455 research outputs found

    Intelligent approaches to VLSI routing

    Get PDF
    Very Large Scale Integrated-circuit (VLSI) routing involves many large-size and complex problems and most of them have been shown to be NP-hard or NP-complete. As a result, conventional approaches, which have been successfully used to handle relatively small-size routing problems, are not suitable to be used in tackling large-size routing problems because they lead to \u27combinatorial explosion\u27 in search space. Hence, there is a need for exploring more efficient routing approaches to be incorporated into today\u27s VLSI routing system. This thesis strives to use intelligent approaches, including symbolic intelligence and computational intelligence, to solve three VLSI routing problems: Three-Dimensional (3-D) Shortest Path Connection, Switchbox Routing and Constrained Via Minimization. The 3-D shortest path connection is a fundamental problem in VLSI routing. It aims to connect two terminals of a net that are distributed in a 3-D routing space subject to technological constraints and performance requirements. Aiming at increasing computation speed and decreasing storage space requirements, we present a new A* algorithm for the 3-D shortest path connection problem in this thesis. This new A*algorithm uses an economical representation and adopts a novel back- trace technique. It is shown that this algorithm can guarantee to find a path if one exists and the path found is the shortest one. In addition, its computation speed is fast, especially when routed nets are spare. The computational complexities of this A* algorithm at the best case and the worst case are O(Ɩ) and 0(Ɩ3), respectively, where Ɩ is the shortest path length between the two terminals. Most importantly, this A\u27 algorithm is superior to other shortest path connection algorithms as it is economical in terms of storage space requirement, i.e., 1 bit/grid. The switchbox routing problem aims to connect terminals at regular intervals on the four sides of a rectangle routing region. From a computational point of view, the problem is NP-hard. Furthermore, it is extremely complicated and as the consequence no existing algorithm can guarantee to find a solution even if one exists no matter how high the complexity of the algorithm is. Previous approaches to the switch box routing problem can be divided into algorithmic approaches and knowledge-based approaches. The algorithmic approaches are efficient in computational time, but they are unsucessful at achieving high routing completion rate, especially for some dense and complicated switchbox routing problems. On the other hand, the knowledge-based approaches can achieve high routing completion rate, but they are not efficient in computation speed. In this thesis we present a hybrid approach to the switchbox routing problem. This hybrid approach is based on a new knowledge-based routing technique, namely synchronized routing, and combines some efficient algorithmic routing techniques. Experimental results show it can achieve the high routing completion rate of the knowledge-based approaches and the high efficiency of the algorithmic approaches. The constrained via minimization is an important optimization problem in VLSI routing. Its objective is to minimize the number of vias introduced in VLSI routing. From computational perspective, the constrained via minimization is NP-complete. Although for a special case where the number of wire segments splits at a via candidate is not more than three, elegant theoretical results have been obtained. For a general case in which there exist more than three wire segment splits at a via candidate few approaches have been proposed, and those approaches are only suitable for tackling some particular routing styles and are difficult or impossible to adjust to meet practical requirements. In this thesis we propose a new graph-theoretic model, namely switching graph model, for the constrained via minimization problem. The switching graph model can represent both grid-based and grid less routing problems, and allows arbitrary wire segments split at a via candidate. Then on the basis of the model, we present the first genetic algorithm for the constrained via minimization problem. This genetic algorithm can tackle various kinds of routing styles and be configured to meet practical constraints. Experimental results show that the genetic algorithm can find the optimal solutions for most cases in reasonable time

    Integrated silicon assembly

    Get PDF

    Universal programmable logic gate and routing method

    Get PDF
    An universal and programmable logic gate based on G.sup.4-FET technology is disclosed, leading to the design of more efficient logic circuits. A new full adder design based on the G.sup.4-FET is also presented. The G.sup.4-FET can also function as a unique router device offering coplanar crossing of signal paths that are isolated and perpendicular to one another. This has the potential of overcoming major limitations in VLSI design where complex interconnection schemes have become increasingly problematic

    An efficient approach to multilayer layer assignment with an application to via minimization

    Full text link

    A Perturbation Scheme for Passivity Verification and Enforcement of Parameterized Macromodels

    Get PDF
    This paper presents an algorithm for checking and enforcing passivity of behavioral reduced-order macromodels of LTI systems, whose frequency-domain (scattering) responses depend on external parameters. Such models, which are typically extracted from sampled input-output responses obtained from numerical solution of first-principle physical models, usually expressed as Partial Differential Equations, prove extremely useful in design flows, since they allow optimization, what-if or sensitivity analyses, and design centering. Starting from an implicit parameterization of both poles and residues of the model, as resulting from well-known model identification schemes based on the Generalized Sanathanan-Koerner iteration, we construct a parameter-dependent Skew-Hamiltonian/Hamiltonian matrix pencil. The iterative extraction of purely imaginary eigenvalues ot fhe pencil, combined with an adaptive sampling scheme in the parameter space, is able to identify all regions in the frequency-parameter plane where local passivity violations occur. Then, a singular value perturbation scheme is setup to iteratively correct the model coefficients, until all local passivity violations are eliminated. The final result is a corrected model, which is uniformly passive throughout the parameter range. Several numerical examples denomstrate the effectiveness of the proposed approach.Comment: Submitted to the IEEE Transactions on Components, Packaging and Manufacturing Technology on 13-Apr-201

    High-Performance Passive Macromodeling Algorithms for Parallel Computing Platforms

    Get PDF
    This paper presents a comprehensive strategy for fast generation of passive macromodels of linear devices and interconnects on parallel computing hardware. Starting from a raw characterization of the structure in terms of frequency-domain tabulated scattering responses, we perform a rational curve fitting and a postprocessing passivity enforcement. Both algorithms are parallelized and cast in a form that is suitable for deployment on shared-memory multicore platforms. Particular emphasis is placed on the passivity characterization step, which is performed using two complementary strategies. The first uses an iterative restarted and deflated rational Arnoldi process to extract the imaginary Hamiltonian eigenvalues associated with the model. The second is based on an accuracy-controlled adaptive sampling. Various parallelization strategies are discussed for both schemes, with particular care on load balancing between different computing threads and memory occupation. The resulting parallel macromodeling flow is demonstrated on a number of medium- and large-scale structures, showing good scalability up to 16 computational core

    Thermal Management for 3D-Stacked Systems via Unified Core-Memory Power Regulation

    Get PDF
    3D-stacked processor-memory systems stack memory (DRAM banks) directly on top of logic (CPU cores) using chiplet-on-chiplet packaging technology to provide the next-level computing performance in embedded platforms. Stacking, however, severely increases the system’s power density without any accompanying increase in the heat dissipation capacity. Consequently, 3D-stacked processor-memory systems suffer more severe thermal issues than their non-stacked counterparts. Nevertheless, 3D-stacked processor-memory systems do inherit power (thermal) management knobs from their non-stacked predecessors - namely Dynamic Voltage and Frequency Scaling (DVFS) for cores and Low Power Mode (LPM) for memory banks. In the context of 3D-stacked processor-memory systems, DVFS and LPM are performance- and power-wise deeply intertwined. Their non-unified independent use on 3D-stacked processor-memory systems results in sub-optimal thermal management. The unified use of DVFS and LPM for thermal management for 3D-stacked processor-memory systems remains unexplored. The lack of implementation of LPM in thermal simulators for 3D-stacked processor-memory systems hinders real-world representative evaluation for a unified approach.We extend the state-of-the-art interval thermal simulator for 3D-stacked processor-memory systems CoMeT with an LPM power management knob for memory banks. We also propose a learning-based thermal management technique for 3D-stacked processor-memory systems that employ DVFS and LPM in a unified manner. Detailed interval thermal simulations with the extended CoMeT framework show a 10.15% average response time improvement with the PARSEC and SPLASH-2 benchmark suites, along with widely-used Deep Neural Network (DNN) workloads against a state-of-the-art thermal management technique for 2.5D processor-memory systems (ported directly to 3D-stacked processor-memory systems) that also proposes unified use of DVFS and LPM

    Algorithmic studies on PCB routing

    Get PDF
    As IC technology advances, the package size keeps shrinking while the pin count of a package keeps increasing. A modern IC package can have a pin count of thousands. As a result, a complex printed circuit board (PCB) can host more than ten thousand signal nets. Such a huge pin count and net count make manual design of packages and PCBs an extremely time-consuming and error-prone task. On the other hand, increasing clock frequency imposes various physical constraints on PCB routing. These constraints make traditional IC and PCB routers not applicable to modern PCB routing. To the best of our knowledge, there is no mature commercial or academic automated router that handles these constraints well. Therefore, automated PCB routers that are tuned to handle such constraints become a necessity in modern design. In this dissertation, we propose novel algorithms for three major aspects of PCB routing: escape routing, area routing and layer assignment. Escape routing for packages and PCBs has been studied extensively in the past. Network flow is pervasively used to model this problem. However, previous studies are incomplete in two senses. First, none of the previous works correctly model the diagonal capacity, which is essential for 45 degree routing in most packages and PCBs. As a result, existing algorithms may either produce routing solutions that violate the diagonal capacity or fail to output a legal routing even though one exists. Second, few works discuss the escape routing problem of differential pairs. In high-performance PCBs, many critical nets use differential pairs to transmit signals. How to escape differential pairs from a pin array is an important issue that has received too little attention in the literature. In this dissertation, we propose a new network flow model that guarantees the correctness when diagonal capacity is taken into consideration. This model leads to the first optimal algorithm for escape routing. We also extend our model to handle missing pins. We then propose two algorithms for the differential pair escape routing problem. The first one computes the optimal routing for a single differential pair while the second one is able to simultaneously route multiple differential pairs considering both routability and wire length. We then propose a two-stage routing scheme based on the two algorithms. In our routing scheme, the second algorithm is used to generate initial routing and the first algorithm is used to perform rip-up and reroute. Length-constrained routing is another very important problem for PCB routing. Previous length-constrained routers all have assumptions on the routing topology. We propose a routing scheme that is free of any restriction on the routing topology. The novelty of our proposed routing scheme is that we view the length-constrained routing problem as an area assignment problem and use a placement structure to help transform the area assignment problem into a mathematical programming problem. Experimental results show that our routing scheme can handle practical designs that previous routers cannot handle. For designs that they could handle, our router runs much faster. Length-constrained routing requires the escaped nets to have matching ordering along the boundaries of the pin arrays. However, in some practical designs, the net ordering might be mismatched. To address this issue, we propose a preprocessing step to untangle such twisted nets. We also introduce a practical routing style, which we call single-detour routing, to simplify the untangling problem. We discover a necessary and sufficient condition for the existence of single-detour routing solutions and present a dynamic programming based algorithm that optimally solves the problem. By integrating our algorithm into the bus router in a length-constrained router, we show that many routing problems that cannot be solved previously can now be solved with insignificant increase in runtime. The nets on a PCB are usually grouped into buses. Because of the high pin density of the packages, the buses need to be assigned into multiple routing layers. We propose a layer assignment algorithm to assign a set of buses into multiple layers without causing any conflict. Our algorithm guarantees to produce a layer assignment with minimum number of layers. The key idea is to transform the layer assignment problem into a bipartite matching problem. This research result is an improvement over a previous work, which is optimal for only one layer
    corecore