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Abstract—We present a robust and efficient scheme for the
generation of delay-based macromodels from frequency-domain
tabulated responses. These responses can come from both simu-
lation or direct measurement. The main algorithm is based on an
iterative weighted least-squares process for the identification of
delayed rational approximations. In case that pole relocation is
performed during the iterations, the scheme can be interpreted
as a generalization of the well-known vector fitting algorithm to
delayed systems. Therefore, we denote this algorithm as delayed
vector fitting (DVF). In case no pole relocation is performed, the
scheme generalizes the so-called Sanathanan–Koerner iteration,
calling for the denomination of delayed Sanathanan–Koerner
algorithm. These techniques produce compact macromodels that
are readily synthesized in SPICE-compatible equivalent circuits
including delayed sources or ideal transmission line elements.
These macromodels outperform classical rational macromodels in
terms of simulation time. Several examples illustrate the advan-
tages of proposed methodology.

Index Terms—Delay extraction, high-speed interconnects,
macromodeling, rational approximations, scattering parameters,
transmission lines.

I. INTRODUCTION AND MOTIVATION

I NTERCONNECTS may have a dramatic impact on the
signal integrity of electronic systems. Therefore, a careful

assessment of the nonideal behavior of interconnects must be
performed at various scales, from chip to package, board, and
system level. Numerical simulations are employed for this
task, using suitable interconnect models. Since signal integrity
system-level simulations are commonly performed using circuit
solvers, also interconnect models need to be cast, via a suitable
macromodeling process, in a form that is compatible with such
simulation engines.

Several macromodeling techniques are available according to
different classes of structures. Interconnects that are electrically
small at the highest frequency of interest can be approximated
by lumped blocks characterized by rational transfer functions.
Examples can be connectors, via fields, or small packages. For
these structures, the vector fitting (VF) algorithm, in its various
implementations [2]–[10], is the standard macromodeling tool.

When the electrical size of the interconnect increases due to
its physical length, the number of poles in the above rational
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approximation may grow very large. This leads to inefficient
models in the simulation phase. Moreover, a pure rational ap-
proximation of a structure that is characterized by a significant
propagation delay inevitably leads to a nonzero response before
the time-of-flight has elapsed. This effect, which is intrinsic in
the structure of the model, may be the source of serious accuracy
degradation in system-level simulations [11]. The relevance of
these issues grows with the interconnect length and the max-
imum operating frequency.

The above difficulties are easily overcome for interconnects
that may be represented as transmission lines, governed by the
telegraphers’ equations. In such case, there exist several tech-
niques that explicitly extract the propagation delays [12]–[18],
leading to macromodels that structurally take into account the
correct physics of signal transmission. Unfortunately, not all
electrically long interconnects may be represented with pure
transmission line models. Examples can be buses made of a
chain of various blocks, as typically found in all systems for
chip-to-chip, chip-to-memory or even larger scale links, or
equivalently, interconnects including discontinuities along their
path.

In this work, we extend standard purely rational macromod-
eling techniques to the case of electrically long interconnects.
We consider a model structure that explicitly includes prop-
agation delay terms, mixed with suitable rational coefficients
[19]–[21]. The resulting delayed rational approximation is
computed from raw tabulated frequency data using an iterative
weighted linear least squares process. The basic implementation
is denoted as delayed Sanathanan–Koerner (DSK) iteration,
since it generalizes the standard Sanathanan–Koerner (SK)
estimation scheme [1] to the new delayed macromodel struc-
ture. If a pole relocation step is included at each iteration, we
obtain a scheme denoted as delayed vector fitting (DVF), which
generalizes the well-known purely rational VF algorithm [2].

This paper builds on preliminary results of [21] and shares
the same objectives of [20], where time-domain responses are
used for the model identification. Here, we directly process fre-
quency-domain data, including scattering parameters coming
from direct measurement.

This paper is organized as follows. Section II introduces the
model structure. Section III describes the main model identifica-
tion algorithm. Section IV presents the SPICE netlist synthesis
process. Finally, Section V applies the proposed scheme to sev-
eral test cases and real application examples.

II. MACROMODELS WITH DELAYS

We consider an arbitrary electrically long interconnect with
input/output ports and represented by an unknown transfer

function . Our aim is to identify an approximation of
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from the sampled frequency response of the system, available
from numerical simulation or direct measurement. Let us denote
the available response samples as

(1)

and the available frequency points as

(2)

Without loss of generality, we restrict our attention to a single
element of the transfer function. Results will be then
generalized to the most general multiport case by applying the
proposed algorithm to each element of the transfer function
independently, and then combining the results in a multiport
model. In order to simplify the notation, we will drop the sub-
scripts .

We assume that the interconnect is structured as a chain of
cascaded blocks [21]. Each of these basic elements can be a
transmission-line structure, a lumped block, or another (sim-
pler) electrically-long 3-D interconnect. For this class of struc-
tures, it can be shown (see Appendix) that each element of the
transfer function can be written as

(3)

where represent the physical delays due to the propagation
of the electromagnetic field inside the structure. These delays
are properly defined in time domain, and measure the time taken
by an electromagnetic wave to travel from one port to another
port through the interconnect [39]. In addition, since the inter-
connect is not assumed to be homogeneous, but composed by
several different blocks, these delays take also into account the
multiple reflections a wave may experience inside the structure.
The terms are instead suitable frequency-dependent co-
efficients representing other effects such as attenuation and dis-
persion.

The above consideration naturally leads to the macromodel
structure that we adopt in this work. Essentially, two approxima-
tions are applied to (3). First, the number of delays is truncated
to a (small) finite number . Second, a rational approximation
is applied to each coefficient which, in general, is not
a rational function. The resulting delayed rational model is fur-
ther represented as

(4)

where are partial fractions

(5)

associated to a prescribed set of “basis” poles , and the delays

(6)

are approximations to the dominant delays in (3).
We remark that a delayed-rational form can also be obtained

by replacing the partial fraction functions in (5) with

polynomials or other systems of rational basis
functions (such as orthogonal rational functions [6]). Polyno-
mials are ruled out here due to possible ill-conditioning of the re-
sulting model fitting equations. Among different sets of rational
functions, the partial fractions basis (5) is adopted here due
to its simple form and its excellent approximation and numer-
ical stability properties. Partial fractions are indeed exploited in
state-of-the-art fitting algorithms, such as vector fitting (VF) [2].
The basis poles are chosen to optimize the numerical condi-
tioning of the model identification process. For this purpose, we
resort to the widely adopted solution proposed in [2], with initial
poles being linearly distributed over the data bandwidth
and close to the imaginary axis.

III. MODEL IDENTIFICATION

A. Estimation of Propagation Delays

The first stage for the identification of a delayed macromodel
(4) is the estimation of the dominant delay terms (6) from the
raw data. For this task, we adopt the algorithm described in [21],
based on the so-called Gabor transform [38]. In this work, we
define the Gabor transform starting from frequency domain in-
stead of the more standard time-domain representation, as

(7)

The “basis” functions

(8)

are amplitude-modulated (parameter is proportional to the
number of oscillations) and frequency-shifted (parameter is
the center of the translation) versions of a normalized Gaussian
window

(9)

If were taken to be identically one, the definition in (7)
would become (up to a normalization constant) exactly the in-
verse Fourier transform of , which is the system impulse
response . Hence, the variable has the physical meaning
of time or time-delay.

The Gaussian window in (7) plays the role of a sharp
bandpass filter. Therefore, can be regarded as the
inverse Fourier transform of , but retaining only those
frequency components located in a frequency band centered
around . For this reason, belongs to the class of
the so-called time-frequency transforms, since it provides a
localization of the various components of both in frequency

and time .
Local maxima of pinpoint the location in

time (delay) and frequency of the dominant energy contributions
of . It turns out that typical interconnect responses are
characterized by well-separated single-delay components, see
Fig. 1 for a graphical illustration. Therefore, the time (delay)
coordinates of the local maxima provide good estimates for
the individual propagation delays in (4).
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Fig. 1. Magnitude of Gabor coefficients for the return loss � of a measured
PCB interconnect. The same example will be analyzed in Section V-B.

The number of significant delays can be automatically deter-
mined as follows. First, we average the spectrogram
over the available bandwidth according to

(10)

Then, starting from any local maximum , we determine the
closest local minimum of such that . The en-
ergy content of the -th individual delay term is thus estimated
as

(11)

All delay terms such that their relative contribution exceeds a
predefined threshold

(12)

are retained in the model. Since the neglected energy contribu-
tions are small, this procedure does not significantly affect the
accuracy of the final model. However, model efficiency is opti-
mized, since the number of terms in (4) is minimal. More details
on the actual implementation can be found in [21].

B. Model Coefficients Identification

Once the set of dominant delays (6) is known, the funda-
mental task is the estimation of the coefficients and
in (4), such that the deviation between model response and raw
data is minimized at the available frequency points. We can de-
fine the approximation error at a single frequency point as

(13)

The cumulative (rms) error for the entire response reads

(14)

It is clear that the cumulative error is a complex nonlinear
function of the unknown model coefficients and . Main
difficulty is the presence of the coefficients at the denomi-
nator, which are responsible for the representation of the model
poles.

This problem is solved by all modern strictly rational identifi-
cation algorithms, such as VF, by an iterative weighting process
known as SK iteration [1]. An outer iteration loop is devised.
The th pass of this loop minimizes a modified error metric ob-
tained by multiplying (13) by a weighting factor

(15)

which is the ratio between the (unknown) denominator at current
iteration and the known denominator at previous iteration .
At the first iteration we set

(16)

as an initialization. The following single-frequency weighted
error

(17)
is obtained. The above error is linear in the unknowns and

, therefore its minimization is readily achieved by the solu-
tion of a standard linear least squares system, whose th row is
the right-hand side of (17). As an implementation detail, we add
the following nontriviality constraint

(18)

as a last row in the least squares system, in order to rule out the
all-vanishing solution.

Iterations are stopped when all coefficients of the model rep-
resentation are stabilized. Note that, upon convergence of the
coefficients , the weighting factor tends to one uni-
formly, and the weighted least squares problem (17) becomes
equivalent to the original formulation (13).

C. Stability Enforcement: DSK and DVF Schemes

Let us take a closer look at the rational approximation of a
single-delay element

(19)

Fundamental stability conditions require that the poles of this
rational function are constrained to the region of the
complex plane. This condition is readily checked by explicitly
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computing the poles, i.e., zeros of the denominator, which are
the eigenvalues of matrix

...
...

. . .
...

(20)

where . In case of unstable poles, they are flipped
into the left hand complex plane, and the corresponding new
set of coefficients in (19) is derived. This procedure forces
the denominator to be a minimum phase rational function [2],
[24], [33].

Two alternatives are possible for stepping through iterations.
The first choice preserves the “basis” poles through the
iterations. The resulting scheme is a direct generalization of
the SK iteration, which is therefore denoted as DSK (Delayed
Sanathanan–Koerner) algorithm. The DSK scheme may be
more robust, but unstable poles may appear at each iteration.
The second choice updates also the “basis” poles and,
consequently, the partial fractions of (5) at each iteration.
This update is performed as follows. Starting from the poles

, the numerator of the weighting function (15) is formed
as

(21)

The zeros of this function define the set of poles to be used at
next iteration. It is easily recognized that this scheme is a gener-
alization of VF, which is thus denoted as delayed vector fitting
(DVF). The DVF produces guaranteed stable models by con-
struction, provided that the poles are constrained to the left
hand plane by a suitable flipping process. Both DSK and DVF
schemes will be applied to the various examples of Section V
and compared.

D. Causality and Passivity

Passivity is a fundamental physical property [25], [26] which
must be respected also by electrical models. For the class of
structures under investigation, passivity conditions require
both the causality of each response and the nonexpansivity
(no energy gain) of the overall transfer matrix [27]. Causality
conditions are satisfied by construction by the proposed algo-
rithm, since each term in the model (3) is causal, because of
the positivity of the delays and the stability of the model
poles [27]. If we assume that the raw data are passive, any
possible passivity violation of the model will be small and of
the same order of the approximation error that is achieved in
the identification process. Therefore, passivity enforcement can
be obtained using a perturbation approach, which is a standard
practice for lumped macromodels [28]–[33]. Recent devel-
opments [34]–[37] extended such techniques to the class of
delay-based macromodels, with specific attention to transmis-
sion-line macromodels based on the Method of Characteristics
[36], [37]. Since the proposed model structure (3) falls in
this class, it is argued that the perturbation approach of [36],
[37] can be applied here after a suitable modification. These

Fig. 2. Circuit synthesis of a single-pole partial fraction term.

Fig. 3. Circuit synthesis of a single delay term in (23). The controlled sources
are defined as � � � � for � �� � and � � � � .

developments are outside the scope of this paper and will be
documented in a future report.

IV. MODEL SYNTHESIS

In this section, we derive a compact SPICE-compatible cir-
cuit stamp for the delayed macromodel form (4). The first step
is to rewrite the model expression as a summation of delayed
partial fraction expansions

(22)

where and are the Laplace-domain input excitation
and output response of the model. Due to the adopted model
representation, the poles are common to all delay terms. This
allows us to decouple the synthesis of the rational part from
the synthesis of the delays. In the following, we only provide
details for real poles , the case of complex poles being a trivial
extension. We rewrite (22) as

(23)

with and where

(24)

represents the signal at the output of a one-pole lowpass filter,
which can be synthesized by the single RC cell depicted in
Fig. 2.

Depending on the adopted SPICE platform, the delay ele-
ment can be synthesized in various ways. If delayed controlled
sources are available, the synthesis of (23) is direct. If instead
such elements are not available, delays can be synthesized using
ideal transmission lines elements. We explore this second option
in the following.

We need different transmission line segments, since there
are distinct delays in (23). Application of a single delay is
achieved by the circuit depicted in Fig. 3, representing a trans-
mission line with unitary characteristic impedance, which is
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Fig. 4. Equivalent circuit connected at the model interface port. Scattering rep-
resentation referred to � port resistance is assumed.

Fig. 5. Interconnect structure considered in Section V-A. Parameter values are
� � � pF, � � � m and � � � m.

matched at both ends in order to avoid spurious signal reflec-
tions. The line is excited by a set of controlled sources which
reproduce the summation over in (23).

The outputs of the delay lines are finally collected
and reported to the output port via another set of controlled
sources. The schematic of Fig. 4 represents the circuit that is
directly connected to the output port, valid for scattering repre-
sentations. In such case the model input is the impinging port
wave, defined as , which feeds the
single RC cells of Fig. 2. Since the matched ideal transmission
line in Fig. 3 produces a current division factor equal to 0.5, the
gain of the controlled sources in Fig. 4 is defined with a correc-
tion factor 2 to obtain a full equivalence to (23).

In case of multiport networks, the same synthesis process is
performed for each pair of input–output couplings. This proce-
dure is straightforward and not further commented here.

V. EXAMPLES

A. Synthetic Lumped-Distributed Network

This first example is intended to validate the delayed model
identification approaches presented in Section III-B. We con-
sider the structure depicted in Fig. 5, made of a chain of two
transmission line segments with a capacitive discontinuity in
between. The frequency-dependent per-unit-length parameters
of the two transmission lines have been computed from dc up
to 10 GHz using a surface-based method of moments (MoM)
solver based on [23]. Conductor skin and proximity effects are
explicitly taken into account. From this computation, we also
obtain the asymptotic values of capacitance and inductance

(25)

which are used to derive the nominal propagation delays of the
two line segments

(26)

TABLE I
MACROMODELING RESULTS FOR THE STRUCTURE DEPICTED IN FIG. 5

Fig. 6. Comparison between DVF model and data for the scattering element
� of structure depicted in Fig. 5. Only a reduced bandwidth of 1 GHz is de-
picted in the figure for readability.

We can derive analytically the complete set of delays to be used
in the macromodel expression

(27)

where the superscripts indicate the respective scattering re-
sponse. It is to be noted that, for not all the combinations
of are possible, in particular only if . The
same applies to , for which only if .

A total number frequency samples with
delay terms were used in the DSK and DVF model identifica-
tion. We report in Table I the number of model poles used in
the rational approximation, and the corresponding rms approxi-
mation errors obtained with the DSK and DVF algorithms. The
table includes also the results of the standard VF scheme for
comparison.

The approximation errors are well below engineering accu-
racy for all three algorithms. However, application of standard
VF algorithm requires a very large number of poles for obtaining
a purely rational approximation of the terminal scattering re-
sponses with a level of accuracy that is comparable with the
DSK and DVF results. Conversely, due to the explicit extraction
of the propagation delays, both DSK and DVF achieve excellent
accuracy with a very small number of poles.

Figs. 6–8 compare the frequency-responses of the delayed
macromodel to the raw data used for the model identification.
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Fig. 7. As in Fig. 6, but for � .

Fig. 8. As in Fig. 6, but for � .

We only report the results of DVF algorithm, since both VF and
DSK results appear identical on this scale. Also, only one tenth
of the modeling bandwidth is displayed for readability of the
plots. Similar results are obtained over the full bandwidth up
to 10 GHz. These statements are confirmed by Table I, which
reports error metrics computed for all models over the entire
bandwidth.

B. Measured PCB Interconnect

The second example is a 10-cm-long printed circuit board
(PCB) interconnect. The structure, which includes signal
launches and discontinuities, is characterized via measured scat-
tering responses up to 40 GHz (courtesy of Prof. C. Schuster,
formerly IBM). A total number of frequency samples
are available. For this case, the delays are not known a priori
and must be inferred from the data. The estimation procedure
of Section III-A leads to the results of Table II. Fig. 1 reports an
illustration of the time-frequency energy localization for ,
which leads to the delay estimates reported in the table.

TABLE II
DELAYS ESTIMATES FOR THE PCB INTERCONNECT OF SECTION V-B

TABLE III
MACROMODELING RESULTS FOR THE PCB INTERCONNECT OF SECTION V-B

Fig. 9. Comparison between DVF model and data for the return loss � of the
PCB interconnect of Section V-B.

Fig. 10. As in Fig. 9, but for insertion loss � .

Table III reports the modeling parameters and results of the
VF, DSK, and DVF algorithms. The level of approximation is
excellent, taking into account that modeling accuracy cannot be
as low as desired due to the measurement noise floor. Figs. 9–11
compare the DVF model responses to the corresponding raw
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Fig. 11. As in Fig. 9, but for � .

Fig. 12. Model vs data deviation for the scattering element � of the PCB
interconnect of Section V-B.

measured data. Also for this case, no visible difference is evident
from the plots. This applies also to the DSK and VF results, not
reported. A confirmation is provided by Fig. 12, which reports
the frequency-dependent model versus data error obtained by
all three algorithms for the response.

C. Complex Bus

We now consider a complex bus structure, namely the IBM
GX bus. The raw specification is a set of frequency-dependent
scattering parameters (courtesy of IBM), obtained by cascading
several different simpler models of lumped blocks and fre-
quency-dependent transmission lines, and performing a simple
frequency-domain solution of the interconnected system. Main
task is to compute a global model from the terminal responses
of the entire bus, without using any information on the internal
structure.

For this structure, the number of dominant delays varies de-
pending on the considered response. Table IV summarizes the
various delays estimates that are used to extract the model.

Both delayed macromodeling schemes DSK and DVF and the
classical strictly rational VF were applied, in order to compare
model accuracy and complexity. The model identification re-
sults are summarized in Table V for the modeled scattering re-

TABLE IV
DELAYS ESTIMATES FOR THE COMPLEX BUS OF SECTION V-C

TABLE V
MACROMODELING RESULTS FOR THE COMPLEX BUS OF SECTION V-C

Fig. 13. Comparison between model and data for the return loss � of the
complex bus of Section V-C.

sponses. The results show that a significant saving in terms of
number of poles is achieved by DSK and DVF with respect to
standard VF. The DSK produces a model that is not stable due
to the presence of poles with positive real part. Conversely, the
DVF model is stable and thus represents the best compromise
between model accuracy and complexity.

Figs. 13–15 report a comparison between the global DVF
model and the raw data, showing excellent correlation. Fig. 16
reports the magnitude of the model versus data errors, which
are uniformly bounded over frequency for all VF, DSK, and
DVF algorithms.

D. Transient Analysis

We consider the three interconnect structures discussed
in Sections V-A–V-C and we compare the performance in
terms of accuracy and simulation time of the SPICE netlists
corresponding to the VF and DVF macromodels. In all cases,
we adopt the same model termination scheme, in order to
draw meaningful conclusions. In particular, all model ports are
matched into their reference resistance . Each model
is excited at one port using a single pulse, and the received
voltage is monitored at the other interconnect port.

The results of the SPICE transient simulations are reported
in the various panels of Fig. 17. We also include in Fig. 17(c)
an additional structure, which is the same PCB interconnect of
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Fig. 14. As in Fig. 13, but for insertion loss � .

Fig. 15. As in Fig. 13, but for return loss � .

Fig. 16. Model versus data deviation for the scattering element� of the com-
plex bus of Section V-C.

Section V-B, but with a length of 50 cm. This structure is in-
cluded with the aim of relating the macromodeling efficiency
with the electrical length of the interconnect. In all cases, a quite
good match is observed between the VF and DVF model.

Fig. 17. Transient SPICE results for: (a) the distributed circuit of Section V.A;
(b) the measured PCB interconnect of Section V.B; (c) as in (b), but with an
interconnect length of 50 cm; (d) the bus structure of Section V.C.

However, a closer look at the results reveals that VF models
produce spurious oscillations before the expected propagation
delay has elapsed, since this delay is only approximated by VF
via a finite-order rational function. Fig. 18 illustrates this for the
50-cm-long PCB interconnect. Conversely, the DVF models are



254 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 1, FEBRUARY 2010

Fig. 18. Zoom of Fig. 17(c).

TABLE VI
TRANSIENT SPICE SIMULATION TIME

exempt from this inconsistency, since the delays are explicitly
extracted and accounted for in the model.

We conclude by presenting in Table VI a summary of the CPU
time required for the various transient simulations. It can be
observed that the speedup factor of DVF with respect to standard
VF macromodels scales almost linearly with the electrical size
of the interconnect at the highest frequency of interest.

VI. CONCLUSION

We presented a new model identification algorithm for long
interconnect links. The modeling strategy is based on a com-
bination of propagation delay extraction and rational approxi-
mation in the frequency domain. The explicit inclusion of delay
terms allows for a direct representation of rapid phase variations,
whereas slowly varying variations are captured by low-order ra-
tional coefficients. Model identification is performed directly on
terminal scattering responses via iterative solution of suitably
weighted linear least-squares problems. This process leads to
particularly compact models that can be readily synthesized into
SPICE-compatible netlists, allowing for significant reduction of
simulation times with respect to more standard purely rational
macromodeling techniques.

APPENDIX

We prove in this Appendix that composite structures obtained
by cascading lumped multiport elements and transmission line
segments may be represented as in (3). We denote with the
set of the pseudorational transfer functions in the form

(28)

where are proper rational transfer functions and the sum-
mation may include infinite terms. Also, we denote with
the matrices with the entries in . The proof is conducted
for , since the generalization to larger port counts
follows the same scheme.

We first prove that the cascade connection of two scattering
matrixes and leads to a scat-
tering matrix that also belongs to . Simple calcula-
tions show that connection of port 2 of with port 1 of
leads to the following expressions:

(29)

Clearly, the set is closed under the sum and product opera-
tions. Using the result

valid for , we can conclude that implies
. Therefore, all elements of in (29) belong to

. The above result can be applied recursively to show that
the cascade connection of any number of multiport elements in

also belongs to .
We conclude the proof by showing that the scattering ma-

trix elements for lumped circuit blocks and transmission-line
structures belong to . The case of lumped circuits is trivial,
since their responses are purely rational. Conversely, the case
of transmission-lines, including the lossy and frequency-de-
pendent cases, requires some care and some approximation.
We consider in the following a scalar transmission line of
length with frequency dependent per-unit-length parameters

, and . We define the propagation factor
and characteristic admittance, respectively, as

A straightforward calculation leads to the following expressions
for the scattering matrix elements:

–
–

(30)

where

with representing the port reference admittance. Following
the well-known Method of Characteristics approach [14], [17],
we extract the propagation delay from the propagation oper-
ator

where includes no delay and represents mainly fre-
quency-dependent attenuation and dispersion effects. Then,
we compute rational approximations for characteristic ad-
mittance and delayless propagation operator
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. Note that the corresponding approximation
errors can be reduced below any prescribed threshold due to the
universal approximation properties of rational functions [40].
Setting

we can approximate the denominators of (30) with the expan-
sion

– –

–

It is easily recognized that this expression belongs to . This
proves that the scattering matrix of frequency-dependent trans-
mission lines belongs to , provided that suitable rational
approximations are used for both characteristic admittance and
delayless propagation operators.
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