
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Thermal Management for 3D-Stacked Systems via Unified Core-Memory Power
Regulation

Shen, Y.; Schreuders, L.; Pathania, A.; Pimentel, A.D.
DOI
10.1145/3608040
Publication date
2023
Document Version
Final published version
Published in
ACM Transactions on Embedded Computing Systems
License
Unspecified

Link to publication

Citation for published version (APA):
Shen, Y., Schreuders, L., Pathania, A., & Pimentel, A. D. (2023). Thermal Management for
3D-Stacked Systems via Unified Core-Memory Power Regulation. ACM Transactions on
Embedded Computing Systems, 22(5s), Article 120. https://doi.org/10.1145/3608040

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 May 2024

https://doi.org/10.1145/3608040
https://dare.uva.nl/personal/pure/en/publications/thermal-management-for-3dstacked-systems-via-unified-corememory-power-regulation(bc2bec74-2de1-4fed-b95e-8c45ed12ba55).html
https://doi.org/10.1145/3608040

120

Thermal Management for 3D-Stacked Systems via Unified

Core-Memory Power Regulation

YIXIAN SHEN, LEO SCHREUDERS, ANUJ PATHANIA, and ANDY D. PIMENTEL, University

of Amsterdam, The Netherlands

3D-stacked processor-memory systems stack memory (DRAM banks) directly on top of logic (CPU cores)

using chiplet-on-chiplet packaging technology to provide the next-level computing performance in embed-

ded platforms. Stacking, however, severely increases the system’s power density without any accompanying

increase in the heat dissipation capacity. Consequently, 3D-stacked processor-memory systems suffer more

severe thermal issues than their non-stacked counterparts. Nevertheless, 3D-stacked processor-memory sys-

tems do inherit power (thermal) management knobs from their non-stacked predecessors - namely Dynamic

Voltage and Frequency Scaling (DVFS) for cores and Low Power Mode (LPM) for memory banks. In the

context of 3D-stacked processor-memory systems, DVFS and LPM are performance- and power-wise deeply

intertwined. Their non-unified independent use on 3D-stacked processor-memory systems results in sub-

optimal thermal management. The unified use of DVFS and LPM for thermal management for 3D-stacked

processor-memory systems remains unexplored. The lack of implementation of LPM in thermal simulators for

3D-stacked processor-memory systems hinders real-world representative evaluation for a unified approach.

We extend the state-of-the-art interval thermal simulator for 3D-stacked processor-memory systems

CoMeT with an LPM power management knob for memory banks. We also propose a learning-based thermal

management technique for 3D-stacked processor-memory systems that employ DVFS and LPM in a unified

manner. Detailed interval thermal simulations with the extended CoMeT framework show a 10.15% aver-

age response time improvement with the PARSEC and SPLASH-2 benchmark suites, along with widely-used

Deep Neural Network (DNN) workloads against a state-of-the-art thermal management technique for 2.5D

processor-memory systems (ported directly to 3D-stacked processor-memory systems) that also proposes

unified use of DVFS and LPM.

CCS Concepts: • Computing methodologies → Reinforcement learning algorithms; • Hardware →
3D-stacked architectures; • Computer systems organization→ Embedded systems;

Additional Key Words and Phrases: Low power design, resource-constrained edge computing, embedded

systems, 3D-stacked processors, AI for systems, chiplet-on-chiplet stacking

ACM Reference format:

Yixian Shen, Leo Schreuders, Anuj Pathania, and Andy D. Pimentel. 2023. Thermal Management for 3D-

Stacked Systems via Unified Core-Memory Power Regulation. ACM Trans. Embedd. Comput. Syst. 22, 5s, Ar-

ticle 120 (September 2023), 26 pages.

https://doi.org/10.1145/3608040

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Hardware/Software Codesign and System Synthesis, (CODES+ISSS), 2023.

Authors’ address: Y. Shen, L. Schreuders, A. Pathania, and A. D. Pimentel, University of Amsterdam, Science Park 900, Ams-

terdam, The Netherlands, 1098XH; emails: y.shen@uva.nl, leoschreuders@hotmail.com, {a.pathania, a.d.pimentel}@uva.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/09-ART120 $15.00

https://doi.org/10.1145/3608040

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

https://orcid.org/0000-0001-8447-872X
https://orcid.org/0009-0002-2288-871X
https://orcid.org/0000-0002-5813-7021
https://orcid.org/0000-0002-2043-4469
https://doi.org/10.1145/3608040
mailto:permissions@acm.org
https://doi.org/10.1145/3608040
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3608040&domain=pdf&date_stamp=2023-09-09

120:2 Y. Shen et al.

1 INTRODUCTION

Lack of memory bandwidth continues to stifle the performance of high-end embedded applica-

tions. 3D-stacked processor-memory systems [22, 28] resolve the memory bandwidth bottleneck

by stacking main memory DRAM banks on the processing cores using chiplet-on-chiplet packag-

ing technology. The technology allows for numerous shorter vertical interconnects between the

memory and logic layers. Therefore, the system’s transistor density can increase without technol-

ogy scaling.

However, stacking several silicon layers on top of each other increases the volume of the 3D-

stacked processor-memory systems while only minimally increasing its surface area over non-

stacked processor-memory systems [46]. Therefore, the power density of 3D-stacked processor-

memory systems is significantly higher than their non-stacked counterparts, while their heat dis-

sipation capabilities remain comparable [16, 33]. Furthermore, higher bandwidth allows cores and

memory to operate more actively in 3D-stacked processor-memory systems resulting in signif-

icantly more heat than in non-stacked systems [27]. Consequently, the 3D-stacked processor-

memory systems suffer from more severe thermal issues that force them to operate at much

lower frequencies than non-stacked systems. This thermally sustainable execution in 3D-stacked

processor-memory systems eradicates most performance gains over non-stacked systems.

Figure 1 shows abstract three-dimensional heat conduction in 3D-stacked processor-memory

systems. 3D-stacked processor-memory systems stack multiple memory layers over a core

layer [28]. Most 3D-stacked processor-memory system designs [22] place the heat sink with the

core layer because the logic is responsible for most of the heat in the system. Another heat sink

on the other side is infeasible as the chip must embed with the motherboard (PCB) on one side.

The capacity of the PCB as a secondary heat sink is limited. The memory layers absorb heat from

the core layer while producing heat. Therefore, while the thermal hotspots occur in the cores in

non-stacked processor-memory systems, the hotspots in 3D-stacked processor-memory systems

are in the memory layers. Consequently, thermal management of 3D-stacked processor-memory

systems is quintessential to their thermally-safe operation.

3D-stacked processor-memory systems inherit thermal management knobs for core and mem-

ory layers. 3D-stacked processor-memory systems can use Dynamic Voltage Frequency Scaling

(DVFS) to scale the frequency of their processing cores in the core layer. DVFS allows the cores

to reduce their heat generation at the cost of their peak performance and vice versa [8–10, 14, 18,

20, 23, 26, 37, 39, 40, 50]. 3D-stacked processor-memory systems can also toggle their memory

banks between Low Power Mode (LPM) and Normal Power Mode (NPM) to trade off their power

consumption with performance [30, 45, 47]. Enabling LPM mode for memory banks significantly

reduces their heat generation, but this reduction comes at the cost of an increase in memory access

latency. Though DVFS and LPM target different parts of 3D-stacked processor-memory systems for

power (thermal) management, they are performance- and power-wise intertwined [45]. The effect

on the performance of DVFS and LPM for an application is subject to the application’s memory and

compute intensity. The performance of a memory-intensive application is more sensitive to LPM,

while the performance of a compute-intensive application is more sensitive to DVFS. However, the

thermals of an application on 3D-stacked processor-memory systems are inherently subject to the

combined power consumption of both cores and memory. Therefore, a smart application-aware

thermal manager can save power using non-sensitive knobs such as DVFS for memory-intensive

applications and LPM for compute-intensive applications without significantly deteriorating appli-

cations’ performance. The manager can then use the saved power to boost performance using the

sensitive knob within a given thermal envelope. This observation makes a case for a unified DVFS

and LPM thermal management strategy for 3D-stacked processor-memory systems. We further

strengthen the case for such a strategy with a motivational example.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:3

Fig. 1. An abstract representation of heat conduction on 3D-stacked processor-memory systems [36].

Fig. 2. An abstraction of a 3D-stacked processor-memory system with DVFS and LPM.

Motivational Example: Figure 2 illustrates a 3D-stacked processor-memory system consist-

ing of one quad-core processor layer and eight memory layers. Each memory layer contains 16

memory banks. We select the streamcluster benchmark (from the PARSEC [2] benchmark suite)

executing in a four-threaded configuration to evaluate the performance implications of synergis-

tically employing LPM and DVFS under a thermal threshold of 78 ℃. We present two scenarios.

In the first scenario, we ran the streamcluster benchmark at a constant core(s) frequency of

2.7 GHz and all memory banks in NPM. 2.7 GHz is the highest core(s) frequency in which the

streamcluster benchmark reaches the thermal threshold of 78 ℃ in our 3D-stacked processor-

memory system but does not cross it in the steady state, as shown in Figure 3(a). Running at a

frequency higher than 2.7 GHz will violate the thermal threshold. We observe a response time of

670.96 ms in the first scenario. We know that streamcluster is a benchmark involving significant

computations. Consequently, the effect of LPM on its performance is limited. Therefore, in the sec-

ond scenario, we turn the first fourteen memory banks of memory layer M0 into LPM, as shown

in Figure 2. We transfer the power saved from the memory layers using LPM to the core layer

using DVFS to run streamcluster at a higher core(s) frequency of 4 GHz. Figure 3(b) shows that

streamcluster continues to remain below the thermal threshold of 78 ℃ in the steady state. How-

ever, being a compute-intensive benchmark, streamcluster benefits more from the higher core(s)

frequency than its penalization due to the use of LPM. We observe a response time of 547.95 ms in

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:4 Y. Shen et al.

Fig. 3. Layer-wised peak temperature for different layers in a 3D-stacked processor-memory system running

a four-threaded instance of streamcluster benchmark with and without LPM and varying core(s) frequency.

the second scenario. The performance of the streamcluster in the second scenario (Figure 3(b)) is

18.33% better than the first scenario (Figure 3(a)).

In practice, it remains a challenge to identify the correct combination of DVFS and LPM based

on application characteristics that will minimize the application’s response time on a 3D processor-

memory system. Recent works [40] have shown machine learning-based thermal management for

multi-/many-core processor-memory systems to be an effective strategy. Therefore, in this work,

we propose a reinforcement-learning-based technique that unifies DVFS and LPM in one technique

to identify near-optimal settings for both knobs synergistically for maximizing an application’s

performance on 3D processor-memory systems.

Our Novel Engineering Contributions: Several simulators come equipped with power-

performance modeling for core DVFS. However, no simulator capable of modeling the thermals

of 3D-stacked processor-memory systems comes with an LPM implementation for memory banks.

Past research evaluates LPM-based thermal management by offline retrospective manipulation of

power and performance traces collected from various simulators [45]. Such evaluation may be an

incomplete representation of real-world execution. Therefore, we extend the CoMeT [46] interval

thermal simulator to model the impact of LPM on application performance and power consump-

tion in a 3D-stacked processor-memory system. We have merged the code for our extensions with

the main branch of the open-source CoMeT repository at GitHub.

Our Novel Scientific Contributions: We propose the first technique for thermal management

of 3D-stacked processor-memory systems that synergistically employ core DVFS and memory

bank LPM in a unified manner. The technique uses a learning-based algorithm to determine the

frequency of every active core and the mode of every memory bank to minimize the response of an

application running on a 3D-stacked processor-memory system under a given thermal threshold.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:5

Fig. 4. Flow in simulated 3D-stacked processor-memory systems [46] with extensions in blue.

We compare the proposed technique with state-of-the-art thermal management techniques for

3D-stacked and 2.5D processor-memory systems via detailed interval thermal simulations.

2 LOW POWER MODE FOR 3D-STACKED PROCESSOR-MEMORY SYSTEMS

2D memories rarely suffer from thermal issues, given their low power density and slow operating

frequencies. However, the emergence of high-capacity, high-bandwidth, high-density 3D-stacked

memories significantly increased the power density of main memories. Consequently, the thermal

management of high-density memories became integral to their operation [44]. In contrast to cores,

static (leakage) power consumption dominates the total power consumption for memory banks.

Therefore, unlike in cores, DVFS that reduces the active (dynamic) power consumption was inef-

fective for the thermal management of memories. Instead, Low Power Mode (LPM) for main mem-

ory that reduces both active and static power consumption of memory banks became the power

management knob of choice for thermal management of high-density memories. LPM eliminates

the need for data migration or replication by preserving the memory data in situ. However, cores

cannot access the data in the memory banks when they are in LPM mode. Therefore, any memory

access to memory banks in LPM requires the memory bank to toggle to Normal Power Mode (NPM).

Transitioning to the NPM from LPM necessitates a resynchronization process. During this period,

the data stored within the memory bank becomes temporarily inaccessible. We model this resyn-

chronization duration based on the findings presented in [30, 45]. As such, the total time associated

with every memory access event in the LPM comprises both the resynchronization duration and

the standard memory access time. Note that once a memory bank has transitioned to the NPM due

to a memory access event, it immediately switches back to LPM to save power. This design choice

prioritizes saving power at the cost of increased overheads due to mode toggling.

3D-stacked processor-memory systems inherit the LPM power management knob from their

predecessor systems. However, none of the few thermal simulators capable of modeling the ther-

mals of 3D-stacked processor-memory systems provides an implementation for LPM. Therefore,

we extend the recently introduced state-of-art interval thermal simulator CoMeT [46] with the nec-

essary power-performance modeling associated with LPM. Figure 4 shows the extended CoMeT

tool flow. The parts in blue represent the new extensions.

The ❶ Performance Simulator (Sniper [3]) simulates a workload and tracks access counts to

internal components such as execution units, caches, and register files. CoMeT[46] extends the

performance simulator to count memory access for every memory bank based on the memory

addresses. Our extensions keep count of both NPM and LPM memory accesses. Sniper uses memory

access latencies to model performance. Our extensions make the latencies a function of memory

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:6 Y. Shen et al.

Fig. 5. The execution time and peak temperature with varying LPM memory banks for streamcluster.

bank power modes. We introduce the concept of heterogeneous latencies. We make memory access

latency for a memory bank in LPM higher than for a bank in NPM.

CoMeT uses McPat [24] and CACTI-3DD [4] to model the power consumption of cores and mem-

ory banks, respectively. Our extensions target the CACTI-3DD integration in CoMeT. The ❷ Power

Model receives the accumulated access counts at every simulation interval. It needs to be aware

of the power mode of each memory bank, as banks in LPM consume a fraction of the power com-

pared to those in NPM, with different fractions accounting for leakage and dynamic power. These

fractions are determined based on technical specifications, as outlined in [30]. The power model

generates a response corresponding to the power consumption based on the different power modes

of each memory bank and the energy per access for read (RD) and write (WR) operations.

The role of the ❹ Thermal Simulator in the CoMeT tool is to calculate the temperature of each

thermal component at each interval using the power consumption data received from the ❷ Power

Model and ❸ Floorplan Configuration. The ❹ Thermal Simulator does not need to know the power

modes of the memory banks. It inherently models memory banks in LPM to produce less heat

due to their lower power consumption. We extend the scheduling API in CoMeT, SchedAPI, to

allow the scheduler to read memory bank temperature. We also add extensions to the API that

allow the scheduler to toggle a memory bank between LPM and NPM. Therefore, based on the

temperature feedback from the ❹ Thermal Simulator, the ❺ Scheduler can switch the power mode

of a memory bank for thermal management. Finally, the ❻ Profile Module offers statistical data

that reflects the impact of LPM on power, temperature, and energy consumption at each interval,

as well as the overall performance data. We gain insights into how the applications behave in LPM

per their power, energy, and thermals through profiling. A scheduler can use this information to

make informed decisions about LPM to achieve the desired results.

3 EXTRA-FUNCTIONAL ANALYSIS OF DRAM ACCESS FOR LOW POWER MODE

We conduct an empirical extra-functional analysis to characterize changes in performance and

peak temperature of 3D processor-memory systems by the number and location of memory banks

in LPM. Figure 5 shows the variation in streamcluster performance by turning different memory

banks from NPM into LPM one at a time. We observe a non-uniform distribution that indicates

putting different memory banks in LPM leads to different performance (up to 1.5%).

Figure 5 also illustrates the corresponding observed peak temperature. As with the performance

results, there is a significant difference in peak temperature between distinct memory banks in

LPM (up to 0.32 ℃). Figure 6 charts the large variation in memory access count in memory banks

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:7

Fig. 6. The access count of individual memory banks in a 3D-stacked system for streamcluster.

Fig. 7. Execution time and peak temperature for streamcluster with one memory bank in LPM against the

memory access count of the memory bank that is in LPM.

that can explain these results. Figure 7 combines the data from Figure 5 and Figure 6 to plot the

execution time and peak temperature for streamcluster with one memory bank in LPM against

the memory access count of the memory bank that is in LPM. The figure shows a positive cor-

relation between execution time and memory access count. This correlation indicates memory

banks with a higher memory access count lead to a higher performance penalty when they go

into LPM. However, the figure also shows no correlation between observed peak temperature and

memory access count. Nevertheless, we still observe turning off memory banks in higher memory

layers (near the PCB) leads to a bigger decrease in peak temperature regardless of memory access

counts. Therefore, the spatial location of the memory bank also plays a role in the peak temperature

observation.

Based on these observations, we draw the following conclusions. We conclude that memory

banks located in the upper memory layer (close to the PCB layer) with fewer memory access

counts tend to provide better performance and thermal benefits when placed in LPM. Conversely,

memory banks located in the lower memory layer with high memory access count tend to result

in higher performance penalties and fewer thermal benefits when placed in LPM. This observation

suggests that a careful selection of the memory banks for LPM based on their location and memory

access count is quintessential to better performance-aware thermal management.

4 THERMAL MANAGEMENT DESIGN

Thermally managing the 3D-stacked processor-memory systems by intelligently switching the

memory bank into LPM is already a complex problem, as discussed in Section 3. However, in

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:8 Y. Shen et al.

combination with core DVFS, achieving a unified thermal management strategy becomes even

more daunting. We aim to delve deeper into the design space of this unified thermal management

for 3D-stacked processor-memory systems. Let the system hasN cores andM memory banks. Each

core hasG DVFS settings. Each memory bank hasK actions (i.e., LPM and NPM). The action design

space A is GN · KM . We then consider the state space S , which has I features, including core IPC,

core utilization, memory read/write count, etc. Each state feature hasH values, and the total design

space is A ·S , which isGN ·KM ·H I . Faced with such a colossal design space, selecting appropriate

DVFS levels and memory modes for efficient thermal management is computationally expensive.

It is challenging to find one-size-fits-all approaches due to the complexity of the problem and the

lack of feasible solutions in polynomial time for a run-time thermal management policy.

We propose a DQN (Deep Q-network) [34]-based algorithm, 3QUTM, for performing unified

thermal management on 3D-stacked processor-memory systems. 3QUTM coordinates DVFS and

LPM and continuously learns the application performance, the interdependent impact of one sub-

system on another (i.e., the overcompensation effect), and environmental changes using reinforce-

ment learning. 3QUTM selects actions based on the anticipated maximum future rewards. The re-

wards are determined by evaluating the current state and selecting the optimal action that yields

the highest future reward. 3QUTM plays a crucial role in periodically adjusting frequency/voltage

strategies for the core and LPM for the memory bank to improve performance while mitigating

thermal stress. 3QUTM leverages a neural network to manage the high-dimensional action and

state spaces A · S . We use a prioritized experience replay buffer and the sampling copies from past

data to minimize the adaptation time to environmental changes and improve the convergence

speed. 3QUTM consistently achieves high IPC in 3D-stacked systems with high compute intensity

while effectively balancing the overhead in systems with high memory intensity. 3QUTM learns the

interlinked effects from both subsystems to adapt to the application and environmental changes.

Architecture model: We employ 3D-stacked processor-memory systems with one layer of

homogeneous processing cores and multiple layers of main memory banks, as illustrated in

Figure 1. The core layer features cores with identical micro-architectures sharing the same mem-

ory address space. The core layer stacks directly above the heat sink. Multiple layers of memory

banks stack above the core layer, with the topmost memory layer embedded in the secondary

minor heat sink (PCB). Communication between the cores and memory banks occurs through

Through-Silicon Vias (TSVs). The 3D processor-memory system operates in a thermally con-

strained environment, and its temperature must remain below a threshold, denoted by TDTM, to

prevent hardware-controlled Dynamic Thermal Management (DTM) from being triggered. The 3D

processor-memory system executes multi-threaded multi-program shared-memory benchmarks

using a one-thread-per-core model.

4.1 Problem Formulation

We formulate the optimization problem by incorporating the observations from Section 3. Specif-

ically, we define the system throughput T and the total power consumption of the system as Ptot .

The overall objective is to maximize system throughput Twhile minimizing total power consump-

tion Ptot . We define the optimization problem as follows:

max
π

1

tD

tD−1∑
t=t0

{
ζTt +

Φ

Ptot t

}

s .t . Tpeak ≤ Tcr

(1)

Maximizing the average value of Equation (1) across tD (the duration of the optimization prob-

lem execution) leads to maximum performance max TtD
while minimizing power consumption

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:9

min Ptot under thermal limitations. Here,Tpeak andTcr denote the peak and critical temperatures

of 3D-stacked systems, respectively. ζ and Φ are trade-off coefficients for balancing performance

and power consumption. Each decision epoch seeks to maximize long-term rewards (a central

concept in reinforcement learning), as realized through the scheduling policy π , represented by

decision variables such as core DVFS settings and LPM knobs. This reward-driven approach lends

itself naturally to the framework of a Markov Decision Process (MDP), thereby bridging our opti-

mization problem with the principles of reinforcement learning. The Bellman optimality equation

shown in Equation (2) substantiates this connection. We assume an action set A and a state set S .

We have ∀a ∈ A and ∀s ∈ S for each action and state, respectively.

Vπ ∗ (st) = max
π

⎧⎪⎨
⎪
⎩
r (st , st+1) + γ

∑
st+1

P (st+1 |st ,at)Vπ ∗ (st+1)
⎫⎪⎬
⎪
⎭

(2)

where Vπ ∗ (st) represents the value function of state st for an optimal scheduling policy π ∗,
P (st+1 |st ,at) is the probability of transitioning from state st to st+1 by taking action at , r (st , st+1)
represents the immediate reward received when the agent acts at at state st after observing st+1,

andγ is the discount factor that determines the importance of future rewards relative to immediate

rewards. A value of γ = 1 indicates that the future reward is as important as the immediate reward,

while γ = 0 indicates that the agent does not consider future rewards.

Finding an optimal scheduling policy π ∗ is essential to maximize future rewards. However, ac-

curately modeling the transitions between the peak temperature of a 3D-stacked system and the

employed DVFS and LPM policy can be practically challenging due to the difficulty of estimat-

ing transition probabilities. As a solution, we adopt a model-free approach. One such approach

is Q-learning [48], which can converge to the Bellman equation without requiring probabilistic

modeling of state transitions. Q-learning aims to identify a scheduling policy that maximizes the

long-term reward by transforming the value function V (st) into the Q-function Q (st ,at).

Qπ ∗ (st ,at) =max
π
E (r (st , st+1) +Qπ ∗ (st+1,at+1)) (3)

where Qπ ∗ (st ,at) represents the cumulative expected reward for a given action at at a specific

state st , and r (st , st+1) denotes the immediate reward received after taking action at at state st fol-

lowing the resulting state st+1. However, Q-learning is not a perfect approach to solving our prob-

lem. Firstly, it only supports finite discrete states and action sets, making it incapable of handling

continuous values such as power consumption. Secondly, even after discretizing our continuous

attributes based on statistical distribution, the resulting design space remains vast, requiring ex-

tensive storage space and rendering convergence difficult. Consequently, it is impractical for our

problem with large state and action spaces. We adopt a Deep Q-network (DQN) to address the

limitations of Q-learning. We propose a lightweight Q-network to approximate the Q-function.

4.2 State, Action and Reward Design

4.2.1 State. We select features for defining the state of 3D-stacked systems, namely IPC (In-

structions Per Cycle), frequency, core utilization, peak temperature, the average temperature of

the hottest memory layer, total power consumption, and memory access count for their significant

relevance to the performance, power consumption, and thermal management of these systems. We

define the system state of 3D-stacked systems presented in Table 1 by utilizing these internal fea-

tures. Many of the features in Table 1 are execution-specific. Therefore, 3QUTM is an application-

(thread-)specific solution. Some features are discrete to provide a balance between model com-

plexity and accuracy. Thot L , Tpeak , and Ptot are retained as continuous variables, demonstrating a

prioritization of thermal management over performance. For efficient training, the features s I PC

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:10 Y. Shen et al.

Table 1. State-related Features and its Quantized Values for s I PC , sU , and sMAC for

3D-stacked Systems

State Description Discrete values

s I PC Billion Instructions per Cycle per Core 0,1

s f Frequency per Core 1.0, 1.2, . . . , 4.0
sU Utilization per Core 0,1,2,3,4,5,6

sTpeak Peak temperature of 3D-stacked Systems -

sThot L Average Temperature of the Hottest Memory Layer -

sPtot Total Power Consumption -

sMAC Memory Access Count per Memory Bank 0,1,2,3,4

and sU are discrete. To this end, we employ clustering, a flexible and data-driven approach capable

of discerning intricate patterns potentially missed by simpler thresholding techniques. We con-

duct basic experiments on all PARSEC-2 benchmarks to obtain and quantize the feature values.

We use K-means clustering [15] to group s I PC into two categories – computer-intensive thread

or memory-intensive thread. For the discrete sMAC and sU attributes, we employ DBSCAN [42]

to determine the optimal number of clusters, considering the variation in densities and shapes

for these two state features as revealed by the profiling data. Figure 8 visualizes the |sMAC | using

the swaptions benchmark. Assuming N cores and M memory banks in the 3D-stacked systems,

we represent the system state using a tuple, st = {s I PC0
t , . . . , s I PC N−1

t , s
f0

t , . . . , s
fN−1

t , sU0
t , . . . , s

UN−1
t ,

s
Tpeak

t , sThot L
t , sPtot

t , sMAC0
t , . . . , sMACM−1

t }.

4.2.2 Action. We define the set of actions as the clock frequency of cores and the number and

location of the LPM memory bank. For the V/F action set, we set the minimum operating frequency

to 1.0 GHz, with a step of 0.2 GHz for dynamic frequency adjustment. The maximum frequency is

4.0 GHz. However, exploring the entire search space for selecting the number of LPM memory

bank locations is prohibitively expensive (i.e., N = 4, M = 128, 164 · 2128 = 2144 combinations). We

exploit the observation in Section 3 that transitioning the memory banks located in higher memory

layers with lower access counts to LPM results in minimal performance penalties while increasing

thermal headroom. The core is the main heat source in a 3D-stacked processor-memory system.

The primary heat sink convects away most of the heat. Still, a significant amount of heat also flows

towards the secondary heat sink (PCB) for a less efficient convected dissipation. Consequently, the

layer closest to the PCB layer has a high chance of violating the thermal threshold. Under these

considerations, we perform the LPM actions as per:

• aLP M 0 : The action entails transitioning the hottest memory bank alongside its neighboring

six memory banks (i.e., front, back, left, right, upper, bottom) into LPM.

• aLP M 1 : Place all the memory banks in the hottest layer into LPM.

• aLP M 2−6 : This action category entails transitioning a set number m of memory banks into

LPM, where m ∈ {1,2,4,8,16}. These memory banks are from the first six layers, with each

selected memory bank showing memory access count attribute |sMAC | = 0.

• aLP M 7−10 : Analogous to the prior category, this group of actions also placesm memory banks

into LPM (wherem ∈ {1,2,4,8}). However, we based the selection on |sMAC | = 1.

• aLP M 11−14 : Similarly, this action places m memory banks (where m ∈ {1,2,4,8}) into LPM,

selecting from memory banks from the first six layers when |sMAC | = 2.

• aLP M 15−19 : This category of actions targets memory banks from the first six layers with

|sMAC | = 3, placingm (wherem ∈ {1,2,4,8,16}) into LPM.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:11

• aLP M 20−24 : The final category of actions operates on memory banks with |sMAC | = 4 in the

first six layers, transitioningm (wherem ∈ {1,2,4,8,16}) into LPM.

LPM actions entail transitioning a specific quantity (m) of memory banks into a low-power state

based on a memory access count attribute sMAC . As illustrated in Figure 7(b), we opted to imple-

ment LPM actions for the first six layers due to the performance trade-off. While switching off

memory banks in these layers results in minimal thermal benefits, it concurrently imposes perfor-

mance penalties. When selecting memory banks to put into LPM using the actions aLP M 2−15 , we

follow a top-down approach based on the memory bank layers. This selection means we prioritize

selecting memory banks from higher layers before moving on to lower layers. All non-selected

memory banks remain in NPM. We determine the LPM state of a memory bank per epoch, and

thus a memory bank placed in LPM during the previous epoch may or may not remain in LPM

for the next epoch, contingent on the new LPM action chosen by the agent. This strategy has a

significantly condensed action space, leading to 25 · 216 possible actions for a 4-core 3D-stacked

system. Similarly, the strategy reduces the action space from 2192 to 25·264 for a 16-core 3D-stacked

system.

4.2.3 Reward. We propose a dedicated reward function for the 3QUTM architecture, which

considers several key performance factors, including core throughput, the peak temperature of

3D-stacked systems, the compound effect of LPM memory banks, and power consumption. The

reward function is defined as follows:

rt+1 (st , st+1) = ζ r0t+1 + ϕr1t+1 + φr2t+1 +
Φ

			s
Ptot

t+1
			

(4)

where rt+1 (st , st + 1) represents the immediate reward after the next state st+1 is observed and is

capable of capturing all the relevant information of the next state (i.e., core throughput, s
Tpeak

t+1 and

sThot L

t+1), and |sPtot

t+1 | is the total power consumption (memory and core) of 3D-stacked systems in

the next decision epoch. It is inevitable to increase power consumption in pursuit of higher perfor-

mance. However, to save power, we introduce subtle rewards to minimize the urge. We define three

criterion functions, r0, r1, and r2, to represent performance, temperature, and the impact of LPM

memory banks, respectively. Here, Tcr denotes the thermal threshold, and Top represents the ex-

pected baseline temperature of the system. Temperatures below these thresholds indicate a higher

potential for performance boosting. The coefficients ζ , ϕ, φ, and Φ represent the significance of

each reward sub-function. These coefficients are all between 0 and 1, where their sum equals 1. We

have assigned a larger value to ζ to underscore the importance of performance. We presume ϕ and

φ to be equal, acknowledging their significant impact on thermal headroom. Lastly, Φ is the small-

est among all four coefficients to minimize power consumption. We established the parameters ζ ,

ϕ, φ, and Φ at values of 0.4, 0.25, 0.25, and 0.1, respectively. This deliberate calibration strategically

oriented the agent towards comprehending the intricate balance between performance and en-

ergy consumption, a correlation illustrated in Figure 7(a). We reward shape based on the transient

system temperature and performance metrics. The r0 sub-function is as follows:

r0t+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

−5 |sTpeak |
t+1 > Tcr

1
N

∑N−1
i=0 Ut+1i

· IPCt+1i
· |s

fi
t+1 |

|s fmax | |sTpeak |
t+1 ≤ Tcr &|sThot L

t+1 | > Top

3
2

1
N
·∑N−1

i=0 Ut+1i
· IPCt+1i

· |s
fi
t+1 |

|s fmax | |s
Thot L |
t+1 ≤ Top&|sTpeak

t+1 | ≤ Tcr

(5)

wherein IPCt+1i
represents the number of instructions that can execute in a single clock cycle per

core.Ut+1i
represents the percentage of time that the CPU core is busy executing instructions. The

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:12 Y. Shen et al.

product of these two values estimates the number of instructions executed per unit of time. Finally,

multiplying this value by the clock frequency of the CPU core |s fi

t+1 | gives an estimate of the core

throughput in instructions at the t+1 decision epoch. We normalized to the maximum available

frequency for that core |s fmax | and averaged the throughputs across all the cores. The value of

the sub-reward function r0 links closely to the average system throughput. Its design promotes

high throughput by including an empirically-determined amplification factor of 3
2 under certain

conditions. This factor is applied when the system maintains considerable thermal headroom, i.e.,

when |sTpeak

t+1 | <Top . This design choice assumes that a higher IPC generally leads to improved sys-

tem performance. Therefore, a positive reward from the r0 sub-function signifies that the actions

contribute to a performance-boosting state. The reward sub-function r1 is as follows:

r1t+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

−5 |sTpeak |
t+1 > Tcr

exp (Tamb − |s
Tpeak

t+1 |) |sTpeak

t+1 | ≤ Tcr &|sThot L

t+1 | > Top

2 · exp (Tamb − |s
Tpeak

t+1 |) |sThot L

t+1 | ≤ Top&|sTpeak

t+1 | ≤ Tcr

(6)

whereTamb is the ambient temperature, and |sTpeak

t+1 | is the peak temperature of 3D-stacked systems

measured in decision epoch t+1. Temperature variations often follow an exponential law [17].

Therefore, we design the value of X to tie closely to temperature. We use an exponential form to

capture the temperature gap in our reward function. Increasing the temperature can lead to higher

performance, provided the system has sufficient thermal headroom. Therefore, we associate it with

a higher reward. Empirically, we set this reward multiplier to two for performance enhancement.

However, as the temperature climbs and nears the thermal threshold, we decrease the reward

gradually. This reduction is due to the expanding gap between Tamb and |sTpeak

t+1 |. The decreasing

reward encourages the agent to moderate the rate of temperature increase to maintain system

stability. In other words, we try to prevent the temperature from rising too quickly or reaching the

thermal threshold too soon. If the system temperature continues to rise and crosses the thermal

threshold, we assign a high penalty to protect the system from potential damage. This penalty

serves as a warning to the agents to take corrective actions and prevent the temperature from

reaching a critical level. The reward sub-function r2, is:

r2t+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

−1
10Ψ0
+ −1

8Ψ1
+ −1

6Ψ2
+ −1

4Ψ3
+ −1

2Ψ4
|sTpeak

t+1 | > Tcr

1
Ψ0
+ 1

Ψ1
+ 1

Ψ2
+ 1

Ψ3
+ 1

Ψ4

∑i=N−1
i=0 (|s I PC i

t+1 | = 1) >
∑i=N−1

i=0 (|s I PC i

t+1 | = 0)&|sTpeak

t+1 | ≤ Tcr

1
2Ψ0
+ 1

4Ψ1
+ 1

6Ψ2
+ 1

8Ψ3
+ 1

10Ψ4

∑i=N−1
i=0 (|s I PC i

t+1 | = 1) ≤ ∑i=N−1
i=0 (|s I PC i

t+1 | = 0)&|sTpeak

t+1 | ≤ Tcr

(7)

where we define Ψk =
∑i=M−1

i=0 {|sMAC i

t+1 | = k } as the sum of all instances where the number of

LPM banks in memory access feature |sMAC
t+1 | is k , as shown in Figure 8.

∑
(|s I PC i

t+1 |) represents the

sum of the quantized values of IPC attributes. The r2 sub-reward function reflects the cumulative

effect of LPM actions, with the understanding that frequently accessed memory banks switching

to LPM would incur more substantial penalties. The coefficient attributed to each term within

the reward function signifies its relative significance. Specifically, in scenarios where compute-

intensive threads dominate the system, we grant higher rewards. The rationale for utilizing the

reciprocal of Ψ (assigning the corresponding term in r2 to 0 if Ψ equals 0) to represent the reward

is to ensure that the r2 reward falls within a similar range to the other sub-reward functions. A

larger Ψ value indicates a higher penalty resulting in a lesser reward. When memory-intensive

threads dominate the system, we vary the coefficient for the reward. LPM memory banks that

are accessed less frequently are given a relatively higher reward, whereas those that are accessed

more often are given a lesser reward. However, symmetrical coefficients penalize the agent during

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:13

Fig. 8. The value of state feature sMAC
t+1 when we run the swaptions benchmark with 4 core and 128 memory

bank. Based on the observation in Section 3, we concentrate the action space in the top six layers.

a thermal emergency. This reward structure ensures a balance between system performance and

energy efficiency while factoring in the critical aspects of thermal management.

4.3 Optimal Design, Adaptive Control and Training Techniques for DQNs

Design. Reducing the action space by integrating memory behavior profiling and domain knowl-

edge is an effective strategy. Nevertheless, managing an expanding action space, particularly in the

context of increasing cores, poses a substantial challenge. A conventional DQN algorithm gener-

ates a distinct Q-value for each action during a single forward pass, with each state-action pair as

input. In scenarios where the action space is relatively small, the one-hot encoded representation

of Q-values, characterized by one output neuron per action, is a suitable mechanism for network

learning. This method facilitates the training process by weight updating to enable the action as-

sociated with the highest Q-value. However, this approach becomes untenable when dealing with

a large action space. For instance, a 16-core system has an action space of 25 · 264, rendering it

entirely impractical to store these output neurons. Moreover, selecting the action with the highest

Q-value for each training step becomes exceedingly complex.

To further effectively address the surging complexity and scalability of the action space, which

is due to the diverse combinations of DVFS settings for each core and LPM choice for memory,

we employ a composite approach that incorporates parameterized actions [31] and action embed-

dings [5]. We treat each core’s DVFS setting and the LPM memory choice as separate embedding

matrices. These matrices serve as lookup tables, where each row corresponds to a unique DVFS

setting (for cores) or a unique memory choice (for memory), and each column corresponds to a

dimension |E| in the embedding space, as illustrated in Figure 9. The size of the action embedding

matrix equates to (N + 1) × |E|, where N is the number of core DVFS settings plus LPM memory

choices, and |E| is the embedding dimension. This embedding dimension, E, is a hyperparameter

whose value is experimentally determined via sensitivity analysis, as shown in Table 2. It is evident

from the table that an embedding dimension of 16 provides a desirable trade-off between storage

overhead, accumulated reward, and episode length.

Take a 16-core 3D-stacked system with 16 DVFS settings per core and 25 LPM knobs. The size

of each core’s action embedding matrix would then be 16 × 16. Analogously, with 25 LPM knobs,

the memory’s action embedding matrix would be 25 × 16. The state space dimension is 179 and

the action space dimension is 17*16 = 272, the input dimension of the network is 451 - a concate-

nation of the current state of the 3D-stacked systems and the action embeddings. We select the

corresponding DVFS and LPM embeddings from the respective lookup tables for each core at ev-

ery time step. The concatenated state-action pair (st , at) is then forwarded through the Q-network,

generating a predicted action embedding and the corresponding Q-value. Our Q-network architec-

ture comprises two output layers - the predicted action embedding layer and the corresponding

Q-value layer. The initial state of the embedding matrix is determined by small random values,

following a Gaussian distribution with a mean of 0 and a small standard deviation (e.g., 0.01). This

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:14 Y. Shen et al.

Fig. 9. An abstract diagram depicting the design of the Q-network.

Table 2. The Sensitivity Analysis of Embedding Dimension E

Embedding Dimension E 4 8 12 16 20 24 28

Accumulated Reward 374.09 761.94 929.31 1632.25 1652.79 1677.36 1699.66

Episode Length 1730 1850 1950 2010 2200 2390 2650

update process occurs via back-propagation, guided by our dedicated loss function, L(θ), allowing

the action embedding matrices and their corresponding lookup table to be updated jointly with

the Q-network.

L(θ) =
1

2
(Qtar −Q (st ,at ;θ))2 + λe · [1 − cosine (E(at),E(ap)) · |(Qtar −Q (st ,at ;θ) |] (8)

The first term represents the Temporal Difference (TD) error for the Q-values, signifying the gap

between the predicted and actual Q-values. The second term corresponds to the cosine similarity

between the predicted action embedding E(ap) and the actual action embedding E(at). The cosine

similarity ranges between −1 and 1, with one indicating that two embedding vectors are identi-

cal. Therefore, subtracting the cosine similarity from 1 allows us to treat this term as a form of

divergence that we target to minimize. This effect gives rise to a symbiotic relationship between

the two components of the loss function. Large TD errors result in a more substantial penalty for

the divergence in action embeddings. Contrarily, a diminishing TD error, indicative of improved

Q-value predictions, reduces the emphasis on refining action embeddings. Factor λe is a hyperpa-

rameter that modulates the relative significance of the action embedding loss in contrast to the

Q-learning loss. This balance is crucial for harmonizing the simultaneous learning of action em-

beddings and Q-values. Initially, setting λe to 0.01 provides the Q-network with a priority focus

on mastering Q-values. As the training progresses, we gradually elevate λe in increments of 0.001

until it reaches 1, shifting the focus towards refining action embeddings. This strategy ensures that

the model captures the immediate and long-term influences of actions on the system state.

We employ a lightweight fully-connected neural network with few hidden layers to predict the

action embedding and Q-value. The activation function used is the tanh [11] function. This choice

is motivated by its gradual and continuous slope and the potential for capturing the relationship

between the input experience tuple and the output Q-values. In addition, it reduces the vanishing

gradient problem. We perform L2 regularization to enhance the generalization and engage the

Adam [21] optimizer to lower memory requirements and improve convergence during training.

We propagate the current state through the Q-network to generate a corresponding action em-

bedding upon model convergence. Subsequently, we compute the cosine similarity between this

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:15

Fig. 10. An abstraction depicting the training of 3QUTM on a 3D-stacked processor-memory system.

resulting action embedding and all stored action embeddings in the corresponding action embed-

ding matrix. We then choose the action (i.e., the DVFS setting and LPM operation) correspond-

ing to the action embedding exhibiting the highest cosine similarity for thermal scheduling. The

computation of cosine similarity serves as a proxy for traditional Q-value calculations. This proxy

emerges as a robust mechanism for action selection, particularly adept at managing the challenges

presented by a high-dimensional action space.

However, the run-time overhead is also critical for schedulers. Executing a tanh function in-

volves computationally expensive exponentiation and a multiplication operation. Therefore, we

perform a piece-wise linear variant of tanh [35] (tanh∗). tanh∗ has a similar shape to tanh, but it

is computationally cheaper because it only involves simple linear operations and does not require

any expensive transcendental functions. We evaluate these two activation functions, and the tanh∗

bears a 3.75% loss of accuracy for a 12.22% reduction in run-time inference time.

Understanding the interaction between cores and memory is crucial within our architecture.

Our Q-network structure inherently captures this detail despite using separate lookup tables for

each core’s and memory’s actions. Shared network layers facilitate comprehension of the nuanced

correlations between actions across cores and memory, given the process of forward-propagation

and subsequent back-propagation. Moreover, temporal learning offers the agent insight into the

repercussions of specific actions taken by cores and memory over time while revealing the under-

lying inter-dependencies. The cumulative effect of all actions is subtly underscored by the global

reward signal post-action execution, reinforcing the overall learning process. Therefore, regard-

less of the independence of action embeddings for each core and memory, our approach indirectly

incorporates these interrelationships within the learning framework.

Training algorithm. Figure 10 provides an overview of 3QUTM . We use all the benchmarks in

the PARSEC-2 suite to generate experience tuples and use them to populate the replay buffer. We

conduct training under two distinct scenarios: the first scenario engages homogeneous workloads,

where similar benchmarks concurrently deploy on the 3D-stacked system during each training

episode. The second scenario introduces heterogeneous workloads wherein different benchmarks

arrive in the system as per a Poisson distribution.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:16 Y. Shen et al.

ALGORITHM 1: 3QUTM Algorithm

Configuration: Tcr , Top , Tamb , s
f
max , Coefficient of reward function ζ ,ϕ,φ,Φ, Discount factor γ , Core size

N , Memory bank size M .
Initialization: Reply memory buffer RB to capacity |RB |, Neural network θ , Target network θ∗ = θ , Mini-

batch size |MB |, Exploration rate εt0 = 1, εmin = 0.001, Decay rate υ = 0.01, λe = 0.01, Learning rate
αt0 = 0.001, β1 = 0.9, β2 = 0.999, Priority ∀ρ = 0.001.

1: st0 = {s
I PC0
t0

, · · · , s
I PC N−1
t0

, s
f0
t0
, · · · , s

fN−1
t0

, s
U0
t0

, · · · , s
UN−1
t0

, s
Tpeak

t0
, s

Thot L
t0

, s
Ptot
t0

, s
MAC0
t0

, · · · , s
MACM−1
t0

}.

2: for each t = t0, t1 . . . , tD−1 do

3: /* ε − дr eedy approach

4: Obtain action at

5: Record the state transition st → st+1

6: Calculate the reward rt+1 (st , st+1)
7: Add experience tuple (st , at , rt+1, st+1, ρt , f laд) in RB

8: if rt+1 ≤ −5 or rt+1 ≥ 3 then

9: /* Duplicate the informative experience tuples

10: Add copy of experience tuple (st , at , rt+1, st+1, ρt , f laд) into RB

11: if num ((st , at , rt+1, st+1, ρt , f laд)) ∈ |RB |) > |MB | then

12: Sample random minibatch |MB | experience tuples from RB .

13: /* Freeze θ parameter during δ iterations

14: for each (st , at , rt+1, st+1, ρt , f laд) ∈ MB do

15: Qt ar = rt+1 + γ max
at+1

{st+1, at+1; θ ∗}

16: ρt = |Qt ar −Q (st , at ; θ) |(1− λe ·cosine (E(at), E(ap))) +η � Update priority of the experience tuple ρt

17: /* Perform gradient decent (i.e, Adam optimizer)

18: L(θ) = 1
2 (Qt ar −Q (s, a; θ))2 + λe · [1 − cosine (E(at), E(ap))] · |Qt ar −Q (st , at ; θ |

19: θ ← θ − α∇θ L(θ)

20: st = st+1 � Environment transitions to next state st+1

21: θ ∗ = θ , δ initialization � Update target network every δ iterations

22: εt = εmin + (εt0 − εmin) · exp (−υ · t) � ε decay

23: αt = αt0 ∗ (1 − β t
2)2/(1 − β t

1) � Every minibatch update, learning rate update

Algorithm 1 provides a pseudo-code for implementing the training algorithm for 3QUTM . The

algorithm invokes every scheduling epoch to ensure the system continues to learn and adjust

according to the changing states and rewards. During the execution of 3QUTM , we initialize the

Q-network θ with random weights. In the first training epoch, we obtain the initial state from the

profiling module. We set ε to 1, indicating that the agents take a uniform random approach over the

V /F levels and varying LPM memory banks. We also observe st+1 and assess the immediate reward

r (st , st+1), as shown in Lines 4–6. Afterward, we collect the experience tuple (st ,at , rt+1, st+1) and

store it in the experience replay bufferRB. We duplicate these experience tuples in the replay buffer

to emphasize their significance if the reward r > 3 indicates the high-performance potential or

r ≤ −5 indicates an increased likelihood of the thermal crisis. When the size of the experience

tuples exceeds the minibatch size |MB |, we uniformly and randomly select |MB | experience tuples

from RM to train the DQN model.

To predict the Q-value in DQN, we use both the Q-network θ and a separate target network θ ∗.
The reason for this is that the target Q-value Qtar is calculated recursively based on the Bellman

equation, which depends on the current weights of the Q-network θ . Since these weights update

during training, the target Q-value also changes, leading to a moving target problem that can

hinder learning. To address this issue, we use the target network θ ∗, an identical copy of the Q-

network but with fixed weights for a specified number of iterations δ (e.g., δ = 1000), as shown in

Line 21. The target network weights periodically update after a fixed number of training iterations

by copying the parameters from the Q-network.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:17

Fig. 11. The learning rates with and without duplicate experience tuples on 3D-stacked systems.

We utilize the Adam [21] optimizer to minimize the difference between the predicted Q (s,a;θ)
and targetQtar and iterate the process of updating the weights of the Q-network θ until it reaches

convergence, as shown in Lines 17–19. The balance between exploration and exploitation is crucial

to achieving the optimal cumulative reward in the training process. We achieve this balance by

updating the exploration rate ε over time, as shown in Line 22. The learning rate α is updated for

every minibatch in order to improve the efficiency of experience tuple processing, especially in

the case of dynamic changes in the environment. This approach leads to faster training and better

adaptation capabilities, as detailed in Line 23. We attain a high level of accuracy in predicting the

Q-value after training predefined D iterations by utilizing a neural network architecture consisting

of three hidden layers, each containing 64, 32, and 16 neurons, respectively.

Prioritized Experience Replay Buffer. We propose a priority scheme [41] for experience

tuples to improve the sample efficiency of neural network agents. That is, experience tuples with a

high priority, indicating that they are representative, have priority when selecting for training. We

leverage the absolute value of the temporal difference (TD) error to quantify the priority, which is

the difference between the predicted Q-value Q (st ,at ;θ) and the target Q-value Qtar for a given

state-action pair (st ,at). The priority function for an experience tuple i is formulated as follows:

ρi = |Qtar −Q (st ,at ;θ) |(1 − λe · cosine (E(at),E(ap)) + η (9)

where η is a small positive constant (i.e., η = 0.001) to ensure no experience tuple has zero priority.

To implement a prioritized experience replay buffer, we use a deque data structure, where each

experience tuple consists of state st , action at , reward rt+1, a boolean variable called the done

flag, and a priority value. The done flag indicates whether the current state is a terminal state.

Figure 11 displays the advantages associated with duplicative experience tuples. We utilized a t-

test to compare average rewards with the p-values of our tests (0.0000006 and 0.000001) in Figure 11,

providing evidence that 3QUTM-Dup offers increased stability and facilitates faster convergence.

Fine-Tuning for Increased Adaptability. When reconfiguring the floorplan of 3D-stacked

systems, such as altering the number of cores in a core layer from 4 to 16, the state space undergoes

a change. We adapt the network architecture by adding neurons to the input layer and incorporat-

ing an additional hidden layer to accommodate this larger input size (i.e., from an input dimension

of 223 to 451). However, it is not required to train the Q-network θ from scratch. We leverage pre-

existing weights from counterparts of the 4-core system. Specifically, the state space dimension

increases from 143 to 179. We retain the weights for the original 143 neurons while the weights

of the additional 36 neurons initialize randomly. We construct a four-layer hidden network with

a neuron configuration of 128, 64, 32, and 16 per layer. The weights of the newly introduced first

layer, consisting of 128 neurons, are initialized randomly. However, the weights of the subsequent

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:18 Y. Shen et al.

Table 3. Core and Memory Parameters for the Simulated 3D-stacked System

Core Parameters

Number of Cores 4/16, 1 layer

Core Model x86, 4.0 GHz, 22 nm, out-of-order

L1 I/D cache 32/32 KB, 4/4-way,64 B-block

L2 cache private,512 KB, 8-way, 64 B-block

L3 cache 512 KB, 16-way, 64 B-block

Memory Parameters

3D-stacked Memory 8 GB, 8 layers, 16 channels, 128 banks

Memory Bandwidth 25.6 GB/s

layers directly transfer from the corresponding layers of the pre-trained 4-core system. We load

the weights for the memory action embedding matrix and replicate the core action matrix four

times to populate the expanded core action embedding matrix. The new Q-network θ can adapt to

the new state and action space more efficiently and achieve faster convergence. This strategy of

reusing the Q-network θ for a transformed state and action space is especially advantageous as it

bypasses the need for extensive training sessions and accelerates the adaptation of the Q-network

θ to the new state and action space.

5 EVALUATION

We validate our work using interval thermal simulations via the state-of-the-art CoMeT simula-

tor [46] with LPM extensions. CoMeT integrates Sniper [3], McPat [24] with 22nm FinFET and

CACTI [4], and HotSpot [17] into one toolchain for simulating thermals of 3D-stacked systems.

Table 3 lists the parameters for the simulated system. For the 4-core 3D-stacked system, the area

of each core is 11.65mm2, while for the 16-core 3D-stacked system, the area of each core is 2.89mm2.

Additionally, the area of each memory bank is 2.89 mm2. We use multi-threaded multi-program

workloads from PARSEC 2.1 [2] (with sim-medium inputs) and SPLASH-2 [49] (with large inputs) as

the workload. We use all the benchmarks in the benchmark suites that successfully execute to com-

pletion using CoMeT. We set the Tcr itcal , Toper ate , and Tamb to 75 ℃, 70 ℃, and 45 ℃, respectively.

Baselines: We compare our work with state-of-art thermal management on 3D-stacked ar-

chitecture. CoreMemDTM is a recent thermal management technique for 2.5D processor-memory

systems that synergistically employs DVFS and LPM. We port CoreMemDTM [45] to 3D-stacked

processor-memory systems by implementing it in CoMeT. CoreMemDTM is the state-of-the-art

technique closest to 3QUTM in principle. In addition, we port the advanced thermal management

technique for cores TPAVA [25] and 3D-stacked memory fastcool [47] to 3D-stacked processor-

memory systems. Furthermore, we consider FBTM [43] and DCA-DVFS [19], methods originally

devised for jointly managing temperature in 3D-stacked caches and cores, as comparative baselines.

We tailored the fuzzy logic rules of FBTM to govern the 3D-stacked processor-memory systems.

Similarly, we adopted a dynamic programming in DCA-DVFS to work with 3D-stacked processor-

memory systems. The assessment criteria mainly focus on performance, energy consumption, and

peak temperature.

5.1 Performance and Energy Improvement on a 4-core 3D-Stacked System

We evaluated our 3QUTM against five state-of-the-art thermal management policies. 3QUTM trains

using the PARSEC benchmarks and then work as a scheduler to perform core DVFS and LPM

for the memory bank in tandem in each interval epoch (i.e., 1ms) across PARSEC and SPLASH-2

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:19

Fig. 12. Comparison with state-of-the-art techniques across the PARSEC and SPLASH-2 benchmarks suite

on a 4-core 3D-stacked processor-memory system.

benchmarks. The first eight benchmarks are from PARSEC with simmedium input. The rest are

from SPLASH-2 with large input.

The speedup of 3QUTM over CoreMemDTM for high compute intensity benchmarks such as

blacksholes, streamcluster, and x264 is prominently evident in Figure 12(a). The 3QUTM over Core-

MemDTM achieves the highest speedup of 16.96% with blacksholes. This speedup is because black-

sholes is a compute-intensive benchmark that 3QUTM can learn the performance metric, and

its execution time is very short, implying less opportunity for it to overheat. As a result, the

chance of triggering the high penalty LPM bank is correspondingly less. The average speedup

over CoreMemDTM is 11.45%. The average speedup over fastcool, TPAVA, FBTM, and DCA-DVFS

is 17.89%, 12.33%, 16.36%, and 12.45%, respectively. Our well-trained model inferred the unified

thermal management policy on SPLASH-2 benchmarks. In Figure 12(a), 3QUTM achieved a maxi-

mum speedup of 13.69% against CoreMemDTM with an average speedup of 8.83%. Moreover, the

average speedup over fastcool, TPAVA, FBTM, and DCA-DVFS is 15.32%, 19.35%, 15.13% and 11.67%,

respectively.

Figure 12(b) and (c) exhibit core and memory energy consumption, respectively. 3QUTM ob-

tained an average energy saving of 35.92% compared to CoreMemDTM on the PARSEC benchmarks.

We observe the highest energy saving of 42.87% (core:15.12%, memory:36.33%) on the blackscholes,

attributed to 3QUTM learning the memory access pattern and reducing the dynamic and leak-

age power with LPM and quicker execution time. The barnes and cholesky benchmarks did not

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:20 Y. Shen et al.

Fig. 13. Comparison with state-of-the-art techniques across the PARSEC and SPLASH-2 benchmarks suite

on a 16-core 3D-stacked processor-memory system.

meet expectations with energy savings of −0.03% and −0.01%, respectively. This observation is

because 3QUTM prioritized performance over energy consumption due to less heat generation.

It continuously infers the action that leads to high throughput, making the core run at the full

frequency. With sufficient thermal headroom, 3QUTM made fewer memory banks switch to LPM,

thereby trading off performance over energy consumption. 3QUTM achieved an average of energy

savings of 13.22% (CoreMemDTM), 16.63% (fastcool), 20.76% (TPAVA), 17.39% (FBTM), and 17.61%

(DCA-DVFS).

5.2 Performance and Energy Improvement on a 16-core 3D-Stacked System

We evaluated 3QUTM on a 16-core system, observing modifications in the state space which neces-

sitated fine-tuning of the Q-network. To accomplish this, we utilized a portion of the weights of the

Q-network (as presented in Section 5.1) to retrain the model. Notably, the fine-tuned Q-network

demonstrated rapid convergence, with results, as shown in Figure 13(a), indicating a consider-

able speedup over the five other thermal management policies. The 3QUTM delivered the highest

speedup relative to CoreMemDTM on the fluidanimate benchmark, achieving a speedup of 18.50%,

with an average speedup of 11.07%. 3QUTM performs exceptionally well on high compute inten-

sity benchmarks. Compared with fastcool, the 3QUTM achieved a speedup of 20.05%. We credit this

to 3QTM’s ability to mitigate thermal crises by transitioning the memory bank into LPM without

necessitating the deactivation of the memory bank or offloading of data from 3D-stacked mem-

ory to 2D DRAM. Furthermore, 3QUTM surpassed TPAVA in performance terms by an average of

18.71%. We attribute this advantage to 3QUTM’s strategic use of LPM for memory banks, which

provides thermal headroom for performance enhancement without the frequent triggering of ther-

mal throttling. On the SPLASH-2 benchmark suite, 3QUTM excelled over CoreMemDTM by 10.39%

in performance on average. More broadly, 3QUTM outstripped fastcool, TPAVA, FBTM, and DCA-

DVFS by average margins of 19.72%, 12.54%, 16.90%, and 12.49%, respectively. Notably, as shown

in Figure 13(b), 3QUTM achieved energy savings across all benchmarks.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:21

Fig. 14. Comparison with state-of-the-art techniques across 7 DNN popular workloads in single-program

mode on a 16-core processor-memory system.

Fig. 15. Comparison with state-of-the-art techniques across 7 DNN popular workloads executing in multi-

program mode on a 16-core processor-memory system.

5.3 Performance and Energy Consumption for DNN Workloads in Inference on a

3D-stacked Processor-memory System

Our evaluation consisted of two experimental groups. The first group entailed homogeneous work-

loads, specifically threads from a singular DNN workload [38] within the 3D-stacked system. As

Figure 14 elucidates, 3QUTM delivers the highest speedup, especially notable in high compute in-

tensity workloads like ResNet34. 3QUTM achieved an impressive 18.97% and 16.91% speedup over

FBTM and DCA-DVFS, respectively, in terms of performance. 3QUTM demonstrated 10.85% and

12.55% energy savings compared to FBTM and DCA-DVFS, respectively. The second experiment

group dealt with heterogeneous workloads. We developed 21 DNN workloads, each of which oc-

curred three times. DNN workloads were introduced in 3D-stacked systems at varying rates follow-

ing a Poisson distribution. 3QUTM consistently outperforms the other five policies under all load

scenarios. The speedup gains with 3QUTM are most pronounced in medium-loaded systems (with

an arrival rate per 10s of 8 DNN workloads). Under these conditions, 3QUTM achieved perfor-

mance improvements of up to 11.95%, 13.27%, 18.16%, 18.51%, and 16.72% over CoreMemDTM, fast-

cool, TPAVA, FBTM, and DCA-DVFS, respectively. Energy savings with 3QUTM against the other

five policies are also noteworthy, as depicted in Figure 15. The uniqueness of 3QUTM lies in its

ability to learn the intricate interaction between memory and core actions, understanding their

intertwined effects on thermal management. This feature distinguishes 3QUTM from approaches

like FBTM, which is application-agnostic and cannot account for this interaction, and DCA-DVFS,

a dynamic programming approach, which, while effective in thermal control, does not exhibit the

same learning capacity. The success of 3QUTM underlines the efficacy of machine learning in effi-

ciently managing thermal conditions and achieving superior performance and energy efficiency.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:22 Y. Shen et al.

Fig. 16. Peak temperature comparison between different version of 3D-stacked processor-memory system.

Table 4. Overheads for Varisized Scheduling Epoch on Varisized Version

of 3D Processor-memory Systems

Epoch size
1ms 2ms 5ms 10ms

4-core 16-core 4-core 16-core 4-core 16-core 4-core 16-core

Overhead 4.52% 6.91% 3.96% 5.11% 1.59% 3.17% 0.79% 1.72%

Tpeak 75.23℃ 75.09℃ 75.51℃ 75.36℃ 76.71℃ 76.16℃ 77.33℃ 76.96℃

5.4 Peak Temperature Analysis

Figure 16 illustrates the comparison of peak temperature between 3QUTM and the baselines.

Figure 16(a) shows that 3QUTM controls the temperature below the thermal threshold, except

for the ocean.ncont benchmark, where the peak temperature of 3QUTM slightly exceeds the ther-

mal threshold at 75.23 ℃. This exception is because 3QUTM learns unified thermal management at

intervals, and it may encounter difficulty in cases where abnormal spikes in power occur within

the decision epoch. Additionally, 3QUTM experiences high fluctuations in power consumption

throughout its execution. Similarly, Figure 16(b) demonstrates the performance of 3QUTM in terms

of temperature control on a 16-core 3D-stacked system. The fuzzy control in FBTM is less effective

in managing complex thermal environments due to its lack of ability to learn from the complex in-

teraction between memory and core actions. Similarly, DCA-DVFS, a design-time approach, faces

limitations in dynamically managing the thermal environment in an open system.

5.5 Sensitivity Analysis and Overhead Assessment of Scheduling Epoch Size

We performed a sensitivity analysis targeting the scheduling epoch size and its corresponding

run-time overhead of 3QUTM, as presented in Table 4. We translate the well-trained Q-network

from Python to C++ and compile it into binary code for execution. We ensured our experimental

setup matched the configuration, as outlined in Table 3. Our findings illustrate that increasing the

scheduling epoch size from 1 ms to 10 ms reduces the overhead for both 4-core and 16-core systems

due to infrequent invocation. However, this reduction in overhead comes at the cost of less control

over the peak temperature. This pattern underscores the trade-off between decision frequency

(and associated overhead) and the system’s peak temperature control. For example, employing a

decision epoch of 1 ms on a 4-core system results in 3QUTM incurring an overhead of 4.52% while

sustaining a peak temperature of 75.23℃. In the same conditions, but on a 16-core system, the

overhead sees a minor increase to 6.91%. This increment comes from the heightened computational

and communication demands of managing several cores. These results demonstrate that 3QUTM

can work across systems with varying core counts while balancing overhead and control.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

Thermal Management for 3D-Stacked Systems 120:23

6 RELATED WORK

Thermal management is a vital area of research for processor-memory systems. There are several

approaches for managing the temperature of cores in the literature. These approaches encompass

DVFS [10, 37] and task scheduling [8, 9, 14, 18, 20, 23, 26, 39, 40, 50]. Stijn et al. [10] proposed a

3D fine-DVFS algorithm that restricts a core’s frequency and voltage to prevent it from negatively

affecting neighboring cores. Noltsis et al. [37] used a PID controller to monitor the chip’s temper-

ature and adjust DVFS based on temperature differences. Fazal et al. [14] distributed active tasks

close to the heat sink to reduce switching activity. Additionally, several researchers have employed

innovative learning-based approaches to the thermal management problem. Martin et al. [40]

devised a network-based task migration scheduler to determine the best time and place to mi-

grate tasks for optimal performance. Arman et al. [18] developed a reinforcement learning-based

DTM policy that considers fan speed, DVFS, and task allocation to optimize performance. Despite

the notable progress made in thermal management for processors, these works did not consider

memory.

3D-stacked memory (HMC, HBM) has gained significant popularity. Consequently, thermal

management for 3D-stacked memory has become a growing area of research. Typical thermal

management methods for 3D-stacked memory include page allocation [16, 27, 32], data migra-

tion [1, 44, 47], and power regulations [29, 33]. Authors of [16, 32] proposed a memory mapping

algorithm that takes both the physical location of the memory and its temperature into account.

Lo et al. considered access patterns to map frequently accessed pages to memory banks where the

heat dissipates more quickly. Mohammad et al. [13] developed a thermal-aware bandwidth allo-

cation policy. Lokesh et al. [44, 47] migrated data of hot memory channels from 3D memory to

off-chip 2D memory and turned off those memory channels to save leakage and dynamic power.

There is limited research on the coordination of thermal management for processor cores and

memory. Chen et al. [6, 7] pointed out that synergistically controlling the voltage-frequency levels

of cores and DRAMs could achieve higher thermal efficiency than controlling cores only. Jawad

et al. [12] proposed a multi-domain power management technique to improve the energy efficiency

of mobile SoCs, but they did not jointly perform thermal management for cores and memory.

Lokesh et al. [45] attempted to integrate core DVFS and memory LPM for thermal management,

but their proposed solution, CoreMemDTM, has some limitations. CoreMemDTM employs trace

simulations to retroactively model the impact on application performance acquired under NPM

execution. They also use two different instances of HotSpot [17] for thermal modeling, which limits

their ability to model heat transfer between core and memory. Their setup limits their ability to

model the power-thermal-performance impact of LPM realistically. Therefore, a unified thermal

management solution for 3D-stacked processor-memory systems is still missing.

7 CONCLUSION

We developed extensions for the CoMeT simulator to support Low Power Mode (LPM) in 3D-

stacked processor-memory systems. This extension allows us to propose a novel thermal manage-

ment scheduler, 3QUTM, for 3D-stacked processor-memory systems. 3QUTM is a Deep Q-Network

(DQN)-based learning scheduler that intelligently performs scheduling policy at every decision

epoch. The scheduler learns the performance metric and memory access pattern for optimal ther-

mal management. To evaluate the efficacy of 3QUTM, we conducted experiments using all the

benchmarks from PARSEC and SPLASH-2. We substantiated our approach on popular DNN work-

loads, leading to an approximate performance gain of 12.37% and energy savings of around 10%.

The results indicate that 3QUTM can effectively perform thermal management, achieving a 10.15%

performance speedup and a 13.22% energy savings compared to the state-of-the-art technique

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

120:24 Y. Shen et al.

CoreMemDTM. We also verified that 3QUTM adapts to environmental changes by fine-tuning the

Q-network. Overall, our proposed approach, 3QUTM, is a unified core and memory power regula-

tion scheduler that offers a promising solution to the challenges posed by 3D-stacked processor-

memory systems, highlighting the potential for reduced power consumption and enhanced per-

formance in 3D-stacked processor-memory systems.

REFERENCES

[1] Majed Valad Beigi and Gokhan Memik. 2016. TAPAS: Temperature-aware adaptive placement for 3D stacked hybrid

caches. In Proceedings of the Second International Symposium on Memory Systems. 415–426. https://doi.org/10.1145/

2989081.2989085

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Characteri-

zation and architectural implications. In Proceedings of the 17th International Conference on Parallel Architectures and

Compilation Techniques. 72–81. https://doi.org/10.1145/1454115.1454128

[3] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring the level of abstraction for scalable

and accurate parallel multi-core simulation. In Proceedings of 2011 International Conference for High Performance Com-

puting, Networking, Storage and Analysis. 1–12.

[4] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. 2012. CACTI-3DD:

Architecture-level modeling for 3D die-stacked DRAM main memory. In 2012 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 33–38. https://doi.org/10.1109/DATE.2012.6176428

[5] Yu Chen, Yingfeng Chen, Zhipeng Hu, Tianpei Yang, Changjie Fan, Yang Yu, and Jianye Hao. 2019. Learning action-

transferable policy with action embedding. arXiv preprint arXiv:1909.02291 (2019).

[6] Yi-Jung Chen, Chia-Lin Yang, Ping-Sheng Lin, and Yi-Chang Lu. 2015. Thermal/performance characterization of CMPs

with 3D-stacked DRAMs under synergistic voltage-frequency control of cores and DRAMs. In Proceedings of the 2015

Conference on Research in Adaptive and Convergent Systems. 430–436.

[7] Yi-Jung Chen, Chia-Lin Yang, Pin-Sheng Lin, and Yi-Chang Lu. 2016. Opportunities of synergistically adjusting

voltage-frequency levels of cores and drams in cmps with 3d-stacked drams for efficient thermal control. ACM SIGAPP

Applied Computing Review 16, 1 (2016), 26–35.

[8] Yuanqing Cheng, Lei Zhang, Yinhe Han, and Xiaowei Li. 2013. Thermal-constrained task allocation for interconnect

energy reduction in 3-D homogeneous MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21,

2 (2013), 239–249. https://doi.org/10.1109/TVLSI.2011.2182067

[9] Ayse Kivilcim Coskun, Tajana Simunic Rosing, Keith A. Whisnant, and Kenny C. Gross. 2008. Temperature-aware

MPSoC scheduling for reducing hot spots and gradients. In 2008 Asia and South Pacific Design Automation Conference.

IEEE, 49–54. https://doi.org/10.1109/ASPDAC.2008.4484002

[10] Stijn Eyerman and Lieven Eeckhout. 2011. Fine-grained DVFS using on-chip regulators. ACM Transactions on Archi-

tecture and Code Optimization (TACO) 8, 1 (2011), 1–24. https://doi.org/10.1145/1952998.1952999

[11] Engui Fan. 2000. Extended tanh-function method and its applications to nonlinear equations. Physics Letters A 277,

4-5 (2000), 212–218.

[12] Jawad Haj-Yahya, Mohammed Alser, Jeremie Kim, A. Giray Yağlıkçı, Nandita Vijaykumar, Efraim Rotem, and Onur

Mutlu. 2020. SysScale: Exploiting multi-domain dynamic voltage and frequency scaling for energy efficient mobile

processors. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 227–240.

https://doi.org/10.48550/arXiv.2005.07613

[13] Mohammad Hossein Hajkazemi, Mohammad Khavari Tavana, Tinoosh Mohsenin, and Houman Homayoun. 2017.

Heterogeneous HMC+ DDRx memory management for performance-temperature tradeoffs. ACM Journal on Emerging

Technologies in Computing Systems (JETC) 14, 1 (2017), 1–21. https://doi.org/10.1145/3106233

[14] Fazal Hameed, Mohammad Abdullah Al Faruque, and Jörg Henkel. 2011. Dynamic thermal management in 3D multi-

core architecture through run-time adaptation. In 2011 Design, Automation & Test in Europe. IEEE, 1–6. https://doi.

org/10.1109/DATE.2011.5763053

[15] Greg Hamerly and Charles Elkan. 2003. Learning the k in k-means. Advances in Neural Information Processing Systems

16 (2003). https://proceedings.neurips.cc/paper/2003/hash/234833147b97bb6aed53a8f4f1c7a7d8-Abstract.html

[16] Ang-Chih Hsieh and TingTing Hwang. 2013. Thermal-aware memory mapping in 3D designs. ACM Transactions on

Embedded Computing Systems (TECS) 13, 1 (2013), 1–22. https://doi.org/10.1145/2512457

[17] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankaranarayanan, Kevin Skadron, and Mircea R Stan.

2006. HotSpot: A compact thermal modeling methodology for early-stage VLSI design. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 14, 5 (2006), 501–513. https://doi.org/10.1109/TVLSI.2006.876103

[18] Arman Iranfar, Federico Terraneo, Gabor Csordas, Marina Zapater, William Fornaciari, and David Atienza. 2020.

Dynamic thermal management with proactive fan speed control through reinforcement learning. In 2020 Design,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/DATE.2012.6176428
https://doi.org/10.1109/TVLSI.2011.2182067
https://doi.org/10.1109/ASPDAC.2008.4484002
https://doi.org/10.1145/1952998.1952999
https://doi.org/10.48550/arXiv.2005.07613
https://doi.org/10.1145/3106233
https://doi.org/10.1109/DATE.2011.5763053
https://proceedings.neurips.cc/paper/2003/hash/234833147b97bb6aed53a8f4f1c7a7d8-Abstract.html
https://doi.org/10.1145/2512457
https://doi.org/10.1109/TVLSI.2006.876103

Thermal Management for 3D-Stacked Systems 120:25

Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 418–423. https://doi.org/10.23919/DATE48585.

2020.9116510

[19] Kyungsu Kang, Jongpil Jung, Sungjoo Yoo, and Chong-Min Kyung. 2011. Maximizing throughput of temperature-

constrained multi-core systems with 3D-stacked cache memory. In 2011 12th International Symposium on Quality

Electronic Design. IEEE, 1–6.

[20] Young Geun Kim, Jeong In Kim, Seung Hun Choi, Seon Young Kim, and Sung Woo Chung. 2019. Temperature-aware

adaptive VM allocation in heterogeneous data centers. In 2019 IEEE/ACM International Symposium on Low Power

Electronics and Design (ISLPED). IEEE, 1–6. https://doi.org/10.1109/ISLPED.2019.8824825

[21] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014). https://arxiv.org/abs/1412.6980

[22] Sumeet S. Kumar, Amir Zjajo, and Rene van Leuken. 2017. Fighting dark silicon: Toward realizing efficient thermal-

aware 3-D stacked multiprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 4 (2017),

1549–1562. https://doi.org/10.1109/TVLSI.2016.2642587

[23] Jie Li, Yuhui Deng, Yi Zhou, Zhen Zhang, Geyong Min, and Xiao Qin. 2022. Towards thermal-aware workload distribu-

tion in cloud data centers based on failure models. IEEE Trans. Comput. (2022). https://doi.org/10.1109/TC.2022.3158476

[24] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings

of the 42nd Annual Ieee/acm International Symposium on Microarchitecture. 469–480. https://doi.org/10.1145/1669112.

1669172

[25] Chien-Hui Liao, Charles H.-P. Wen, and Krishnendu Chakrabarty. 2015. An online thermal-constrained task scheduler

for 3D multi-core processors. In 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 351–

356. https://ieeexplore.ieee.org/abstract/document/7092413

[26] Wei Liu, Andrea Calimera, Alberto Macii, Enrico Macii, Alberto Nannarelli, and Massimo Poncino. 2013. Layout-

driven post-placement techniques for temperature reduction and thermal gradient minimization. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 32, 3 (2013), 406–418. https://doi.org/10.1109/TCAD.2012.

2228267

[27] Wei-Hen Lo, Kai-zen Liang, and TingTing Hwang. 2016. Thermal-aware dynamic page allocation policy by future

access patterns for hybrid memory cube (HMC). In 2016 Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, 1084–1089. https://ieeexplore.ieee.org/document/7459470

[28] G. L. Loi, B. Agrawal, N. Srivastava, Sheng-Chih Lin, T. Sherwood, and K. Banerjee. 2006. A thermally-aware perfor-

mance analysis of vertically integrated (3-D) processor-memory hierarchy. In 2006 43rd ACM/IEEE Design Automation

Conference. 991–996. https://doi.org/10.1145/1146909.1147160

[29] Tiantao Lu, Caleb Serafy, Zhiyuan Yang, and Ankur Srivastava. 2016. Voltage noise induced DRAM soft error reduction

technique for 3D-CPUs. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design. 82–87.

https://doi.org/10.1145/2934583.2934589

[30] Yanchao Lu, Donghong Wu, Bingsheng He, Xueyan Tang, Jianliang Xu, and Minyi Guo. 2015. Rank-aware dynamic

migrations and adaptive demotions for DRAM power management. IEEE Trans. Comput. 65, 1 (2015), 187–202.

[31] Warwick Masson, Pravesh Ranchod, and George Konidaris. 2016. Reinforcement learning with parameterized actions.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.

[32] Jie Meng and Ayse K Coskun. 2012. Analysis and runtime management of 3D systems with stacked DRAM for boosting

energy efficiency. In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 611–616. https:

//doi.org/10.1109/DATE.2012.6176545

[33] Jie Meng, Katsutoshi Kawakami, and Ayse K Coskun. 2012. Optimizing energy efficiency of 3-D multicore systems with

stacked DRAM under power and thermal constraints. In Proceedings of the 49th Annual Design Automation Conference.

648–655. https://doi.org/10.1145/2228360.2228477

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement

learning. Nature 518, 7540 (2015), 529–533. https://www.nature.com/articles/nature14236/?source=post_page

[35] Ashkan Hosseinzadeh Namin, Karl Leboeuf, Roberto Muscedere, Huapeng Wu, and Majid Ahmadi. 2009. Efficient

hardware implementation of the hyperbolic tangent sigmoid function. In 2009 IEEE International Symposium on Cir-

cuits and Systems. IEEE, 2117–2120.

[36] Sobhan Niknam, Yixian Shen, Anuj Pathania, and Andy D. Pimentel. 2023. 3D-TTP:Efficient transient temperature-

aware power budgeting for 3D-stacked processor-memory systems. In Proceedings of the IEEE Computer Society Annual

Symposium on VLSI (ISVLSI) 2023.

[37] Michail Noltsis, Nikolaos Zambelis, Francky Catthoor, and Dimitrios Soudris. 2019. A closed-loop controller to en-

sure performance and temperature constraints for dynamic applications. ACM Transactions on Embedded Computing

Systems (TECS) 18, 5 (2019), 1–24. https://doi.org/10.1145/3343030

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

https://doi.org/10.23919/DATE48585.2020.9116510
https://doi.org/10.1109/ISLPED.2019.8824825
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TVLSI.2016.2642587
https://doi.org/10.1109/TC.2022.3158476
https://doi.org/10.1145/1669112.1669172
https://ieeexplore.ieee.org/abstract/document/7092413
https://doi.org/10.1109/TCAD.2012.2228267
https://ieeexplore.ieee.org/document/7459470
https://doi.org/10.1145/1146909.1147160
https://doi.org/10.1145/2934583.2934589
https://doi.org/10.1109/DATE.2012.6176545
https://doi.org/10.1145/2228360.2228477
https://www.nature.com/articles/nature14236/?source=post_page
https://doi.org/10.1145/3343030

120:26 Y. Shen et al.

[38] Shailja Pandey and Preeti Ranjan Panda. 2022. NeuroMap: Efficient task mapping of deep neural networks for dynamic

thermal management in high-bandwidth memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 41, 11 (2022), 3602–3613.

[39] Amir M Rahmani, Muhammad Shafique, Axel Jantsch, Pasi Liljeberg, et al. 2018. adBoost: Thermal aware performance

boosting through dark silicon patterning. IEEE Trans. Comput. 67, 8 (2018), 1062–1077. https://doi.org/10.1109/TC.2018.

2805683

[40] Martin Rapp, Anuj Pathania, Tulika Mitra, and Jörg Henkel. 2020. Neural network-based performance prediction for

task migration on s-nuca many-cores. IEEE Trans. Comput. 70, 10 (2020), 1691–1704. https://doi.org/10.1109/TC.2020.

3023022

[41] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized experience replay. arXiv preprint

arXiv:1511.05952 (2015).

[42] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. 2017. DBSCAN revisited, revisited:

why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS) 42, 3 (2017), 1–21. https:

//doi.org/10.1145/3068335

[43] Lili Shen, Ning Wu, and Gaizhen Yan. 2020. Fuzzy-based thermal management scheme for 3D chip multicores with

stacked caches. Electronics 9, 2 (2020), 346.

[44] Lokesh Siddhu, Rajesh Kedia, and Preeti Ranjan Panda. 2020. Leakage-aware dynamic thermal management of 3D

memories. ACM Transactions on Design Automation of Electronic Systems (TODAES) 26, 2 (2020), 1–31. https://doi.org/

10.1145/3419468

[45] Lokesh Siddhu, Rajesh Kedia, and Preeti Ranjan Panda. 2022. CoreMemDTM: Integrated processor core and 3D mem-

ory dynamic thermal management for improved performance. In 2022 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 1377–1382. https://dl.acm.org/doi/abs/10.5555/3539845.3540166

[46] Lokesh Siddhu, Rajesh Kedia, Shailja Pandey, Martin Rapp, Anuj Pathania, Jörg Henkel, and Preeti Ranjan Panda. 2022.

CoMeT: An integrated interval thermal simulation toolchain for 2D, 2.5 D, and 3D processor-memory systems. ACM

Transactions on Architecture and Code Optimization (TACO) 19, 3 (2022), 1–25. https://doi.org/10.1145/3532185

[47] Lokesh Siddhu and Preeti Ranjan Panda. 2019. FastCool: Leakage aware dynamic thermal management of 3D mem-

ories. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 272–275. https://doi.org/10.

23919/DATE.2019.8715091

[48] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8 (1992), 279–292. https://link.

springer.com/article/10.1007/BF00992698#Abs1

[49] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The SPLASH-

2 programs: Characterization and methodological considerations. ACM SIGARCH Computer Architecture News 23,

2 (1995), 24–36. https://doi.org/10.1145/225830.223990

[50] Xiuyi Zhou, Jun Yang, Yi Xu, Youtao Zhang, and Jianhua Zhao. 2009. Thermal-aware task scheduling for 3D multicore

processors. IEEE Transactions on Parallel and Distributed Systems 21, 1 (2009), 60–71. https://doi.org/10.1109/TPDS.

2009.27

Received 9 March 2023; revised 2 June 2023; accepted 13 July 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.

https://doi.org/10.1109/TC.2018.2805683
https://doi.org/10.1109/TC.2020.3023022
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3419468
https://dl.acm.org/doi/abs/10.5555/3539845.3540166
https://doi.org/10.1145/3532185
https://doi.org/10.23919/DATE.2019.8715091
https://link.springer.com/article/10.1007/BF00992698#Abs1
https://doi.org/10.1145/225830.223990
https://doi.org/10.1109/TPDS.2009.27

