9 research outputs found

    Low complexity DOA estimation for wideband off-grid sources based on re-focused compressive sensing with dynamic dictionary

    Get PDF
    Under the compressive sensing (CS) framework, a novel focusing based direction of arrival (DOA) estimation method is first proposed for wideband off-grid sources, and by avoiding the application of group sparsity (GS) across frequencies of interest, significant complexity reduction is achieved with its computational complexity close to that of solving a single frequency based direction finding problem. To further improve the performance by alleviating both the off-grid approximation errors and the focusing errors which are even worse for the off-grid case, a dynamic dictionary based re-focused off-grid DOA estimation method is developed with the number of extremely sparse grids involved in estimation refined to the number of detected sources, and thus the complexity is still very low due to the limited increased complexity introduced by iterations, while improved performance can be achieved compared with those fixed dictionary based off-grid methods

    Statistical Performance Analysis of Sparse Linear Arrays

    Get PDF
    Direction-of-arrival (DOA) estimation remains an important topic in array signal processing. With uniform linear arrays (ULAs), traditional subspace-based methods can resolve only up to M-1 sources using M sensors. On the other hand, by exploiting their so-called difference coarray model, sparse linear arrays, such as co-prime and nested arrays, can resolve up to O(M^2) sources using only O(M) sensors. Various new sparse linear array geometries were proposed and many direction-finding algorithms were developed based on sparse linear arrays. However, the statistical performance of such arrays has not been analytically conducted. In this dissertation, we (i) study the asymptotic performance of the MUtiple SIgnal Classification (MUSIC) algorithm utilizing sparse linear arrays, (ii) derive and analyze performance bounds for sparse linear arrays, and (iii) investigate the robustness of sparse linear arrays in the presence of array imperfections. Based on our analytical results, we also propose robust direction-finding algorithms for use when data are missing. We begin by analyzing the performance of two commonly used coarray-based MUSIC direction estimators. Because the coarray model is used, classical derivations no longer apply. By using an alternative eigenvector perturbation analysis approach, we derive a closed-form expression of the asymptotic mean-squared error (MSE) of both estimators. Our expression is computationally efficient compared with the alternative of Monte Carlo simulations. Using this expression, we show that when the source number exceeds the sensor number, the MSE remains strictly positive as the signal-to-noise ratio (SNR) approaches infinity. This finding theoretically explains the unusual saturation behavior of coarray-based MUSIC estimators that had been observed in previous studies. We next derive and analyze the Cramér-Rao bound (CRB) for general sparse linear arrays under the assumption that the sources are uncorrelated. We show that, unlike the classical stochastic CRB, our CRB is applicable even if there are more sources than the number of sensors. We also show that, in such a case, this CRB remains strictly positive definite as the SNR approaches infinity. This unusual behavior imposes a strict lower bound on the variance of unbiased DOA estimators in the underdetermined case. We establish the connection between our CRB and the classical stochastic CRB and show that they are asymptotically equal when the sources are uncorrelated and the SNR is sufficiently high. We investigate the behavior of our CRB for co-prime and nested arrays with a large number of sensors, characterizing the trade-off between the number of spatial samples and the number of temporal samples. Our analytical results on the CRB will benefit future research on optimal sparse array designs. We further analyze the performance of sparse linear arrays by considering sensor location errors. We first introduce the deterministic error model. Based on this model, we derive a closed-form expression of the asymptotic MSE of a commonly used coarray-based MUSIC estimator, the spatial-smoothing based MUSIC (SS-MUSIC). We show that deterministic sensor location errors introduce a constant estimation bias that cannot be mitigated by only increasing the SNR. Our analytical expression also provides a sensitivity measure against sensor location errors for sparse linear arrays. We next extend our derivations to the stochastic error model and analyze the Gaussian case. We also derive the CRB for joint estimation of DOA parameters and deterministic sensor location errors. We show that this CRB is applicable even if there are more sources than the number of sensors. Lastly, we develop robust DOA estimators for cases with missing data. By exploiting the difference coarray structure, we introduce three algorithms to construct an augmented covariance matrix with enhanced degrees of freedom. By applying MUSIC to this augmented covariance matrix, we are able to resolve more sources than sensors. Our method utilizes information from all snapshots and shows improved estimation performance over traditional DOA estimators

    A review of closed-form Cramér-Rao Bounds for DOA estimation in the presence of Gaussian noise under a unified framework

    Get PDF
    The Cramér-Rao Bound (CRB) for direction of arrival (DOA) estimation has been extensively studied over the past four decades, with a plethora of CRB expressions reported for various parametric models. In the literature, there are different methods to derive a closed-form CRB expression, but many derivations tend to involve intricate matrix manipulations which appear difficult to understand. Starting from the Slepian-Bangs formula and following the simplest derivation approach, this paper reviews a number of closed-form Gaussian CRB expressions for the DOA parameter under a unified framework, based on which all the specific CRB presentations can be derived concisely. The results cover three scenarios: narrowband complex circular signals, narrowband complex noncircular signals, and wideband signals. Three signal models are considered: the deterministic model, the stochastic Gaussian model, and the stochastic Gaussian model with the a priori knowledge that the sources are spatially uncorrelated. Moreover, three Gaussian noise models distinguished by the structure of the noise covariance matrix are concerned: spatially uncorrelated noise with unknown either identical or distinct variances at different sensors, and arbitrary unknown noise. In each scenario, a unified framework for the DOA-related block of the deterministic/stochastic CRB is developed, which encompasses one class of closed-form deterministic CRB expressions and two classes of stochastic ones under the three noise models. Comparisons among different CRBs across classes and scenarios are presented, yielding a series of equalities and inequalities which reflect the benchmark for the estimation efficiency under various situations. Furthermore, validity of all CRB expressions are examined, with some specific results for linear arrays provided, leading to several upper bounds on the number of resolvable Gaussian sources in the underdetermined case

    Sparse Array Signal Processing: New Array Geometries, Parameter Estimation, and Theoretical Analysis

    Get PDF
    Array signal processing focuses on an array of sensors receiving the incoming waveforms in the environment, from which source information, such as directions of arrival (DOA), signal power, amplitude, polarization, and velocity, can be estimated. This topic finds ubiquitous applications in radar, astronomy, tomography, imaging, and communications. In these applications, sparse arrays have recently attracted considerable attention, since they are capable of resolving O(N2) uncorrelated source directions with N physical sensors. This is unlike the uniform linear arrays (ULA), which identify at most N-1 uncorrelated sources with N sensors. These sparse arrays include minimum redundancy arrays (MRA), nested arrays, and coprime arrays. All these arrays have an O(N2)-long central ULA segment in the difference coarray, which is defined as the set of differences between sensor locations. This O(N2) property makes it possible to resolve O(N2) uncorrelated sources, using only N physical sensors. The main contribution of this thesis is to provide a new direction for array geometry and performance analysis of sparse arrays in the presence of nonidealities. The first part of this thesis focuses on designing novel array geometries that are robust to effects of mutual coupling. It is known that, mutual coupling between sensors has an adverse effect on the estimation of DOA. While there are methods to counteract this through appropriate modeling and calibration, they are usually computationally expensive, and sensitive to model mismatch. On the other hand, sparse arrays, such as MRA, nested arrays, and coprime arrays, have reduced mutual coupling compared to ULA, but all of these have their own disadvantages. This thesis introduces a new array called the super nested array, which has many of the good properties of the nested array, and at the same time achieves reduced mutual coupling. Many theoretical properties are proved and simulations are included to demonstrate the superior performance of super nested arrays in the presence of mutual coupling. Two-dimensional planar sparse arrays with large difference coarrays have also been known for a long time. These include billboard arrays, open box arrays (OBA), and 2D nested arrays. However, all of them have considerable mutual coupling. This thesis proposes new planar sparse arrays with the same large difference coarrays as the OBA, but with reduced mutual coupling. The new arrays include half open box arrays (HOBA), half open box arrays with two layers (HOBA-2), and hourglass arrays. Among these, simulations show that hourglass arrays have the best estimation performance in presence of mutual coupling. The second part of this thesis analyzes the performance of sparse arrays from a theoretical perspective. We first study the Cramér-Rao bound (CRB) for sparse arrays, which poses a lower bound on the variances of unbiased DOA estimators. While there exist landmark papers on the study of the CRB in the context of array processing, the closed-form expressions available in the literature are not applicable in the context of sparse arrays for which the number of identifiable sources exceeds the number of sensors. This thesis derives a new expression for the CRB to fill this gap. Based on the proposed CRB expression, it is possible to prove the previously known experimental observation that, when there are more sources than sensors, the CRB stagnates to a constant value as the SNR tends to infinity. It is also possible to precisely specify the relation between the number of sensors and the number of uncorrelated sources such that these sources could be resolved. Recently, it has been shown that correlation subspaces, which reveal the structure of the covariance matrix, help to improve some existing DOA estimators. However, the bases, the dimension, and other theoretical properties of correlation subspaces remain to be investigated. This thesis proposes generalized correlation subspaces in one and multiple dimensions. This leads to new insights into correlation subspaces and DOA estimation with prior knowledge. First, it is shown that the bases and the dimension of correlation subspaces are fundamentally related to difference coarrays, which were previously found to be important in the study of sparse arrays. Furthermore, generalized correlation subspaces can handle certain forms of prior knowledge about source directions. These results allow one to derive a broad class of DOA estimators with improved performance. It is empirically known that the coarray structure is susceptible to sensor failures, and the reliability of sparse arrays remains a significant but challenging topic for investigation. This thesis advances a general theory for quantifying such robustness, by studying the effect of sensor failure on the difference coarray. We first present the (k-)essentialness property, which characterizes the combinations of the faulty sensors that shrink the difference coarray. Based on this, the notion of (k-)fragility is proposed to quantify the reliability of sparse arrays with faulty sensors, along with comprehensive studies of their properties. These novel concepts provide quite a few insights into the interplay between the array geometry and its robustness. For instance, for the same number of sensors, it can be proved that ULA is more robust than the coprime array, and the coprime array is more robust than the nested array. Rigorous development of these ideas leads to expressions for the probability of coarray failure, as a function of the probability of sensor failure. The thesis concludes with some remarks on future directions and open problems.</p

    Signal Processing for Large Arrays: Convolutional Beamspace, Hybrid Analog and Digital Processing, and Distributed Algorithms

    Get PDF
    The estimation of the directions of arrival (DOAs) of incoming waves for a passive antenna array has long been an important topic in array signal processing. Meanwhile, the estimation of the MIMO channel between a transmit antenna array and a receive antenna array is a key problem in wireless communications. In many recent works on these array processing tasks, people consider millimeter waves (mmWaves) due to their potential to offer more bandwidth than the already highly occupied lower-frequency bands. However, new challenges like strong path loss at the high frequencies of mmWaves arise. To compensate for the path loss, large arrays, or massive MIMO, are used to get large beamforming gain. It is practical due to the small sizes of mmWave antennas. When large arrays are used, it is important to develop efficient estimation algorithms with low computational and hardware complexity. The main contribution of this thesis is to propose low-complexity DOA and channel estimation methods that are especially effective for large arrays. To achieve low complexity, three main aspects are explored: beamspace methods, hybrid analog and digital processing, and distributed algorithms. First, a new beamspace method, convolutional beamspace (CBS), is proposed for DOA estimation based on passive arrays. In CBS, the array output is spatially filtered, followed by uniform decimation (downsampling) to achieve dimensionality reduction. No DOA ambiguity occurs since the filter output is represented only by the passband sources. CBS enjoys the advantages of classical beamspace such as lower computational complexity, increased parallelism of subband processing, and improved resolution threshold for DOA estimation. Moreover, unlike classical beamspace methods, it allows root-MUSIC and ESPRIT to be performed directly for uniform linear arrays without additional preparation since the Vandermonde structure is preserved under the CBS transformation. The method produces more accurate DOA estimates than classical beamspace, and for correlated sources, better estimates than element-space. The idea of hybrid analog and digital processing is then incorporated into CBS, leading to hybrid CBS for DOA estimation. In hybrid processing, an analog combiner is used to reduce the number of radio frequency (RF) chains and thus hardware complexity. Also for lowering hardware cost, the analog combiner is designed as a phase shifter network with unit-modulus entries. It is shown that any general (arbitrary coefficient) CBS filter can be implemented despite the unit-modulus constraints. Moreover, a new scheme of CBS is proposed based on nonuniform decimation and difference coarray method. This allows us to identify more sources than RF chains. The retained samples correspond to the sensor locations of a virtual sparse array, dilated by an integer factor, which results in larger coarray aperture and thus better estimation performance. Besides, with the use of random or deterministic filter delays that vary with snapshots, a new method is proposed to decorrelate sources for the coarray method to work. Next, a 2-dimensional (2-D) hybrid CBS method is developed for mmWave MIMO channel estimation. Since mmWave channel estimation problems can be formulated as 2-D direction-of-departure (DOD) and DOA estimation, benefits of CBS such as low complexity are applicable here. The receiver operation is again filtering followed by decimation. A key novelty is the use of a proper counterpart of CBS at the transmitter—expansion (upsampling) followed by filtering—to reduce RF chains. The expansion and decimation can be either uniform or nonuniform. The nonuniform scheme is used with 2-D coarray method and requires fewer RF chains to achieve the same estimation performance as the uniform scheme. A method based on the introduction of filter delays is also proposed to decorrelate path gains, which is crucial to the success of coarray methods. It is shown that given fixed pilot overhead, 2-D hybrid CBS can yield more accurate channel estimates than previous methods. Finally, distributed (decentralized) algorithms for array signal processing are studied. With the potential of reducing computation and communication complexity, distributed estimation of covariance, and distributed principal component analysis have been introduced and studied in the signal processing community in recent years. Applications in array processing have been also indicated in some detail. In this thesis, distributed algorithms are further developed for several well-known methods for DOA estimation and beamforming. New distributed algorithms are proposed for DOA estimation methods like root-MUSIC, total least squares ESPRIT, and FOCUSS. Other contributions include distributed design of the Capon beamformer from data, distributed implementation of the spatial smoothing method for coherent sources, and distributed realization of CBS. The proposed algorithms are fully distributed since average consensus (AC) is used to avoid the need for a fusion center. The algorithms are based on a finite-time version of AC which converges to the exact solution in a finite number of iterations. This enables the proposed distributed algorithms to achieve the same performance as the centralized counterparts, as demonstrated by simulations.</p

    Array Signal Processing Based on Traditional and Sparse Arrays

    Get PDF
    Array signal processing is based on using an array of sensors to receive the impinging signals. The received data is either spatially filtered to focus the signals from a desired direction or it may be used for estimating a parameter of source signal like direction of arrival (DOA), polarization and source power. Spatial filtering also known as beamforming and DOA estimation are integral parts of array signal processing and this thesis is aimed at solving some key probems related to these two areas. Wideband beamforming holds numerous applications in the bandwidth hungry data traffic of present day world. Several techniques exist to design fixed wideband beamformers based on traditional arrays like uniform linear array (ULA). Among these techniques, least squares based eigenfilter method is a key technique which has been used extensively in filter and wideband beamformer design. The first contribution of this thesis comes in the form of critically analyzing the standard eigenfilter method where a serious flaw in the design formulation is highlighted which generates inconsistent design performance, and an additional constraint is added to stabilize the achieved design. Simulation results show the validity and significance of the proposed method. Traditional arrays based on ULAs have limited applications in array signal processing due to the large number of sensors required and this problem has been addressed by the application of sparse arrays. Sparse arrays have been exploited from the perspective of their difference co-array structures which provide significantly higher number of degrees of freedoms (DOFs) compared to ULAs for the same number of sensors. These DOFs (consecutive and unique lags) are utilized in the application of DOA estimation with the help of difference co-array based DOA estimators. Several types of sparse arrays include minimum redundancy array (MRA), minimum hole array (MHA), nested array, prototype coprime array, conventional coprime array, coprime array with compressed interelement spacing (CACIS), coprime array with displaced subarrays (CADiS) and super nested array. As a second contribution of this thesis, a new sparse array termed thinned coprime array (TCA) is proposed which holds all the properties of a conventional coprime array but with \ceil*{\frac{M}{2}} fewer sensors where MM is the number of sensors of a subarray in the conventional structure. TCA possesses improved level of sparsity and is robust against mutual coupling compared to other sparse arrays. In addition, TCA holds higher number of DOFs utilizable for DOA estimation using variety of methods. TCA also shows lower estimation error compared to super nested arrays and MRA with increasing array size. Although TCA holds numerous desirable features, the number of unique lags offered by TCA are close to the sparsest CADiS and nested array and significantly lower than MRA which limits the estimation error performance offered by TCA through (compressive sensing) CS-based methods. In this direction, the structure of TCA is studied to explore the possibility of an array which can provide significantly higher number of unique lags with improved sparsity for a given number of sensors. The result of this investigation is the third contribution of this thesis in the form of a new sparse array, displaced thinned coprime array with additional sensor (DiTCAAS), which is based on a displaced version of TCA. The displacement of the subarrays generates an increase in the unique lags but the minimum spacing between the sensors becomes an integer multiple of half wavelength. To avoid spatial aliasing, an additional sensor is added at half wavelength from one of the sensors of the displaced subarray. The proposed placement of the additional sensor generates significantly higher number of unique lags for DiTCAAS, even more than the DOFs provided by MRA. Due to its improved sparsity and higher number of unique lags, DiTCAAS generates the lowest estimation error and robustness against heavy mutual coupling compared to super nested arrays, MRA, TCA and sparse CADiS with CS-based DOA estimation
    corecore