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Abstract 

This thesis presents a new approach to the accelerated simulation of 

Asynchronous Transfer Mode (ATM) telecommunications networks. The 

union of a parallel computing architecture with cell rate traffic modelling 

is investigated. The results of this work are also applied to improving 

sequential cell rate simulators. 

In order to obtain statistically significant network performance results, 

the flow of very large numbers of cells through the network must be 

modelled. This results in long simulation times. A number of techniques 

have been studied elsewhere for accelerating the simulation. Concurrent 

(parallel) simulation exploits the inherent parallelism in a 

telecommunications network. Cell rate modelling accelerates the 

simulation by reducing the total number of events that have to be 

processed. The use of cell rate modelling in parallel simulation could 

result in enhanced speedup over traditional cell level ATM simulators. 

Cell rate simulation imposes a new set of requirements on simulation 

platforms. It is the effect of these in both parallel and sequential 

computing environments that forms the focus of this research. 

In this thesis, a study of the efficiency and accuracy of the Timestepping 

approach for parallel cell rate ATM simulation is presented. Experiments, 

based on an ATM simulator developed by the author, demonstrate that 

Timestepping is only effective if the network is heavily loaded. However, 

the distributed nature of the event list in the Timestepping scheme can be 

incorporated into sequential cell rate simulators with significant speed 

advantages. An experimental study of such an event list scheme 

demonstrates that maximum speedup is achieved when the event list is 

spatially decomposed and also when multiple simultaneous event 

generation during burst scale queueing is correctly handled. Therefore, in 
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order to efficiently support cell rate modelling an event list algorithm 

should cope with the spatially distributed nature of events and multiple 

simultaneous events. 
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1. Introduction 

Asynchronous Transfer Mode (ATM) has been identified as the target 

transfer mode for future Broadband Integrated Services Digital Networks 

(B-ISDN). Traditionally, simulation techniques have been applied to the 

specification and design of ATM equipment, and to enable experience of 

ATM technology to be gained before the introduction of real ATM 

networks. More recently, the use of simulators in the development of 

network management systems has emerged. 

Despite the fact that real networks are now in existence and experience of 

ATM is now more widespread, the justification for simulation is expected 

to remain because these networks are often unsuitable for 

experimentation. Furthermore, off-line modelling of these networks will be 

important even for network management systems that are connected to 

real networks in order to assess the impact of management decisions 

before they are made. 

Conventional simulation of ATM involves the use of discrete event 

simulators that model the flow of each individual cell through the network 

(cell level simulation). However, whilst this approach can give very 

accurate results, statistical considerations mean that very large numbers 

of cells have to be simulated in order to guarantee the accuracy of those 

results. Simulators that simply model the set-up and clear-down of calls or 

connections in the network (call level simulation) can simulate at much 

faster rates than cell level simulators, but because none of the traffic is 

modelled during the duration of the call it is not possible to accurately 

measure many significant cell scale statistics (such as cell loss ratio). 

Faster simulators that can generate cell scale statistics are required, both 

to bring down simulation run times and to increase the scope for coupling 

simulators to telecommunications management networks (TMN) who's 
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perception of time may be closer to real time than the simulator’s internal 

simulation time. 

Accelerated simulation techniques aim to improve the speed of simulation 

and can be classified into three broad areas:  

• implementation techniques 

• statistical techniques 

• modelling techniques. 

This thesis considers the cell rate modelling technique, and in particular, 

the acceleration of simulators through the exploitation of concurrently 

occurring events. In particular, two possible paths for accelerating cell 

rate simulators are investigated: the implementation technique of parallel 

simulation, and the optimisation of event list management schemes to 

efficiently cope with the requirements of cell rate modelling. 

Whilst cell rate modelling and parallel simulation can give significant 

speedup, they still run at much less than real time i.e. for a given real 

time duration as perceived by the user of the simulator, the simulator’s 

internal clock will advance by a much smaller amount. A number of 

research projects (such as CEC RACE ICM) have attempted to obtain 

further speedup by combining both of these approaches in a single 

simulator. The main contribution of the work relating to parallel 

simulation described in this thesis is in identifying and solving some of 

the problems in attempting to simulate ATM networks using cell rate 

modelling on a parallel computing architecture. A novel  synchronous time 

synchronisation scheme for parallel simulation, known as timestepping, is 

described and the results of experiments based on cell rate simulators 

using this technique are presented. These results demonstrate many of 

the problems in identifying parallelism in the cell rate model. Following 

this, the implementation of timestepping in a new cell rate simulator 

developed by the author is described. This simulator is used to compare 
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the speed performance of timestepping with the simple linear event list 

scheme. Through this work, a number of important characteristics of cell 

rate modelling are identified that have significant new implications for 

simulator performance. 

1.1 Outline of the Thesis 

The previous section has outlined the rationale behind the work described 

in this thesis.  

Chapter 2 of this thesis introduces the essentials of ATM before the 

motivation for and techniques involved in the simulation of this 

technology are detailed in Chapter 3. The traditional method of cell level 

simulation is also outlined here. 

Chapter 4 describes in detail the need for accelerated simulation 

techniques. It outlines the principles behind cell rate and parallel 

simulation and the results of previous studies into these two techniques 

are reviewed. Parallel computer architectures are also reviewed here 

because the precise details of this can have a significant bearing on the 

parallel simulation technique that is chosen. 

Chapter 5 details a study by the author into an existing timestepping 

simulator that attempts to combine cell rate modelling and parallel 

techniques. This study indicates that the simple synchronous time 

synchronisation scheme used is not effective in exploiting parallelism in 

the cell rate model unless the scale of the simulation is large, even when 

modified to attempt to account for the sparse nature of events in a cell rate 

simulation. The existing simulator is found to be insufficiently flexible for 

a wider ranging study of the efficiency of timestepping, in particular for 

assessing the schemes performance in larger scale network simulations 

and in comparison with other time synchronisation schemes. 
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Chapter 6 describes in detail the design of an new object oriented ATM 

network simulator (SPROG) that was developed by the author in order to 

overcome some of shortcomings of the existing timestepping simulator. 

The rationale behind the development of SPROG is outlined, together with 

a description of how the properties of object oriented programming 

languages can be applied to great advantage in network simulation. 

SPROG is used to compare the performance of timestepping with another 

basic time synchronisation and event list management scheme when 

modelling a range of network scales and traffic loads when used in a 

sequential simulator. Hence a sequential simulator is applied in a novel 

manner in order to assess the potential performance of timestepping in a 

parallel computing environment. The results of Chapter 6 suggest that 

timestepping is only likely to be an effective time synchronisation scheme 

for parallel cell rate simulators for large, heavily loaded network 

simulations. 

Chapter 7 considers the optimisation of event list management schemes in 

sequential simulators such that they can efficiently support cell rate 

modelling. The application of the spatial distribution of events, and their 

concurrent occurrence, is exploited in the development of novel event list 

management algorithms that are optimised for cell rate modelling. 

Experiments that assess the performance of these algorithms are 

described. 

Chapter 8 discusses the implications of the work described in this thesis 

on the development of both parallel and sequential cell rate ATM network 

simulators. This chapter concludes with some proposals for further work 

that follows up the research described in this thesis. 

Finally, the conclusions of the research work are presented in Chapter 9. 
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1.2 Summary of Contribution 

The research described in this thesis contributes to two main areas of 

accelerated simulation of ATM networks: 

• parallel simulation of a cell rate model 

• optimisation of simulators to maximise their performance when 

supporting a cell rate model. 

Throughout this thesis, a number of references are made to major 

research projects in the field of ATM and telecommunications network 

resource management of which the author was a member. These projects 

were: 

• CEC R1022 Technology for ATD 

• CEC R2059 Integrated Communications Management (ICM) 

• EPSRC/DTI Project ATM Resource Management (ARMAN). 

These projects provided the inspiration for, some of the background 

material pertaining to, and a realistic context for the research described 

herein. However, this research was conducted entirely by the author as a 

separate exercise and makes a number of contributions that are beyond 

the scope of these projects. In particular, the new areas that the research 

focuses on are: 

• the identification of potential parallelism in cell rate ATM models and 

solving some of the problems of parallelising a cell rate model 

• the investigation of timestepping as a time synchronisation scheme for 

parallel cell rate ATM simulators 

• the development of an object oriented cell rate ATM simulator for the 

purpose of studying event list management algorithm performance 

• the optimisation of event list management algorithms for sequential 

cell rate ATM network simulators. 
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2. Asynchronous Transfer Mode 

The International Telecommunications Union (ITU-T) has identified 

Asynchronous Transfer Mode (ATM) as the target transfer mode solution 

for the Broadband Integrated Services Digital Network (B-ISDN) [I.150]. 

ATM is potentially able to carry all of the anticipated broadband services, 

while maintaining efficient use of the available network resources. Since 

ATM has already been described in detail in the literature, for example 

[I.150][Pryk91] and [Cuth93], only a brief outline of the main principles is 

given here. 

In ATM, user (or source) information is transmitted in fixed size packets, 

or cells. These are 53 octets long, of which 48 octets is the actual user 

information (the payload) and 5 octets the cell header, which contains 

network information such as routeing. ATM is basically a connection 

oriented transfer mode in which cells associated with a number of 

connections are multiplexed onto a single link using asynchronous time 

division (ATD) multiplexing techniques. These connections are logical and 

each cell header includes a Virtual Channel Identifier (VCI) and a Virtual 

Path Identifier (VPI) that associate it with a unique Virtual Channel 

Connection (VCC). This simple labelling scheme allows network 

complexity to be kept to a minimum and hence allows very fast switching 

and routeing of cells. 

ATM is capable of carrying information generated by both Constant Bit 

Rate (CBR) sources, such as simple voice traffic, and Variable Bit Rate 

(VBR) sources such as video coder/decoders (CODECS). Services for which 

a guaranteed  quality of service (QoS) is required, such as video, can be 

carried, as well as those for which the QoS requirements are less 

stringent, for example Internet Protocol (IP) data. 
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Four transfer capabilities are defined [I.371]: 

• Deterministic Bit Rate (DBR) 

• Statistical Bit Rate (SBR) 

• Available Bit Rate (ABR) 

• ATM Block Transfer (ABT) 

DBR is used for connections that require a static amount of bandwidth 

that is continuously available during the connection lifetime. SBR, on the 

other hand, is used for connections for which any characteristic variation 

in the traffic is known at connection set-up time. In ABT, bandwidth is 

allocated in terms of a ATM block, each block being essentially equivalent 

to a DBR connection. ABR is intended to support traffic from sources that 

are able to reduce their information transfer rate to zero if the network 

requires them to do so, but may also increase their information transfer 

rate if there is extra bandwidth available. In this thesis, only those 

characteristics of ATM relevant to DBR and SBR are considered. 

ATM Cells are carried in slots and they are only generated when there is 

information for transfer. When there is no information to transfer, 

unassigned cells are carried in the slots. ATM is also able to guarantee cell 

sequence integrity i.e. cells on a particular VCC will always arrive at their 

destination in the same order that they were sent out from the source. 

Because ATM networks must operate at very high speeds, network 

simplicity is essential. Therefore, ATM includes no provision for error 

recovery, which must instead be performed on an end-to-end basis. 

2.1 ATM Protocol Reference Model 

Figure 1 shows the ATM protocol reference model [I.121]. It consists of a 

user plane, a control plane, and a management plane. The user and 
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control planes are divided into layers and sub-layers, as shown in Table 1. 

The lowest of these, the Physical Layer, is responsible for details such as 

bit synchronisation, framing, and the physical transmission medium itself. 

Above this, the ATM Layer provides cell transfer for all services, while the 

ATM Adaptation Layer (AAL) provides service dependent functions to the 

higher layers. The management plane provides network supervision 

functions. 

management plane plane m
anagem

ent

lay er m
ana gem

ent

physical layer

ATM layer

ATM adaptation layer

higher layers

controlplane userplane

 

Figure 1 The Protocol Reference Model for ATM 
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Layer/Sub-layer Function 
ATM 
Adaptation 
Layer 

 

Convergence sub-layer 

Segmentation and re-assembly sub-
layer 

 

Convergence 

Segmentation and re-assembly 

ATM layer generic flow control 

cell header generation/extraction 

cell VCI/VPI translation 

cell multiplex and de-multiplex 

Physical Layer Transmission convergence sub-
layer 

 

 

 

 

Physical medium sub-layer 

cell rate decoupling 

HEC header generation/verification 

cell delineation 

transmission frame adaptation 

transmission frame generation & 
recovery 

bit timing 

physical medium 

Table 1 ATM Protocol Layer and Sub-layer Functions 

2.2 Statistical and Deterministic Multiplexing 

In ATM, each connection is allocated a certain amount of bandwidth at 

call set-up time. However, because variable bit rate as well as constant bit 

rate sources can be accommodated, a scheme for allocating the required 

bandwidth while guaranteeing a certain quality of service to the user is 

required. 

If deterministic multiplexing is used, then the peak source bit rate is 

allocated to each connection. Whilst this can lead to a very high quality of 

service because cell level congestion is minimised, it is wasteful of the 

available bandwidth for ‘bursty’ VBR sources. This is because, with VBR 

sources, the full allocated bandwidth will not be used all of the time, but 
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any spare bandwidth will not be available to other currently more active 

connections because it has already been allocated. 

In statistical multiplexing, the bandwidth allocated to each connection is 

less than the peak bit rate, but generally greater than the mean bit rate. 

This means that more of the network resources will be utilised at any 

given time and leads to the interesting situation where the sum of the 

peak bandwidths of all the VCs on a link (or VP) can exceed the total 

available bandwidth. Statistical multiplexing is effective provided that 

that the sources are sufficiently ‘bursty’ and that they are uncorrelated i.e. 

the peak bit rates of the different sources do not occur simultaneously. 

2.3 Quality of Service in ATM 

The concept of Quality of Service (QoS) in ATM is very complex and 

relates to the satisfaction gained by a user from the service provided by a 

network. The formal definition given by ITU-T in Recommendation I.350 

[I.350] is: the collective effect of service performances which determine the 

degree of satisfaction of a user of a service. Whilst this definition is useful 

to the user of a network, it is highly subjective and is less meaningful to a 

network provider. Therefore, the ITU-T has also defined a further 

measure known as Network Performance (NP) which is characterised by 

measurable and calculable parameters. The formal definition of NP, also 

given in Recommendation I.350, is: the ability of a network or network 

portion to provide the functions related to communications between users. 

This is characterised by a number of generic parameters that are 

applicable to all digital networks, including access speed, information 

transfer speed, information transfer accuracy and dependency, and 

disengagement speed. These map to specific network performance 

parameters in ATM including connection set-up time, bandwidth, cell loss 

ratio (CLR), cell delay and cell delay variation (CDV), and connection 

clear-down time. 



 24

When a connection is set-up across the ATM network it is done so in 

accordance with a contract that is made between the users and the 

network provider. This contract specifies, amongst other things, the QoS 

that the provider must provide to the user. This will, at least in part, be 

interpreted by the network provider as a set of guaranteed network 

performance parameters.  

Dimensioning and Performance Engineering are two processes that must 

be applied by the network provider in order to be able to guarantee a 

given QoS or NP to a user. Dimensioning is a longer term activity that 

focuses on the organisation and provisioning of sufficient equipment to 

meet the expected demands of users, and requires a knowledge of usage 

patterns and service characteristics [Pitts93]. Performance engineering, 

however, is a more detailed activity that concentrates both on the detailed 

design of the equipment and on the management of the low level (i.e. cell, 

burst and connection level) resources of the network in order to guarantee 

QoS. This requires detailed knowledge of the performance limits of 

equipment, the service characteristics and information about typical 

service mixes. 

2.4 Traffic Control and the Role of Network Management 

The primary aim of traffic control and congestion control parameters and 

procedures is to protect the network in order to achieve network 

performance objectives [I.371] which should be done while optimising the 

use of network resources. This is necessary in order to guarantee the QoS 

that is agreed with users at call set-up time. 

The ITU-T outlines a number of generic functions to meet the above 

objectives. These are: 

• Network Resource Management - this includes provisioning 
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• Connection Admission Control (CAC) - this is defined as the set of 

actions taken by the network at the call set-up phase in order to 

establish if a virtual channel or virtual path connection (VCC or VPC) 

can be accepted. This decision is based on an assessment of the 

currently available bandwidth and the bandwidth required by the new 

connection. 

• Usage and Network Parameter Control (UPC and NPC) - this is the set 

of actions taken by the network in order to monitor and control traffic at 

the user access and the network access respectively. The main purpose 

is to protect network resources from malicious as well as unintentional 

misbehaviour that can affect the QoS of existing connections by 

detecting violations of negotiated parameters and taking appropriate 

actions. 

• Priority Control - the user may generate different priority traffic flows 

that may be dealt with differently by network elements. For example, 

low priority cells could be discarded during periods of congestion in 

order to protect the QoS of other connections. 

• Congestion Control - the set of actions taken by the network in order to 

minimise the intensity, spread and duration of congestion. 

The ITU-T has also identified a number of traffic parameters that enable 

the above procedures to characterise the traffic. These include: 

• Peak cell rate 

• Mean cell rate 

• Burstiness 

• Peak cell rate duration 

• Source type 
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Because of the complex nature of ATM traffic patterns, the precise way in 

which traffic is characterised can be extremely important. For example, in 

the case of CAC, the number of connections that can be accepted onto a 

link and their quality of service is highly dependent on which of the above 

parameters is used. Generally, a number of parameters will be used and 

an effective bandwidth for a connection, or set of connections, derived from 

these. 

Most traffic control functions operate within the control plane of the ATM 

protocol model. Network management, however, also operates within the 

management plane and is responsible for a full range of higher-level, 

longer-term planning and resource management functions. Network 

management is implemented using a telecommunications management 

network [TMN], defined in RACE CFS H100 [H100] as a system which 

supports the management requirements of administrations to plan, 

provision, install, maintain, operate and administer telecommunications 

networks and services. Whilst simple network management systems are 

already used in telecommunications networks, the sheer flexibility, range 

of services, and consequent complexity of the traffic patterns on a large 

ATM network mean that powerful TMNs will be required to successfully 

manage the network. TMN functionality is classified in [ICM92.1] into 9 

user specific areas (Design, Planning, Installation, Provisioning, 

Accounting, Customer Query & Control, Maintenance & Fault 

Management, Performance Management, and Security) and 5 user generic 

areas (Configuration Management, Test Management, Event 

Management, Log Control, and Monitoring). Whilst many of these operate 

at a very high level, many interact with the control plane traffic control 

functions of the ATM network. For example, performance management 

will be able to modify CAC parameters based on it’s perception of the 

current traffic load on the network in order to maintain the QoS of current 

users, while areas such as planning will impact upon dimensioning of the 

network. 
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2.5 Summary 

This chapter has introduced the basic principles of ATM. ATM has been 

identified as the target transfer mode for use in the B-ISDN. In ATM, 

information is encapsulated in fixed length cells and these cells are 

transmitted in slots. ATM is capable of carrying traffic generated by both 

CBR and VBR sources while making efficient use of the available network 

resources. This is possible through the use of statistical multiplexing 

techniques. When connections are set-up across the ATM network, they 

are done so in accordance with a contract between the user and the 

network provider. This guarantees a certain quality of service to the user. 

In return, the user must comply with restrictions on the offered traffic. 

Resource management algorithms, such as CAC, ensure that sufficient 

network resources are allocated to new connections to guarantee the 

contractually agreed QoS while not compromising the QoS of existing 

connections. Policing functions such as UPC protect the network against 

misbehaving traffic sources. Management functions are provided by a 

Telecommunications Management Network. This is a large distributed 

computing system that provides services ranging from performance 

management to longer term services that aid activities such as network 

planning. 
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3. Simulation 

A simulation is a representation of certain features of the behaviour of a 

physical system or abstract model of a real system [ICM92.2]. This is to be 

distinguished from an emulation which is an implementation of a system 

that exactly duplicates some of the behaviour of the real system. 

Simulators are systems comprising either software or a combination of 

software and hardware, and are developed to apply the simulation 

process. In general, simulation tools are flexible and can be used for many 

modelling applications including: 

• Making experimental measurements or predicting the behaviour of the 

simulated system. 

• Aiding in system synthesis and analysis for a system that is under 

construction. 

• Testing the system definition. 

The process of developing a simulator consists of a number of steps, 

central to which is an understanding of the original problem. These steps 

are: 

• Problem formulation 

• Modelling 

• Model implementation 

• Verification and validation 

• Data collection and analysis 
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3.1 Motivation for Simulation in ATM 

The simulation of ATM networks and network elements has had, and 

continues to have, many applications ranging from the initial research 

and development of ATM technology to the testing and validation of 

network management systems. Traditionally the main application of 

simulation has been in ATM research and the design of equipment. For 

example, simulation was used extensively in the initial design of the CEC 

ACTS EXPERT Test-bed (ETB) [SNH96] ATM demonstrator. More 

recently, simulation has found application in the development of 

telecommunications management systems such as those of CEC RACE 

projects NEMESYS [NEME93] and ICM [ICM92.2][Swift94]. In 

particular, simulation, as opposed to the use of real networks, has 

continued to be applied to solving ATM and network management 

problems for the following reasons: 

• The unavailability of commercial scale networks for experimentation 

and the testing of new equipment, code and algorithms. 

• Difficulty and cost of instrumenting real networks i.e. to do realistic 

experiments on real networks large numbers of ATM traffic generators 

and analysers, for example, will be required. 

• Lack of configuration control: Many existing ATM networks simply do 

not allow access to the traffic and configuration parameters that 

experimenters require. 

• In order to adequately verify network management procedures, they 

must be tested in wide range of situations and network topologies. This 

is not possible on a real network. 

• Evaluating new equipment and management algorithms can be 

achieved much more quickly and at a much lower cost with a simulator. 
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In TMN research applications, simulators have the following advantages 

over real networks [Bocci95.2]: 

• Scaling: Simulators are be able to simulate large high-speed ATM 

networks. Present day ATM demonstrator networks are usually small 

scale and laboratory based. 

• Flexibility: Compared to a real commercial network, simulators can 

offer flexibility in the following respects: 

Functionality: A variety of network functions, technologies and 

traffic types can be supported by simulators. 

Measurement: Simulators provide access to a variety of network 

data and parameters that may be difficult or impossible to obtain in 

the real system. 

Scenarios: Simulators can model a variety of traffic scenarios as 

well as eventualities such as node and link failures and buffer 

overflows. 

• Portability: In general, simulators are a software product that can be 

designed to be ported easily between different computing platforms. 

This means that simulation experiments can performed at many 

different sites with a minimum of specialist equipment. 

The application of simulation in TMN studies imposes some specific 

requirements on the design of the simulator: 

• TMN Interface: Simulators for use in TMN studies should provide a 

standard TMN interface, such as a Q3 adapter [M.3010]. 

• Simulation Speed: Ideally, the simulator and the TMN should have a 

common perception of time. This can be achieved by either ensuring 

that the simulator runs in real time, or by introducing a mechanism in 

the Simulator/TMN interface to pass the simulated time from the 
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simulator up through the layers of the TMN, thus ensuring that the 

TMN always uses the simulator for its time reference. The latter 

approach was used in the ATM simulator developed by ICM [ICM95]. 

However, this approach requires a specially modified TMN platform 

that can accept simulated time as real time. The research described in 

this thesis is aimed at maximising the speed of the simulator so that 

there is less requirement for a specially modified TMN platform. 

Of course, simulation is not the only method for predicting the behaviour 

of ATM networks without recourse to the use of real networks. 

Mathematical analysis can also be used. However, stochastic systems are 

very difficult to analyse mathematically and in order to model all but the 

most simple situations significant simplifications are required. These can 

lead to unacceptable inaccuracies in the results obtained. Furthermore, 

mathematical analysis is particularly unsuitable for network management 

studies where dynamic interaction is required between the TMN and the 

system being modelled.  

Despite the fact that it is envisaged that ATM networks will become 

progressively more available to experimenters in the future, and that 

these networks will provide increased access to the appropriate 

parameters, they will generally be commercial revenue earning networks 

and hence the cost and risk factors associated with experimenting on them 

will remain. Therefore simulation will retain many applications despite 

the widespread availability of real networks. 

3.2 Simulation Principles 

Simulation has two basic forms: discrete and continuous [Phillips92]. In 

discrete simulation, the changes in a system over time are represented as 

a series of instantaneous occurrences of events.  These are reflected by 

changes in the state variables that describe the current system state. 



 32

Discrete simulation enables a more detailed range of data to be collected 

than continuous simulation. For example, consider a queue in a bank. In a 

continuous simulation the movement of customers through the queue 

would be modelled as a flow or rate, so only parameters such as mean 

arrival rate would be applicable. However, in a discrete event simulation, 

the movement of each individual person would be modelled and hence 

‘rare events’ such as the refusal to admit individual customers could be 

studied. 

3.2.1 Time Advancement and the Event List 

Discrete event simulations typically model dynamic processes that occur 

over a particular time duration with events representing state changes 

that occur at specific points in time. A simulation clock is used to keep a 

record of the simulated time, and events are generally time-stamped with 

the simulation time at which that event is scheduled to occur. 

Furthermore, some way of storing all the foreseeable future scheduled 

events is required. This is accomplished by the event list which normally 

takes the form of a time ordered sequence of event records with the next 

scheduled event at the head. The event list can be sited within the logical 

architecture of the simulator according one of two schemes, the centralised 

event list architecture and distributed event list architecture. In a 

centralised event list architecture, one large event list is used to store all 

of the events for the whole simulation, whereas with a distributed event 

list there is a list for each model in the simulation that stores all of the 

locally scheduled events. 

There are two principle schemes for advancing the simulation: time driven 

simulation and event driven simulation [Rich89]. In both of these schemes 

the simulation essentially progresses through a process of the next event 

being taken from the event list, processed, and any resultant events being 

put back in their correct time position in the list. Where they differ is in 

the way that the simulation clock is advanced.  



 33

In time driven simulation fixed-increment time progression is used. Here, 

the simulation clock advances by constant amounts, or ticks. After each 

tick, all of the events that were scheduled to occur during that time 

interval are processed, and the system state updated. This scheme is 

generally used if events are known to occur at fixed regular intervals but 

it can be inefficient if the tick is set incorrectly. If the tick is set to small 

there will be only a low probability that an event will be scheduled for a 

given tick. Therefore, there will be many ticks in which no useful 

processing is done in the simulator. However, if the tick value is set too 

large, then the error resulting from the fact that all events scheduled for 

that tick are processed at the end of the tick will be unacceptably high. 

In event driven simulation a next-event time progression scheme is used. 

This is the most common technique used in ATM simulation because it 

can cope with random event times. In this scheme, after the processing of 

an event, the simulation clock is advanced to the time of the next 

scheduled event in the event list. Therefore, periods of inactivity are 

skipped and processor time is not wasted waiting for future events to 

occur. 

The sequence of operations that occurs in an event driven simulator is as 

follows; During system initialisation, the simulator configuration is 

loaded, simulation parameters and measurements initialised, the 

simulation clock reset, and each of the components of the system polled to 

determine when they expect to generate their first event. Based on this 

the event list is initialised. The simulation then enters a loop in which the 

earliest event in the event list is processed, the system state updated, and 

any resulting events placed back in the event list in correct time order. A 

check is then made to see if some stop criterion has been met which could 

be some end simulation time, or it could be based on the state of some 

other system variable. If this criterion has not been met, then the next 

event in the event list is fetched and processed. Once the stop criterion is 

satisfied, the loop exits and the final results of the simulation collected. 
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Figure 2 illustrates, using the ITU-T Specification and Description 

Language (SDL) [Z.100][Belina89], the sequence of operations that occurs 

in an event driven simulator: 

Get earliest event
from event list

SimulationTime:=
EarliestEventTime

Process event

Place any
resulting events
in event list

Sort event list
in time order

Stop criterion
met?

 Initialise system

FALSE

Collect Results

PROCESS Event_Driven_Simulator

TRUE

 

Figure 2 Sequence of Operations in an Event Driven Simulator 
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3.2.2 Event Generation and Random Number Generators 

Event times can be generated in one of two ways. Measurements from a 

real system can be used to determine the times of the events. However, 

whilst this method can offer authenticity, it has the disadvantage that for 

reasonable length simulations a great deal of data must be stored. 

Furthermore, it implies that real systems already exist to provide such 

data to experimenters. Clearly, this is a problem in relation to ATM 

simulation since the real systems do not necessarily already exist, and 

even if they do access to data from them is often difficult, costly and time 

consuming. 

An alternative method of event generation is to use random number 

generators coupled with models of the sources (e.g. probability 

distributions of cell inter-arrival times). From these, particular event 

times can be calculated. However, it is important to note that random 

number generators are usually pseudo-random and so care must be taken 

to ensure that these times are adequately realistic. A good pseudo random 

number generator should produce a sequence of numbers, evenly 

distributed, which should not exhibit any correlation between each other. 

The sequence should also be reproducible, which aids in debugging and 

can be used to increase the precision of results [Pitts93], and should be as 

long as possible. 

A review of random number generator algorithms is given by Law & 

Kelton [Law91], an in depth discussion of these being beyond the scope of 

this thesis. The Wichmann-Hill algorithm [Wich82] has shown particular 

application in both cell rate and cell level simulation of ATM networks. 

This is a high performance algorithm with a period (sequence length) of 

about 7×1012 and the major advantage that it is highly portable, being 

suitable for both 8 and 16 bit processors. 
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3.2.3 Transient and Steady States 

When a simulation is first started any measurements made will be 

partially dependent on the initial states of the system variables. After 

some period, the simulation will settle down to a steady state at which the 

distribution of measurements (but not necessarily the actual 

measurements themselves) will become stable.  This initial state is known 

as a transient state. In  ATM simulation it is not just applicable to the 

period immediately following the start of a simulation run, but also 

following major occurrences when, for example, new sources start 

generating traffic immediately following the set-up of  calls. The precise 

nature of that being measured using the simulator will determine whether 

the steady or the transient state is of interest. In general, the study of cell 

level phenomena such as cell losses or cell delay will require that the 

simulator has reached the steady state in order to be certain of 

statistically significant results. However, if call level phenomena, such as 

call set-up are of interest then clearly the transient state will be more 

relevant. In either case, it is often difficult to judge the exact point at 

which the transient state ends and the steady state begins. 

3.3 Simulation Languages and Tools 

So far in this thesis simulators have only be described in the most abstract 

terms. In practice a simulator will be implemented as a system consisting 

of the hardware and software necessary to model the real problem. As 

such, the experimenter has a range of options relating to the choice of 

computer hardware, the programming language, and any high level tools 

to aid the design of the simulator.  

Traditionally, ATM simulators have been implemented purely as software 

running on a single or multiprocessor computer. This has the advantage 

that it is often easy to produce a software model of a real system and it is 

relatively easy to reconfigure such software for a variety of different 
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experiments. However, such an approach suffers when the purpose of the 

simulation is to study rare events, such as cell losses. Since software based 

simulators typically run at speeds much less than real time (the 

simulation clock advances at a much slower rate than the real ‘wall clock’ 

time), very long simulation runs are often necessary.  

This thesis focuses on the traditional architecture of computer software 

running on a single or multiprocessor platform. The choice of platform is 

dependent on the requirements on the speed of the simulator, as well as 

other factors such as the availability of an appropriate platform. General 

purpose single processor machines such as the SUN SPARCStation or 

IBM PC have the advantage that they are relatively cheap, widely 

available and have a huge existing library of software development tools. 

Parallel multiprocessor machines have the advantage, on the other hand, 

that if the simulator is carefully designed they can exhibit improved speed 

performance over single processor sequential machines for a given CPU 

clock speed. This issue is considered in depth later in this thesis. 

The choice of the language in which the simulator is written can also have 

a significant impact on both its performance and on the development time. 

The simulators described later in this thesis are all written in general 

purpose programming languages. For example,  MICROSIM and 

LINKSIM are written in PASCAL while the ICM simulator, MADS, is 

written in ANSI C. Such languages have the advantage that they often 

allow hand optimisation of programs, so enabling fast simulators to be 

written. Furthermore, their highly structured nature means that real 

systems can be modelled in software with little difficulty.  

Despite the widespread use of conventional programming languages, 

several specialised languages and tools exist that can be used to generate 

the simulation model. One example is the SIMULA language in which real 

systems are modelled as a number of interacting processes. Whilst this 

helps in the modelling process, such language compilers can generate 
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relatively inefficient executable code that can be substantially slower than 

an equivalent simulator written in a conventional language. Object 

oriented languages, such as C++, have also been used to write simulators. 

These have the advantage that object modelling techniques can be applied 

to produce intuitive models of real systems. Issues relating to the object 

oriented design of simulators are considered in more depth in Chapter 6 of 

this thesis. 

Recently, a number of specialised commercial simulation tools have 

emerged that allow the user to define the network using a graphical 

interface. For example, the OPNET1 [OPN96] development environment 

allows the user to define the network in terms of nodes, process models 

and state diagrams. This description is then used to generate the 

appropriate C code which is finally compiled to produce a self contained 

simulator. Other examples of such commercial packages include 

MODSIM, COMNET and BONES. Whilst such approaches can give rise to 

considerable savings in the development time for a simulator, as in the 

case of specialised simulation languages the code generated is often 

inefficient and hence run times can be relatively long when compared with 

hand-crafted simulators written in a conventional programming language. 

Furthermore, whilst these packages are usually supplied with 

comprehensive libraries of models of more established network 

technologies, such as Ethernet, the provision of ATM models is currently 

very limited. Therefore, the simulator developer must often resort to 

writing much of their own code in order to satisfy their own requirements 

for simulating ATM networks. This can reduce the development time 

advantage of such commercial packages. This thesis is concerned with 

methods for reducing the run time of ATM network simulators and not 

development time. Whilst an in-depth review of such commercial packages 

is considered to be beyond the scope of the thesis, because of the 

increasing popularity of such packages it is valuable to briefly describe the 

                                                           
1 OPNET is a trademark of MIL3 inc. 
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features of one of the more comprehensive systems that is currently being 

used in a number of projects, for example DTI/EPSRC project ATM 

Resource Management (ARMAN), for modelling ATM networks. 

OPNET stands for Optimised Network Engineering Tools. It is a 

workstation based application for the modelling and simulation of 

communication systems. OPNET allows the user to specify the system in 

terms of incrementally decreasing levels of abstraction from the sub-net 

level down to the individual process level. This is done using a graphical 

user interface (GUI). These specifications are then compiled to produce a 

simulator executable that can be run, either under the direct control of the 

OPNET GUI or independently. Debugging and measurement functions 

can be embedded within the simulator executable. 

An overview of the simulator development process using OPNET is given 

in Figure 3. The user specifies the network to be modelled using a top-

down approach in terms of three principle layers: In the Network Editor, 

the Network Layer of the model is specified as a number of nodes 

connected by links. Each node is specified using the Node Editor and 

consists of interconnected process and queue modules. The behaviour of 

process modules is defined using one or more state transition diagrams 

that also encapsulate user-defined Proto-C code [OPN96]. Note that at 

each of these levels the user can either define their own models or can 

make use of pre-defined models from the OPNET library. In version 2.5B 

of OPNET, the ATM models in the OPNET library are extremely limited. 

The user can also specify the format of intra-model and inter-model 

messages (packets or interrupts) using the Parameter Editor and also the 

measurement statistics that are recorded in output scalar or output vector 

files for later analysis. 

Once the network model has been fully defined it is compiled and linked 

with the OPNET simulation kernel to produce a simulation executable. 

This executable can be either run as a stand alone simulation or run 
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under the control of OPNET. Output vector and output scalar files 

generated during the simulation run can be analysed using the Analysis 

Editor. 

Network Editor

Node Editor

Process Editor

Model Specification

 OPNET
Simulation
  Kernel
Functions

Message  &
Measurement Spec.

Probe Editor

Parameter Editor

Simulator Executable

Data Analysis Tool

 

Figure 3 Simulation Development Process with OPNET 
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3.4 Cell Level Simulation of ATM Networks 

Cell level simulation is the classical method for simulating ATM networks 

and network elements. It is an extremely accurate method since the 

propagation of every individual cell through the network is modelled. 

However, cell level simulation can be very slow because of the shear 

volume of cells that must be simulated in order to obtain statistically 

significant results. 

3.4.1 Principles 

ATM networks are generally modelled as an interconnection of a variety of 

elements, including links, queues or First-In-First-Out (FIFO) buffers, 

delay elements, servers and traffic generators. Queues can be used to 

represent buffers, for example in switches, while servers represent the cell 

multiplexing and routeing elements of switches. These basic elements are 

augmented by others that model, for example, the parts of the network 

responsible for signalling or traffic control. Figure 4 shows how these basic 

elements can be connected to model a simple shared buffer multiplexer. 

ATM Cell Streams on links Server

Buffer

Queued cells

Cells leave at 
cell service rate

 

Figure 4 Simple Model of ATM Multiplexer 

Each of the cells shown in Figure 4 is represented by an event. Cells enter 

a buffer via links, and leave when they are served by the server. This 

occurs at a constant rate, known as the cell service rate. Note that there 

are two situations in which cells will be queued. The first of these is if the 

total input rate to the buffer exceeds the cell service rate, known as burst 

scale queueing. The second of these occurs when two or more cells arrive 
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at the buffer simultaneously. Clearly only one can be served at a time and 

hence the other cells are queued while this one is served. This known as 

cell scale queueing. Cell level simulation is able to model both of these 

effects and so can model queues to a great level of detail. Figure 5 

illustrates the cell and burst scale components of queueing. From this it 

can be seen that if only the burst component is modelled (as in cell rate 

simulation), then the measured cell loss probability is less. 

Buffer Capacity

Cell loss
probability
(log scale)

Cell component

Burst component

 

Figure 5 Cell and burst scale components of queueing 

Network users are represented by traffic sources which may generate the 

traffic for one or more simultaneous connections associated with some user 

activity. In order to model a given user, the traffic which that user would 

inject into the network must first be characterised in terms of parameters 

such as mean inter-call time, mean cell rate and peak cell rate. Random 

number generators with appropriate probability distributions can then be 
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used in the simulator to generate the event times to model the traffic. A 

detailed description of source modelling is beyond the scope of this thesis. 

3.4.2 MICROSIM: An Example Cell Level ATM Network Simulator 

MICROSIM is a simulator developed at Queen Mary and Westfield 

College [Schor94]. It is written in PASCAL and designed to run on single 

processor sequential computers such as the SUN SPARCStation or IBM 

PC. It is able to simulate ATM and fast packet switch networks and 

provides for a very flexible network configuration. MICROSIM is 

configured using simple text files that enable a variety of model elements 

ranging from delay elements (that can represent link delays) and queues 

to a number of source models to be interconnected to model network 

elements or complete networks. MICROSIM enables a number of 

parameters to be measured and these are saved in a text file. This results 

file includes the following data per network element in the simulation: 

maximum buffer wait, mean buffer wait, cell throughput, cells blocked 

(i.e. cells lost), buffer length at the end of the simulation, cell delay 

distribution, and state probability distribution (i.e. probability 

distribution of buffer states, based upon arriving cells). 

3.5 Summary 

This chapter has reviewed the motivation for, and principles behind the 

simulation of ATM networks. Simulation is required both for the 

development of network hardware and management software, as well has 

for network planning and provisioning. Simulators provide a convenient 

and secure alternative to experimentation for these purposes on real 

networks. The principles of discrete event simulation were introduced, 

followed by a review of simulation languages and existing tools available 

to aid network simulator development. Finally, cell level modelling of 
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ATM networks was briefly described together with an existing example 

cell level simulator, MICROSIM. 
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4. Accelerated Simulation Techniques 

Cell loss ratio and cell delay are important parameters of the network 

performance. The value suggested for the maximum cell loss ratio for 

adequate network performance is 10-8 [CCITT89]. Therefore, in order to 

simulate the loss of one cell at least 100 million cell arrivals at a queue 

must be simulated; for statistically significant results it is necessary to 

simulate at least 2 orders of magnitude more cell arrivals. In cell level 

simulation each cell arrival and departure from a queue is represented by 

an event and so a correspondingly large number of events must be 

processed. This results in very long simulation times, often amounting to 

many hours of ‘real’ time just to simulate a few minutes of ‘simulated’ 

time. 

Accelerated simulation techniques attempt to reduce simulation times, not 

only to enable results to be obtained more quickly, but also to increase the 

potential for dynamic interaction between simulators and experimental 

network management systems [Swift94][Bocci95.2], or even real ATM 

networks. 

Many approaches have been proposed for the accelerated simulation of 

ATM networks, including implementation techniques, modelling 

techniques, and statistical techniques. These are reviewed by Pitts 

[Pitts93]. This thesis concentrates on two approaches: cell rate simulation 

(a modelling technique that increases the simulation speed by decreasing 

the number of events that have to be processed), and parallel simulation 

(an implementation technique that achieves speedup by exploiting the 

inherent parallelism in a network model). 
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4.1 Performance Measures for Simulators 

When assessing the effectiveness of a particular accelerated simulation 

technique it is necessary to define some metric that accurately describes 

the speed of the simulator. The speed of a simulator can be defined as the 

rate of doing some useful processing work; in ATM simulators this is 

commonly measured in terms of a cell processing rate. 

Speedup is a measure of the increase in performance of a computer system 

that is achieved by making some enhancement to it. In simulation, the 

concept of speedup can be used to compare the relative speeds of two 

simulators used to simulate identical networks. Consider two simulators: 

simulator b uses some accelerated simulation technique to increase it’s 

speed over simulator a. The speedup of simulator b over simulator a is 

defined by Amdahl’s law [Amd88] as: 

Speedup
Execution time of simulator a
Execution time of simulator b

=
_ _ _ _
_ _ _ _

 

Alternatively, if the speed of the two simulators is measured in terms of 

their respective cell processing rate: 

Speedup
Cell proc rate of simulator b
Cell proc rate of simulator a

=
_ _ _ _ _
_ _ _ _ _

 

4.2 Cell Rate Simulation 

4.2.1 Overview 

In traditional cell level simulation of ATM each cell arrival at, or 

departure from, a network element is represented by an event. One way of 

increasing the speed of the simulation is to reduce the number of events 

that have to be processed. Cell rate simulation (also known as burst level 
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simulation) does this by modelling changes in the rate of flow of cells, or 

bursts of cells, within the network. This technique has been studied by 

Pitts [Pitts93] and has been implemented in a number of practical ATM 

network simulators, including LINKSIM and MACROSIM [Pitts90] from 

Queen Mary and Westfield College, and the parallel architecture 

simulators from CEC RACE projects MIME [MIME91] and ICM [Swift94]. 

4.2.2 Modelling the Traffic 

The basic unit of traffic within cell rate modelling is a burst of cells. This 

is defined as a cell rate lasting for a particular time period during which 

the inter-cell arrival time does not vary [Pitts90]. An event represents a 

change from one cell rate to another cell rate, as illustrated in Figure 6. 

burst

burst

Time

Cell Rate

Events  

Figure 6 Basic unit of traffic 

Each traffic source is characterised by a group of states, each state 

representing a particular cell rate produced by that source. The source 

changes from one state to another at a time determined by a probability 
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distribution. On each state change an event is generated by the source 

model indicating that the cell rate has changed from the old rate to some 

new rate. The choice of probability distribution and the transition (with 

particular probabilities) from one state to another is such that the source 

produces traffic that models the traffic from a real source. 

4.2.3 Operation of the Queue 

The queue model is one of the basic elements of any simulation of an ATM 

network. In cell rate simulation this is represented using a fluid flow 

model and is illustrated in Figure 7. Two parameters describe the queue: 

the maximum number of cells that it can hold, or buffer capacity, and the 

constant rate at which cells leave the queue, or cell service rate. The state 

of the queue at any given time is determined by the balance between the 

total input rate (i.e. the combined traffic from all of the virtual channels), 

and the service rate.  

If the input rate is equal to the service rate then the queue size will 

remain stationary. If the input rate is less than the service rate then the 

queue will shrink. However, if the total input rate exceeds the service 

rate, then the queue will grow until such time as either it becomes full and 

cells are lost, or the input rate drops to less than or equal to the service 

rate. These relationships are summarised by the following balance 

equation which accounts for all of the cells within the queue: 

input rate service rate queueing rate loss rate_ _ _ _= + +  

Because the queue is served on a first-in-first-out basis (FIFO), changes in 

the cell rate at the input to the queue will take a finite time to propagate 

through to the output of the queue if there are cells queueing. This time 

will depend on the current size of the queue and the cell service rate. 
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Loss
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Figure 7 The Queue Model 

It is important to note that, because the discrete nature of ATM cells is 

not modelled, cell rate modelling can model burst scale queueing but it is 

not able to model the effects of cell scale queueing. Furthermore, it is also 

unable to model the simultaneous arrival of individual cells at the queue. 

4.2.3.1 Analysis of Queue Behaviour 

Consider the queue shown in Figure 7. Nine possible states are defined 

describing its current state [Pitts93] and these are shown in Figure 8. 

 Size of the queue 

 empty mid full 

input > 
service rate 

1 4 7 

input = 
service rate 

2 5 8 

input < 
service rate 

3 6 9 

Figure 8 The Nine Possible States of a Queue 

Whilst these states fully describe the current state of the queue, they are 

not adequate to fully model the queue because the delay in the 

propagation of events through the queue is not represented. In order to 
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produce a more complete model, the state of the queue at the previous 

event must also be considered. 

The following analysis by Pitts & Sun [Pitts90] provides a more complete 

description of the behaviour of the queue. 

4.2.3.1.1 Notation 

Let I(i,e) = input cell rate 
 O(i,e) = output cell rate 
 Q(i,e) = cell queueing rate 
 L(i, e) = cell loss rate 
 C(i,e) = number of cells queued 
 Cmax = buffer capacity 
 Omax = cell service rate 

where i {1,...,n} indicates the ith VC and e {1,...,n} indicates the eth event at 

the queue. 

Let Itot(e) = I i e
i

n

( , )
=
∑

1

 = total input cell rate for all VCs at event e 

 Otot(e) = O i e
i

n

( , )
=
∑

1

 = total output cell rate for all VCs at event e 

 Qtot(e) = Q i e
i

n

( , )
=
∑

1

 = total queueing rate for all VCs at event e 

 Ltot(e) = L i e
i

n

( , )
=
∑

1

 = total cell loss rate for all VCs at event e 

 Ctot(e) = C i e
i

n

( , )
=
∑

1

 = total no. of cells queues for all VCs at event e 

Using this notation, the balance equation for the queue is: 

For each VC: 

I i e O i e Q i e L i e( , ) ( , ) ( , ) ( , )= + +  

and for the queue as a whole: 

I e O e Q e L etot tot tot tot( ) ( ) ( ) ( )= + +  
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4.2.3.1.2 The Empty Queue 

If Itot(e) ≤ Omax and Ctot(e) = 0, then for any events that do not change this 

condition: 

O i e I i e( , ) ( , )=      and    Q i e L i e( , ) ( , )= = 0  

4.2.3.1.3 The Non-Empty Queue 

Consider an event e=j that arrives at the queue when Ctot(j)=0 and which 

causes changes in the input rates of one or more VCs such that Itot(j) 

becomes greater than Omax. Each VC’s output and queueing rates will be 

directly proportional to the input rate. Therefore the output rate and 

queueing rate of the ith VC will be: 

O i j I i j O
I jtot

( , ) ( , ).
( )

max=  

Q i j I i j I j O
I j
tot

tot

( , ) ( , ).( ( ) )
( )

max=
−

 

The next event will either be a state change because the queue has filled 

up, or a change in the input rate of one or more VCs. If this occurs at time 

t(j+1): 

C i j Q i j t j t j( , ) ( , ).( ( ) ( ))+ = + −1 1  

C j Q j t j t jtot tot( ) ( ).( ( ) ( ))+ = + −1 1  

In the general case at time t(e), the equation for the total number of cells 

queued becomes: 

C e Q e t e t e C etot tot tot( ) ( ).( ( ) ( )) ( )= − − − + −1 1 1  

If Qtot(e-1)>0, then the queue becomes full, when Ctot(e) = Cmax. If, however, 

Qtot(e-1)<0, then the queue will become empty when Ctot(e)=0. Therefore 

the time at which the queue becomes full or empty can be determined by 

substituting the appropriate value for Ctot(e) in the above equation. 
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Note that when Itot(e) < Omax and the queue is decreasing in size the 

output rate of the queue, Otot(e), will be equal to the server rate, Omax.  

Events on the input of the queue will not immediately be apparent on the 

output if there are cells queued. Therefore, the queue will give rise to a 

delay in the propagation of events. The delay due to this queue will have a 

maximum of: 

D C
Omax

max

max

=  

For an event e=j+1 and provided that Ctot(j+1)<Cmax, only the queueing 

rate will change at the instant of the event. So, for VCs with changes in 

cell rate the new queueing rate will be: 

Q i j Q i j I i j I i j( , ) ( , ) ( , ) ( , )+ = + + −1 1  

This change in input rate will manifest itself on the output at some later 

time by an event e=k. At this output event, the output rates of all the VCs 

must correspond to the new balance of input rates at e=j+1. Therefore, the 

new output rate for a given VC at e=k due to an input event e=j+1 is: 

O i j k I i j O
I jtot

( , : ) ( , ).
( )

max+ = +
+

1 1
1

 

This result is important, particularly if we are to consider concurrency in 

cell rate simulation, because it indicates that if an event on one input VC 

causes a change in the total input rate of the queue, then output events 

will be generated on all the VCs. One implication of this is that, in a 

congested simulator, events on a single VC can give rise to related events 

on other VCs even though there is no direct logical connection between 

them. Therefore single events can give rise to a whole wave of knock-on 

events which will propagate out across the network, from the original 

source queue along all VCs passing through that queue. 

The time of output event e=k is: 
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t k t j C j
O

tot( ) ( ) ( )
max

= + +
+1 1

 

Now consider the situation where the queue becomes full at event, e=j+1, 

i.e. Ctot(j+1)=Cmax, and there is a change in input rate such that 

Itot(j+1)>Omax. The queuing and loss rates are: 

Q i j k O i j k O i j( , : ) ( , : ) ( , )+ = + − +1 1 1  

L i j I i j O i j k( , ) ( , ) ( , : )+ = + − +1 1 1  

When the queue is full, the cell rate flowing into the queue from a given 

VC is equal to the output rate, O(i, j+1:k). Any excess of I(i,j+1) over O(i, 

j+1:k) is lost. Note that each VC still has a queueing rate even though the 

total queueing rate, Qtot(j+1) is zero. 

At e=k the effects of the input event at e=j+1 become apparent at the 

output of the queue. The output rate changes to O(i, j+1) and the queueing 

rate for the ith VC changes by an amount equal to the change in its output 

rate: 

O i k O i j k( , ) ( , : )= +1  

Q i k Q i k O i k O i j k( , ) ( , ) ( ( , ) ( , : ))= − + − − +1 1 1  

4.2.3.1.4 Measurements of Cell Loss and Delay 

The cell loss ratio (CLR) is defined as the proportion of cells input to a 

queue over a given time interval that are lost: 

CLR
L e t e t e

I e t e t e

tot
e

n

tot
e

n=
− − −

− − −

=

=

∑

∑

( ( ).( ( ) ( )))

( ( ).( ( ) ( )))

1 1

1 1

1

1

 

For a complete VC, this equation can be simplified to find the end-to-end 

cell loss ratio: 
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CLR R i
S i

tot

tot

= −1 ( )
( )

 

Where Stot(i) is the total number of cells entering the ith VC and Rtot(i) is 

the total number received at the destination. 

Now, ( ( ) ( )).( ( ) ( ))I e L e t e t etot tot− − − − −1 1 1  gives the number of cells arriving 

at the queue and being either queued or served, but not lost, between 

times t(e-1) and t(e). The average delay experienced by these cells is 

( ( ) ( ) ) / ( . )maxC e C e Otot tot+ − +1 2 2 . Therefore the average delay experienced by 

all cells in the queue (including waiting time and service time) is: 

∆ave

tot tot tot tot
e

n

tot tot
e

n

C e C e I e L e t e t e

O I e L e t e t e
=

+ − + − − − − −

− − − − −

=

=

∑

∑

( ( ) ( ) ).( ( ) ( )).( ( ) ( ))

. . ( ( ) ( )).( ( ) ( ))max

1 2 1 1 1

2 1 1 1

1

1

 

4.2.4 Example Cell Rate Simulators 

A number of cell rate simulators have been implemented. These include 

the LINKSIM and MACROSIM sequential simulators from Queen Mary & 

Westfield College and the simulators from the CEC RACE projects MIME 

and ICM. 

4.2.4.1 Linksim 

LINKSIM is a simulator that fully implements the cell rate model 

described above [Pitts93]. It is deliberately limited in scope in that it only 

models a single link queue, as opposed to a complete ATM network, 

because it was originally written as a verification and validation tool for 

the cell rate model rather than as a general network simulator. In 

LINKSIM, the matrix of possible queue states shown in Figure 8 is 

extended to include all the possible previous states of the queue. This 

results in a matrix of 81 transitions between states, of which only 39 are 

actually valid. In cell rate simulations, the simultaneous cell rate changes 
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that occur at the output of a non-empty queue must be processed together 

in order to avoid the generation of multiple resultant events with the 

same time-stamp (these are clearly a waste of processor time). LINKSIM 

is designed to efficiently manage such events by using a novel event list 

topology: Two extra dimensions are added to the normal sequential event 

list structure; these list events in terms of the place that they are 

scheduled to occur and the type of the event. 

4.2.4.2 Macrosim 

MACROSIM [Pitts90] is a cell rate ATM network simulator that 

implements a simplification of the above model. It represents ATM 

networks as the interconnection of network elements, which can be either 

links or nodes, and network terminations. Both the burst and call levels 

are modelled by this simulator and each network termination can have 

multiple calls in progress at any one time. 

4.2.4.3 RACE Simulators 

CEC RACE projects MIME and ICM have both produced cell rate 

simulators that use a simplified version of the above model. The MIME 

simulator runs on a network of Transputers [MIME91] while the ICM 

simulator (MADS - Multipurpose Aid for Distributed Simulation) is 

designed to be portable between a sequential and a parallel architecture. 

MADS is presented in Chapter 5 of this thesis as an example of a parallel 

cell rate simulator and is described in detail in [ICM92.2] and [Swift94]. 

4.2.5 Performance of Cell Rate Simulation 

The performance of a simulation scheme can be assessed in terms of two 

main factors: the speed of the simulator and the accuracy of 

measurements taken. One way of assessing the speed of the simulation is 

to measure the rate of cell processing and to compare this with another 

benchmark simulator running the same network topology. The accuracy 
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can be assessed by comparing results (for example those for cell loss ratio) 

with those predicted by analytical methods and also by another simulator 

of a known accuracy. 

Pitts et al have validated cell rate simulation in terms of both accuracy 

and speed. In [Pitts92.1] cell loss measurements in a queue obtained using 

LINKSIM were compared with analytical results using equivalent source 

models. This showed excellent correlation between the two approaches. 

Comparison of the cell rate results from LINKSIM with those obtained 

from the cell level simulator MICROSIM [Pitts91][Pitts92.2] also 

displayed a good correlation although the measured cell loss is slightly 

less with cell rate modelling than with cell level modelling. This is because 

the simultaneous arrival of cells at the queue is not modelled and so the 

probability of achieving buffer overflow is reduced. 

When comparing the speeds of the two simulators, cell rate modelling was 

found to give a significant speedup over cell level modelling. In the 

experiments described in [Pitts91] the speedup varied between 1.1 and 

13.3, depending on the burst length of the source. An increase in speedup 

seems to correspond most strongly with an increase in burst length; this is 

as expected as the modelling tends to cell level as the burst length 

decreases. 

4.3 Parallel Simulation 

4.3.1 Overview 

Parallel simulation (also termed distributed or concurrent simulation) is 

an accelerated simulation technique that has received much attention in 

recent years. Many authors have also reviewed the literature on this 

subject in great detail including Hind [Hind94], Phillips [Phillips92] and 
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Richter & Walrand [Rich89], and so only a brief overview is given in this 

thesis. 

The aim of parallel simulation is to provide speedup by exploiting the 

inherent parallelism in a system model. This is done by distributing the 

elements of the simulation model across a multi-processor computer. This 

has a particular attraction for the simulation of telecommunications 

networks because they are naturally distributed systems in which one 

would intuitively expect much concurrent activity to exist. 

4.3.2 Decomposition 

Decomposition is the process by which parallelism in the simulation model 

is identified and exploited in order to maximise the utilisation of resources 

within a multi-processor computer.  

For parallelisation to be effective, the decomposition needs to satisfy a 

number of criteria in order to ensure optimal performance of the multi-

processor system. These criteria include:  

a) Coarse Granularity and Minimal Communication. Because 

communication between processors is usually slow compared with the 

processing of data, unnecessary inter-processor communication should 

be minimised. Aiming to keep processors busy performing local 

activities improves the proportion of time spent fulfilling some useful 

operation. The use of decoupling buffers can help reduce processor time 

spent on inter-processor communication. 

b) Balanced Workload. The workload of the system should be distributed 

so as to minimise the idle time of the processors. The decomposition 

should also be tailored to the available resources such that, for example, 

functions involving a large amount of floating point mathematics 

should be placed on processors with integral floating point co-

processors. 
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Note that each decomposed element of the simulation is generally 

assigned to a process, with one or more processes be placed on each 

processor. In general, for maximum parallelism it is assumed that there is 

one process per processor and hence the terms are used interchangeably in 

this thesis. 

Various ways of decomposing a simulation problem have been identified, 

broadly classified by Phillips [Phillips91] into Functional Parallelism and 

Spatial Parallelism. Richter & Walrand [Rich89] describe five distinct 

methods: Parallelising Compilers, Distributed Experiments, Distributed 

Language Functions & Distributed Events (both forms of Functional 

Parallelism), and Distributed Model Components (Spatial Parallelism). A 

sixth method, Time Decomposition, is reviewed by Hind [Hind94]. 

4.3.2.1 Parallelising Compilers 

This approach involves simply applying an appropriate parallelising 

compiler to a sequential simulation program. Parallelising compilers try 

to find sections of code that can be run concurrently on separate 

processors. Hence they generate a parallel version of existing sequential 

code. This approach has the advantage that much of the code for existing 

sequential simulators can be reused, and that the details of the 

parallelisation process are hidden from the user. Therefore both the 

learning curve for a developer migrating from a sequential computer 

architecture to a parallel architecture and the development time for 

parallel simulator itself can be minimised. However, the Parallelising 

Compiler approach ignores the structure of the problem itself and these 

compilers are often unable to fully exploit the available parallelism. Hind 

[Hind92] has applied a parallelising compiler to the simulation of a circuit 

switched telecommunications network and found that the speedup that 

could be achieved was disappointing. 
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4.3.2.2 Distributed Experiments 

Long simulation runs are necessary in order to obtain statistically 

significant results. However, significant results can also be obtained by 

running shorter independent replications of the simulation on separate 

processors and averaging the results at the end. This approach can be 

extremely effective because the only co-ordination required between the 

processors is when the results are averaged. However, the topology and 

scale of the network simulation is limited because in many multi-

processor computers each processor does not have sufficient local memory 

to support a complete simulation, particularly of a large network. 

Furthermore, this approach in unlikely to be of use if the simulation is 

required for TMN studies because of the requirement for dynamic 

interaction between the simulator and the network management system. 

4.3.2.3 Spatial Decomposition (Distributed Model Components) 

This involves decomposing the network model into loosely coupled 

components, or domains, containing a number of components; the 

components are assigned to distinct processors for concurrent execution. 

In the simulator designed by RACE project 2059 ICM, the network model 

is decomposed such that each node is mapped to a single processor; 

Phillips [Phillips91] maps a complete domain to each processor  

Spatial decomposition has received much attention over recent years. It is 

the most intuitive form of decomposition since it would appear to be 

relatively easy to model an inherently distributed system on a distributed 

computer. Each component must maintain its own local clock measuring 

the elapsed simulated time and must have a list of scheduled future 

events that will occur at this location. A change in some state of the 

system is usually associated with an event, and a local event may affect 

the state of a remote system component. Therefore communication 

between system components is required such that the simulation of 

particular components progresses only when it is valid to do so. This has 

given rise to many problems in maintaining event causality relationships 
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in spatially decomposed simulations, and it is in overcoming these 

problems that much work has concentrated. 

4.3.2.4 Functional Decomposition Methods 

These involve taking a simulation scheme, identifying the functions that 

operate on data and data structures and separating them into a number of 

component processes. Loosely coupled components that are largely 

independent of each other are isolated so they can work concurrently if 

placed on distinct processors. 

Two main forms of functional decomposition have been identified: 

Distributed Language Functions and Distributed Events. 

4.3.2.4.1 Distributed Language Functions. 

Here the support functions of the simulator are assigned to individual 

processors. Simulators typically include many support functions that can 

be distributed in this way, including random variable generation, 

statistics processing, and I/O and file manipulation. This form of 

parallelism has the advantage that it avoids deadlock problems, and that 

it is transparent to the user. Comfort [Comf82][Comf83][Comf88] has 

shown that some speedup can be achieved using this approach. For 

example, he has used Transputers to simulate a queueing system, 

obtaining a maximum efficiency of 60% on a two processor computer (one 

of the processors handled the random number generation). In Comfort’s 

approach, significant speedup is obtained when only a few processors are 

used but follows a pattern of diminishing returns when further processors 

are added. Clearly in any simulation language there is a limit to the 

number of functions that can be effectively placed on other processors. 

4.3.2.4.2 Distributed Events 

The distributed events approach involves maintaining the centralised 

event list of traditional sequential simulators. When a processor becomes 

available it is responsible for processing the event at the head of the list. 
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This approach is more appropriate to shared memory multi-processor 

systems because of the large communication overhead between the 

processor managing the event list and the other processors in the 

simulator. Phillips [Phillips91] implemented a cell level ATM network 

simulator on a network of Transputers using this approach and found that 

some speedup was achievable due to the additional functional parallelism 

that is exploited. However, as the number of domains is increased the 

speedup is limited by the build up in work load of the processor 

responsible for managing the event list. 

4.3.2.5 Time Decomposition 

Time decomposition represents a more recent approach to the 

identification of parallelism in a simulation model. Whilst the most 

obvious form of decomposition relies on concurrent activity in spatially 

separated objects, this form of decomposition attempts to exploit 

parallelism in the time domain.  A brief survey of recent work in this field 

is given by Hind in [Hind94]. 

Chandy et al [Chand89.2] introduce a concept known as space-time. In 

this, the behaviour of a system is represented as a two dimensional graph. 

A simulation represents a specific rectangle in the space/time plane. They 

propose an algorithm that induces parallelism by partitioning this region 

into regions of space/time. Reiher et al [Reih91] have extended this 

concept to encompass time parallelism that partitions the simulation into 

phases along the time axis. This can lead to significant speedup because of 

better load balancing than in spatially decomposed simulators. 

In [Amm92], Ammar and Deng describe an approach that combines time 

warp simulation techniques (see Section 4.3.5) with time scale 

decomposition. They demonstrate that a simulation system may be 

decomposed into fast event sub-models and slow event sub-models. Fast 

event sub-models are those in which events occur on a relatively fast 

timescale, whereas slow event sub-models process events on a relatively 
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slow timescale. Therefore, in fast event sub-models the local simulated 

time advances by a smaller amount for each event than in slow event sub-

models. The fast event sub-models can be simulated concurrently because 

interactions between these sub-models are relatively weak in comparison 

with the interactions between the processes that are contained within 

them. However, because the interactions between sub-models are ignored, 

errors are introduced into the simulation. 

Of particular relevance to the subject of this thesis is a study by Nikolaidis 

et al [Nikolai93].  This describes the time-parallel cell rate simulation of 

an ATM multiplexer. Their approach is based on the exploitation of time 

parallelism in the cell rate change arrival process at the multiplexer. Each 

processor within a multi-processor computer is responsible for simulating 

a particular time interval. At the start of the simulation, the simulator 

generates a discrete time Markov chain that represents all of the possible 

states of a set of ON/OFF cell-rate traffic sources at the input to a queue. 

This enables a number of time division points to be identified at times of 

guaranteed queue overflow and also at times of guaranteed queue 

‘underflow’ i.e. when the queue length is zero. The system states at either 

side of these are considered to be independent. Therefore, regions of time 

between these time division points can be simulated concurrently. 

Nikolaidis et al demonstrate that the granularity of the decomposition is 

limited by the number of time division points, which is often much greater 

than the total number of processors available! An implementation of this 

method on a 16 processor computer simulates cell arrivals at a rate of “up 

to five orders of magnitude greater than an efficient conventional 

sequential simulation”. 

Despite the fact that there are a number of studies into time parallelism 

described in the literature, as yet there are few practical implementations 

of simulators that exploit time parallelism. Because of the great variety of 

ways in which simulations evolve in time, these schemes are highly 

dependent on the specific application. Therefore, the scope for general 
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purpose simulation schemes based on this form of decomposition is 

extremely limited. Indeed, Fujimoto et al [Fujim95] state that: 

“Time-parallel simulation is more of a methodology for 

developing massively parallel algorithms for specific 

simulation problems than a general approach for executing 

arbitrary discrete-event simulation models on parallel 

computers. Time parallel algorithms are currently not as 

robust as space-parallel approaches because they rely on 

specific properties of a system being modelled.” 

Furthermore, because the simulated time in each processor differs 

substantially, there is little scope for coupling a time-parallel simulator to 

real time management or control systems. The use of time-parallel 

simulators is therefore restricted to determining specific performance 

metrics of particular elements of a network. 

4.3.3 Consistency in Concurrent Simulation Schemes 

In a distributed simulation some mechanism is required to ensure that 

event causality relationships are never violated and hence the simulation 

remains consistent with the real system being modelled. It is possible 

that, due to load variations between different processors, the simulated 

time will not advance at a constant rate across the whole network. For 

example, consider the model illustrated in Figure 9. 
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Figure 9 Example of the need for Consistency 

Events are sent along links 1, 2 and 3 and are processed at node 4, giving 

rise to events on the outgoing link of node 4. Consider an event on link 1 

with time-stamp t1. In order to process this event node 4 must know that 

no events will arrive on links 2 or 3 with a time-stamp of less that t1. If an 

event arrives with time-stamp t ≤ t1 after this event has been processed 

then the consistency of the simulation will have been broken. 

Deadlock is a situation that can occur when one or more processes cannot 

continue without violating consistency and so enter a continuous wait 

state. 

4.3.4 Lookahead 

Lookahead is a key characteristic of a simulated system. It is defined as 

the ability of a process to predict its future behaviour [Lin90]. In a parallel 
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telecommunications network simulation this equates to the ability of a 

model to process all events currently scheduled up to a given time in the 

future without violating consistency. Consider once again the above 

example. The concept of lookahead means that node 4 is able to process 

events on link 1 from the current time to some time in the future knowing 

that they will not be invalidated by historical events on the other links. A 

further example of lookahead is in a queue with a minimum service time 

of δt. When it transmits a cell at time t it knows that it will not transmit 

another before time t+δt. Therefore, a connected process could process all 

of its scheduled events autonomously up until this upper time bound, 

knowing that no historical events from the queue process would later 

invalidate this. 

In a cell level simulation of an ATM network, where cell level queueing is 

modelled, the minimum lookahead must be the smallest service time of 

any component within the network model. This is called the network-wide 

lookahead value. Events in spatially separate parts of the network must 

be independent if their times differ by less than this value. Hence they can 

be processed concurrently. However, the network wide lookahead is a very 

small value and many parallel simulation schemes aim to maximise the 

available lookahead. Nicol [Nicol88] describes a scheme using a future list 

of pre-sampled service times to give enhanced lookahead at a queue. This 

was found to be most effective under heavily loaded conditions. 

In a cell rate simulation the discrete nature of the arrival and departure of 

cells from queues is not modelled and hence the identification of a 

network-wide lookahead is not so straightforward. This is one limitation 

on the available parallelism in a cell rate simulation model. 

Two main forms of lookahead have been identified: explicit and implicit 

lookahead. Explicit lookahead [Lin89] is when the lookahead is known 

before the start of the simulation and is invariant. Implicit lookahead is 
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variable but can never-the-less offer performance gains even when there is 

no explicit lookahead. 

Lookahead ratio is defined as the mean message time-stamp increment 

divided by the lookahead. It is this value, and not the absolute value of 

lookahead, that determines the scope for concurrency in a simulation. For 

maximum concurrency this value must be as small as possible. This is 

because maximum concurrency is obtained when as many events as 

possible have time-stamps that are within the current lookahead of a 

process. 

4.3.5 Conservative and Optimistic Synchronisation 

The purpose of synchronisation within a parallel simulator is to maintain 

consistency. Two fundamental policies exist: conservative and optimistic 

synchronisation, based on the way in which a decision is made as to 

whether or not to process a scheduled event. 

A general definition of conservatism is given by Nicol [Nicol90] as methods 

which prevent any processor from simulating beyond a point at which 

another processor might affect it. 

Conservative synchronisation means that a process is able to process 

events on its inputs knowing that they will not be invalidated by any 

future historical events that may arrive at those inputs. This requires 

that, in the case of Chandy-Misra type spatially decomposed simulators, 

messages from one process to another process are transmitted in 

chronological order according to their time-stamps and that a process 

must receive a message on each of its inputs before it can proceed. This 

could cause deadlock since a process could wait on an empty input for a 

message that is not due until after the times of all the other messages 

pending on its inputs. Misra describes a scheme using null messages to 

avoid this form of deadlock [Misra86]. In this scheme, null messages are 
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sent between processes to announce the absence of simulation related 

messages. 

Optimistic schemes allow a process to process messages as far forward in 

time as it wants without concern for any historical messages that may 

arrive from other processes at some future time and invalidate this 

activity. This means that a process in a spatially decomposed simulator, 

for example, is able to compute the result of message arrivals even though 

some its inputs may be empty. In order to avoid inconsistent behaviour, 

optimistic simulators must be able to rollback [Gaf88] in time to correct 

any erroneous actions whenever a message is received that invalidates 

some past processing, in order to correct any erroneous actions. 

Antimessages must also be sent from this process to other connected 

processes in order to correct for any output messages generated as a result 

of this inconsistent behaviour. Optimistic simulators must keep a record of 

their state such that rollback to a previous state is possible. 

A practical implementation of optimistic synchronisation is the timewarp 

mechanism [Jeff85]. This is based on the concept of virtual time, which is 

synonymous with simulated time. In timewarp an error in consistency is 

detected if a message is received that has a time-stamp earlier than the 

time of the last message, and hence earlier than the time of the process’ 

local clock. These messages are known as stragglers. The process will then 

undo all of the events that have been processed incorrectly by rolling back 

to the time of the straggler. When this occurs, the process state returns to 

the last correct old state and antimessages are sent to cancel the effects of 

any messages sent from this process. These antimessages will cause 

rollback in other processes if the events that these processes were sent 

have already been processed. This continues across the simulation until 

the effects of the causality error have been removed. 

The type of events generated within a simulator impacts upon the 

synchronisation mechanism. Conditional events are those that are time-
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variant [Chandy89.1]; the time at which this activity may happen is not 

explicitly defined and is dependent on other events. Unconditional events 

are time-invariant and will be processed at a predetermined time 

irrespective of other events. Conservative schemes will never process 

conditional events. 

4.3.6 Synchronous and Asynchronous Synchronisation 

Synchronisation schemes can also be categorised according to the way in 

which the advancement of simulated time across the simulation is 

controlled. 

In synchronous approaches a global record of the elapsed simulated time 

is maintained. This clock can either be centralised, or distributed. The 

global clock can be advanced according to a number of schemes. For 

example, to the next event time for all processes, or in a series of discrete 

ticks as in the timestepping approach (see Chapter 5) or Lubachevsky’s 

Bounded Lag approach [Lub88]. A review of synchronous approaches is 

given in [Hind94].  

In asynchronous approaches, no global record of simulated time is 

maintained and different processes may, at any given instant, have 

differing elapsed simulation times. Conservative asynchronous simulators 

are possible through the exploitation of lookahead. Asynchronous 

simulation has received the greatest attention in the literature because of 

its potentially high performance. This is because processes spend less time 

waiting for other processes than in synchronous synchronisation. 

4.3.7 Practical Parallel Simulators 

Many of the schemes described above have been applied in 

implementations of parallel ATM simulators. In the ideal situation, the 

speedup attained is proportional to the number of processors used. 
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However, in practice this is rarely the case due to such factors as 

overheads in synchronisation and sub-optimal load balancing. 

Both Hind [Hind94] and Phillips [Phillips91][Phillips92] have built 

parallel cell level ATM simulators using networks of transputers. Other 

practical implementations have already been described above. In 

summary, the results of Phillips are typical. He implemented centralised 

event list, distributed event list, and distributed event buffering schemes 

and found that the most effective technique was distributed event 

buffering using the Chandy-Misra null messages deadlock avoidance 

scheme. A detailed assessment of these simulators is given in [Phillips92]. 

4.3.8 Parallel Computer Architectures 

Although the parallel decomposition paradigm and time synchronisation 

scheme will be partially influenced by the traffic modelling technique and 

the characteristics of the network model, the precise details of the 

computing platform on which the simulator will run are also an important 

consideration. Multiprocessor computers are available with a wide range 

of architectures. These start from simple multiprocessor workstations 

whose operating systems do little more than map independent software 

processes onto different central processing units that share a common set 

of system resources (e.g. dual-Pentium2 PCs running Microsoft Windows 

NT3). A next step is the general purpose ‘truly parallel’ machine, often 

based on CPUs that are specifically designed for a parallel environment 

and that control significant amounts of their own private memory and 

other system resources (e.g. systems based on the INMOS Transputer4 

and INTEL i860). The most specialised systems employing digital signal 

processors for applications such as image processing and pattern 

recognition. 

                                                           
2 Pentium is a trademark of Intel Corp. 
3 Microsoft & Windows NT are trademarks of Microsoft Corp. 
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Flynn [Flynn66] has classified computer architectures by considering 

parallelism in the instruction and data streams. This has resulted in the 

following four categories: 

1. Single Instruction Stream, Single Data Stream (SISD) 

2. Single Instruction Stream, Multiple Data Streams (SIMD) 

3. Multiple Instruction Streams, Single Data Stream (MISD) 

4. Multiple Instructions Streams, Multiple Data Streams (MIMD) 

Note that this classification is very rigid and in practice many computers 

will fit in more than one category.  

The first category, Single Instruction Single Data Stream, encompasses 

most uni-processor machines. Here there is no parallelism (or, at least, no 

attempt to exploit any potential parallelism) in the instruction or data 

streams. 

Categories 2, 3 and 4 attempt to exploit parallelism in the instruction and 

data streams. The most common of these are SIMD and MIMD computers. 

MISD computers are rarer; Hennessy & Patterson [Henn90] suggest that 

these are limited to super-scalar, VLIW (very long instruction word), 

decoupled and systolic architectures. 

In SIMD machines many functional units are invoked by a single 

instruction pointed to by a single program counter. This has the 

advantage that all parallel execution units are synchronised. SIMD 

architectures reduce the cost of the processor’s control unit per execution 

unit since this is effectively ‘spread’ over many execution units. They also 

reduce the size of the program memory since only one copy of the code is 

simultaneously executed (MIMD machines often require one copy to be 

held per processor). SIMD computers are similar in many respects to 

                                                                                                                                                                      
4 Transputer is a trademark of INMOS Ltd 
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vector processors. In practice they will have a mixture of both SISD and 

SIMD instructions, each SIMD instruction being broadcast to all of the 

execution units, each of which has its own set of registers. SIMD is most 

effective in processing code that contains many arrays and loops where 

there is massive data parallelism. 

The most common form of multiprocessor computer architecture is the 

MIMD machine. These machines employ many CPUs in an attempt to 

achieve speedup over uni-processor computers and follow the philosophy 

that a powerful computer can be built simply by connecting together many 

existing smaller ones. The speedup thus accomplished is simply a function 

of the number of processors. In practice such an ideal situation is difficult 

to achieve. However, MIMD computers do have some distinct advantages 

over those with an SISD architecture, including higher absolute 

performance and higher reliability/availability through redundancy 

[Henn90]. 

Two principle classes of MIMD machine exist, the classification depending 

upon how the processors share information. In a shared-memory computer 

the processors communicate by passing variables using a block of memory 

that can be accessed by all of the processors. Whilst this may appear to be 

very fast method of processor intercommunication, the ultimate speed will 

be limited by the bandwidth of the bus connecting the processors to the 

shared memory and by the number of processors that can simultaneously 

access the memory. These problems can be reduced by using local caches 

on each processor. However, cache coherency then becomes an issue. A 

typical shared memory scheme is shown in Figure 10. 
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Figure 10 Shared Memory Architecture 

The alternative method for sharing data between processors is to pass 

discrete messages between the processors. Here there is no global shared 

memory; memory is distributed amongst the processors. The performance 

of such a computer is limited by the efficiency of the message passing and 

routeing scheme, which often decreases as the number of processors is 

increased. Messages can be passed between processors using a network of 

busses, or, in the most extreme example, the processors can reside in 

separate computers and communicate via a local area network. A 

distributed memory architecture is illustrated in Figure 11. 

Parallel computer architectures are reviewed in greater depth in [Fost95]. 
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Figure 11 Distributed Memory Multiprocessor Architecture 

4.4 Summary 

This chapter has outlined two methods for accelerating the simulation of 

ATM networks. Cell rate simulation attempts to provide speedup by 

reducing the number of events that have to be processed relative to cell 

level simulation. This has proven to be an extremely effective technique. 

Parallel simulation attempts to provide speedup by exploiting the 

inherent parallelism in a network simulation. In order for this to be 

effective, a number of basic criteria must be satisfied: these include the 

fact that the communication between processors must be minimised and 

processing concentrated on local tasks; the workload must be evenly 

balanced across the network of processors. Many different decomposition 

and synchronisation schemes are described in the literature which all 

attempt to exploit the inherent parallelism in the network model. Whilst 

parallel simulation has shown some promise in terms of offering speedup 

over sequential simulators, many schemes have been implemented with 
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only limited success since there is often a conflict between the 

aforementioned criteria. Where these problems are overcome, significant 

speedup can be achieved. 

In the next chapter, the application of a synchronous parallel simulation 

scheme to the cell rate modelling of ATM networks is described. 
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5. Timestepping - A Synchronous Parallel 
Synchronisation Scheme 

5.1 Outline of Timestepping Simulator 

Timestepping is a simple scheme that attempts to overcome the problem 

of maintaining time synchronisation across a parallel simulator while 

minimising inter-processor communication overhead by providing a 

common clock to all the processors. This is achieved by only allowing the 

local time in each node model to advance by some fixed period, or timestep, 

before all local times across the simulation are synchronised to some 

global time.  

The timestepping approach is similar to Lubachevsky’s Bounded Lag 

technique [Lub88]. Lubachevsky defines a bounded lag restriction such 

that, if two events e1 and e2 , that occur at times τ(e1) and τ(e2), are 

processed concurrently then: 

τ τ( ) ( )e e B1 2− ≤  

Where B is the bounded lag restriction, and is a known constant such that  

0 ≤ B < +∞. The timestepping scheme considered here represents a novel 

application of this concept to cell rate ATM simulation. 

Timestepping is the synchronisation scheme that has been implemented 

in the cell rate simulator developed by the RACE project R2059 Integrated 

Communications Management (ICM). Although the ICM Simulator 

[Swift94] has initially been implemented on a single processor computer, 

it was designed to be relatively easy to port to a parallel machine. 

Therefore, the simulator has been designed such that the modules 

modelling the network nodes can be run on a single processor or 
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distributed across a multi-processor architecture. Note that timestepping 

has also been implemented in the SPROG5 ATM simulation tool developed 

by the author and described later in this thesis 

Cell rate modelling is the chosen method for modelling the traffic because, 

in sequential simulators, it has been shown that significant speedup can 

be achieved when compared with cell level modelling [Pitts91]. 

A spatial decomposition paradigm is used. In this, different nodes in the 

network are modelled by separate processors. Each node model consists of 

a traffic generator and a node code module. Events (such as cell rate 

changes and signalling messages) are transferred between models by 

kernel software (this modifies the arrival time of the events according to 

any link delays), and are placed in a time ordered queue (stream queue) for 

processing at the destination model. Note that a timer queue is also 

provided for the self-queuing of locally generated events. This is 

illustrated in Figure 12. 
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Figure 12 Simplified node architecture 

The traffic generator for each node is called at the beginning of each 

timestep. This generates all of the traffic events of any users present at 

that node for that timestep plus the first event to occur after this timestep, 

hence ensuring that initial traffic generation is not affected by any errors 

                                                           
5 Simulation PROGram 
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introduced by timestepping. Once the traffic generators for all of the node 

models have been run, the kernel will sort in time and priority order all of 

the events for the current timestep from all the stream queues and the 

timer queue at each node. These events are placed in the sorted node 

queue at each node. The main node code of each model will then be called 

for each event in that model's sorted node queue. This sequence of 

operations is illustrated in Table 2 [Swift94]. 

FOR each timestep: 

evaluate timestep size 
FOR each node: 

- run traffic generator 
- sort in time and priority order events that 
arrive at this node 

END_FOR_LOOP 
FOR each node: 

retrieve local_time 
WHILE local_time < end_step_time AND events to 
process 
- if event_time > local_time 
local_time = event_time 

- process event 
This processing may generate other events that 
are sent to other nodes. They cannot arrive at 
other nodes before the start of the next 
timestep. 

END_FOR_LOOP 
END_FOR_LOOP 

Table 2 Sequence of Operations for Timestepping Simulator 

Because the sorted node queues are built from the timer and stream 

queues at the start of each timestep, only events received in previous 

timesteps will be processed during any given timestep by a given model. 

This means that any events sent from one model to another cannot be 

processed by the destination model until the start of the next timestep at 
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the earliest. Hence timestepping can introduce errors in the effective 

arrival times of events at models. These errors can have serious 

implications for the accuracy of the simulator. 

5.1.1 Grouping of Simultaneous Events 

In cell rate simulation, cell rate changes on a single VC on the input to a 

non-empty queue give rise to simultaneous cell rate changes on all VCs on 

the output of the queue. These cell rate changes must be processed 

together when they are delivered to the input of any subsequent queues in 

order to ensure that spurious output rate changes from that queue are 

suppressed and to ensure that statistics generated are correct. An in-depth 

analysis of the reasons for, and the effects of this on the performance of 

cell rate simulators is presented later in this thesis. 

The ICM implementation of timestepping deals with simultaneous cell 

rate changes using a technique known as grouping. If events inserted in 

the stream queue of a given node are found to have the same scheduled 

arrival time, then they will be labelled as being at the start, the end, or 

within a group. This enables node models to identify whether the current 

cell rate change event forms a part of a group. Only when all of the cell 

rate changes associated with a given group have been delivered to the 

node model is the overall effect of these events on the output of the model 

calculated. 

5.2 Performance Implications of Timestepping 

Consider a simple ON/OFF traffic source feeding bursts of greater than 

one timestep in length along a single finite delay link to a switch, SW1. 

This switch has one output port that is connected to a second switch, SW2, 

by a single finite delay link. The link delay is less than the timestep and 

the switches have zero buffer size. Suppose that a single event 
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representing the leading or trailing cell rate change of a burst is sent by 

the traffic source. Since this event will be generated by the traffic 

generator in the source it will arrive at SW1 at the correct time. However, 

output events generated at SW1 during this timestep cannot be processed 

in SW2 before the start of the next timestep. Therefore, events sent from 

SW1 during the current timestep will be delayed until the start of the next 

timestep. This situation is illustrated in Figure 13. 
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Figure 13 Event Delay Due to Granularity of Timestep 

If the output of switch SW2 is connected to another node model, then 

output events generated at SW2 due to events on the input of the switch 

cannot arrive at this next node until the start of the next timestep. Hence, 

for a timestep greater than the link delay, event arrivals will become 

synchronised with the boundaries of timesteps. Distortion of the traffic 

due to the synchronisation of events with timesteps is shown in Figure 14. 
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Figure 14 Event Synchronisation with Timestep Boundaries 

It can be seen from the above figure that, for situations where burst 

length is greater than one timestep, the burst length will be adjusted to 

some integer number of timesteps. Whether it is rounded up or down will 

depend on the precise timing of the front and tail events of the burst in 

relation to the timestep boundary. 

Now consider a situation where the timestep is larger than the burst 

length. If the front and tail events of the burst lie within the same 

timestep then both edges of the burst will be processed at the beginning of 

the next timestep by the receiving node simultaneously (as shown in 

Figure 15). Therefore the burst will be reduced to zero length and will be 

lost. 
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Figure 15 Effect of Timestep on Burst Length for Bursts Shorter than 1 Timestep 

If the burst happens to straddle a timestep boundary then the processing 

times of the front and tail events of the burst will be delayed until the 

start of the next timestep, effectively stretching the burst to one timestep 

in length, as shown in Figure 16. 
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Figure 16 Burst Stretching Due to Timestep Effect 

 Hence, for situations where the link delay is small compared with the 

timestep, the following distortions of the traffic will occur: 

• Events are synchronised with timestep boundaries. 

• If burst length > timestep, burst length is adjusted to an integer 

number of timesteps (‘burst length quantisation’). 

• If burst length < timestep and the burst starts and finishes within 

the same timestep, then the burst is lost (‘burst swallowing’). 

• If burst length < timestep and the burst straddles a timestep 

boundary, then the burst length is increased to that of the timestep 

(‘burst stretching’). 

In the above discussion it is assumed that the link delay is less than one 

timestep. However, if the link delay is greater than the timestep then cell 

rate changes will arrive within the next timestep (as opposed to the 
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current timestep) and hence will be sorted correctly and processed at the 

appropriate time by the receiving node. Therefore, the events will not be 

synchronised with the timestep boundaries and no burst stretching or 

swallowing will occur. 

5.3 Experimental Study of Timestepping Performance 

For the purposes of this study a timestepping ATM network simulator 

running on a single processor Sun workstation was designed [Bocci94]. 

The simulator was based on an early version of the RACE ICM simulator. 

The network configuration used is shown in Figure 17. 
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Figure 17 Network Configuration Used for Timestep Studies 

Five virtual channel connections (VCCs) were set up from the source along 

the ATM links through the switches to the sink. The switch models had 

zero buffer size and therefore any cell rate input to the switch in excess of 

its server rate was lost. Despite the fact that the full cell rate queue was 

not modelled, using a basic zero-buffer size model allowed the study of the 

essential effects of cell rate modelling while minimising the complexity of 

the switch model. The traffic was generated in the source using a 

Wichman-Hill random number generator with exponential statistics. The 

traffic was chosen to be similar to a Virtual Private Network consisting of 

a number of Ethernet Local Area Networks connected by an ATM link. 

The switch server rates were 150,000cells/s and 75,000cells/s for Switch 1 

and Switch 2 respectively. The source was a simple ON/OFF type with the 
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following parameters: peak rate=26,042cells/s, mean ON time = 0.13s, 

mean OFF time = 1.17s. All link delays were initially set to 0.0001s. 

5.3.1 Relationship Between Timestep and Simulation Speed 

Figure 18 shows the effect on cell processing rate of increasing the 

timestep value. 
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Figure 18 Effect on Cell Processing Rate of Increasing the Timestep Value 

Between a timestep of 0.001s and 0.1s the expected speedup is observed; 

this is due to the reduction in the overhead of timesteps in which no useful 

work is done by the models (i.e. the overhead involved in calling the traffic 

generator and node queue sorting functions in the simulator is reduced). 

However, increasing the timestep value above the mean ON time causes 

the cell processing rate to drop: when events are placed in the stream 

queue of a given node model they are inserted in the correct time order but 

the sorting algorithm in this particular simulator starts from the head of 

the queue rather than the tail. This is slow if the queue becomes large. 
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When the timestep is set to a large value very large stream queues can 

develop before they are shifted into the sorted node queue and hence the 

process of sending an event becomes increasingly computationally 

intensive. 

5.3.2 Relationship Between Timestep and Traffic Characteristics 

Figure 19 and Figure 20 are cumulative relative frequency graphs 

showing the relative frequencies of ON bursts of different lengths 

measured at SW1 and SW2 for various values of timestep and a link delay 

of 0.0001s. Events arriving at SW1 will always be processed at the correct 

time because they are sourced directly from the traffic generator in the 

source model. The traffic at SW1 is therefore taken as the reference. 

However, events sent from SW1 to SW2 will have their processing times 

at SW2 altered by the timestep. Where the timestep is small relative to 

the mean burst length (0.01s compared with a mean ON time of 0.13s) 

there is little distortion of the traffic because, although event times will 

still be adjusted to be synchronous with timestep boundaries, the amount 

by which they are adjusted will be very small relative to the length of the 

burst. Furthermore, the small timestep size means that relatively few 

bursts will be completely enveloped by a single timestep and hence 

swallowed. As the timestep value is increased steps begin to appear in the 

cumulative relative frequency graph. These steps coincide with timestep 

boundaries and correspond to the events being synchronised with the 

timestep boundaries. As the timestep increases both the distance between 

steps and the height of the steps increases, showing that burst lengths are 

being concentrated at a few values corresponding to integer numbers of 

timesteps. It is also significant to note that as the value of the timestep 

increases relative to the mean ON time, the frequency of bursts of length 0 

increases. This is because, for a fixed mean source ON time, there is an 

increasing chance of bursts being swallowed.  
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In summary, we can see that as the timestep is increased from small 

values relative to the mean burst length to significantly larger values two 

effects will cause distortion of the traffic: events will become synchronised 

with timestep boundaries resulting in burst stretching, and bursts will be 

compressed to zero length. These experimental results support the 

theoretical discussion in Section 5.2. 
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Figure 19 Effect of Timestep on Burst Length Distribution for Small Link Delay 



 87

ON burst length, Link Delay = 0.0001s
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Figure 20 Effect of Timestep on Burst Length Distribution for Small Link Delay 

5.3.3 Relationship Between Timestep and Link Delay 

In order to assess the relationship between timestep and link delay, the 

delay between SW1 and SW2 was increased to 0.1s. The relative 

frequencies of the ON burst lengths arriving at SW1 and SW2 were 

measured and compared with the above results for a small link delay. The 

cumulative relative frequencies for the burst lengths for two values of 

timestep are shown in Figure 21. Consider first the comparison between 

measurements with a 0.1s delay and a 0.0001s delay and a timestep of 

0.1s. The results show that setting the timestep to a value that is 

comparable to, or smaller than the link delay eliminates the traffic 

distortions described above. This is because all of the arrival times of 

events sent from SW1 are delayed past the start of the next timestep such 

that they will be processed at the correct time by SW2. However, if the 

timestep is increased above the link delay then the traffic distortions 

noted above start to appear. This is because the link delay is insufficiently 
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large to delay all events sent during the current timestep until the next 

timestep. However, events sent from SW1 within one link delay period of 

the end of the timestep will be delayed by the link delay until the next 

timestep and so will be processed at the correct time by SW2. This results 

in the less distinct steps in, for example, the 0.4s timestep graph with 0.1s 

delay than the 0.4s timestep graph with 0.0001s delay. Furthermore, this 

effect also reduces the relative frequency of zero length bursts, from 0.69 

at 0.0001s delay to 0.5 at 0.1s delay in this case. 
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Figure 21 Effect of Timestep on Burst Length Distribution for Large Link Delay 

5.3.4 Effect of Burst Length Quantisation on Cell Loss Measurements 

Whilst the above simple switch models with no queueing are adequate for 

measuring burst lengths, they are not suitable for assessing any errors in 

the cell loss ratio that are introduced by timestepping. This is because the 

mean cell rate remains constant in spite of burst length quantisation. To 

demonstrate this a queueing model is required.  
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In order to demonstrate the effect that the burst length quantisation 

described above has on measurements of cell losses in a queue, an 

experiment [Bocci95.1] was set up using the cell rate simulator LINKSIM 

[Pitts93]. This models a single link queue through which the traffic from a 

number of sources can be multiplexed. In this experiment ON-OFF 

sources with an exponential characteristic were used. This characteristic 

was modified by quantising the burst lengths of each source into integer 

numbers of timesteps. The experimental topology is shown in Figure 22. 

The number of sources was varied from 1 to 50 in order to investigate the 

effects of combining a number of traffic streams while the link delay was 

assumed to be 0.0001s. 

Source

Source
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Figure 22 Cell Loss Experiment Using Linksim 

Figure 23 shows the percentage change in cell loss as the effective 

timestep, or burst length quantisation, is varied from 0.0001s (the 

assumed link delay where there are no errors) to 0.1s. This shows that the 

errors in burst arrival times caused by timestepping are significant and 

that they increase with timestep size. The errors also increase as the 

number of sources multiplexed through the queue is increased. 
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Figure 23 Variation in Cell Loss Measurements with Effective Timestep Size 

5.3.5 Optimising Timestepping - a Two-Level Timestep Switching Scheme 

The above experimental results and discussion suggest that there is a 

trade off between accuracy of the simulation results and the speed of the 

simulation. Clearly it is advantageous to set the timestep as large as 

possible so as to optimise the simulation speed. However, setting the 

timestep above the link delay results in significant errors in the way that 

events are propagated from one node to the next. These errors can be 

eliminated if the timestep is set to less than the link delay so that all 

events will arrive at the next node at least one timestep after being sent. 

However, since typical physical link delays are of the order of 5-500µs, 

setting the timestep value below the link delay will result in very long 

simulation times. Furthermore, since the timestep will typically be much 

less than the mean burst length, there will be many timesteps in which no 

useful work is done by many of the models in the simulator. 

In order to try to maximise the speed of the simulator while maintaining a 

sufficient level of accuracy, the ICM simulator kernel provides the facility 

to switch between two levels of timestep. The default timestep size is the 
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larger of the two values, while the simulation is switched to the smaller of 

the two timesteps on request from a model. It then remains in small 

timestep mode for a fixed number of small steps; the value of this number 

is determined by an initialisation parameter (n_small_steps) before 

automatically dropping back to large timestep mode. In the ICM 

simulator, the models request a timestep switch by simply returning a flag 

to the kernel. This minimises the communication overhead between the 

models and the centralised time control element of the kernel (an 

important consideration when running the simulator on a multiprocessor 

computing platform). From the experimental results described previously 

it is clear that the timestep should be set to less than the link delay while 

events are propagating through the network. However, it can be set to a 

significantly larger value when there are no events propagating through 

the network in order to minimise the number of timesteps in which no 

useful work is done and hence maximise the speed of the simulator. 

Consider the generation of events at source models. The source model 

should request small timestep mode on the large timestep boundary 

immediately preceding the generation of an event. The n_small_steps 

parameter should therefore be set according to: 

n small steps large timestep next node processing time
small timestep

_ _ _ _ _ _
_

=
+

 

such that the simulator will always be in small timestep mode when the 

event is generated and will remain in small timestep mode for at least as 

long as it takes to deliver the event to the next node, and be processed 

there. This scheme is illustrated in Figure 24. 
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Figure 24 Timestep Switching Scheme 

Now consider the situation at the next node, which will typically be a 

switch model. This node should also request small timestep mode when it 

has finished processing the event and sends it on an output link. This 

process continues as the event propagates through the network so that the 

simulator will remain in small timestep mode. When there are no more 

events to process the simulator will automatically drop back to large 

timestep mode.  

With this scheme, the communication between the models and the kernel 

is minimised because only a single flag is transferred. However, the 

simulator will always remain in small timestep mode for at least 

n_small_steps after each request for small timestep mode by node models. 

Therefore the simulator will not drop back to large timestep mode for 

n_small_steps after the last event was processed. These small timesteps 

represent wasted processor time. 

5.3.6 Performance With Timestep Switching 

In order to assess the speedup potential of timestep switching, the above 

scheme was implemented in the simulator described in Section 5.1 using 
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the network topology of Figure 25 [Bocci95.1]. The small timestep value 

was set to the link delay of 0.0001s while the large timestep was varied 

between this value and 0.1s. The cell processing rate at switch 1 was 

measured with the traffic from 1, 5, 10 and 50 sources being fed through 

the switches. The traffic characteristics of each source were as before. 
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Figure 25 Speedup with Timestep Switching  

Figure 25 shows the speedup attained by increasing the large timestep 

above the small timestep. For the 1, 5 and 10 source cases there is a clear 

maximum in the curves. This shows that some speedup is obtained by 

using timestep switching, while maintaining the accurate event 

propagation of the no switching simulator with the timestep set to the link 

delay. Above this maximum value progressively less speedup is achievable 

because of the excess of small timesteps in which no events are processed 

at the end of each event’s propagation across the network. Furthermore, 

as the number of sources is increased less speedup is also observed. This is 

because the probability of small timestep mode requests is increased and 

so the simulator spends an increasing proportion of it’s time in small 

timestep mode. Indeed, the results from the 50 source case suggest that 
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for the large numbers of sources that would be expected in a realistically 

large network model, the speedup from timestep switching is insignificant. 

5.4 Summary 

Timestepping is a synchronous system for time synchronisation within a 

parallel network simulator. Accurate cell loss results can be obtained with 

timestepping by setting the timestep to less than the minimum link delay 

in the network. However, with the timestep set at this value there are 

many timesteps in which no useful work is done at many of the node 

models. In very small networks, simple timestep switching schemes can 

reduce the number of these idle timesteps and hence increase the rate of 

the simulation. However, as the size of the network is increased by even a 

moderate scale, the timestep switching scheme becomes progressively less 

effective. Therefore, it must be concluded that simple timestepping is not 

an efficient method for synchronisation within a parallel cell rate 

simulator when modelling small networks. This is because the sparse 

nature of events in a cell rate simulation means that it is impossible to 

optimise the lookahead ratio and hence maximise the exploitation of 

parallelism in the network model. 

The key aspect of the results presented in this section is that they apply to 

small networks. In small networks the probability of the occurrence of an 

event in any given timestep is very low and hence the majority of 

processor time is spent in idle timesteps. However, in practice a small 

network could be simulated within a relatively short time period on a 

traditional sequential cell rate simulator. There would be little 

justification for attempting to build a complex and potentially expensive 

parallel simulator for dealing with such trivial problems. In practice the 

networks in which the performance of traditional sequential cell rate 

simulators is inadequate incorporate tens of thousands of users and many 

tens of nodes. In cell rate simulations of such commercial scale networks, 
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there will be a much greater probability of the occurrence of an event 

during any given timestep. The proportion of processor time wasted in idle 

timesteps will therefore be greatly reduced when compared with small 

network simulations. In order to fully assess the potential of timestepping 

as a time synchronisation scheme for parallel cell rate simulation of ATM 

networks, its performance must be compared with that of traditional 

sequential schemes in realistically large networks. Chapter 6 of this thesis 

describes the design and application of a cell rate ATM simulation 

program (SPROG) capable of allowing a fair comparison of timestepping 

with other schemes when simulating large networks. However, the 

argument presented here does not degrade the contribution that the 

research described above represents. The study of timestepping using the 

ICM simulator has demonstrated the effect of the scheme on the accuracy 

of traffic measurements that may be obtained using the simulator, and 

has provided an insight into issues relating to the parallelisation of the 

cell rate model. In particular, it has demonstrated the importance of 

applying simulation techniques that are appropriate to the problem under 

study. 
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6. SPROG Object Oriented Simulator 

6.1 Motivation for the Development of SPROG 

In Chapter 5 of this thesis the simulator developed by the RACE II project 

ICM was used as the basis for studying the performance of the 

timestepping mechanism. However, whilst this simulator is a highly 

capable modelling tool, it was developed with the aim of providing a test 

environment for a TMN system and not for the evaluation of different 

simulation techniques. The ICM simulator has proven to be a useful tool 

for demonstrating the effects of timestepping on the simulated traffic in a 

limited range of experiments using small network scenarios, but it is not 

suitable for comparing timestepping with other synchronisation schemes 

over a much wider range of network scenarios. In particular, it is desirable 

to be able to assess the performance of timestepping in comparison with 

other synchronisation schemes and in very large (and hence more 

realistic) networks.  

The inflexibility in the ICM simulator is a result of the fact that it was 

designed from the outset as a timestepping simulator. It would be a major 

task to re-engineer the simulator around a different synchronisation 

scheme. Furthermore, in order for it to be possible to make a fair 

comparison of the performance of a timestepping version of a simulator 

with one using some other scheme, the amount of executed code that is 

common to the two versions should be maximised. Indeed, ideally the only 

differences between the simulators should be the code directly relating to 

event list management and time synchronisation. This would be difficult 

to guarantee if an existing timestepping simulator were simply modified 

to incorporate some other event list management scheme. 
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The requirement for a highly flexible simulator for studying the 

performance of a variety of time synchronisation schemes in a wide range 

of ATM network scenarios was the main motivation for the development, 

by the author, of the SPROG simulator (Simulation PROGram). The main 

requirements on the design of the simulator were as follows: 

• The simulator must be scaleable from small to very large networks. 

• It must be possible to modify the simulator for different time 

synchronisation schemes with a minimum of effort. 

• The amount of common code shared between simulators with different 

time synchronisation schemes should be maximised. 

In order to achieve a high level of flexibility and code re-use the simulator 

was based on an object oriented design and implemented in the C++ 

programming language. 

This chapter first outlines the principles of object oriented software design 

before describing the design of the SPROG simulator, both in terms of its 

functional architecture and object class definitions. The application of the 

simulator to a study comparing the performance of timestepping in the 

simulator with that of a traditional linear centralised event list 

management scheme is then described.  

6.2 Object Oriented Software Design 

In this section, a brief overview of object oriented software design and its 

application to simulator development is given. A detailed description of 

object oriented programming is beyond the scope of this thesis and the 

reader is referred to the many tutorial books on the subject, for example 

[Wiener88]. 
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6.2.1 Overview 

Object oriented programming is a relatively new method for designing and 

implementing software systems. It differs from traditional functional 

programming6 in that it provides a much closer link between the design 

and the implementation phases of software development. In comparison 

with procedure-based programming, object oriented techniques aim to 

improve programmer productivity by increasing software extensibility and 

reusability and to control the complexity and cost of software maintenance 

[Wiener88]. This means that existing code can be reused, with additional 

features added if required, in new software with a minimum of effort 

expended in ‘porting’ the old code to the new software system. 

The central concept in object oriented programming is the abstract data 

type (ADT). This is a model that encompasses a type and a set of operations 

that characterise the behaviour of that type. In C++, the behaviour of an 

abstract data type is described by a class definition. The class definition 

describes the data structure of the type and the interface to all of the 

operations that can be performed on the type. The scope of the data and 

operations of an ADT are also described by the class definition. These can 

be either private, in which case they are only visible within the scope of 

the class, or public in which case they are visible outside the class. A third 

category of scope that appears in C++ is known as protected. 

The architecture of an object oriented system is built around a set of 

classes that describe the behaviour of all of the underlying data in the 

system. Objects are individual instances of a given class and model the 

data and operations of a specific type. Objects interact by sending 

messages to one another that cause operations to be performed on the data 

contained within an object. Hence it can be seen that object oriented 

software design firstly considers the data of a system and secondly the 

manipulation of that data. This is in contrast with traditional procedure-

                                                           
6 as implemented using languages such as Pascal and Fortran 
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based program design that tends to consider the operations first and the 

data second. 

6.2.2 Encapsulation 

Wiener [Wiener88] defines Encapsulation as the process by which 

individual objects are defined. This entails: 

• a clear definition of the scope of all the object’s internal software 

• a clearly defined interface that describes how objects interact with other 

objects 

• a protected internal implementation that is invisible from outside the 

object. 

Objects encapsulate all of the data and operations that characterise a 

particular type. In C++, functions, or methods, are used to manipulate the 

data, or attributes. These methods provide the clearly defined interface 

through which objects interact. The scope of both the methods and the 

objects attributes can be defined to be private (internal to the object), 

protected (visible only to objects of classes derived from this one), and 

public (visible to other objects of different classes). This scoping 

mechanism can be used to protect the internal implementation of an object 

from outside view because all interaction with that object must occur 

through the clearly defined interfaces of the object’s methods. Therefore, 

provided the interfaces remain the same, the details of the internal 

implementation of the object can be changed with little or no redesign of 

the surrounding software system. This feature of object oriented 

programming provides a major enhancement over procedural 

programming in terms of the ease of software maintenance. 
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6.2.3 Inheritance and Polymorphism 

Software extensibility and re-usability are supported by the concepts of 

inheritance and polymorphism. In object oriented programming, a 

hierarchy of classes exists in which some classes, known as sub-classes or 

derived classes, are subordinate to a parent class. These classes are 

derived from the class above them in the hierarchy. The classes at the top 

of the hierarchy are known as base classes.  

When a sub-class is derived from some other class it will encapsulate not 

only its own set of methods and attributes but also those of the parent 

class. This is the principle of inheritance. One important result of this is 

that it is possible to easily extend the functionality of a class by simply 

deriving a sub-class from it that provides the additional methods and 

attributes without having to write a completely new class. This is 

illustrated in the example inheritance tree of Figure 26. 

Figure 26 Example Inheritance Tree 
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Derived
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Inheritance means that if, for example, class B is a sub-class of class A 

then there will be some portion of the interface to class B that is common 

with that of class A. Therefore, in principle an object of class B can be used 

wherever an object of its parent class A can be used because they will both 

be able to respond to some common message format. This principle is 

known as polymorphism. Polymorphism is a key feature of object 

orientation because it also allows methods in a base class to be redefined 

(overloaded) in sub-classes with the same interface but different 

functionality. In C++, methods in a base class that are to be redefined in 

sub-classes are known as virtual functions. 

6.2.4 Application of Object-Oriented Techniques to Network Simulation 

The basic objective of discrete event simulation of telecommunications 

networks is to model the operations and interactions of the various 

hardware and software elements within the network. It is convenient to 

model elements as ‘black boxes’ with a standard interface comprising a 

restricted set of inputs and outputs together with a model of their internal 

behaviour.  

Object oriented techniques provide a very natural mapping of this 

conceptual network model into software. Complex networks can be 

modelled by initially defining a generic set of base classes at the most 

abstract level that represent the principle features of the system. Sub-

classes that model increased levels of detail in specific elements, such as 

traffic sources, links or switching elements are then derived from these 

base classes. Polymorphism is an essential facilitator for this process as it 

enables both the interchange of models within the simulator and the easy 

addition of new functionality to existing models. Encapsulation means 

that the problems of modelling particular network elements will remain 

local to the simulation model, and that strict control can be maintained 

over which internal details of a given model can be made available outside 
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its scope. This modularity aids in software maintenance as well as 

reliability. 

A further motivation for using object oriented techniques in simulator 

design is that the international bodies of the telecommunications industry 

are increasingly specifying interfaces and protocols using formal top-down 

specification techniques. An example of this is the Specification and 

Description Language, SDL [Z.100][Belina89] that is in widespread use in 

ITU-T recommendations. Object oriented languages enable such 

descriptions to be readily mapped into software simulations. 

Little & McCue describe an object oriented simulation package 

implemented using the C++ language [Lit94]. They endeavoured to 

emulate the object oriented features of the SIMULA simulation language 

and found that C++ provided a number of advantages over the use of a 

SIMULA based development tool. In particular: 

• C++ compilers typically generate code that is several times more 

efficient than similar SIMULA code resulting in faster simulations. 

• C++ provides more extensive object oriented features than SIMULA. 

For example, C++ provides the keywords public, protected and private 

in order to control the scope of class methods and attributes, but in 

SIMULA everything is public. 

In summary, object oriented programming languages provide a natural 

mapping of ‘real world’ systems into software in a manner that enables 

highly flexible and extensible simulators to be rapidly designed and coded. 

6.3 Architecture of SPROG 

The logical architecture of SPROG is shown in Figure 27. The simulator 

architecture consists of 2 major blocks: The simulation server, and the 
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models. The simulation server provides a set of simulation services that 

provide the basis for building a discrete event simulator. These services 

are largely independent of the precise network technology being modelled. 

The models are responsible for the detailed simulation of the elements of 

the telecommunications network (known in SPROG as places).  

The simulation services provide a wide range of generic simulation 

support functionality and include the following: 

• Pass messages between the models. 

• Ensure the synchronised time progression of the models. 

• Event list management. 

• Configuration of the simulator. 

The server supports a standard interface though which all models 

communicate with it. This interface presents an object oriented view of the 

server to the models. 

As well as providing a set of simulation services, the server includes a 

number of prototypes for the various entities in the simulation. These 

include base class definitions for places (representing network nodes such 

as traffic sources and switches), events (representing, for example, cell rate 

changes or signalling messages), and inter-place links. These are 

described in more detail in the next section. 
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Figure 27 Logical Architecture of the SPROG Simulator 

6.3.1 Object Class Definitions 

Figure 28 shows the inheritance tree for the SPROG simulator. Two main 

groups of classes are defined: a set of base classes that constitute the 

simulation services library, and a set of user defined sub-classes. In 

general, the user defined sub-classes are derived from the base classes in 

the simulation services library in order to implement the full detail of the 

simulation. However, users can also define their own base classes where 

necessary. 
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Figure 28 Object Class Definitions for SPROG 

6.3.1.1 Simulation Services Library 

The simulation services library implements the majority of the 

functionality of the simulation server. This library contains a set of base 

classes that incorporate the essential data and functionality required by 

any discrete event driven network simulator. The properties of these 

classes can be inherited by object classes derived from them in order to 

implement almost any entity in the network together with any further 

functionality required for the operation of the simulator. 

The classes of the SPROG simulation services library are summarised as 

follows: 

6.3.1.1.1 Class Place and Class Link 

Class Place and Class Link are the base classes that enable the basic 

physical topology of the network to be modelled. Class Place contains 

the functionality and data for modelling a generic network node that has 

associated with it one or more output links. These output links are 

modelled using objects of Class Link. The arrangement of objects of 

Class Place and Class Link in order to form a network is shown in 
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Figure 29, while the principal public and protected member functions and 

attributes are shown in Table 3. These form the interface to the Place and 

Link simulation services. 

Class Place contains a number of functions for controlling simulation 

time and the configuration of any individual place, including manipulation 

of the initialisation file for this place (each place is assumed to be 

initialised through its own individual file). Additionally, Class Place 

contains a virtual function for processing events arriving at this node. 

This can be overloaded by classes derived from Class Place in order to 

model the behaviour of any network node while maintaining a common 

interface to all network nodes. Attributes of Class Place include local 

and global simulation time, an array of pointers to all places in the 

network, the global ID of this place, pointers to the objects modelling the 

output links from this place, and the name of this place’s initialisation file.  

The attributes of Class Link include the destination place of the link 

(links are assumed to be unidirectional), the port number at which the 

link connects to that place, and the link delay. The methods are simply 

associated with getting and setting these attributes. 
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Figure 29 Arrangement of Places and Links in SPROG 
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Table 3 Interface to Place and Link Simulation Services 

6.3.1.1.2 Class Event 

This is the base class for all events in the simulation. the principle 

methods are for sending events between places, for event list management 

(a simple linear event list scheme is implemented as a virtual function so 

that it can be changed by overloading to some other scheme in a derived 

class), and for creating and managing lists of free events; objects 

representing events that are no longer required by the simulator are 

placed on a free list for later reuse rather than being deleted. This reduces 

the amount of dynamic memory allocation thus reducing the number of 

//class place is base class for all network nodes 
class Place 
{ 
public: 
 

//static functions for creating a network of places 
static void SetGlobalTime( double time); //set the global simulation time 
static double GetGlobalTime();  //returns the global simulation time 
static void CreatePlaceList(int NoPlaces);  //create list of places 
static void SetPlacePointer(Place *ptr, int p) //set placelist pointer 
static Place *GetPlacePointer(int p)  //return pointer to place p 
static Place **GetPlaceList()  //return pointer to placelist 
int GetThisPlaceID()   //return global ID of this place 
inline void SetThisPlaceID(int id) //set global ID of this place 

 
//functions for initialising this place 
inline void SetNOutlinks(int n);  //set number of output links 
inline int GetNOutlinks();  //get number of output links 
inline Link *GetLinkPointer(int no); //return pointer to outlink n  
inline void SetIniFileName( char *name );//set ini filename for this place 
inline char *GetIniFileName();  //returns init filename for this place 
virtual void ProcessIniFile();  //process init file for this place 

 
//run time place simulation functions 
virtual void ProcessEvent( class Event *ptr, int inc_port, double t) //process 

next event for this place 
 

//general functions 
virtual void PrintPlaceConfig(); //print configuration of this place  

 
protected: 

void SetUpLinks(int n);  //create output link objects 
void SetLocalTime(double t) //set the local time 
inline double GetLocalTime() //get the local time 
static double GlobalTime;  //record of global time across whole simulation 

}; 
 
//class link represents the output links from a place 
class Link 
{ 
public:  

void SetLinkWhereTo(int to); //set destination place for this link 
int GetLinkWhereTo();  //returns destination place for this link 
void SetLinkDelay(double d); //set link delay 
double GetLinkDelay();  //returns the link delay 
void SetLinkDestPort(int n); //set incoming port number on destination place 
int GetLinkDestPort();  //returns port number on destination place 

}; 
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‘holes’ in the memory allocated to the simulator. Attributes include event 

time, incoming port at the place to which event is to be delivered, 

destination place, a pointer to the list of free event lists and a pointer to 

the event list head. Table 4 shows the principle functions of the interface 

to the event simulation service. 

Table 4 Interface to Event Simulation Services 

6.3.1.1.3 Class Configuration 

Class Configuration is the base class that describes the current 

configuration of the network. It contains functions for processing the 

global network configuration files (the run time control  and network 

configuration files), together with some basic file handling and file 

input/output functions. Attributes include the names of the run time 

control and network configuration files, the global end of simulation time, 

//class event is base class for all event types in simulation. 
class Event 
{ 
public:  

//free list management functions  
static void CreateFreeEventLists(int No);//create array of pointers to free events 

    //also initialises head pointer for 
// central event list 

void FreeEvent(int type);   //place used event on free event list 
static Event *GetEvent(int type);  //get event from free list  

 
//event list management functions 
virtual void SendEvent(int output_link, class Place *ptr,  

   double time, int priority);  //send event on outlink from this place 
static Event *GetNextScheduledEvent(); //get the next event from event list 
static double GetNextScheduledEventTime(); //get time of next event 
inline static Event *GetEventListHead();  //get pointer to event lists 
static void Event::DumpEventList(Event *ptr); //dump event list to screen 

 
//event attribute manipulation functions 
double GetEventTime();  //returns scheduled arrival time of this event 
int GetSourceID();   //returns ID of place that sourced this event 
int GetDestinationPlace(); //returns ID of destination place for this event 
int GetIncommingPort();  //returns incoming port on destination place 
Event *GetpNextEvent(); //get pointer to next event in list 
void SetpNextEvent(Event *ptr); //set pointer to next event in list 

 
//virtual prototypes 
void DisplayEvent(){ }  //provides a standard interface for all types  

//of event  
 
protected: 

void SetPriority(int p);   //set the event priority 
void SetSourceID(int ID);   //set source ID 
void SetDestinationPlace(int dest); //set destination place 
void SetEventTime(double t);  //set the event time 
void SetIncommingPort(int inc_port); //set incomming port on destination place 
 

}; 
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and the total number of places in the network. Note that in general, for 

any given simulation, only one object instance of Class Configuration 

will exist. Table 5 illustrates the principle functions of the interface to 

Class Configuration. 

Table 5 Interface to Class Configuration 

6.3.1.2 User Defined Sub-Classes of SPROG 

Based on the library of base classes, the simulator developer can derive a 

set of object classes that are more specific to their simulation needs. In the 

case of the study of timestepping performance, objects were required for 

modelling cell rate ATM traffic sources and switches, as well as objects to 

represent cell rate change events. A class was also required to represent 

locally scheduled events at the traffic source (for example, the time of the 

next cell rate change on a VCC), together with a class to represent extra 

details of the configuration of the ATM network over and above that which 

could be described by the simulation services library. 

An important consideration in the development of the SPROG simulation 

services library was that it should be possible to use it as the basis for 

simulators of a range of network technologies using a wide variety of 

class Configuration 
{ 
public:  
 

virtual void ProcessRunTimeControl(); //process the run time configuration file 
virtual void ProcessNetworkConfig(); //process the network configuration file 
double Get_EndSimTime;   //return the end of simulation time 
int Get_NumPlaces();   //return number of places in the network 
char *Get_Word(ifstream *fp)  //get text string from input filestream 
int Get_Int(ifstream *fp);  //get an integer from input filestream 
double Get_Double(ifstream *fp);  //get a double from the input filestream 
void Write_Log(const char *, const char *); //write a string to output logfile 
inline char *GetLogFileName();  //return name of log file 

 
protected: 

void SetRunTimeControlName( char *rcf); //set run time configuration filename 
void SetNetworkConfigName( char *netcon);//set network configuration filename 
char *Get_RCFName();   //get runtime control file name 
char *Get_CNFName();   //get configuration file name 
void Set_EndSimTime(double time);  //set end of simulation time 
void Set_NumPlaces(int n);  //set number of places in the network 
void SetLogFileName( const char *lfn); //set filename of output log file 

 
}; 
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simulation techniques. Therefore the library was implemented with only 

those features that were considered to be sufficiently generic. However, it 

was designed with maximum flexibility in mind. During the development 

of the derived classes for the timestepping study it was found that a 

number of attributes and methods were required that, whilst being 

common to all of the objects derived from a given base class, were not 

sufficiently generic to be included in the simulation services library. An 

example of this is the necessity in a timestepping simulator to have a local 

timer queue at every place, whether that place be of type traffic source or 

switch. Therefore, where necessary, common classes were derived from the 

appropriate base classes in the simulation services library. This was found 

to be necessary for object classes of type Place and type Event, giving rise 

to Class MyPlaces and Class MyEvents.  

The classes derived for the purposes of building a simulator for the 

timestepping study are summarised as follows: 

6.3.1.2.1 Class MyPlace 

In the timestepping version of the simulator this class encapsulates the 

timer, stream, and sorted node queues for a place. The attributes are the 

pointers to these queues (which are implemented as linked lists of event 

objects), while the methods are associated with manipulating these 

pointers. The programming techniques used to enable SPROG to be used 

for the timestepping study are described below. 

6.3.1.2.2 Class Source 

Objects of Class Source model groups of ATM traffic sources within the 

network. Each source contains an ON-OFF cell rate traffic source for an 

unrestricted number of permanent VCCs. The timing of cell rate change 

events on the VCCs is determined by a Poisson arrival process.  

6.3.1.2.3 Class Switch 

Objects of Class Switch implement a cell rate model of a simple zero 

size buffer burst level queue/server. In this model, cell scale queueing is 



 112

not modelled. Outgoing bursts are routed on to the appropriate output link 

of the switch based on their VCI using a static routeing table that is set up 

at initialisation time. Switches are able to calculate cell loss and cell 

throughput statistics. 

6.3.1.2.4 Class RouteingEntry 

A data object representing a single entry in a switch routeing table. 

6.3.1.2.5 Class MyEvent 

In the timestepping version of the simulator, this class encapsulates the 

methods and data for managing the timestepping event lists. In both 

timestepping and centralised event list versions of the simulator, this 

class has attributes describing the type of the event (i.e. Burst or 

UMOnly). 

6.3.1.2.6 Class Burst 

This class is derived from Class MyEvent and represents a cell rate 

change. Attributes include the size of the rate change (in cell/s), VCI, and 

a burst serial number (BurstID). 

6.3.1.2.7 Class UMOnly 

Class UMOnly is used by objects of Class Source to schedule cell rate 

changes on a given VCC. 

6.3.1.2.8 Class MyNework 

Contains methods and data for the configuration of a particular network. 

6.3.2 Event List Management 

The SPROG simulation library provides a basic event list and time 

synchronisation scheme for sequential simulation. This is based around a 

linear event list. In this scheme, a single time ordered list of all of the 

currently scheduled events in the whole simulation is maintained. New 

events are inserted in the correct position in the list using a simple 
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searching algorithm that starts at the head of the list and moves down 

until the first event of greater scheduled time is found. The events are 

stored in the list in increasing time order, and therefore the next 

scheduled event is always at the head of the list. Note that, while the 

insertion order of simultaneous events is preserved, this event list 

management scheme is unable to deliver multiple simultaneous events 

that occur at a model together. Therefore, although this scheme still 

enables correct cell rate modelling, spurious events are generated during 

periods of cell queueing. This can have a significant impact on the 

performance of the event list. An event list scheme that properly accounts 

for multiple simultaneous cell rate changes is described in Chapter 7. 

The event list is implemented in SPROG using a linked list of event 

objects as shown in Figure 30.  

Figure 30 Simple Linear Event List 

The object oriented design of the simulator enables this form of event list 

management to be easily interchanged with alternative schemes by simply 

overloading the appropriate functions and providing and additional 

attributes in sub-classes of Class Place and Class Event. For 

timestepping, stream, sorted node and timer queues were added to Class 
Place through the derivation of Class MyPlace. The additional 

functionality required to manage this scheme was achieved by overloading 

the event management methods in Class Event. The code for each 

Event list head

Event
time t

Event
  t+1

Event
  t+2

Event
  t+3

Time  
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particular event list management scheme was enclosed within 

conditionally compiled blocks enabling a different scheme to be selected at 

compile time. 

6.4 Application of SPROG to the Comparison of 
Synchronisation Schemes 

In order to assess the potential of timestepping as a practical time 

synchronisation scheme for ATM cell rate simulators that are portable 

between a sequential and a parallel environment, the speed performance 

of the timestepping version of SPROG was compared with a version that 

was compiled with the simple linear event list of the simulation services 

library.  

Despite the fact the timestepping is intended as a synchronisation scheme 

for parallel simulation, it is considered reasonable to assess certain 

aspects of its speed performance on a sequential computer. In such 

conservative synchronisation schemes running on parallel platforms, the 

speed of the whole simulator will always be limited by the speed of the 

slowest processor. This is because all of the processors must have finished 

processing all of the events for the current timestep before any of the 

processors can begin to process events scheduled for the following 

timestep. Therefore, in order to suggest that a timestepping parallel cell 

rate simulator could give some speedup over a conventional cell rate 

simulator, it must be demonstrated that the slowest processor in a 

timestepping parallel simulator will never simulate a portion of the total 

network (the size of this portion will depend on the level of granularity of 

the spatial decomposition) at a slower rate than a sequential simulator 

using a conventional synchronisation scheme would simulate the complete 

network. It follows that, to achieve the ideal situation of a linear speedup 

with increasing numbers of processors for a given total fixed network size, 

each processor must simulate at N times the rate of a sequential 
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simulation of the complete network (where N is the total number of 

processors). Note that the assumption is made that delays due to the 

transfer of both synchronisation information and cell rate change events 

between processors are small compared with the processing time of those 

events at each processor. This is because cell rate modelling requires 

greater amounts of floating point arithmetic than cell level modelling. 

The assessment of parallel simulation techniques using sequential 

simulators has the major advantage that potential parallelism can be 

identified without the need to for any implementation on a real 

multiprocessor system, hence avoiding the need for complex and time 

consuming development work. Indeed, authors in other fields of 

simulation have used sequential simulators to assess the potential of a 

parallel simulation scheme, for example Rawling et al [Raw92].  

6.4.1 Experimental Comparison of Timestepping and Linear Event List  

The experimental network configurations are shown in Figure 31 and 

Figure 32. Four experiments were carried out on both a version of SPROG 

that used a timestepping synchronisation scheme and also a version of 

SPROG with a simple linear event list. These experiments had the 

following objectives: 

• To assess the performance of timestepping in lightly loaded 

networks 

• To assess the performance of timestepping in heavily loaded 

networks 

• To assess the effect of network scaling on the performance of a 

timestepping simulator 
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Two network topologies were chosen: 

• Three node network. This consisted of one traffic source model, 

one simple switch, and one further switch configured as a traffic 

sink. 

• Eleven node network. This consisted of one traffic source model, 

nine simple switches and a switch configured as a traffic sink 

These networks are shown in Figure 31 and Figure 32. 

Note that while the network topologies are clearly not representative of 

those of real telecommunications networks, they were deliberately chosen 

to simplify the analysis of the burst propagation thought the network and 

the effects of scaling. All link delays were set to 0.001s. The timestep size 

was set to the link delay in the timestepping SPROG such that there 

would be no event propagation errors and corresponding burst length 

quantisation. This represents a ‘worst case’ scenario for the impact of 

timestepping on simulator speed. If some error in the results can be 

tolerated, then the timestep size can be increased, as demonstrated in 

Source
  UM1

Switch Switch
 (Sink)
  SW2SW1 ATM linkATM link

10 VCCs

 

Figure 31 Three Node Experimental Network Topology 

Source
  UM1

Switch Switch
 (Sink)
 SW10SW1ATM link

10 VCCs

8 intermediate
switches  

Figure 32 Eleven Node Experimental Network Topology 
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Chapter 5 of this thesis. Ten permanent virtual channel connections were 

set up between the source and the sink through the switches. The traffic 

sources were of ON-OFF type with a peak rate of 100 cells/s and a mean 

ON and mean OFF time that was varied between 10s and 0.01s in order to 

force a known mean number of events to occur per timestep. The ON and 

OFF times were exponentially distributed about the mean. The buffers in 

the switch models were of sufficient capacity to accommodate cell scale 

queueing, but if any burst scale queueing occured it immediately resulted 

in cell loss. Note that, whilst the queueing of cells in the buffers in this 

experiment is not explicitly modelled, the term queueing (in preference to 

loss) is used here to emphasise the fact that it is the change in the state of 

the buffer from no queueing to queueing (and vice versa) that affects the 

number of cell rate changes and hence the distribution of events on the 

output of the buffer. Therefore, queueing represents any situation where 

the total input rate of the buffer is greater than its server rate. Note also 

that no account was taken in either implementation of the simple linear 

event list scheme or the timestepping scheme of the occurrence of 

simultaneous events at the output of buffers during burst scale queueing. 

The impact of these on the performance of simulators is investigated in 

Chapter 7. 

For each network topology, two groups of experiments were performed 

• No burst scale queueing 

• Burst scale queueing in SW1 or SW1 and SW2 

• Low utilisation resulting in a small amount of burst scale 

queueing in SW1 

• High utilisation resulting in heavy burst scale queueing in 

SW1 and SW2 in the eleven node network, and heavy 

burst scale queueing in SW1 of the three node network. 
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The computing platform on which these experiments were run was as 

follows: 

• Hardware: 

 IBM AT clone with 100MHz Intel 80486DX4 CPU and 16Mbyte 

RAM 

• Operating System: 

Microsoft Windows 95/MS DOS 7. SPROG always run with PC in 

DOS mode 

• C++ Compiler: 

 Microsoft Visual C++ v1.51. SPROG compiled as a DOS 

application with full compiler optimisations selected. 

6.4.2 Comparative Performance of Timestepping with no Queueing 

In this experiment all of the switch server rates were set to 1000 cells/s. 

The peak cell rate of each VCC was 100 cells/s and hence no burst scale 

queueing occurred in the network. This experimental set-up was used for 

both the three node and eleven node networks. 

Figure 33 and Figure 34 show the effect on the cell processing rate, 

measured at SW1, of decreasing the mean ON and mean OFF times in the 

three node and eleven node timestepping and linear event list simulators. 

In both cases, the cell processing rate decreases in an approximately 

linear manner in the linear event list simulator. 
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There are two major factors that determine the cell processing rate of the 

simulator: 

• time taken to process each event in the models 

• time taken to place each event in the correct time ordered position in 

the event list 

When there are few events propagating through the simulation the first 

factor will dominate. However, increasing the numbers of events by either 

reducing the ON/OFF times of the traffic or increasing the numbers of 

nodes will lead to an increasingly large central event list so causing the 

second factor to dominate. 

In the timestepping simulator, there is very little decrease in cell 

processing rate with a mean ON (and OFF) time of 10s and 0.1s. This is 

because when there few events to process in the simulator there is a 

significant overhead of timesteps in which no useful work is done by the 

models. However, as the mean ON time is reduced below 0.1s, the cell 

processing rate begins to drop . This corresponds to 0.1 total source events 

per timestep. This indicates that the majority of CPU time is spent 

processing events in the models rather than empty timesteps. It is clearly 

desirable to maximise the proportion of CPU time spent in useful event 

processing work in the models. 
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Figure 33 Variation of Cell Processing Rate for 3 Node no Queueing Network 
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Figure 34 Variation of Cell Processing Rate for 11 Node no Queueing Network 

The significant feature to note from these results is that, although the 

timestepping simulator is much slower than the linear event list 

simulator with small numbers of source traffic events per timestep, it can 

actually be faster with large numbers of source events (demonstrated 
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further in later experiments). This is because, in the timestepping 

simulator the event list is spatially decomposed. If the number of nodes in 

the simulation is increased from three to eleven, the total number of 

events propagating through the network will increased by a proportionate 

amount. In the timestepping simulator, the event lists will remain 

approximately the same size because the increased number of events will 

be distributed approximately evenly amongst more lists (the sorted node 

queues of each node model). However, since all of the events in the linear 

event list simulator are stored in one list, it would be expected that the list 

would be much longer. Hence, the time required to insert each event in the 

event list increases. 

6.4.3 Comparative Performance of Timestepping with Queueing 

In this experiment, two sets of simulations were performed for each of the 

network topologies. For each of these simulations, whilst the peak cell rate 

of each VCC remained constant, the mean ON and mean OFF times were 

varied from 10s to 0.01s. 

6.4.3.1 Low Utilisation 

The low utilisation networks represent networks that are not heavily 

loaded, but never-the-less experience some burst scale queueing. For both 

the three node and eleven node networks, the service rate of SW1 was set 

to 800 cell/s. All other switch server rates were set to 1000 cell/s. 

Figure 35 and Figure 36 show how the cell processing rate varied as the 

mean ON and mean OFF times of the  traffic source were reduced. These 

results differ very little from the no queuing case. This is because, at low 

utilisations, whilst it is possible for queueing to occur, this does not 

happen with sufficient frequency to generate substantially increased 

numbers of events in the simulation. 
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Figure 35 Variation of Cell Processing Rate for Low Utilisation 3 Node Queueing 
Network 
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Figure 36 Variation of Cell Processing Rate for Low Utilisation 11 Node Queueing 
Network 
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6.4.3.2 High Utilisation 

The high utilisation experiments represent periods of very heavy loading 

in which burst scale queueing is very likely. For both the three node and 

eleven node networks the service rate of SW1 was set to 500 cell/s. In the 

eleven node network the service rate of SW2 was set to 400 cell/s. All other 

switch server rates were set to 1000 cell/s. 

Figure 37 and Figure 38 show how the cell processing rate at SW1 

changed with varying values of man ON and mean OFF time of the traffic 

source for the highly utilised network.  
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Figure 37 Variation of Cell Processing Rate for High Utilisation 3 Node Queueing 
Network 
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Figure 38 Variation of Cell Processing Rate for High Utilisation 11 Node Queueing 
Network 

The significant feature of these results is that, in the high utilisation 

network simulation running on the linear event list version of SPROG, the 

cell processing rate decreases more rapidly than in either the low 

utilisation or in the no queueing networks. This is particularly true for the 

eleven node network. Furthermore, the curves for the timestepping and 

linear event list simulator cross at a point with a lower number of source 

events per timestep than in the low utilisation and no queueing cases. 

This is because burst scale queueing increases the number of events 

propagating through the simulator. From the analysis of queue behaviour 

presented in Section 4.1.3 of this thesis it can be shown that an event on 

one VCC passing though a buffer where queueing either begins due to this 

event, or is currently occurring, will cause a corresponding output event 

on every other VCC passing through that buffer. This substantially 

increases the number of events. As with the no queueing case, when there 

are sufficiently large numbers of event to process, the timestepping 

simulator is faster than the linear event list version because the spatial 

decomposition of the event list reduces the time taken to insert each event. 
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In the above experiments, the grouping of simultaneous events in the 

timestepping simulator was not implemented. However, the speed of the 

timestepping  simulator could be increased in the high utilisation case by 

implementing grouping. This is because grouping would eliminate 

spurious simultaneous events propagating through the simulation. 

Furthermore, if some error in cell loss results is considered acceptable, 

then the timestep can be increased to some value that is greater than the 

link delay. 

In order to demonstrate the effect of grouping on the speed of a 

timestepping simulator, a grouping scheme similar to that used in the 

ICM simulator (Chapter 5) was implemented in SPROG. In this scheme, 

an event inserted into the stream queue of a given place is assigned a 

group ID if it is found to have the same scheduled arrival time as an 

existing event in the queue. Note that, in the ICM implementation it is 

possible to specify a group tolerance whereby all events scheduled within a 

specified tolerance of a given time are considered to be simultaneous and 

are grouped together. However, here only events with the same scheduled 

arrival time are grouped. 

The group ID specifies whether an event is the first, last, or within a 

group of simultaneous events. When the first event in a group is delivered 

to the switch model in SPROG it is stored and control is immediately 

returned to the simulation server without that event actually being 

processed. This continues until the last event in a group is delivered. The 

switch is then able to process all of these events together and hence to 

assess their overall effect on the state of the queue.  

Although the grouping mechanism in the timestepping scheme eliminates 

the build up of multiple simultaneous events in the simulation, a given 

place must still be invoked for every event in a group, and events on 

different virtual channels must be passed back to the server individually 

even if they are on the same outgoing link and are simultaneous. An 
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optimised grouping mechanism for sequential cell rate simulators that 

removes these inefficiencies is described in Chapter 7 of this thesis. 

Figure 39 shows the effect on the cell processing rate of the timestepping 

simulator of introducing a grouping mechanism for the eleven node highly 

utilised network. The effect of increasing the timestep size from one to ten 

times the link delay (and hence introducing some error into any cell loss 

measurements) is also shown. The source traffic was as before. 

The results show that grouping does indeed increase the speed of the 

simulator because spurious simultaneous events are eliminated. However, 

because the total number of events in the simulation is reduced, there are 

more timesteps in which no useful processing work is done for large source 

mean ON times. This explains why the curve for the for the grouped 

timestepping case decreases less rapidly than the simple timestepping 

case at first. Indeed, the introduction of grouping has given rise to results 

that resemble those of the lower utilisation networks described above. 

Increasing the size of the timestep to ten times the link delay increases 

the speed of the grouped timestep simulator because less processor time is 

now wasted ‘counting’ empty timesteps. Therefore a higher proportion of 

processor time is spent processing events, giving rise to a steeper curve at 

low source mean ON times. 
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Figure 39 Comparative Cell Processing Rates of Timestepping with Grouping and 
Large Timestep 

6.5 Summary 

In this chapter, a new cell rate ATM network simulator (SPROG), 

developed by the author, has been presented. The development of SPROG 

was motivated by the need for a highly flexible research simulator in order 

to compare the performance of timestepping with other time 

synchronisation schemes fairly. This flexibility was achieved through the 

object oriented design of the simulation platform and models and the 

implementation of the simulator in the C++ programming language. The 

design of the simulator enabled the timestepping approach to be compared 

with a basic linear event list scheme in a sequential simulator. The results 

of the study presented in this chapter demonstrate that, whilst 

timestepping may be inefficient in small lightly loaded network scenarios, 

for large network scenarios there are sufficient events propagating 

through the simulation to minimise the number of timesteps in which no 
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useful event processing work is done. This is particularly the case for a 

heavily loaded network where queueing occurs in the buffers. Indeed, the 

results show that a sequential timestepping simulator is actually faster 

than a sequential simulator employing a simple linear event list for large 

networks. This is because, for a heavily loaded simulator with a linear 

event list, the insertion time of each event into the event list becomes very 

large. Henriksen [Henr83] describes the spectacular failure of such 

“linear-search-in-descending-time-order” algorithms. 

Timestepping gives speedup when there are sufficiently large numbers of 

events because the event list is broken into smaller segments, each of 

which is associated with a particular node (the sorted node queue). 

Therefore, when an event is inserted into the list the search length of the 

sorting algorithm is much reduced. The exploitation of this effect in a 

purely sequential simulator where there is no overhead at low event loads 

of timestepping is discussed in Chapter 7. 

The results presented in this chapter suggest that a coarse spatial 

decomposition scheme is required if timestepping is to be used as the time 

synchronisation scheme in a parallel cell rate ATM network simulator. 

Such a scheme would maximise the number of events processed per 

timestep and hence minimise the processing overhead of timestepping. 
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7. Efficient Event List Management for Cell Rate 
Simulation 

The study described in the previous chapter of this thesis demonstrated 

the importance of an efficient event list management algorithm in 

simulator design. Indeed, despite the fact that the study was primarily 

intended to assess the suitability of timestepping for the parallel cell rate 

simulation of ATM networks, it has also highlighted the major 

contribution that the event list management scheme can make to the 

speed of a sequential simulator. 

In this chapter, a review of the many event list management algorithms 

(in general, intended for sequential simulators) described in the literature 

is presented. The literature on this subject is both extensive and 

comprehensive and hence only a brief review of some of the important 

survey papers is given here. This is followed by a description of a study, 

using the SPROG simulator, of improved event list management schemes 

for cell rate ATM network simulators. The study takes some of the 

principles of the timestepping scheme, in particular the spatial 

decomposition of the event list, and applies them to cell rate ATM 

simulation in a sequential computing environment. 

7.1 Review of Event List Management Schemes 

7.1.1 General Simulation Algorithms 

Many papers exist that describe a wide variety of event list algorithms. 

These range from variations on the linear linked list to more complex 

binary trees. Comfort [Comf79] details seven categories of event list 
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algorithm and analyses the performance of examples of each. The 

categories are: 

1. Linked List - A time-ordered doubly-linked list in which events 

are inserted by searching from the event scheduled for the most 

distant future time to the next scheduled event. 

2. Indexed List - Dummy events are inserted at known intervals 

that act as indexes in order to rapidly identify the correct 

insertion point for an event. 

3. Adaptive Linked List- This is a variation of the linked list that is 

able to adapt to the distribution of event inter-arrival times. 

4. Indexed/Adaptive List - This is a combination of (2) and (3) 

above. 

5. Multiple (Dynamically Changing) Adaptive Linked List - an 

extension of (3) above to allow the creation of multi-layer keys to 

the event list. 

6. Heap Data Structure - A restricted binary tree in which events 

inserted with the same time stamp will be removed in an 

unpredictable order. 

7. FIFO Heap Data Structure - A variation on (6) that preserves the 

insertion order of events with the same time-stamp. 

In common with much of the literature, Comfort uses a hold model to 

assess the performance of an algorithm rather than using a real 

simulation problem. A hold model involves rescheduling the event with 

the smallest next processing time to some later time according to some 

incremental processing time distribution. The poor performance of the 

linear linked list is demonstrated and it is shown that, in general, indexed 

and adaptive linked lists are the most efficient. 
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Henriksen [Henr83] discusses a range of event list algorithms and 

describes the ‘spectacular’ failure (when the event list is large) of simple 

linear linked lists that search from next scheduled event to most distant 

future event. 

Kingston [Kings89] analyses the performance a number of binary tree 

search algorithms and, although he finds these to be disappointing, is 

unable to recommend any alternative. Other reviews of binary tree 

algorithms are provided by Evans [Evans86], McCormack [McCor81] and 

Nikolopolous [Niko93]. 

In general, advanced event list management algorithms are intended to 

provide speedup when compared with the poor performance of the simple 

linear linked list (as demonstrated in Section 6.4.1 of this thesis). 

However, as Jones points out in [Jones86], whilst the performance penalty 

due to choosing a poor algorithm may be great, the gain achieved by 

selecting between particular fine-tuned algorithms may be very small. 

Indeed, in such cases development effort may be better spent in 

optimisation of the models rather than the event list. 

7.1.2 Optimised Event Lists for Cell Rate Simulation 

The Linksim cell rate ATM simulator [Pitts93] contains an event list 

management algorithm that has been designed for optimal performance 

when used with cell rate modelling of the traffic. The event list algorithm 

in Linksim takes account of the generation of simultaneous events at a 

queue by storing these events together. When these events are 

subsequently processed by a model, they can be passed to it as a single 

group. This allows that model to avoid the generation of multiple spurious 

‘knock-on’ events.  

The structure of the Linksim event list is shown in Figure 40. Linksim 

adds two extra dimensions to the simple linear event list structure. The 

first of these extra dimensions contains a list of records of where the 
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simultaneous events occur together with a pointer to the linked list of 

simultaneous events that occur at a place. This constitutes the second 

extra dimension. Events are classified at two levels: general and specific. 

The ‘general’ classification categorises events as either those that occur at 

a network termination (NT), or those that occur at a network element 

(NE). The ‘specific’ category identifies the details of the actual event. 

Specific NT events include send and receive cell rate changes, while 

specific NE events include those that describe input and output cell rate 

changes and those representing changes in the state of the cell rate queue 

model of the NE.  

EVENT
time
type: general
next event
list of places

EVENT
time
type: general
next event
list of places

place
list of specific events
next place

type: specific
details
next event

place
list of specific events
next place

type: specific
details
next event

Event List
Head

 

Figure 40 Linksim Event List Structure 

In Linksim, when the simulation is advanced by one event, the procedure 

actually processes all of the events happening simultaneously at either all 

network terminations or all network elements. The significance of 

simultaneous cell rate changes in cell rate simulation was introduced in 

Section 5.1.1 of this thesis. 
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The processing of simultaneous events on the input to a queue as a group 

is an important factor in the design of efficient cell rate simulators. 

Consider the simple scenario of Figure 41. A source produces cell rate 

changes on ten VCCs that pass through a chain of 3 buffers, each 

consisting of a single queue/server pair. Consider a single cell rate change 

on one of the VCCs on the input to Buf1. If Buf1’s queue is not empty then 

simultaneous cell rate changes will appear on the output of the queue on 

each on the ten VCCs . If Buf2 is also in queueing, then a cell rate change 

event will appear on every VCC emerging from its queue for each rate 

change at the input to the queue. Therefore one hundred cell rate change 

events will appear at the input to Buf3. In a worst-case scenario, it is 

possible that the queue in Buf3 will not be empty either, giving rise to a 

thousand cell rate change events on the output of the queue! 

Source Sink
ATM link

10 VCCs Buf1 Buf2 Buf3

 

Figure 41 Example Network Scenario 

If all of the simultaneous input events at Buf2 are accounted for before the 

effect of these on the cell rate queueing model is calculated, then only one 

output event per VCC need be generated.  

It can be seen that, because Linksim processes simultaneous events on the 

input to the queue together, it is able to calculate the overall change in the 

input rate to the queue before it calculates any change in the output cell 

rate. Therefore spurious simultaneous rate change events are eliminated. 

In summary, the Linksim event list structure is designed to account for 

both the spatial distribution, and the simultaneous occurrence of events. 

The implications for simulator performance of an event list that accounts 
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for these two factors is investigated in Section 7.2 and Section 7.3 of this 

thesis. 

7.2 A Spatially Decomposed Event List Scheme  

In Chapter 6 of this thesis it was shown that, under heavy event loads, 

timestepping simulators exhibit speedup over simple linear event list 

simulators. This is because the spatial decomposition of the event list 

reduces the number of events though which the sorting algorithm must 

search when an event is inserted. However, at low event loads there is a 

significant overhead of processing timesteps in which no useful work is 

done and timestepping simulators are therefore slower than linear event 

list simulators. 

In order to fully exploit the effects of spatially decomposing the event list 

in a sequential simulator it is necessary to dispense with the timestepping 

mechanism. The advancement of the simulation time should be based 

solely on the time of the next scheduled event and not on the start time of 

the next timestep. For this, an event list with two dimensions, one of space 

(the place where the event occurs) and one of time (the time at which an 

event occurs) and with a next event time advancement strategy is required. 

Here, separate event lists are maintained for each place (the sorted node 

queues). The places are linked together in a doubly-linked list that is time 

ordered according to the time of the first event scheduled for each place. 

This enables the next scheduled event at each place to be identified 

efficiently. There is also an array of pointers that point to every place in 

the network, whether or not those places currently have events in their 

sorted node queues. This scheme is illustrated in Figure 42. 
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Figure 42 Structure of Space-Time Event List 

The procedure for the insertion of an event in the event list is described in 

Table 6. Once the destination place of an event has been identified, then it 

can be placed in time order in the sorted node queue of that place. This 

operation does not involve a lengthy search of the place list since each 

place is indexed using the array of pointers to places. If the event was 

inserted at the head of the sorted node queue then it is likely that the 

place list will no longer be in correct time order. This place must therefore 

be removed from the place list and reinserted in correct time order. If, 

however, the sorted node queue was empty before the insertion of this 

event, then this place will not currently be in the place list and hence 

needs to be inserted in the correct time order. If this place has the earliest 

event at the head of its sorted node queue, then it will be placed at the 

head of the place list. 
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Table 6 Sequence of Operations for Event Insertion 

The procedure for the extraction of the next scheduled event from the 

event list is described in Table 7. The place with the next scheduled event 

is pointed to by the place list head. Once the first event in that place’s 

sorted node queue has been removed for processing, the place list may no 

longer be in correct time order. If there are still events in this place’s 

sorted node queue then this place is removed from the place list and 

reinserted in correct time order. However, if the sorted node queue of this 

place is now empty, then this place is removed from the place list and the 

place list head updated accordingly. Further details of this operation are 

shown in the table. 

Table 7 Sequence of Operations for Event Extraction 

IF outlink destination == this place 
Insert in SortedNodeQueue of this place 

ELSE 
Insert in SortedNodeQueue of destination place 

IF SortedNodeQueue != empty && event inserted first 
Remove destination from PlaceList and reinsert in correct order 

ELSE 
IF SortedNodeQueue == empty 

Insert destination in correct order in PlaceList 

Place with next scheduled event = PlaceListHead  
NextEvent = SortedNodeQueueHead at PlaceListHead 

IF sorted node queue != empty && next place != NULL 
Remove this place from Place List  
Reinsert in correct time order in Place List 

ELSE IF sorted node queue != empty && next place == NULL 
This place is next 

ELSE  
Remove this place from place list 
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7.2.1 Performance of Spatially Decomposed Event List 

In order to assess the impact on simulator performance of spatially 

decomposing the event list, the space-time event list management scheme 

described above was implemented in SPROG. New functions for sending 

and retrieving events were implemented by overloading the existing event 

list management functions provided by Class Event. Note that in this 

implementation no account was taken of the generation of multiple 

simultaneous events in the cell rate model during queueing. A scheme for 

dealing with this is described in Section 7.3. 

The cell processing rate for both the three node and the eleven node 

networks described in Chapter 6 of this thesis, was measured for the high 

and low utilisation queueing and the no-queueing cases. This was 

compared with the results obtained previously for the linear event list and 

the timestepping scheme. The traffic characteristics were varied as before. 

The switch server rates and link delays were also as before. 

Figures 43 to 48 show how the cell processing rate for the space-time 

event list varied with event load for the no-queueing and the high and low 

utilisation queueing cases. These results demonstrate that, at low event 

loads the cell processing rate of the space-time event list is not 

significantly greater than that of the simple linear event list. However, it 

does give substantially better performance than the timestepping scheme. 

This is because the overhead of processing idle timesteps has been 

removed in the space-time event list. However, with few events there will 

be less chance of there being events scheduled for more than one place at 

any given time. Therefore the performance gain from spatially 

decomposing the event list is small in comparison with the linear event 

list, resulting in similar cell processing rates. 
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Figure 43 Three Node Space-Time Event List Performance with No Queueing 
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Figure 44 Three Node Space-Time Event List Performance With Queueing and Low 
Utilisation 
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Figure 45 Three Node Space-Time Event List Performance with Queueing and High 
Utilisation 
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Figure 46 Eleven Node Space-Time Event List Performance with No Queueing 
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Figure 47 Eleven Node Space-Time Event List Performance with Queueing and Low 
Utilisation 
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Figure 48 Eleven Node Space-Time Event List Performance with Queueing and High 
Utilisation 

As the event processing load is increased, the cell processing rate of the 

space-time simulator does not decrease as rapidly as that of the linear 

event list simulator. This is because of the shortened list searches 

(occurring each time an event is inserted into the event list) that are a 
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feature of  spatial decomposition. However, the performance of this event 

list management scheme is not as good as timestepping for high event 

loads because of the additional overhead of maintaining the time order of 

the place list. 

7.3 Space-Time Event List Management for Cell Rate 
Simulation 

In the previous section, a basic spatially decomposed event list scheme 

was presented. This scheme reduces the average number of events 

through which the event list algorithm must search each time a new event 

is inserted. However, whilst this scheme achieves spatial decomposition 

without the overhead of idle timesteps at low event loads that 

accompanies the timestepping scheme, and gives some speedup over the 

linear event list algorithm, that speedup is small. This is particularly 

disappointing given that the linear event list is, in general, considered to 

be the least efficient scheme possible [Henr83]. The reason for the poor 

performance of the event list schemes described above, particularly during 

periods of cell queueing, is that they are unable to deal effectively with the 

generation of multiple simultaneous events such that buffer models in 

queueing do not generate further (spurious) ‘knock-on’ events. 

In Section 6.4 of this thesis, the application of an event grouping 

mechanism to eliminate spurious knock-on events was demonstrated. The 

experiments described here show that substantial speedup can be 

achieved because of the consequent reduction in the event load. In 

timestepping, the event list structure is inherently spatially decomposed 

and hence it is a relatively simple task to identify the events that are 

scheduled for the same arrival time at a given place. However, because the 

number of events has been reduced by the grouping mechanism, the 

simulator now spends a large proportion of its run time in ‘empty’ 

timesteps (as with the low utilisation cases). For a simulator running on a 
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sequential computer, this is clearly  a sub-optimal situation. However, the 

proper management of simultaneous events is still vital. 

Because the place at which events are scheduled to occur is inherent in 

the structure of the space-time event list, this event list can be enhanced 

to enable all of the events that occur simultaneously at a place to be 

delivered to a place in a single group This will enable that place to process 

the events together. Figure 49 shows the enhanced space-time event list 

structure. As with the Linksim event list (Figure 40), an extra dimension 

is used to represent all of the events scheduled to occur at a given place at 

a given time. Each event in the sorted node queue contains a pointer to a 

linked list of all of the other events scheduled there at that time. When an 

event is inserted in the sorted node queue, if an event is found with the 

same scheduled time, then the new event is inserted in the 3rd dimension 

of the list. When a group of simultaneous events is delivered to a place, 

the event at the head of the group is removed from the sorted node queue 

with the links to the simultaneous events remaining intact, thus passing 

the whole group to the place. This algorithm is more efficient that both the 

Linksim and ICM approaches for dealing with simultaneous events 

because:  

1. Only one event extraction operation is required for n 

simultaneous events. 

2. A place modelling, for example, a buffer is able to calculate its 

total incoming cell rate in a single invocation, thus enabling it to 

generate just a single, correct, cell rate change event per VCC on 

its output. 
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Figure 49 Event List Optimised for Cell Rate Modelling 

This scheme is similar to the Linksim event list algorithm. However, 

whilst Linksim enables events to be delivered as a simultaneous group, 

only a single event is inserted into the event list at a time. Therefore, a 

simultaneous cell rate change on n VCCs output from a buffer will cause n 

event insertion operations. 

Consider a buffer in which cells are queued. If there is a simultaneous cell 

rate change on all of the output VCCs that are routed on to a given output 

link then the buffer model can build the list of simultaneous events and 

pass that to the event list algorithm. Therefore only a single event 

insertion operation is required for all n simultaneous events on that 

output link. Note that, although the simultaneous event groups are built 

before they are passed to the event list, it is still necessary for the event 

list algorithm itself to recognise and deal with simultaneous events that 
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are individually inserted if these are scheduled for delivery to the same 

place. For example, consider the simple scenario shown in Figure 50. 

Buf1

Buf2

Buf3

Buf4

link1

link2
link4

link3

 

Figure 50 Example Network 

Four FIFO buffers are connected by four ATM links of equal delay and 

with ten VCCs on route Buf1-Buf2-Buf4 and ten VCCs on route Buf1-

Buf3-Buf4. All the buffers are served at the same rate and Buf1, Buf2 and 

Buf3 have cells queued in them. The queue is the same length in Buf2 and 

Buf3. Therefore, a cell rate change on the input of either buffer will take 

exactly the same time to appear on the output (this would also be the case 

if the buffers were simple ‘zero depth’ models, as used in the experiments 

above). Consider a cell rate change on a single VCC at the input to Buf1. 

This will cause a rate change on all 20 VCCs on the output of the buffer 

(Figure 51). The rate changes will be grouped as two lists of ten events 

(one list for each output link) by the buffer model itself and passed to the 

event list. Therefore, only 2 event insertions are required for all 20 events. 

Each group of ten events is delivered to Buf2 and Buf3, and since they are 

able to process the events together each buffer produces a single group of 

ten cell rate changes in its output. The groups of cell rate change events 

on the outputs of Buf2 and Buf3 will occur simultaneously and therefore 

must be delivered to Buf4 as a single group. This linking of the two lists is 
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achieved by the event list such that Buf4 is able to process all 20 

simultaneous rate changes on its input together. 

Buf1

Buf2

Buf3

Buf4
Event List

2 groups of
10 simultaneous
rate changes
output on links 1
and 2

Delivery of 
group of 10
simultaneous
rate changes

Delivery of 
group of 10
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rate changes are
simultaneous so
are combined to
1 group of 20

 

Figure 51 Propagation of Simultaneous Cell Rate Change Events via Event List 

7.3.1 Performance of Space-Time Event List for Cell Rate Simulation 

In order to demonstrate the speedup that can be achieved through the 

correct management of simultaneous events, the optimised event list 

scheme described above was implemented in SPROG. Simulation 

experiments were conducted for the three and eleven node networks 

described in Section 6.4.1. The source traffic characteristics were varied as 

before, but only the scenarios where burst scale queueing occurred were 

considered. This is because, where queueing does not occur, simultaneous 

events are not generated by the cell rate queue model unless there are 

simultaneous input cell rate changes. This is very unlikely, and hence 

there is little to be gained over and above the basic space-time scheme. 

The computer platform used for the simulation runs was as before. 
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Figures 52 to 55 compare the cell processing rate of the optimised space-

time event list version of SPROG with the results obtained previously for 

the simple linear, timestepping, and space-time event list versions. Figure 

55 also includes the results obtained previously for the grouped 

timestepping scheme and the timestepping scheme with the timestep set 

to ten times the link delay. These earlier results are included here for ease 

of comparison. 
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Figure 52 Three Node Optimised Space-Time Event List Performance with Low 
Utilisation 
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Figure 53 Three Node Optimised Space-Time Event List Performance with High 
Utilisation 
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Figure 54 Eleven Node Optimised Space-Time Event List Performance with Low 
Utilisation 



 148

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+01 1.E+00 1.E-01 1.E-02

Mean ON time (sec)

C
el

l P
ro

ce
ss

in
g 

R
at

e 
(c

el
ls

/s
ec

)

Linear Optimised Space-Time
Space-Time Timestep
Grouped Timestep Large timestep (with groups)

 

Figure 55 Eleven Node Optimised Space-Time Event List Performance with High 
Utilisation 

In both the network scenarios, the optimised space-time event list 

consistently outperforms all of the other event list schemes. In the eleven 

node network in particular, substantial speedups are clearly possible, 

where up to approximately one hundred-fold increases in cell processing 

rate over the linear event list are observed. However, it is significant to 

note that, for very short mean ON (and mean OFF) times, the 

performance of the timestepping simulator with grouping and a large 

timestep size tends to that of the optimised space-time simulator 

(although measurement errors will be introduced, as described previously 

in Section 5.3.4). 
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7.4 Verification of Optimised Space-Time Using a Realistic 
Networking Scenario 

While the experiments described above demonstrate that the optimised 

space-time event list management scheme can give significant speedup, 

when compared with the simple linear, timestepping, and simple space-

time schemes, the results are limited by the fact that the experimental 

networks are not realistic. These unrealistic scenarios were chosen to 

simplify the analysis of event propagation and to identify promising 

candidates for a cell rate event list scheme. A simulation of a realistic 

network scenario is required to verify the performance of the optimised 

space-time algorithm. 

The network scenario is shown in Figure 56. Twenty switch models and 

ten ON-OFF traffic sources were interconnected by ATM links. Groups of 

two switches (one configured as a traffic sink) and a traffic source were 

used to model the users and customer premises equipment of customer 

premises networks (CPNs, each one representing the network on one site 

of a corporate network). The switches and sources within each CPN were 

connected using links of 10µs delay, while the CPNs were interconnected 

using links of 100µs delay. 160 VCCs of peak rate 167 cell/s were routed 

between a randomly distributed pattern of CPN source/destination pairs. 

The server rates in the switches were all set to 9434 cell/s (queueing only 

occurring at SW0), while the traffic source ON and OFF times had an 

exponential characteristic and a mean value of 10s. The cell processing 

rate at switch SW2 was measured for the linear, timestepping and 

optimised space-time versions of SPROG simulating the above network. In 

the timestepping simulator, the timestep was set to 100µs. 
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Figure 56 Topology of Realistic Scenario 
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Figure 57 Performance of Event List Schemes in Realistic Scenario 

The measured cell processing rates for the linear, timestepping and 

optimised space-time versions of SPROG are shown in Figure 57. The 

performance of the timestepping version is disappointing and suggests 

that there are insufficient events in this network model to allow it to be 

successfully simulated on a timestepping parallel simulator. The 

optimised space-time event list exhibits the best performance, being over 

seven times as fast as the linear event list. However, the speedup over the 

linear event list is not as great as suggested by the experiments in the 

previous section of this thesis. This is because the proportion of switch 

models in which queueing is occurring is lower (equating to the low 

utilisation case). The advantage of spatially decomposing the event list 

and managing simultaneous events efficiently is nevertheless 

demonstrated. 
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7.5 Summary 

In this chapter, the application of some of the ideas introduced in the 

timestepping study of Chapter 6 to sequential cell rate simulation was 

described. The existing literature relating to efficient event list 

management was briefly reviewed. The literature contains a great variety 

of event management schemes, many giving substantial improvements in 

efficiency over the simple linear event list scheme. However, many of the 

schemes are assessed in the context of a generic hold model with no 

consideration of their application in real simulators. In general, these 

schemes do not attempt to exploit any particular characteristics of a given 

simulation modelling scheme and are instead aimed at efficient operation 

in the greatest variety of applications.  

This thesis is specifically concerned with the acceleration of cell rate ATM 

network simulation, and hence event list management schemes that  

attempt to exploit the characteristics of this particular modelling 

technique are of interest. This chapter therefore went on to consider the 

event list scheme in Linksim, one that is specifically optimised for cell rate 

modelling. Two characteristics of cell rate modelling were then considered: 

the spatial distribution of the events, and the occurrence of simultaneous 

events during burst scale queueing. Event list schemes were implemented 

in SPROG that exploited these characteristics. Although some speedup at 

high event loads can be achieved by spatially decomposing the event list, 

the greatest speedup was achieved when a spatial decomposition was 

combined with the grouping of the delivery of simultaneous events to node 

models. This enables the cell rate buffer models to account for all of the 

cell rate changes on their inputs before generating a cell rate change event 

on their output. Hence the generation of spurious multiple simultaneous 

cell rate change events by buffers in which cells are queued is eliminated.  

The speedup achievable through the correct processing, by the event list, 

of simultaneous events is so great that it can be argued that any 
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simulation language or tool that does not properly account for them is not 

suitable for cell rate modelling. This issue is of particular importance 

given the increasing application of cell rate modelling to ATM network 

simulation. 

 



 154

8. Discussion 

This chapter reviews the research presented in this thesis and 

consolidates the principle threads of the work. The issues raised by the 

research are explored in greater depth. 

Section 8.1 reviews the basic principles of ATM network simulation and 

reiterates its importance despite the increasing presence of real ATM 

networks. The discussion concentrates on new applications for simulation, 

in particular in the field of network management. New approaches are 

discussed that are aimed at making simulators more accessible to network 

designers in general and less of a tool that is only used by the simulation 

specialist. Following this, Section 8.2 discusses the main topic of this 

thesis, that of accelerating cell rate simulation. The two principle threads 

of parallel cell rate simulation and improved sequential cell rate 

simulation are drawn together and placed in the context of the wider 

requirements of ATM network simulator users and developers. Possible 

alternative schemes for parallel cell rate simulation are also discussed. 

8.1 Simulation of ATM Networks 

In this thesis, a study of the accelerated simulation of ATM networks has 

been presented. ATM has been identified, by ITU-T, as the target transfer 

mode solution for the B-ISDN [I.150]. It is designed to carry all of the 

anticipated broadband services while maintaining efficient use of the 

available network resources. The principle features of ATM were briefly 

described in Chapter 2. 

Chapter 3 outlined the motivation for the simulation of ATM networks. 

ATM simulation is required in the arenas of network hardware 
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development and network management. The application of simulation to 

the study of network management problems received particular attention. 

An argument that is commonly presented against the inclusion of 

simulation work in contemporary ATM research projects is that real ATM 

networks are currently being introduced, so why not use them for 

experimentation purposes? The basis of the argument against this 

viewpoint is two-fold: 

• the relative cost of real ATM networks 

• the relative inflexibility of real ATM networks 

ATM hardware is currently expensive in comparison with other, more 

established networking technologies. Furthermore, the installation and 

configuration of a large network is a complex task involving the 

employment of specialist engineers, even for relatively small projects. 

Once a network is installed it must be maintained, and this further adds 

to the cost of network ownership. In a modern competitive 

telecommunications industry, such costs must be matched by revenue 

earning potential. Therefore, those networks that do exist are primarily 

commercial in nature and hence it is difficult for research workers to gain 

access to them. Where access is possible, the range of experiments will be 

limited in order to minimise any disruption to the revenue earning 

function of the network. Researchers are often interested in network 

behaviour under conditions of very heavy load. However, such conditions 

may be detrimental to the QoS of existing network users. Other scenarios, 

such as the study of the network under fault conditions may also severely 

degrade the QoS experienced by these network customers. Clearly the use 

of a simulated network, as opposed to a real network, means that extreme 

network scenarios can be studied without affecting existing network users. 
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The second argument in favour of simulation concerns flexibility. This 

covers a range of issues that impact on the details of the networking 

scenarios that can be studied. These issues are: 

• scaling 

• network functionality 

• measurement 

• portability 

Scaling relates to the maximum size of network (defined by the number of 

nodes and links, the number of traffic sources or users, and the pattern of 

demand placed on the network resources by those traffic sources) that can 

be studied. Existing research networks, such as the Exploit Testbed 

[SNH96], are small and often use a high proportion of artificial traffic 

sources. However, simulators enable much larger networks with many 

tens of switching nodes and tens of thousands of simultaneous calls to be 

studied. Such simulations can provide realistic scenarios for, in particular, 

the study of network management and resource allocation issues. 

Flexibility in network functionality relates to the subset of ATM functions 

that are implemented in the network. This raises some important issues 

with respect to the current state of the technology that is implemented in 

real networks in comparison with that of interest to research projects. 

Simulators enable advanced network functions and algorithms to be 

modelled, many of which are far from reaching realisation in commercially 

available network hardware (for example, advanced connection admission 

control algorithms [ARM96.1][Ram97]). 

Network functionality also relates to the control that experimenters have 

over the configuration of the network. Many of the configuration 

parameters that experimenters may wish to have access to are simply not 

available in real networks, but can be readily accessible in simulations. 
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The range of statistics that can be measured is of great importance. In 

many real networks statistics such as cell delay variation require complex 

and expensive instrumentation to measure. This is not required when 

simulation is employed and many such statistics can be generated with 

ease. 

Finally, portability is an important factor. Real networks cannot be moved 

easily and, if remote access facilities are not available, may require 

experimenters to travel long distances in order to perform studies. 

Simulators, in particular those based around software that runs on 

relatively inexpensive computers, are highly portable and enable the 

experimenter to have a ‘network model on their desktop’. 

Hence it can be seen that there remain a wide variety of applications for 

simulation despite the inevitable introduction of real ATM networks. 

Following the discussion of the motivation behind simulation, Chapter 3 

introduced the principles of simulation and identified discrete event 

simulation as being the most appropriate technique for ATM simulation. 

This is because discrete event simulation can efficiently manage irregular 

event arrival times because the simulation clock is only advanced when an 

event is processed. Continuous time simulators advance the simulation 

clock in a series of fixed time increments, irrespective of the time of 

events, and hence processor time is wasted counting time intervals if there 

are no events to process. It is significant to note that the timestepping 

scheme is in many respects a hybrid of discrete and continuous time 

simulation. This is because, although the local time within each timestep 

at each model is advanced on a next-event basis, the global time (and the 

starting time of the next timestep) is advanced in a series of fixed time 

increments. Therefore, when there are many events to process per 

timestep, timestepping can be as efficient as pure discrete event 

simulation. However, when there are few events to process per timestep it 
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can be as inefficient as continuous time simulation. This is reflected in the 

results presented in Chapter 6. 

The issue of simulation languages and tools forms another major topic of 

Chapter 3. The main thread of the research presented in this thesis 

considers the optimisation of event list management schemes for cell rate 

simulation, whether the simulators run on a parallel or a sequential 

computing platform. It is therefore of direct relevance to improving the 

performance of the simulation kernel of high level simulation tools (such 

as OPNET [OPN96]) when cell rate modelling is employed. Such 

simulation tools are becoming increasing popular, for they enable the 

simulator user to concentrate on the modelling of the network rather than 

on the details of the implementation of the simulator. Indeed, when ‘hand-

crafted’ simulators are built much of the development effort is expended in 

the simulation kernel rather than the modelling. However, general 

purpose simulation tools tend to produce code that is less efficient than 

that of hand-crafted simulators. This is because hand-crafted simulators 

are often optimised for a specific simulation problem. General purpose 

tools, on the other hand, are designed to simulate a wide range of 

problems and hence are not designed to take advantage of the potential for 

optimisation inherent in any particular simulation problem. Optimising 

the performance of a simulation tool’s kernel will contribute towards 

reducing the potential performance deficit by reducing the proportion of 

computational load attributable to the event list algorithm. Therefore, the 

efficiency of the models themselves will have a greater impact on the 

performance of the simulator. The results of the work presented in 

Chapter 7 raise a number of important issues relating to the management 

of events in general purpose simulation tools. These are discussed below. 

Following the review of simulation languages and tools, Chapter 3 

outlined cell level simulation of ATM networks. This is the traditional 

form of simulation. In cell level simulation, the propagation of each 

individual cell through the network is modelled. In a discrete event 
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simulator each cell is represented by an event, and in order to obtain 

statistically significant results when measuring rare events, such as cell 

losses from a queue, many billions of cell arrivals at that queue must be 

simulated. Therefore, cell level simulation results in a very high event 

processing load giving rise to very long simulation times (often in the 

region of many hundreds of hours for the measurement of low cell loss 

ratios at a queue). Such lengthy run times are unacceptable for many 

applications. This is particularly true for applications that require the 

simulator to interact with a network management system such as a TMN. 

In such scenarios, the simulator and the TMN must share a common 

perception of time. In the ICM project, this problem was solved in the 

following manner [Bocci95.2]. A Q-Adapter Function (QAF) was used to 

interface the simulator to the TMN. The current simulation time was 

provided to the QAF by the simulator, and this was then broadcast by the 

QAF to the TMN system. TMN applications were therefore able to adjust 

their perception of time to the simulator clock.  

Whilst the ICM approach enabled TMN applications to successfully 

synchronise themselves with the simulator, it did require some 

customisation of the TMN platform software, OSIMIS [ICM95]. In other 

systems this may not be possible, and hence it is necessary for the 

simulation time to advance in approximately real time. 

Techniques that reduce the run time of simulations are known as 

accelerated simulation techniques. Chapter 4 considered two of these: 

• cell rate modelling 

• parallel simulation 

Cell rate modelling relates to the way in which ATM traffic flows are 

represented within the simulator. It relies on the reduction of the event 

processing load by using each event to represent a change in the rate of 

flow of ATM cells, rather than an individual cell. Because the discrete 
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nature of the cells is not modelled, the simultaneous arrival of cells at a 

queue is neglected. Therefore cell scale queueing cannot be modelled. 

However, it is possible to model bust scale queueing due to the input cell 

rate of a queue exceeding the rate at which the cells are served. The 

inability to model cell scale queueing results in slightly lower statistics for 

cell loss ratio when compared with a cell level simulation of the same 

network. However, in many cases such slight reductions in accuracy do 

not present a problem. For example, in the case of the ICM simulator the 

requirement on the accuracy of the statistics generated was ±10% 

[ICM93]. The validation of cell rate modelling presented in [Pitts93] 

demonstrates that a considerably better accuracy is possible while 

achieving significant speedup in comparison with cell level modelling. 

Parallel simulation is an implementation technique that attempts to 

provide speedup by exploiting the inherent parallelism in a network 

simulation. Section 4.3 reviewed a number of basic criteria that must be 

satisfied in order for this to be effective. These include: 

• communication between processors must be minimised 

• processing must concentrate on local tasks 

• workload must be evenly balanced across the network of processors 

Many different decomposition and synchronisation schemes are described 

in the literature that all attempt to exploit the inherent parallelism in the 

network model. Whilst parallel simulation has shown some promise in 

terms of offering speedup over sequential simulators, many schemes have 

been implemented with only limited success because there is often a 

conflict between the above criteria. Where these problems are overcome, 

significant speedup can be achieved. In particular, the speedup is 

dependent on achieving an appropriate mapping between the distribution 

of processor load, the pattern of processor intercommunication, and the 

capabilities of the underlying computer hardware. In terms of ATM 
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simulation, this means that there must be a close match between the 

characteristics of the network simulation model and the computer that the 

simulator is to run on. 

This section has discussed the existing state of the art in the accelerated 

simulation of ATM networks. However, the purpose of the research 

presented in this thesis has been to take existing accelerated simulation 

techniques and to investigate both the possibility of combining them to 

give further speedup, and to study the implications of this work for 

sequential cell rate simulation kernel design. This thesis has described 

new studies in both of these areas, the results of which are discussed 

below. 

8.2 Accelerating Cell Rate Simulation 

Two methods for accelerating cell rate simulation are considered: 

• parallel cell rate simulation 

• advanced event list structures that are optimised for sequential cell 

rate simulation 

8.2.1 Parallel Cell Rate Simulation 

Parallel processing techniques are intuitively attractive for the simulation 

of telecommunications networks. This is because there are many 

concurrent activities that occur in spatially distinct regions of a network. 

However, it is important to note than in simulation it is not the actual 

network itself that is simulated, but rather a somewhat abstract model of 

its behaviour. This statement is derived from the process by which a 

simulation is developed and from the definition of simulation. When a 

simulation of a network is developed, the first task is to develop a model of 

the architecture and operation of the network. This model can take the 
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form of a series of architectural diagrams, or it can be a detailed 

mathematical model of the network, or it could be a representation of the 

network using some formal description language. A good network model 

will only represent those aspects of the network that are of specific 

interest to the developer in order to minimise unnecessary computational 

overhead in the final simulator. Finally the model is implemented, usually 

by coding it in software.  

An example of the structured approach to simulator development is that 

taken by the ARMAN project [ARM96.1]. Here, a simulation is developed 

by first gathering a number of requirements as to the exact features of the 

network that are to be studied. From this, a network model in the form of 

a formal specification is produced. This is the ITU-T Specification and 

Description Language (SDL) [Z.100][Belina89]. The SDL specification can 

then be implemented using the OPNET simulation tool [OPN96]. Hence it 

can be seen that a simulation is an implementation of the network model 

and not of the network itself. 

The main requirement that must be satisfied for a parallel simulator to 

achieve significant speedup over its sequential equivalent is for there to be 

some exploitable parallelism in the network model and not in the network 

itself. It has been demonstrated that parallel simulation can achieve 

speedup when applied to cell level modelling of ATM. However, cell rate 

modelling uses a significantly different traffic model. Therefore, the 

applicability of parallel simulation to this modelling technique must be 

examined before complete cell rate parallel simulators are built. In this 

thesis, the timestepping approach was taken as an example time 

synchronisation scheme to enable the behaviour of cell rate ATM models 

in a parallel environment to be studied. 
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8.2.1.1 Timestepping 

The timestepping approach was chosen because: 

• an example simulator using this technique already existed 

• this simulator was a product of a major research project in which the 

author participated 

• timestepping can operate in both a parallel and a sequential computing 

environment, and therefore its effect on the speed and accuracy of the 

simulator could be studied without the need for complex parallel 

computing hardware. 

The purpose of the study described in this thesis was to ascertain if: 

• there is exploitable parallelism in a cell rate ATM model 

• timestepping is able to exploit that parallelism and, if not, modify it so 

that it is effective 

• the effect of timestepping on the accuracy of the simulator 

Timestepping will only be effective if the synchronisation scheme does not 

represent a significant overhead on the simulator. 

The results presented in Chapters 5 and 6 demonstrate that there is a 

relationship between the overhead of the timestepping scheme and the 

accuracy of the results obtained. When the timestep size is greater than 

one link delay, there is an error introduced into the delivery times of 

events that propagate along that link. In cell rate modelling this causes a 

quantisation of the length of bursts resulting in significant errors in cell 

loss measurements. These errors increase for larger values of timestep 

and for increased numbers of traffic sources multiplexed through the 

buffer in which the measurements are made. However, it is desirable for 

the timestep to be as large as possible because of the nature of event 

occurrence in cell rate simulation models. Cell rate modelling accelerates 
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the rate of simulated time advancement when compared with cell level 

modelling because it dramatically reduces the number of events that must 

be processed. Therefore, in order to reduce the amount of processor time 

wasted processing timesteps in which no events occur (and hence no useful 

work is done by the simulator), the timestep must be large enough so that 

the time spent processing events significantly outweighs that spent 

processing empty timesteps. The results presented in this thesis concur 

with this and demonstrate that, for the network models studied: 

• for low event densities, processor usage is dominated by processing 

‘empty’ timesteps 

• timestepping is inefficient unless there are very large numbers of traffic 

sources 

Pitts [Pitts93] suggests that cell rate modelling may be ideally suited to 

parallel simulation because the increased floating point arithmetic 

required in queueing models (in comparison with cell level modelling) 

means that processing is concentrated on local tasks rather than those 

that may require communication between processors. However, this is 

highly dependent on the exact model implementation. The complexity of 

queueing models used in the study described in this thesis was 

deliberately minimised in order to amplify the effect of the efficiency of the 

event management and time synchronisation schemes used in the 

simulation platform.  

The basic problem when attempting to parallelise cell rate modelling is 

that there are very few events when compared with cell level modelling, 

and that the distribution of those events across the network model is less 

even. In cell rate modelling, the number of events required to describe a 

connection is not dependent on the cell rate of that connection, but rather 

on the nature of the variation in the cell rate during the connection. For 

example, constant bit rate connections (such as simple voice services) will 

require only two cell rate change events (at connection set-up and at 
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connection release) to represent the complete connection at the burst level. 

However, variable bit rate connections may require many hundreds of cell 

rate change events to model their duration. For such a variation in inter-

event times, a purely event driven synchronisation scheme is most 

efficient. However, timestepping is a hybrid between an event driven 

scheme (the local time at each model advances on an event driven basis 

between timesteps), and a time driven scheme (the global time and local 

time at a model are advanced according to the start time of the next 

timestep when there are no more events to process in the current 

timestep,). Timestepping is therefore inefficient when the time driven 

characteristics dominate (when there are few events to process). 

In conclusion, the study of timestepping presented in this thesis suggests 

that timestepping is unable to efficiently exploit any parallelism in the 

cell rate model. Indeed, the problems highlighted here are typical of those 

encountered when attempting to parallelise other ATM modelling 

techniques using synchronous time synchronisation schemes. However, 

despite the negative conclusion of the timestepping study, it has 

highlighted two points that have important implications for the design of 

sequential cell rate simulators: 

• the exploitation of a spatially decomposed event list is beneficial 

• the proper management of the simultaneous events that are generated 

during periods of burst scale queueing is vital for efficient cell rate 

simulation 

The implications of these for sequential cell rate simulators are discussed 

below. 

8.2.1.2 Alternative Parallel Cell Rate Simulation Schemes 

Timestepping attempts to exploit spatial parallelism in the cell rate 

network model. However, other authors have described the application of 

a time decomposition scheme to cell rate parallel simulation [Nikolai93]. 
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These studies only describe small network scenarios. However, the ability 

of the model to scale to realistically large networks is important. 

Furthermore, time decomposition is not appropriate if dynamic interaction 

with network management systems is required. Optimistic time 

synchronisation schemes could also be used for parallel cell rate 

simulation. However, once again the requirement for dynamic interaction 

with a management system would limit the application of such schemes. 

For example, any measurement errors that occur during periods of 

speculative execution must be smaller than the tolerance acceptable to the 

management system. Furthermore, is questionable  whether a TMN 

system could cope with the variation in simulated time across the network 

or the changes in local simulated time due to rollback events. These would 

be large compared with those experienced in cell level parallel simulators 

because the time between events in a cell rate simulation is much greater. 

The ability to model overlaid signalling networks and systems would also 

be limited because they generally rely on the ability to model each 

individual signalling message. 

Despite the above mentioned problems, there are some alternative areas 

in which parallelism could be exploited in the cell rate model. For 

example, a network management system’s perception of a network is often 

of the logical network rather than the physical network. i.e. it maintains a 

view of the structure of the mesh of VPCs and VCCs and the routeing of 

cells along them, rather than the physical hardware of the network. 

Therefore, it is appropriate to model the logical network rather than the 

physical network. In such a model, VCCs only interact when they pass 

through a buffer in which cells are queued. Therefore, during periods of 

low utilisation, VCCs can be simulated concurrently. Clearly, however, the 

simulation time advancement must be synchronised between the VCCs.  

During periods of burst scale queueing, cell rate changes on a single VCC 

will cause rate changes on all other VCCs sharing that queue. These will 

propagate out from the queue across the network as wave front of cell rate 
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changes, each one of which is independent of the others. Each cell rate 

change forming a part of that wave of cell rate changes is independent and 

can therefore be processed concurrently. These ideas are regarded as for 

further study and are therefore discussed in the Further Work section of 

this thesis. 

8.2.2 Optimised Sequential Cell Rate Simulation 

Sequential simulators are attractive because the computer hardware is 

relatively inexpensive in comparison with parallel hardware. 

Furthermore, the performance of a sequential simulator is less dependant 

on achieving an optimal mapping between the underlying hardware and 

the simulation scheme. Furthermore, experience has shown that 

sequential cell rate ATM simulators that employ efficient event 

management schemes are capable of simulating very large ATM networks 

(tens of thousands of simultaneous connections) at rates that exceed real 

time [ARM96.2]. 

The literature review presented in Chapter 7 reveals a wide range of 

advanced event list algorithms in existence in discrete event simulators. 

These are aimed at maximising the event list performance by minimising 

the time taken to insert an event into the list, or minimising the time 

taken to identify and extract the next scheduled event. Many of these 

algorithms are based on a binary tree structure . However, whilst detailed 

analyses of the performance of these algorithms is presented with respect 

to a generic ‘hold model’, none of them appear to have been studied in the 

context of cell rate ATM modelling. 

The Linksim simulator is reviewed because it contains an event list that is 

especially tailored to cell rate modelling. It takes advantage of the 

following two optimisations suggested by the timestepping study of 

Chapter 5 of this thesis: 

• a spatially decomposed event list 
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• correct handling of simultaneous events 

The new work using SPROG demonstrated that, even in isolation, the 

spatial decomposition of the event list in a sequential simulator can give 

speedup over a simple linear event list (although not to the extent 

suggested by the timestepping study because of the overhead of 

maintaining the list of places). However, the most significant optimisation 

is the correct handling of multiple simultaneous events. These are always 

generated by a cell rate queue model during periods of cell queueing, and 

therefore it is vital that these are processed as a single group in order to 

prevent multiple spurious knock-on events at a subsequent downstream 

node where queueing is also occurring. The optimised space-time event list 

implemented in SPROG is an improvement over the Linksim scheme 

because it enables whole groups of simultaneous events to be delivered to 

node models in a single invocation. Furthermore, models that know that 

they will generate a set of simultaneous events of their output are able to 

submit that whole group to the event list in a single invocation of the 

SendEvent function. However, this structure does have the disadvantage 

that some of the event list management is now carried out by the models 

rather than the simulation services library. This problem can be rectified 

by using the property of inheritance that is inherent in the object oriented 

structure of SPROG. Functionality can be added to the simulation services 

library that includes a function that builds a list of simultaneous events 

that is then inserted in the  event list in a single call to SendEvent.  

In the ARMAN project, outside of the work described in this thesis, the 

problem of multiple simultaneous cell rate changes (that are not correctly 

handled by OPNET) was solved, by the author, using a concept known as 

VPC bursts [ARM96.1]. In this, rather than an event on the output of a 

queue representing a cell rate change on a single VCC, an event 

represents a cell rate change on a VPC as a whole. Therefore, one event on 

a VPC can be used to represent simultaneous cell rate changes on all the 

VCCs on that VPC. 
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In conclusion, it is clear that whilst spatial decomposition of the event list 

structure can improve the efficiency of the event list, the most significant 

gain is through the correct handling of simultaneous events. Correct 

handling of simultaneous events eliminates the generation of spurious cell 

rate change events in cascaded cell rate queues. Indeed, the results 

suggest that any simulation tool that is unable to deliver multiple 

simultaneous events to models as a group is unsuitable for cell rate ATM 

network simulation. 

8.3 Further Work 

The research presented in this thesis has concentrated on event list 

performance in a research simulator when running hypothetical network 

scenarios. The complexity of the network models was deliberately 

minimised in order to exemplify the effect of the efficiency of the event list 

algorithm on the overall performance of the simulator. In order to fully 

understand the factors affecting cell rate ATM simulator performance, it is 

useful to also study the effects of the design of the models themselves. In 

particular, the implementation of a full cell rate queue model, such as that 

of LINKSIM (rather than the simple ‘zero depth’ model implemented in 

SPROG), is required. The simulator execution could then be profiled when 

modelling real networking scenarios. Through this, efficiencies could be 

made in the design of the models, in addition to those already made to the 

event list algorithm. 

The study of concurrent cell rate simulation concentrated on a spatial 

decomposition of the cell rate ATM network model and showed that this is 

unable to exploit sufficient parallelism when a timestepping time 

synchronisation scheme is used. It is clear that alternative parallel 

schemes must be considered. Further work is proposed that investigates 

alternative approaches to parallelising the cell rate model. For example, 

the possibility of basing the decomposition paradigm of the current state 
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of the queues in the network (as discussed in Chapter 8) rather than using 

a spatial decomposition. Furthermore, the application of optimistic 

schemes (such as Time Warp) should be investigated. 
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9. Conclusions 

Many applications remain for ATM network simulation despite the 

introduction of real networks; the reasons for this were explained in detail 

earlier in the thesis. There therefore remains a strong demand for high 

speed, user friendly, workstation based simulators for both hardware 

design and, increasingly, network management studies. Such simulators 

are also useful, not only to researchers, but also to network managers for 

network planning and administration. 

Traditional cell level simulation of ATM networks is computationally 

intensive, the result being long times for simulation runs. However, whilst 

a number of techniques have been recorded in the literature for reducing 

the time of simulation runs, there is still a need for further acceleration of 

the simulation speed. In particular, simulators that run in real time are 

required for the development and testing of new network management 

systems. 

The combination of the existing accelerated simulation techniques of cell 

rate and parallel simulation is one possible way of improving simulator 

speeds. The timestepping approach, presented here as a synchronisation 

scheme for parallel cell rate simulation, is inefficient if event densities are 

low because CPU time is wasted processing empty timesteps. However, 

when the simulator is modelling highly congested networks with very high 

traffic loads, the event density in a cell rate simulator is high enough to 

minimise the number of wasted timesteps. In such situations, 

timestepping is a practical time synchronisation scheme in parallel cell 

rate ATM network simulators. 

The study of timestepping performance has also enabled a number of 

other conclusions to be drawn that can be used to improve the 

performance of simulators running on sequential computer platforms. The 
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first of these conclusions is that spatial decomposition of the event list 

structure can reduce the time required to insert an event in the event list. 

This is because, provided the location of the event is known, then the local 

event lists that represent the places that an event is scheduled for will 

always be shorter than a single linear global event list. 

Secondly, it is clear that cell rate modelling requires that the simulation 

platform is able to deliver simultaneous events to a model as a group so 

that they can be processed together. This is important because, whenever 

there is a cell rate change on the input to a buffer model in which cells are 

queued, multiple simultaneous cell rate change events will be generated 

on the output of the buffer. These must be processed together as a group 

by any model that receives them on it’s input. Simulators that can not 

guarantee this are not suitable for cell rate modelling. 
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Abbreviations 

AAL ATM Adaptation Layer 

ABR Available Bit Rate 

ABT ATM Block Transfer 

ARMAN ATM Resource Management 

ATM Asynchronous Transfer Mode 

B-ISDN Broadband ISDN 

CAC Connection Admission Control 

CBR Constant Bit Rate 

CCITT Comité Consultatif International Télégraphique et 
Téléphonique 

CEC Commission for the European Communities 

CFS Common Functional Specification 

CLR Cell Loss Ratio 

CODEC Coder/Decoder 

CPU Central Processing Unit 

DTI Department for Trade and Industry 

EPSRC Engineering and Physical Sciences Research 
Council 

FIFO First-In-First-Out 

ICM Integrated Communications Management 

ISDN Integrated Services Digital Network 

ITU-T International Telecommunications Union 
Telecommunications Standardization Sector 
(Formerly CCITT) 

MADS Multi-Purpose Aid for Distributed Simulation 
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NE Network Element 

NP Network Performance 

NPC Network Parameter Control 

NT Network Termination 

QoS Quality of Service 

RACE Research into Advanced Communications in Europe 

TMN Telecommunications Management Network 

UPC Usage Parameter Control 

VBR Variable Bit Rate 

VC Virtual Channel 

VCC Virtual Channel Connection 

VCI Virtual Channel Identifier 

VP Virtual Path 

VPC Virtual Path Connection 

VPI Virtual Path Identifier 
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