch 1

and Switch 2 respectively. The source was a simple ON/OFF type with the

 84

following parameters: peak rate=26,042cells/s, mean ON time = 0.13s,

mean OFF time = 1.17s. All link delays were initially set to 0.0001s.

5.3.1 Relationship Between Timestep and Simulation Speed

Figure 18 shows the effect on cell processing rate of increasing the

timestep value.

1.0E+05

1.0E+06

0.001 0.01 0.1 1 10
Timestep/s

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
l/s

)

Figure 18 Effect on Cell Processing Rate of Increasing the Timestep Value

Between a timestep of 0.001s and 0.1s the expected speedup is observed;

this is due to the reduction in the overhead of timesteps in which no useful

work is done by the models (i.e. the overhead involved in calling the traffic

generator and node queue sorting functions in the simulator is reduced).

However, increasing the timestep value above the mean ON time causes

the cell processing rate to drop: when events are placed in the stream

queue of a given node model they are inserted in the correct time order but

the sorting algorithm in this particular simulator starts from the head of

the queue rather than the tail. This is slow if the queue becomes large.

 85

When the timestep is set to a large value very large stream queues can

develop before they are shifted into the sorted node queue and hence the

process of sending an event becomes increasingly computationally

intensive.

5.3.2 Relationship Between Timestep and Traffic Characteristics

Figure 19 and Figure 20 are cumulative relative frequency graphs

showing the relative frequencies of ON bursts of different lengths

measured at SW1 and SW2 for various values of timestep and a link delay

of 0.0001s. Events arriving at SW1 will always be processed at the correct

time because they are sourced directly from the traffic generator in the

source model. The traffic at SW1 is therefore taken as the reference.

However, events sent from SW1 to SW2 will have their processing times

at SW2 altered by the timestep. Where the timestep is small relative to

the mean burst length (0.01s compared with a mean ON time of 0.13s)

there is little distortion of the traffic because, although event times will

still be adjusted to be synchronous with timestep boundaries, the amount

by which they are adjusted will be very small relative to the length of the

burst. Furthermore, the small timestep size means that relatively few

bursts will be completely enveloped by a single timestep and hence

swallowed. As the timestep value is increased steps begin to appear in the

cumulative relative frequency graph. These steps coincide with timestep

boundaries and correspond to the events being synchronised with the

timestep boundaries. As the timestep increases both the distance between

steps and the height of the steps increases, showing that burst lengths are

being concentrated at a few values corresponding to integer numbers of

timesteps. It is also significant to note that as the value of the timestep

increases relative to the mean ON time, the frequency of bursts of length 0

increases. This is because, for a fixed mean source ON time, there is an

increasing chance of bursts being swallowed.

 86

In summary, we can see that as the timestep is increased from small

values relative to the mean burst length to significantly larger values two

effects will cause distortion of the traffic: events will become synchronised

with timestep boundaries resulting in burst stretching, and bursts will be

compressed to zero length. These experimental results support the

theoretical discussion in Section 5.2.

ON Burst Length, Link Delay = 0.0001s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Burst Length (s)

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y

SW1 SW2 - timestep=0.01s SW2 - timestep=0.04s

Figure 19 Effect of Timestep on Burst Length Distribution for Small Link Delay

 87

ON burst length, Link Delay = 0.0001s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Burst Length (s)

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y

SW1 SW2 - timestep=0.1s SW2 - timestep=0.4s

Figure 20 Effect of Timestep on Burst Length Distribution for Small Link Delay

5.3.3 Relationship Between Timestep and Link Delay

In order to assess the relationship between timestep and link delay, the

delay between SW1 and SW2 was increased to 0.1s. The relative

frequencies of the ON burst lengths arriving at SW1 and SW2 were

measured and compared with the above results for a small link delay. The

cumulative relative frequencies for the burst lengths for two values of

timestep are shown in Figure 21. Consider first the comparison between

measurements with a 0.1s delay and a 0.0001s delay and a timestep of

0.1s. The results show that setting the timestep to a value that is

comparable to, or smaller than the link delay eliminates the traffic

distortions described above. This is because all of the arrival times of

events sent from SW1 are delayed past the start of the next timestep such

that they will be processed at the correct time by SW2. However, if the

timestep is increased above the link delay then the traffic distortions

noted above start to appear. This is because the link delay is insufficiently

 88

large to delay all events sent during the current timestep until the next

timestep. However, events sent from SW1 within one link delay period of

the end of the timestep will be delayed by the link delay until the next

timestep and so will be processed at the correct time by SW2. This results

in the less distinct steps in, for example, the 0.4s timestep graph with 0.1s

delay than the 0.4s timestep graph with 0.0001s delay. Furthermore, this

effect also reduces the relative frequency of zero length bursts, from 0.69

at 0.0001s delay to 0.5 at 0.1s delay in this case.

ON burst length, delay=0.1s

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Burst Length (s)

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y

SW1 SW2 - timestep=0.1s SW2 - timestep=0.4s

Figure 21 Effect of Timestep on Burst Length Distribution for Large Link Delay

5.3.4 Effect of Burst Length Quantisation on Cell Loss Measurements

Whilst the above simple switch models with no queueing are adequate for

measuring burst lengths, they are not suitable for assessing any errors in

the cell loss ratio that are introduced by timestepping. This is because the

mean cell rate remains constant in spite of burst length quantisation. To

demonstrate this a queueing model is required.

 89

In order to demonstrate the effect that the burst length quantisation

described above has on measurements of cell losses in a queue, an

experiment [Bocci95.1] was set up using the cell rate simulator LINKSIM

[Pitts93]. This models a single link queue through which the traffic from a

number of sources can be multiplexed. In this experiment ON-OFF

sources with an exponential characteristic were used. This characteristic

was modified by quantising the burst lengths of each source into integer

numbers of timesteps. The experimental topology is shown in Figure 22.

The number of sources was varied from 1 to 50 in order to investigate the

effects of combining a number of traffic streams while the link delay was

assumed to be 0.0001s.

Source

Source

Source

Queue
Traffic

Figure 22 Cell Loss Experiment Using Linksim

Figure 23 shows the percentage change in cell loss as the effective

timestep, or burst length quantisation, is varied from 0.0001s (the

assumed link delay where there are no errors) to 0.1s. This shows that the

errors in burst arrival times caused by timestepping are significant and

that they increase with timestep size. The errors also increase as the

number of sources multiplexed through the queue is increased.

 90

0

100

200

300

400

500

0.0001 0.001 0.01 0.1

Effective Timestep (s)

%
 in

cr
ea

se
 in

 c
el

l l
os

s

1 source 10 sources 50 sources 5 sources

Figure 23 Variation in Cell Loss Measurements with Effective Timestep Size

5.3.5 Optimising Timestepping - a Two-Level Timestep Switching Scheme

The above experimental results and discussion suggest that there is a

trade off between accuracy of the simulation results and the speed of the

simulation. Clearly it is advantageous to set the timestep as large as

possible so as to optimise the simulation speed. However, setting the

timestep above the link delay results in significant errors in the way that

events are propagated from one node to the next. These errors can be

eliminated if the timestep is set to less than the link delay so that all

events will arrive at the next node at least one timestep after being sent.

However, since typical physical link delays are of the order of 5-500µs,

setting the timestep value below the link delay will result in very long

simulation times. Furthermore, since the timestep will typically be much

less than the mean burst length, there will be many timesteps in which no

useful work is done by many of the models in the simulator.

In order to try to maximise the speed of the simulator while maintaining a

sufficient level of accuracy, the ICM simulator kernel provides the facility

to switch between two levels of timestep. The default timestep size is the

 91

larger of the two values, while the simulation is switched to the smaller of

the two timesteps on request from a model. It then remains in small

timestep mode for a fixed number of small steps; the value of this number

is determined by an initialisation parameter (n_small_steps) before

automatically dropping back to large timestep mode. In the ICM

simulator, the models request a timestep switch by simply returning a flag

to the kernel. This minimises the communication overhead between the

models and the centralised time control element of the kernel (an

important consideration when running the simulator on a multiprocessor

computing platform). From the experimental results described previously

it is clear that the timestep should be set to less than the link delay while

events are propagating through the network. However, it can be set to a

significantly larger value when there are no events propagating through

the network in order to minimise the number of timesteps in which no

useful work is done and hence maximise the speed of the simulator.

Consider the generation of events at source models. The source model

should request small timestep mode on the large timestep boundary

immediately preceding the generation of an event. The n_small_steps

parameter should therefore be set according to:

n small steps large timestep next node processing time
small timestep

_ _ _ _ _ _
_

=
+

such that the simulator will always be in small timestep mode when the

event is generated and will remain in small timestep mode for at least as

long as it takes to deliver the event to the next node, and be processed

there. This scheme is illustrated in Figure 24.

 92

Small Timestep

Large Timestep

Time

Switch
to small
timestep

Generate
Event Event arrival

at next node

n_small_steps = 5

Event transmission
from next node

Figure 24 Timestep Switching Scheme

Now consider the situation at the next node, which will typically be a

switch model. This node should also request small timestep mode when it

has finished processing the event and sends it on an output link. This

process continues as the event propagates through the network so that the

simulator will remain in small timestep mode. When there are no more

events to process the simulator will automatically drop back to large

timestep mode.

With this scheme, the communication between the models and the kernel

is minimised because only a single flag is transferred. However, the

simulator will always remain in small timestep mode for at least

n_small_steps after each request for small timestep mode by node models.

Therefore the simulator will not drop back to large timestep mode for

n_small_steps after the last event was processed. These small timesteps

represent wasted processor time.

5.3.6 Performance With Timestep Switching

In order to assess the speedup potential of timestep switching, the above

scheme was implemented in the simulator described in Section 5.1 using

 93

the network topology of Figure 25 [Bocci95.1]. The small timestep value

was set to the link delay of 0.0001s while the large timestep was varied

between this value and 0.1s. The cell processing rate at switch 1 was

measured with the traffic from 1, 5, 10 and 50 sources being fed through

the switches. The traffic characteristics of each source were as before.

1

10

100

0.0001 0.001 0.01 0.1

Large Timestep (sec)

Sp
ee

du
p

1 Source 5 Sources 10 Sources 50 Sources

Figure 25 Speedup with Timestep Switching

Figure 25 shows the speedup attained by increasing the large timestep

above the small timestep. For the 1, 5 and 10 source cases there is a clear

maximum in the curves. This shows that some speedup is obtained by

using timestep switching, while maintaining the accurate event

propagation of the no switching simulator with the timestep set to the link

delay. Above this maximum value progressively less speedup is achievable

because of the excess of small timesteps in which no events are processed

at the end of each event’s propagation across the network. Furthermore,

as the number of sources is increased less speedup is also observed. This is

because the probability of small timestep mode requests is increased and

so the simulator spends an increasing proportion of it’s time in small

timestep mode. Indeed, the results from the 50 source case suggest that

 94

for the large numbers of sources that would be expected in a realistically

large network model, the speedup from timestep switching is insignificant.

5.4 Summary

Timestepping is a synchronous system for time synchronisation within a

parallel network simulator. Accurate cell loss results can be obtained with

timestepping by setting the timestep to less than the minimum link delay

in the network. However, with the timestep set at this value there are

many timesteps in which no useful work is done at many of the node

models. In very small networks, simple timestep switching schemes can

reduce the number of these idle timesteps and hence increase the rate of

the simulation. However, as the size of the network is increased by even a

moderate scale, the timestep switching scheme becomes progressively less

effective. Therefore, it must be concluded that simple timestepping is not

an efficient method for synchronisation within a parallel cell rate

simulator when modelling small networks. This is because the sparse

nature of events in a cell rate simulation means that it is impossible to

optimise the lookahead ratio and hence maximise the exploitation of

parallelism in the network model.

The key aspect of the results presented in this section is that they apply to

small networks. In small networks the probability of the occurrence of an

event in any given timestep is very low and hence the majority of

processor time is spent in idle timesteps. However, in practice a small

network could be simulated within a relatively short time period on a

traditional sequential cell rate simulator. There would be little

justification for attempting to build a complex and potentially expensive

parallel simulator for dealing with such trivial problems. In practice the

networks in which the performance of traditional sequential cell rate

simulators is inadequate incorporate tens of thousands of users and many

tens of nodes. In cell rate simulations of such commercial scale networks,

 95

there will be a much greater probability of the occurrence of an event

during any given timestep. The proportion of processor time wasted in idle

timesteps will therefore be greatly reduced when compared with small

network simulations. In order to fully assess the potential of timestepping

as a time synchronisation scheme for parallel cell rate simulation of ATM

networks, its performance must be compared with that of traditional

sequential schemes in realistically large networks. Chapter 6 of this thesis

describes the design and application of a cell rate ATM simulation

program (SPROG) capable of allowing a fair comparison of timestepping

with other schemes when simulating large networks. However, the

argument presented here does not degrade the contribution that the

research described above represents. The study of timestepping using the

ICM simulator has demonstrated the effect of the scheme on the accuracy

of traffic measurements that may be obtained using the simulator, and

has provided an insight into issues relating to the parallelisation of the

cell rate model. In particular, it has demonstrated the importance of

applying simulation techniques that are appropriate to the problem under

study.

 96

6. SPROG Object Oriented Simulator

6.1 Motivation for the Development of SPROG

In Chapter 5 of this thesis the simulator developed by the RACE II project

ICM was used as the basis for studying the performance of the

timestepping mechanism. However, whilst this simulator is a highly

capable modelling tool, it was developed with the aim of providing a test

environment for a TMN system and not for the evaluation of different

simulation techniques. The ICM simulator has proven to be a useful tool

for demonstrating the effects of timestepping on the simulated traffic in a

limited range of experiments using small network scenarios, but it is not

suitable for comparing timestepping with other synchronisation schemes

over a much wider range of network scenarios. In particular, it is desirable

to be able to assess the performance of timestepping in comparison with

other synchronisation schemes and in very large (and hence more

realistic) networks.

The inflexibility in the ICM simulator is a result of the fact that it was

designed from the outset as a timestepping simulator. It would be a major

task to re-engineer the simulator around a different synchronisation

scheme. Furthermore, in order for it to be possible to make a fair

comparison of the performance of a timestepping version of a simulator

with one using some other scheme, the amount of executed code that is

common to the two versions should be maximised. Indeed, ideally the only

differences between the simulators should be the code directly relating to

event list management and time synchronisation. This would be difficult

to guarantee if an existing timestepping simulator were simply modified

to incorporate some other event list management scheme.

 97

The requirement for a highly flexible simulator for studying the

performance of a variety of time synchronisation schemes in a wide range

of ATM network scenarios was the main motivation for the development,

by the author, of the SPROG simulator (Simulation PROGram). The main

requirements on the design of the simulator were as follows:

• The simulator must be scaleable from small to very large networks.

• It must be possible to modify the simulator for different time

synchronisation schemes with a minimum of effort.

• The amount of common code shared between simulators with different

time synchronisation schemes should be maximised.

In order to achieve a high level of flexibility and code re-use the simulator

was based on an object oriented design and implemented in the C++

programming language.

This chapter first outlines the principles of object oriented software design

before describing the design of the SPROG simulator, both in terms of its

functional architecture and object class definitions. The application of the

simulator to a study comparing the performance of timestepping in the

simulator with that of a traditional linear centralised event list

management scheme is then described.

6.2 Object Oriented Software Design

In this section, a brief overview of object oriented software design and its

application to simulator development is given. A detailed description of

object oriented programming is beyond the scope of this thesis and the

reader is referred to the many tutorial books on the subject, for example

[Wiener88].

 98

6.2.1 Overview

Object oriented programming is a relatively new method for designing and

implementing software systems. It differs from traditional functional

programming6 in that it provides a much closer link between the design

and the implementation phases of software development. In comparison

with procedure-based programming, object oriented techniques aim to

improve programmer productivity by increasing software extensibility and

reusability and to control the complexity and cost of software maintenance

[Wiener88]. This means that existing code can be reused, with additional

features added if required, in new software with a minimum of effort

expended in ‘porting’ the old code to the new software system.

The central concept in object oriented programming is the abstract data

type (ADT). This is a model that encompasses a type and a set of operations

that characterise the behaviour of that type. In C++, the behaviour of an

abstract data type is described by a class definition. The class definition

describes the data structure of the type and the interface to all of the

operations that can be performed on the type. The scope of the data and

operations of an ADT are also described by the class definition. These can

be either private, in which case they are only visible within the scope of

the class, or public in which case they are visible outside the class. A third

category of scope that appears in C++ is known as protected.

The architecture of an object oriented system is built around a set of

classes that describe the behaviour of all of the underlying data in the

system. Objects are individual instances of a given class and model the

data and operations of a specific type. Objects interact by sending

messages to one another that cause operations to be performed on the data

contained within an object. Hence it can be seen that object oriented

software design firstly considers the data of a system and secondly the

manipulation of that data. This is in contrast with traditional procedure-

6 as implemented using languages such as Pascal and Fortran

 99

based program design that tends to consider the operations first and the

data second.

6.2.2 Encapsulation

Wiener [Wiener88] defines Encapsulation as the process by which

individual objects are defined. This entails:

• a clear definition of the scope of all the object’s internal software

• a clearly defined interface that describes how objects interact with other

objects

• a protected internal implementation that is invisible from outside the

object.

Objects encapsulate all of the data and operations that characterise a

particular type. In C++, functions, or methods, are used to manipulate the

data, or attributes. These methods provide the clearly defined interface

through which objects interact. The scope of both the methods and the

objects attributes can be defined to be private (internal to the object),

protected (visible only to objects of classes derived from this one), and

public (visible to other objects of different classes). This scoping

mechanism can be used to protect the internal implementation of an object

from outside view because all interaction with that object must occur

through the clearly defined interfaces of the object’s methods. Therefore,

provided the interfaces remain the same, the details of the internal

implementation of the object can be changed with little or no redesign of

the surrounding software system. This feature of object oriented

programming provides a major enhancement over procedural

programming in terms of the ease of software maintenance.

 100

6.2.3 Inheritance and Polymorphism

Software extensibility and re-usability are supported by the concepts of

inheritance and polymorphism. In object oriented programming, a

hierarchy of classes exists in which some classes, known as sub-classes or

derived classes, are subordinate to a parent class. These classes are

derived from the class above them in the hierarchy. The classes at the top

of the hierarchy are known as base classes.

When a sub-class is derived from some other class it will encapsulate not

only its own set of methods and attributes but also those of the parent

class. This is the principle of inheritance. One important result of this is

that it is possible to easily extend the functionality of a class by simply

deriving a sub-class from it that provides the additional methods and

attributes without having to write a completely new class. This is

illustrated in the example inheritance tree of Figure 26.

Figure 26 Example Inheritance Tree

Base Class A
Methods A
Attributes A

Derived
 Class B

Methods A+B
Attributes A+B

Derived
 Class C

Methods A+B+C
Attributes A+B+C

Derived
 Class D

Methods A+B+D
Attributes A+B+D

 101

Inheritance means that if, for example, class B is a sub-class of class A

then there will be some portion of the interface to class B that is common

with that of class A. Therefore, in principle an object of class B can be used

wherever an object of its parent class A can be used because they will both

be able to respond to some common message format. This principle is

known as polymorphism. Polymorphism is a key feature of object

orientation because it also allows methods in a base class to be redefined

(overloaded) in sub-classes with the same interface but different

functionality. In C++, methods in a base class that are to be redefined in

sub-classes are known as virtual functions.

6.2.4 Application of Object-Oriented Techniques to Network Simulation

The basic objective of discrete event simulation of telecommunications

networks is to model the operations and interactions of the various

hardware and software elements within the network. It is convenient to

model elements as ‘black boxes’ with a standard interface comprising a

restricted set of inputs and outputs together with a model of their internal

behaviour.

Object oriented techniques provide a very natural mapping of this

conceptual network model into software. Complex networks can be

modelled by initially defining a generic set of base classes at the most

abstract level that represent the principle features of the system. Sub-

classes that model increased levels of detail in specific elements, such as

traffic sources, links or switching elements are then derived from these

base classes. Polymorphism is an essential facilitator for this process as it

enables both the interchange of models within the simulator and the easy

addition of new functionality to existing models. Encapsulation means

that the problems of modelling particular network elements will remain

local to the simulation model, and that strict control can be maintained

over which internal details of a given model can be made available outside

 102

its scope. This modularity aids in software maintenance as well as

reliability.

A further motivation for using object oriented techniques in simulator

design is that the international bodies of the telecommunications industry

are increasingly specifying interfaces and protocols using formal top-down

specification techniques. An example of this is the Specification and

Description Language, SDL [Z.100][Belina89] that is in widespread use in

ITU-T recommendations. Object oriented languages enable such

descriptions to be readily mapped into software simulations.

Little & McCue describe an object oriented simulation package

implemented using the C++ language [Lit94]. They endeavoured to

emulate the object oriented features of the SIMULA simulation language

and found that C++ provided a number of advantages over the use of a

SIMULA based development tool. In particular:

• C++ compilers typically generate code that is several times more

efficient than similar SIMULA code resulting in faster simulations.

• C++ provides more extensive object oriented features than SIMULA.

For example, C++ provides the keywords public, protected and private

in order to control the scope of class methods and attributes, but in

SIMULA everything is public.

In summary, object oriented programming languages provide a natural

mapping of ‘real world’ systems into software in a manner that enables

highly flexible and extensible simulators to be rapidly designed and coded.

6.3 Architecture of SPROG

The logical architecture of SPROG is shown in Figure 27. The simulator

architecture consists of 2 major blocks: The simulation server, and the

 103

models. The simulation server provides a set of simulation services that

provide the basis for building a discrete event simulator. These services

are largely independent of the precise network technology being modelled.

The models are responsible for the detailed simulation of the elements of

the telecommunications network (known in SPROG as places).

The simulation services provide a wide range of generic simulation

support functionality and include the following:

• Pass messages between the models.

• Ensure the synchronised time progression of the models.

• Event list management.

• Configuration of the simulator.

The server supports a standard interface though which all models

communicate with it. This interface presents an object oriented view of the

server to the models.

As well as providing a set of simulation services, the server includes a

number of prototypes for the various entities in the simulation. These

include base class definitions for places (representing network nodes such

as traffic sources and switches), events (representing, for example, cell rate

changes or signalling messages), and inter-place links. These are

described in more detail in the next section.

 104

Place n Place n+1 Place n+2

Simulation Server

Interface

Models

Figure 27 Logical Architecture of the SPROG Simulator

6.3.1 Object Class Definitions

Figure 28 shows the inheritance tree for the SPROG simulator. Two main

groups of classes are defined: a set of base classes that constitute the

simulation services library, and a set of user defined sub-classes. In

general, the user defined sub-classes are derived from the base classes in

the simulation services library in order to implement the full detail of the

simulation. However, users can also define their own base classes where

necessary.

 105

Figure 28 Object Class Definitions for SPROG

6.3.1.1 Simulation Services Library

The simulation services library implements the majority of the

functionality of the simulation server. This library contains a set of base

classes that incorporate the essential data and functionality required by

any discrete event driven network simulator. The properties of these

classes can be inherited by object classes derived from them in order to

implement almost any entity in the network together with any further

functionality required for the operation of the simulator.

The classes of the SPROG simulation services library are summarised as

follows:

6.3.1.1.1 Class Place and Class Link

Class Place and Class Link are the base classes that enable the basic

physical topology of the network to be modelled. Class Place contains

the functionality and data for modelling a generic network node that has

associated with it one or more output links. These output links are

modelled using objects of Class Link. The arrangement of objects of

Class Place and Class Link in order to form a network is shown in

Place Event Config-
uration Link

MyPlace MyEvent
 My
Network

SwitchSource Burst UMOnly

Simulation Services Library

User Defined
 Sub-Classes

Routeing
 Entry

 106

Figure 29, while the principal public and protected member functions and

attributes are shown in Table 3. These form the interface to the Place and

Link simulation services.

Class Place contains a number of functions for controlling simulation

time and the configuration of any individual place, including manipulation

of the initialisation file for this place (each place is assumed to be

initialised through its own individual file). Additionally, Class Place

contains a virtual function for processing events arriving at this node.

This can be overloaded by classes derived from Class Place in order to

model the behaviour of any network node while maintaining a common

interface to all network nodes. Attributes of Class Place include local

and global simulation time, an array of pointers to all places in the

network, the global ID of this place, pointers to the objects modelling the

output links from this place, and the name of this place’s initialisation file.

The attributes of Class Link include the destination place of the link

(links are assumed to be unidirectional), the port number at which the

link connects to that place, and the link delay. The methods are simply

associated with getting and setting these attributes.

 107

Figure 29 Arrangement of Places and Links in SPROG

Place1 Place2

Place3

link

link

link

link

link

link

O/P link objects
for place 1

 108

Table 3 Interface to Place and Link Simulation Services

6.3.1.1.2 Class Event

This is the base class for all events in the simulation. the principle

methods are for sending events between places, for event list management

(a simple linear event list scheme is implemented as a virtual function so

that it can be changed by overloading to some other scheme in a derived

class), and for creating and managing lists of free events; objects

representing events that are no longer required by the simulator are

placed on a free list for later reuse rather than being deleted. This reduces

the amount of dynamic memory allocation thus reducing the number of

//class place is base class for all network nodes
class Place
{
public:

//static functions for creating a network of places
static void SetGlobalTime(double time); //set the global simulation time
static double GetGlobalTime(); //returns the global simulation time
static void CreatePlaceList(int NoPlaces); //create list of places
static void SetPlacePointer(Place *ptr, int p) //set placelist pointer
static Place *GetPlacePointer(int p) //return pointer to place p
static Place **GetPlaceList() //return pointer to placelist
int GetThisPlaceID() //return global ID of this place
inline void SetThisPlaceID(int id) //set global ID of this place

//functions for initialising this place
inline void SetNOutlinks(int n); //set number of output links
inline int GetNOutlinks(); //get number of output links
inline Link *GetLinkPointer(int no); //return pointer to outlink n
inline void SetIniFileName(char *name);//set ini filename for this place
inline char *GetIniFileName(); //returns init filename for this place
virtual void ProcessIniFile(); //process init file for this place

//run time place simulation functions
virtual void ProcessEvent(class Event *ptr, int inc_port, double t) //process

next event for this place

//general functions
virtual void PrintPlaceConfig(); //print configuration of this place

protected:

void SetUpLinks(int n); //create output link objects
void SetLocalTime(double t) //set the local time
inline double GetLocalTime() //get the local time
static double GlobalTime; //record of global time across whole simulation

};

//class link represents the output links from a place
class Link
{
public:

void SetLinkWhereTo(int to); //set destination place for this link
int GetLinkWhereTo(); //returns destination place for this link
void SetLinkDelay(double d); //set link delay
double GetLinkDelay(); //returns the link delay
void SetLinkDestPort(int n); //set incoming port number on destination place
int GetLinkDestPort(); //returns port number on destination place

};

 109

‘holes’ in the memory allocated to the simulator. Attributes include event

time, incoming port at the place to which event is to be delivered,

destination place, a pointer to the list of free event lists and a pointer to

the event list head. Table 4 shows the principle functions of the interface

to the event simulation service.

Table 4 Interface to Event Simulation Services

6.3.1.1.3 Class Configuration

Class Configuration is the base class that describes the current

configuration of the network. It contains functions for processing the

global network configuration files (the run time control and network

configuration files), together with some basic file handling and file

input/output functions. Attributes include the names of the run time

control and network configuration files, the global end of simulation time,

//class event is base class for all event types in simulation.
class Event
{
public:

//free list management functions
static void CreateFreeEventLists(int No);//create array of pointers to free events

 //also initialises head pointer for
// central event list

void FreeEvent(int type); //place used event on free event list
static Event *GetEvent(int type); //get event from free list

//event list management functions
virtual void SendEvent(int output_link, class Place *ptr,

 double time, int priority); //send event on outlink from this place
static Event *GetNextScheduledEvent(); //get the next event from event list
static double GetNextScheduledEventTime(); //get time of next event
inline static Event *GetEventListHead(); //get pointer to event lists
static void Event::DumpEventList(Event *ptr); //dump event list to screen

//event attribute manipulation functions
double GetEventTime(); //returns scheduled arrival time of this event
int GetSourceID(); //returns ID of place that sourced this event
int GetDestinationPlace(); //returns ID of destination place for this event
int GetIncommingPort(); //returns incoming port on destination place
Event *GetpNextEvent(); //get pointer to next event in list
void SetpNextEvent(Event *ptr); //set pointer to next event in list

//virtual prototypes
void DisplayEvent(){ } //provides a standard interface for all types

//of event

protected:

void SetPriority(int p); //set the event priority
void SetSourceID(int ID); //set source ID
void SetDestinationPlace(int dest); //set destination place
void SetEventTime(double t); //set the event time
void SetIncommingPort(int inc_port); //set incomming port on destination place

};

 110

and the total number of places in the network. Note that in general, for

any given simulation, only one object instance of Class Configuration

will exist. Table 5 illustrates the principle functions of the interface to

Class Configuration.

Table 5 Interface to Class Configuration

6.3.1.2 User Defined Sub-Classes of SPROG

Based on the library of base classes, the simulator developer can derive a

set of object classes that are more specific to their simulation needs. In the

case of the study of timestepping performance, objects were required for

modelling cell rate ATM traffic sources and switches, as well as objects to

represent cell rate change events. A class was also required to represent

locally scheduled events at the traffic source (for example, the time of the

next cell rate change on a VCC), together with a class to represent extra

details of the configuration of the ATM network over and above that which

could be described by the simulation services library.

An important consideration in the development of the SPROG simulation

services library was that it should be possible to use it as the basis for

simulators of a range of network technologies using a wide variety of

class Configuration
{
public:

virtual void ProcessRunTimeControl(); //process the run time configuration file
virtual void ProcessNetworkConfig(); //process the network configuration file
double Get_EndSimTime; //return the end of simulation time
int Get_NumPlaces(); //return number of places in the network
char *Get_Word(ifstream *fp) //get text string from input filestream
int Get_Int(ifstream *fp); //get an integer from input filestream
double Get_Double(ifstream *fp); //get a double from the input filestream
void Write_Log(const char *, const char *); //write a string to output logfile
inline char *GetLogFileName(); //return name of log file

protected:

void SetRunTimeControlName(char *rcf); //set run time configuration filename
void SetNetworkConfigName(char *netcon);//set network configuration filename
char *Get_RCFName(); //get runtime control file name
char *Get_CNFName(); //get configuration file name
void Set_EndSimTime(double time); //set end of simulation time
void Set_NumPlaces(int n); //set number of places in the network
void SetLogFileName(const char *lfn); //set filename of output log file

};

 111

simulation techniques. Therefore the library was implemented with only

those features that were considered to be sufficiently generic. However, it

was designed with maximum flexibility in mind. During the development

of the derived classes for the timestepping study it was found that a

number of attributes and methods were required that, whilst being

common to all of the objects derived from a given base class, were not

sufficiently generic to be included in the simulation services library. An

example of this is the necessity in a timestepping simulator to have a local

timer queue at every place, whether that place be of type traffic source or

switch. Therefore, where necessary, common classes were derived from the

appropriate base classes in the simulation services library. This was found

to be necessary for object classes of type Place and type Event, giving rise

to Class MyPlaces and Class MyEvents.

The classes derived for the purposes of building a simulator for the

timestepping study are summarised as follows:

6.3.1.2.1 Class MyPlace

In the timestepping version of the simulator this class encapsulates the

timer, stream, and sorted node queues for a place. The attributes are the

pointers to these queues (which are implemented as linked lists of event

objects), while the methods are associated with manipulating these

pointers. The programming techniques used to enable SPROG to be used

for the timestepping study are described below.

6.3.1.2.2 Class Source

Objects of Class Source model groups of ATM traffic sources within the

network. Each source contains an ON-OFF cell rate traffic source for an

unrestricted number of permanent VCCs. The timing of cell rate change

events on the VCCs is determined by a Poisson arrival process.

6.3.1.2.3 Class Switch

Objects of Class Switch implement a cell rate model of a simple zero

size buffer burst level queue/server. In this model, cell scale queueing is

 112

not modelled. Outgoing bursts are routed on to the appropriate output link

of the switch based on their VCI using a static routeing table that is set up

at initialisation time. Switches are able to calculate cell loss and cell

throughput statistics.

6.3.1.2.4 Class RouteingEntry

A data object representing a single entry in a switch routeing table.

6.3.1.2.5 Class MyEvent

In the timestepping version of the simulator, this class encapsulates the

methods and data for managing the timestepping event lists. In both

timestepping and centralised event list versions of the simulator, this

class has attributes describing the type of the event (i.e. Burst or

UMOnly).

6.3.1.2.6 Class Burst

This class is derived from Class MyEvent and represents a cell rate

change. Attributes include the size of the rate change (in cell/s), VCI, and

a burst serial number (BurstID).

6.3.1.2.7 Class UMOnly

Class UMOnly is used by objects of Class Source to schedule cell rate

changes on a given VCC.

6.3.1.2.8 Class MyNework

Contains methods and data for the configuration of a particular network.

6.3.2 Event List Management

The SPROG simulation library provides a basic event list and time

synchronisation scheme for sequential simulation. This is based around a

linear event list. In this scheme, a single time ordered list of all of the

currently scheduled events in the whole simulation is maintained. New

events are inserted in the correct position in the list using a simple

 113

searching algorithm that starts at the head of the list and moves down

until the first event of greater scheduled time is found. The events are

stored in the list in increasing time order, and therefore the next

scheduled event is always at the head of the list. Note that, while the

insertion order of simultaneous events is preserved, this event list

management scheme is unable to deliver multiple simultaneous events

that occur at a model together. Therefore, although this scheme still

enables correct cell rate modelling, spurious events are generated during

periods of cell queueing. This can have a significant impact on the

performance of the event list. An event list scheme that properly accounts

for multiple simultaneous cell rate changes is described in Chapter 7.

The event list is implemented in SPROG using a linked list of event

objects as shown in Figure 30.

Figure 30 Simple Linear Event List

The object oriented design of the simulator enables this form of event list

management to be easily interchanged with alternative schemes by simply

overloading the appropriate functions and providing and additional

attributes in sub-classes of Class Place and Class Event. For

timestepping, stream, sorted node and timer queues were added to Class
Place through the derivation of Class MyPlace. The additional

functionality required to manage this scheme was achieved by overloading

the event management methods in Class Event. The code for each

Event list head

Event
time t

Event
 t+1

Event
 t+2

Event
 t+3

Time

 114

particular event list management scheme was enclosed within

conditionally compiled blocks enabling a different scheme to be selected at

compile time.

6.4 Application of SPROG to the Comparison of
Synchronisation Schemes

In order to assess the potential of timestepping as a practical time

synchronisation scheme for ATM cell rate simulators that are portable

between a sequential and a parallel environment, the speed performance

of the timestepping version of SPROG was compared with a version that

was compiled with the simple linear event list of the simulation services

library.

Despite the fact the timestepping is intended as a synchronisation scheme

for parallel simulation, it is considered reasonable to assess certain

aspects of its speed performance on a sequential computer. In such

conservative synchronisation schemes running on parallel platforms, the

speed of the whole simulator will always be limited by the speed of the

slowest processor. This is because all of the processors must have finished

processing all of the events for the current timestep before any of the

processors can begin to process events scheduled for the following

timestep. Therefore, in order to suggest that a timestepping parallel cell

rate simulator could give some speedup over a conventional cell rate

simulator, it must be demonstrated that the slowest processor in a

timestepping parallel simulator will never simulate a portion of the total

network (the size of this portion will depend on the level of granularity of

the spatial decomposition) at a slower rate than a sequential simulator

using a conventional synchronisation scheme would simulate the complete

network. It follows that, to achieve the ideal situation of a linear speedup

with increasing numbers of processors for a given total fixed network size,

each processor must simulate at N times the rate of a sequential

 115

simulation of the complete network (where N is the total number of

processors). Note that the assumption is made that delays due to the

transfer of both synchronisation information and cell rate change events

between processors are small compared with the processing time of those

events at each processor. This is because cell rate modelling requires

greater amounts of floating point arithmetic than cell level modelling.

The assessment of parallel simulation techniques using sequential

simulators has the major advantage that potential parallelism can be

identified without the need to for any implementation on a real

multiprocessor system, hence avoiding the need for complex and time

consuming development work. Indeed, authors in other fields of

simulation have used sequential simulators to assess the potential of a

parallel simulation scheme, for example Rawling et al [Raw92].

6.4.1 Experimental Comparison of Timestepping and Linear Event List

The experimental network configurations are shown in Figure 31 and

Figure 32. Four experiments were carried out on both a version of SPROG

that used a timestepping synchronisation scheme and also a version of

SPROG with a simple linear event list. These experiments had the

following objectives:

• To assess the performance of timestepping in lightly loaded

networks

• To assess the performance of timestepping in heavily loaded

networks

• To assess the effect of network scaling on the performance of a

timestepping simulator

 116

Two network topologies were chosen:

• Three node network. This consisted of one traffic source model,

one simple switch, and one further switch configured as a traffic

sink.

• Eleven node network. This consisted of one traffic source model,

nine simple switches and a switch configured as a traffic sink

These networks are shown in Figure 31 and Figure 32.

Note that while the network topologies are clearly not representative of

those of real telecommunications networks, they were deliberately chosen

to simplify the analysis of the burst propagation thought the network and

the effects of scaling. All link delays were set to 0.001s. The timestep size

was set to the link delay in the timestepping SPROG such that there

would be no event propagation errors and corresponding burst length

quantisation. This represents a ‘worst case’ scenario for the impact of

timestepping on simulator speed. If some error in the results can be

tolerated, then the timestep size can be increased, as demonstrated in

Source
 UM1

Switch Switch
 (Sink)
 SW2SW1 ATM linkATM link

10 VCCs

Figure 31 Three Node Experimental Network Topology

Source
 UM1

Switch Switch
 (Sink)
 SW10SW1ATM link

10 VCCs

8 intermediate
switches

Figure 32 Eleven Node Experimental Network Topology

 117

Chapter 5 of this thesis. Ten permanent virtual channel connections were

set up between the source and the sink through the switches. The traffic

sources were of ON-OFF type with a peak rate of 100 cells/s and a mean

ON and mean OFF time that was varied between 10s and 0.01s in order to

force a known mean number of events to occur per timestep. The ON and

OFF times were exponentially distributed about the mean. The buffers in

the switch models were of sufficient capacity to accommodate cell scale

queueing, but if any burst scale queueing occured it immediately resulted

in cell loss. Note that, whilst the queueing of cells in the buffers in this

experiment is not explicitly modelled, the term queueing (in preference to

loss) is used here to emphasise the fact that it is the change in the state of

the buffer from no queueing to queueing (and vice versa) that affects the

number of cell rate changes and hence the distribution of events on the

output of the buffer. Therefore, queueing represents any situation where

the total input rate of the buffer is greater than its server rate. Note also

that no account was taken in either implementation of the simple linear

event list scheme or the timestepping scheme of the occurrence of

simultaneous events at the output of buffers during burst scale queueing.

The impact of these on the performance of simulators is investigated in

Chapter 7.

For each network topology, two groups of experiments were performed

• No burst scale queueing

• Burst scale queueing in SW1 or SW1 and SW2

• Low utilisation resulting in a small amount of burst scale

queueing in SW1

• High utilisation resulting in heavy burst scale queueing in

SW1 and SW2 in the eleven node network, and heavy

burst scale queueing in SW1 of the three node network.

 118

The computing platform on which these experiments were run was as

follows:

• Hardware:

 IBM AT clone with 100MHz Intel 80486DX4 CPU and 16Mbyte

RAM

• Operating System:

Microsoft Windows 95/MS DOS 7. SPROG always run with PC in

DOS mode

• C++ Compiler:

 Microsoft Visual C++ v1.51. SPROG compiled as a DOS

application with full compiler optimisations selected.

6.4.2 Comparative Performance of Timestepping with no Queueing

In this experiment all of the switch server rates were set to 1000 cells/s.

The peak cell rate of each VCC was 100 cells/s and hence no burst scale

queueing occurred in the network. This experimental set-up was used for

both the three node and eleven node networks.

Figure 33 and Figure 34 show the effect on the cell processing rate,

measured at SW1, of decreasing the mean ON and mean OFF times in the

three node and eleven node timestepping and linear event list simulators.

In both cases, the cell processing rate decreases in an approximately

linear manner in the linear event list simulator.

 119

There are two major factors that determine the cell processing rate of the

simulator:

• time taken to process each event in the models

• time taken to place each event in the correct time ordered position in

the event list

When there are few events propagating through the simulation the first

factor will dominate. However, increasing the numbers of events by either

reducing the ON/OFF times of the traffic or increasing the numbers of

nodes will lead to an increasingly large central event list so causing the

second factor to dominate.

In the timestepping simulator, there is very little decrease in cell

processing rate with a mean ON (and OFF) time of 10s and 0.1s. This is

because when there few events to process in the simulator there is a

significant overhead of timesteps in which no useful work is done by the

models. However, as the mean ON time is reduced below 0.1s, the cell

processing rate begins to drop . This corresponds to 0.1 total source events

per timestep. This indicates that the majority of CPU time is spent

processing events in the models rather than empty timesteps. It is clearly

desirable to maximise the proportion of CPU time spent in useful event

processing work in the models.

 120

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear

Figure 33 Variation of Cell Processing Rate for 3 Node no Queueing Network

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+00 1.E-01 1.E-02

M ean ON tim e (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear

Figure 34 Variation of Cell Processing Rate for 11 Node no Queueing Network

The significant feature to note from these results is that, although the

timestepping simulator is much slower than the linear event list

simulator with small numbers of source traffic events per timestep, it can

actually be faster with large numbers of source events (demonstrated

 121

further in later experiments). This is because, in the timestepping

simulator the event list is spatially decomposed. If the number of nodes in

the simulation is increased from three to eleven, the total number of

events propagating through the network will increased by a proportionate

amount. In the timestepping simulator, the event lists will remain

approximately the same size because the increased number of events will

be distributed approximately evenly amongst more lists (the sorted node

queues of each node model). However, since all of the events in the linear

event list simulator are stored in one list, it would be expected that the list

would be much longer. Hence, the time required to insert each event in the

event list increases.

6.4.3 Comparative Performance of Timestepping with Queueing

In this experiment, two sets of simulations were performed for each of the

network topologies. For each of these simulations, whilst the peak cell rate

of each VCC remained constant, the mean ON and mean OFF times were

varied from 10s to 0.01s.

6.4.3.1 Low Utilisation

The low utilisation networks represent networks that are not heavily

loaded, but never-the-less experience some burst scale queueing. For both

the three node and eleven node networks, the service rate of SW1 was set

to 800 cell/s. All other switch server rates were set to 1000 cell/s.

Figure 35 and Figure 36 show how the cell processing rate varied as the

mean ON and mean OFF times of the traffic source were reduced. These

results differ very little from the no queuing case. This is because, at low

utilisations, whilst it is possible for queueing to occur, this does not

happen with sufficient frequency to generate substantially increased

numbers of events in the simulation.

 122

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear

Figure 35 Variation of Cell Processing Rate for Low Utilisation 3 Node Queueing
Network

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear

Figure 36 Variation of Cell Processing Rate for Low Utilisation 11 Node Queueing
Network

 123

6.4.3.2 High Utilisation

The high utilisation experiments represent periods of very heavy loading

in which burst scale queueing is very likely. For both the three node and

eleven node networks the service rate of SW1 was set to 500 cell/s. In the

eleven node network the service rate of SW2 was set to 400 cell/s. All other

switch server rates were set to 1000 cell/s.

Figure 37 and Figure 38 show how the cell processing rate at SW1

changed with varying values of man ON and mean OFF time of the traffic

source for the highly utilised network.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear

Figure 37 Variation of Cell Processing Rate for High Utilisation 3 Node Queueing
Network

 124

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear

Figure 38 Variation of Cell Processing Rate for High Utilisation 11 Node Queueing
Network

The significant feature of these results is that, in the high utilisation

network simulation running on the linear event list version of SPROG, the

cell processing rate decreases more rapidly than in either the low

utilisation or in the no queueing networks. This is particularly true for the

eleven node network. Furthermore, the curves for the timestepping and

linear event list simulator cross at a point with a lower number of source

events per timestep than in the low utilisation and no queueing cases.

This is because burst scale queueing increases the number of events

propagating through the simulator. From the analysis of queue behaviour

presented in Section 4.1.3 of this thesis it can be shown that an event on

one VCC passing though a buffer where queueing either begins due to this

event, or is currently occurring, will cause a corresponding output event

on every other VCC passing through that buffer. This substantially

increases the number of events. As with the no queueing case, when there

are sufficiently large numbers of event to process, the timestepping

simulator is faster than the linear event list version because the spatial

decomposition of the event list reduces the time taken to insert each event.

 125

In the above experiments, the grouping of simultaneous events in the

timestepping simulator was not implemented. However, the speed of the

timestepping simulator could be increased in the high utilisation case by

implementing grouping. This is because grouping would eliminate

spurious simultaneous events propagating through the simulation.

Furthermore, if some error in cell loss results is considered acceptable,

then the timestep can be increased to some value that is greater than the

link delay.

In order to demonstrate the effect of grouping on the speed of a

timestepping simulator, a grouping scheme similar to that used in the

ICM simulator (Chapter 5) was implemented in SPROG. In this scheme,

an event inserted into the stream queue of a given place is assigned a

group ID if it is found to have the same scheduled arrival time as an

existing event in the queue. Note that, in the ICM implementation it is

possible to specify a group tolerance whereby all events scheduled within a

specified tolerance of a given time are considered to be simultaneous and

are grouped together. However, here only events with the same scheduled

arrival time are grouped.

The group ID specifies whether an event is the first, last, or within a

group of simultaneous events. When the first event in a group is delivered

to the switch model in SPROG it is stored and control is immediately

returned to the simulation server without that event actually being

processed. This continues until the last event in a group is delivered. The

switch is then able to process all of these events together and hence to

assess their overall effect on the state of the queue.

Although the grouping mechanism in the timestepping scheme eliminates

the build up of multiple simultaneous events in the simulation, a given

place must still be invoked for every event in a group, and events on

different virtual channels must be passed back to the server individually

even if they are on the same outgoing link and are simultaneous. An

 126

optimised grouping mechanism for sequential cell rate simulators that

removes these inefficiencies is described in Chapter 7 of this thesis.

Figure 39 shows the effect on the cell processing rate of the timestepping

simulator of introducing a grouping mechanism for the eleven node highly

utilised network. The effect of increasing the timestep size from one to ten

times the link delay (and hence introducing some error into any cell loss

measurements) is also shown. The source traffic was as before.

The results show that grouping does indeed increase the speed of the

simulator because spurious simultaneous events are eliminated. However,

because the total number of events in the simulation is reduced, there are

more timesteps in which no useful processing work is done for large source

mean ON times. This explains why the curve for the for the grouped

timestepping case decreases less rapidly than the simple timestepping

case at first. Indeed, the introduction of grouping has given rise to results

that resemble those of the lower utilisation networks described above.

Increasing the size of the timestep to ten times the link delay increases

the speed of the grouped timestep simulator because less processor time is

now wasted ‘counting’ empty timesteps. Therefore a higher proportion of

processor time is spent processing events, giving rise to a steeper curve at

low source mean ON times.

 127

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Grouped Timestep Grouped Timestep (Large Stepsize)

Figure 39 Comparative Cell Processing Rates of Timestepping with Grouping and
Large Timestep

6.5 Summary

In this chapter, a new cell rate ATM network simulator (SPROG),

developed by the author, has been presented. The development of SPROG

was motivated by the need for a highly flexible research simulator in order

to compare the performance of timestepping with other time

synchronisation schemes fairly. This flexibility was achieved through the

object oriented design of the simulation platform and models and the

implementation of the simulator in the C++ programming language. The

design of the simulator enabled the timestepping approach to be compared

with a basic linear event list scheme in a sequential simulator. The results

of the study presented in this chapter demonstrate that, whilst

timestepping may be inefficient in small lightly loaded network scenarios,

for large network scenarios there are sufficient events propagating

through the simulation to minimise the number of timesteps in which no

 128

useful event processing work is done. This is particularly the case for a

heavily loaded network where queueing occurs in the buffers. Indeed, the

results show that a sequential timestepping simulator is actually faster

than a sequential simulator employing a simple linear event list for large

networks. This is because, for a heavily loaded simulator with a linear

event list, the insertion time of each event into the event list becomes very

large. Henriksen [Henr83] describes the spectacular failure of such

“linear-search-in-descending-time-order” algorithms.

Timestepping gives speedup when there are sufficiently large numbers of

events because the event list is broken into smaller segments, each of

which is associated with a particular node (the sorted node queue).

Therefore, when an event is inserted into the list the search length of the

sorting algorithm is much reduced. The exploitation of this effect in a

purely sequential simulator where there is no overhead at low event loads

of timestepping is discussed in Chapter 7.

The results presented in this chapter suggest that a coarse spatial

decomposition scheme is required if timestepping is to be used as the time

synchronisation scheme in a parallel cell rate ATM network simulator.

Such a scheme would maximise the number of events processed per

timestep and hence minimise the processing overhead of timestepping.

 129

7. Efficient Event List Management for Cell Rate
Simulation

The study described in the previous chapter of this thesis demonstrated

the importance of an efficient event list management algorithm in

simulator design. Indeed, despite the fact that the study was primarily

intended to assess the suitability of timestepping for the parallel cell rate

simulation of ATM networks, it has also highlighted the major

contribution that the event list management scheme can make to the

speed of a sequential simulator.

In this chapter, a review of the many event list management algorithms

(in general, intended for sequential simulators) described in the literature

is presented. The literature on this subject is both extensive and

comprehensive and hence only a brief review of some of the important

survey papers is given here. This is followed by a description of a study,

using the SPROG simulator, of improved event list management schemes

for cell rate ATM network simulators. The study takes some of the

principles of the timestepping scheme, in particular the spatial

decomposition of the event list, and applies them to cell rate ATM

simulation in a sequential computing environment.

7.1 Review of Event List Management Schemes

7.1.1 General Simulation Algorithms

Many papers exist that describe a wide variety of event list algorithms.

These range from variations on the linear linked list to more complex

binary trees. Comfort [Comf79] details seven categories of event list

 130

algorithm and analyses the performance of examples of each. The

categories are:

1. Linked List - A time-ordered doubly-linked list in which events

are inserted by searching from the event scheduled for the most

distant future time to the next scheduled event.

2. Indexed List - Dummy events are inserted at known intervals

that act as indexes in order to rapidly identify the correct

insertion point for an event.

3. Adaptive Linked List- This is a variation of the linked list that is

able to adapt to the distribution of event inter-arrival times.

4. Indexed/Adaptive List - This is a combination of (2) and (3)

above.

5. Multiple (Dynamically Changing) Adaptive Linked List - an

extension of (3) above to allow the creation of multi-layer keys to

the event list.

6. Heap Data Structure - A restricted binary tree in which events

inserted with the same time stamp will be removed in an

unpredictable order.

7. FIFO Heap Data Structure - A variation on (6) that preserves the

insertion order of events with the same time-stamp.

In common with much of the literature, Comfort uses a hold model to

assess the performance of an algorithm rather than using a real

simulation problem. A hold model involves rescheduling the event with

the smallest next processing time to some later time according to some

incremental processing time distribution. The poor performance of the

linear linked list is demonstrated and it is shown that, in general, indexed

and adaptive linked lists are the most efficient.

 131

Henriksen [Henr83] discusses a range of event list algorithms and

describes the ‘spectacular’ failure (when the event list is large) of simple

linear linked lists that search from next scheduled event to most distant

future event.

Kingston [Kings89] analyses the performance a number of binary tree

search algorithms and, although he finds these to be disappointing, is

unable to recommend any alternative. Other reviews of binary tree

algorithms are provided by Evans [Evans86], McCormack [McCor81] and

Nikolopolous [Niko93].

In general, advanced event list management algorithms are intended to

provide speedup when compared with the poor performance of the simple

linear linked list (as demonstrated in Section 6.4.1 of this thesis).

However, as Jones points out in [Jones86], whilst the performance penalty

due to choosing a poor algorithm may be great, the gain achieved by

selecting between particular fine-tuned algorithms may be very small.

Indeed, in such cases development effort may be better spent in

optimisation of the models rather than the event list.

7.1.2 Optimised Event Lists for Cell Rate Simulation

The Linksim cell rate ATM simulator [Pitts93] contains an event list

management algorithm that has been designed for optimal performance

when used with cell rate modelling of the traffic. The event list algorithm

in Linksim takes account of the generation of simultaneous events at a

queue by storing these events together. When these events are

subsequently processed by a model, they can be passed to it as a single

group. This allows that model to avoid the generation of multiple spurious

‘knock-on’ events.

The structure of the Linksim event list is shown in Figure 40. Linksim

adds two extra dimensions to the simple linear event list structure. The

first of these extra dimensions contains a list of records of where the

 132

simultaneous events occur together with a pointer to the linked list of

simultaneous events that occur at a place. This constitutes the second

extra dimension. Events are classified at two levels: general and specific.

The ‘general’ classification categorises events as either those that occur at

a network termination (NT), or those that occur at a network element

(NE). The ‘specific’ category identifies the details of the actual event.

Specific NT events include send and receive cell rate changes, while

specific NE events include those that describe input and output cell rate

changes and those representing changes in the state of the cell rate queue

model of the NE.

EVENT
time
type: general
next event
list of places

EVENT
time
type: general
next event
list of places

place
list of specific events
next place

type: specific
details
next event

place
list of specific events
next place

type: specific
details
next event

Event List
Head

Figure 40 Linksim Event List Structure

In Linksim, when the simulation is advanced by one event, the procedure

actually processes all of the events happening simultaneously at either all

network terminations or all network elements. The significance of

simultaneous cell rate changes in cell rate simulation was introduced in

Section 5.1.1 of this thesis.

 133

The processing of simultaneous events on the input to a queue as a group

is an important factor in the design of efficient cell rate simulators.

Consider the simple scenario of Figure 41. A source produces cell rate

changes on ten VCCs that pass through a chain of 3 buffers, each

consisting of a single queue/server pair. Consider a single cell rate change

on one of the VCCs on the input to Buf1. If Buf1’s queue is not empty then

simultaneous cell rate changes will appear on the output of the queue on

each on the ten VCCs . If Buf2 is also in queueing, then a cell rate change

event will appear on every VCC emerging from its queue for each rate

change at the input to the queue. Therefore one hundred cell rate change

events will appear at the input to Buf3. In a worst-case scenario, it is

possible that the queue in Buf3 will not be empty either, giving rise to a

thousand cell rate change events on the output of the queue!

Source Sink
ATM link

10 VCCs Buf1 Buf2 Buf3

Figure 41 Example Network Scenario

If all of the simultaneous input events at Buf2 are accounted for before the

effect of these on the cell rate queueing model is calculated, then only one

output event per VCC need be generated.

It can be seen that, because Linksim processes simultaneous events on the

input to the queue together, it is able to calculate the overall change in the

input rate to the queue before it calculates any change in the output cell

rate. Therefore spurious simultaneous rate change events are eliminated.

In summary, the Linksim event list structure is designed to account for

both the spatial distribution, and the simultaneous occurrence of events.

The implications for simulator performance of an event list that accounts

 134

for these two factors is investigated in Section 7.2 and Section 7.3 of this

thesis.

7.2 A Spatially Decomposed Event List Scheme

In Chapter 6 of this thesis it was shown that, under heavy event loads,

timestepping simulators exhibit speedup over simple linear event list

simulators. This is because the spatial decomposition of the event list

reduces the number of events though which the sorting algorithm must

search when an event is inserted. However, at low event loads there is a

significant overhead of processing timesteps in which no useful work is

done and timestepping simulators are therefore slower than linear event

list simulators.

In order to fully exploit the effects of spatially decomposing the event list

in a sequential simulator it is necessary to dispense with the timestepping

mechanism. The advancement of the simulation time should be based

solely on the time of the next scheduled event and not on the start time of

the next timestep. For this, an event list with two dimensions, one of space

(the place where the event occurs) and one of time (the time at which an

event occurs) and with a next event time advancement strategy is required.

Here, separate event lists are maintained for each place (the sorted node

queues). The places are linked together in a doubly-linked list that is time

ordered according to the time of the first event scheduled for each place.

This enables the next scheduled event at each place to be identified

efficiently. There is also an array of pointers that point to every place in

the network, whether or not those places currently have events in their

sorted node queues. This scheme is illustrated in Figure 42.

 135

Et,1Et+1,1Et+2,1Et+3,1Et+4,1

Ei,2Ei+1,2

Ej+2,3 Ej+1,3 Ej,3

Ek,4

Time Place List
Head

Sorted Node Queue

Placelist

P1

P2

P3

P4

(Time Ordered)

Array of Pointers
to Places

Figure 42 Structure of Space-Time Event List

The procedure for the insertion of an event in the event list is described in

Table 6. Once the destination place of an event has been identified, then it

can be placed in time order in the sorted node queue of that place. This

operation does not involve a lengthy search of the place list since each

place is indexed using the array of pointers to places. If the event was

inserted at the head of the sorted node queue then it is likely that the

place list will no longer be in correct time order. This place must therefore

be removed from the place list and reinserted in correct time order. If,

however, the sorted node queue was empty before the insertion of this

event, then this place will not currently be in the place list and hence

needs to be inserted in the correct time order. If this place has the earliest

event at the head of its sorted node queue, then it will be placed at the

head of the place list.

 136

Table 6 Sequence of Operations for Event Insertion

The procedure for the extraction of the next scheduled event from the

event list is described in Table 7. The place with the next scheduled event

is pointed to by the place list head. Once the first event in that place’s

sorted node queue has been removed for processing, the place list may no

longer be in correct time order. If there are still events in this place’s

sorted node queue then this place is removed from the place list and

reinserted in correct time order. However, if the sorted node queue of this

place is now empty, then this place is removed from the place list and the

place list head updated accordingly. Further details of this operation are

shown in the table.

Table 7 Sequence of Operations for Event Extraction

IF outlink destination == this place
Insert in SortedNodeQueue of this place

ELSE
Insert in SortedNodeQueue of destination place

IF SortedNodeQueue != empty && event inserted first
Remove destination from PlaceList and reinsert in correct order

ELSE
IF SortedNodeQueue == empty

Insert destination in correct order in PlaceList

Place with next scheduled event = PlaceListHead
NextEvent = SortedNodeQueueHead at PlaceListHead

IF sorted node queue != empty && next place != NULL
Remove this place from Place List
Reinsert in correct time order in Place List

ELSE IF sorted node queue != empty && next place == NULL
This place is next

ELSE
Remove this place from place list

 137

7.2.1 Performance of Spatially Decomposed Event List

In order to assess the impact on simulator performance of spatially

decomposing the event list, the space-time event list management scheme

described above was implemented in SPROG. New functions for sending

and retrieving events were implemented by overloading the existing event

list management functions provided by Class Event. Note that in this

implementation no account was taken of the generation of multiple

simultaneous events in the cell rate model during queueing. A scheme for

dealing with this is described in Section 7.3.

The cell processing rate for both the three node and the eleven node

networks described in Chapter 6 of this thesis, was measured for the high

and low utilisation queueing and the no-queueing cases. This was

compared with the results obtained previously for the linear event list and

the timestepping scheme. The traffic characteristics were varied as before.

The switch server rates and link delays were also as before.

Figures 43 to 48 show how the cell processing rate for the space-time

event list varied with event load for the no-queueing and the high and low

utilisation queueing cases. These results demonstrate that, at low event

loads the cell processing rate of the space-time event list is not

significantly greater than that of the simple linear event list. However, it

does give substantially better performance than the timestepping scheme.

This is because the overhead of processing idle timesteps has been

removed in the space-time event list. However, with few events there will

be less chance of there being events scheduled for more than one place at

any given time. Therefore the performance gain from spatially

decomposing the event list is small in comparison with the linear event

list, resulting in similar cell processing rates.

 138

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear Space-Time

Figure 43 Three Node Space-Time Event List Performance with No Queueing

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear Space-Time

Figure 44 Three Node Space-Time Event List Performance With Queueing and Low
Utilisation

 139

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear Space-Time

Figure 45 Three Node Space-Time Event List Performance with Queueing and High
Utilisation

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear Space-Time

Figure 46 Eleven Node Space-Time Event List Performance with No Queueing

 140

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (secs)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear Space-Time

Figure 47 Eleven Node Space-Time Event List Performance with Queueing and Low
Utilisation

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (secs)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Timestep Linear Space-Time

Figure 48 Eleven Node Space-Time Event List Performance with Queueing and High
Utilisation

As the event processing load is increased, the cell processing rate of the

space-time simulator does not decrease as rapidly as that of the linear

event list simulator. This is because of the shortened list searches

(occurring each time an event is inserted into the event list) that are a

 141

feature of spatial decomposition. However, the performance of this event

list management scheme is not as good as timestepping for high event

loads because of the additional overhead of maintaining the time order of

the place list.

7.3 Space-Time Event List Management for Cell Rate
Simulation

In the previous section, a basic spatially decomposed event list scheme

was presented. This scheme reduces the average number of events

through which the event list algorithm must search each time a new event

is inserted. However, whilst this scheme achieves spatial decomposition

without the overhead of idle timesteps at low event loads that

accompanies the timestepping scheme, and gives some speedup over the

linear event list algorithm, that speedup is small. This is particularly

disappointing given that the linear event list is, in general, considered to

be the least efficient scheme possible [Henr83]. The reason for the poor

performance of the event list schemes described above, particularly during

periods of cell queueing, is that they are unable to deal effectively with the

generation of multiple simultaneous events such that buffer models in

queueing do not generate further (spurious) ‘knock-on’ events.

In Section 6.4 of this thesis, the application of an event grouping

mechanism to eliminate spurious knock-on events was demonstrated. The

experiments described here show that substantial speedup can be

achieved because of the consequent reduction in the event load. In

timestepping, the event list structure is inherently spatially decomposed

and hence it is a relatively simple task to identify the events that are

scheduled for the same arrival time at a given place. However, because the

number of events has been reduced by the grouping mechanism, the

simulator now spends a large proportion of its run time in ‘empty’

timesteps (as with the low utilisation cases). For a simulator running on a

 142

sequential computer, this is clearly a sub-optimal situation. However, the

proper management of simultaneous events is still vital.

Because the place at which events are scheduled to occur is inherent in

the structure of the space-time event list, this event list can be enhanced

to enable all of the events that occur simultaneously at a place to be

delivered to a place in a single group This will enable that place to process

the events together. Figure 49 shows the enhanced space-time event list

structure. As with the Linksim event list (Figure 40), an extra dimension

is used to represent all of the events scheduled to occur at a given place at

a given time. Each event in the sorted node queue contains a pointer to a

linked list of all of the other events scheduled there at that time. When an

event is inserted in the sorted node queue, if an event is found with the

same scheduled time, then the new event is inserted in the 3rd dimension

of the list. When a group of simultaneous events is delivered to a place,

the event at the head of the group is removed from the sorted node queue

with the links to the simultaneous events remaining intact, thus passing

the whole group to the place. This algorithm is more efficient that both the

Linksim and ICM approaches for dealing with simultaneous events

because:

1. Only one event extraction operation is required for n

simultaneous events.

2. A place modelling, for example, a buffer is able to calculate its

total incoming cell rate in a single invocation, thus enabling it to

generate just a single, correct, cell rate change event per VCC on

its output.

 143

Ei+2,2

Ei+2,2

Et,1Et+1,1Et+2,1Et+3,1Et+4,1

Ei,2Ei+1,2

Ej+2,3 Ej+1,3 Ej,3

Ek,4

Time
Place List
Head

Sorted Node Queue

Placelist

P1

P2

P3

P4

(Time Ordered)

Et,1

Et,1

Et,1

Et+2,1

Et+2,1

Simultaneous
 Events

Array of Pointers
to Places

Figure 49 Event List Optimised for Cell Rate Modelling

This scheme is similar to the Linksim event list algorithm. However,

whilst Linksim enables events to be delivered as a simultaneous group,

only a single event is inserted into the event list at a time. Therefore, a

simultaneous cell rate change on n VCCs output from a buffer will cause n

event insertion operations.

Consider a buffer in which cells are queued. If there is a simultaneous cell

rate change on all of the output VCCs that are routed on to a given output

link then the buffer model can build the list of simultaneous events and

pass that to the event list algorithm. Therefore only a single event

insertion operation is required for all n simultaneous events on that

output link. Note that, although the simultaneous event groups are built

before they are passed to the event list, it is still necessary for the event

list algorithm itself to recognise and deal with simultaneous events that

 144

are individually inserted if these are scheduled for delivery to the same

place. For example, consider the simple scenario shown in Figure 50.

Buf1

Buf2

Buf3

Buf4

link1

link2
link4

link3

Figure 50 Example Network

Four FIFO buffers are connected by four ATM links of equal delay and

with ten VCCs on route Buf1-Buf2-Buf4 and ten VCCs on route Buf1-

Buf3-Buf4. All the buffers are served at the same rate and Buf1, Buf2 and

Buf3 have cells queued in them. The queue is the same length in Buf2 and

Buf3. Therefore, a cell rate change on the input of either buffer will take

exactly the same time to appear on the output (this would also be the case

if the buffers were simple ‘zero depth’ models, as used in the experiments

above). Consider a cell rate change on a single VCC at the input to Buf1.

This will cause a rate change on all 20 VCCs on the output of the buffer

(Figure 51). The rate changes will be grouped as two lists of ten events

(one list for each output link) by the buffer model itself and passed to the

event list. Therefore, only 2 event insertions are required for all 20 events.

Each group of ten events is delivered to Buf2 and Buf3, and since they are

able to process the events together each buffer produces a single group of

ten cell rate changes in its output. The groups of cell rate change events

on the outputs of Buf2 and Buf3 will occur simultaneously and therefore

must be delivered to Buf4 as a single group. This linking of the two lists is

 145

achieved by the event list such that Buf4 is able to process all 20

simultaneous rate changes on its input together.

Buf1

Buf2

Buf3

Buf4
Event List

2 groups of
10 simultaneous
rate changes
output on links 1
and 2

Delivery of
group of 10
simultaneous
rate changes

Delivery of
group of 10
simultaneous
rate changes

Buf2 queue lenght
= Buf3 queue length

2 groups of
rate changes are
simultaneous so
are combined to
1 group of 20

Figure 51 Propagation of Simultaneous Cell Rate Change Events via Event List

7.3.1 Performance of Space-Time Event List for Cell Rate Simulation

In order to demonstrate the speedup that can be achieved through the

correct management of simultaneous events, the optimised event list

scheme described above was implemented in SPROG. Simulation

experiments were conducted for the three and eleven node networks

described in Section 6.4.1. The source traffic characteristics were varied as

before, but only the scenarios where burst scale queueing occurred were

considered. This is because, where queueing does not occur, simultaneous

events are not generated by the cell rate queue model unless there are

simultaneous input cell rate changes. This is very unlikely, and hence

there is little to be gained over and above the basic space-time scheme.

The computer platform used for the simulation runs was as before.

 146

Figures 52 to 55 compare the cell processing rate of the optimised space-

time event list version of SPROG with the results obtained previously for

the simple linear, timestepping, and space-time event list versions. Figure

55 also includes the results obtained previously for the grouped

timestepping scheme and the timestepping scheme with the timestep set

to ten times the link delay. These earlier results are included here for ease

of comparison.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Linear Optimised Space-Time
Space-Time Timestep

Figure 52 Three Node Optimised Space-Time Event List Performance with Low
Utilisation

 147

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Linear Optimised Space-Time
Space-Time Timestep

Figure 53 Three Node Optimised Space-Time Event List Performance with High
Utilisation

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Linear Optimised Space-Time
Space-Time Timestep

Figure 54 Eleven Node Optimised Space-Time Event List Performance with Low
Utilisation

 148

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Linear Optimised Space-Time
Space-Time Timestep
Grouped Timestep Large timestep (with groups)

Figure 55 Eleven Node Optimised Space-Time Event List Performance with High
Utilisation

In both the network scenarios, the optimised space-time event list

consistently outperforms all of the other event list schemes. In the eleven

node network in particular, substantial speedups are clearly possible,

where up to approximately one hundred-fold increases in cell processing

rate over the linear event list are observed. However, it is significant to

note that, for very short mean ON (and mean OFF) times, the

performance of the timestepping simulator with grouping and a large

timestep size tends to that of the optimised space-time simulator

(although measurement errors will be introduced, as described previously

in Section 5.3.4).

 149

7.4 Verification of Optimised Space-Time Using a Realistic
Networking Scenario

While the experiments described above demonstrate that the optimised

space-time event list management scheme can give significant speedup,

when compared with the simple linear, timestepping, and simple space-

time schemes, the results are limited by the fact that the experimental

networks are not realistic. These unrealistic scenarios were chosen to

simplify the analysis of event propagation and to identify promising

candidates for a cell rate event list scheme. A simulation of a realistic

network scenario is required to verify the performance of the optimised

space-time algorithm.

The network scenario is shown in Figure 56. Twenty switch models and

ten ON-OFF traffic sources were interconnected by ATM links. Groups of

two switches (one configured as a traffic sink) and a traffic source were

used to model the users and customer premises equipment of customer

premises networks (CPNs, each one representing the network on one site

of a corporate network). The switches and sources within each CPN were

connected using links of 10µs delay, while the CPNs were interconnected

using links of 100µs delay. 160 VCCs of peak rate 167 cell/s were routed

between a randomly distributed pattern of CPN source/destination pairs.

The server rates in the switches were all set to 9434 cell/s (queueing only

occurring at SW0), while the traffic source ON and OFF times had an

exponential characteristic and a mean value of 10s. The cell processing

rate at switch SW2 was measured for the linear, timestepping and

optimised space-time versions of SPROG simulating the above network. In

the timestepping simulator, the timestep was set to 100µs.

 150

Figure 56 Topology of Realistic Scenario

Source
 UM1

Sink
SW1

Switch
 SW0

CPN0

Source
 UM2

Sink
SW3

Switch
 SW2

CPN1

Source
 UM3

Sink
SW5

Switch
 SW4

CPN2

Source
 UM4

Sink
SW7

Switch
 SW6

CPN3

Source
 UM5

Sink
SW9

Switch
 SW8

CPN4

Source
 UM6

Sink
SW11

Switch
 SW10

CPN5

Source
 UM9

Sink
SW17

Switch
 SW16

CPN6

Source
 UM8

Sink
SW15

Switch
SW14

CPN7Source
 UM7

Sink
SW13

Switch
 SW12

CPN8

Source
UM10

Sink
SW19

Switch
SW18

CPN9

 151

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Optimised
Space-
Time

Timestep Linear

Event List Scheme

C
el

l P
ro

ce
ss

in
g

R
at

e
(c

el
ls

/s
ec

)

Optimised Space-Time Timestep Linear

Figure 57 Performance of Event List Schemes in Realistic Scenario

The measured cell processing rates for the linear, timestepping and

optimised space-time versions of SPROG are shown in Figure 57. The

performance of the timestepping version is disappointing and suggests

that there are insufficient events in this network model to allow it to be

successfully simulated on a timestepping parallel simulator. The

optimised space-time event list exhibits the best performance, being over

seven times as fast as the linear event list. However, the speedup over the

linear event list is not as great as suggested by the experiments in the

previous section of this thesis. This is because the proportion of switch

models in which queueing is occurring is lower (equating to the low

utilisation case). The advantage of spatially decomposing the event list

and managing simultaneous events efficiently is nevertheless

demonstrated.

 152

7.5 Summary

In this chapter, the application of some of the ideas introduced in the

timestepping study of Chapter 6 to sequential cell rate simulation was

described. The existing literature relating to efficient event list

management was briefly reviewed. The literature contains a great variety

of event management schemes, many giving substantial improvements in

efficiency over the simple linear event list scheme. However, many of the

schemes are assessed in the context of a generic hold model with no

consideration of their application in real simulators. In general, these

schemes do not attempt to exploit any particular characteristics of a given

simulation modelling scheme and are instead aimed at efficient operation

in the greatest variety of applications.

This thesis is specifically concerned with the acceleration of cell rate ATM

network simulation, and hence event list management schemes that

attempt to exploit the characteristics of this particular modelling

technique are of interest. This chapter therefore went on to consider the

event list scheme in Linksim, one that is specifically optimised for cell rate

modelling. Two characteristics of cell rate modelling were then considered:

the spatial distribution of the events, and the occurrence of simultaneous

events during burst scale queueing. Event list schemes were implemented

in SPROG that exploited these characteristics. Although some speedup at

high event loads can be achieved by spatially decomposing the event list,

the greatest speedup was achieved when a spatial decomposition was

combined with the grouping of the delivery of simultaneous events to node

models. This enables the cell rate buffer models to account for all of the

cell rate changes on their inputs before generating a cell rate change event

on their output. Hence the generation of spurious multiple simultaneous

cell rate change events by buffers in which cells are queued is eliminated.

The speedup achievable through the correct processing, by the event list,

of simultaneous events is so great that it can be argued that any

 153

simulation language or tool that does not properly account for them is not

suitable for cell rate modelling. This issue is of particular importance

given the increasing application of cell rate modelling to ATM network

simulation.

 154

8. Discussion

This chapter reviews the research presented in this thesis and

consolidates the principle threads of the work. The issues raised by the

research are explored in greater depth.

Section 8.1 reviews the basic principles of ATM network simulation and

reiterates its importance despite the increasing presence of real ATM

networks. The discussion concentrates on new applications for simulation,

in particular in the field of network management. New approaches are

discussed that are aimed at making simulators more accessible to network

designers in general and less of a tool that is only used by the simulation

specialist. Following this, Section 8.2 discusses the main topic of this

thesis, that of accelerating cell rate simulation. The two principle threads

of parallel cell rate simulation and improved sequential cell rate

simulation are drawn together and placed in the context of the wider

requirements of ATM network simulator users and developers. Possible

alternative schemes for parallel cell rate simulation are also discussed.

8.1 Simulation of ATM Networks

In this thesis, a study of the accelerated simulation of ATM networks has

been presented. ATM has been identified, by ITU-T, as the target transfer

mode solution for the B-ISDN [I.150]. It is designed to carry all of the

anticipated broadband services while maintaining efficient use of the

available network resources. The principle features of ATM were briefly

described in Chapter 2.

Chapter 3 outlined the motivation for the simulation of ATM networks.

ATM simulation is required in the arenas of network hardware

 155

development and network management. The application of simulation to

the study of network management problems received particular attention.

An argument that is commonly presented against the inclusion of

simulation work in contemporary ATM research projects is that real ATM

networks are currently being introduced, so why not use them for

experimentation purposes? The basis of the argument against this

viewpoint is two-fold:

• the relative cost of real ATM networks

• the relative inflexibility of real ATM networks

ATM hardware is currently expensive in comparison with other, more

established networking technologies. Furthermore, the installation and

configuration of a large network is a complex task involving the

employment of specialist engineers, even for relatively small projects.

Once a network is installed it must be maintained, and this further adds

to the cost of network ownership. In a modern competitive

telecommunications industry, such costs must be matched by revenue

earning potential. Therefore, those networks that do exist are primarily

commercial in nature and hence it is difficult for research workers to gain

access to them. Where access is possible, the range of experiments will be

limited in order to minimise any disruption to the revenue earning

function of the network. Researchers are often interested in network

behaviour under conditions of very heavy load. However, such conditions

may be detrimental to the QoS of existing network users. Other scenarios,

such as the study of the network under fault conditions may also severely

degrade the QoS experienced by these network customers. Clearly the use

of a simulated network, as opposed to a real network, means that extreme

network scenarios can be studied without affecting existing network users.

 156

The second argument in favour of simulation concerns flexibility. This

covers a range of issues that impact on the details of the networking

scenarios that can be studied. These issues are:

• scaling

• network functionality

• measurement

• portability

Scaling relates to the maximum size of network (defined by the number of

nodes and links, the number of traffic sources or users, and the pattern of

demand placed on the network resources by those traffic sources) that can

be studied. Existing research networks, such as the Exploit Testbed

[SNH96], are small and often use a high proportion of artificial traffic

sources. However, simulators enable much larger networks with many

tens of switching nodes and tens of thousands of simultaneous calls to be

studied. Such simulations can provide realistic scenarios for, in particular,

the study of network management and resource allocation issues.

Flexibility in network functionality relates to the subset of ATM functions

that are implemented in the network. This raises some important issues

with respect to the current state of the technology that is implemented in

real networks in comparison with that of interest to research projects.

Simulators enable advanced network functions and algorithms to be

modelled, many of which are far from reaching realisation in commercially

available network hardware (for example, advanced connection admission

control algorithms [ARM96.1][Ram97]).

Network functionality also relates to the control that experimenters have

over the configuration of the network. Many of the configuration

parameters that experimenters may wish to have access to are simply not

available in real networks, but can be readily accessible in simulations.

 157

The range of statistics that can be measured is of great importance. In

many real networks statistics such as cell delay variation require complex

and expensive instrumentation to measure. This is not required when

simulation is employed and many such statistics can be generated with

ease.

Finally, portability is an important factor. Real networks cannot be moved

easily and, if remote access facilities are not available, may require

experimenters to travel long distances in order to perform studies.

Simulators, in particular those based around software that runs on

relatively inexpensive computers, are highly portable and enable the

experimenter to have a ‘network model on their desktop’.

Hence it can be seen that there remain a wide variety of applications for

simulation despite the inevitable introduction of real ATM networks.

Following the discussion of the motivation behind simulation, Chapter 3

introduced the principles of simulation and identified discrete event

simulation as being the most appropriate technique for ATM simulation.

This is because discrete event simulation can efficiently manage irregular

event arrival times because the simulation clock is only advanced when an

event is processed. Continuous time simulators advance the simulation

clock in a series of fixed time increments, irrespective of the time of

events, and hence processor time is wasted counting time intervals if there

are no events to process. It is significant to note that the timestepping

scheme is in many respects a hybrid of discrete and continuous time

simulation. This is because, although the local time within each timestep

at each model is advanced on a next-event basis, the global time (and the

starting time of the next timestep) is advanced in a series of fixed time

increments. Therefore, when there are many events to process per

timestep, timestepping can be as efficient as pure discrete event

simulation. However, when there are few events to process per timestep it

 158

can be as inefficient as continuous time simulation. This is reflected in the

results presented in Chapter 6.

The issue of simulation languages and tools forms another major topic of

Chapter 3. The main thread of the research presented in this thesis

considers the optimisation of event list management schemes for cell rate

simulation, whether the simulators run on a parallel or a sequential

computing platform. It is therefore of direct relevance to improving the

performance of the simulation kernel of high level simulation tools (such

as OPNET [OPN96]) when cell rate modelling is employed. Such

simulation tools are becoming increasing popular, for they enable the

simulator user to concentrate on the modelling of the network rather than

on the details of the implementation of the simulator. Indeed, when ‘hand-

crafted’ simulators are built much of the development effort is expended in

the simulation kernel rather than the modelling. However, general

purpose simulation tools tend to produce code that is less efficient than

that of hand-crafted simulators. This is because hand-crafted simulators

are often optimised for a specific simulation problem. General purpose

tools, on the other hand, are designed to simulate a wide range of

problems and hence are not designed to take advantage of the potential for

optimisation inherent in any particular simulation problem. Optimising

the performance of a simulation tool’s kernel will contribute towards

reducing the potential performance deficit by reducing the proportion of

computational load attributable to the event list algorithm. Therefore, the

efficiency of the models themselves will have a greater impact on the

performance of the simulator. The results of the work presented in

Chapter 7 raise a number of important issues relating to the management

of events in general purpose simulation tools. These are discussed below.

Following the review of simulation languages and tools, Chapter 3

outlined cell level simulation of ATM networks. This is the traditional

form of simulation. In cell level simulation, the propagation of each

individual cell through the network is modelled. In a discrete event

 159

simulator each cell is represented by an event, and in order to obtain

statistically significant results when measuring rare events, such as cell

losses from a queue, many billions of cell arrivals at that queue must be

simulated. Therefore, cell level simulation results in a very high event

processing load giving rise to very long simulation times (often in the

region of many hundreds of hours for the measurement of low cell loss

ratios at a queue). Such lengthy run times are unacceptable for many

applications. This is particularly true for applications that require the

simulator to interact with a network management system such as a TMN.

In such scenarios, the simulator and the TMN must share a common

perception of time. In the ICM project, this problem was solved in the

following manner [Bocci95.2]. A Q-Adapter Function (QAF) was used to

interface the simulator to the TMN. The current simulation time was

provided to the QAF by the simulator, and this was then broadcast by the

QAF to the TMN system. TMN applications were therefore able to adjust

their perception of time to the simulator clock.

Whilst the ICM approach enabled TMN applications to successfully

synchronise themselves with the simulator, it did require some

customisation of the TMN platform software, OSIMIS [ICM95]. In other

systems this may not be possible, and hence it is necessary for the

simulation time to advance in approximately real time.

Techniques that reduce the run time of simulations are known as

accelerated simulation techniques. Chapter 4 considered two of these:

• cell rate modelling

• parallel simulation

Cell rate modelling relates to the way in which ATM traffic flows are

represented within the simulator. It relies on the reduction of the event

processing load by using each event to represent a change in the rate of

flow of ATM cells, rather than an individual cell. Because the discrete

 160

nature of the cells is not modelled, the simultaneous arrival of cells at a

queue is neglected. Therefore cell scale queueing cannot be modelled.

However, it is possible to model bust scale queueing due to the input cell

rate of a queue exceeding the rate at which the cells are served. The

inability to model cell scale queueing results in slightly lower statistics for

cell loss ratio when compared with a cell level simulation of the same

network. However, in many cases such slight reductions in accuracy do

not present a problem. For example, in the case of the ICM simulator the

requirement on the accuracy of the statistics generated was ±10%

[ICM93]. The validation of cell rate modelling presented in [Pitts93]

demonstrates that a considerably better accuracy is possible while

achieving significant speedup in comparison with cell level modelling.

Parallel simulation is an implementation technique that attempts to

provide speedup by exploiting the inherent parallelism in a network

simulation. Section 4.3 reviewed a number of basic criteria that must be

satisfied in order for this to be effective. These include:

• communication between processors must be minimised

• processing must concentrate on local tasks

• workload must be evenly balanced across the network of processors

Many different decomposition and synchronisation schemes are described

in the literature that all attempt to exploit the inherent parallelism in the

network model. Whilst parallel simulation has shown some promise in

terms of offering speedup over sequential simulators, many schemes have

been implemented with only limited success because there is often a

conflict between the above criteria. Where these problems are overcome,

significant speedup can be achieved. In particular, the speedup is

dependent on achieving an appropriate mapping between the distribution

of processor load, the pattern of processor intercommunication, and the

capabilities of the underlying computer hardware. In terms of ATM

 161

simulation, this means that there must be a close match between the

characteristics of the network simulation model and the computer that the

simulator is to run on.

This section has discussed the existing state of the art in the accelerated

simulation of ATM networks. However, the purpose of the research

presented in this thesis has been to take existing accelerated simulation

techniques and to investigate both the possibility of combining them to

give further speedup, and to study the implications of this work for

sequential cell rate simulation kernel design. This thesis has described

new studies in both of these areas, the results of which are discussed

below.

8.2 Accelerating Cell Rate Simulation

Two methods for accelerating cell rate simulation are considered:

• parallel cell rate simulation

• advanced event list structures that are optimised for sequential cell

rate simulation

8.2.1 Parallel Cell Rate Simulation

Parallel processing techniques are intuitively attractive for the simulation

of telecommunications networks. This is because there are many

concurrent activities that occur in spatially distinct regions of a network.

However, it is important to note than in simulation it is not the actual

network itself that is simulated, but rather a somewhat abstract model of

its behaviour. This statement is derived from the process by which a

simulation is developed and from the definition of simulation. When a

simulation of a network is developed, the first task is to develop a model of

the architecture and operation of the network. This model can take the

 162

form of a series of architectural diagrams, or it can be a detailed

mathematical model of the network, or it could be a representation of the

network using some formal description language. A good network model

will only represent those aspects of the network that are of specific

interest to the developer in order to minimise unnecessary computational

overhead in the final simulator. Finally the model is implemented, usually

by coding it in software.

An example of the structured approach to simulator development is that

taken by the ARMAN project [ARM96.1]. Here, a simulation is developed

by first gathering a number of requirements as to the exact features of the

network that are to be studied. From this, a network model in the form of

a formal specification is produced. This is the ITU-T Specification and

Description Language (SDL) [Z.100][Belina89]. The SDL specification can

then be implemented using the OPNET simulation tool [OPN96]. Hence it

can be seen that a simulation is an implementation of the network model

and not of the network itself.

The main requirement that must be satisfied for a parallel simulator to

achieve significant speedup over its sequential equivalent is for there to be

some exploitable parallelism in the network model and not in the network

itself. It has been demonstrated that parallel simulation can achieve

speedup when applied to cell level modelling of ATM. However, cell rate

modelling uses a significantly different traffic model. Therefore, the

applicability of parallel simulation to this modelling technique must be

examined before complete cell rate parallel simulators are built. In this

thesis, the timestepping approach was taken as an example time

synchronisation scheme to enable the behaviour of cell rate ATM models

in a parallel environment to be studied.

 163

8.2.1.1 Timestepping

The timestepping approach was chosen because:

• an example simulator using this technique already existed

• this simulator was a product of a major research project in which the

author participated

• timestepping can operate in both a parallel and a sequential computing

environment, and therefore its effect on the speed and accuracy of the

simulator could be studied without the need for complex parallel

computing hardware.

The purpose of the study described in this thesis was to ascertain if:

• there is exploitable parallelism in a cell rate ATM model

• timestepping is able to exploit that parallelism and, if not, modify it so

that it is effective

• the effect of timestepping on the accuracy of the simulator

Timestepping will only be effective if the synchronisation scheme does not

represent a significant overhead on the simulator.

The results presented in Chapters 5 and 6 demonstrate that there is a

relationship between the overhead of the timestepping scheme and the

accuracy of the results obtained. When the timestep size is greater than

one link delay, there is an error introduced into the delivery times of

events that propagate along that link. In cell rate modelling this causes a

quantisation of the length of bursts resulting in significant errors in cell

loss measurements. These errors increase for larger values of timestep

and for increased numbers of traffic sources multiplexed through the

buffer in which the measurements are made. However, it is desirable for

the timestep to be as large as possible because of the nature of event

occurrence in cell rate simulation models. Cell rate modelling accelerates

 164

the rate of simulated time advancement when compared with cell level

modelling because it dramatically reduces the number of events that must

be processed. Therefore, in order to reduce the amount of processor time

wasted processing timesteps in which no events occur (and hence no useful

work is done by the simulator), the timestep must be large enough so that

the time spent processing events significantly outweighs that spent

processing empty timesteps. The results presented in this thesis concur

with this and demonstrate that, for the network models studied:

• for low event densities, processor usage is dominated by processing

‘empty’ timesteps

• timestepping is inefficient unless there are very large numbers of traffic

sources

Pitts [Pitts93] suggests that cell rate modelling may be ideally suited to

parallel simulation because the increased floating point arithmetic

required in queueing models (in comparison with cell level modelling)

means that processing is concentrated on local tasks rather than those

that may require communication between processors. However, this is

highly dependent on the exact model implementation. The complexity of

queueing models used in the study described in this thesis was

deliberately minimised in order to amplify the effect of the efficiency of the

event management and time synchronisation schemes used in the

simulation platform.

The basic problem when attempting to parallelise cell rate modelling is

that there are very few events when compared with cell level modelling,

and that the distribution of those events across the network model is less

even. In cell rate modelling, the number of events required to describe a

connection is not dependent on the cell rate of that connection, but rather

on the nature of the variation in the cell rate during the connection. For

example, constant bit rate connections (such as simple voice services) will

require only two cell rate change events (at connection set-up and at

 165

connection release) to represent the complete connection at the burst level.

However, variable bit rate connections may require many hundreds of cell

rate change events to model their duration. For such a variation in inter-

event times, a purely event driven synchronisation scheme is most

efficient. However, timestepping is a hybrid between an event driven

scheme (the local time at each model advances on an event driven basis

between timesteps), and a time driven scheme (the global time and local

time at a model are advanced according to the start time of the next

timestep when there are no more events to process in the current

timestep,). Timestepping is therefore inefficient when the time driven

characteristics dominate (when there are few events to process).

In conclusion, the study of timestepping presented in this thesis suggests

that timestepping is unable to efficiently exploit any parallelism in the

cell rate model. Indeed, the problems highlighted here are typical of those

encountered when attempting to parallelise other ATM modelling

techniques using synchronous time synchronisation schemes. However,

despite the negative conclusion of the timestepping study, it has

highlighted two points that have important implications for the design of

sequential cell rate simulators:

• the exploitation of a spatially decomposed event list is beneficial

• the proper management of the simultaneous events that are generated

during periods of burst scale queueing is vital for efficient cell rate

simulation

The implications of these for sequential cell rate simulators are discussed

below.

8.2.1.2 Alternative Parallel Cell Rate Simulation Schemes

Timestepping attempts to exploit spatial parallelism in the cell rate

network model. However, other authors have described the application of

a time decomposition scheme to cell rate parallel simulation [Nikolai93].

 166

These studies only describe small network scenarios. However, the ability

of the model to scale to realistically large networks is important.

Furthermore, time decomposition is not appropriate if dynamic interaction

with network management systems is required. Optimistic time

synchronisation schemes could also be used for parallel cell rate

simulation. However, once again the requirement for dynamic interaction

with a management system would limit the application of such schemes.

For example, any measurement errors that occur during periods of

speculative execution must be smaller than the tolerance acceptable to the

management system. Furthermore, is questionable whether a TMN

system could cope with the variation in simulated time across the network

or the changes in local simulated time due to rollback events. These would

be large compared with those experienced in cell level parallel simulators

because the time between events in a cell rate simulation is much greater.

The ability to model overlaid signalling networks and systems would also

be limited because they generally rely on the ability to model each

individual signalling message.

Despite the above mentioned problems, there are some alternative areas

in which parallelism could be exploited in the cell rate model. For

example, a network management system’s perception of a network is often

of the logical network rather than the physical network. i.e. it maintains a

view of the structure of the mesh of VPCs and VCCs and the routeing of

cells along them, rather than the physical hardware of the network.

Therefore, it is appropriate to model the logical network rather than the

physical network. In such a model, VCCs only interact when they pass

through a buffer in which cells are queued. Therefore, during periods of

low utilisation, VCCs can be simulated concurrently. Clearly, however, the

simulation time advancement must be synchronised between the VCCs.

During periods of burst scale queueing, cell rate changes on a single VCC

will cause rate changes on all other VCCs sharing that queue. These will

propagate out from the queue across the network as wave front of cell rate

 167

changes, each one of which is independent of the others. Each cell rate

change forming a part of that wave of cell rate changes is independent and

can therefore be processed concurrently. These ideas are regarded as for

further study and are therefore discussed in the Further Work section of

this thesis.

8.2.2 Optimised Sequential Cell Rate Simulation

Sequential simulators are attractive because the computer hardware is

relatively inexpensive in comparison with parallel hardware.

Furthermore, the performance of a sequential simulator is less dependant

on achieving an optimal mapping between the underlying hardware and

the simulation scheme. Furthermore, experience has shown that

sequential cell rate ATM simulators that employ efficient event

management schemes are capable of simulating very large ATM networks

(tens of thousands of simultaneous connections) at rates that exceed real

time [ARM96.2].

The literature review presented in Chapter 7 reveals a wide range of

advanced event list algorithms in existence in discrete event simulators.

These are aimed at maximising the event list performance by minimising

the time taken to insert an event into the list, or minimising the time

taken to identify and extract the next scheduled event. Many of these

algorithms are based on a binary tree structure . However, whilst detailed

analyses of the performance of these algorithms is presented with respect

to a generic ‘hold model’, none of them appear to have been studied in the

context of cell rate ATM modelling.

The Linksim simulator is reviewed because it contains an event list that is

especially tailored to cell rate modelling. It takes advantage of the

following two optimisations suggested by the timestepping study of

Chapter 5 of this thesis:

• a spatially decomposed event list

 168

• correct handling of simultaneous events

The new work using SPROG demonstrated that, even in isolation, the

spatial decomposition of the event list in a sequential simulator can give

speedup over a simple linear event list (although not to the extent

suggested by the timestepping study because of the overhead of

maintaining the list of places). However, the most significant optimisation

is the correct handling of multiple simultaneous events. These are always

generated by a cell rate queue model during periods of cell queueing, and

therefore it is vital that these are processed as a single group in order to

prevent multiple spurious knock-on events at a subsequent downstream

node where queueing is also occurring. The optimised space-time event list

implemented in SPROG is an improvement over the Linksim scheme

because it enables whole groups of simultaneous events to be delivered to

node models in a single invocation. Furthermore, models that know that

they will generate a set of simultaneous events of their output are able to

submit that whole group to the event list in a single invocation of the

SendEvent function. However, this structure does have the disadvantage

that some of the event list management is now carried out by the models

rather than the simulation services library. This problem can be rectified

by using the property of inheritance that is inherent in the object oriented

structure of SPROG. Functionality can be added to the simulation services

library that includes a function that builds a list of simultaneous events

that is then inserted in the event list in a single call to SendEvent.

In the ARMAN project, outside of the work described in this thesis, the

problem of multiple simultaneous cell rate changes (that are not correctly

handled by OPNET) was solved, by the author, using a concept known as

VPC bursts [ARM96.1]. In this, rather than an event on the output of a

queue representing a cell rate change on a single VCC, an event

represents a cell rate change on a VPC as a whole. Therefore, one event on

a VPC can be used to represent simultaneous cell rate changes on all the

VCCs on that VPC.

 169

In conclusion, it is clear that whilst spatial decomposition of the event list

structure can improve the efficiency of the event list, the most significant

gain is through the correct handling of simultaneous events. Correct

handling of simultaneous events eliminates the generation of spurious cell

rate change events in cascaded cell rate queues. Indeed, the results

suggest that any simulation tool that is unable to deliver multiple

simultaneous events to models as a group is unsuitable for cell rate ATM

network simulation.

8.3 Further Work

The research presented in this thesis has concentrated on event list

performance in a research simulator when running hypothetical network

scenarios. The complexity of the network models was deliberately

minimised in order to exemplify the effect of the efficiency of the event list

algorithm on the overall performance of the simulator. In order to fully

understand the factors affecting cell rate ATM simulator performance, it is

useful to also study the effects of the design of the models themselves. In

particular, the implementation of a full cell rate queue model, such as that

of LINKSIM (rather than the simple ‘zero depth’ model implemented in

SPROG), is required. The simulator execution could then be profiled when

modelling real networking scenarios. Through this, efficiencies could be

made in the design of the models, in addition to those already made to the

event list algorithm.

The study of concurrent cell rate simulation concentrated on a spatial

decomposition of the cell rate ATM network model and showed that this is

unable to exploit sufficient parallelism when a timestepping time

synchronisation scheme is used. It is clear that alternative parallel

schemes must be considered. Further work is proposed that investigates

alternative approaches to parallelising the cell rate model. For example,

the possibility of basing the decomposition paradigm of the current state

 170

of the queues in the network (as discussed in Chapter 8) rather than using

a spatial decomposition. Furthermore, the application of optimistic

schemes (such as Time Warp) should be investigated.

 171

9. Conclusions

Many applications remain for ATM network simulation despite the

introduction of real networks; the reasons for this were explained in detail

earlier in the thesis. There therefore remains a strong demand for high

speed, user friendly, workstation based simulators for both hardware

design and, increasingly, network management studies. Such simulators

are also useful, not only to researchers, but also to network managers for

network planning and administration.

Traditional cell level simulation of ATM networks is computationally

intensive, the result being long times for simulation runs. However, whilst

a number of techniques have been recorded in the literature for reducing

the time of simulation runs, there is still a need for further acceleration of

the simulation speed. In particular, simulators that run in real time are

required for the development and testing of new network management

systems.

The combination of the existing accelerated simulation techniques of cell

rate and parallel simulation is one possible way of improving simulator

speeds. The timestepping approach, presented here as a synchronisation

scheme for parallel cell rate simulation, is inefficient if event densities are

low because CPU time is wasted processing empty timesteps. However,

when the simulator is modelling highly congested networks with very high

traffic loads, the event density in a cell rate simulator is high enough to

minimise the number of wasted timesteps. In such situations,

timestepping is a practical time synchronisation scheme in parallel cell

rate ATM network simulators.

The study of timestepping performance has also enabled a number of

other conclusions to be drawn that can be used to improve the

performance of simulators running on sequential computer platforms. The

 172

first of these conclusions is that spatial decomposition of the event list

structure can reduce the time required to insert an event in the event list.

This is because, provided the location of the event is known, then the local

event lists that represent the places that an event is scheduled for will

always be shorter than a single linear global event list.

Secondly, it is clear that cell rate modelling requires that the simulation

platform is able to deliver simultaneous events to a model as a group so

that they can be processed together. This is important because, whenever

there is a cell rate change on the input to a buffer model in which cells are

queued, multiple simultaneous cell rate change events will be generated

on the output of the buffer. These must be processed together as a group

by any model that receives them on it’s input. Simulators that can not

guarantee this are not suitable for cell rate modelling.

 173

Abbreviations

AAL ATM Adaptation Layer

ABR Available Bit Rate

ABT ATM Block Transfer

ARMAN ATM Resource Management

ATM Asynchronous Transfer Mode

B-ISDN Broadband ISDN

CAC Connection Admission Control

CBR Constant Bit Rate

CCITT Comité Consultatif International Télégraphique et
Téléphonique

CEC Commission for the European Communities

CFS Common Functional Specification

CLR Cell Loss Ratio

CODEC Coder/Decoder

CPU Central Processing Unit

DTI Department for Trade and Industry

EPSRC Engineering and Physical Sciences Research
Council

FIFO First-In-First-Out

ICM Integrated Communications Management

ISDN Integrated Services Digital Network

ITU-T International Telecommunications Union
Telecommunications Standardization Sector
(Formerly CCITT)

MADS Multi-Purpose Aid for Distributed Simulation

 174

NE Network Element

NP Network Performance

NPC Network Parameter Control

NT Network Termination

QoS Quality of Service

RACE Research into Advanced Communications in Europe

TMN Telecommunications Management Network

UPC Usage Parameter Control

VBR Variable Bit Rate

VC Virtual Channel

VCC Virtual Channel Connection

VCI Virtual Channel Identifier

VP Virtual Path

VPC Virtual Path Connection

VPI Virtual Path Identifier

 175

Bibliography

Publications by the Author

[Bocci94] Bocci M, Pitts J M, Scharf E M; “Performance of Time Stepping
Mechanism for Parallel Cell Rate Simulation Of ATM Networks”;
11th IEE UK Teletraffic Symposium; March 1994

[Bocci95.1] Bocci M, Pitts J M, Cuthbert L G; “Exploiting Concurrency Through
Knowledge of Event Propagation in Cell Rate ATM Network
Simulation”; 12th IEE UK Teletraffic Symposium; March 1995

[Bocci95.2] Bocci M, Scharf E M, Georgatsos P, Hansen M, Thomsen J, Swift J;
“ATM Network Simulation Support for TMN Systems”; 3rd
International Conference on Intelligence in Broadband Services
and Networks; Heraklion, Crete, September 1995

[Swift94] Swift J, Bocci M, Chen J R, Pitts J, Scharf E M; “Application of ATM
Network Simulation to TMN Studies”; 11th UK Teletraffic
Symposium; March 1994

ITU-T Recommendations

[I.121] ITU Recommendation I.121; “Broadband Aspects of ISDN-BISDN”;
July 1991

[I.150] ITU Recommendation I.150; “B-ISDN Asynchronous Transfer Mode
Functional Characteristics”; November 1993

[I.350] ITU Recommendation I.350; “General Aspects of Quality of Service
and Network Performance in Digital Networks, Including ISDN”;
November 1993

[I.371] ITU Draft Recommendation I.371; “Traffic Control and Congestion
Control in B-ISDN”;SG13; Geneva, May 1996

[M.3010] CCITT Recommendation M.3010; “Principles for a
Telecommunications Management Network”; December 1991

[Z.100] ITU-T Recommendation Z.100; “CCITT Specification and
Description Language (SDL)”; Rev 1; ITU T; Geneva; June 1994

 176

Other References

[Amd88] Amdahl G M; “Limits of Expectation”; International Journal of
Supercomputer Applications; Vol. 2, No. 1, pp88-97; 1988

[Amm92] Ammar H H , Deng S U; ”Time Warp Simulation Using Time Scale
Decomposition”; ACM Transactions on Modeling and Computer
Simulation; Vol. 2, No. 2; April 1992

[ARM96.1] Project ARMAN; “Specification and Development of Enhancements
to Simulation Tool”; trp0081x; Sept 1996

[ARM96.2] Project ARMAN; “System Performance Evaluation”; trp0131x; Dec
1996

[Belina89] Belina F, Hogrefe D; “The CCITT Specification and Description
Language SDL”; Computer Networks and ISDN Systems 16;
pp311-341; 1989

[CCITT89] “CCITT COM XVII-R 4-E”, Report of the BBTG Meeting, Jan/Feb
1989

[Chand89.1] Chandy K M, Sherman R; “The Conditional Event Approach to
Distributed Simulation”; Proc. SCS Multiconf.. on Distributed
Simulation, pp. 93-99, 1989

[Chand89.2] Chandy K M, Sherman R; “Space-Time and Simulation”; Proc. of
SCS Multiconf. on Distributed Simulation; Vol. 21; March 1989

[Comf79] Comfort J C; “A Taxonomy and Analysis of Event Set Management
Algorithms for Discrete Event Simulation”; Proc. IEEE
Computer Society Annual Simulation Symposium; pp115-146;
14-16 March 1979

[Comf82] Comfort J C; “The Design of a Multi-Processor Based Simulation
Computer - I”; in Annual. Simulation. Symposium, pp45-52,
1982

[Comf83] Comfort J C; “The Design of a Multi-Processor Based Simulation
Computer - II”; in Annual. Simulation. Symposium, pp197-209,
1983

[Comf88] Comfort J C, Gopal R R; “Environment Partitioned Distributed
Simulation with Transputers”; Proceedings SCS Multi-conf. on
Distributed Simulation, pp103-108, 1988

[Cuth93] Cuthbert L G, Sapanel J C; “ATM - The Broadband
Telecommunications Solution”; IEE; ISBN 0-85296-815-9; 1993

[Evans86] Evans J B; “Experiments with Trees for the Storage and Retrieval of
Future Events”; Information Processing Letters; Vol 22, pp237-
242; 1986

[Flynn66] Flynn M J; “Very High Speed Computing Systems”; Proceedings of
the IEEE; Vol 54 No 12; December 1966

 177

[Fost95] Foster I; “Designing and Building Parallel Programs”; Addison
Wesley; 1995; ISBN 0-201-57594-9

[Fujim95] Fujimoto R M, Nikolaidis I, Cooper C A; “Parallel Simulation of
Statistical Multiplexers”; Discrete Event Dynamic Systems:
Theory and Applications, 5; pp115-140; July 1995

[Gaf88] Gafni A; “Rollback Mechanisms for Optimistic Distributed
Simulation Systems”; Proc. SCS Multiconf. on Dist. Simulation,
pp. 61-67, 1988

[H100] CEC RACE Common Functional Specification H110; “Network
Management Terminology and Definitions”; Issue C; December
1992

[Henn90] Hennessy J L, Patterson D A; “Computer Architecture - A
Quantitative Approach”; Morgan Kaufmann Publishers Inc;
ISBN 1-55860-069-8; 1990

[Henr83] Henriksen J O; “Event List Management - A Tutorial”; In Proc. Of
1983 IEEE Winter Simulation Conference; Washington DC;
pp543-551; 1983

[Hind92] Hind A; “Parallelisation of a Circuit-Switched Telecommunications
Network Simulator”; 9th IEE UK Teletraffic Symposium; April
1992

[Hind94] Hind H; “Parallel Simulation Techniques for Telecommunication
Network Modelling”; PhD Thesis, University of Durham;
January 1994

[ICM92.1] CEC RACE R2059 ICM Deliverable 2; “Initial TMN Architecture,
Functions and Design Approaches”;
R2059/CRA/ATG/DS/R/003/b1; December 1992

[ICM92.2] CEC RACE R2059 ICM Deliverable 3; “Selection of Networks,
Network Interfaces and Definition of Testbed Laboratory”;
R2059/VTT/TEL/DS/R/004/b1; December 1992

[ICM93] CEC RACE ICM WP5; “ICM Simulator Requirements and
Specifications”; Version 3; 22 February 1993

[ICM95] CEC RACE ICM Deliverable 18; “Detailed ICM TMN Testbed
Component Specifications and Descriptions”;
R2059/CRA/ATG/DS/P/018/b1; December 1995

[Jeff85] Jefferson D; “Virtual Time” in ACM Trans. Programming
Languages and Systems; Vol 7 No. 3, pp. 404-425, July 1985

[Jones86] Jones D W, Henriksen J O, Pegden C D, Sargent R G, O’Keefe R M,
Unger B W; “Implementations of Time - Panel Discussion”;
Proc 1986 Winter Simulation Conference; pp409-416; 1986

[Kings89] Kingston J H; “Analysis of Tree Algorithms for the Simulation
Event List”; Acta Informatica; Vol 22, pp15-33; Springer-
Verlang 1985

 178

[Law91] Law A M, Kelton W D; “Simulation Modelling and Analysis”;
McGraw-Hill International; ISBN 0-07-100803-9; 2nd Edition
1991

[Lin89] Lin Y, Lazowska E D; “Conservative Parallel Simulation for
Systems with no Lookahead Prediction”; Tech. Rep. 89-07-07,
University Of Washington; July 1989

[Lin90] Lin Y, Lazowska E D; “Exploiting Lookahead in Parallel
Simulation”; IEEE Trans. on Parallel and Distributed Systems,
Vol 1 No. 4, pp 457-469; Oct 1990

[Lit94] Little M C, McCue D L; “Construction and Use of a Simulation
Package in C++”; C User’s Journal; Vol12, No 3; March 1994

[Lub88] Lubachevsky B D; “Bounded Lag Distributed Discrete Event
Simulation”; Proceedings of SCS MultiConf. on Dist.
Simulation, pp. 183-191, 1988

[McCor81] McCormack W M, Sargent R G; “Analysis of Future Event Set
Algorithms for Discrete Event Simulation”; Communications of
the ACM; Vol 24, No 12, pp801-812; Dec 1981

[MIME91] MIME, RACE project R1084; “Set of Specifications for MESH
Systems for ATM Networks”; Deliverable 10; July 1991

[Misra86] Misra J; “Distributed Discrete-Event Simulation”; Comp. Surveys;
Vol. 18, No. 1, pp39-65; March 1986

[NEME92] CEC RACE R1005 NEMESYS Deliverable 11; “Conclusions of
Project NEMESYS”; 05/KT/AS/DS/B/028/b1; December 1992

[Niko93] Nikolopoulos S D, MacLeod R; “An Experimental Analysis of Event
Set Algorithms for Discrete Event Simulation”; Microprocessing
and Microprogramming; Vol 36, pp71-81; 1993

[Nicol88] Nicol D M; “High Performance Parallelized Discrete-Event
Simulation of Stochastic Queueing Networks”; Proceedings of
SCS 1988 Winter Simulation Conference; pp306-314

[Nicol90] Nicol D M; “The Cost of Conservative Synchronisation in Parallel
Discrete Event Simulation”; Technical Report, ICASE, Jan 1990

[Nikolai93] Nikolaidis I, Fujimoto, R, Cooper C A; “Parallel Simulation of
High-Speed Network Multiplexers”; Proceedings of 32nd
Conference on Decision and Control (IEEE); Dec 1993

[OPN96] Mil3 Inc; Washington DC; OPNET Online Documentation; Version
2.5B; 1996

[Phillips91] Phillips, C I; Cuthbert, L G; 'Concurrent Discrete Event Driven
Simulation Tools'; IEEE Journal on Selected Areas in
Communications, Vol. 9 No. 3, April 1991.

[Phillips92] Phillips, C I; “Concurrent Discrete Event-Driven Simulation
Techniques for Telecommunications Networks”; PhD Thesis;
May 1992

 179

[Pitts90] Pitts J M, Sun Z; “Burst Level Teletraffic Modelling and Simulation
of Broadband Multi-Service Networks”; 7th UK Teletraffic
Symposium; April 1990

[Pitts91] Pitts, J M; Sun, Z; Scharf, E; 'A Comparison of burst-level and cell-
level approaches to the simulation of ATM networks'; 13th
International Teletraffic Congress: Discussion Circles; 19/26
June 1991

[Pitts92.1] Pitts J M, Schormans J A; “Renewel Theory Validation of Burst
Level Technique for ATM Simulation”; Electronics Letters; 16th
Jan 1992 Vol 28 No 2 pp106-107

[Pitts92.2] Pitts J M, Schormans J A, Scharf E M; “Burst Level Simulation: A
comparison with Cell Level Simulation and Queueing Analysis”;
9th IEE UK Teletraffic Symposium; April 1992

[Pitts93] Pitts J M; “Cell-Rate Simulation Modelling of Asynchronous
Transfer Mode Telecommunications Networks”; PhD Thesis;
July 1993

[Pryk91] de Prycker M; “Asynchronous Transfer Mode: Solution for
Broadband ISDN”; Ellis Horwood; ISBN 0-13-053513-3; 1991

[Ram97] Ramalho M F; “Application of an Automatically Designed Fuzzy
Logic Decision Support System to CAC in ATM Networks”;
PhD Thesis; University of London; January 1997

[Raw92] Rawling M, Francis R, Abramson D; “Potential Performance of
Parallel Conservative Simulation of VLSI Circuits and Systems”;
Proc. Of 25th Annual Simulation Symposium, Orlando, Florida;
April 1992

[Rhei91] Rheiher P, Bellenot S, Jefferson D; “Temporal Decomposition of
Simulations Under the Time Warp Operating Systems”;
Proceedings of SCS Multiconference on Parallel and Distributed
Simulation; Vol. 23; Jan 1991

[Rich89] Richter R, Walrand J C; “Distributed Simulation of Discrete Event
Systems”; Proceedings of the IEEE, Vol 77, No 1, January 1989

[Schor94] Schormanns J, Phillips C, Pitts J, Scharf E, Manthorpe S, Smith R;
“MICROSIM II Users Guide and Technical Reference Manual”;
Queen Mary & Westfield College; Version 2.08; May 1994

[SNH96] Swiss National Host; “Swiss National Host Description”; v2.0, July
1995

[Wich82] Wichmann B A, Hill I D; “An Efficient and Portable Pseudo-
Random Number Generator”; Applied Statistics, Algorithm AS
183; pp188-190; 1982

[Wiener88] Wiener R S, Pinson L J; “An Introduction to Object-Oriented
Programming and C++”; Addison-Wesley Publishing Company
Inc.; ISBN 0-201-15413-7; 1988

	I
	Introduction
	Outline of the Thesis
	Summary of Contribution

	A
	Asynchronous Transfer Mode
	ATM Protocol Reference Model
	Statistical and Deterministic Multiplexing
	Quality of Service in ATM
	Traffic Control and the Role of Network Management
	Summary

	S
	Simulation
	Motivation for Simulation in ATM
	Simulation Principles
	Time Advancement and the Event List
	Event Generation and Random Number Generators
	Transient and Steady States

	Simulation Languages and Tools
	Cell Level Simulation of ATM Networks
	Principles
	MICROSIM: An Example Cell Level ATM Network Simulator

	Summary

	A
	Accelerated Simulation Techniques
	Performance Measures for Simulators
	Cell Rate Simulation
	Overview
	Modelling the Traffic
	Operation of the Queue
	Analysis of Queue Behaviour
	Notation
	The Empty Queue
	The Non-Empty Queue
	Measurements of Cell Loss and Delay

	Example Cell Rate Simulators
	Linksim
	Macrosim
	RACE Simulators

	Performance of Cell Rate Simulation

	Parallel Simulation
	Overview
	Decomposition
	Parallelising Compilers
	Distributed Experiments
	Spatial Decomposition (Distributed Model Components)
	Functional Decomposition Methods
	Distributed Language Functions.
	Distributed Events

	Time Decomposition

	Consistency in Concurrent Simulation Schemes
	Lookahead
	Conservative and Optimistic Synchronisation
	Synchronous and Asynchronous Synchronisation
	Practical Parallel Simulators
	Parallel Computer Architectures

	Summary

	T
	Timestepping - A Synchronous Parallel Synchronisation Scheme
	Outline of Timestepping Simulator
	Grouping of Simultaneous Events

	Performance Implications of Timestepping
	Experimental Study of Timestepping Performance
	Relationship Between Timestep and Simulation Speed
	Relationship Between Timestep and Traffic Characteristics
	Relationship Between Timestep and Link Delay
	Effect of Burst Length Quantisation on Cell Loss Measurements
	Optimising Timestepping - a Two-Level Timestep Switching Scheme
	Performance With Timestep Switching

	Summary

	S
	SPROG Object Oriented Simulator
	Motivation for the Development of SPROG
	Object Oriented Software Design
	Overview
	Encapsulation
	Inheritance and Polymorphism
	Application of Object-Oriented Techniques to Network Simulation

	Architecture of SPROG
	Object Class Definitions
	Simulation Services Library
	Class Place and Class Link
	Class Event
	Class Configuration

	User Defined Sub-Classes of SPROG
	Class MyPlace
	Class Source
	Class Switch
	Class RouteingEntry
	Class MyEvent
	Class Burst
	Class UMOnly
	Class MyNework

	Event List Management

	Application of SPROG to the Comparison of Synchronisation Schemes
	Experimental Comparison of Timestepping and Linear Event List
	Comparative Performance of Timestepping with no Queueing
	Comparative Performance of Timestepping with Queueing
	Low Utilisation
	High Utilisation

	Summary

	E
	Efficient Event List Management for Cell Rate Simulation
	Review of Event List Management Schemes
	General Simulation Algorithms
	Optimised Event Lists for Cell Rate Simulation

	A Spatially Decomposed Event List Scheme
	Performance of Spatially Decomposed Event List

	Space-Time Event List Management for Cell Rate Simulation
	Performance of Space-Time Event List for Cell Rate Simulation

	Verification of Optimised Space-Time Using a Realistic Networking Scenario
	Summary

	D
	Discussion
	Simulation of ATM Networks
	Accelerating Cell Rate Simulation
	Parallel Cell Rate Simulation
	Timestepping
	Alternative Parallel Cell Rate Simulation Schemes

	Optimised Sequential Cell Rate Simulation

	Further Work

	C
	Conclusions
	A

