
c© 2010 Tan Yan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4826802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ALGORITHMIC STUDIES ON PCB ROUTING

BY

TAN YAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Martin D. F. Wong, Chair and Director of Research
Assistant Professor Deming Chen
Associate Professor Steven S. Lumetta
Professor Robin A. Rutenbar

ABSTRACT

As IC technology advances, the package size keeps shrinking while the pin

count of a package keeps increasing. A modern IC package can have a pin

count of thousands. As a result, a complex printed circuit board (PCB) can

host more than ten thousand signal nets. Such a huge pin count and net count

make manual design of packages and PCBs an extremely time-consuming and

error-prone task. On the other hand, increasing clock frequency imposes vari-

ous physical constraints on PCB routing. These constraints make traditional

IC and PCB routers not applicable to modern PCB routing. To the best of

our knowledge, there is no mature commercial or academic automated router

that handles these constraints well. Therefore, automated PCB routers that

are tuned to handle such constraints become a necessity in modern design.

In this dissertation, we propose novel algorithms for three major aspects of

PCB routing: escape routing, area routing and layer assignment.

Escape routing for packages and PCBs has been studied extensively in the

past. Network flow is pervasively used to model this problem. However,

previous studies are incomplete in two senses. First, none of the previous

works correctly model the diagonal capacity, which is essential for 45◦ rout-

ing in most packages and PCBs. As a result, existing algorithms may either

produce routing solutions that violate the diagonal capacity or fail to output

a legal routing even though one exists. Second, few works discuss the es-

cape routing problem of differential pairs. In high-performance PCBs, many

critical nets use differential pairs to transmit signals. How to escape differ-

ential pairs from a pin array is an important issue that has received too little

attention in the literature.

In this dissertation, we propose a new network flow model that guaran-

tees the correctness when diagonal capacity is taken into consideration. This

model leads to the first optimal algorithm for escape routing. We also extend

our model to handle missing pins. We then propose two algorithms for the

ii

differential pair escape routing problem. The first one computes the optimal

routing for a single differential pair while the second one is able to simul-

taneously route multiple differential pairs considering both routability and

wire length. We then propose a two-stage routing scheme based on the two

algorithms. In our routing scheme, the second algorithm is used to generate

initial routing and the first algorithm is used to perform rip-up and reroute.

Length-constrained routing is another very important problem for PCB

routing. Previous length-constrained routers all have assumptions on the

routing topology. We propose a routing scheme that is free of any restriction

on the routing topology. The novelty of our proposed routing scheme is

that we view the length-constrained routing problem as an area assignment

problem and use a placement structure to help transform the area assignment

problem into a mathematical programming problem. Experimental results

show that our routing scheme can handle practical designs that previous

routers cannot handle. For designs that they could handle, our router runs

much faster.

Length-constrained routing requires the escaped nets to have matching or-

dering along the boundaries of the pin arrays. However, in some practical

designs, the net ordering might be mismatched. To address this issue, we pro-

pose a preprocessing step to untangle such twisted nets. We also introduce

a practical routing style, which we call single-detour routing, to simplify the

untangling problem. We discover a necessary and sufficient condition for the

existence of single-detour routing solutions and present a dynamic program-

ming based algorithm that optimally solves the problem. By integrating our

algorithm into the bus router in a length-constrained router, we show that

many routing problems that cannot be solved previously can now be solved

with insignificant increase in runtime.

The nets on a PCB are usually grouped into buses. Because of the high pin

density of the packages, the buses need to be assigned into multiple routing

layers. We propose a layer assignment algorithm to assign a set of buses

into multiple layers without causing any conflict. Our algorithm guarantees

to produce a layer assignment with minimum number of layers. The key

idea is to transform the layer assignment problem into a bipartite matching

problem. This research result is an improvement over a previous work, which

is optimal for only one layer.

iii

To my parents, my wife and my son

iv

ACKNOWLEDGMENTS

I owe my deepest gratitude to my adviser, Prof. Martin D. F. Wong. He

has been constantly helping me in many aspects: from establishing research

topics to presenting research results. This dissertation would not have been

possible without his patient guidance, inspiring discussions and abundant

encouragement.

Besides my adviser, I would like to thank the rest of my doctoral com-

mittee, Prof. Deming Chen, Prof. Steven S. Lumetta and Prof. Robin A.

Rutenbar, for their insightful comments and constructive suggestions. Their

invaluable opinions have significantly improved the quality of this disserta-

tion

I also want to express my grateful thanks to Fujitsu Lab for funding

and supporting my PCB research. In particular, I would like to thank Mr.

Toshiyuki Shibuya, Mr. Takao Yamaguchi and Mr. Ikuo Ohtsuka for sharing

their precious design experience and preparing design data for my experi-

ments. I would also like to thank Mr. Philip Honsinger of IBM Corp. for

the valuable discussions on PCB design.

The members of Prof. Wong’s research team made my life at UIUC very

enjoyable. I would like to thank Hui Kong for the heated discussions. It

has been a great pleasure to work with him. I would also like to thank

Lijuan Luo, Qiang Ma, Peggi Wu and Hongbo Zhang for all the stimulating

discussions and the seamless collaborations we had. I would like to thank

Leslie Hwang for making the office a fun place and for helping me with my

ECE444 study. I would also like to thank Dr. Lei Cheng, Dr. Liang Deng

and Dr. Yu Zhong for the tips and help in both study and life.

Last but not least, I would like to thank my family for their endless love

and support. I want to thank my parents for raising me up and putting all

their efforts in educating me. I cannot thank my wife, Ning Fu, enough for

her love, support, and encouragement throughout my Ph.D. study.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . xiv

CHAPTER 1 INTRODUCTION . 1
1.1 Printed Circuit Board (PCB) Routing 1
1.2 Overview of this Dissertation 3

CHAPTER 2 ESCAPE ROUTING WITH DIAGONAL
CAPACITY . 6
2.1 Introduction . 6
2.2 Background . 8
2.3 Our Network Flow Model . 10
2.4 Modeling the Missing Pins . 20
2.5 Experimental Results . 20
2.6 Conclusion . 23

CHAPTER 3 ESCAPE ROUTING OF DIFFERENTIAL PAIRS . . 25
3.1 Introduction . 25
3.2 Background . 28
3.3 Routing One Differential Pair 31
3.4 Routing Multiple Pairs . 35
3.5 Overall Routing Scheme . 38
3.6 Experimental Results . 39
3.7 Conclusion . 41

CHAPTER 4 LENGTH-CONSTRAINED ROUTING 42
4.1 Introduction . 42
4.2 Background . 45
4.3 Our BSG-Route . 48
4.4 Extensions . 63
4.5 Experimental Results . 68
4.6 Conclusion . 73

vi

CHAPTER 5 UNTANGLING TWISTED BUS 74
5.1 Introduction . 74
5.2 Motivation . 75
5.3 Single-Detour Routing . 77
5.4 Dynamic Programming Solution 79
5.5 Experimental Results . 85
5.6 Conclusion . 86

CHAPTER 6 LAYER ASSIGNMENT 87
6.1 Introduction . 87
6.2 Background . 88
6.3 Our Solution . 90
6.4 Experimental Results . 94
6.5 Conclusion . 95

CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 97

APPENDIX A PROOF OF THEOREM 5 99
A.1 Some Definitions and Lemmas 99
A.2 Necessary Condition . 103
A.3 Sufficient Condition . 104

REFERENCES . 112

AUTHOR’S BIOGRAPHY . 117

vii

LIST OF TABLES

2.1 Experimental results of our proposed network flow model. . . . 22

3.1 Experimental results of our two-stage differential pair rout-
ing scheme. 39

4.1 Experimental results of our BSG-route. 69

6.1 Experimental results of our layer assignment algorithm. 95

viii

LIST OF FIGURES

1.1 An illustration of PCB routing. 2
1.2 PCB routing vs. IC routing. (a) PCB routing: a net is

preferred to be routed on one single layer; vias are added
only at the two ends of the route. (b) IC routing: each
routing layer has a preferred routing direction; the routing
path needs to switch layers (thus needs vias) to change
routing direction. 2

2.1 An example of the escape routing problem (left) and the
enlarged view of a tile (right). Shaded areas denote block-
ages. Specified pins (black) are escaped to the boundary
of the pin grid. In this example, O-cap = 2 and D-cap = 3. . . 7

2.2 The traditional network flow model used in previous works.
Black pins denote the to-be-escaped pins and there are unit
capacity edges from the super source s to them. Edges
extending outside the boundary of the pin array are all
incident to the super sink t. 9

2.3 Previous network flow models cannot handle D-cap cor-
rectly. For the case O-cap = 2, D-cap = 3 in (a), models
in [23, 25] may produce illegal routing in (b) and models
in [17,18] cannot capture the valid routing in (c). 10

2.4 Our network flow model inside a tile. 11
2.5 Turning a node with capacity c (left) into an edge with the

same capacity (right). 11
2.6 The actual implementation of our model. 12
2.7 Split the nodes and edges of a flow (left) to obtain a pla-

nar topological routing (right) and then apply geometric
transformation to obtain detail routing (c). 13

2.8 The two properties of a directed routing R with minimum
number of crossings with all orthogonal cuts. 14

2.9 By reconnecting the wires, we can reduce the number of
crossings between the wires and the orthogonal cuts with-
out affecting the legality of the routing. 15

ix

2.10 By shifting the wire from the pin to the neighboring tile,
we can reduce the number of crossings between the wires
and the orthogonal cuts without affecting the legality of
the routing. 15

2.11 By reconnecting the wires, we can reduce the second situ-
ation to the first situation. 15

2.12 Constructing a flow solution of the intra-tile network. (a)
The intra-tile network. (b)–(f) Analysis of the possible flow
configurations of the intra-tile network. 16

2.13 If O-cap is odd and there are 2 · O-cap wires passing the
tile, then D-cap ≥ 2x ≥ O-cap + 1. 19

2.14 Missing pins increase the routing resource. 20
2.15 Modeling missing pins in our network. 21
2.16 Routing solution of modified 8. The shaded zones highlight

the spaces of the missing pins that are fully utilized by our
router. The dashed polygon is drawn on top of the result
to show that the routing uses up almost all routing resources. 23

2.17 Multi-layer network. Black pins are to be escaped and
thick edges are inter-layer edges. 24

3.1 A differential pair is a pair of wires transmitting comple-
mentary signals. The two signals are subtracted at the
receiver side to obtain the actual signal. 25

3.2 An example of differential pair escape routing. Pins with
the same prefix (e.g. 1a and 1b) are a differential pair.
Routing from black pins are pre-routed pairs and are treated
as obstacles. 26

3.3 Histograms of the distances between the two pins of a dif-
ferential pair in two industrial boards. The x-axis is the
Manhattan distance between the two pins of a differen-
tial pair in terms of pin pitch. For example, if two pins
are adjacent, then their distance is 1 (pitch). The y-axis
is the percentage of the differential pairs that have the
corresponding distance. Notice that a design usually has
hundreds of differential pairs, so even a small percentage
means many nets. 27

3.4 A non-trivial case. The Manhattan distance between any
pair of pins is no larger than 4. 27

3.5 Ideal differential pair escape routing (a) can be viewed as
two short single track wires from the two pins merging into
double track wires. Splitting of the wires after merging (b)
is illegal. 29

x

3.6 Routing one differential pair. (a) Routing graph GD for
double track wires; thick path shows the shortest path be-
tween s and t. (b) Network graph GS for single track wires;
thick arrows indicate the flow result. (c) Routing result by
combining the results of (a) and (b). 32

3.7 A crossing between the double track wires and single track
wires (a) can be resolved, resulting in even shorter wire
length (b). 34

3.8 Routing multiple nets. (a) Routing graph G∗

S for single
track wires; thick paths show the single wire routing paths
for each differential pair. (b) Network graph G∗

D for double
track wires; some edges are omitted to simplify the illus-
tration. (c) Flow solution of (b). (d) Routing result by
combining the result of (a) and (c). 36

3.9 Routing result of ex10. 40

4.1 Length-constrained routing between pin arrays (solid lines).
Each pin array is viewed as a rectangular block and the
ends of the escape routing are regarded as the pins of the
length-constrained routing problem (black dots). Escape
routing inside the components is ignored (dashed lines). 42

4.2 Topological restrictions on previous routers. The routers
in [46,47] can only solve the channel routing problem shown
in (a) and the router in [15] routes wires monotonically, as
in (b). 43

4.3 A length-constrained problem with general topology. 43
4.4 Different distances between the two components can make

the problem size very different for a gridded router. 46
4.5 The BSG structure and cell sizing. 47
4.6 The length of a wire and the area it occupies (black wire

plus gray margin) are related by the wiring pitch λ. 48
4.7 An illustration of our idea. 49
4.8 Different embeddings can lead to the same area assignment. . 51
4.9 Each wall in the BSG is assigned a variable to represent its

position. 52
4.10 Illustration of component location constraints. 53
4.11 Location constraints on pin p. The two thick walls are

constrained by equations (4.9) and (4.10). 54
4.12 The empty cell between the two pins provides the necessary

space if the distance between two pins is larger than the
wiring pitch. 54

4.13 The minimum and maximum routing length inside a BSG cell. 59
4.14 A skinny corner cell does not allow wire extension. 60

xi

4.15 If two components are placed too close to each other as in
(a), then there might be a conflict between the two pins p
and q. We can resolve the conflict by adding columns of
BSG cells in between as in (b). 61

4.16 Conflict may also occur inside a component. 62
4.17 Separation rule between the wire and the component is

violated in (a). We resolve this by inserting a ε/2 margin
around the component as shown in (b). 62

4.18 Separating the wires from the BSG walls by max(ε1, ε2)/2
guarantees the satisfaction of wire separation rule. 65

4.19 A case we observed from industrial data. Vias (black dots)
are inserted to resolve the reversed ordering of the pins. 65

4.20 Three types of vias: through via, blind via, and buried via. . . 66
4.21 The embedding of a net is marked by the gray cells. It

changes layers from cell vi to cell vj. The darker cells
vi, vp, vj indicate via cells. 66

4.22 Our routing result of general 3. 71
4.23 Routing result of extend. 72

5.1 Must untangle the twisted nets before length-constrained
routing. 74

5.2 Mismatched pin ordering can be resolved by untangling the
twisted nets. 76

5.3 Upward routing vs. single-detour routing. 77
5.4 The five cases of dividing a subproblem P (i, j). 80
5.5 Three ways of decomposing a subproblem. 81
5.6 Capacity should be checked when constructing bigger sub-

problems from smaller subproblems. Dark area indicates
the region in which the wire capacity should be checked. . . . 84

5.7 Our solution for a test case with 15 nets. 86

6.1 Illustration of the projection interval of a bus. 88
6.2 Bus b1 has intervals l1 and r1 in the left and right array

respectively. Bus b2 has intervals l2 and r2 in the left and
right array respectively. The escape routes of the two buses
in the left do not have conflicts so l1 and l2 do not over-
lap. Contrarily, their escape routes have conflicts (the thick
routing) in the right where r1 and r2 overlap. 89

6.3 The intervals of bus b1 and b2 have different ordering on
the two sides. This causes intersections between the area
routing of the two buses. 89

xii

6.4 An example of the layer assignment problem is given in
(a). The heuristic implied by [16] produces a three-layer
solution (b) while the optimal layer assignment needs only
two layers as in (c). Buses represented by the same line
style (solid, dotted, gray) are assigned to the same layer;
different line styles indicate different layers. (d) The corre-
sponding bipartite graph GB for this problem. The match-
ings indicated by thick edges in (e) and (f) correspond to
the layer assignments in (b) and (c) respectively. 91

7.1 Routing diagonal wires on rectangular grid will cause too
small wire spacing. 98

A.1 An SDU problem with pin sequence (2, 4, 3, 1, 6, 5) and its
solution. Circles represent pins and squares represent exits. . 100

A.2 The four cases when wires have intersections. 102
A.3 An example of how our algorithm works on pin sequence

{5, 2, 4, 3, 1, 7, 6}. 0 and 8 are virtual pins. S means solu-
tion sequence. 105

A.4 The algorithm in this proof produces a solution (a) with
three wires between 3 and 1 while another solution (b) has
at most two wires between them. 111

xiii

LIST OF ABBREVIATIONS

BGA Ball Grid Array

BSG Bounded-Sliceline Grid

CPU Central Processing Unit

DIP Dual In-line Package

DPER Differential Pair Escape Routing

LP Linear Programming

NE Northeast

NW Northwest

OTT Oct-Touched Tile

PCB Printed Circuit Board

SDU Single-Detour Untangling

SE Southeast

SW Southwest

xiv

CHAPTER 1

INTRODUCTION

As IC technology advances, the package size keeps shrinking while the pin

count of a package keeps increasing. Nowadays, a dense package can have

as many as 2000 pins [1]. Such a huge pin count makes manual design of

packages and printed circuit boards (PCBs) an extremely time-consuming

and error-prone task. On the other hand, increasing clock frequency imposes

special physical constraints such as length-constrained routing, pairwise rout-

ing, planar routing, etc., on high performance printed circuit boards [2–5].

These constraints make traditional IC and PCB routers not applicable to

modern PCB routing. To the best of our knowledge, there is no mature com-

mercial or academic automated router that handles these constraints well.

Therefore, automated PCB routers that are tuned to handle such constraints

become a necessity in modern design.

1.1 Printed Circuit Board (PCB) Routing

A modern PCB usually hosts several chip packages whose footprints on board

are arrays of pins (see Figure 1.1).1 Such pins on the board are expected

to be connected by non-crossing wires. Not all connections can be routed

on one layer, so we may need multiple layers to accommodate all the wire

connections. However, introducing vias at the middle of a route would in-

troduce reflection and ringing effects which can cause serious signal integrity

issues [4, 5]. Therefore, it is highly preferred that no vias are inserted in the

middle of the routing (vias are allowed at the two ends to connect to the

package pin/ball). This requires the routing of a net to be planar, with-

out switching layers. This planar routing style distinguishes PCB routing

1Denser packages usually use a ball grid array (BGA), which is mounted on the surface
of the board. The footprint of a BGA is usually an offset array of through vias, which
looks like an array of pins

1

Routing layer

Surface

Package 1
Package 2

Escape routing Escape routingLength-constrained

routing

Pin array

Pin array

Multiple

layers

Figure 1.1: An illustration of PCB routing.

Through-Via Wire

X layer

Y layer

X layer

Via

Wire

(a) (b)

Figure 1.2: PCB routing vs. IC routing. (a) PCB routing: a net is
preferred to be routed on one single layer; vias are added only at the two
ends of the route. (b) IC routing: each routing layer has a preferred routing
direction; the routing path needs to switch layers (thus needs vias) to
change routing direction.

from the conventional XY routing of ICs, in which each routing layer has a

preferred routing direction. In IC routing, if a routing path needs to change

direction, vias are inserted into the path to make the switch to the layer with

the desired direction. Figure 1.2 illustrates the differences between PCB and

IC routing. For this reason, conventional IC routing algorithms cannot be

applied to solve the PCB routing problem.

PCB routing is usually decomposed into two subproblems:

Escape routing : routing from pins inside the arrays to the boundary of

the arrays (help the pins “escape” the array).

Length-constrained routing : routing between the pin arrays.

2

Escape routing and length-constrained routing have different tasks. Since

escape routing usually dominates the total number of layers, the major task

of escape routing is to escape as many pins from the array as possible or to

escape a set of specified pins using as few layers as possible. Sometimes it

may also need to provide matching net orderings along the boundaries of the

two arrays in order to provide a planar topology for later length-constrained

routing. The focus of length-constrained routing, on the other hand, is to

carefully detour the wires to meet the length bounds while maintaining the

planar topology inherited from escape routing.

Nets are usually grouped as buses on PCBs. Nets belonging to one bus

usually have similar timing and other constraints and are thus expected to

be routed close to each other on the same layer. Due to the huge pin count

and high density of the pin array, it usually requires multiple layers to route

the buses without any conflict. In fact, modern PCBs may contain as many

as 20 layers [6]. Therefore, how to assign the routing of buses to different

layers also becomes an important issue.

1.2 Overview of this Dissertation

In this dissertation, we present our research results on escape routing, length-

constrained routing and layer assignment [7–13].

In Chapter 2, we discuss the escape routing problem. Escape routing for

packages and PCBs has been studied extensively in the past. Network flow is

pervasively used to model this problem. However, none of the previous works

correctly models the diagonal capacity, which is essential for 45◦ routing in

most packages and PCBs. As a result, existing algorithms may either produce

routing solutions that violate the diagonal capacity or fail to output a legal

routing even though one exists. In Chapter 2, we propose a new network

flow model that guarantees the correctness when diagonal capacity is taken

into consideration. This model leads to the first optimal algorithm for escape

routing. We also extend our model to handle missing pins.

Although the escape routing problem is extensively studied, few works

discuss the escape routing of differential pairs. In Chapter 3, we study the

differential pair escape routing problem and propose two algorithms. The

first one computes the optimal routing for a single differential pair while

3

the second one is able to simultaneously route multiple differential pairs

considering both routability and wire length. We then propose a two-stage

routing scheme based on the two algorithms. Experimental results show that

our routing scheme is very effective in solving the differential pair escape

routing problem.

Length-constrained routing is another very important issue for PCB rout-

ing. Previous length-constrained routers all have assumptions on the routing

topology, whereas practical designs may be free of any topological constraint.

In Chapter 4, we propose a routing scheme that deals with general topology.

Unlike previous works, our approach does not impose any restriction on the

routing topology. Moreover, our routing scheme is gridless. Its performance

does not depend on the routing grid size of the input while previous length-

constrained routers do. This is a big advantage because modern PCB routing

configurations usually imply huge routing grids. The novelty of our approach

is that we view the length-constrained routing problem as an area assignment

problem and use a placement structure, bounded-sliceline grid (BSG) [14], to

help transform the area assignment problem into a mathematical program-

ming problem. We then use an iterative approach to solve the mathematical

programming problem. Experimental results show that our routing scheme

can handle practical designs that previous routers cannot handle. For designs

that they could handle, our router runs much faster. For example, in one of

our results, we obtain the solution in 88 s while a previous router [15] takes

more than one day.

In order to perform the length-constrained routing in a planar fashion, the

orderings of escaped nets along the boundaries of the pin arrays are required

to be matching. However, in some practical designs, the net ordering might

be mismatched and the nets become twisted. In Chapter 5, we propose

a preprocessing step to untangle such twisted nets. We also introduce a

practical routing style, which we call single-detour routing, to simplify the

untangling problem. We then present a necessary and sufficient condition for

the existence of single-detour routing solutions. Furthermore, we present a

dynamic programming based algorithm to solve the single-detour untangling

problem with consideration of wire capacity between adjacent pins. Our

algorithm produces an optimal single-detour routing solution that rematches

the net ordering. By integrating our algorithm into the bus router in a

previous length-constrained router, we show that many routing problems

4

that could not be solved previously can now be solved with insignificant

increase in runtime.

The nets on a PCB are usually grouped into buses. Because of the high pin

density of the packages, it is impossible to escape all the buses in one layer.

How to assign the buses into multiple layers without causing any conflict is

an important issue in PCB design. In Chapter 6, we propose an optimal

layer assignment algorithm to assign a set of buses into multiple layers. Our

algorithm guarantees to produce a layer assignment with minimum number

of layers. This is an improvement over a previous work [16], which is optimal

for only one layer.

5

CHAPTER 2

ESCAPE ROUTING WITH DIAGONAL
CAPACITY

2.1 Introduction

Escape routing is an important problem in package and PCB design. Its

purpose is to route from specified pins in a pin array to the boundary of the

array (see Figure 2.1). It can be further classified into three categories:

Unordered escape is to route from pins inside one pin array to the bound-

ary of the array without considering the pin ordering along the bound-

ary. Previous works on this topic include [17–26].

Ordered escape also considers only one pin array. However, it requires the

escape routing to conform to specified ordering along the boundary of

the pin array. Previous works on this topic include [27–31].

Simultaneous escape considers escape routing of two pin arrays. The or-

derings of the escaped nets along the boundaries of the two pin arrays

are required to match each other in order to provide a planar topol-

ogy for later length-constrained routing. Previous works on this topic

include [32–35].

The three types of escape routing problems have different applications in

package and PCB routing. In this dissertation, we focus on the unordered

escape problem.

In the pin array, the design rules limit the number of wires between two

orthogonally or diagonally adjacent pins. We call such constraints orthogonal

capacity and diagonal capacity respectively, or O-cap and D-cap for short (see

Figure 2.1). If we consider a tile of the pin array, which is the square formed

by four adjacent pins, we can see that O-cap limits the number of wires that

go through its four sides while D-cap limits the number of wires that go

through its two diagonals.

6

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

D−cap

O−cap

O−cap

Figure 2.1: An example of the escape routing problem (left) and the
enlarged view of a tile (right). Shaded areas denote blockages. Specified
pins (black) are escaped to the boundary of the pin grid. In this example,
O-cap = 2 and D-cap = 3.

Network flow is pervasively used to model this problem [17, 18, 21, 23–25].

The idea is to view each routing path as a unit flow from the pin to the

boundary. Since no ordering is specified, a flow solution always corresponds

to some non-crossing routing. However, none of the previous network flow

models correctly capture the diagonal capacity, which is essential for 45◦

routing in most packages and PCBs. The models in [23,25] simply ignore the

diagonal capacity and may therefore result in design rule violations. On the

other hand, the models [17,18] set a limit on the number of wires inside a tile.

Since tile capacity does not correctly reflect diagonal capacity, their models

may miss the optimal solution. Detailed discussion about these models can

be found in the next section. The other two models are not correct either. [24]

uses triangulation, which captures only one of the two diagonals in a tile.

Therefore, its solution may still contain capacity violations on the other

diagonal. [21]’s network only gives an upper bound estimation on the number

of routable nets. As we can see from the above discussion, none of the

previous network flow models is able to correctly model the diagonal capacity.

Non-flow solutions were also proposed in some early works [22,26]. Those

works assume that all the pins in the array must be escaped on a single layer

and the routing is symmetrical. This symmetry assumption is the foundation

of their algorithms. However, due to the high pin density in modern packages

and PCB designs, not all pins in the array can be escaped on one layer and the

escape routing is very likely to be asymmetrical. Therefore, their algorithms

are not applicable to the more general escape routing problem we discuss

7

here (we do not require all the pins to be escaped on one layer or the routing

to be symmetrical).

In this chapter, we propose a network flow model that correctly models

the diagonal capacity. Our model guarantees to give a legal routing if one

exists. We then build an algorithm based on this model. As far as we know,

this is the first algorithm that guarantees optimality. We also extend our

model to handle missing pins, which are unused pins removed to increase

the routing resource. Experimental results show that our algorithm has very

short runtime.

The rest of this chapter is organized as follows: Section 2.2 introduces

some background information. Section 2.3 presents our network flow model

and escape routing algorithm, and Section 2.4 extends our model to deal

with missing pins. Finally, experimental results are given in Section 2.5 and

concluding remarks are given in Section 2.6.

2.2 Background

In this section, we will first formulate the escape routing problem and then

introduce the traditional network flow model used by some previous works.

2.2.1 Problem Formulation

The input to the escape routing problem is an m × n pin array with p pins

specified as to-be-escaped pins. Certain areas of the pin array are marked

as blockages, which do not allow any routing inside. Such blockages are

used to model pre-routed nets or to guide the routing to escape through

certain preferred boundaries. O-cap and D-cap are also given to specify the

orthogonal capacity and diagonal capacity in the tile. We can safely assume

that O-cap ≤ D-cap ≤ 2 · O-cap for all our inputs due to the following two

facts:

• The diagonal of a square tile is longer than the side of the square.

Therefore, D-cap ≥ O-cap.

• The O-cap constraint already implies that at most 2 ·O-cap wires can

pass the diagonal. So setting D-cap to be larger than 2 · O-cap is

8

ts
O-cap

O-cap

O-cap

O-cap

= Pin node = Tile node

(a) Flow model for a pin grid (b) Inside a tile

Figure 2.2: The traditional network flow model used in previous works.
Black pins denote the to-be-escaped pins and there are unit capacity edges
from the super source s to them. Edges extending outside the boundary of
the pin array are all incident to the super sink t.

meaningless.

The expected output of the problem is an octilinear planar routing from the

to-be-escaped pins to the boundary of the pin array satisfying the capacity

constraints and avoiding the blockages. We would also like the total length

of the routing to be minimized.

2.2.2 Previous Works

In the traditional network flow model used by [17, 18, 23, 25],1 each pin is

represented by a pin node and each tile is represented by a tile node. Edges

are added between horizontally and vertically adjacent tile nodes and from

pin nodes to their adjacent tile nodes (see Figure 2.2). Edges extending out

of the pin grid boundary are connected to a super sink. There are also edges

from a super source to the pin nodes that are expected to be escaped. This

model works fine if we consider only the orthogonal capacity O-cap because

we can add capacity constraints on the orthogonal edges in the network to

realize O-cap. However, diagonal capacity D-cap is not captured by this

model. Consider the case where O-cap = 2 and D-cap = 3, which is very

1Some of these works assume monotonic and/or symmetric routing. Therefore, some
orthogonal edges are unidirectional in their models. However, the network structure is the
same as what we show here.

9

3

2

22

2

(a) (b) (c)

Figure 2.3: Previous network flow models cannot handle D-cap correctly.
For the case O-cap = 2, D-cap = 3 in (a), models in [23,25] may produce
illegal routing in (b) and models in [17,18] cannot capture the valid routing
in (c).

common for PCB routing. Since the model has no control over the number

of wires passing through the diagonals of the tile, it may produce routing like

Figure 2.3 (b) which violates D-cap. In [17, 18], the number of wires inside

a tile is also limited by adding node capacities to tile nodes. However, such

node capacity does not correctly reflect the diagonal capacity. No matter

how we set the tile node capacity, there are always counter-examples:

• Tile node capacity ≥ 4: This is the same as having no tile capacity

because O-cap = 2 already implies at most 4 wires in a cell. The

network may produce the routing in Figure 2.3 (b), which violates D-

cap.

• Tile node capacity ≤ 3: The network cannot model the routing in

Figure 2.3 (c) because there are 4 wires inside the tile. However, the

routing itself is legal because only 2 wires pass each diagonal. As a

result, the network model may fail to capture a legal routing solution

even when one exists.

From the discussion above, we can see that such a simple network cannot

model diagonal capacity correctly. A more sophisticated network model is

needed to capture the diagonal capacity.

2.3 Our Network Flow Model

In our proposed network flow model, each tile contains five nodes, namely

N -node on the north, E-node on the east, S-node on the south, W -node on

10

W

S

N

EC
: capacity = O-cap

: capacity = O-cap/2

: capacity = 1

: capacity = ∞

: node capacity =

D-cap 2 O-cap/2

: orthogonal cut

: diagonal cut

Figure 2.4: Our network flow model inside a tile.

c
c

Figure 2.5: Turning a node with capacity c (left) into an edge with the
same capacity (right).

the west and C-node in the center (see Figure 2.4). The first four nodes are

called peripheral nodes and the last node is called the center node. We give

the center node a capacity of D-cap − 2 · ⌊O-cap/2⌋. Node capacity can be

realized by splitting the node into two and adding an edge with corresponding

capacity between them (see Figure 2.5).

We create bidirectional edges (which are realized by two directed edges:

a forward edge and a backward edge) between every peripheral node and

the center node and give these edges infinite capacity. We also introduce

bidirectional edges between peripheral node pairs (N,E), (E, S), (S,W) and

(W,N). We call such edges peripheral edges and give each of them capacity

⌊O-cap/2⌋. The five nodes and the edges between them compose an intra-tile

network. Connections between tiles are also necessary. We use bidirectional

edges to connect the N -node of a tile to the S-node of the tile above it as

well as the E-node of a tile to the W -node of the tile to the right of it. Such

edges are called inter-tile edges and have capacity O-cap. In order to escape

the pins, we also create a pin node for each pin and create unidirectional

edges from the four pins at the corners of a tile to the four peripheral nodes

in the tile. The edges are from the pin at the NW corner to N -node, from

11

Figure 2.6: The actual implementation of our model.

the pin at the NE corner to E-node, from the pin at the SE corner to S-node

and from the pin at the SW corner to W -node. We call these edges pin

edges. All pin edges have capacity 1. Of course, if any nodes or edges lie in

the blockage, we will not create them. In our implementation, we realize the

bidirectional edges and node capacities through directed edges. Hence, the

actual network looks like Figure 2.6.

Similar to the traditional model, we also introduce a super source s and

a super sink t. All edges from the boundary tiles to the outside of the pin

array are connected to t. Finally, we add edges with capacity 1 from s to the

pin nodes of all the to-be-escaped pins.

The intuition behind this network model is that we need shortcut edges

(the edges between peripheral nodes) to model the routing in Figure 2.3

(d). Such shortcut edges have capacity ⌊O-cap/2⌋. Then, in order to ensure

the diagonal capacity constraint, we give C-node a capacity of D-cap − 2 ·

⌊O-cap/2⌋ so that the diagonal cuts have capacity of exactly D-cap.

2.3.1 Correctness of the Model

We call a flow of the network legal if the flow through every edge is an integer

that does not exceed the edge capacity. The total flow from source s to sink

t is called the value of the flow. We call a routing legal if it satisfies O-cap

and D-cap constraints in all tiles.

Any legal flow of the network can be decomposed into a collection of unit

12

W

S

N

E

2

1
2

1

1

1

3

2

1
C W

S1

N1

E

N3N2

S3S2

C1 C2

(a) (b) (c)

Figure 2.7: Split the nodes and edges of a flow (left) to obtain a planar
topological routing (right) and then apply geometric transformation to
obtain detail routing (c).

flow which corresponds to routing paths. Therefore, there is a correspondence

between a flow solution and a routing solution:

Lemma 1. Any legal flow of value k corresponds to a legal escape routing of

k pins.

Proof. We can transform the flow into a routing topology by node and edge

splitting (see Figure 2.7): for a node v, if the flow through it flow(v) > 1,

we split the node into flow(v) copies. Similarly, we also split each edge with

flow larger than 1. The split nodes and edges are connected in a planar

fashion.

After node and edge splitting, each node and edge has flow at most 1. This

flow gives us a planar topology of the escape routing. Notice that the value

of the flow is k, so the escape routing contains k wires, each from a unique

pin because the edge from s to each to-be-escaped pin has capacity 1. So the

escape routing is from k pins.

It can be seen in Figure 2.4 that any orthogonal cut cuts only one inter-

tile edge with capacity exactly O-cap. Any diagonal cut cuts two peripheral

edges plus the center node. The total capacity of this cut is 2 · ⌊O-cap/2⌋+

D-cap−2·⌊O-cap/2⌋ = D-cap. Therefore, if the flow is legal, then the routing

topology we have also satisfies all the O-cap and D-cap constraints. Past

researches show that if a topology satisfies all the capacity constraints, then

there always exists a corresponding legal detail routing [36, 37]. Algorithms

are also proposed in [38,39] to transform the topological routes in to octilinear

detail routes.

13

Property 1 Property 2

Figure 2.8: The two properties of a directed routing R with minimum
number of crossings with all orthogonal cuts.

On the other hand, if there is a legal escape routing, then there exists a

legal flow:

Lemma 2. If there exists a legal escape routing of k pins, then our model

has a legal flow of value k.

Proof. The proof is by construction. We show that at least one legal routing

of k pins can be converted into a legal flow of value k.

Among all legal routing of k pins, we pick the one with minimum number

of crossings with all the orthogonal cuts (orthogonal cut is the cut between

orthogonally adjacent pins, see the dashed line segments in Figure 2.8). We

assign a direction to each wire, which is from the pin to the array boundary.

Such a directed routing R has the following properties (see also Figure 2.8):

1. No two wires of opposite directions can pass the same orthogonal cut.

2. If a wire is routed from a pin into one tile, then no wire can exit the

tile from the two orthogonal cuts incident to that pin.

Let us show why these two properties hold. If we have two wires of opposite

directions passing one orthogonal cut, we can reconnect the two wires as

shown in Figure 2.9 and reduce the number of crossings with the orthogonal

cut. Notice that the reconnection is local. Therefore, the routing after such

reconnection is still legal. This contradicts our assumption that R already

has minimum number of crossings with all the orthogonal cuts. Therefore,

Property 1 is true.

For Property 2, let us assume that there is one wire exiting the tile from

an orthogonal cut incident to the pin. There are two situations: (1) the wire

is from that pin; (2) the wire is from some other pin. For the first situation,

14

Figure 2.9: By reconnecting the wires, we can reduce the number of
crossings between the wires and the orthogonal cuts without affecting the
legality of the routing.

Figure 2.10: By shifting the wire from the pin to the neighboring tile, we
can reduce the number of crossings between the wires and the orthogonal
cuts without affecting the legality of the routing.

we can simply shift the wire to the neighboring tile to reduce the number of

crossings between the wires and the orthogonal cuts (see Figure 2.10). Note

that the change is local and the resultant routing is still legal. This contra-

dicts our assumption that R already has the minimum number of crossings

with all the orthogonal cuts. For the second situation, we reconnect the

wires as shown in Figure 2.11 and reduce it to the first situation. Therefore,

Property 2 is true.

Now we construct a legal flow solution from the legal routing R in two

steps:

Step 1 : We construct the flow on inter-tile edges and pin edges.

Figure 2.11: By reconnecting the wires, we can reduce the second situation
to the first situation.

15

EW

S

N

C EW

S

N

C EW

S

N

C

(a) (b) (c)

EW

S

N

C EW

S

N

C EW

S

N

C

(d) (e) (f)

Figure 2.12: Constructing a flow solution of the intra-tile network. (a) The
intra-tile network. (b)–(f) Analysis of the possible flow configurations of the
intra-tile network.

Step 2 : We construct the flow in the intra-tile network (recall that an

intra-tile network consists of the five tile nodes and the edges between

them, see also Figure 2.12 (a)).

If we view each directed wire in R as a unit flow from a pin to the array

boundary, we can obtain the flow crossing each orthogonal cut. We then

assign the same flow to the inter-tile edges corresponding to the orthogonal

cuts. If there is a wire from a pin to a tile, we assign a unit flow to the

corresponding pin edge. Notice that such a flow assignment would not violate

the capacity constraint because in a legal routing, there can be at most O-cap

wires crossing an orthogonal cut and at most one wire from each pin.

Now with all the flow on inter-tile edges and pin edges determined, we

know the flow going in and coming out of any intra-tile network. We also

know that total incoming flow = total outgoing flow for an intra-tile network

because of the continuity of the routing. Therefore, we can apply the flow

algorithm to obtain a flow solution for the intra-tile network. Here, we show

that for any incoming flow and outgoing flow configurations obtained from

16

Step 1, we can always obtain a legal flow solution for the intra-tile network.

We can classify the possible configurations of the incoming/outgoing flow

of the intra-tile network into three categories:

1. The flow comes into the intra-tile network at only one peripheral node

and out at one or more peripheral nodes. Without loss of generality,

we assume that the flow comes in at N -node. There are two cases:

either the incoming flow contains only flow from the inter-tile edge

(Figure 2.12 (b)) or the incoming flow also includes a flow from the pin

(Figure 2.12 (c)). In the first case, the total incoming flow is bounded

by O-cap because at most O-cap wires can pass an orthogonal cut in

a legal routing. In the second case, we know that no flow can come

out of the tile from W -node due to Property 2. Correspondingly, in

the routing R, the wires come into the tile from the top boundary of

the tile and from the pin. These wires must exit the tile at the bottom

and/or left boundary. As a result, all wires must cross the diagonal cut

shown in Figure 2.12 (c). Therefore, the total number of wires in the

tile cannot exceed D-cap, meaning that the total incoming flow cannot

exceed D-cap.

2. The flow comes into the intra-tile network at one or more periph-

eral nodes but exits the network at only one peripheral node (Fig-

ure 2.12 (d)). In this case, the total outgoing flow is bounded by O-cap

because at most O-cap wires can pass an orthogonal cut in a legal

routing.

3. The flow comes into the intra-tile network at exactly two peripheral

nodes and exits the network at exactly two peripheral nodes. Note

that there cannot be any flow from a pin to the peripheral nodes due

to Property 2. There are two cases: either the two incoming nodes are

adjacent to each other (Figure 2.12 (e)) or the two incoming nodes are

not adjacent (Figure 2.12 (f)). For the first case, we assume that the

flow comes in at N , W nodes without loss of generality. Then all the

wires in the tile must cross the diagonal cut shown in (Figure 2.12 (e)).

Therefore, the total number of wires in the tile cannot exceed D-cap,

meaning that the incoming flow is bounded by D-cap. We will discuss

the second case (Figure 2.12 (f)) later.

17

From the above discussion, we can see that total incoming flow ≤ D-cap

for all the cases except the one in Figure 2.12 (f). On the other hand, we

can verify by enumeration that any cut of the intra-tile network (a cut of

a network is a set of edges that separate the network into two disconnected

components) has a capacity of at least D-cap. According to the max-flow

min-cut theorem [40], we know that there must exist a legal flow solution of

the intra-tile network.

Now let us discuss the situation in Figure 2.12 (f), in which the flow comes

in at two non-adjacent peripheral nodes and exits at the two other peripheral

nodes. Without loss of generality, we assume the flow comes in at W and E.

The total incoming flow is bounded by 2 ·O-cap because each orthogonal cut

allows at most O-cap wires. The min-cut between the incoming nodes W ,

E and the outgoing nodes N , S includes the four peripheral edges and the

center node C. (The dashed edges and node in Figure 2.12 (f) illustrate the

cut.) Therefore, the capacity of the min-cut is

4 · ⌊O-cap/2⌋+ D-cap − 2 · ⌊O-cap/2⌋ = 2 · ⌊O-cap/2⌋+ D-cap

If O-cap is even, then 2 · ⌊O-cap/2⌋ = O-cap. Therefore,

min-cut = 2 · ⌊O-cap/2⌋+ D-cap = O-cap + D-cap ≥ 2 ·O-cap

Since the total incoming flow is bounded by 2 · O-cap, we know that there

must exist a legal flow through the max-flow min-cut theorem.

If O-cap is odd, then 2 · ⌊O-cap/2⌋ = O-cap − 1. Therefore,

min-cut = 2 · ⌊O-cap/2⌋+ D-cap = O-cap + D-cap − 1 ≥ 2 ·O-cap − 1

So if the total incoming flow does not exceed 2 ·O-cap − 1, there must exist

a legal flow solution of the intra-tile network. If the total incoming flow is

exactly 2 ·O-cap, then in the routing R, there are exactly O-cap wires coming

in from the left side of the tile and exactly O-cap wires coming in from the

right side of the tile (see Figure 2.13). Suppose x wires go from left to top

and y wires go from left to bottom (x + y = O-cap). In order to satisfy the

orthogonal capacity, y wires from the right must go to the top side and x

wires from the right must go to the bottom. As a result, we have 2x wires

crossing one diagonal cut and 2y wires crossing another diagonal cut. Notice

18

x y

x

y

xy

x

y

Figure 2.13: If O-cap is odd and there are 2 ·O-cap wires passing the tile,
then D-cap ≥ 2x ≥ O-cap + 1.

that O-cap is odd, x 6= y. Without loss of generality, let us assume x > y.

Then 2x > x + y = O-cap. Since x is an integer, we know 2x ≥ O-cap + 1.

Because R is a legal routing, we have D-cap ≥ 2x ≥ O-cap + 1. Therefore,

min-cut = O-cap + D-cap − 1 ≥ 2 ·O-cap

So min-cut ≥ 2 ·O-cap but total incoming flow is bounded by 2 ·O-cap. By

the max-flow min-cut theorem, we know that there must exist a legal flow

solution of the intra-tile network.

Lemma 1 shows that the flow solution of our model can always be turned

into a legal detail routing solution while Lemma 2 shows that if there exists

a legal detail routing solution, then our model will always capture one. As a

result, we have the following theorem:

Theorem 1. A given escape routing problem with k to-be-escaped pins has

a legal routing solution iff our network model has a legal flow of value k.

Furthermore, the legal flow of value k can be transformed into a legal routing

solution.

In order to minimize the wire length, we can assign cost 1 to the inter-tile

edges (the hollow edges in Figure 2.4) and zero cost to all other edges. If we

compute the min-cost max-flow of the network, we can minimize the number

of tiles each wire traverses and thus the total wire length can be minimized.

The min-cost max-flow solution can then be converted into detail routing

through the transformation in the proof of Lemma 1.

19

A B

Figure 2.14: Missing pins increase the routing resource.

2.4 Modeling the Missing Pins

In practical PCB designs, the designer may remove some unused pins in the

array to increase the routing resource. Figure 2.14 gives an example in which

O-cap = 2 and D-cap = 4. It can be seen that by removing the pin at the

center, the maximum number of wires allowed between A and B increases

from 4 to 6. The difference, 2, is called the extra horizontal capacity of

the missing pin. Similarly, we can define extra vertical capacity and extra

diagonal capacity. Since usually the pin is round, the three types of extra

capacities are the same. So we do not distinguish them but call them extra

capacity and denote it as ∆. This extra capacity depends on the design rules

and is usually given as input.

To model this extra capacity, we use a resource node to replace the pin

node (see Figure 2.15). The resource node has node capacity the same as

∆. The unidirectional edges from the pin node to the peripheral nodes are

now replaced with bidirectional edges between the resource node and the

peripheral nodes. We give such edges infinite capacity.

The resource node essentially increases the horizontal and vertical capacity

of the network by ∆. So it is able to capture the extra capacity introduced

by the missing pin.

2.5 Experimental Results

We implement our network flow-based escape routing algorithm in C++ and

test it on several industrial data sets. We use the min-cost flow solver CS2 [41]

20

∆

1

1

∞

1

1

1

1

∞

1

∞

1

1

∞
1

1

1

Figure 2.15: Modeling missing pins in our network.

to obtain the min-cost flow solution of our network model. All experiments

are performed on a workstation with two 3.0 GHz Intel Xeon processors and

4 GB memory. The operating system is RedHat Linux 2.6.9.

We test our router on eight data sets and the result is reported in Table 2.1.

Among the eight data sets, industrial 1 to industrial 7 are actual industrial

data and modified 8 is derived from industrial data with some modification.

The left five columns of the table give the information on the data including

the name, the pin array size, the number of to-be-escaped pins, the number

of missing pins, and the capacity rules (O-cap, D-cap and extra capacity ∆).

The next two columns show the number of D-cap constraint violations in our

result as well as the runtime of our router. The last two columns show the

number of D-cap violations and the runtime of the traditional model used

in [23,25].

It can be seen that our model gives zero D-cap violations while the tra-

ditional model leads to as many as 53 D-cap violations because it ignores

the diagonal capacity. Since the total runtime is only one second or less, the

runtime difference of the two methods is insignificant.

Figure 2.16 shows our routing solution of modified 8. We can see that

there are several missing pins on the north, west and east side of the array

(highlighted by the shaded zones), and their spaces are fully utilized in our

21

T
ab

le
2.

1:
E

x
p
er

im
en

ta
l
re

su
lt

s
of

ou
r

p
ro

p
os

ed
n
et

w
or

k
fl
ow

m
o
d
el

.

ar
ra

y
es

ca
p
e

m
is

si
n
g

ca
p
ac

it
ie

s
ou

r
m

o
d
el

tr
ad

it
io

n
al

m
o
d
el

w
×

h
p
in

n
o.

p
in

n
o.

O
D

∆
D

-c
ap

v
io

.
ru

n
ti

m
e

D
-c

ap
v
io

.
ru

n
ti

m
e

in
du

st
ri

al
1

14
×

16
78

13
2

3
3

0
0.

16
s

0
0.

14
s

in
du

st
ri

al
2

29
×

11
66

20
2

3
3

0
0.

22
s

10
0.

17
s

in
du

st
ri

al
3

33
×

14
12

0
46

2
3

3
0

0.
33

s
6

0.
28

s
in

du
st

ri
al

4
35
×

17
16

0
30

2
3

3
0

0.
61

s
9

0.
28

s
in

du
st

ri
al

5
35
×

35
10

8
10

5
2

3
3

0
0.

86
s

1
0.

68
s

in
du

st
ri

al
6

35
×

17
14

3
38

2
3

3
0

0.
39

s
0

0.
30

s
in

du
st

ri
al

7
35
×

35
22

0
10

6
2

3
3

0
1.

01
s

53
0.

79
s

m
od

ifi
ed

8
35
×

35
22

5
33

2
3

3
0

0.
99

s
53

0.
79

s

22

Figure 2.16: Routing solution of modified 8. The shaded zones highlight the
spaces of the missing pins that are fully utilized by our router. The dashed
polygon is drawn on top of the result to show that the routing uses up
almost all routing resources.

result. To show that our router can handle dense designs, we draw a dashed

polygon on the routing result. It can be seen that almost all the O-cap and

D-cap along the polygon are used up by our routing, which indicates that

the routing is very dense.

2.6 Conclusion

In this chapter, we presented a novel network-flow model that correctly mod-

els the diagonal capacity which is essential for 45◦ routing in packages and

PCBs. We proved the correctness of our model. We also showed how to ex-

tend our model to handle missing pins, which appear frequently in practical

designs.

23

s

Figure 2.17: Multi-layer network. Black pins are to be escaped and thick
edges are inter-layer edges.

Notice that if the max-flow solution of our network has a value less than

the number of to-be-escaped pins, then not all these pins can be escaped on

a single layer. We have to use multiple layers to escape all of them. In this

case, we can extend our model to find out the minimum number of layers to

escape all the pins. Supposing we are given k layers, we can build k copies

of our network. Then inter-layer edges are added between adjacent layers

to model the vias. Each inter-layer edge is from a to-be-escaped pin to the

corresponding pin on the layer below (see Figure 2.17). The capacity of the

edge is 1 and the cost is the cost of a via. The edges from the super source

s connect only to the to-be-escaped pin on the top layer.

If the max-flow of this network and the number of to-be-escaped pins are

the same, then k layers are enough to escape all the pins. Otherwise, we

need more layers. We can use binary search on k to find out the minimum

layer number such that all the pins can be escaped.

24

CHAPTER 3

ESCAPE ROUTING OF DIFFERENTIAL
PAIRS

3.1 Introduction

Previous works on escape routing [7,17,18,21–24,26] did not take differential

pairs into consideration. A work on chip-package-board co-design by Fang

et al. [42] considers differential pairs but assumes that the routing style is

monotonic, which might not be the case in many practical designs. In this

chapter, we study the unordered escape routing problem of differential pairs.

In PCB designs, high frequency signals are usually transmitted through

differential pairs. A differential pair is a pair of wires transmitting two com-

plementary signals. The actual signal is obtained by subtracting the two

signals at the receiver side (see Figure 3.1). By subtracting the two comple-

mentary signals, the noise and interference on the two wires are subtracted

away while the actual signal is amplified. Therefore, a differential pair has

the advantages of higher tolerance of ground offsets, better noise immunity

and higher resistance to electromagnetic interference. However, to achieve

these advantages, the differential pair must be carefully routed. They should

be routed as close as possible to each other so that they receive the same

noise and perturbation from the environment. A typical pin grid on a PCB

allows two wiring tracks between adjacent pins. Therefore, we would like the

+

-

subtractor

+

-

signal

source

signal noise

Figure 3.1: A differential pair is a pair of wires transmitting complementary
signals. The two signals are subtracted at the receiver side to obtain the
actual signal.

25

2a

1b

2b 1a

3b 3a 4a

4b

Figure 3.2: An example of differential pair escape routing. Pins with the
same prefix (e.g. 1a and 1b) are a differential pair. Routing from black pins
are pre-routed pairs and are treated as obstacles.

wires of a differential pair to occupy such adjacent routing tracks as much as

possible. Figure 3.2 gives an example of differential pair routing. It can be

seen that two wires of a differential pair try to meet each other as soon as

possible and then stay on adjacent tracks after they meet.

If the two pins of a differential pair were adjacent, then routing them would

be easy. However, practical designs may contain differential pairs with pins

far apart from each other. Figure 3.3 shows the histograms of the distance

between two pins of a differential pair in two industrial boards we have.

It can be seen that even though the majority of the differential pairs have

adjacent pins, a large portion of the differential pairs still have significant

distances between their two pins. Many of them have Manhattan distance 4

between their two pins. Such a small distance can already imply non-trivial

problems. Figure 3.4 shows such a case. This problem is difficult to solve

if we use the net-by-net approach. If we route pair {2a, 2b} first, then we

would route them to the right, blocking pair {1a, 1b}. However, if we route

pair {1a, 1b} first, then in order to meet as soon as possible, their route will

cut between 2a and 2b. A similar issue will also occur between pair {2a, 2b}

and {3a, 3b}. To solve this kind of problem, we need an approach that has

the global view of all the differential pairs.

In this chapter, we study the differential pair escape routing problem and

26

 0

 10

 20

 30

 40

 50

 60

1 2 3 4

%

Manhattan distance

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8

%

Manhattan distance

Figure 3.3: Histograms of the distances between the two pins of a
differential pair in two industrial boards. The x-axis is the Manhattan
distance between the two pins of a differential pair in terms of pin pitch.
For example, if two pins are adjacent, then their distance is 1 (pitch). The
y-axis is the percentage of the differential pairs that have the corresponding
distance. Notice that a design usually has hundreds of differential pairs, so
even a small percentage means many nets.

2a

1b

2b

1a3b

3a

4a 4b

Figure 3.4: A non-trivial case. The Manhattan distance between any pair
of pins is no larger than 4.

27

propose two algorithms. First, we propose an algorithm that computes the

optimal routes for a single differential pair. This algorithm can be considered

as the “maze router” for differential pair escape routing. We then propose

another algorithm to simultaneously route multiple differential pairs. It first

computes a set of candidate locations for wires of each differential pair to

meet and then uses a network-flow approach to choose the meeting point

for each differential pair from the candidates and compute the escape paths

from the meeting point to the grid boundary. Our min-cost max-flow for-

mulation is able to guarantee that the optimal meeting point is chosen to

maximize the routability while minimizing the wire length. However, since

the candidate locations computed at the first step might not be ideal, this

algorithm may fail to produce good results for complex problems. Therefore,

we propose a two-stage routing scheme based on the two algorithms: First,

we use the simultaneous routing algorithm to construct initial routing of all

the differential pairs. Then, we rip-up and reroute each differential pair using

our optimal single pair routing algorithm to further improve the routability

and wire length. Experimental results show that our routing scheme is very

powerful in solving practical problems.

The rest of this chapter is organized as follows: Section 3.2 briefly intro-

duces the routing constraints for differential pairs and then formulates the

differential pair escape routing problem. Our two algorithms are presented

in Section 3.3 and Section 3.4. Section 3.5 gives our overall routing scheme

based on the two algorithms. Experimental results are then presented in

Section 3.6. Finally, Section 3.7 gives the concluding remarks.

3.2 Background

In this section, we will first introduce the routing constraint of differential

pairs and then we will formulate the differential pair escape routing problem

and discuss its major difficulties.

3.2.1 Differential Pair Routing Constraint

As mentioned before, we need to carefully route the differential pairs in order

to take full advantage of its benefits. The most critical requirement for

28

a

b

merging tile

single track

wire

double track

wires a

b

split after

merging

(a) (b)

Figure 3.5: Ideal differential pair escape routing (a) can be viewed as two
short single track wires from the two pins merging into double track wires.
Splitting of the wires after merging (b) is illegal.

differential pair routing is that the two wires need to be routed as close to

each other as possible. Typically, a pin grid on a PCB has two wiring tracks

between adjacent pins. So in the context of escape routing, we expect the two

wires from a differential pair to be routed along such adjacent tracks as much

as possible. Therefore, ideal escape routing of a differential pair can be viewed

as two single track wires from the two pins merging into double track wires

and staying together till they reach the boundary (see Figure 3.5 (a)). We

observe from industrial boards that manual routings all follow this merging

style. We call the tile where the two wires merge their merging tile. If the

escape routing of a differential pair follows the above pattern, we call the

routing legal. Otherwise, if two wires never merge, or they merge and then

split again (see Figure 3.5 (b)), we call the routing illegal.

The major objective of differential pair escape routing is to find legal rout-

ing such that the single track routing length is minimized. This is because

if the two wires of a differential pair are not together, the noise they receive

from the environment might be different and this can cause perturbation in

the differential signal. On the other hand, we also want the total wire length

to be minimized as well. Therefore, the routing cost of a differential pair is

a weighted sum of its single track routing length and double track routing

length with more weight on the single track length:

cost = st length + α · dt length (3.1)

Here, st length and dt length are respectively the length of the single track

wires and double track wires and α is a parameter to control the priority of

29

single track wires. For simplicity, length is evaluated as the number of tiles

the wire traverses. For example, for the routing in Figure 3.5 (a), we have

st length = 1 (single track wire from a passes no tile and single track wire

from b passes one tile before they meet) and dt length = 4 (the double track

wires pass through 4 tiles). Therefore, cost = 1 + 4α.

If α = 0, only the single track length is considered in the cost. Therefore,

by minimizing this cost, we minimize only the single track routing length.

If α = 2, then we minimize the total wire length. (Remember double track

wires contains two wires, so we need to multiply its length by 2 to get the

total wire length.) Any value between 0 and 2 is a trade-off between the

total wire length and the single track wire length. Usually, α is set to be a

small constant to minimize the single track wire length in first priority while

keeping the total wire length small.

3.2.2 Differential Pair Escape Routing Problem

Now with this cost function, we can formulate the differential pair escape

routing problem as follows:

Problem 1. Given k pairs of pins {(1a, 1b), . . . , (ka, kb)} in an r row by c

column pin grid and a set of pre-routed wires as obstacles, the differential

pair escape routing (DPER) problem is to find legal routing paths from the

pins to the boundary of the grid such that their total cost (computed by

Equation (3.1)) is minimized.

There are two major difficulties of this routing problem:

1. Where to merge each differential pair is a big issue. The location of

the merging tile affects the routability and length of both the double

track wires and the single track wires. However, if we are dealing with

multiple differential pairs, choosing the best merging location for one

differential pair may increase the wire length of another differential pair

or even make it unroutable. How to wisely choose the merging tiles so

that all the differential pairs can be routed and the total cost can be

minimized is the key to solving the DPER problem.

2. Even if we know a good merging tile for a differential pair, it is still

difficult to determine how the single track wires and the double track

30

wires should be routed. If we route the single track wires first, then they

become obstacles for the double track wires. Bad routing of single track

wires may lead to longer double track wire length or even unroutable

cases. The opposite is also true: routing double track wires first may

also affect the routing of single track wires. How to route them so that

both are routable and their total cost in Equation (3.1) is minimized

is another key issue.

In the next two sections, we will present two algorithms. The first one is

able to route a single differential pair optimally while the second one uses

a network-flow approach to simultaneously route multiple differential pairs.

The difficulties above are resolved by the two algorithms.

3.3 Routing One Differential Pair

Let us first consider the most basic case of the DPER problem: routing only

one differential pair. In this section, we propose an algorithm that finds the

optimal routing paths for one differential pair in O(n2 log n) time, in which

n denotes the total number of tiles in the grid.

For only one differential pair, finding the best merging tile is not a difficult

task because we can enumerate all O(n) tiles to find the best one. However,

the second difficulty mentioned in the previous section is still there. We need

to carefully route the single track wires and double track wires so that the

cost in Equation (3.1) is minimized.

Suppose we already know the merging tile for a differential pair (a, b) is

t. We can then view the whole routing as two parts: (1) single track wires

from a and b to t and (2) double track wires from t to the boundary of the

grid. We compute the two parts separately.

To compute the double track routes, we construct an undirected routing

graph GD as follows (see Figure 3.6 (a)):

• Each empty tile is assigned a tile node.

• Adjacent tile nodes are connected by edges of cost 1 (solid edges in the

figure).

• All the nodes of the boundary tiles are connected to a super source s

by edges with cost 0 (dashed edges in the figure).

31

a b

t

s

a b

s

t

a b

(a) (b) (c)

Figure 3.6: Routing one differential pair. (a) Routing graph GD for double
track wires; thick path shows the shortest path between s and t. (b)
Network graph GS for single track wires; thick arrows indicate the flow
result. (c) Routing result by combining the results of (a) and (b).

By computing the shortest path from s to t in GD, we can obtain the routing

path for the double track wires.

We then construct a network graph GS for single track routes. The graph

is constructed as follows (see Figure 3.6 (b)):

• Each empty tile is assigned a tile node. Each tile with obstacle wires

are partitioned into regions by those wires. Each region is assigned a

region node (the smallest nodes in the figure).

• Undirected edges are added between adjacent tile/region nodes if there

exists an available wiring track between the two nodes. All the edges

have capacity 1 and cost 1. Notice that in a flow-network, an undi-

rected edge allows flow in both directions. Such an edge a — b can

be implemented by two directed edges a → b and b → a, both with

capacity 1 and cost 1.

• To prevent the single track wires from merging before they reach t, we

enforce capacity 1 on all tile and region nodes.

• Two pin nodes are assigned to the two pins of this differential pair. Di-

rected edges are added from each pin node to its four adjacent tile/region

nodes. These edges have capacity 1 and cost 1.

• Finally, we create a super source s and add directed edges from it to

the two pin nodes. Each edge has capacity 1 and cost 0.

32

By computing the min-cost 2-flow from s to t in this network, we can obtain

the routing paths from the two pins to the merging tile t with the shortest

total length.

Finally, we can combine the shortest path result of GD (which represents

the double track wires) and the flow result of GS (which represents the single

track wires) to compose the routing solution. In Figure 3.6, (c) is the resul-

tant routing solution by combining the results of (a) and (b). Notice that

this is the optimal solution assuming tile t is the merging tile. To obtain the

global optimal, we need to enumerate all tiles in the grid and choose the best

one.

Now let us analyze the time complexity of this algorithm. Let n be the

total number of tiles in the grid. We can compute the shortest path lengths

from s to all tile nodes in GD by Dijkstra’s algorithm [40] in O(n log n) time

because GD contains O(n) nodes and O(n) edges. For each possible merging

tile t, we can obtain the the min-cost 2-flow of GS by computing the shortest

path in the residual graph of GS twice [40]. Again, since the residual graph

of GS contains O(n) nodes and edges, this can be done in O(n log n) time.

We have to compute the min-cost 2-flow for all O(n) possible merging tiles.

So the total time complexity on the flow computation is O(n2 log n). Finally,

we need to compare all O(n) choices. As a result, the total time complexity

of our algorithm is O(n log n + n2 log n + n) = O(n2 log n).

Notice that in our algorithm, we construct the single track wires and dou-

ble track wires independently without considering each other. One natural

question is whether the solution produced by our algorithm will have cross-

ings between the single track wires and the double track wires. The following

lemma shows that this cannot happen.

Lemma 3. The optimal routing solution obtained by our algorithm does not

have wire crossings.

Proof. First of all, double track wires will not cross themselves because any

shortest path in GD (which has non-negative edge costs) does not have self-

intersections. Since we enforce unit capacity on the tile/region nodes in GS,

single track wires cannot have crossings with themselves either. Therefore,

crossing can only happen between single track wires and double track wires.

Suppose we have such a crossing in our solution. Without loss of generality,

we assume the single track wires from the two pins a and b merge at tile t

33

b

a

t

c

b

a

t

c

(a) (b)

Figure 3.7: A crossing between the double track wires and single track
wires (a) can be resolved, resulting in even shorter wire length (b).

and the single track wire from a crosses the double track wires at tile c as

shown in Figure 3.7 (a). By changing the two single track wires to a → c

and b → t → c, we move the merging tile to c and resolve the crossing (see

Figure 3.7 (b)). The new routing is crossing-free and has the same single

track wire length as the original routing. Moreover, the double track wire

length is reduced. This means c is a better merging tile than t. In this case,

our algorithm will not choose t as the optimal solution and will choose c

instead. Therefore, in the optimal routing produced by our algorithm, there

exist no wire crossings.

With the above lemma and the optimality of the shortest path in GD and

the optimality of the min-cost 2-flow in GS, we have the following claim:

Theorem 2. Our algorithm computes the legal routing solution with mini-

mum cost for one differential pair.

In practice, we do not want the single track routes to be too long. There-

fore, we can define a small constant λ as the maximum tolerable distance

from the pins to the merging tile. When we enumerate the merging tiles, we

only consider those with Manhattan distance less than λ to both pins. By

doing this, we can reduce the time complexity down to O(n log n).

The algorithm we just presented can be regarded as the “maze router”

for differential pairs. It can be used as a subroutine for more complicated

routing algorithms.

34

3.4 Routing Multiple Pairs

For multiple differential pairs, we cannot afford to enumerate all possible

combinations of the merging tiles because there are
(

n

k

)

of them (n is the

number of tiles and k is the number of differential pairs). In this section, we

present a network-flow based algorithm that simultaneously determines the

merging tiles for all differential pairs.

Recall that the primary objective is to minimize the single track wire length

and notice that the single track wires of a differential pair can be viewed as

a path from one pin to the other pin of the same differential pair. (See

Figure 3.5 (a) for an example. Its single track wires can be viewed as a path

from a to b via the merging tile.) Therefore, to minimize the single track wire

length, planning the merging tiles along the shortest paths between the two

pins is a plausible choice. However, for multiple differential pairs, we cannot

simply use their shortest paths because they may have intersections. This

essentially becomes a general routing problem: find disjoint paths connecting

pairs of pins in a grid and minimize the total length of the paths. This

problem has been studied extensively and popular solutions included maze

router [43,44] and negotiated congestion based router [45].

In our scheme, we first construct an undirected routing graph G∗

S as follows

(see Figure 3.8 (a)):

• A tile node is assigned to each tile that contains no obstacles.

• Two tile nodes are connected by an edge if their tiles are adjacent.

• Each differential pair pin is assigned a pin node.

• A pin node is connected to its four adjacent tile nodes by four diagonal

edges (could be less than four if adjacent tiles have obstacles).

• All the edges in G∗

S have capacity 1 and cost 1.

We then apply a negotiated congestion based router [45] on G∗

S to find disjoint

paths connecting the pin pairs with minimum length.

In the routing solution of the previous step, each path corresponds to the

single track wires of a differential pair and every tile node along the path is

its candidate merging tile. Our task now is to choose one merging tile from

the candidates for each differential pair and route double track wires from the

35

2a

2b

1a

3b 3a

4a

4b

1b

2a

2b

1a

3b 3a

4a

4b

1b

4

2

…
...

s

3

1

t

(a) (b)

2a

2b

1a

3b 3a

4a

4b

1b

2a

2b

1a

3b 3a

4a

4b

1b

(c) (d)

Figure 3.8: Routing multiple nets. (a) Routing graph G∗

S for single track
wires; thick paths show the single wire routing paths for each differential
pair. (b) Network graph G∗

D for double track wires; some edges are omitted
to simplify the illustration. (c) Flow solution of (b). (d) Routing result by
combining the result of (a) and (c).

chosen merging tiles to the boundary. Notice that the choices of the merging

tile and the routing of double track wires affect each other as discussed in

Section 3.2.2. To obtain the global optimal, we use a network-flow approach

to simultaneously choose the merging tile and route the double track wires.

We construct the network graph G∗

D by the following modification to the

routing graph G∗

S constructed in the previous step (see Figure 3.8 (b)):

• All the undirected edges between tile nodes remain in G∗

D. These edges

have capacity 1 and cost 1. (Recall that an undirected edge allows flow

in both directions.)

• The diagonal edges between pin nodes and their neighboring tile nodes

36

are removed.

• For every tile node along the disjoint paths computed in the previous

step (which are candidate merging tiles), the edges incident to it are

oriented such that flow can only flow out of it. That is, the undirected

edge becomes directed from the candidate merging tile node to other

nodes. If both ends of an edge are candidate merging tile nodes, we

remove the edge. The purpose is to prevent the flow, which represents

the double track wires from intersecting with the routed single track

wires.

• We introduce a super source s as well as k representative nodes repre-

senting the k differential pairs. We add directed edges with capacity 1

and cost 0 from s to each representative node and also from each repre-

sentative node to the candidate merging tile nodes of the corresponding

differential pair.

• Finally, we add a directed edge from every boundary tile node to a super

sink t for each opening between two adjacent pins along the boundary

(see the dashed edges in the figure). Such edges have capacity 1 and

cost 0. These edges collect all the flows from s that escape out of the

pin array and send them to t.

By computing the min-cost max-flow [40] of this network, we can essen-

tially choose the optimal merging tiles so that the routability of the double

track wires is maximized and their wire length is minimized. This resolves

the first difficulty mentioned in Section 3.2.2. In Figure 3.8, (c) shows the

flow solution to the network in (b). Notice that since the flow solution is for

double track wires, each flow represents two wires occupying adjacent tracks.

Now we can combine the routing solution in G∗

S that represents single

track wires and the flow solution in G∗

D that represents double track wires

to compose the complete routing solution. We do so by tracing the disjoint

paths computed in G∗

S from the two pins until they meet at the merging tile

selected by the flow algorithm. Then we merge the two wires and follow the

flow solution until they reach the grid boundary. In Figure 3.8, (d) shows the

routing result by combining the path solution in (a) and the flow solution in

(c).

37

3.5 Overall Routing Scheme

3.5.1 Two-Stage Routing Scheme

One possible issue of the flow-based algorithm in the previous section is that

the single track wires generated by the negotiated congestion based router

might not be ideal for the double track wires. We may have produced single

track routing that blocks later double track wires. To overcome this issue,

we propose a two stage routing scheme for the DPER problem:

1. An initial solution for all differential pairs is constructed by the simul-

taneous routing algorithm presented in Section 3.4.

2. Then, the single differential pair algorithm in Section 3.3 is called to

rip-up and reroute each differential pair to improve the routability and

the routing cost.

This routing scheme has the following advantages:

1. The first stage is based on min-cost max-flow. It guarantees optimality

of the double track routing when the single track routing is fixed.

2. The rip-up and reroute algorithm is able to find the optimal paths for

one differential pair (considering other differential pairs as obstacles).

Therefore, if the initial routing stage fails to route all the differential

pairs in a complex design, the rip-up and reroute engine is able to

efficiently find optimal paths for unrouted differential pairs and resolve

the issue. Moreover, it is also able to reduce the wire length of the

initial routing produced by the first stage.

Our routing scheme is shown by experiments to be very effective and efficient.

3.5.2 Single Net Consideration

The test benchmarks we obtained from industry consist of only differential

pair nets. However, one might want to route differential pairs together with

single nets on some occasions. In this case, we propose to solve the prob-

lem using a negotiated congestion strategy based on our two-stage routing

scheme. First, we route the differential pairs using our proposed two-stage

38

Table 3.1: Experimental results of our two-stage differential pair routing
scheme.

test diff pin grid avg. len. runtime
cases pair # #row×#col ST DT (s)
ex1 10 11×8 0.4 2.9 1
ex2 18 22×7 0.3 4.6 3
ex3 18 18×12 0.5 4.3 7
ex4 8 11×3 0 2.9 1
ex5 11 14×3 0 2.9 1
ex6 11 17×6 0.1 2.8 2
ex7 18 17×6 0.8 1.8 35
ex8 20 9×16 0.4 3.4 5
ex9 20 8×15 0.4 3.2 3
ex10 60 35×35 1.6 8.6 453

routing scheme. We then obtain the congestion information from the rout-

ing solution. Second, we construct a flow network whose edge costs reflect

the congestion information obtained from the differential pair routing result.

Higher routing congestion leads to higher edge cost in the network. We then

apply the network-flow algorithm to obtain the routing result for single nets.

Again, we can obtain the congestion information of the single net routing.

We can then repeat the first step, using such information to update the edge

cost. By repeating the differential pair step and the single net step, the rout-

ing scheme will eventually converge to a solution that is reasonable for both

differential pairs and single nets.

3.6 Experimental Results

We implement our routing scheme in C++ and test it on 10 test cases derived

from industrial data. The experiments are performed on a Linux workstation

with a 3 GHz Intel Xeon CPU and 4 GB memory. Detailed information about

the test cases as well as the experimental results is shown in Table 3.1. Notice

that the “avg. len.” column shows the average number of tiles traversed by

single track wires (ST) and double track wires (DT) of a differential pair.

The last column gives the runtime of our algorithm.

From the table, it can be seen that our router can achieve very short single

track wire length (less than 1) for almost all the data, which is ideal for

39

39

40

41

41

42

42

43

43

44

44

45

45

46

46

47

47

48

48

49

49

50

5051

51

52

52

53

53

54

5455

55

56

56

57

57

58

58

59

59 60

60

1 1

2

2 3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

2525

26

26

27

27

28

28

29

29

30

30

31

31

32

32

33

33

34

34

35

35

36

36

37

37

38

38

39

40

Figure 3.9: Routing result of ex10.

differential pairs. The double track wire length is also short, meaning that

the total wire length is minimized too. The overall runtime for the test cases

is very short (a few seconds) except for two test cases ex7 and ex10. In

ex7, the pins of a differential pair are not located closely, resulting in longer

single track wire length and more complicated routing patterns. Therefore,

our router spent more time on it. The pin array of ex10 is actually very large

and so is the number of differential pairs to be routed. One would expect

such a test case to be among the largest in real designs. The routing result

of ex10 is shown in Figure 3.9. It can be seen that the routing is very dense,

indicating that our router is good at handling difficult designs.

40

3.7 Conclusion

In this chapter, we studied the differential pair escape routing (DPER) prob-

lem and proposed two algorithms. The first algorithm is essentially the dif-

ferential pair version of the maze routing algorithm [43,44]. It computes the

routes for a differential pair with minimum routing cost. The second algo-

rithm is a network-flow based algorithm that simultaneously routes multiple

differential pairs. Because of its min-cost max-flow formulation, it is able to

achieve maximum routability and minimum wire length of the double track

wires. The two algorithms are then combined into a routing scheme that can

effectively and efficiently solve the DPER problem.

We also proposed a negotiated congestion based approach to simultane-

ously route both differential pairs and single nets. However, due to lack of

data, we were not able to verify the effectiveness of our approach.

41

CHAPTER 4

LENGTH-CONSTRAINED ROUTING

4.1 Introduction

Due to the high clock frequencies on today’s high-performance PCBs, the nets

in a bus are required to satisfy very stringent min-max length bounds [2].

Because the routing resources are very limited inside the pin arrays, the

space between the pin arrays is used to detour the wires to meet the length

bounds. The escape routing inside the pin arrays is not of interest in this

chapter. Therefore, we view each pin array as a rectangular block which

we call a component and regard the ends of the escape routing around the

component boundaries as the pins for the length-constrained routing problem

(see Figure 4.1).

Such a length-constrained routing problem is not easy to solve, even for

simple routing topologies. The reason is that different nets with different

length constraints are competing for the routing resources. We must care-

fully distribute the limited routing resources to these nets while keeping the

planarity and connectivity.

component

component

Figure 4.1: Length-constrained routing between pin arrays (solid lines).
Each pin array is viewed as a rectangular block and the ends of the escape
routing are regarded as the pins of the length-constrained routing problem
(black dots). Escape routing inside the components is ignored (dashed
lines).

42

(a) (b)

Figure 4.2: Topological restrictions on previous routers. The routers
in [46,47] can only solve the channel routing problem shown in (a) and the
router in [15] routes wires monotonically, as in (b).

Figure 4.3: A length-constrained problem with general topology.

This length-constrained routing problem has been studied in [15, 46, 47].

However, the routing topologies those works can handle are limited: [46, 47]

can only be applied when the routing region between the two components

forms a channel and the pins are located along the two opposite sides of the

routing channel (see Figure 4.2 (a)) and [15] assumes that each wire must

be routed monotonically in one direction, say, from left to right (see Fig-

ure 4.2 (b)). Such restrictions greatly limit the application of these routers.

For example, none of the three routers can be applied to the problem in Fig-

ure 4.3 because the problem is not a channel routing problem and it involves

both horizontal and vertical detour.

Another disadvantage of previous routers is that they are all gridded. Mod-

ern PCBs usually have very fine wiring pitch and a long distance between

components, making the size of the routing grid very large for gridded routers

even though the solution may look very simple.

In this chapter, we propose a length-constrained routing scheme that is ca-

pable of handling any given topology. The novelty in our approach is that we

regard the length-constrained routing problem as an area assignment prob-

43

lem and use a placement structure, bounded-sliceline grid (BSG) [14], to

help formulate the area assignment problem into a mathematical program-

ming problem. We also propose an iterative LP optimization procedure that

can efficiently solve the formulated mathematical programming problem.

Our routing scheme has the following virtues:

1. It is the first length-constrained router that is free of any topological

restrictions. It handles general topology.

2. It produces a gridless routing. Its performance is not sensitive to the

routing grid size of the input while previous routers’ performances are.

Therefore, our approach is much faster in practice because practical

designs usually have very large routing grids.

3. It is area-focused. Experimental results show that it can efficiently

utilize the routing area for wire extension to meet the length bounds.

4. It can be extended to handle length-matching routing, multi-layer rout-

ing and different separation rules for different nets.

A similar work worth mentioning is the Oct-Touched Tile (OTT) structure

proposed by Fu et al. [48] for routing analog circuits. In order to route wires

of different widths, they embed the topological routing onto OTT, a structure

similar to BSG, and then apply a longest path algorithm on the horizontal

and vertical constraint graph to assign the area and obtain the detail routing.

Our approach differs from theirs in the following aspects:

1. We focus on a different problem. We are focusing on controlling the

length of each wire through area assignment while [48] focuses on con-

trolling the width of each wire.

2. To meet the length constraint, we formulate the area assignment prob-

lem into a mathematical programming problem while the area assign-

ment in [48] does not need to meet any length constraint and is therefore

formulated into a much simpler longest path problem.

3. After area assignment, we still need to perform non-trivial detail rout-

ing, while in [48] detail routing and area assignment are the same thing.

44

The rest of this chapter is organized as follows: Section 4.2 gives some

necessary background. Section 4.3 describes our length-constrained routing

scheme for general topology. Section 4.4 presents some extensions of our

router. Experimental results are presented in Section 4.5, and Section 4.6

concludes this chapter.

4.2 Background

In this section, we will first introduce the length-constrained routing problem

and then give a brief review of the bounded-sliceline grid (BSG) structure.

4.2.1 The Length-Constrained Routing Problem

Bus routing for a PCB is usually divided into two phases: escape routing

and area routing (see Figure 1.1). Escape routing is to route from the pin

array inside a component to the boundary of the component. Area routing

is to complete the connections between the boundaries. Escape routing and

area routing have different tasks. Escape routing must guarantee that the

net orderings on both boundaries are matched in order to provide a planar

topology for area routing. The focus of area routing, on the other hand, is

to carefully detour the wires to meet the length bounds while maintaining

the planar topology inherited from escape routing. That is why we also call

area routing “length-constrained routing.”

Due to the effort of the escape router, the input to the length-constrained

router is usually regarded as planar. However, previous routers also make as-

sumptions on the routing topology: [46] and [47] assume that the two bound-

aries to be connected are facing each other as in Figure 4.2 (a), and [15]

assumes that the wires detour in only one direction, i.e., the routing can de-

tour either horizontally or vertically but not both (see Figure 4.2 (b)). As a

result, none of them can solve the routing problem in Figure 4.3. One remedy

for this issue is to first route from both boundaries to some virtual bound-

aries facing each other and then perform length-constrained routing between

the virtual boundaries [11]. However, this means that the area around the

components cannot be fully utilized for wire extension.

Furthermore, previous routers are all gridded. The ratio of the area of the

45

(a) (b)

Figure 4.4: Different distances between the two components can make the
problem size very different for a gridded router.

input routing domain to the minimum wiring pitch defines the size of the

routing grid. We call this grid size input routing grid size because both the

routing domain and the wiring pitch are input-dependent. The performance

of a gridded router is very sensitive to the input routing grid size. For

example, the two problems in Figure 4.4 make a huge difference to the router

due to the very different grid size, although the two problems look quite

similar in human designers’ eyes. Moreover, modern PCBs usually have very

small wiring pitch and the components they host might be located far apart.

This means that the input routing grid size can be very large, making gridded

routers unbearably slow.

Now we formulate the general topology length-constrained routing problem

as follows:

Input:

• The location and size (width, height) of a set of rectangular compo-

nents.

• The location of a set of pins. The pins should be located along the

boundaries of the components.

• A set of 2-pin nets connecting the given pins.

• A planar topology of the 2-pin nets.

• A rectangular domain for the routing. All the wires are bounded within

this domain.

• Design rules: wire width ω and separation rule ε for the wires. Any wire

segment must be separated from other wire segments or the components

46

C

CD

B

A

BA

V
-w
a
ll

H-wall

H-wall

V
-w
a
ll

cell

Figure 4.5: The BSG structure and cell sizing.

by a distance of ε. The wiring pitch λ, which is the minimum distance

between the center lines of wire segments, is then the sum of the wire

width and separation rule: λ = ω + ε.

• Length bounds (li, ui) for each net i. li is the lower bound and ui is the

upper bound. li ≤ ui.

Output:

• A rectilinear routing following the given topology and satisfying the

design rules. The length of each net i satisfies li ≤ lengthi ≤ ui.

4.2.2 Bounded-Sliceline Grid

Bounded-sliceline grid (BSG) [14] was invented to handle the placement of

function modules in ICs. It uses a set of vertical and horizontal segments

to partition the whole plane into rectangular cells. Each cell in the grid

is bounded by four segments, two vertical (which we call V-walls) and two

horizontal (which we call H-walls). Each wall spans two cells. If we let all the

cells be unit size (1×1), then every wall will have a length of 2 and the BSG

will form a uniform grid. See the left side of Figure 4.5 for an illustration.

The size and location of a cell are determined purely by the positions of

the four walls surrounding it. By moving the walls, we can enlarge a cell

(cell A in Figure 4.5), shrink a cell (cell B), move a cell (cell C) or make a

cell vanish (cell D).

47

Figure 4.6: The length of a wire and the area it occupies (black wire plus
gray margin) are related by the wiring pitch λ.

4.3 Our BSG-Route

In this section, we will present our BSG-based length-constrained routing

scheme. We will first explain the general idea and then discuss the details.

4.3.1 The Idea

The key issue of length-constrained routing is how to control the length of the

wires. An interesting observation is that the area a wire of length l occupies

is exactly l × λ (recall that λ = ω + ε is the wiring pitch). This is because

a wire will not only occupy a space of its width ω but also two margins of

width ε/2 on its two sides to guarantee the ε separation rule (see Figure 4.6).

Therefore, we can regard the wire as a fat wire of width λ and assume zero

separation rule. The relationship between the length and area of a wire gives

us an alternative to control the length. Instead of thinking about how to

detour the wires to meet the length bounds, we can control the length by

assigning proper area to the nets. This idea leads to our area-based routing

scheme: BSG-route.

Our routing scheme is as follows (see Figure 4.7): First, we embed the

given topology onto a BSG. Then, we size the cells in the BSG so that the

total area of the cells occupied by a net satisfies its length bounds. Finally, we

perform detail routing inside each cell to turn the assigned area into expected

length. In the rest of this section, we will discuss each step in detail.

48

(a) Input topology (b) BSG embedding

(c) Cell sizing (d) Detail routing

Figure 4.7: An illustration of our idea.

4.3.2 BSG Embedding

First, we need to map the components, pins and nets onto a BSG. This can

be done either manually or by heuristic algorithms. There may exist multiple

embeddings for the same topology. Which embedding we choose has little

impact on the final routing result as long as we follow the guidelines below:

1. BSG is a structure that represents left-right, above-below relations be-

tween objects. Therefore, the topological relation between objects

should be kept in the embedding. If one component is located to the

left of the other, then it should still be on the left in the embedding.

Similarly, if a pin is above another pin, its cell should also be above the

other’s cell.

2. The number of BSG cells we use does NOT depend on the input rout-

ing grid size because we can later size the cells to match the routing

domain. Instead, the BSG size depends on how complex the routing is.

49

If we want to represent more complicated routing, we should use more

cells for the embedding (that is, add more BSG cells between the two

components). However, we should not use an excessively large BSG

because this will enlarge the scale of the later cell sizing problem. Our

experience is that a 200× 200 BSG would provide enough complexity

for a routing problem with around 100 nets. Since the number of con-

nections between two components on one layer of a high-performance

PCB is usually less than 100, a 200 × 200 BSG should be more than

enough for practical cases. This guideline also explains why our router

is insensitive to the input routing grid size.

3. We need to allow at least one empty cell between two nets. If two adja-

cent cells are occupied by two different nets, moving the wall between

them affects the areas of both nets. This means we lose the flexibility

of controlling their areas independently.

4. A component should be mapped into multiple cells forming a rectangu-

lar area. The number of cells it occupies depends NOT on its physical

size but on the number of pins around its boundary. A component

with more pins requires more BSG cells because each pin takes up an

individual cell on the boundary. Notice that we also need to plan at

least one empty cell between adjacent pins according to guideline 3.

As we claimed before, the selection of embeddings has little impact on the

final result as long as we have enough BSG cells. This is because even with

different BSG embeddings, we are able to obtain the same area assignment

through careful cell sizing. In the example shown in Figure 4.8, we can still

obtain the same shape and size of assigned area by cell sizing even though

the initial embeddings are different.1 Therefore, the key step of our router is

cell sizing.

4.3.3 Cell Sizing

After we embed the topology onto a BSG, we size the BSG cells for area

assignment. Essentially, the cell sizing problem is to determine the location

1However, the embedding in Figure 4.8 (a) does require one more cell than Figure 4.8 (b)
to achieve the same area assignment. That is why we need to use enough cells for compli-
cated routing.

50

cell

sizing

(a) One BSG embedding and its cell sizing result

cell

sizing

(b) Another BSG embedding and its cell sizing result

Figure 4.8: Different embeddings can lead to the same area assignment.

of the walls. We can formulate it as a mathematical programming problem.

For every V-wall v, we use a variable xv to represent its x coordinate. (Notice

that the y coordinates of its two ends are not determined by the V-wall itself.

They are determined by the positions of the two H-walls at its two ends.) For

every H-wall h, we use a variable yh to represent its y coordinate. For every

cell i, we have four walls surrounding it. We name the variables representing

its left, right, bottom and top walls as xi,l, xi,r, yi,b and yi,t, respectively (see

Figure 4.9). Notice that these names are only aliases of actual variables.

Different names may refer to the same variable. For example, xi,r, xj,l, xp,r

and xq,l all refer to the same variable xv of wall v in Figure 4.9.

To guarantee that the final routing is legal and the length constraints are

satisfied, we need to enforce the following constraints on the variables:

Basic Constraints

Every cell of the BSG must have a nonnegative area. That is, the top wall of

a cell cannot be placed below the bottom wall of the cell and the right wall

of a cell cannot lie to the left of the left wall of the same cell. Therefore, for

each cell i we have the following constraints (assuming a coordinate system

51

cell ixi,l xi,r

yi,t

yi,b

cell j

cell p
cell q

net k

wall v

Figure 4.9: Each wall in the BSG is assigned a variable to represent its
position.

with x-axis pointing right and y-axis pointing up):

xi,r − xi,l ≥ 0 (4.1)

yi,t − yi,b ≥ 0 (4.2)

Furthermore, if a cell is occupied by a net, we must make sure that the

size of the cell allows one wire to pass. Since we regard the wire as a fat

wire with width λ, this means that both the width and the height of the cell

should be at least λ:

xi,r − xi,l ≥ λ (4.3)

yi,t − yi,b ≥ λ (4.4)

So the basic constraints for a cell are either (4.1), (4.2) or (4.3), (4.4)

depending on whether the cell is empty or occupied.

Location constraints

The locations of the components and the pins are given in the input and

the wall locations should conform to them. Therefore, we have to fix the

walls on the four boundaries of a component. For a component C with its

left-bottom corner located at (xC , yC) and width wC and height hC , we have

52

a

b

c d e

f

gh

Figure 4.10: Illustration of component location constraints.

the following constraints:

xi,l = xC for cells i on the left boundary (4.5)

xj,r = xC + wC for cells j on the right boundary (4.6)

yp,b = yC for cells p on the bottom boundary (4.7)

yq,t = yC + hC for cells q on the top boundary (4.8)

Here we use an example to illustrate these constraints. Suppose a component

C occupies 3 × 3 BSG cells (see Figure 4.10). Then we have the following

location constraints:

xa,l = xb,l = xc,l = xC (thick walls)

xg,r = xf,r = xe,r = xC + wC (dotted walls)

yc,b = yd,b = ye,b = yC (dash-dot walls)

ya,t = yh,t = yg,t = yC + hC (dashed walls)

If a pin p is located on the top boundary of a component (see Figure 4.11),

then the cell it occupies is also on the top boundary of the component in the

BSG embedding. Therefore, its y-coordinate yp is already fixed by constraint

(4.8). We only need to introduce the following constraints to fix it at its given

x-coordinate xp (suppose its BSG cell is i):

53

p’s

cell

pin p

component

Figure 4.11: Location constraints on pin p. The two thick walls are
constrained by equations (4.9) and (4.10).

q’s

cell

p’s

cell

pin ppin q

emtpy

cell

d >

Figure 4.12: The empty cell between the two pins provides the necessary
space if the distance between two pins is larger than the wiring pitch.

xi,l = xp − λ/2 (4.9)

xi,r = xp + λ/2 (4.10)

Again, since we view wires as fat wires, we leave a λ/2 margin on both sides.

The constraints for pins located on the other three boundaries can be derived

in the same way.

Notice that according to guideline 4, we should plan at least one empty

cell between two adjacent pins. Therefore, if two adjacent pins have a dis-

tance d > λ, the empty cell in between will provide the extra space so that

constraints (4.9) and (4.10) can be satisfied for both pins (see Figure 4.12).

Last, we need to fix the walls on the boundaries of the entire BSG at the

boundaries of the input routing domain. This can be done by using con-

straints (4.5), (4.6), (4.7) and (4.8), imaging that the entire routing domain

is a big component.

54

Length Constraints

We also need to put constraints on the sizes of the cells to satisfy the length

bounds. For a net k, we have constraint (4.11) for its upper length bound

uk and constraint (4.12) for its lower length bound lk (in both constraints, i

denotes all the BSG cells occupied by net k):

∑

i

((xi,r − xi,l) + (yi,t − yi,b)− λ) ≤ uk (4.11)

∑

i((xi,r − xi,l)(yi,t − yi,b))

λ
≥ lk(1 + δ) (4.12)

The discussion of how we obtain these constraints and what δ stands for

involves the explanation of how we route inside each cell, so we postpone it

until Section 4.3.5.

4.3.4 Solve the Cell Sizing Problem

By putting all these constraints together, we have a feasibility problem: find

a solution satisfying all the constraints (4.1) – (4.12). Although the problem

contains only linear and quadratic constraints, it is not a convex program-

ming problem because the quadratic constraint (4.12) is not convex. Discus-

sions with an expert in mathematical optimization reveal that this problem

is fundamentally a non-convex optimization problem [49], and as such is not

amenable to many of the classical convex programming formulations known

in operations research. Therefore, we use another approach to tackle this

problem.

We first transform this feasibility problem into an optimization problem

by relaxing the length constraints (4.11) and (4.12) with a slack variable s.

The length constraints become

∑

i

((xi,r − xi,l) + (yi,t − yi,b)− λ)− s ≤ uk (4.13)

∑

i((xi,r − xi,l)(yi,t − yi,b))

λ
+ s ≥ lk(1 + δ) (4.14)

It can be seen that when s→ +∞, both constraints are satisfied for arbitrary

x and y (notice that x and y are bounded by the routing domain so they

cannot be infinite). When s ≤ 0, the two constraints become at least as strict

55

as (4.11) and (4.12), i.e., any x and y satisfying these constraints satisfy

(4.11) and (4.12). Therefore, instead of finding a solution to the original

feasibility problem, we try to minimize s in the new problem with relaxed

length constraints.

Relaxed Problem

minimize: s

satisfying: basic constraints (4.1) to (4.4)

location constraints (4.5) to (4.10)

relaxed length constraints (4.13) and (4.14)

If we can minimize s to 0 or less, then we find a feasible solution to our

original problem.

This optimization problem is still nonlinear because (4.14) is still nonlinear.

However, if we fix all x as constants, then (4.14) becomes a linear constraint

for y. Similarly, if we fix all y as constants, then (4.14) becomes a linear

constraint for x. Therefore, we can solve this nonlinear optimization problem

by solving a series of linear programming (LP) problems: we first fix x as

constants and solve for y. Since all constraints are linear with respect to

y, the relaxed problem becomes an LP problem. Then we do the opposite:

we fix the resultant y as constants and solve for x. Again, we can solve this

problem via linear programming. We repeat such iteration, each time fixing x

(or y) variables obtained from the previous iteration as constants and solving

for y (or x). The iterations terminate if s becomes 0 or less, or if s cannot

be further reduced (even though it is still positive). If the latter happens, it

means we fail to find a feasible solution to our cell sizing problem. There are

several possible reasons:

• The given problem is infeasible, possibly because the length bounds are

too tight. We should relax the length bounds. We can also enlarge the

routing domain if the original length bounds are too long.

• The BSG size is too small to represent the complex routing solution.

We should increase the BSG size.

• Our iterative LP approach is stuck at a local optimum. We need a

better solver for the cell sizing problem.

56

Since we need to fix x as constants in the first iteration, we need an initial

assignment of x to start with. We can obtain this assignment by solving

another LP problem:

Initial Problem

find: feasible x

satisfying: basic constraints involving x ((4.1), (4.3))

location constraints involving x ((4.5), (4.6), (4.9), (4.10))

We take any feasible solution of this problem as the initial x assignment

to start our iteration. The complete algorithm of our iterative procedure is

shown in Alg. 1.

Algorithm 1 Iterative LP Optimization

1: solve Initial Problem to obtain initial x
2: i← 0
3: repeat

4: if i is even then

5: fix x as constants and solve Relaxed Problem for y
6: else

7: fix y as constants and solve Relaxed Problem for x
8: end if

9: i← i + 1
10: until s ≤ 0 or s stops decreasing

The following theorem guarantees the convergence of our approach.

Theorem 3. The objective s converges in our iterative LP optimization.

Proof. In our iterations, the solution of one iteration is automatically a fea-

sible solution to the relaxed problem of the succeeding iteration. Therefore,

the objective value s can only decrease or remain the same because the so-

lution of a minimization problem should have the smallest objective value

among all feasible solutions. If s remains the same after an iteration, we

will terminate. Otherwise s keeps decreasing. As a result, the objective s

after each iteration forms a strictly decreasing sequence with a lower bound

0. Therefore, this sequence converges.

Experiments show that we usually achieve s ≤ 0 in 2 to 3 iterations.

57

4.3.5 Detail Routing

Before we explain how to route inside a cell, we first introduce some defini-

tions. In the BSG embedding, a net must enter a cell by going through a

wall and exit the cell by going through another wall. We call the first wall

the entrance wall of the cell and the second wall the exit wall of the cell. For

example, in Figure 4.9, the entrance wall of cell i is its top wall and the exit

wall is its bottom wall, assuming net k comes from the left and turns to the

bottom. If the entrance wall and the exit wall of a cell are of the same type

(both H-walls or both V-walls), we call the cell a straight cell. Otherwise,

we call it a corner cell. In Figure 4.9, cell i is a straight cell and cell p is a

corner cell.

For any cell occupied by a net, we always route from a point on its entrance

wall, which we call the entrance point, to a point on its exit wall, which we call

the exit point. The entrance point is located λ/2 away from the corner where

the entrance wall meets another wall. Similarly, the exit point is located λ/2

away from the corner where the exit wall meets another wall (see the dots

in Figure 4.13). Therefore, the exit point of a cell always coincides with the

entrance point of the succeeding cell in a net, making the wire continuous

between cells. Notice that a pin is also located λ/2 away from the corner of

its cell according to the pin location constraints, which means it is either an

entrance point or an exit point. Therefore, by completing the detail routing

from entrance point to exit point inside every occupied cell, we can obtain a

continuous pin-to-pin routing for all the nets. The λ/2 distance guarantees

that the wire is separated from the wall by ε/2 so that wires in different cells

do not violate the ε separation rule.

For a straight cell i, the minimum routing length from the entrance point

to the exit point is their Manhattan distance wi+hi−λ (wi and hi denote the

width and height of the cell). Now it becomes clear why we have constraint

(4.11). The shortest length we can route for a net is the sum of wi + hi − λ

over all the cells occupied by the net. This length must be shorter than the

upper length bound of the net.

To obtain greater length, we need to detour inside the cell. The following

theorem shows that we can efficiently use the cell area for length extension:

Theorem 4. For a straight cell with width w ≥ λ and height h ≥ λ, there

always exists a valid route (“valid” means the design rules are satisfied) from

58

/

/

(a) Minimum routing length (b) Maximum routing length

Figure 4.13: The minimum and maximum routing length inside a BSG cell.

the entrance point to the exit point with length l ≥ wh
λ
− 4λ.

Proof. The proof is by construction (see Figure 4.13 (b)). We first detour

horizontally (to the right and back) as much as possible until the space left

is less than 3λ tall. Then we detour vertically (up and down) as much as

possible and finally exit the cell at the exit point. Because each detour takes

only 2λ width, the unused white space is at most 2λ wide because otherwise

we will have space to make another detour. Notice that the last segment to

the exit point occupies 1λ height of space, the height of the white space can

be at most 3λ− 1λ = 2λ. Therefore, the white space can be at most 2λ× 2λ

large and the area occupied by the routing, A, is at least wh − 4λ2. Thus,

the routing length l = A/λ ≥ wh
λ
− 4λ.

While very small compared to the length bounds, the 4λ2 white space still

means that we cannot always fully turn the cell area into routing length.

Therefore, we need to assign a little bit more area to a net than its lower

length bound requires to compensate for this loss. However, since 4λ2 is an

upper bound of the white space, using it to estimate the area compensation

for every cell is too pessimistic. In many cells we are not so unlucky as to hit

this upper bound. Therefore, we introduce a parameter δ in constraint (4.12).

It enlarges the area requirement in the cell sizing problem so that we are

able to achieve the required lower length bound even with some waste of the

area. Parameter δ should be large enough to provide the area compensation

but not too large for two reasons: (1) large δ makes constraint (4.12) very

strict and then the cell sizing problem becomes difficult to solve; (2) 4λ2 is

very small compared to the total length, so we only need a very small δ to

compensate for the area loss. In our experiments, we first set δ to a small

59

(a) Skinny corner cell (b) Corner cell with λ× λ size

Figure 4.14: A skinny corner cell does not allow wire extension.

value and increased it when we found the cell sizing result did not provide

enough room for detail routing. We found that δ = 0.05 would be enough

for all our data.

Unfortunately, Theorem 4 is not necessarily true for corner cells because

we may have a very skinny cell with height less than 2λ but very large width

(see Figure 4.14 (a)). In this case, even though the area of the cell is large,

we cannot utilize it for length extension. To avoid such skinny corner cells,

we force the cell to be λ× λ large. That is, if a cell i is a corner cell, we use

the following constraints instead of (4.3) and (4.4):

xi,r − xi,l = λ (4.15)

yi,t − yi,b = λ (4.16)

By doing this, we are able to guarantee that all the extra area assigned to a

net is assigned to straight cells and can be effectively used for wire extension.

Of course, we will lose some flexibility because corner cells can no longer be

used for wire extension. However, since corner cells take up only a very small

portion of the occupied cells, this has a negligible influence on the capability

of our router.

4.3.6 Some Technical Details

Before we end this section, we would like to discuss some technical details

about cell sizing. In Section 4.3.4, we mentioned that one of the reasons that

the sizing problem is infeasible is that the BSG size is too small. This is

because the BSG structure and the basic constraints impose some implicit

constraints on the BSG walls. If pins or components are embedded too close

to each other, such implicit constraints might lead to conflicts. Figure 4.15

60

p

q

s

t

yp,b

yq,t

p

q

yp,b

yq,t

(a) (b)

Figure 4.15: If two components are placed too close to each other as in (a),
then there might be a conflict between the two pins p and q. We can resolve
the conflict by adding columns of BSG cells in between as in (b).

(a) gives such an example. Suppose pin p is located at (2.2, 5.5) and q is

located at (4.7, 5.3) and λ = 1. Then by the pin location constraint, we have

yp,b = 5.5 − 1/2 = 5 and yq,t = 5.3 + 1/2 = 5.8. On the other hand, we can

obtain the following inequalities from the basic constraints:

yp,b = ys,t ≥ ys,b = yt,t ≥ yt,b = yq,t

Put them together and we have 5 = yp,b ≥ yq,t = 5.8, which is impossible.

The reason for this is that the location constraint on the wall yp,b actually

implies a set of constraints on the dashed walls below it due to the structure

of BSG: all the dashed walls must be located below yp,b. If some other pin

location constraint requires a dashed wall to be located above yp,b, then we

have a conflict. To resolve such a conflict, we can insert extra columns of

cells between the two components, as shown in Figure 4.15 (b). In this way,

wall yq,t is no longer implicitly constrained by the location of yp,b (it is no

longer a dashed wall in the figure) and the conflict is resolved.

A similar situation could also happen inside a component. See Figure 4.16

for an example. If the pin location constraint requires xp,r = 5, then im-

plicitly it also requires xq,l ≥ 5. However, the pin location constraint of q

may set xq,l to some value smaller than 5, causing a conflict. Again, we can

resolve this by inserting rows of cells between them, but this increases the

scale of the cell sizing problem. A better solution is to simply ignore the

basic constraints for cells inside a component. We can ignore them because

61

p

q

s

xp,r

xq,l

Figure 4.16: Conflict may also occur inside a component.

component

pin

margin

component

(a) Without margin (b) With margin

Figure 4.17: Separation rule between the wire and the component is
violated in (a). We resolve this by inserting a ε/2 margin around the
component as shown in (b).

no cell inside a component is used for routing, so ignoring basic constraints

on them will not cause illegal routing. In our implementation, we ignore the

basic constraints for all the cells inside a component.

Another thing we want to discuss is the separation between wires and

components. The ε/2 separation between the routing and the BSG walls

guarantees that the wire segments in different cells satisfy the separation

rule. However, the separation rule between the wires and the components

is not guaranteed (see Figure 4.17 (a)) because they are separated by only

ε/2. To resolve this issue, we allow a ε/2 margin around every component

during cell sizing. This ε/2 margin plus the ε/2 wire-to-wall separation give

exactly ε wire-to-component separation (see Figure 4.17 (b)). Constraints

62

(4.5), (4.6), (4.7) and (4.8) should then be rewritten as

xi,l = xC − ε/2 (4.17)

xj,r = xC + wC + ε/2 (4.18)

yp,b = yC − ε/2 (4.19)

yq,t = yC + hC + ε/2 (4.20)

Notice that the sizes and locations of the cells are all real numbers. So

the completed detail routing does not conform to any routing grid. That is

why we call our router gridless. Nevertheless, the design rules are always

satisfied.

4.4 Extensions

The routing scheme described so far has the basic features of a length-

constrained router. We can further extend it to handle more complex prob-

lems.

4.4.1 Length-Matching Routing

In some designs, the length bounds (li, ui) are not given. Instead, the designer

expects the lengths of all the nets in a bus to be the same and minimize this

length. This is usually called length-matching routing because the lengths

of the nets must match each other. To handle this problem, we introduce a

new variable l to replace the upper and lower length bound in all the length

constraints (4.11) and (4.12):

∑

i

((xi,r − xi,l) + (yi,t − yi,b)− ε)− s ≤ l (4.21)

∑

i((xi,r − xi,l)(yi,t − yi,b))

ε
+ s ≥ l(1 + δ) (4.22)

Since we use this single variable l to represent the length for all nets, their

wire lengths are automatically matched.

In order to minimize the wire length, we need to include l into the objective.

On the other hand, we still need to make sure s = 0 in the result to guarantee

63

the lengths of the nets are matched. Therefore, we set the objective of our

cell sizing problem to be

minimize M · s + l

in which M is a very large constant (M = 1010 in our experiment). We also

include a new constraint into our problem:

s ≥ 0 (4.23)

In this way, s has the first priority to be minimized. However, once it reaches

0, it cannot be further minimized because of constraint (4.23). Then l will be

minimized while s is kept at 0. Notice that l is only a linear term in all the

constraints. Therefore, we can still use our iterative LP approach to solve

the cell sizing problem.

4.4.2 More Complex Routing Topology

Figure 4.7 only shows an example of two components. However, our routing

scheme is capable of dealing with three or more components. It is also possi-

ble to consider obstacles in our scheme. The only part we need to change is

the BSG embedding step. We need a topological router that is able to gen-

erate planar routing following our guidelines. A negotiated-congestion based

router [45], which is shown to be very powerful for planar routing in [15], can

be used to determine the BSG embedding of the topology. The embedding

can also be performed manually. It is usually an easy task to embed the

topology of less than 100 nets on a BSG of size less than 200× 200.

4.4.3 Different Design Rules

It is also possible to consider nets with different wire widths or separation

rules. For example, if two adjacent nets have ε1 and ε2 as their separa-

tion rules, then in the detail routing, the separation between each wire and

the BSG walls should be max(ε1, ε2)/2. This can separate the two wires

by max(ε1, ε2) (see Figure 4.18). Since the topology is given as input, we

know which two wires can be adjacent to each other, so max(ε1, ε2) can be

64

BSG wall

net 1

net 2

max(,

max(,

Figure 4.18: Separating the wires from the BSG walls by max(ε1, ε2)/2
guarantees the satisfaction of wire separation rule.

1 2 3 4 5

1

2

3

4

5

Figure 4.19: A case we observed from industrial data. Vias (black dots) are
inserted to resolve the reversed ordering of the pins.

computed beforehand.

4.4.4 Multi-Layer Routing

Although planar routing is preferred in PCB routing, we observe from indus-

trial designs that there are still situations when multiple layers are necessary

to route a bus. Figure 4.19 gives such an example. In industrial data, we

observed that the pins of a bus form reversed ordering in two components.

In the manual solution, vias are inserted and two layers are used to route

this bus.

Vias on PCBs can be classified into three categories (see Figure 4.20):

• A through via goes through all the layers.

• A blind via connects a certain layer in the middle to either the surface

or the back of the PCB. It can be further classified as a surface blind

65

Blind via

Through via

Buried via Surface

Back

Metal 1

Metal 2

Metal 3

Metal 4

Figure 4.20: Three types of vias: through via, blind via, and buried via.

layer i

layer p

layer j

vi

vp

vj

xv,r,pxv,l,p

yv,t,p

yv,b,p

Figure 4.21: The embedding of a net is marked by the gray cells. It changes
layers from cell vi to cell vj. The darker cells vi, vp, vj indicate via cells.

via or back blind via depending on which side it connects to.

• A buried via connects two layers in the middle of the PCB.

Our router can be extended to handle multi-layer length-constrained rout-

ing with all three types of vias. However, we need to make some modifications

to our router.

First of all, we need to use multiple BSGs. To represent the routing re-

source of a k-layers design, we use k identical copies of the BSG, each rep-

resenting one layer. These BSGs are stacked vertically just like the routing

layers (see Figure 4.21). All the k copies contain the same number of BSG

cells and have the same structure. Now a cell v in the original BSG has k

copies v1, v2, . . . , vk that are vertically stacked. Since these k cells belong to

different layers, they can be sized independently unless they are occupied by

a via, which we will discuss soon.

66

The second step is to embed the multi-layer topology into the multi-layer

BSGs. We must do this very carefully because the embedding must utilize all

the layers evenly. Uneven usage of the BSG cells on different layers may lead

to under-usage of routing space on some layers and eventually lead to length

violations. Because of this even-usage requirement, multi-layer embedding is

done manually in our experiment.

In the embedding, if a net switches layers from cell vi to vj (i < j), then

there is a via from layer i to j. Depending on the via technology (through via,

blind via or buried via) we use, the cells occupied by this via are different:

• If it is a through via, then cells on all the layers, which are cells vp(1 ≤

p ≤ k), are occupied.

• If it is a surface blind via, then all the cells stacked on top of vj, which

are cells vp(1 ≤ p ≤ j), are occupied.

• If it is a back blind via, then all the cells stacked below vi, which are

cells vp(i ≤ p ≤ k), are occupied.

• If it is a buried via, then all the cells stacked between vi and vj, which

are cells vp(i ≤ p ≤ j), are occupied.

We call the cells occupied by the via via cells.

We need to introduce new constraints to size such via cells. Since we now

have multiple BSGs, we make a slight change in our variable notations. For

a cell vp on layer p, we name the variables representing its left, right, bottom

and top walls as xv,l,p, xv,r,p, yv,b,p and yv,t,p respectively (see Figure 4.21).

Suppose a net changes layers from cell vi to cell vj (i < j). For the simplic-

ity of later detail routing, we require the size of a via cell to be just enough

to accommodate the via (and the separation margin) so that no detour is

possible inside a via cell (recall how we treated corner cells). Therefore, we

introduce the following constraints on vi (wv and hv are the width and height

of the via, and ε is the separation rule):

xv,r,i − xv,l,i = wv + ε (4.24)

yv,t,i − yv,b,i = hv + ε (4.25)

In addition, we need to make sure that the positions of all the via cells are

identical so that the via is aligned across the layers. Therefore, we also have

67

the following constraints:

xv,r,p = xv,r,i (4.26)

xv,l,p = xv,l,i (4.27)

yv,t,p = xv,t,i (4.28)

yv,b,p = xv,b,i (4.29)

for all p satisfying























1 ≤ p ≤ k if it is a through via

1 ≤ p ≤ j if it is a surface blind via

i ≤ p ≤ k if it is a back blind via

i ≤ p ≤ j if it is a buried via

4.5 Experimental Results

Our routing scheme is implemented and compared with the router in [15].

We are not able to compare our router with those in [46] and [47] because

those two routers can only be applied to cases when the two components

are facing each other, and such cases are very rare in the industrial data we

obtained. Our router is implemented in C++ and the linear programming

(LP) problems are solved by the open source linear solver lp solve [50]. As

for embedding the topology onto the BSG, we use a simple heuristic since our

data have only two components. We first route the pins of both components

to a channel between them and then use river routing to route inside the

channel. Other heuristics such as maze routing or negotiated-congestion

router [45] can be employed for more complicated cases, e.g., when more

than two components are involved. As mentioned before, using different

heuristics to generate the embedding has an insignificant influence on the

final routing quality as long as our guidelines are followed. Experiments are

performed on a computer with two 2.8 GHz Intel Xeon processors and 4 GB

memory. The platform is Redhat Enterprise Linux 4.

We use seven data sets to test our router (see Table 4.1). The monotonic

data set allows monotonic (left to right) routing topology so the router in [15]

can be applied. The topologies in the general data set are general and no

68

T
ab

le
4.

1:
E

x
p
er

im
en

ta
l
re

su
lt

s
of

ou
r

B
S
G

-r
ou

te
.

ou
r

B
S
G

-r
ou

te
ro

u
te

r
in

[1
5]

d
at

a
#

n
et

le
n
gt

h
sl

ac
k

B
S
G

si
ze

H
-p

ro
b
le

m
V

-p
ro

b
le

m
#

it
.

ru
n
ti

m
e

gr
id

si
ze

ru
n
ti

m
e

m
in

.
av

g.
w
×

h
#

va
r.

/#
co

n
.

#
va

r.
/#

co
n
.

(s
)

w
×

h
(s

)
m

on
ot

on
ic

1
84

1.
4%

46
.5

%
87
×

17
5

78
29

/
14

54
3

78
29

/
14

62
9

2
86

11
81
×

12
37

13
7

m
on

ot
on

ic
2

44
0.

3%
11

.2
%

12
5×

95
60

93
/
10

76
9

60
93

/
10

73
8

2
73

22
52
×

23
83

N
E

M
a

m
on

ot
on

ic
3

83
0.

5%
0.

6%
67
×

17
3

60
00

/
10

89
8

60
00

/
11

00
2

2
56

10
12
×

89
9

13
85

9
m

on
ot

on
ic

4
45

0.
1%

10
.0

%
11

9×
11

2
68

26
/
12

05
7

68
86

/
12

05
0

3
88

22
52
×

68
0

99
49

1

ge
n
er

al
1

36
0.

8%
1.

7%
10

5×
86

46
48

/
87

30
47

01
/

86
64

3
64

N
/A

ge
n
er

al
2

28
0.

02
%

0.
02

%
62
×

91
29

73
/

54
64

29
27

/
54

56
3

21
N

/A
ge

n
er

al
3

36
0.

4%
0.

9%
10

9×
86

48
22

/
90

78
48

77
/

90
08

3
26

0
N

/A

ex
te

n
d

36
N

/A
N

/A
(2
×

)9
0×

90
84

10
/
15

38
2

84
10

/
15

38
2

3
24

4
N

/A

a
N

E
M

:
N

ot
en

ou
gh

m
em

or
y.

T
h
e

re
q
u
ir

ed
m

em
or

y
to

ru
n

th
is

d
at

a
ex

ce
ed

s
th

e
m

em
or

y
of

th
e

co
m

p
u
te

r
(4

G
B

).

69

previous routers can be applied. monotonic 1, monotonic 2 and general 1

are original industrial data and monotonic 3, monotonic 4, general 2 and

general 3 are derived from industrial data. The second column of Table 4.1

shows the number of nets for each data set. In order to show how strict the

length constraints are for a data set, we calculate the length slack of every

net. The slack of a net i is calculated by the following equation (recall that

ui is the upper length bound and li is the lower length bound):

slacki =
ui − li

ui

× 100%

The smaller the slack, the more strict the length constraint. The minimum

and average length slack of the nets in each data set are shown in the third

and fourth columns of Table 4.1.

The experimental results of both routers are reported in Table 4.1. The

“BSG size” column gives the size of the embedded BSG. The next two

columns give the size (the number of variables and the number of constraints)

of the LP problems we formulate for cell sizing. “#.it” gives the number of

LP problems we solve before s converges to 0. The runtime of our router

includes the runtime of the LP solver. In fact, the majority of the runtime

is spent solving the LP problems.

Several observations can be made from the experiments:

1. The BSG size we use is about 10 times smaller than the routing grid size

of [15] in both width and height. Moreover, our BSG size is not sensitive

to the routing grid size of the problem. For example, the routing grid

size of monotonic 2 is much larger than that of monotonic 3. However,

our BSG size remains similar.

2. Our router can handle industrial designs that cannot be handled by

previous routers.

3. For the data that can be handled by [15], our router runs much faster.

The runtime difference can be as huge as 1000x (88 s vs. 99491 s for

monotonic 4).

4. Only two or three LP problems need to be solved before it converges

to a feasible cell sizing solution. This means our approach to solve the

cell sizing problem is efficient.

70

Figure 4.22: Our routing result of general 3.

5. The routing result of general 3 is shown in Figure 4.22. We intention-

ally made the length bounds of the nets very long in the data in order

to show that our router can effectively use the routing area to satisfy

the length constraints.

We also extend our router to handle multi-layer routing, length-matching

routing, obstacles and different wire separation rules. To test these extended

features, we construct a data set extend by making some modifications to

general 3. The data set contains two routing layers and some routing obsta-

cles. All the nets are required to be routed with the same length and the

total routing length is expected to be minimized (length-matching routing).

Some of the nets have a different wire separation rule from the others. The

topology embedding is generated manually. We apply our router on this data

and its performance is reported in the last row of Table 4.1. The (2×) in

the “BSG size” column indicates that we use two BSGs for the two routing

layers. The routing result is shown in Figure 4.23. We can make several

observations from the result:

71

Layer 1

Layer 2

Figure 4.23: Routing result of extend.

72

1. The routing is much sparser than that of Figure 4.22, indicating that

the router is trying to minimize the total length while keeping all the

wires the same length.

2. Part of the routing (see the bottom left part of the layout) has smaller

wire separation than the rest, indicating that the router is able to

handle different wire separations.

3. The routing avoids the obstacles.

4. The routing utilizes two layers and the via locations at the two lay-

ers align perfectly. This means our router produced a legal two-layer

routing.

These observations verify that all the extended features described in Sec-

tion 4.4 function well in our router.

4.6 Conclusion

In this chapter, we introduced a length-constrained routing scheme that han-

dles general planar topology. It is the first time that the length-constrained

routing problem is solved without any restrictions on the routing topology.

With the help of the BSG structure, we are able to convert the length-

constrained problem into a mathematical programming problem and solve

the problem by solving a sequence of linear programming problems. Due

to its gridless feature, our router is insensitive to the routing grid size of

the input, making it very fast for large PCB designs. We also discussed

several extensions of our router including length-matching routing, handling

obstacles, using different separation rules for different nets and multi-layer

routing. The effectiveness of our router and its extended features is verified

by experiments.

73

CHAPTER 5

UNTANGLING TWISTED BUS

5.1 Introduction

In all the previous works on length-constrained routing [15, 46, 47], the pins

on the two sides are assumed to have the same ordering (as in Figure 5.1

(a)). However, such perfectly matched pin ordering might not be available

in practical designs (see the next section for detailed explanation). Such

mismatched pin ordering causes twisted nets that cannot be resolved by any

router in [15,46,47]. In order to obtain a valid routing, we must first untangle

such twisted nets before we apply length-constrained routing.

In this chapter, we introduce a preprocessing step to untangle the twisted

nets before length-constrained routing. Our contributions lie in the following

aspects:

1. This untangling step enables previous length-constrained routers to

solve a broader range of problems.

2. We introduce a routing style, single-detour routing, to simplify the un-

(a) Matched ordering (b) Twisted nets (c) Untangle the twisted nets

1

5

4

3

2

6

1

5

4

3

2

6

2

4

5

6

3

1 1

5

4

3

2

6

2

4

5

6

3

1 1

5

4

3

2

6

Figure 5.1: Must untangle the twisted nets before length-constrained
routing.

74

tangling problem. This routing style is observed from practical designs.

3. We present a necessary and sufficient condition for the feasibility of

single-detour routing problems, which is of theoretical importance.

4. We present a dynamic programming based algorithm to solve the single-

detour untangling problem with the consideration of wire capacity be-

tween adjacent pins. The optimality is guaranteed by our algorithm.

The rest of this chapter is organized as follows: We introduce the mo-

tivation of this work as well as our problem formulation in Section 5.2. In

Section 5.3, we introduce a very practical single-detour style that greatly sim-

plifies our problem. We then study this routing style and present a necessary

and sufficient condition for the existence of its feasible solutions in the same

section. In Section 5.4, we present a dynamic programming based algorithm

that gives the optimal solution to the single-detour untangling problem. Ex-

perimental results are presented in Section 5.5. We conclude the chapter in

Section 5.6.

5.2 Motivation

Previous works on length-constrained routing [15,46,47] require that the or-

derings of the pins on the two sides are matched. However, in some practical

designs, this might not be possible. For example (see Figure 5.2), in some

high-performance PCB designs, nets in a bus are first routed from one pin

array to a column of damping impedance near the pin array and then routed

to the pins inside another pin array. The routing from inside the pin arrays

to the package boundaries, which is usually called escape routing, is expected

to produce a matched net ordering on both boundaries. Although researches

on escape routing are trying hard to make this possible [16, 51], it is still

sometimes impossible to guarantee a matched ordering, especially for com-

plex designs. Failure to provide matching ordering leads to twisted nets, and

usually this means that the bus must be split and routed on different layers.

Another example is to route from a dual in-line package (DIP) to a pin array.

A DIP is a package whose pins form two parallel lines (please refer to [52] for

an introduction on DIP). Its footage on the PCB resembles the two lines of

pins of the column of damping impedances in Figure 5.2. Sometimes the pin

75

1
4 5
6

2

3

3
5

1
2 4
6

4

2
1

5
6

3

4

2
1

5
6

3
Routing layer

Surface

Package 1
Package 2

Escape routing Escape routingLength-constrained routing

Pin array

Pin array

Untangling

Damping Impedance

Figure 5.2: Mismatched pin ordering can be resolved by untangling the
twisted nets.

ordering of a DIP may not match with the escape routing of the pin array

it connects to and the bus becomes twisted. However, we can use the space

under the damping impedances or the DIP to untangle the twisted nets and

reduce the number of layers the bus uses.

In this chapter, we introduce an untangling step into the design flow of

PCB bus routing as a preprocess so that previous bus routing algorithms

can be extended to solve a broader range of problems. Of course, the wire

length used to untangle the nets must be subtracted from the length budget

in the later length-constrained routing phase. This can be done by small

modifications to the length-constrained router.

Without loss of generality, we assume that the escaped nets on the right

are labeled 1, 2, . . . , n, from top to bottom and the damping impedance in

the left is a permutation of {1, 2, . . . , n}. We can formulate the problem as

follows:

Problem 2. Given a column of n pins whose IDs form a permutation of

{1, 2, . . . , n}, from top to bottom, the untangling problem is to route from

the pins to the right such that the routing is planar and the wires to the

right follow an increasing order.

This problem has many solutions. One solution can be constructed in a

systematic way: we first route the top pin to the right with no detour. Then

we route the rest of the pins from top to bottom. When we route a pin, we

start from the pin and always let the wire go up. When the wire encounters

a pin with ID smaller than the pin we are routing, we let the wire pass this

pin on the right. Otherwise, we let the wire pass it on the left. We continue

doing this until the wire passes the top pin and then we draw the wire to the

76

5

1

3

2

4

1

2

3

4

5

1

2

3

4

55

1

3

2

4

(a) Upward routing (b) Single-detour routing

Figure 5.3: Upward routing vs. single-detour routing.

right. An example of such routing can be found in Figure 5.3 (a).

This routing style guarantees that the routing is planar and the order of

the wires to the right is increasing. However, it is not practical due to the

following issues:

1. It does not consider the capacity between adjacent pins. Usually, a

solution generated in this way has lots of wire congestion between pins.

2. It generates only one solution and thus lacks flexibility.

5.3 Single-Detour Routing

From the above discussion, we can see that “snaking” among the pins usually

causes wire congestion, e.g., there are three wires passing between pin 5 and

pin 1 in Figure 5.3 (a). To avoid this, we restrain the detouring area to the

left of the pin column (the dark region in Figure 5.3 (b)). The right-hand

side of the pin column is used only for straight connections. This actually

means that each pin is allowed to detour only once. We call this routing style

single-detour routing. Using single-detour routing limits the possibilities of

the routing solutions. However, it brings us lots of benefits:

1. The routing pattern is much simpler.

2. It leads to less wire congestion. Notice that the snaking makes a wire

pass between pins multiple times while single-detour routing allows at

77

most one passing per wire.

3. The right-hand side of the pin column can be used completely for

length-constrained routing. If multiple detours are allowed, some part

of the wires will pose obstacles to later length-constrained routing.

In fact, we observe that the snaking in Figure 5.3 (a) rarely happens in

practical designs. Most board routing adopts the routing style in Figure 5.3

(b). Therefore, we focus on this single-detour routing style and put it into

our problem formulation:

Problem 3. The single-detour untangling (SDU) problem is an untangling

problem that allows only one detour for each wire.

Here we present a simple necessary and sufficient condition to judge whether

a given single-detour untangling problem has feasible solutions or not:

Definition 1. A sequence of integer numbers is reduced by renaming each

number by its order of magnitude in the sequence. That is, the smallest

number is renamed as 1, the second smallest as 2, and so on.

For example, (5, 3, 8, 1) is reduced to (3, 2, 4, 1). Notice that some se-

quences such as (3, 4, 1, 2) are reduced to themselves.

Definition 2. The pin sequence of a problem is the sequence of pin IDs

obtained by scanning the pin column from top to bottom. A pattern is a

permutation of {1, 2, . . . ,m}. The pin sequence of a problem contains a

pattern if and only if there exists a subsequence of the pin sequence that can

be reduced to that pattern.

For example, pin sequence (6, 4, 3, 5, 1, 2) contains the pattern (2 , 3 , 1)

because its subsequence (3, 5, 2) can be reduced to (2, 3, 1).

Theorem 5. A single-detour untangling problem has at least one feasible

solution if and only if its pin sequence does not contain pattern (3 , 4 , 1 , 2),

(2 , 4 , 1 , 3) or (3 , 1 , 4 , 2).

Proof. See appendix.

The three patterns (3 , 4 , 1 , 2), (2 , 4 , 1 , 3) and (3 , 1 , 4 , 2) are called for-

bidden patterns for SDU problems.

78

This theorem is of theoretical importance because it defines whether an

SDU problem is solvable or not. If an SDU problem is not solvable, several

changes can be made to the design to help resolve this issue:

1. Recall that the order of the pins in the pin sequence is determined by

the escape routing of the pin arrays (see Figure 5.2). So we can modify

the escape routing to make the pin sequence preferable for single-detour

routing. Theorem 5 gives a criterion for what kind of pin sequences are

preferable - those which do not contain the forbidden patterns.

2. We can break one unsolvable SDU problem into several smaller solvable

SDU problems. This can be done by decomposing the pin sequence

into several subsequences which do not contain the forbidden patterns.

Those smaller problems can then be routed on different layers.

3. We can increase the routing flexibility by allowing the wire to detour

multiple times. Whether optimal algorithms exist for the such multi-

detour routing remains an open problem.

5.4 Dynamic Programming Solution

In this section, we will present a dynamic programming based algorithm. We

will first show how we define the subproblems of an SDU problem and then

show how a subproblem can be recursively built from smaller subproblems.

Then we will explain how to turn the recursive construction into dynamic

programming. Finally, we will extend our algorithm to handle capacity con-

straints and also introduce some other extensions of it.

5.4.1 Subproblem Definition

Definition 3. A subproblem P (i, j) (i ≤ j) is a subsequence of the pin

sequence P such that the pin IDs in the subsequence are in range [i, j]. If

a subproblem is a consecutive subsequence of the original pin sequence, we

call it a valid subproblem.

For example, for pin sequence (4, 1, 3, 2, 6, 5), we have a valid subproblem

P (1, 4) = (4, 1, 3, 2). Notice that not every P (i, j) is valid. For example,

79

i

...

P
(i
+
1
,
 j
)

j

...

P
(i
,
 j
-1
)

k

...
...

P
(i
,
 k
-1
)

P
(k
+
1
,
 j
)

i

...

P
(i
+
1
,
 j
) i

...
...

P
(i
+
1
,
 k
)

P
(k
+
1
,
 j
)

(a) (b) (c) (d) (e)

Figure 5.4: The five cases of dividing a subproblem P (i, j).

P (2, 5) is not valid because the subsequence (4, 3, 2, 5) is not consecutive in

the original pin sequence.

We are interested only in valid subproblems because invalid subproblems

do not have independent solutions. In the example above, pin 1 and pin 6 are

located inside subproblem P (2, 5). We cannot route the subproblem without

considering how to route those two pins.

For an SDU problem with n pins, we have 1 ≤ i ≤ j ≤ n. This means

there exist at most O(n2) subproblems.

5.4.2 Recursive Nature of the Subproblem

With the subproblem defined, we now show that its solution can be recur-

sively constructed from the solutions of smaller subproblems. We examine

the topmost feature (a pin or a wire) of a feasible solution of a subproblem

P (i, j). There are totally five cases (see Figure 5.4):

1. The topmost feature is pin i. Then its routing must be straight to the

right and the rest of the pins form a smaller subproblem P (i + 1, j).

Notice that P (i + 1, j) must be valid if P (i, j) is valid.

2. The topmost feature is pin j. Then its routing must detour over the

rest of the pins. Those pins form a smaller subproblem P (i, j − 1).

Notice that P (i, j − 1) must be valid if P (i, j) is valid.

3. The topmost feature is a pin k such that i < k < j. Then the rest of

the pins can be divided into two smaller subproblems P (i, k − 1) and

80

...
...

P
(i
,
 k
)

P
(k
+
1
,
 j
)

j

...

P
(i
,
 j
-1
)

i

...

P
(i
+
1
,
 j
)

(a) Combination (b) Top pin detour (c) Bottom pin detour

Figure 5.5: Three ways of decomposing a subproblem.

P (k + 1, j). Both subproblems are valid because otherwise there will

be intersections on wire k.

4. The topmost feature is a wire from pin i which is located at the bottom

of the subproblem. Then all the pins above i form a smaller subproblem

P (i + 1, j). Notice that P (i + 1, j) must be valid if P (i, j) is valid.

5. The topmost feature is a wire from pin i which is located in the middle

of the subproblem. Then pins above i form a smaller subproblem P (i+

1, k) and pins below i form a smaller subproblem P (k + 1, j). Both

subproblems are valid because otherwise there will be intersections on

wire i.

These five cases can be further generalized into three cases (see Figure 5.5):

1. The subproblem is a combination of two smaller subproblems P (i, k)

and P (k + 1, j), in which i ≤ k < j. This covers cases (1), (3) and (5)

of Figure 5.4. Notice that for case (1), k = i. So the two subproblems

are P (i, i) and P (i + 1, j).

2. The top pin detours downward over all the other pins. Then the sub-

problem can be decomposed into a smaller subproblem P (i, j − 1) and

a detouring route from pin j. This covers case (2) in Figure 5.4.

3. The bottom pin detours upward over all the other pins. Then the

subproblem can be decomposed into a smaller subproblem P (i + 1, j)

and a detouring route from pin i. This covers case (4) in Figure 5.4.

81

5.4.3 The Algorithm

The above description already gives a recursive algorithm: we could recur-

sively build the solution of the subproblem until we reach the bottom case,

a subproblem with only one pin. The solution to this base subproblem is

simple: a wire to the right with no detour. Conversely to this top-down

recursive fashion, we can also construct all subproblems in a bottom-up way

using dynamic programming [53] (see Algorithm 2).

Algorithm 2 Dynamic Programming for SDU

1: for 1 ≤ i ≤ n do

2: construct solution of P (i, i) by routing i to the right with no detour
3: end for

4: for size = 2 to n do

5: for i = 1 to n− size + 1 do

6: j = i + size− 1
7: if solution of P (i, j) has been constructed then

8: for k = j + 1 to min{j + size, n} do

9: if solution of P (j + 1, k) has been constructed then

10: construct solution of P (i, k) from P (i, j) and P (j + 1, k)
11: end if

12: end for

13: for k = i− 1 downto max{i− size, 1} do

14: if solution of P (k, i− 1) has been constructed then

15: construct solution of P (k, j) from P (k, i− 1) and P (i, j)
16: end if

17: end for

18: if pin j + 1 is located immediately above P (i, j) then

19: construct solution of P (i, j + 1) from P (i, j)
20: end if

21: if pin i− 1 is located immediately below P (i, j) then

22: construct solution of P (i− 1, j) from P (i, j)
23: end if

24: end if

25: end for

26: end for

27: return solution of P (1, n)

In the algorithm, lines 8 to 17 cover case (1) in Figure 5.5. When a

subproblem is a combination of two smaller subproblems, there are two cases:

the size of the upper subproblem is larger than or equal to that of the lower

subproblem, or the reverse. Lines 8 to 12 cover the first case and lines 13

82

to 17 cover the later case. Lines 18 to 20 cover case (2) in Figure 5.5 and

lines 21 to 23 cover case (3) in Figure 5.5.

Clearly, this algorithm has O(n3) time complexity because the nested “for”

loop has depth 3. We can see that this algorithm covers all possible cases.

Therefore, if the problem has a single-detour solution, it will be found by

this algorithm. The optimality is guaranteed.

Theorem 6. Algorithm 2 guarantees to find a feasible solution to an SDU

problem if one exists.

Proof. From the discussion above.

5.4.4 Capacity Consideration

For practical problems, we have to consider wire capacity as well. Wire

capacity is the maximum allowable number of wires that could pass between

two adjacent pins. Therefore, our problem becomes:

Problem 4. An SDU problem with wire capacity C is an SDU problem

allowing at most C wires passing between two adjacent pins.

We need to modify Algorithm 2 in order to take wire capacity into con-

sideration. When we combine two subproblems (case (1) of Figure 5.5), we

need to check whether the capacity constraints are satisfied between the two

subproblems, i.e., whether the number of wires that go below the upper sub-

problem plus the number of wires that go above the lower subproblem is less

than or equal to the capacity limit (see Figure 5.6 (a)). We do not need

to check inside the smaller subproblems because the capacity requirements

are already satisfied when constructing the smaller subproblems. Similarly,

for case (2)/(3), we only need to check if the number of wires that go be-

low/above the subproblem is less than the capacity.

In order to facilitate such capacity check, we need to know the number of

wires above the top pin as well as the number of wires below the bottom pin

in a subproblem. However, there could be multiple solutions to a subprob-

lem and the solutions may give different numbers of wires above or below the

subproblem. Therefore, we have to enumerate all possible cases to guarantee

the optimality. For each subproblem P (i, j) we have C2 subcases (recall that

C is the capacity between two adjacent pins). A subcase P (i, j, a, b) means

83

(a) (b) (c)

Figure 5.6: Capacity should be checked when constructing bigger
subproblems from smaller subproblems. Dark area indicates the region in
which the wire capacity should be checked.

that the number of wires above the subproblem is a and the number of wires

below the subproblem is b. Now line 10 and line 19 in the previous algo-

rithm should be modified to Algorithm 3 and Algorithm 4. The constructing

procedures in line 15 and line 22 should be modified in a similar way.

Algorithm 3 construct solution of P (i, k) from P (i, j) and P (j + 1, k)

1: for a = 0 to C do

2: for b = 0 to C do

3: for a′ = 0 to C − b do

4: for b′ = 0 to C do

5: if P (i, j, a, b) and P (j +1, k, a′, b′) have been constructed then

6: construct solution of P (i, k, a, b′) from P (i, j, a, b) and P (j +
1, k, a′, b′)

7: end if

8: end for

9: end for

10: end for

11: end for

The time complexity of the algorithm is O(n3C4), in which n is the total

number of pins and C is the capacity between two adjacent pins. Usually, C

is quite small in practice (≤ 3). So the complexity can be regarded as O(n3)

for practical designs.

Some extensions can be made for our algorithm; all of them require only

minor changes to our algorithm:

1. Sometimes we want to optimize some cost while keeping the capacity

rule satisfied. For example, sometimes we would like to minimize the

84

Algorithm 4 construct solution of P (i, j + 1) from P (i, j)

1: for a = 0 to C do

2: for b = 0 to C − 1 do

3: for a′ = 0 to C do

4: construct solution of P (i, j + 1, a′, b + 1) from P (i, j, a, b)
5: end for

6: end for

7: end for

number of vertical tracks used for untangling to save space to the left

of the pin column, or sometimes we want to minimize the maximum

congestion between adjacent pins. Our algorithm is capable of doing it.

For each subcase, we not only memorize its solution, but also keep the

cost of this solution. We update the cost and the solution whenever we

find a solution that has better cost.

2. Although we assume that the wire capacity is uniform for all adjacent

pins, it is straightforward to extend the algorithm to handle different

capacities between different pins. The only change is that we have

different numbers of subcases for each subproblem.

3. The dynamic programming approach gives only one solution. If multi-

ple solutions are demanded to increase the flexibility, we can keep a list

of solutions for each subcase and use all the possible solutions in the

list to build larger subcases. The complexity increases by a constant

factor as long as the length of the list is constrained to constant.

5.5 Experimental Results

We implement our dynamic programming algorithm in C++ and integrate

it into the length-constrained router in [15]. The original length-constrained

router in [15] gives a solution in which all wires have the same length. By

small modifications to it, we can route the wires with specified length dif-

ference. We test the integrated router on various test cases with their size

ranging from 10 nets to 100 nets. All experiments are performed on a work-

station with a 2.4 GHz Intel Xeon CPU and 1 GB memory. The operating

system is Red Hat Linux 8.0.

85

Figure 5.7: Our solution for a test case with 15 nets.

Our router gives valid routing solutions for all the test data. The runtime

spent on untangling the nets takes less than 1 s in all cases while length-

constrained routing takes minutes. The number of vertical tracks used for

detouring is around 4 ∼ 6. It can be seen that our algorithm adds only

very minor overhead to the router. The solution of one test case is shown in

Figure 5.7.

5.6 Conclusion

We introduced a new step to untangle the twisted nets for bus routing. We

also introduced the single-detour constraint to reduce the complexity of the

untangling problem. We presented a necessary and sufficient condition for

the feasibility of single-detour routing problems. We also presented a dy-

namic programming based algorithm to solve such single-detour untangling

problems. The algorithm is guaranteed to produce an optimal single-detour

routing scheme that untangles the nets. The time complexity of the algo-

rithm is O(n3). Experimental results show that the algorithm takes less than

1% of the total runtime in a bus routing flow and untangles the twisted nets

effectively.

86

CHAPTER 6

LAYER ASSIGNMENT

6.1 Introduction

In PCB routing, nets are usually grouped as buses and the nets from the same

bus are usually expected to be routed together without mixing with nets from

other buses. Due to the huge pin count and high density of the pin array, it

usually requires multiple layers to escape the buses without any conflict. In

fact, modern PCBs may contain more than 20 layers of routing [6]. How to

assign the escape routing of buses to different layers becomes an important

issue.

Recently, Kong et al. [16] proposed a layer assignment algorithm for this

problem. The algorithm is optimal for single-layer design in the sense that it

determines if a set of buses can be all escaped on one layer. If they cannot,

the algorithm is able to select a maximum subset of the buses that can

be escaped on one layer. For multi-layer design, this algorithm suggests a

heuristic: repeatedly assign a maximum subset of the unassigned buses to

a new layer. Such a heuristic may lead to suboptimal results in which the

number of layers is not minimal.

In this chapter, we propose an optimal layer assignment algorithm for

multi-layer design. We show that the layer assignment problem can be trans-

formed into a bipartite matching problem, which can be solved in O(n2.38)

time [54]. By finding the maximum matching of a constructed bipartite

graph, we can find the optimal bus layer assignment of which the number of

layers is guaranteed to be minimal.

The rest of this chapter is organized as follows: Section 6.2 gives the neces-

sary background on the layer assignment problem of bus escape routing; Sec-

tion 6.3 presents our optimal algorithm for solving this problem; Section 6.4

presents the experimental results; and Section 6.5 gives the conclusion.

87

Pins of the bus

Interval

Projection

Component
Boundary

Bounding
Box

Figure 6.1: Illustration of the projection interval of a bus.

6.2 Background

In practical designs, pins on the PCB are usually grouped into buses and

the escape routing of a bus is expected to be grouped together without mix-

ing with routing from other buses. In some industrial manual designs, we

observe that the pins of a bus are escaped straight to the boundary of the

pin array with minimal detours. In this case, the routing region of a bus is

the projection of the bounding box of its pins to the boundary of the pin

array [16]. The projection forms an interval along the array boundary, which

we call projection interval or interval for short. Figure 6.1 illustrates the

concept of projection interval.

Due to the high density of the pin array, not all the buses can be assigned

to one layer. We need to assign all the buses to the minimum number of

layers without any conflict between the buses assigned to the same layer.

Two buses are called conflicting buses and cannot be assigned to the same

layer if one of the following two situations happens:

• The intervals of the two buses overlap in either side (see Figure 6.2).

If two intervals overlap, then the escape routing of the two buses will

have conflicts.

• The intervals of the two buses have different ordering in the two arrays

(see Figure 6.3). If the interval of one bus is above the interval of the

other bus on one side but the reverse happens on the other side, then

88

l1

Pins of b2Pins of b1

l2

r1

r2

Figure 6.2: Bus b1 has intervals l1 and r1 in the left and right array
respectively. Bus b2 has intervals l2 and r2 in the left and right array
respectively. The escape routes of the two buses in the left do not have
conflicts so l1 and l2 do not overlap. Contrarily, their escape routes
have conflicts (the thick routing) in the right where r1 and r2 overlap.

l1

Pins of b2Pins of b1

l2

r2

r1

Figure 6.3: The intervals of bus b1 and b2 have different ordering on
the two sides. This causes intersections between the area routing of
the two buses.

the area routing of the two buses will have crossings, which are not

desirable.

If two buses are not conflicting, they can be assigned to the same layer

without causing any problem. We say such buses are compatible with each

other.

Now we define the layer assignment problem for escape routing of buses as

follows.

Definition 4. Given a set of buses B = {b1, b2, . . . , bn} defined by their inter-

vals {l1, l2, . . . , ln} in the left array and {r1, r2, . . . , rn} in the right array, find

out a valid layer assignment using the minimum number of layers. A layer

89

assignment is valid if the buses assigned to the same layer are all compatible

with each other for all layers.

In [16], Kong et al. proposed an algorithm that determines if a set of

buses are all compatible. If not, their algorithm can find the maximum sub-

set1 of the buses that are compatible with each other. It is an optimal layer

assignment algorithm for single-layer design. A heuristic for multi-layer de-

sign follows naturally from this algorithm: repeatedly find out the maximum

subset of the unassigned buses and assign them to a new layer. However,

this heuristic might not minimize the total number of layers. Figure 6.4 (a)

gives a sample case of six buses. If we follow the heuristic, we would first

assign buses b1, b2, b3, b4 to one layer because they are the largest set of buses

that are compatible with each other. Then we have to assign b5 and b6 to

different layers because r5 and r6 overlap with each other. This layer as-

signment consumes three layers (see Figure 6.4 (b)). However, if we assign

b1, b2, b6 to one layer and b3, b4, b5 to the other, we will use only two layers

(see Figure 6.4 (c)). Therefore, we need a layer assignment algorithm that

gives us the minimum number of layers for a multi-layer design. In the next

section, we will present such an algorithm.

6.3 Our Solution

At first glance, this layer assignment problem looks like a coloring problem:

find out the minimum number of colors to color the buses so that incompati-

ble buses are assigned different colors. However, a general coloring problem is

NP-hard [55]. In this section, we will show that this layer assignment problem

has a very nice property (Lemma 6) that makes it polynomial time solvable.

Before we present the polynomial time solution, we will first introduce some

terminologies and notations.

A bus bi has two intervals: li in the left array and ri in the right array.

Each interval li is defined by its two endpoints: the upper endpoint lui and

the lower endpoint lli. Similarly, ri is defined by ru
i and rl

i. We denote the

1In [16], each bus has a weight, so the maximum subset means the subset of buses
with the maximum total weight. However, the bus weight does not affect the minimal
number of layers in a multi-layer problem. Therefore, we assume all the buses have the
same weight in our discussion.

90

l1

l2

l3

l4

r1

r2

r3

r4

l5

r5

r6

l6

l1

l2

l3

l4

r1

r2

r3

r4

l5

r5

r6

l6

l1

l2

l3

l4

r1

r2

r3

r4

l5

r5

r6

l6

(a) (b) (c)

u1

u2

u3

u4

v1

v2

v3

v4

u5

u6

v5

v6

u1

u2

u3

u4

v1

v2

v3

v4

u5

u6

v5

v6

u1

u2

u3

u4

v1

v2

v3

v4

u5

u6

v5

v6

(d) (e) (f)

Figure 6.4: An example of the layer assignment problem is given in (a).
The heuristic implied by [16] produces a three-layer solution (b) while the
optimal layer assignment needs only two layers as in (c). Buses represented
by the same line style (solid, dotted, gray) are assigned to the same layer;
different line styles indicate different layers. (d) The corresponding bipartite
graph GB for this problem. The matchings indicated by thick edges in (e)
and (f) correspond to the layer assignments in (b) and (c) respectively.

“above” relation by the symbol “≻”; that is, if an endpoint a is located above

another endpoint b, we denote it as a ≻ b. Naturally, we have lui ≻ lli and

ru
i ≻ rl

i. We also define the “above” relation between buses as follows.

Definition 5. For two buses bi and bj (bi 6= bj), we say bi is above bj (denoted

as bi ≻ bj) if and only if lli ≻ luj and rl
i ≻ ru

j .

91

Compatibility of buses can be expressed by this “above” relation. The

following lemma can be easily verified.

Lemma 4. Two buses bi and bj (bi 6= bj) are compatible if and only if bi ≻ bj

or bj ≻ bi.

It can also be verified that this “above” relation is transitive:

Lemma 5. If bi ≻ bj and bj ≻ bk, then bi ≻ bk.

We also define the “immediately above” relation which is more strict than

“above.” Notice that this relation is defined only for a valid layer assignment.

Definition 6. For two buses bi and bj (bi 6= bj) assigned to the same layer

l in a valid layer assignment, we say bi is immediately above bus bj (denoted

as bi 3 bj) if bi ≻ bj and ∄bk ∈ layer l, bi ≻ bk ≻ bj.

Although the “above” relation is transitive, the “immediately above” re-

lation is not. In fact, one bus can have at most one other bus immediately

above it.

Lemma 6. If two buses bi, bj ∈ layer l and bi 3 bj, then the following two

statements are true:

• bk ∈ layer l, bk 3 bj =⇒ bk = bi

• bk ∈ layer l, bi 3 bk =⇒ bk = bj

Proof. We only prove the first statement; the second one can be proved in

the same way. Suppose bi 3 bj and bk 3 bj but bk 6= bi. Since the layer

assignment is valid and all three buses are assigned to the same layer, we

must have bk ≻ bi or bi ≻ bk (Lemma 4). If bk ≻ bi, then we have bk ≻ bi ≻ bj

(Lemma 5), which contradicts bk 3 bj. If bi ≻ bk, then we have bi ≻ bk ≻ bj,

which contradicts bi 3 bj.

With the preceding notations and lemmas, we now present our solution.

We solve the layer assignment problem of escape routing of buses by trans-

forming it into a bipartite matching problem. Given a set of buses B, we con-

struct its corresponding bipartite graph GB as follows: for any bus bi ∈ B, we

create two nodes ui and vi in GB. For any pair of buses bi and bj, if bi ≻ bj,

then we create an edge between node ui and node vj in GB. Since edges are

92

always created between u nodes and v nodes, GB is a bipartite graph. In

Figure 6.4, (d) gives the corresponding bipartite graph of the problem in (a).

There is a one-to-one correspondence between valid layer assignments of

the buses B and matchings of the bipartite graph GB:

Theorem 7. A valid layer assignment of a set of n buses B that uses k

layers corresponds to a matching of n− k edges in GB.

Proof. From a valid layer assignment of B, we can construct a matching MB

of GB as follows: For any pair of buses bi and bj, if bi 3 bj, then include

edge e = (ui, vj) into edge set MB. Note that if two edges e1 = (ui, vj) and

e2 = (ui, vk) are incident to the same node ui, then we know bi 3 bj and

bi 3 bk. From Lemma 6, we know that bj = bk, meaning that e1 and e2

are identical. Similarly, no two different edges can be incident to the same v

node. Therefore, the resultant MB is a matching.

The reverse correspondence from matching to valid layer assignment can

be constructed by reversing the above procedure: for any edge e = (ui, vj)

in matching MB, assign bi and bj to the same layer. This “assigned-to-

the-same-layer” relation is transitive: if bi and bj are assigned to the same

layer (because e1 = (ui, vj) ∈ MB) and bj and bk are assigned to the same

layer (because e2 = (uj, vk) ∈ MB), then bi and bk are also assigned to the

same layer (although edge e3 = (ui, vk) /∈ MB because MB is a matching

and e1 and e3 are both incident to ui). Therefore, two buses bi and bj

are assigned to the same layer either directly through a matching edge e =

(ui, vj) ∈ MB (or e = (uj, vi) ∈ MB) or through transitivity. If it is the

former case, we know bi and bj are compatible becauase such edge exists in

the graph only when bi ≻ bj (or bj ≻ bi). If it is the later case, then there

must be a sequence of edges e1, e2, . . . , em in the matching MB to bridge

the two buses. Notice that no two edges in a matching can be incident

to the same node. Therefore, the sequence of edges must be of the form

e1 = (u1, v2), e2 = (u2, v3), e3 = (u3, v4), . . . , em = (um, vm+1) and u1 =

ui, vm+1 = vj (or symmetrically, u1 = uj, vm+1 = vi). According to the

definition of the graph, we would have bi = b1 ≻ b2 ≻ . . . ≻ bm ≻ bm+1 = bj.

Because the “above” relation is transitive, we have bi ≻ bj and therefore

they are compatible. The symmetrical case of u1 = uj, vm+1 = vi will lead to

bj ≻ bi for the same reason. As a result, any two buses assigned to the same

layer are compatible, meaning that the assignment is valid. Note that the

93

number of transitive closures of the “assigned-to-the-same-layer” relation is

actually the number of layers.

Assume that the number of buses assigned to layer l is nl. Then for all buses

on layer l, we will find exactly nl − 1 pairs of buses with this “immediately

above” relation. So we will add exactly nl − 1 edges to MB. Since the total

number of buses n =
∑k

l=1
nl, the total number of edges in MB is exactly

∑k

l=1
(nl − 1) = n− k.

The following corollary follows directly from Theorem 7.

Corollary 1. The optimal layer assignment of B corresponds to the maxi-

mum matching of GB.

In Figure 6.4, (f) gives the maximum matching of (d), and it can be seen

that the matching has exactly 6 − 2 = 4 edges. It can also be seen from

(e) that the matching corresponding to the layer assignment of the heuristic

implied by [16] has 3 edges. That is the reason the layer assignment uses

6− 3 = 3 layers.

Now we analyze the time complexity of our approach. Constructing the

graph GB from the input buses B takes only O(n2) time in which n is the

total number of buses because we need to examine every pair of buses to see

if they satisfy the “above” relation. Computing the maximum matching of

GB takes O(n2.38) time [54]. Then converting the maximum matching result

into layer assignment takes O(n2) time because for each bus, we need to

scan through all the layer-assigned buses to see if it can be assigned to the

same layer as such buses. As a result, the total complexity of our method is

O(n2.38).

6.4 Experimental Results

We implement our layer assignment algorithm in C++ and compare it with

the heuristic approach implied by [16]. The maximum matching is computed

using the max-flow solver HIPR [56]. We tested the two algorithms on eight

test cases derived from industrial data. The experiments are performed on a

workstation with a 3.0 GHz Intel Xeon CPU and 4 GB memory.

Table 6.1 shows the results of our experiment. The second column gives

the number of buses in each test case. The third and fourth columns present

94

Table 6.1: Experimental results of our layer assignment algorithm.

of # of layers
Buses optimal heuristic [16] diff.

Test case 1 110 29 30 1
Test case 2 38 12 13 1
Test case 3 21 12 12 0
Test case 4 16 7 7 0
Test case 5 23 12 12 0
Test case 6 38 12 14 2
Test case 7 14 6 7 1
Test case 8 8 4 4 0

the number of layers in the optimal layer assignment produced by our algo-

rithm and that of the layer assignment produced by the heuristic [16]. Their

difference is given in the last column. Since the runtimes of both approaches

are negligible, we do not list the runtime in our table.

It can be seen that our optimal algorithm uses fewer layers than the heuris-

tic in four out of the eight test cases. The one or two layer improvement may

seem insignificant compared to the total number of layers used. However, the

impact on the manufacturing cost is significant, especially for high-density

boards. This is because high-density boards usually have higher defective

rates. Therefore, by reducing even just one layer of routing, the yield can

be increased substantially and the manufacturing cost can be reduced. For

example, if we reduce the number of layers in a high-density board from 22

to 18, the manufacturing cost can be cut from $850 to $500, a 44% decrease,

although the number of layers is decreased by only 18% [57].

6.5 Conclusion

In this chapter, we presented an optimal layer assignment algorithm for es-

cape routing of buses and proved that it guarantees to output a layer assign-

ment with the minimum number of layers. Experimental results also show

layer number improvement over a heuristic implied by a previous work [16].

Our algorithm can also be extended. For example, if we prefer two buses

to be assigned to the same layer, we can assign a higher weight to the edge

connecting the two buses in the bipartite graph GB. If we compute the max-

95

imum weighted matching for the graph, we can increase the chance that the

two buses are assigned to the same layer.

96

CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

In this dissertation, we have studied modern PCB routing problems. Top-

ics that have been covered in our study include: escape routing, length-

constrained routing and layer assignment.

First, we focused on the escape routing problem. In Chapter 2, we pro-

posed a network flow based escape routing algorithm that correctly captures

the diagonal capacity. It is the first optimal escape routing algorithm that

can handle pin arrays with diagonal capacities. In Chapter 3, we studied the

escape routing problem of differential pairs and proposed two algorithms.

The objective was to keep the routing paths of a differential pair as close

as possible while minimizing the total wire length. The first algorithm we

proposed computes the optimal routing for a single differential pair while our

second algorithm is able to simultaneously route multiple differential pairs.

We also built a two-stage routing scheme based on these two algorithms.

We then studied the length-constrained routing problem and a related net

untangling problem. In Chapter 4, we proposed the first length-constrained

routing algorithm that has no topological restrictions. Moreover, due to

its gridless feature, our algorithm is faster than a previous gridded router

[15]. Our key idea was to turn the routing problem into an area assignment

problem and use a placement structure to help solve the area assignment

problem. In Chapter 5, we studied how to untangle the twisted nets before

length-constrained routing. By introducing a single-detour routing style,

we greatly simplified the net untangling problem. We then discovered a

necessary and sufficient condition for a single-detour routing solution to exist.

We have also proposed a dynamic programming based algorithm to solve the

single-detour untangling problem. The algorithm was proved to be optimal.

In Chapter 6, we studied the layer assignment problem of buses. We

presented a layer assignment algorithm to assign the escape routing regions

of buses into multiple layers without any conflict between the buses. The

97

Normal spacing

Too small

Too small

Figure 7.1: Routing diagonal wires on rectangular grid will cause too small
wire spacing.

key idea was to transform the layer assignment problem into a bipartite

matching problem. Our algorithm was then proved to be optimal, meaning

that it guarantees to use the minimum number of layers.

To conclude this dissertation, we would like to point out some future re-

search directions and open problems:

Monotonic routing style has been extensively studied for package escape

routing, which is an ordered escape routing problem. Researchers have even

discovered necessary and sufficient conditions for feasible monotonic routing

to exist in an ordered escape routing problem [22, 29, 30]. However, few

studies utilize these research results to solve the simultaneous escape routing

problem. Whether the monotonic routing constraint can lead to optimal

algorithms or at least good heuristics for the simultaneous escape routing

problem is a open problem.

Diagonal routing (45◦ routing) is pervasively used in PCB routing to

shorten the wire length. However, existing studies on the length-constrained

routing problem all use only orthogonal routing. How to produce length-

constrained routing solution using both orthogonal and diagonal routes is

an interesting yet challenging problem. The challenge here is that the rect-

angular routing grid which we are familiar with does not precisely capture

the routing resource occupied by a diagonal wire. Figure 7.1 illustrates this

challenge. It can be seen that if we route diagonal wires on the traditional

rectangular routing grid, we may produce too small wire spacing. To ef-

fectively solve this problem, we need to either find an alternative routing

structure or use a gridless approach.

98

APPENDIX A

PROOF OF THEOREM 5

In this appendix, we prove Theorem 5. We prove the necessary condition

(only if) by proving its contrapositive: if any of the forbidden patterns ap-

pears in the pin sequence, then there exists no feasible solution for the SDU

problem. We prove this by showing that the forbidden patterns will lead to

either intersection between wires or incorrect ordering of the wires. Proving

the sufficient condition (if) is more difficult. We prove it by designing an

algorithm that constructs a solution to the SDU problem. By carefully de-

signing the algorithm, we are able to show that the solution it produces is

infeasible only when a forbidden pattern appears in the input pin sequence.

In the rest of this appendix, we will first introduce some definitions and

some helpful lemmas. Then we will prove the necessary condition and suffi-

cient condition in detail.

A.1 Some Definitions and Lemmas

In the following definitions, we assume that a feasible solution to the SDU

problem (Problem 3) is already known and all the definitions are based on

that solution. Therefore, instead of saying “the pins in a feasible solution to

the SDU problem,” we just say “the pins.” See Figure A.1 for an illustration

of our definitions.

Definition 7. All the pins can be classified into two categories: pins whose

routing does not detour and pins whose routing does detour. We call the

former straight pins and the later detour pins.

In later discussion, we will need the problem to be bounded by straight

pins. For this purpose, we add two virtual pins 0 and n + 1 to the solution

at the very top and very bottom. They are considered straight pins (see the

99

2

4

3

1

6

5

1'

4'

5'

0

7

6

6'

range [36] = r4' = r1 = r5'

slot ‹02› = s1'

Figure A.1: An SDU problem with pin sequence (2, 4, 3, 1, 6, 5) and its
solution. Circles represent pins and squares represent exits.

dashed pins in Figure A.1). In Figure A.1, pins 0, 2, 3, 6 and 7 are straight

pins and the rest are detour pins.

Definition 8. If we draw a vertical line through all the pins, the routing of

a detour pin will intersect this line exactly once. We call the intersection the

exit of this pin. For a straight pin (including virtual pin), we pretend that

the routing detours downward a little bit and intersects with the vertical

line (see the illustration on the bottom right corner of Figure A.1). Such

modification to the routing does not invalidate the solution. We take the

intersection as the exit of the straight pin. The exit of a pin i is denoted as

i′. We list all pins and exits from top to bottom and obtain a sequence. We

call this sequence the solution sequence. Since the exit i′ of a straight pin

i always follows the pin immediately in the sequence, we usually use ii′ to

denote the pin and the exit together.

For example, the solution sequence of Figure A.1 is (00′, 1′, 22′, 4, 33′, 4′, 1, 5′,

66′, 5, 77′).

Definition 9. For two objects x and y in the solution sequence (an object

is either a pin or an exit), if x appears before y in the sequence, then x is

above y in the solution. We denote it as x ≺ y. If x’s ID is smaller than y’s

100

(the ID of an exit is the same as its corresponding pin’s ID), we denote it as

x < y. x ≤ y means x < y or x = y.

It is obvious that both < and ≺ are asymmetric (x ≺ y ⇒ y ⊀ x) and

transitive (x ≺ y, y ≺ z ⇒ x ≺ z).

Definition 10. For a detour pin i, if i′ ≺ i we call the pin up-detouring ;

otherwise, we call it down-detouring.

Definition 11. A range is a pair of straight pins a ≺ b such that there are no

straight pins between a and b in the solution sequence, i.e., ∄ straight pin p,

a ≺ p ≺ b. We denote the range as [ab]. If an object x (either a pin or an

exit) lies inside a range [ab], i.e., a ≺ x ≺ b, we call this range x’s range and

denote it as rx. We also call pin a the upper straight pin of x and denote it

as ux and call pin b the lower straight pin of x and denote it as lx.

For example, in Figure A.1, r4′ = r1 = r5′ = [36], u4′ = u1 = u5′ = 3 and

l4′ = l1 = l5′ = 6.

Definition 12. A slot is a pair of adjacent pins (either straight or detour)

x ≺ y in the solution sequence. Between them there are only exits, i.e.,

∄ pin p, x ≺ p ≺ y. We denote the slot as 〈xy〉. The slot inside which an exit

i′ lies is called the slot of i′ and is denoted as si′ .

For example, s4′ = 〈31〉 in Figure A.1.

The following lemma is straightforward:

Lemma 7. There is a one-to-one mapping between the topologies of single

detour solutions and the solution sequences.

Therefore, we can talk about feasibility based on the solution sequence

instead of the routing topology:

Lemma 8. A solution is feasible if and only if its corresponding solution

sequence satisfies the following two requirements:

1. For any two pins i < j, i′ ≺ j′.

2. There exist no two pins i < j such that

• i ≺ j ≺ i′ ≺ j′ or

101

i

j

i'

j'

i

j

i'

j'

i

j

i'

j'
i

j

i'

j'

i ≺ j ≺ i′ ≺ j′ i′ ≺ j′ ≺ i ≺ j j ≺ i′ ≺ j′ ≺ i i′ ≺ j ≺ i ≺ j′

Figure A.2: The four cases when wires have intersections.

• i′ ≺ j′ ≺ i ≺ j or

• j ≺ i′ ≺ j′ ≺ i or

• i′ ≺ j ≺ i ≺ j′

Proof. The first requirement is for net ordering. The ordering of the exits

should be monotonically increasing from top to bottom. The second require-

ment is to guarantee that the detouring part of the routes (the routing in the

dark area in Figure 3.6 (b)) does not have intersections. By enumerating all

possible intersections between two wires (see Figure A.2), we can obtain the

four cases listed in the second requirement.

Definition 13. If a solution sequence satisfies the two requirements in Lemma

8, we call the solution sequence a feasible solution sequence.

The following lemma gives an equivalent definition on forbidden patterns:

Lemma 9. The following two statements are equivalent:

• “Pin sequence P contains pattern (3 , 4 , 1 , 2), (2 , 4 , 1 , 3) or (3 , 1 , 4 , 2)”

• “Pin sequence P contains four pins a < b < c < d such that c ≺ d ≺

a ≺ b or b ≺ d ≺ a ≺ c or c ≺ a ≺ d ≺ b”

Proof. Straightforward from the definitions.

With the help of Lemma 8 and Lemma 9, we can rewrite Theorem 5 as

the following equivalent theorem:

102

Theorem 8. For an SDU problem, there exists a solution sequence that

satisfies the two requirements in Lemma 8 if and only if the pin sequence of

the problem does not contain four pins a < b < c < d such that c ≺ d ≺ a ≺ b

or b ≺ d ≺ a ≺ c or c ≺ a ≺ d ≺ b.

In the next two sections, we will prove the necessary condition and the suf-

ficient condition of this equivalent theorem instead of the original Theorem 5.

This theorem, together with Lemma 8 and Lemma 9, proves Theorem 5.

A.2 Necessary Condition

Before we prove the necessary condition, we introduce a lemma:

Lemma 10. For two pins i < j in a feasible solution sequence, we have the

following two cases:

1. If i ≺ j, then i′ ≺ j and i ≺ j′.

2. If j ≺ i, then either i′ ≺ j or i ≺ j′.

Proof. Because i < j, we have i′ ≺ j′ (requirement 1 in Lemma 8). For the

first case, suppose j ≺ i′; we have a full ordering i ≺ j ≺ i′ ≺ j′, which is

forbidden by requirement 2 in Lemma 8. Suppose j′ ≺ i; we have another

full ordering i′ ≺ j′ ≺ i ≺ j, which again is forbidden. For the second case,

suppose j ≺ i′ and j′ ≺ i; then we have a full ordering j ≺ i′ ≺ j′ ≺ i, which

is forbidden by Lemma 8.

Now we prove the contrapositive of the necessary condition of Theorem 8:

If a pin sequence contains four pins a < b < c < d with c ≺ d ≺ a ≺ b or

b ≺ d ≺ a ≺ c or c ≺ a ≺ d ≺ b, then there exists no solution sequence that

satisfies both requirements of Lemma 8. If this contrapositive is true, then

the necessary condition itself is true. We discuss the three cases one by one:

1. c ≺ d ≺ a ≺ b: Because a < b and a ≺ b, we know a ≺ b′ (case

1 in Lemma 10). Similarly, since c < d and c ≺ d, we have c′ ≺ d.

Therefore, we have c′ ≺ d ≺ a ≺ b′ (≺ is transitive). Because b < c,

we have b′ ≺ c′ (requirement 1 in Lemma 8) which contradicts c′ ≺ b′

obtained earlier (≺ is asymmetric).

103

2. b ≺ d ≺ a ≺ c: Because a < c and a ≺ c, we have a ≺ c′ (case 1 in

Lemma 10). This, together with d ≺ a, gives us d ≺ c′. Because c < d

and d ≺ c, we know either c′ ≺ d or c ≺ d′ (case 2 in Lemma 10). Since

c′ ≺ d contradicts d ≺ c′, the only possibility is c ≺ d′. We can also

obtain a′ ≺ b by similar argument. Then, we have a′ ≺ d ≺ a ≺ d′

which violates requirement 2 of Lemma 8.

3. c ≺ a ≺ d ≺ b: Because a < b and a ≺ b, we have a ≺ b′ (case 1 in

Lemma 10). This, together with c ≺ a, gives us c ≺ b′. From b < c and

c ≺ b, we know that either b′ ≺ c or b ≺ c′ (case 2 in Lemma 10). Since

b′ ≺ c contradicts c ≺ b′, the only possibility is b ≺ c′. However, we

can also obtain c′ ≺ d because c < d and c ≺ d (case 1 in Lemma 10).

This, together with d ≺ b, gives c′ ≺ b which contradicts b ≺ c′ obtained

earlier.

We have derived contradictions from all three cases. This means that if any

of the three cases happens, no feasible solution sequence exists.

A.3 Sufficient Condition

In this section we prove the sufficient condition of Theorem 8: if a pin se-

quence does not contain four pins a < b < c < d such that c ≺ d ≺ a ≺ b

or b ≺ d ≺ a ≺ c or c ≺ a ≺ d ≺ b, then there exists a solution sequence

that satisfies both requirements of Lemma 8. In order to prove this, we first

present an algorithm that constructs a solution sequence for a given pin se-

quence and then show that the algorithm fails to produce a feasible solution

sequence only if the input pin sequence contains one of the three forbidden

patterns.

Our construction algorithm takes in a pin sequence and produces a solution

sequence. The algorithm consists of five steps (an example of the execution

of our algorithm in shown in Figure A.3):

1. Solution sequence = pin sequence + two virtual pins 0 and n + 1.

2. Determine the straight pins: Compute the longest increasing subse-

quence [58] of the solution sequence. If there are multiple choices, pick

one arbitrarily. Let pins in the subsequence be straight pins. That

104

S = {0, 5, 2, 4, 3, 1, 7, 6, 8}

(a) After step 1

S = {00′, 5, 22′, 4, 33′, 1, 77′, 6, 88′}

(b) After step 2

r5′ = r4′ = r6′ = [37], r1′ = [02]

(c) After setp 3

s4′ = s5′ = 〈31〉, s6′ = 〈17〉, s1′ = 〈05〉

(d) After step 4

S = {00′, 1′, 5, 22′, 4, 33′, 4′, 5′, 1, 6′, 77′, 6, 88′}

(e) After step 5 (final solution sequence)

2

4

3

1

6

5

1'

4'

5'

0

7

8

6'

(f) Corresponding
routing

Figure A.3: An example of how our algorithm works on pin sequence
{5, 2, 4, 3, 1, 7, 6}. 0 and 8 are virtual pins. S means solution sequence.

is, for every pin i in the longest increasing subsequence, we insert i′

immediately after i in the solution sequence. Notice that the two vir-

tual pins 0 and n + 1 are included in the subsequence. Pins not in the

subsequence are made detour pins.

3. Determine the ranges of the exits: For every detour pin i, find two

adjacent straight pins a < b in the longest increasing subsequence such

that a < i < b. Let ri′ = [ab]. We can also determine whether i is up-

detouring or down-detouring. If i ≺ a, then the pin is down-detouring.

If b ≺ i, then it is up-detouring.

4. Determine the slots of the exits: For every detour pin i,

• If i is up-detouring, then find slot 〈xy〉 inside ri′ such that ((li <

x) ∨ (x ≤ ui′)) ∧ (li′ ≤ y < li) (∨ means or and ∧ means and).

• If i is down-detouring, then find slot 〈xy〉 inside ri′ such that

(li < x ≤ ui′) ∧ ((li′ ≤ y) ∨ (y < li)).

Insert i′ into 〈xy〉 (si′ = 〈xy〉).

5. Sort inside each slot: Within each slot, we sort the exits according to

their pin IDs. The IDs of the resultant exits present an increasing order

105

inside each slot.

We must first prove that we can always find a unique range and a unique

slot for every detour pin. Otherwise, we may get stuck at step 3 or 4 in the

algorithm.

For step 3, since we have an increasing subsequence with 0 at its head and

n + 1 at its tail, we can always find adjacent a and b in the subsequence for

each detour pin i such that a < i < b. Furthermore, the pins inside a range

by the algorithm have the following properties (Lemma 11 and Lemma 12):

Lemma 11. For a detour pin i, ri 6= ri′.

Proof. Suppose ri = ri′ = [ab]. We then have a < i < b and a ≺ i ≺ b, which

means that we can make the increasing subsequence even longer by adding i

into it. This contradicts the fact that we have already computed the longest

increasing subsequence in step 2.

Lemma 12. The pins in any range [ab] can be divided into two continuous

sequences X ≺ Y , i.e., the pin sequence is in the form . . . , a,X, Y, b, . . ., such

that:

1. All pins x ∈ X have IDs < a, all pins y ∈ Y have IDs > b.

2. Both sequences are decreasing.

Notice that both X and Y could be empty.

Proof. Statement 1: According to Lemma 11, for a pin p in range [ab], either

p < a or b < p. So pins in [ab] form two subsequences X and Y , all pins

x ∈ X < a, all pins y ∈ Y > b. Now we only need to show that X ≺ Y .

That is, ∀x ∈ X,∀y ∈ Y, x ≺ y. Suppose this is not true; then we can find

two pins x < a and b < y in range [ab] such that y ≺ x. In this case, the pin

sequence contains four pins x < a < b < y such that a ≺ y ≺ x ≺ b. This

violates our assumption.

Statement 2: If X is not decreasing, then we can find two pins p ≺ q in

range [ab] such that p < q < a. Pins p and q must be up-detouring because

their IDs < a. This means that a cannot be the virtual pin 0 and thus there

is at least one straight pin h ≺ a (h could be an actual pin or the virtual pin

0). We have the following cases:

106

1. h < p < q < a < b (notice that h = 0 is included in this case): Subse-

quence . . . h . . . p . . . q . . . b . . . is an increasing subsequence. Therefore,

choosing it instead of . . . h . . . a . . . b . . . increases length of the increas-

ing subsequence by 1. This contradicts the fact that we have already

computed the longest increasing subsequence in step 2.

2. p < h < q < a < b: The pin sequence contains four pins p < h < q < a

such that h ≺ a ≺ p ≺ q. This violates our assumption.

3. p < q < h < a < b: The pin sequence contains four pins p < q < h < a

such that h ≺ a ≺ p ≺ q. This violates our assumption.

All the cases lead to contradictions. Therefore, X must be decreasing. We

can prove that Y is decreasing by similar argument.

Because of the property in Lemma 12, it is always possible to find a slot

〈xy〉 in range ri′ for an up-detouring pin i such that ((li < x)∨(x ≤ li′))∧(li′ ≤

y < li). Notice that ∄ pin x ∈ ri′ such that ui′ < x < li′ (Lemma 11). The

above condition is the same as ((li < x) ∨ (x ≤ ui′)) ∧ (li′ ≤ y < li).

The down-detouring pin case can be proved in a similar way. Therefore,

we can always find one slot for a detour pin in step 4 of our algorithm. The

other steps in the algorithm involve only standard procedures such as longest

increasing subsequence computation (step 2) and sorting (step 5) and thus

will not cause any problem. As a result, our algorithm will always terminate

normally and produce a solution sequence if the input does not contain the

forbidden patterns. Next we prove the feasibility of the solution sequence

produced.

Lemma 13. For a detour pin i in the solution sequence produced by our

algorithm,

• If i is up-detouring, then for any pin p ∈ ri′:

– If i′ ≺ p ≺ li′, then i′ ≺ p′ ≺ i.

– If ui′ ≺ p ≺ i′, then (i ≺ p′) ∨ (p′ ≺ i′).

• If i is down-detouring, then for any pin p ∈ ri′:

– If i′ ≺ p ≺ li′, then (p′ ≺ i) ∨ (i′ ≺ p′).

– If ui′ ≺ p ≺ i′, then i ≺ p′ ≺ i′.

107

Proof. Let si′ = 〈xy〉. We prove the four cases one by one (the ordering of

the four cases are changed for better presentation):

1. i is up-detouring and ui′ ≺ p ≺ i′: In step 4 of our algorithm we have

(li < x) ∨ (x ≤ ui′). According to Lemma 12, we know (li < x ≤ p) ∨

(p < ui′). According to Lemma 14, this indicates (li ≺ p′) ∨ (p′ ≺ ui′).

Since i ≺ li and ui′ ≺ i′, we have (i ≺ p′) ∨ (p′ ≺ i′).

2. i is down-detouring and ui′ ≺ p ≺ i′: In step 4 of our algorithm we

have li < x ≤ ui′ . According to Lemma 12, we have li < x ≤ p < ui′ .

According to Lemma 14, this indicates li ≺ p′ ≺ ui′ . Because i ≺ li

and ui′ ≺ i′, we have i ≺ p′ ≺ i′.

3. i is down-detouring and i′ ≺ p ≺ li′ : In step 4 of our algorithm, we have

(li′ ≤ y)∨ (y < li). According to Lemma 12, we obtain (li′ < p) ∨ (p ≤

y < li). According to Lemma 14, this indicates (li′ ≺ p′) ∨ (p′ ≺ li).

Because i′ ≺ li′ , the first term (li′ ≺ p′) indicates i′ ≺ p′. The second

term (p′ ≺ li) incurs two possibilities: p′ ≺ i and i ≺ p′ ≺ li. The

second possibility indicates that up′ ≺ i ≺ p′. Notice that p is an up-

detouring pin (p′ ≺ li ≺ i′ ≺ p), this is exactly case 1 of our proof

with p and i swapped. Therefore, we know (p ≺ i′) ∨ (i′ ≺ p′). This

contradicts the assumption that p′ ≺ li ≺ i′ ≺ p. Therefore, the only

possibility for the second term is p′ ≺ i. Putting them together, we

have (p′ ≺ i) ∨ (i′ ≺ p′).

4. i is up-detouring and i′ ≺ p ≺ li′ : In step 4 of our algorithm we have

li′ ≤ y < li. According to Lemma 12, we have li′ < p ≤ y < li. We

then have li′ ≺ p′ ≺ li by Lemma 14. There are two cases: li′ ≺ p′ ≺ i

and i ≺ p′ ≺ li. The second case indicates that up′ ≺ i ≺ p′. Notice

that p is down-detouring (lp = li′ ≺ p′); this is exactly case 2 of our

proof with p and i swapped. Therefore, we can obtain p ≺ i′ ≺ p′. This

contradicts the assumption that i′ ≺ p. Therefore, the only possibility

is li′ ≺ p′ ≺ i. Considering i′ ≺ li′ , this gives us i′ ≺ p′ ≺ i.

The following two lemmas complete our proof by showing that the solution

sequence produced by our algorithm satisfies both requirements in Lemma 8

if the input pin sequence does not contain four pins a < b < c < d such

108

that c ≺ d ≺ a ≺ b or b ≺ d ≺ a ≺ c or c ≺ a ≺ d ≺ b. Lemma 14 shows

that requirement 1 is satisfied and Lemma 15 shows that requirement 2 is

satisfied.

Lemma 14. For any two pins i < j, we have i′ ≺ j′ in our solution sequence.

Proof. From the algorithm we know that if one of the pins is a straight pin,

then the lemma is true. Now suppose we have two detour pins i < j but

j′ ≺ i′. We know si′ 6= sj′ because we sort the exits in every slot in step

5 of our algorithm. Furthermore, we know ri′ = rj′ because otherwise the

two straight pins lj′ and ui′ form a decreasing subsequence (ui′ < i < j < lj′

but lj′ ≺ ui′ because j′ ≺ i′ and ui′ 6= lj′) which contradicts step 2 of our

algorithm. As a result, i′ and j′ must belong to the same range but different

slots. There are four cases:

1. i and j are both down-detouring: In order to have j′ ≺ i′, there must

exist one straight pin x such that li < x < lj according to step 4 of our

algorithm and Lemma 12. Since straight pins li and lj form increasing

subsequence, we have i ≺ li ≺ j ≺ lj. Since both i and j are down-

detouring, we have lj ≤ uj′ = ui′ < i. Therefore, the pin sequence has

four pins li < lj < i < j such that i ≺ li ≺ j ≺ lj. This contradicts our

assumption.

2. i and j are both up-detouring: This case is symmetrical to the previous

case and can be shown to lead to contradictions in a similar way.

3. i is down-detouring and j is up-detouring: j′ ≺ i′ is impossible because

step 4 of our algorithm and Lemma 12 guarantees that the exit of a

down-detouring pin is always inserted above the exit of an up-detouring

pin if the two exits belong to the same range but different slots.

4. i is up-detouring and j is down-detouring: The pin sequence has four

pins ui′ < i < j < li′ such that j ≺ ui′ ≺ li′ ≺ i. This contradicts our

assumption.

All cases lead to contradictions. Therefore, i < j ⇒ i′ ≺ j′ in our solution

sequence.

109

Lemma 15. None of the following will happen for two pins i < j in our

solution sequence:

1. i ≺ j ≺ i′ ≺ j′ or

2. i′ ≺ j′ ≺ i ≺ j or

3. j ≺ i′ ≺ j′ ≺ i or

4. i′ ≺ j ≺ i ≺ j′

Proof. We discuss the four cases one by one:

1. i ≺ j ≺ i′ ≺ j′: Suppose there is no straight pin between i and j

(ri = rj). Since both i and j are down-detouring, they both belong

to subsequence Y in Lemma 12. Then i ≺ j and i < j contradict the

statement that Y must be decreasing. Therefore, there is at least one

straight pin p such that i ≺ p ≺ j. Suppose there is no straight pin

between i′ and j. This means j ∈ ri′ . According to Lemma 13, we have

i ≺ j′ ≺ i′ which contradicts i′ ≺ j′. Therefore, there exists at least

one straight pin q such that j ≺ q ≺ i′. Then we have i ≺ pp′ ≺ j ≺

qq′ ≺ i′ ≺ j′. Notice the fact that the exits form an increasing sequence

(Lemma 14); we have p < q < i < j. So the pin sequence contains four

pins p < q < i < j such that i ≺ p ≺ j ≺ q. This contradicts our

assumption.

2. i′ ≺ j′ ≺ i ≺ j: This case is symmetrical to the previous situation and

can be shown to have contradiction by similar argument.

3. j ≺ i′ ≺ j′ ≺ i: We know rj 6= ri′ because otherwise we will have

(j′ ≺ i′)∨(i ≺ j′) (Lemma 13), which contradicts i′ ≺ j′ ≺ i. Therefore,

there is at least one straight pin p such that j ≺ p ≺ i′. By similar

argument, we know that there is at least one straight pin q such that

j′ ≺ q ≺ i. We then have j ≺ pp′ ≺ i′ ≺ j′ ≺ qq′ ≺ i. According to

Lemma 14, we have p < i < j < q. So the pin sequence contains four

pins p < i < j < q such that j ≺ p ≺ q ≺ i. This contradicts our

assumption.

4. i′ ≺ j ≺ i ≺ j′: By similar argument as above, we know that there is

at least one straight pin p such that i′ ≺ p ≺ j and at least one straight

110

(a) Max #wires = 3 (b) Max #wires = 2

Figure A.4: The algorithm in this proof produces a solution (a) with three
wires between 3 and 1 while another solution (b) has at most two wires
between them.

pin q such that i ≺ q ≺ j′. Then we have i′ ≺ pp′ ≺ j ≺ i ≺ qq′ ≺ j′.

According to Lemma 14, we have i < p < q < j. So the pin sequence

contains four pins i < p < q < j such that p ≺ j ≺ i ≺ q. This

contradicts our assumption.

All four cases lead to contradictions. Therefore, none of them should happen

in our solution sequence.

Notice that although the algorithm presented here guarantees to find a

feasible topology to an SDU problem if one exists, it has no control over

the number of wires passing between adjacent pins. For example, if the

pin sequence is (6, 5, 4, 2, 3, 1), then it will construct a solution sequence

(00′, 1′, 6, 5, 4, 22′, 33′, 4′, 5′, 6′, 1, 77′). The corresponding routing is shown in

Figure A.4 (a). Notice that virtual pins 0 and 7 are ignored in the figure. It

can be seen that there are as many as three wires between 3 and 1. However,

another solution, Figure A.4 (b), has at most two wires between any two

pins. Therefore, we still need the dynamic programming algorithm if we

take capacity and other objectives into account.

111

REFERENCES

[1] Fujitsu Microelectronics Limited, “IC package,” 2009. [Online]. Avail-
able: www.fujitsu.com/downloads/MICRO/fma/pdf/a810000113e.pdf

[2] L. W. Ritchey, “Busses: What are they and how do they work?”
Printed Circuit Design Magazine, Dec. 2000. [Online]. Available:
http://www.speedingedge.com/PDF-Files/busses.pdf

[3] L. W. Ritchey and J. Zasio, Right the First Time, A Practical Handbook
on High Speed PCB and System Design, K. J. Knack, Ed. Glen Ellen,
CA: Speeding Edge, 2003.

[4] D. Brooks, Signal Integrity Issues and Printed Circuit Board Design.
Upper Saddle River, NJ: Prentice Hall, 2003.

[5] K. Mitzner, Complete PCB Design Using OrCAD Capture and PCB
Editor. Burlington, MA: Newnes, 2009.

[6] J. C. Whitaker, Ed., The Electronics Handbook, 2nd ed. Boca Raton,
FL: CRC Press, 2005.

[7] T. Yan and M. D. F. Wong, “A correct network flow model for escape
routing,” in Proc. Design Automation Conf., 2009, pp. 332–335.

[8] T. Yan and M. D. F. Wong, “BSG-route: A length-matching router for
general topology,” in Proc. Int. Conf. on Computer-Aided Design, 2008,
pp. 499–505.

[9] T. Yan, P.-C. Wu, Q. Ma, and M. D. F. Wong, “On the escape routing of
differential pairs,” in Proc. Int. Conf. on Computer-Aided Design, 2010.

[10] T. Yan and M. D. F. Wong, “BSG-route: A length-constrained rout-
ing scheme for general planar topology,” IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 28, no. 11, pp. 1679–1690, Nov. 2009.

[11] T. Yan and M. D. F. Wong, “Untangling twisted nets for bus routing,”
in Proc. Int. Conf. on Computer-Aided Design, 2007, pp. 396–400.

112

[12] T. Yan and M. D. F. Wong, “Theories and algorithms on single-detour
routing for untangling twisted bus,” ACM Trans. Design Autom. Electr.
Syst., vol. 14, no. 3, pp. 1–21, 2009.

[13] T. Yan, H. Kong, and M. D. F. Wong, “Optimal layer assignment for
escape routing of buses,” in Proc. Int. Conf. on Computer-Aided Design,
2009, pp. 245–248.

[14] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module packing
based on the BSG-structure and IC layout applications,” IEEE Trans.
Computer-Aided Design Integr. Circuits Syst., vol. 17, no. 6, pp. 519–
530, June 1998.

[15] M. M. Ozdal and M. D. F. Wong, “A length-matching routing algorithm
for high-performance printed circuit boards,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 25, no. 12, pp. 2784–2794, Dec.
2006.

[16] H. Kong, T. Yan, M. D. F. Wong, and M. M. Ozdal, “Optimal bus
sequencing for escape routing in dense PCBs,” in Proc. Int. Conf. on
Computer-Aided Design, 2007, pp. 390–395.

[17] J.-W. Fang, I.-J. Lin, Y.-W. Chang, and J.-H. Wang, “A network-
flow-based RDL routing algorithm for flip-chip design,” IEEE Trans.
Computer-Aided Design Integr. Circuits Syst., vol. 26, no. 8, pp. 1417–
1429, Aug. 2007.

[18] J.-W. Fang and Y.-W. Chang, “Area-I/O flip-chip routing for chip-
package co-design,” in Proc. Int. Conf. on Computer-Aided Design,
2008, pp. 518–522.

[19] W.-T. Chan and F. Y. L. Chin, “Efficient algorithms for finding the
maximum number of disjoint paths in grids,” J. Algorithms, vol. 34,
no. 2, pp. 337–369, 2000.

[20] J.-W. Fang, I.-J. Lin, P.-H. Yuh, Y.-W. Chang, and J.-H. Wang, “A
routing algorithm for flip-chip design,” in Proc. Int. Conf. on Computer-
Aided Design, 2005, pp. 753–758.

[21] R. Wang, R. Shi, and C.-K. Cheng, “Layer minimization of escape rout-
ing in area array packaging,” in Proc. Int. Conf. on Computer-Aided
Design, 2006, pp. 815–819.

[22] M.-F. Yu and W. W.-M. Dai, “Single-layer fanout routing and routabil-
ity analysis for ball grid arrays,” in Proc. Int. Conf. on Computer-Aided
Design, 1995, pp. 581–586.

113

[23] D. Wang, P. Zhang, C.-K. Cheng, and A. Sen, “A performance-driven
I/O pin routing algorithm,” in Proc. Asia and South Pacific Design
Automation Conf., 1999, pp. 129–132.

[24] M.-F. Yu, J. Darnauer, and W. W.-M. Dai, “Interchangeable pin routing
with application to package layout,” in Proc. Int. Conf. on Computer-
Aided Design, 1996, pp. 668–673.

[25] W.-T. Chan, F. Y. L. Chin, and H.-F. Ting, “A faster algorithm for
finding disjoint paths in grids,” in Proc. Int. Symp. on Algorithms and
Computation, 1999, pp. 393–402.

[26] M.-F. Yu and W. W.-M. Dai, “Pin assignment and routing on a single-
layer pin grid array,” in Proc. Asia and South Pacific Design Automation
Conf., 1995, pp. 203–208.

[27] J.-W. Fang, C.-H. Hsu, and Y.-W. Chang, “An integer linear program-
ming based routing algorithm for flip-chip design,” in Proc. Design Au-
tomation Conf., 2007, pp. 606–611.

[28] Y. Kubo and A. Takahashi, “Global routing by iterative improvements
for two-layer ball grid array packages,” IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 25, no. 4, pp. 725–733, Apr. 2006.

[29] Y. Kubo and A. Takahashi, “A global routing method for 2-layer ball
grid array packages,” in Proc. Int. Symp. on Physical Design, 2005, pp.
36–43.

[30] Y. Tomioka and A. Takahashi, “Monotonic parallel and orthogonal rout-
ing for single-layer ball grid array packages,” in Proc. Asia and South
Pacific Design Automation Conf., 2006, pp. 642–647.

[31] L. Luo and M. D. F. Wong, “Ordered escape routing based on Boolean
satisfiability,” in Proc. Asia and South Pacific Design Automation Conf.,
2008, pp. 244–249.

[32] M. M. Ozdal and M. D. F. Wong, “Simultaneous escape routing and
layer assignment for dense PCBs,” in Proc. Int. Conf. on Computer-
Aided Design, 2004, pp. 822–829.

[33] M. M. Ozdal, M. D. F. Wong, and P. S. Honsinger, “Simultaneous
escape-routing algorithms for via minimization of high-speed boards,”
IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 27,
no. 1, pp. 84–95, Jan. 2008.

[34] Q. Ma, T. Yan, and M. D. F. Wong, “A negotiated congestion based
router for simultaneous escape routing,” in Proc. Int. Symp. on Qual.
Electron. Design, 2010, pp. 606–610.

114

[35] L. Luo, T. Yan, Q. Ma, M. D. F. Wong, and T. Shibuya, “B-Escape: A
simultaneous escape routing algorithm based on boundary routing,” in
Proc. Int. Symp. on Physical Design, 2010, pp. 19–25.

[36] C. E. Leiserson and F. M. Maley, “Algorithms for routing and testing
routability of planar VLSI layouts,” in Proc. Annu. Symp. on Theory of
Computing, 1985, pp. 69–78.

[37] W. W.-M. Dai, R. Kong, and M. Sato, “Routability of a rubber-band
sketch,” in Proc. Design Automation Conf., 1991, pp. 45–48.

[38] D. J. Staepelaere, “Geometric transformations for a rubber-band
sketch,” M.S. thesis, University of California at Santa Cruz, Santa Cruz,
CA, USA, Sep. 1992.

[39] D. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai, “SURF: Rubber-
band routing system for multichip modules,” IEEE Des. Test. Comput.,
vol. 10, no. 4, pp. 18–26, Dec. 1993.

[40] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall,
1993.

[41] “CS2: min-cost flow solver,” 1997. [Online]. Available:
http://www.igsystems.com/cs2/index.html

[42] J.-W. Fang, K.-H. Ho, and Y.-W. Chang, “Routing for chip-package-
board co-design considering differential pairs,” in Proc. Int. Conf. on
Computer-Aided Design, 2008, pp. 512–517.

[43] C. Y. Lee, “An algorithm for path connections and its applications,”
IRE Trans. Electron. Comput., vol. EC-10, no. 2, pp. 364–365, Sep.
1961.

[44] J. Soukup, “Fast maze router,” in Proc. Design Automation Conf., 1978,
pp. 100–102.

[45] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. Int. Symp. on Field-
Programmable Gate Arrays, 1995, pp. 111–117.

[46] M. M. Ozdal and M. D. F. Wong, “Algorithmic study of single-layer bus
routing for high-speed boards,” IEEE Trans. Computer-Aided Design
Integr. Circuits Syst., vol. 25, no. 3, pp. 490–503, Mar. 2006.

[47] Y. Kubo, H. Miyashita, Y. Kajitani, and K. Takeishi, “Equidistance
routing in high-speed VLSI layout design,” Integration, the VLSI Jour-
nal, vol. 38, no. 3, pp. 439–449, Jan. 2005.

115

[48] N. Fu, S. Nakatake, Y. Takashima, and Y. Kajitani, “The oct-touched
tile: A new architecture for shape-based routing,” IEICE Trans. Fun-
damentals Electron., Commun. and Comput. Sci., vol. 89, no. 2, pp.
448–455, 2006.

[49] A. Nedich, private communication, 2008.

[50] “lp solve: Open source (mixed-integer) linear programming system,”
1999. [Online]. Available: http://sourceforge.net/projects/lpsolve

[51] M. M. Ozdal and M. D. F. Wong, “Algorithms for simultaneous escape
routing and layer assignment of dense PCBs,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 25, no. 8, pp. 1510–1522, Aug.
2006.

[52] R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelec-
tronics Packaging Handbook, Part II: Semiconductor Packaging. Nor-
well, MA: Kluwer Academic Publishers, 1997.

[53] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: The MIT Press, 2001.

[54] M. Mucha and P. Sankowski, “Maximum matchings via gaussian elim-
ination,” in Proc. Annu. Symp. on Foundations of Comput. Sci., 2004,
pp. 248–255.

[55] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
New York, NY: Plenum Press, 1972, pp. 85–103.

[56] B. V. Cherkassky and A. V. Goldberg, “On implementing push-relabel
method for the maximum flow problem,” Algorithmica, vol. 19, no. 4,
pp. 390–410, 1997.

[57] C. F. Coombs, Ed., Printed Circuits Handbook, 6th ed. New York, NY:
McGraw-Hill, 2007.

[58] S. S. Skiena, The Algorithm Design Manual, 2nd ed. London, United
Kingdom: Springer, 2008.

116

AUTHOR’S BIOGRAPHY

Tan Yan received the B.S. degree in computer science and technology from

Fudan University, Shanghai, China, in 2003, and the M.Eng. in information

engineering from The University of Kitakyushu, Kitakyushu, Japan, in 2005.

He is currently a Ph.D. candidate in the Department of Electrical and Com-

puter Engineering at the University of Illinois. His research interests include

combinatorial algorithms with applications in the computer-aided design of

integrated circuits. Currently, his major research focus is in printed circuit

board (PCB) routing. After the completion of his Ph.D., he will join the

detail routing team of Synopsys., Inc.

117

